Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(8)

Unified Diff: third_party/WebKit/LayoutTests/webaudio/IIRFilter/iir-tail-time.html

Issue 2851873003: Compute the tail time for an IIRFilter from its coefficients (Closed)
Patch Set: Rebase Created 3 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « no previous file | third_party/WebKit/LayoutTests/webaudio/IIRFilter/iirfilter.html » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: third_party/WebKit/LayoutTests/webaudio/IIRFilter/iir-tail-time.html
diff --git a/third_party/WebKit/LayoutTests/webaudio/IIRFilter/iir-tail-time.html b/third_party/WebKit/LayoutTests/webaudio/IIRFilter/iir-tail-time.html
new file mode 100644
index 0000000000000000000000000000000000000000..30fae18384cc228ef72418c1525f79764b74aacd
--- /dev/null
+++ b/third_party/WebKit/LayoutTests/webaudio/IIRFilter/iir-tail-time.html
@@ -0,0 +1,289 @@
+<!doctype html>
+<html>
+ <head>
+ <title>Test Tail Time for IIRFilter</title>
+ <script src="../../resources/testharness.js"></script>
+ <script src="../../resources/testharnessreport.js"></script>
+ <script src="../resources/audit-util.js"></script>
+ <script src="../resources/audit.js"></script>
+ </head>
+
+ <body>
+ <script>
+ let audit = Audit.createTaskRunner();
+ let renderQuantumFrames = 128;
+
+ // Must be a power of two to eliminate round-off differences between thsi
+ // JS code and the WebAudio implementation. Otherwise, the sample rate is
+ // arbitrary.
+ let sampleRate = 16384;
+
+ // Fairly arbitrary, but should be long enough so that the node propagates
+ // silence before the end of the offline context.
+ let renderDuration = 1;
+
+
+ audit.define('1-pole tail', (task, should) => {
+ let pole = 0.99;
+ let IIROptions = {feedforward: [1], feedback: [1, -pole]};
+ // For the given filter, we can actually compute where the tail
+ // begins. The impulse response for the 1-pole filter is h(n) =
+ // a^n, where a = 0.9. The tail here starts when a^n < eps =
+ // 1/32768. So n > log(eps)/log(a), or 98.7. Round that up to the
+ // nearest render quantum frames.
+ let tail = Math.ceil(Math.log(1 / 32768) / Math.log(pole));
+
+ runTest(should, IIROptions, tail, '1-pole').then(() => task.done());
+ });
+
+ audit.define('2 real pole test', (task, should) => {
+ // Simple example of a 2-pole IIR filter where both poles are real.
+ // We arbitrarily select a pole at 9.99 and one at -0.5. The IIRFilter
+ // is then
+ // 1 / ((z-0.99) * (z + 0.5))
+ // = 1/(z^2-0.49z-0.495)
+ // = z^-2/(1-0.49/z-0.495/z^2)
+ let IIROptions = {feedforward: [0, 0, 1], feedback: [1, -0.49, -0.495]};
+
+ // For this particular filter, we can analytically compute the impulse
+ // response using partical fractios:
+ //
+ // 1 / ((z-0.99) * (z + 0.5))
+ // = 1/(-0.5-0.99)/(z + 0.5) - 1/(-0.5-0.99)/(z - 0.99)
+ // = 1/1.49*(1/(z-0.99) - 1/(z+0.5))
+ // = 1/1.49*[1/z*sum(.99^n/z^n,n,0,inf)
+ // - 1/z*sum((-0.5)^n/z^n,n,0,inf)]
+ // = 1/1.49/z*sum((0.99^n-(-0.5)^n)/z^n)
+ //
+ // So the tail begins when 1/1.49*(0.99^n-(-0.5)^n) < 1/32768. This can
+ // be solved numerically to give n = 995.
+ let tail = 995;
+ tail = renderQuantumFrames * Math.ceil(tail / renderQuantumFrames);
+
+ runTest(should, IIROptions, tail, '2 real poles')
+ .then(() => task.done());
+ });
+
+ audit.define('2 complex poles', (task, should) => {
+ // Simple example of a 2-pole IIR filter where both poles are complex
+ // conjugates. In this case, the poles will be r*exp(+/-i*theta) where
+ // r = 0.99 and theta = 0.01. The filter is then
+ //
+ // 1/(z^2-2*r*cos(theta) + r^2)
+ // = z^(-2)/(1-2*r*cos(theta)/z + r^2/z^2)
+ let r = 0.99;
+ let theta = 0.01;
+ let IIROptions = {
+ feedforward: [0, 0, 1],
+ feedback: [1, -2 * r * Math.cos(theta), r * r]
+ };
+
+ // Again, we can use partial fractions as for 2 real pole case to get an
+ // analytically solution for the impulse response. For simplicity, let
+ // p1 = r*exp(i*theta), p2 = r*exp(-i*theta). Then:
+ //
+ // 1/(z^2-2*r*cos(theta) + r^2)
+ // = 1/(z-p1)/(z-p2)
+ // = 1/(p2-p1)*[1/(z-p2) - 1/(z-p1)]
+ // = 1/(p2-p1)*[1/z*sum(p2^n/z^n) - 1/z*sum(p1^n/z^n)]
+ // = 1/(p2-p1)/z*sum((p2^n-p1^n)/z^n)
+ //
+ // So the tail begins when
+ // 1/32768 > |1/(p2-p1)*(p2^n-p1^n)|
+ // = 1/(r*sin(theta))*|r^n*(exp(-i*theta*n)-exp(i*theta*n))|
+ // = 1/(2*r*sin(theta))*(2*r^n*|sin(theta*n)|);
+ // = r^(n-1)*|sin(theta*n)|/sin(theta)
+ //
+ // This can be solved numerically to for n;
+ let tail = 1474.256;
+ tail = renderQuantumFrames * Math.ceil(tail / renderQuantumFrames);
+
+ runTest(should, IIROptions, tail, '2 complex poles')
+ .then(() => task.done());
+ });
+
+ audit.define('repeated poles', (task, should) => {
+ // Two repeated roots. Let p be the repeated pole. Then the filter is
+ //
+ // 1/(z-p)^2
+ // = z^(-2)/(1-p/z)^2
+ // = z^(-2)/(1-2*p/z+p*p/z^2)
+
+ let pole = 0.99;
+ let IIROptions = {
+ feedforward: [0,0,1],
+ feedback: [1, -2*pole, pole*pole]
+ };
+
+ // We can analytically compute the impulse response of this filter to be
+ //
+ // 1/z^2*sum(p^n*(n+1)/z^n, n, 0, inf)
+ // = sum(p^n*(n+1)/z^(n+2), n, 0, inf)
+ // = 1/p^2*sum((p^k*(k-1))/z^k,k,2,inf))
+ //
+ // Therefore the tail starts when p^(k-2)*(k-1) < 1/32768. We can solve
+ // this numerically to be 1781.213;
+
+ let tail = 1781.213;
+ runTest(should, IIROptions, tail, '2 repeated poles')
+ .then(() => task.done());
+
+ });
+
+ audit.define('4-th order', (task, should) => {
+ // Test consistency of tail times between a 4-th order direct IIR filter
+ // and the equivalent cascade of second-order sections. The first
+ // channel of the output is the cascaded biquad, and the second channel
+ // is the 4-th order equivalent.
+ let context =
+ new OfflineAudioContext(2, renderDuration * sampleRate, sampleRate);
+
+ let src = new AudioBufferSourceNode(
+ context, {buffer: createImpulseBuffer(context, 1)});
+
+ // This is a 4-th order lowpass elliptic filter designed using
+ // http://rtoy.github.io/webaudio-hacks/more/filter-design/filter-design.html.
+ // The sample rate is 16384 Hz with a passband at 3600 Hz with a 0.25 dB
+ // attenuation, and a stopband at 4800 Hz, with a stopband attenuation
+ // of 30 dB. (Nothing really special except that this gives a 4-th order
+ // filter).
+
+ let f0 = context.createIIRFilter(
+ [0.6410686464424084, 0.2607836369670137, 0.6410686464424084],
+ [1, -0.2287413068432929, 0.7716622366951231]);
+ let f1 = context.createIIRFilter(
+ [0.21283904239866536, 0.3184888523034876, 0.21283904239866536],
+ [1, -0.4686913542990081, 0.21285829139982618]);
+
+ // The poles for f0 are 0.1143706534216465 +/- 0.8709658950447078*i or
+ // 0.8784430753868592*%e^(+/-1.440228658066206*%i),
+ //
+ // The poles for f1 are 0.2343456771495041 +/- 0.3974171548903829*i or
+ // 0.4613656807780854*%e^(+/-1.038005727602151*%i.
+ //
+ // Thus, the tail time for f0 is approximately 80, but this is an
+ // approximation since we didn't include the affect of the numerator.
+ // Round this up to the next render to get an actual tail time of 128.
+ //
+ // Similarly, for f0, the tail time is 14.3. Thus, the actual tail time
+ // is alos 128 for this filter.
+ //
+ // Since these biquads are cascaded, the total tail time for both is the
+ // sum or 256 frames. However, the tail actually ends two render quanta
+ // after this for a total of 512 frames.
+
+ let biquadTailEnd = 512;
+
+ // The equivalent 4-th order filter created multiplying the f0 and f1
+ // coefficients together appropriately.
+ let f = context.createIIRFilter(
+ [
+ 0.136444436820611, 0.259678157018493, 0.355945554878375,
+ 0.259678157018493, 0.136444436820611
+ ],
+ [
+ 1.000000000000000, -0.697432661142301, 1.091729600983457,
+ -0.410360902525266, 0.164254705240692
+ ]);
+
+ let merger = context.createChannelMerger(2);
+ merger.connect(context.destination);
+
+ src.connect(f0).connect(f1).connect(merger, 0, 0);
+ src.connect(f).connect(merger, 0, 1);
+
+ src.start();
+
+ context.startRendering()
+ .then(renderedBuffer => {
+ // c0 = cascaded biquads
+ // c1 = 4-th order filter
+ let c0 = renderedBuffer.getChannelData(0);
+ let c1 = renderedBuffer.getChannelData(1);
+
+ // Sanity check: The two filters should have the same output
+ // within some rounding error.
+ should(
+ c0.slice(0, biquadTailEnd),
+ 'Filter outputs[0:' + (biquadTailEnd - 1) + ']')
+ .beCloseToArray(
+ c1.slice(0, biquadTailEnd),
+ {absoluteThreshold: 1.4902e-8});
+ should(
+ c0.slice(biquadTailEnd),
+ 'Filter outputs[' + biquadTailEnd + ':]')
+ .beEqualToArray(c1.slice(biquadTailEnd));
+
+ // Verify that after the tail time, the outputs are zero, and not
+ // before for both the biquads and 4-th order filters.
+ should(
+ c0.slice(0, biquadTailEnd),
+ 'cascaded biquad output[0:' + (biquadTailEnd - 1) + ']')
+ .notBeConstantValueOf(0);
+ should(
+ c0.slice(biquadTailEnd),
+ 'cascaded biquad output[' + biquadTailEnd + ':]')
+ .beConstantValueOf(0);
+
+ should(
+ c1.slice(0, biquadTailEnd),
+ '4-th order output[0:' + (biquadTailEnd - 1) + ']')
+ .notBeConstantValueOf(0);
+ should(
+ c1.slice(biquadTailEnd),
+ '4-th order output[' + biquadTailEnd + ':]')
+ .beConstantValueOf(0);
+ })
+ .then(() => task.done());
+ });
+
+ function runTest(should, IIROptions, tailFrames, prefix) {
+ let context =
+ new OfflineAudioContext(1, renderDuration * sampleRate, sampleRate);
+
+ let src = new AudioBufferSourceNode(
+ context, {buffer: createImpulseBuffer(context, 1)});
+
+ let iir = new IIRFilterNode(context, IIROptions);
+
+ src.connect(iir).connect(context.destination);
+
+ src.start();
+
+ return context.startRendering().then(renderedBuffer => {
+ let audio = renderedBuffer.getChannelData(0);
+
+ // Round up the tailFrames to the nearest render quantum.
+ let tailQuantum =
+ renderQuantumFrames * Math.ceil(tailFrames / renderQuantumFrames);
+ let tailEndFrame = tailQuantum + 2 * renderQuantumFrames;
+
+ should(tailEndFrame, prefix + ': tail end frame')
+ .beLessThanOrEqualTo(context.length);
+
+ // Clamp to the render duration so we don't go off the end.
+ tailEndFrame = Math.min(tailEndFrame, context.length);
+
+ for (let k = 0; k < tailEndFrame; k += renderQuantumFrames) {
+ should(
+ audio.slice(k, k + renderQuantumFrames),
+ prefix + ': output[' + k + ':' + (k + renderQuantumFrames - 1) +
+ ']')
+ .notBeConstantValueOf(0);
+ }
+
+ if (tailEndFrame < context.length) {
+ // All frames after should be zero because we're propagating
+ // silence.
+ should(
+ audio.slice(tailEndFrame),
+ 'output[' + tailEndFrame + ':' + (context.length - 1) + ']')
+ .beConstantValueOf(0);
+ }
+ });
+ }
+
+ audit.run();
+ </script>
+ </body>
+</html>
« no previous file with comments | « no previous file | third_party/WebKit/LayoutTests/webaudio/IIRFilter/iirfilter.html » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698