| Index: third_party/WebKit/LayoutTests/webaudio/IIRFilter/iir-tail-time.html
|
| diff --git a/third_party/WebKit/LayoutTests/webaudio/IIRFilter/iir-tail-time.html b/third_party/WebKit/LayoutTests/webaudio/IIRFilter/iir-tail-time.html
|
| new file mode 100644
|
| index 0000000000000000000000000000000000000000..30fae18384cc228ef72418c1525f79764b74aacd
|
| --- /dev/null
|
| +++ b/third_party/WebKit/LayoutTests/webaudio/IIRFilter/iir-tail-time.html
|
| @@ -0,0 +1,289 @@
|
| +<!doctype html>
|
| +<html>
|
| + <head>
|
| + <title>Test Tail Time for IIRFilter</title>
|
| + <script src="../../resources/testharness.js"></script>
|
| + <script src="../../resources/testharnessreport.js"></script>
|
| + <script src="../resources/audit-util.js"></script>
|
| + <script src="../resources/audit.js"></script>
|
| + </head>
|
| +
|
| + <body>
|
| + <script>
|
| + let audit = Audit.createTaskRunner();
|
| + let renderQuantumFrames = 128;
|
| +
|
| + // Must be a power of two to eliminate round-off differences between thsi
|
| + // JS code and the WebAudio implementation. Otherwise, the sample rate is
|
| + // arbitrary.
|
| + let sampleRate = 16384;
|
| +
|
| + // Fairly arbitrary, but should be long enough so that the node propagates
|
| + // silence before the end of the offline context.
|
| + let renderDuration = 1;
|
| +
|
| +
|
| + audit.define('1-pole tail', (task, should) => {
|
| + let pole = 0.99;
|
| + let IIROptions = {feedforward: [1], feedback: [1, -pole]};
|
| + // For the given filter, we can actually compute where the tail
|
| + // begins. The impulse response for the 1-pole filter is h(n) =
|
| + // a^n, where a = 0.9. The tail here starts when a^n < eps =
|
| + // 1/32768. So n > log(eps)/log(a), or 98.7. Round that up to the
|
| + // nearest render quantum frames.
|
| + let tail = Math.ceil(Math.log(1 / 32768) / Math.log(pole));
|
| +
|
| + runTest(should, IIROptions, tail, '1-pole').then(() => task.done());
|
| + });
|
| +
|
| + audit.define('2 real pole test', (task, should) => {
|
| + // Simple example of a 2-pole IIR filter where both poles are real.
|
| + // We arbitrarily select a pole at 9.99 and one at -0.5. The IIRFilter
|
| + // is then
|
| + // 1 / ((z-0.99) * (z + 0.5))
|
| + // = 1/(z^2-0.49z-0.495)
|
| + // = z^-2/(1-0.49/z-0.495/z^2)
|
| + let IIROptions = {feedforward: [0, 0, 1], feedback: [1, -0.49, -0.495]};
|
| +
|
| + // For this particular filter, we can analytically compute the impulse
|
| + // response using partical fractios:
|
| + //
|
| + // 1 / ((z-0.99) * (z + 0.5))
|
| + // = 1/(-0.5-0.99)/(z + 0.5) - 1/(-0.5-0.99)/(z - 0.99)
|
| + // = 1/1.49*(1/(z-0.99) - 1/(z+0.5))
|
| + // = 1/1.49*[1/z*sum(.99^n/z^n,n,0,inf)
|
| + // - 1/z*sum((-0.5)^n/z^n,n,0,inf)]
|
| + // = 1/1.49/z*sum((0.99^n-(-0.5)^n)/z^n)
|
| + //
|
| + // So the tail begins when 1/1.49*(0.99^n-(-0.5)^n) < 1/32768. This can
|
| + // be solved numerically to give n = 995.
|
| + let tail = 995;
|
| + tail = renderQuantumFrames * Math.ceil(tail / renderQuantumFrames);
|
| +
|
| + runTest(should, IIROptions, tail, '2 real poles')
|
| + .then(() => task.done());
|
| + });
|
| +
|
| + audit.define('2 complex poles', (task, should) => {
|
| + // Simple example of a 2-pole IIR filter where both poles are complex
|
| + // conjugates. In this case, the poles will be r*exp(+/-i*theta) where
|
| + // r = 0.99 and theta = 0.01. The filter is then
|
| + //
|
| + // 1/(z^2-2*r*cos(theta) + r^2)
|
| + // = z^(-2)/(1-2*r*cos(theta)/z + r^2/z^2)
|
| + let r = 0.99;
|
| + let theta = 0.01;
|
| + let IIROptions = {
|
| + feedforward: [0, 0, 1],
|
| + feedback: [1, -2 * r * Math.cos(theta), r * r]
|
| + };
|
| +
|
| + // Again, we can use partial fractions as for 2 real pole case to get an
|
| + // analytically solution for the impulse response. For simplicity, let
|
| + // p1 = r*exp(i*theta), p2 = r*exp(-i*theta). Then:
|
| + //
|
| + // 1/(z^2-2*r*cos(theta) + r^2)
|
| + // = 1/(z-p1)/(z-p2)
|
| + // = 1/(p2-p1)*[1/(z-p2) - 1/(z-p1)]
|
| + // = 1/(p2-p1)*[1/z*sum(p2^n/z^n) - 1/z*sum(p1^n/z^n)]
|
| + // = 1/(p2-p1)/z*sum((p2^n-p1^n)/z^n)
|
| + //
|
| + // So the tail begins when
|
| + // 1/32768 > |1/(p2-p1)*(p2^n-p1^n)|
|
| + // = 1/(r*sin(theta))*|r^n*(exp(-i*theta*n)-exp(i*theta*n))|
|
| + // = 1/(2*r*sin(theta))*(2*r^n*|sin(theta*n)|);
|
| + // = r^(n-1)*|sin(theta*n)|/sin(theta)
|
| + //
|
| + // This can be solved numerically to for n;
|
| + let tail = 1474.256;
|
| + tail = renderQuantumFrames * Math.ceil(tail / renderQuantumFrames);
|
| +
|
| + runTest(should, IIROptions, tail, '2 complex poles')
|
| + .then(() => task.done());
|
| + });
|
| +
|
| + audit.define('repeated poles', (task, should) => {
|
| + // Two repeated roots. Let p be the repeated pole. Then the filter is
|
| + //
|
| + // 1/(z-p)^2
|
| + // = z^(-2)/(1-p/z)^2
|
| + // = z^(-2)/(1-2*p/z+p*p/z^2)
|
| +
|
| + let pole = 0.99;
|
| + let IIROptions = {
|
| + feedforward: [0,0,1],
|
| + feedback: [1, -2*pole, pole*pole]
|
| + };
|
| +
|
| + // We can analytically compute the impulse response of this filter to be
|
| + //
|
| + // 1/z^2*sum(p^n*(n+1)/z^n, n, 0, inf)
|
| + // = sum(p^n*(n+1)/z^(n+2), n, 0, inf)
|
| + // = 1/p^2*sum((p^k*(k-1))/z^k,k,2,inf))
|
| + //
|
| + // Therefore the tail starts when p^(k-2)*(k-1) < 1/32768. We can solve
|
| + // this numerically to be 1781.213;
|
| +
|
| + let tail = 1781.213;
|
| + runTest(should, IIROptions, tail, '2 repeated poles')
|
| + .then(() => task.done());
|
| +
|
| + });
|
| +
|
| + audit.define('4-th order', (task, should) => {
|
| + // Test consistency of tail times between a 4-th order direct IIR filter
|
| + // and the equivalent cascade of second-order sections. The first
|
| + // channel of the output is the cascaded biquad, and the second channel
|
| + // is the 4-th order equivalent.
|
| + let context =
|
| + new OfflineAudioContext(2, renderDuration * sampleRate, sampleRate);
|
| +
|
| + let src = new AudioBufferSourceNode(
|
| + context, {buffer: createImpulseBuffer(context, 1)});
|
| +
|
| + // This is a 4-th order lowpass elliptic filter designed using
|
| + // http://rtoy.github.io/webaudio-hacks/more/filter-design/filter-design.html.
|
| + // The sample rate is 16384 Hz with a passband at 3600 Hz with a 0.25 dB
|
| + // attenuation, and a stopband at 4800 Hz, with a stopband attenuation
|
| + // of 30 dB. (Nothing really special except that this gives a 4-th order
|
| + // filter).
|
| +
|
| + let f0 = context.createIIRFilter(
|
| + [0.6410686464424084, 0.2607836369670137, 0.6410686464424084],
|
| + [1, -0.2287413068432929, 0.7716622366951231]);
|
| + let f1 = context.createIIRFilter(
|
| + [0.21283904239866536, 0.3184888523034876, 0.21283904239866536],
|
| + [1, -0.4686913542990081, 0.21285829139982618]);
|
| +
|
| + // The poles for f0 are 0.1143706534216465 +/- 0.8709658950447078*i or
|
| + // 0.8784430753868592*%e^(+/-1.440228658066206*%i),
|
| + //
|
| + // The poles for f1 are 0.2343456771495041 +/- 0.3974171548903829*i or
|
| + // 0.4613656807780854*%e^(+/-1.038005727602151*%i.
|
| + //
|
| + // Thus, the tail time for f0 is approximately 80, but this is an
|
| + // approximation since we didn't include the affect of the numerator.
|
| + // Round this up to the next render to get an actual tail time of 128.
|
| + //
|
| + // Similarly, for f0, the tail time is 14.3. Thus, the actual tail time
|
| + // is alos 128 for this filter.
|
| + //
|
| + // Since these biquads are cascaded, the total tail time for both is the
|
| + // sum or 256 frames. However, the tail actually ends two render quanta
|
| + // after this for a total of 512 frames.
|
| +
|
| + let biquadTailEnd = 512;
|
| +
|
| + // The equivalent 4-th order filter created multiplying the f0 and f1
|
| + // coefficients together appropriately.
|
| + let f = context.createIIRFilter(
|
| + [
|
| + 0.136444436820611, 0.259678157018493, 0.355945554878375,
|
| + 0.259678157018493, 0.136444436820611
|
| + ],
|
| + [
|
| + 1.000000000000000, -0.697432661142301, 1.091729600983457,
|
| + -0.410360902525266, 0.164254705240692
|
| + ]);
|
| +
|
| + let merger = context.createChannelMerger(2);
|
| + merger.connect(context.destination);
|
| +
|
| + src.connect(f0).connect(f1).connect(merger, 0, 0);
|
| + src.connect(f).connect(merger, 0, 1);
|
| +
|
| + src.start();
|
| +
|
| + context.startRendering()
|
| + .then(renderedBuffer => {
|
| + // c0 = cascaded biquads
|
| + // c1 = 4-th order filter
|
| + let c0 = renderedBuffer.getChannelData(0);
|
| + let c1 = renderedBuffer.getChannelData(1);
|
| +
|
| + // Sanity check: The two filters should have the same output
|
| + // within some rounding error.
|
| + should(
|
| + c0.slice(0, biquadTailEnd),
|
| + 'Filter outputs[0:' + (biquadTailEnd - 1) + ']')
|
| + .beCloseToArray(
|
| + c1.slice(0, biquadTailEnd),
|
| + {absoluteThreshold: 1.4902e-8});
|
| + should(
|
| + c0.slice(biquadTailEnd),
|
| + 'Filter outputs[' + biquadTailEnd + ':]')
|
| + .beEqualToArray(c1.slice(biquadTailEnd));
|
| +
|
| + // Verify that after the tail time, the outputs are zero, and not
|
| + // before for both the biquads and 4-th order filters.
|
| + should(
|
| + c0.slice(0, biquadTailEnd),
|
| + 'cascaded biquad output[0:' + (biquadTailEnd - 1) + ']')
|
| + .notBeConstantValueOf(0);
|
| + should(
|
| + c0.slice(biquadTailEnd),
|
| + 'cascaded biquad output[' + biquadTailEnd + ':]')
|
| + .beConstantValueOf(0);
|
| +
|
| + should(
|
| + c1.slice(0, biquadTailEnd),
|
| + '4-th order output[0:' + (biquadTailEnd - 1) + ']')
|
| + .notBeConstantValueOf(0);
|
| + should(
|
| + c1.slice(biquadTailEnd),
|
| + '4-th order output[' + biquadTailEnd + ':]')
|
| + .beConstantValueOf(0);
|
| + })
|
| + .then(() => task.done());
|
| + });
|
| +
|
| + function runTest(should, IIROptions, tailFrames, prefix) {
|
| + let context =
|
| + new OfflineAudioContext(1, renderDuration * sampleRate, sampleRate);
|
| +
|
| + let src = new AudioBufferSourceNode(
|
| + context, {buffer: createImpulseBuffer(context, 1)});
|
| +
|
| + let iir = new IIRFilterNode(context, IIROptions);
|
| +
|
| + src.connect(iir).connect(context.destination);
|
| +
|
| + src.start();
|
| +
|
| + return context.startRendering().then(renderedBuffer => {
|
| + let audio = renderedBuffer.getChannelData(0);
|
| +
|
| + // Round up the tailFrames to the nearest render quantum.
|
| + let tailQuantum =
|
| + renderQuantumFrames * Math.ceil(tailFrames / renderQuantumFrames);
|
| + let tailEndFrame = tailQuantum + 2 * renderQuantumFrames;
|
| +
|
| + should(tailEndFrame, prefix + ': tail end frame')
|
| + .beLessThanOrEqualTo(context.length);
|
| +
|
| + // Clamp to the render duration so we don't go off the end.
|
| + tailEndFrame = Math.min(tailEndFrame, context.length);
|
| +
|
| + for (let k = 0; k < tailEndFrame; k += renderQuantumFrames) {
|
| + should(
|
| + audio.slice(k, k + renderQuantumFrames),
|
| + prefix + ': output[' + k + ':' + (k + renderQuantumFrames - 1) +
|
| + ']')
|
| + .notBeConstantValueOf(0);
|
| + }
|
| +
|
| + if (tailEndFrame < context.length) {
|
| + // All frames after should be zero because we're propagating
|
| + // silence.
|
| + should(
|
| + audio.slice(tailEndFrame),
|
| + 'output[' + tailEndFrame + ':' + (context.length - 1) + ']')
|
| + .beConstantValueOf(0);
|
| + }
|
| + });
|
| + }
|
| +
|
| + audit.run();
|
| + </script>
|
| + </body>
|
| +</html>
|
|
|