OLD | NEW |
| (Empty) |
1 /* | |
2 ** This file contains all sources (including headers) to the LEMON | |
3 ** LALR(1) parser generator. The sources have been combined into a | |
4 ** single file to make it easy to include LEMON in the source tree | |
5 ** and Makefile of another program. | |
6 ** | |
7 ** The author of this program disclaims copyright. | |
8 */ | |
9 #include <stdio.h> | |
10 #include <stdarg.h> | |
11 #include <string.h> | |
12 #include <ctype.h> | |
13 #include <stdlib.h> | |
14 #include <assert.h> | |
15 | |
16 #define ISSPACE(X) isspace((unsigned char)(X)) | |
17 #define ISDIGIT(X) isdigit((unsigned char)(X)) | |
18 #define ISALNUM(X) isalnum((unsigned char)(X)) | |
19 #define ISALPHA(X) isalpha((unsigned char)(X)) | |
20 #define ISUPPER(X) isupper((unsigned char)(X)) | |
21 #define ISLOWER(X) islower((unsigned char)(X)) | |
22 | |
23 | |
24 #ifndef __WIN32__ | |
25 # if defined(_WIN32) || defined(WIN32) | |
26 # define __WIN32__ | |
27 # endif | |
28 #endif | |
29 | |
30 #ifdef __WIN32__ | |
31 #ifdef __cplusplus | |
32 extern "C" { | |
33 #endif | |
34 extern int access(const char *path, int mode); | |
35 #ifdef __cplusplus | |
36 } | |
37 #endif | |
38 #else | |
39 #include <unistd.h> | |
40 #endif | |
41 | |
42 /* #define PRIVATE static */ | |
43 #define PRIVATE | |
44 | |
45 #ifdef TEST | |
46 #define MAXRHS 5 /* Set low to exercise exception code */ | |
47 #else | |
48 #define MAXRHS 1000 | |
49 #endif | |
50 | |
51 static int showPrecedenceConflict = 0; | |
52 static char *msort(char*,char**,int(*)(const char*,const char*)); | |
53 | |
54 /* | |
55 ** Compilers are getting increasingly pedantic about type conversions | |
56 ** as C evolves ever closer to Ada.... To work around the latest problems | |
57 ** we have to define the following variant of strlen(). | |
58 */ | |
59 #define lemonStrlen(X) ((int)strlen(X)) | |
60 | |
61 /* | |
62 ** Compilers are starting to complain about the use of sprintf() and strcpy(), | |
63 ** saying they are unsafe. So we define our own versions of those routines too. | |
64 ** | |
65 ** There are three routines here: lemon_sprintf(), lemon_vsprintf(), and | |
66 ** lemon_addtext(). The first two are replacements for sprintf() and vsprintf(). | |
67 ** The third is a helper routine for vsnprintf() that adds texts to the end of a | |
68 ** buffer, making sure the buffer is always zero-terminated. | |
69 ** | |
70 ** The string formatter is a minimal subset of stdlib sprintf() supporting only | |
71 ** a few simply conversions: | |
72 ** | |
73 ** %d | |
74 ** %s | |
75 ** %.*s | |
76 ** | |
77 */ | |
78 static void lemon_addtext( | |
79 char *zBuf, /* The buffer to which text is added */ | |
80 int *pnUsed, /* Slots of the buffer used so far */ | |
81 const char *zIn, /* Text to add */ | |
82 int nIn, /* Bytes of text to add. -1 to use strlen() */ | |
83 int iWidth /* Field width. Negative to left justify */ | |
84 ){ | |
85 if( nIn<0 ) for(nIn=0; zIn[nIn]; nIn++){} | |
86 while( iWidth>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth--; } | |
87 if( nIn==0 ) return; | |
88 memcpy(&zBuf[*pnUsed], zIn, nIn); | |
89 *pnUsed += nIn; | |
90 while( (-iWidth)>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth++; } | |
91 zBuf[*pnUsed] = 0; | |
92 } | |
93 static int lemon_vsprintf(char *str, const char *zFormat, va_list ap){ | |
94 int i, j, k, c; | |
95 int nUsed = 0; | |
96 const char *z; | |
97 char zTemp[50]; | |
98 str[0] = 0; | |
99 for(i=j=0; (c = zFormat[i])!=0; i++){ | |
100 if( c=='%' ){ | |
101 int iWidth = 0; | |
102 lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0); | |
103 c = zFormat[++i]; | |
104 if( ISDIGIT(c) || (c=='-' && ISDIGIT(zFormat[i+1])) ){ | |
105 if( c=='-' ) i++; | |
106 while( ISDIGIT(zFormat[i]) ) iWidth = iWidth*10 + zFormat[i++] - '0'; | |
107 if( c=='-' ) iWidth = -iWidth; | |
108 c = zFormat[i]; | |
109 } | |
110 if( c=='d' ){ | |
111 int v = va_arg(ap, int); | |
112 if( v<0 ){ | |
113 lemon_addtext(str, &nUsed, "-", 1, iWidth); | |
114 v = -v; | |
115 }else if( v==0 ){ | |
116 lemon_addtext(str, &nUsed, "0", 1, iWidth); | |
117 } | |
118 k = 0; | |
119 while( v>0 ){ | |
120 k++; | |
121 zTemp[sizeof(zTemp)-k] = (v%10) + '0'; | |
122 v /= 10; | |
123 } | |
124 lemon_addtext(str, &nUsed, &zTemp[sizeof(zTemp)-k], k, iWidth); | |
125 }else if( c=='s' ){ | |
126 z = va_arg(ap, const char*); | |
127 lemon_addtext(str, &nUsed, z, -1, iWidth); | |
128 }else if( c=='.' && memcmp(&zFormat[i], ".*s", 3)==0 ){ | |
129 i += 2; | |
130 k = va_arg(ap, int); | |
131 z = va_arg(ap, const char*); | |
132 lemon_addtext(str, &nUsed, z, k, iWidth); | |
133 }else if( c=='%' ){ | |
134 lemon_addtext(str, &nUsed, "%", 1, 0); | |
135 }else{ | |
136 fprintf(stderr, "illegal format\n"); | |
137 exit(1); | |
138 } | |
139 j = i+1; | |
140 } | |
141 } | |
142 lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0); | |
143 return nUsed; | |
144 } | |
145 static int lemon_sprintf(char *str, const char *format, ...){ | |
146 va_list ap; | |
147 int rc; | |
148 va_start(ap, format); | |
149 rc = lemon_vsprintf(str, format, ap); | |
150 va_end(ap); | |
151 return rc; | |
152 } | |
153 static void lemon_strcpy(char *dest, const char *src){ | |
154 while( (*(dest++) = *(src++))!=0 ){} | |
155 } | |
156 static void lemon_strcat(char *dest, const char *src){ | |
157 while( *dest ) dest++; | |
158 lemon_strcpy(dest, src); | |
159 } | |
160 | |
161 | |
162 /* a few forward declarations... */ | |
163 struct rule; | |
164 struct lemon; | |
165 struct action; | |
166 | |
167 static struct action *Action_new(void); | |
168 static struct action *Action_sort(struct action *); | |
169 | |
170 /********** From the file "build.h" ************************************/ | |
171 void FindRulePrecedences(); | |
172 void FindFirstSets(); | |
173 void FindStates(); | |
174 void FindLinks(); | |
175 void FindFollowSets(); | |
176 void FindActions(); | |
177 | |
178 /********* From the file "configlist.h" *********************************/ | |
179 void Configlist_init(void); | |
180 struct config *Configlist_add(struct rule *, int); | |
181 struct config *Configlist_addbasis(struct rule *, int); | |
182 void Configlist_closure(struct lemon *); | |
183 void Configlist_sort(void); | |
184 void Configlist_sortbasis(void); | |
185 struct config *Configlist_return(void); | |
186 struct config *Configlist_basis(void); | |
187 void Configlist_eat(struct config *); | |
188 void Configlist_reset(void); | |
189 | |
190 /********* From the file "error.h" ***************************************/ | |
191 void ErrorMsg(const char *, int,const char *, ...); | |
192 | |
193 /****** From the file "option.h" ******************************************/ | |
194 enum option_type { OPT_FLAG=1, OPT_INT, OPT_DBL, OPT_STR, | |
195 OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR}; | |
196 struct s_options { | |
197 enum option_type type; | |
198 const char *label; | |
199 char *arg; | |
200 const char *message; | |
201 }; | |
202 int OptInit(char**,struct s_options*,FILE*); | |
203 int OptNArgs(void); | |
204 char *OptArg(int); | |
205 void OptErr(int); | |
206 void OptPrint(void); | |
207 | |
208 /******** From the file "parse.h" *****************************************/ | |
209 void Parse(struct lemon *lemp); | |
210 | |
211 /********* From the file "plink.h" ***************************************/ | |
212 struct plink *Plink_new(void); | |
213 void Plink_add(struct plink **, struct config *); | |
214 void Plink_copy(struct plink **, struct plink *); | |
215 void Plink_delete(struct plink *); | |
216 | |
217 /********** From the file "report.h" *************************************/ | |
218 void Reprint(struct lemon *); | |
219 void ReportOutput(struct lemon *); | |
220 void ReportTable(struct lemon *, int); | |
221 void ReportHeader(struct lemon *); | |
222 void CompressTables(struct lemon *); | |
223 void ResortStates(struct lemon *); | |
224 | |
225 /********** From the file "set.h" ****************************************/ | |
226 void SetSize(int); /* All sets will be of size N */ | |
227 char *SetNew(void); /* A new set for element 0..N */ | |
228 void SetFree(char*); /* Deallocate a set */ | |
229 int SetAdd(char*,int); /* Add element to a set */ | |
230 int SetUnion(char *,char *); /* A <- A U B, thru element N */ | |
231 #define SetFind(X,Y) (X[Y]) /* True if Y is in set X */ | |
232 | |
233 /********** From the file "struct.h" *************************************/ | |
234 /* | |
235 ** Principal data structures for the LEMON parser generator. | |
236 */ | |
237 | |
238 typedef enum {LEMON_FALSE=0, LEMON_TRUE} Boolean; | |
239 | |
240 /* Symbols (terminals and nonterminals) of the grammar are stored | |
241 ** in the following: */ | |
242 enum symbol_type { | |
243 TERMINAL, | |
244 NONTERMINAL, | |
245 MULTITERMINAL | |
246 }; | |
247 enum e_assoc { | |
248 LEFT, | |
249 RIGHT, | |
250 NONE, | |
251 UNK | |
252 }; | |
253 struct symbol { | |
254 const char *name; /* Name of the symbol */ | |
255 int index; /* Index number for this symbol */ | |
256 enum symbol_type type; /* Symbols are all either TERMINALS or NTs */ | |
257 struct rule *rule; /* Linked list of rules of this (if an NT) */ | |
258 struct symbol *fallback; /* fallback token in case this token doesn't parse */ | |
259 int prec; /* Precedence if defined (-1 otherwise) */ | |
260 enum e_assoc assoc; /* Associativity if precedence is defined */ | |
261 char *firstset; /* First-set for all rules of this symbol */ | |
262 Boolean lambda; /* True if NT and can generate an empty string */ | |
263 int useCnt; /* Number of times used */ | |
264 char *destructor; /* Code which executes whenever this symbol is | |
265 ** popped from the stack during error processing */ | |
266 int destLineno; /* Line number for start of destructor */ | |
267 char *datatype; /* The data type of information held by this | |
268 ** object. Only used if type==NONTERMINAL */ | |
269 int dtnum; /* The data type number. In the parser, the value | |
270 ** stack is a union. The .yy%d element of this | |
271 ** union is the correct data type for this object */ | |
272 /* The following fields are used by MULTITERMINALs only */ | |
273 int nsubsym; /* Number of constituent symbols in the MULTI */ | |
274 struct symbol **subsym; /* Array of constituent symbols */ | |
275 }; | |
276 | |
277 /* Each production rule in the grammar is stored in the following | |
278 ** structure. */ | |
279 struct rule { | |
280 struct symbol *lhs; /* Left-hand side of the rule */ | |
281 const char *lhsalias; /* Alias for the LHS (NULL if none) */ | |
282 int lhsStart; /* True if left-hand side is the start symbol */ | |
283 int ruleline; /* Line number for the rule */ | |
284 int nrhs; /* Number of RHS symbols */ | |
285 struct symbol **rhs; /* The RHS symbols */ | |
286 const char **rhsalias; /* An alias for each RHS symbol (NULL if none) */ | |
287 int line; /* Line number at which code begins */ | |
288 const char *code; /* The code executed when this rule is reduced */ | |
289 struct symbol *precsym; /* Precedence symbol for this rule */ | |
290 int index; /* An index number for this rule */ | |
291 Boolean canReduce; /* True if this rule is ever reduced */ | |
292 struct rule *nextlhs; /* Next rule with the same LHS */ | |
293 struct rule *next; /* Next rule in the global list */ | |
294 }; | |
295 | |
296 /* A configuration is a production rule of the grammar together with | |
297 ** a mark (dot) showing how much of that rule has been processed so far. | |
298 ** Configurations also contain a follow-set which is a list of terminal | |
299 ** symbols which are allowed to immediately follow the end of the rule. | |
300 ** Every configuration is recorded as an instance of the following: */ | |
301 enum cfgstatus { | |
302 COMPLETE, | |
303 INCOMPLETE | |
304 }; | |
305 struct config { | |
306 struct rule *rp; /* The rule upon which the configuration is based */ | |
307 int dot; /* The parse point */ | |
308 char *fws; /* Follow-set for this configuration only */ | |
309 struct plink *fplp; /* Follow-set forward propagation links */ | |
310 struct plink *bplp; /* Follow-set backwards propagation links */ | |
311 struct state *stp; /* Pointer to state which contains this */ | |
312 enum cfgstatus status; /* used during followset and shift computations */ | |
313 struct config *next; /* Next configuration in the state */ | |
314 struct config *bp; /* The next basis configuration */ | |
315 }; | |
316 | |
317 enum e_action { | |
318 SHIFT, | |
319 ACCEPT, | |
320 REDUCE, | |
321 ERROR, | |
322 SSCONFLICT, /* A shift/shift conflict */ | |
323 SRCONFLICT, /* Was a reduce, but part of a conflict */ | |
324 RRCONFLICT, /* Was a reduce, but part of a conflict */ | |
325 SH_RESOLVED, /* Was a shift. Precedence resolved conflict */ | |
326 RD_RESOLVED, /* Was reduce. Precedence resolved conflict */ | |
327 NOT_USED, /* Deleted by compression */ | |
328 SHIFTREDUCE /* Shift first, then reduce */ | |
329 }; | |
330 | |
331 /* Every shift or reduce operation is stored as one of the following */ | |
332 struct action { | |
333 struct symbol *sp; /* The look-ahead symbol */ | |
334 enum e_action type; | |
335 union { | |
336 struct state *stp; /* The new state, if a shift */ | |
337 struct rule *rp; /* The rule, if a reduce */ | |
338 } x; | |
339 struct action *next; /* Next action for this state */ | |
340 struct action *collide; /* Next action with the same hash */ | |
341 }; | |
342 | |
343 /* Each state of the generated parser's finite state machine | |
344 ** is encoded as an instance of the following structure. */ | |
345 struct state { | |
346 struct config *bp; /* The basis configurations for this state */ | |
347 struct config *cfp; /* All configurations in this set */ | |
348 int statenum; /* Sequential number for this state */ | |
349 struct action *ap; /* Array of actions for this state */ | |
350 int nTknAct, nNtAct; /* Number of actions on terminals and nonterminals */ | |
351 int iTknOfst, iNtOfst; /* yy_action[] offset for terminals and nonterms */ | |
352 int iDfltReduce; /* Default action is to REDUCE by this rule */ | |
353 struct rule *pDfltReduce;/* The default REDUCE rule. */ | |
354 int autoReduce; /* True if this is an auto-reduce state */ | |
355 }; | |
356 #define NO_OFFSET (-2147483647) | |
357 | |
358 /* A followset propagation link indicates that the contents of one | |
359 ** configuration followset should be propagated to another whenever | |
360 ** the first changes. */ | |
361 struct plink { | |
362 struct config *cfp; /* The configuration to which linked */ | |
363 struct plink *next; /* The next propagate link */ | |
364 }; | |
365 | |
366 /* The state vector for the entire parser generator is recorded as | |
367 ** follows. (LEMON uses no global variables and makes little use of | |
368 ** static variables. Fields in the following structure can be thought | |
369 ** of as begin global variables in the program.) */ | |
370 struct lemon { | |
371 struct state **sorted; /* Table of states sorted by state number */ | |
372 struct rule *rule; /* List of all rules */ | |
373 int nstate; /* Number of states */ | |
374 int nxstate; /* nstate with tail degenerate states removed */ | |
375 int nrule; /* Number of rules */ | |
376 int nsymbol; /* Number of terminal and nonterminal symbols */ | |
377 int nterminal; /* Number of terminal symbols */ | |
378 struct symbol **symbols; /* Sorted array of pointers to symbols */ | |
379 int errorcnt; /* Number of errors */ | |
380 struct symbol *errsym; /* The error symbol */ | |
381 struct symbol *wildcard; /* Token that matches anything */ | |
382 char *name; /* Name of the generated parser */ | |
383 char *arg; /* Declaration of the 3th argument to parser */ | |
384 char *tokentype; /* Type of terminal symbols in the parser stack */ | |
385 char *vartype; /* The default type of non-terminal symbols */ | |
386 char *start; /* Name of the start symbol for the grammar */ | |
387 char *stacksize; /* Size of the parser stack */ | |
388 char *include; /* Code to put at the start of the C file */ | |
389 char *error; /* Code to execute when an error is seen */ | |
390 char *overflow; /* Code to execute on a stack overflow */ | |
391 char *failure; /* Code to execute on parser failure */ | |
392 char *accept; /* Code to execute when the parser excepts */ | |
393 char *extracode; /* Code appended to the generated file */ | |
394 char *tokendest; /* Code to execute to destroy token data */ | |
395 char *vardest; /* Code for the default non-terminal destructor */ | |
396 char *filename; /* Name of the input file */ | |
397 char *outname; /* Name of the current output file */ | |
398 char *tokenprefix; /* A prefix added to token names in the .h file */ | |
399 int nconflict; /* Number of parsing conflicts */ | |
400 int nactiontab; /* Number of entries in the yy_action[] table */ | |
401 int tablesize; /* Total table size of all tables in bytes */ | |
402 int basisflag; /* Print only basis configurations */ | |
403 int has_fallback; /* True if any %fallback is seen in the grammar */ | |
404 int nolinenosflag; /* True if #line statements should not be printed */ | |
405 char *argv0; /* Name of the program */ | |
406 }; | |
407 | |
408 #define MemoryCheck(X) if((X)==0){ \ | |
409 extern void memory_error(); \ | |
410 memory_error(); \ | |
411 } | |
412 | |
413 /**************** From the file "table.h" *********************************/ | |
414 /* | |
415 ** All code in this file has been automatically generated | |
416 ** from a specification in the file | |
417 ** "table.q" | |
418 ** by the associative array code building program "aagen". | |
419 ** Do not edit this file! Instead, edit the specification | |
420 ** file, then rerun aagen. | |
421 */ | |
422 /* | |
423 ** Code for processing tables in the LEMON parser generator. | |
424 */ | |
425 /* Routines for handling a strings */ | |
426 | |
427 const char *Strsafe(const char *); | |
428 | |
429 void Strsafe_init(void); | |
430 int Strsafe_insert(const char *); | |
431 const char *Strsafe_find(const char *); | |
432 | |
433 /* Routines for handling symbols of the grammar */ | |
434 | |
435 struct symbol *Symbol_new(const char *); | |
436 int Symbolcmpp(const void *, const void *); | |
437 void Symbol_init(void); | |
438 int Symbol_insert(struct symbol *, const char *); | |
439 struct symbol *Symbol_find(const char *); | |
440 struct symbol *Symbol_Nth(int); | |
441 int Symbol_count(void); | |
442 struct symbol **Symbol_arrayof(void); | |
443 | |
444 /* Routines to manage the state table */ | |
445 | |
446 int Configcmp(const char *, const char *); | |
447 struct state *State_new(void); | |
448 void State_init(void); | |
449 int State_insert(struct state *, struct config *); | |
450 struct state *State_find(struct config *); | |
451 struct state **State_arrayof(/* */); | |
452 | |
453 /* Routines used for efficiency in Configlist_add */ | |
454 | |
455 void Configtable_init(void); | |
456 int Configtable_insert(struct config *); | |
457 struct config *Configtable_find(struct config *); | |
458 void Configtable_clear(int(*)(struct config *)); | |
459 | |
460 /****************** From the file "action.c" *******************************/ | |
461 /* | |
462 ** Routines processing parser actions in the LEMON parser generator. | |
463 */ | |
464 | |
465 /* Allocate a new parser action */ | |
466 static struct action *Action_new(void){ | |
467 static struct action *freelist = 0; | |
468 struct action *newaction; | |
469 | |
470 if( freelist==0 ){ | |
471 int i; | |
472 int amt = 100; | |
473 freelist = (struct action *)calloc(amt, sizeof(struct action)); | |
474 if( freelist==0 ){ | |
475 fprintf(stderr,"Unable to allocate memory for a new parser action."); | |
476 exit(1); | |
477 } | |
478 for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1]; | |
479 freelist[amt-1].next = 0; | |
480 } | |
481 newaction = freelist; | |
482 freelist = freelist->next; | |
483 return newaction; | |
484 } | |
485 | |
486 /* Compare two actions for sorting purposes. Return negative, zero, or | |
487 ** positive if the first action is less than, equal to, or greater than | |
488 ** the first | |
489 */ | |
490 static int actioncmp( | |
491 struct action *ap1, | |
492 struct action *ap2 | |
493 ){ | |
494 int rc; | |
495 rc = ap1->sp->index - ap2->sp->index; | |
496 if( rc==0 ){ | |
497 rc = (int)ap1->type - (int)ap2->type; | |
498 } | |
499 if( rc==0 && (ap1->type==REDUCE || ap1->type==SHIFTREDUCE) ){ | |
500 rc = ap1->x.rp->index - ap2->x.rp->index; | |
501 } | |
502 if( rc==0 ){ | |
503 rc = (int) (ap2 - ap1); | |
504 } | |
505 return rc; | |
506 } | |
507 | |
508 /* Sort parser actions */ | |
509 static struct action *Action_sort( | |
510 struct action *ap | |
511 ){ | |
512 ap = (struct action *)msort((char *)ap,(char **)&ap->next, | |
513 (int(*)(const char*,const char*))actioncmp); | |
514 return ap; | |
515 } | |
516 | |
517 void Action_add( | |
518 struct action **app, | |
519 enum e_action type, | |
520 struct symbol *sp, | |
521 char *arg | |
522 ){ | |
523 struct action *newaction; | |
524 newaction = Action_new(); | |
525 newaction->next = *app; | |
526 *app = newaction; | |
527 newaction->type = type; | |
528 newaction->sp = sp; | |
529 if( type==SHIFT ){ | |
530 newaction->x.stp = (struct state *)arg; | |
531 }else{ | |
532 newaction->x.rp = (struct rule *)arg; | |
533 } | |
534 } | |
535 /********************** New code to implement the "acttab" module ***********/ | |
536 /* | |
537 ** This module implements routines use to construct the yy_action[] table. | |
538 */ | |
539 | |
540 /* | |
541 ** The state of the yy_action table under construction is an instance of | |
542 ** the following structure. | |
543 ** | |
544 ** The yy_action table maps the pair (state_number, lookahead) into an | |
545 ** action_number. The table is an array of integers pairs. The state_number | |
546 ** determines an initial offset into the yy_action array. The lookahead | |
547 ** value is then added to this initial offset to get an index X into the | |
548 ** yy_action array. If the aAction[X].lookahead equals the value of the | |
549 ** of the lookahead input, then the value of the action_number output is | |
550 ** aAction[X].action. If the lookaheads do not match then the | |
551 ** default action for the state_number is returned. | |
552 ** | |
553 ** All actions associated with a single state_number are first entered | |
554 ** into aLookahead[] using multiple calls to acttab_action(). Then the | |
555 ** actions for that single state_number are placed into the aAction[] | |
556 ** array with a single call to acttab_insert(). The acttab_insert() call | |
557 ** also resets the aLookahead[] array in preparation for the next | |
558 ** state number. | |
559 */ | |
560 struct lookahead_action { | |
561 int lookahead; /* Value of the lookahead token */ | |
562 int action; /* Action to take on the given lookahead */ | |
563 }; | |
564 typedef struct acttab acttab; | |
565 struct acttab { | |
566 int nAction; /* Number of used slots in aAction[] */ | |
567 int nActionAlloc; /* Slots allocated for aAction[] */ | |
568 struct lookahead_action | |
569 *aAction, /* The yy_action[] table under construction */ | |
570 *aLookahead; /* A single new transaction set */ | |
571 int mnLookahead; /* Minimum aLookahead[].lookahead */ | |
572 int mnAction; /* Action associated with mnLookahead */ | |
573 int mxLookahead; /* Maximum aLookahead[].lookahead */ | |
574 int nLookahead; /* Used slots in aLookahead[] */ | |
575 int nLookaheadAlloc; /* Slots allocated in aLookahead[] */ | |
576 }; | |
577 | |
578 /* Return the number of entries in the yy_action table */ | |
579 #define acttab_size(X) ((X)->nAction) | |
580 | |
581 /* The value for the N-th entry in yy_action */ | |
582 #define acttab_yyaction(X,N) ((X)->aAction[N].action) | |
583 | |
584 /* The value for the N-th entry in yy_lookahead */ | |
585 #define acttab_yylookahead(X,N) ((X)->aAction[N].lookahead) | |
586 | |
587 /* Free all memory associated with the given acttab */ | |
588 void acttab_free(acttab *p){ | |
589 free( p->aAction ); | |
590 free( p->aLookahead ); | |
591 free( p ); | |
592 } | |
593 | |
594 /* Allocate a new acttab structure */ | |
595 acttab *acttab_alloc(void){ | |
596 acttab *p = (acttab *) calloc( 1, sizeof(*p) ); | |
597 if( p==0 ){ | |
598 fprintf(stderr,"Unable to allocate memory for a new acttab."); | |
599 exit(1); | |
600 } | |
601 memset(p, 0, sizeof(*p)); | |
602 return p; | |
603 } | |
604 | |
605 /* Add a new action to the current transaction set. | |
606 ** | |
607 ** This routine is called once for each lookahead for a particular | |
608 ** state. | |
609 */ | |
610 void acttab_action(acttab *p, int lookahead, int action){ | |
611 if( p->nLookahead>=p->nLookaheadAlloc ){ | |
612 p->nLookaheadAlloc += 25; | |
613 p->aLookahead = (struct lookahead_action *) realloc( p->aLookahead, | |
614 sizeof(p->aLookahead[0])*p->nLookaheadAlloc ); | |
615 if( p->aLookahead==0 ){ | |
616 fprintf(stderr,"malloc failed\n"); | |
617 exit(1); | |
618 } | |
619 } | |
620 if( p->nLookahead==0 ){ | |
621 p->mxLookahead = lookahead; | |
622 p->mnLookahead = lookahead; | |
623 p->mnAction = action; | |
624 }else{ | |
625 if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead; | |
626 if( p->mnLookahead>lookahead ){ | |
627 p->mnLookahead = lookahead; | |
628 p->mnAction = action; | |
629 } | |
630 } | |
631 p->aLookahead[p->nLookahead].lookahead = lookahead; | |
632 p->aLookahead[p->nLookahead].action = action; | |
633 p->nLookahead++; | |
634 } | |
635 | |
636 /* | |
637 ** Add the transaction set built up with prior calls to acttab_action() | |
638 ** into the current action table. Then reset the transaction set back | |
639 ** to an empty set in preparation for a new round of acttab_action() calls. | |
640 ** | |
641 ** Return the offset into the action table of the new transaction. | |
642 */ | |
643 int acttab_insert(acttab *p){ | |
644 int i, j, k, n; | |
645 assert( p->nLookahead>0 ); | |
646 | |
647 /* Make sure we have enough space to hold the expanded action table | |
648 ** in the worst case. The worst case occurs if the transaction set | |
649 ** must be appended to the current action table | |
650 */ | |
651 n = p->mxLookahead + 1; | |
652 if( p->nAction + n >= p->nActionAlloc ){ | |
653 int oldAlloc = p->nActionAlloc; | |
654 p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20; | |
655 p->aAction = (struct lookahead_action *) realloc( p->aAction, | |
656 sizeof(p->aAction[0])*p->nActionAlloc); | |
657 if( p->aAction==0 ){ | |
658 fprintf(stderr,"malloc failed\n"); | |
659 exit(1); | |
660 } | |
661 for(i=oldAlloc; i<p->nActionAlloc; i++){ | |
662 p->aAction[i].lookahead = -1; | |
663 p->aAction[i].action = -1; | |
664 } | |
665 } | |
666 | |
667 /* Scan the existing action table looking for an offset that is a | |
668 ** duplicate of the current transaction set. Fall out of the loop | |
669 ** if and when the duplicate is found. | |
670 ** | |
671 ** i is the index in p->aAction[] where p->mnLookahead is inserted. | |
672 */ | |
673 for(i=p->nAction-1; i>=0; i--){ | |
674 if( p->aAction[i].lookahead==p->mnLookahead ){ | |
675 /* All lookaheads and actions in the aLookahead[] transaction | |
676 ** must match against the candidate aAction[i] entry. */ | |
677 if( p->aAction[i].action!=p->mnAction ) continue; | |
678 for(j=0; j<p->nLookahead; j++){ | |
679 k = p->aLookahead[j].lookahead - p->mnLookahead + i; | |
680 if( k<0 || k>=p->nAction ) break; | |
681 if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break; | |
682 if( p->aLookahead[j].action!=p->aAction[k].action ) break; | |
683 } | |
684 if( j<p->nLookahead ) continue; | |
685 | |
686 /* No possible lookahead value that is not in the aLookahead[] | |
687 ** transaction is allowed to match aAction[i] */ | |
688 n = 0; | |
689 for(j=0; j<p->nAction; j++){ | |
690 if( p->aAction[j].lookahead<0 ) continue; | |
691 if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++; | |
692 } | |
693 if( n==p->nLookahead ){ | |
694 break; /* An exact match is found at offset i */ | |
695 } | |
696 } | |
697 } | |
698 | |
699 /* If no existing offsets exactly match the current transaction, find an | |
700 ** an empty offset in the aAction[] table in which we can add the | |
701 ** aLookahead[] transaction. | |
702 */ | |
703 if( i<0 ){ | |
704 /* Look for holes in the aAction[] table that fit the current | |
705 ** aLookahead[] transaction. Leave i set to the offset of the hole. | |
706 ** If no holes are found, i is left at p->nAction, which means the | |
707 ** transaction will be appended. */ | |
708 for(i=0; i<p->nActionAlloc - p->mxLookahead; i++){ | |
709 if( p->aAction[i].lookahead<0 ){ | |
710 for(j=0; j<p->nLookahead; j++){ | |
711 k = p->aLookahead[j].lookahead - p->mnLookahead + i; | |
712 if( k<0 ) break; | |
713 if( p->aAction[k].lookahead>=0 ) break; | |
714 } | |
715 if( j<p->nLookahead ) continue; | |
716 for(j=0; j<p->nAction; j++){ | |
717 if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break; | |
718 } | |
719 if( j==p->nAction ){ | |
720 break; /* Fits in empty slots */ | |
721 } | |
722 } | |
723 } | |
724 } | |
725 /* Insert transaction set at index i. */ | |
726 for(j=0; j<p->nLookahead; j++){ | |
727 k = p->aLookahead[j].lookahead - p->mnLookahead + i; | |
728 p->aAction[k] = p->aLookahead[j]; | |
729 if( k>=p->nAction ) p->nAction = k+1; | |
730 } | |
731 p->nLookahead = 0; | |
732 | |
733 /* Return the offset that is added to the lookahead in order to get the | |
734 ** index into yy_action of the action */ | |
735 return i - p->mnLookahead; | |
736 } | |
737 | |
738 /********************** From the file "build.c" *****************************/ | |
739 /* | |
740 ** Routines to construction the finite state machine for the LEMON | |
741 ** parser generator. | |
742 */ | |
743 | |
744 /* Find a precedence symbol of every rule in the grammar. | |
745 ** | |
746 ** Those rules which have a precedence symbol coded in the input | |
747 ** grammar using the "[symbol]" construct will already have the | |
748 ** rp->precsym field filled. Other rules take as their precedence | |
749 ** symbol the first RHS symbol with a defined precedence. If there | |
750 ** are not RHS symbols with a defined precedence, the precedence | |
751 ** symbol field is left blank. | |
752 */ | |
753 void FindRulePrecedences(struct lemon *xp) | |
754 { | |
755 struct rule *rp; | |
756 for(rp=xp->rule; rp; rp=rp->next){ | |
757 if( rp->precsym==0 ){ | |
758 int i, j; | |
759 for(i=0; i<rp->nrhs && rp->precsym==0; i++){ | |
760 struct symbol *sp = rp->rhs[i]; | |
761 if( sp->type==MULTITERMINAL ){ | |
762 for(j=0; j<sp->nsubsym; j++){ | |
763 if( sp->subsym[j]->prec>=0 ){ | |
764 rp->precsym = sp->subsym[j]; | |
765 break; | |
766 } | |
767 } | |
768 }else if( sp->prec>=0 ){ | |
769 rp->precsym = rp->rhs[i]; | |
770 } | |
771 } | |
772 } | |
773 } | |
774 return; | |
775 } | |
776 | |
777 /* Find all nonterminals which will generate the empty string. | |
778 ** Then go back and compute the first sets of every nonterminal. | |
779 ** The first set is the set of all terminal symbols which can begin | |
780 ** a string generated by that nonterminal. | |
781 */ | |
782 void FindFirstSets(struct lemon *lemp) | |
783 { | |
784 int i, j; | |
785 struct rule *rp; | |
786 int progress; | |
787 | |
788 for(i=0; i<lemp->nsymbol; i++){ | |
789 lemp->symbols[i]->lambda = LEMON_FALSE; | |
790 } | |
791 for(i=lemp->nterminal; i<lemp->nsymbol; i++){ | |
792 lemp->symbols[i]->firstset = SetNew(); | |
793 } | |
794 | |
795 /* First compute all lambdas */ | |
796 do{ | |
797 progress = 0; | |
798 for(rp=lemp->rule; rp; rp=rp->next){ | |
799 if( rp->lhs->lambda ) continue; | |
800 for(i=0; i<rp->nrhs; i++){ | |
801 struct symbol *sp = rp->rhs[i]; | |
802 assert( sp->type==NONTERMINAL || sp->lambda==LEMON_FALSE ); | |
803 if( sp->lambda==LEMON_FALSE ) break; | |
804 } | |
805 if( i==rp->nrhs ){ | |
806 rp->lhs->lambda = LEMON_TRUE; | |
807 progress = 1; | |
808 } | |
809 } | |
810 }while( progress ); | |
811 | |
812 /* Now compute all first sets */ | |
813 do{ | |
814 struct symbol *s1, *s2; | |
815 progress = 0; | |
816 for(rp=lemp->rule; rp; rp=rp->next){ | |
817 s1 = rp->lhs; | |
818 for(i=0; i<rp->nrhs; i++){ | |
819 s2 = rp->rhs[i]; | |
820 if( s2->type==TERMINAL ){ | |
821 progress += SetAdd(s1->firstset,s2->index); | |
822 break; | |
823 }else if( s2->type==MULTITERMINAL ){ | |
824 for(j=0; j<s2->nsubsym; j++){ | |
825 progress += SetAdd(s1->firstset,s2->subsym[j]->index); | |
826 } | |
827 break; | |
828 }else if( s1==s2 ){ | |
829 if( s1->lambda==LEMON_FALSE ) break; | |
830 }else{ | |
831 progress += SetUnion(s1->firstset,s2->firstset); | |
832 if( s2->lambda==LEMON_FALSE ) break; | |
833 } | |
834 } | |
835 } | |
836 }while( progress ); | |
837 return; | |
838 } | |
839 | |
840 /* Compute all LR(0) states for the grammar. Links | |
841 ** are added to between some states so that the LR(1) follow sets | |
842 ** can be computed later. | |
843 */ | |
844 PRIVATE struct state *getstate(struct lemon *); /* forward reference */ | |
845 void FindStates(struct lemon *lemp) | |
846 { | |
847 struct symbol *sp; | |
848 struct rule *rp; | |
849 | |
850 Configlist_init(); | |
851 | |
852 /* Find the start symbol */ | |
853 if( lemp->start ){ | |
854 sp = Symbol_find(lemp->start); | |
855 if( sp==0 ){ | |
856 ErrorMsg(lemp->filename,0, | |
857 "The specified start symbol \"%s\" is not \ | |
858 in a nonterminal of the grammar. \"%s\" will be used as the start \ | |
859 symbol instead.",lemp->start,lemp->rule->lhs->name); | |
860 lemp->errorcnt++; | |
861 sp = lemp->rule->lhs; | |
862 } | |
863 }else{ | |
864 sp = lemp->rule->lhs; | |
865 } | |
866 | |
867 /* Make sure the start symbol doesn't occur on the right-hand side of | |
868 ** any rule. Report an error if it does. (YACC would generate a new | |
869 ** start symbol in this case.) */ | |
870 for(rp=lemp->rule; rp; rp=rp->next){ | |
871 int i; | |
872 for(i=0; i<rp->nrhs; i++){ | |
873 if( rp->rhs[i]==sp ){ /* FIX ME: Deal with multiterminals */ | |
874 ErrorMsg(lemp->filename,0, | |
875 "The start symbol \"%s\" occurs on the \ | |
876 right-hand side of a rule. This will result in a parser which \ | |
877 does not work properly.",sp->name); | |
878 lemp->errorcnt++; | |
879 } | |
880 } | |
881 } | |
882 | |
883 /* The basis configuration set for the first state | |
884 ** is all rules which have the start symbol as their | |
885 ** left-hand side */ | |
886 for(rp=sp->rule; rp; rp=rp->nextlhs){ | |
887 struct config *newcfp; | |
888 rp->lhsStart = 1; | |
889 newcfp = Configlist_addbasis(rp,0); | |
890 SetAdd(newcfp->fws,0); | |
891 } | |
892 | |
893 /* Compute the first state. All other states will be | |
894 ** computed automatically during the computation of the first one. | |
895 ** The returned pointer to the first state is not used. */ | |
896 (void)getstate(lemp); | |
897 return; | |
898 } | |
899 | |
900 /* Return a pointer to a state which is described by the configuration | |
901 ** list which has been built from calls to Configlist_add. | |
902 */ | |
903 PRIVATE void buildshifts(struct lemon *, struct state *); /* Forwd ref */ | |
904 PRIVATE struct state *getstate(struct lemon *lemp) | |
905 { | |
906 struct config *cfp, *bp; | |
907 struct state *stp; | |
908 | |
909 /* Extract the sorted basis of the new state. The basis was constructed | |
910 ** by prior calls to "Configlist_addbasis()". */ | |
911 Configlist_sortbasis(); | |
912 bp = Configlist_basis(); | |
913 | |
914 /* Get a state with the same basis */ | |
915 stp = State_find(bp); | |
916 if( stp ){ | |
917 /* A state with the same basis already exists! Copy all the follow-set | |
918 ** propagation links from the state under construction into the | |
919 ** preexisting state, then return a pointer to the preexisting state */ | |
920 struct config *x, *y; | |
921 for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){ | |
922 Plink_copy(&y->bplp,x->bplp); | |
923 Plink_delete(x->fplp); | |
924 x->fplp = x->bplp = 0; | |
925 } | |
926 cfp = Configlist_return(); | |
927 Configlist_eat(cfp); | |
928 }else{ | |
929 /* This really is a new state. Construct all the details */ | |
930 Configlist_closure(lemp); /* Compute the configuration closure */ | |
931 Configlist_sort(); /* Sort the configuration closure */ | |
932 cfp = Configlist_return(); /* Get a pointer to the config list */ | |
933 stp = State_new(); /* A new state structure */ | |
934 MemoryCheck(stp); | |
935 stp->bp = bp; /* Remember the configuration basis */ | |
936 stp->cfp = cfp; /* Remember the configuration closure */ | |
937 stp->statenum = lemp->nstate++; /* Every state gets a sequence number */ | |
938 stp->ap = 0; /* No actions, yet. */ | |
939 State_insert(stp,stp->bp); /* Add to the state table */ | |
940 buildshifts(lemp,stp); /* Recursively compute successor states */ | |
941 } | |
942 return stp; | |
943 } | |
944 | |
945 /* | |
946 ** Return true if two symbols are the same. | |
947 */ | |
948 int same_symbol(struct symbol *a, struct symbol *b) | |
949 { | |
950 int i; | |
951 if( a==b ) return 1; | |
952 if( a->type!=MULTITERMINAL ) return 0; | |
953 if( b->type!=MULTITERMINAL ) return 0; | |
954 if( a->nsubsym!=b->nsubsym ) return 0; | |
955 for(i=0; i<a->nsubsym; i++){ | |
956 if( a->subsym[i]!=b->subsym[i] ) return 0; | |
957 } | |
958 return 1; | |
959 } | |
960 | |
961 /* Construct all successor states to the given state. A "successor" | |
962 ** state is any state which can be reached by a shift action. | |
963 */ | |
964 PRIVATE void buildshifts(struct lemon *lemp, struct state *stp) | |
965 { | |
966 struct config *cfp; /* For looping thru the config closure of "stp" */ | |
967 struct config *bcfp; /* For the inner loop on config closure of "stp" */ | |
968 struct config *newcfg; /* */ | |
969 struct symbol *sp; /* Symbol following the dot in configuration "cfp" */ | |
970 struct symbol *bsp; /* Symbol following the dot in configuration "bcfp" */ | |
971 struct state *newstp; /* A pointer to a successor state */ | |
972 | |
973 /* Each configuration becomes complete after it contibutes to a successor | |
974 ** state. Initially, all configurations are incomplete */ | |
975 for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE; | |
976 | |
977 /* Loop through all configurations of the state "stp" */ | |
978 for(cfp=stp->cfp; cfp; cfp=cfp->next){ | |
979 if( cfp->status==COMPLETE ) continue; /* Already used by inner loop */ | |
980 if( cfp->dot>=cfp->rp->nrhs ) continue; /* Can't shift this config */ | |
981 Configlist_reset(); /* Reset the new config set */ | |
982 sp = cfp->rp->rhs[cfp->dot]; /* Symbol after the dot */ | |
983 | |
984 /* For every configuration in the state "stp" which has the symbol "sp" | |
985 ** following its dot, add the same configuration to the basis set under | |
986 ** construction but with the dot shifted one symbol to the right. */ | |
987 for(bcfp=cfp; bcfp; bcfp=bcfp->next){ | |
988 if( bcfp->status==COMPLETE ) continue; /* Already used */ | |
989 if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */ | |
990 bsp = bcfp->rp->rhs[bcfp->dot]; /* Get symbol after dot */ | |
991 if( !same_symbol(bsp,sp) ) continue; /* Must be same as for "cfp" */ | |
992 bcfp->status = COMPLETE; /* Mark this config as used */ | |
993 newcfg = Configlist_addbasis(bcfp->rp,bcfp->dot+1); | |
994 Plink_add(&newcfg->bplp,bcfp); | |
995 } | |
996 | |
997 /* Get a pointer to the state described by the basis configuration set | |
998 ** constructed in the preceding loop */ | |
999 newstp = getstate(lemp); | |
1000 | |
1001 /* The state "newstp" is reached from the state "stp" by a shift action | |
1002 ** on the symbol "sp" */ | |
1003 if( sp->type==MULTITERMINAL ){ | |
1004 int i; | |
1005 for(i=0; i<sp->nsubsym; i++){ | |
1006 Action_add(&stp->ap,SHIFT,sp->subsym[i],(char*)newstp); | |
1007 } | |
1008 }else{ | |
1009 Action_add(&stp->ap,SHIFT,sp,(char *)newstp); | |
1010 } | |
1011 } | |
1012 } | |
1013 | |
1014 /* | |
1015 ** Construct the propagation links | |
1016 */ | |
1017 void FindLinks(struct lemon *lemp) | |
1018 { | |
1019 int i; | |
1020 struct config *cfp, *other; | |
1021 struct state *stp; | |
1022 struct plink *plp; | |
1023 | |
1024 /* Housekeeping detail: | |
1025 ** Add to every propagate link a pointer back to the state to | |
1026 ** which the link is attached. */ | |
1027 for(i=0; i<lemp->nstate; i++){ | |
1028 stp = lemp->sorted[i]; | |
1029 for(cfp=stp->cfp; cfp; cfp=cfp->next){ | |
1030 cfp->stp = stp; | |
1031 } | |
1032 } | |
1033 | |
1034 /* Convert all backlinks into forward links. Only the forward | |
1035 ** links are used in the follow-set computation. */ | |
1036 for(i=0; i<lemp->nstate; i++){ | |
1037 stp = lemp->sorted[i]; | |
1038 for(cfp=stp->cfp; cfp; cfp=cfp->next){ | |
1039 for(plp=cfp->bplp; plp; plp=plp->next){ | |
1040 other = plp->cfp; | |
1041 Plink_add(&other->fplp,cfp); | |
1042 } | |
1043 } | |
1044 } | |
1045 } | |
1046 | |
1047 /* Compute all followsets. | |
1048 ** | |
1049 ** A followset is the set of all symbols which can come immediately | |
1050 ** after a configuration. | |
1051 */ | |
1052 void FindFollowSets(struct lemon *lemp) | |
1053 { | |
1054 int i; | |
1055 struct config *cfp; | |
1056 struct plink *plp; | |
1057 int progress; | |
1058 int change; | |
1059 | |
1060 for(i=0; i<lemp->nstate; i++){ | |
1061 for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){ | |
1062 cfp->status = INCOMPLETE; | |
1063 } | |
1064 } | |
1065 | |
1066 do{ | |
1067 progress = 0; | |
1068 for(i=0; i<lemp->nstate; i++){ | |
1069 for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){ | |
1070 if( cfp->status==COMPLETE ) continue; | |
1071 for(plp=cfp->fplp; plp; plp=plp->next){ | |
1072 change = SetUnion(plp->cfp->fws,cfp->fws); | |
1073 if( change ){ | |
1074 plp->cfp->status = INCOMPLETE; | |
1075 progress = 1; | |
1076 } | |
1077 } | |
1078 cfp->status = COMPLETE; | |
1079 } | |
1080 } | |
1081 }while( progress ); | |
1082 } | |
1083 | |
1084 static int resolve_conflict(struct action *,struct action *); | |
1085 | |
1086 /* Compute the reduce actions, and resolve conflicts. | |
1087 */ | |
1088 void FindActions(struct lemon *lemp) | |
1089 { | |
1090 int i,j; | |
1091 struct config *cfp; | |
1092 struct state *stp; | |
1093 struct symbol *sp; | |
1094 struct rule *rp; | |
1095 | |
1096 /* Add all of the reduce actions | |
1097 ** A reduce action is added for each element of the followset of | |
1098 ** a configuration which has its dot at the extreme right. | |
1099 */ | |
1100 for(i=0; i<lemp->nstate; i++){ /* Loop over all states */ | |
1101 stp = lemp->sorted[i]; | |
1102 for(cfp=stp->cfp; cfp; cfp=cfp->next){ /* Loop over all configurations */ | |
1103 if( cfp->rp->nrhs==cfp->dot ){ /* Is dot at extreme right? */ | |
1104 for(j=0; j<lemp->nterminal; j++){ | |
1105 if( SetFind(cfp->fws,j) ){ | |
1106 /* Add a reduce action to the state "stp" which will reduce by the | |
1107 ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */ | |
1108 Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp); | |
1109 } | |
1110 } | |
1111 } | |
1112 } | |
1113 } | |
1114 | |
1115 /* Add the accepting token */ | |
1116 if( lemp->start ){ | |
1117 sp = Symbol_find(lemp->start); | |
1118 if( sp==0 ) sp = lemp->rule->lhs; | |
1119 }else{ | |
1120 sp = lemp->rule->lhs; | |
1121 } | |
1122 /* Add to the first state (which is always the starting state of the | |
1123 ** finite state machine) an action to ACCEPT if the lookahead is the | |
1124 ** start nonterminal. */ | |
1125 Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0); | |
1126 | |
1127 /* Resolve conflicts */ | |
1128 for(i=0; i<lemp->nstate; i++){ | |
1129 struct action *ap, *nap; | |
1130 stp = lemp->sorted[i]; | |
1131 /* assert( stp->ap ); */ | |
1132 stp->ap = Action_sort(stp->ap); | |
1133 for(ap=stp->ap; ap && ap->next; ap=ap->next){ | |
1134 for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){ | |
1135 /* The two actions "ap" and "nap" have the same lookahead. | |
1136 ** Figure out which one should be used */ | |
1137 lemp->nconflict += resolve_conflict(ap,nap); | |
1138 } | |
1139 } | |
1140 } | |
1141 | |
1142 /* Report an error for each rule that can never be reduced. */ | |
1143 for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = LEMON_FALSE; | |
1144 for(i=0; i<lemp->nstate; i++){ | |
1145 struct action *ap; | |
1146 for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){ | |
1147 if( ap->type==REDUCE ) ap->x.rp->canReduce = LEMON_TRUE; | |
1148 } | |
1149 } | |
1150 for(rp=lemp->rule; rp; rp=rp->next){ | |
1151 if( rp->canReduce ) continue; | |
1152 ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n"); | |
1153 lemp->errorcnt++; | |
1154 } | |
1155 } | |
1156 | |
1157 /* Resolve a conflict between the two given actions. If the | |
1158 ** conflict can't be resolved, return non-zero. | |
1159 ** | |
1160 ** NO LONGER TRUE: | |
1161 ** To resolve a conflict, first look to see if either action | |
1162 ** is on an error rule. In that case, take the action which | |
1163 ** is not associated with the error rule. If neither or both | |
1164 ** actions are associated with an error rule, then try to | |
1165 ** use precedence to resolve the conflict. | |
1166 ** | |
1167 ** If either action is a SHIFT, then it must be apx. This | |
1168 ** function won't work if apx->type==REDUCE and apy->type==SHIFT. | |
1169 */ | |
1170 static int resolve_conflict( | |
1171 struct action *apx, | |
1172 struct action *apy | |
1173 ){ | |
1174 struct symbol *spx, *spy; | |
1175 int errcnt = 0; | |
1176 assert( apx->sp==apy->sp ); /* Otherwise there would be no conflict */ | |
1177 if( apx->type==SHIFT && apy->type==SHIFT ){ | |
1178 apy->type = SSCONFLICT; | |
1179 errcnt++; | |
1180 } | |
1181 if( apx->type==SHIFT && apy->type==REDUCE ){ | |
1182 spx = apx->sp; | |
1183 spy = apy->x.rp->precsym; | |
1184 if( spy==0 || spx->prec<0 || spy->prec<0 ){ | |
1185 /* Not enough precedence information. */ | |
1186 apy->type = SRCONFLICT; | |
1187 errcnt++; | |
1188 }else if( spx->prec>spy->prec ){ /* higher precedence wins */ | |
1189 apy->type = RD_RESOLVED; | |
1190 }else if( spx->prec<spy->prec ){ | |
1191 apx->type = SH_RESOLVED; | |
1192 }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */ | |
1193 apy->type = RD_RESOLVED; /* associativity */ | |
1194 }else if( spx->prec==spy->prec && spx->assoc==LEFT ){ /* to break tie */ | |
1195 apx->type = SH_RESOLVED; | |
1196 }else{ | |
1197 assert( spx->prec==spy->prec && spx->assoc==NONE ); | |
1198 apx->type = ERROR; | |
1199 } | |
1200 }else if( apx->type==REDUCE && apy->type==REDUCE ){ | |
1201 spx = apx->x.rp->precsym; | |
1202 spy = apy->x.rp->precsym; | |
1203 if( spx==0 || spy==0 || spx->prec<0 || | |
1204 spy->prec<0 || spx->prec==spy->prec ){ | |
1205 apy->type = RRCONFLICT; | |
1206 errcnt++; | |
1207 }else if( spx->prec>spy->prec ){ | |
1208 apy->type = RD_RESOLVED; | |
1209 }else if( spx->prec<spy->prec ){ | |
1210 apx->type = RD_RESOLVED; | |
1211 } | |
1212 }else{ | |
1213 assert( | |
1214 apx->type==SH_RESOLVED || | |
1215 apx->type==RD_RESOLVED || | |
1216 apx->type==SSCONFLICT || | |
1217 apx->type==SRCONFLICT || | |
1218 apx->type==RRCONFLICT || | |
1219 apy->type==SH_RESOLVED || | |
1220 apy->type==RD_RESOLVED || | |
1221 apy->type==SSCONFLICT || | |
1222 apy->type==SRCONFLICT || | |
1223 apy->type==RRCONFLICT | |
1224 ); | |
1225 /* The REDUCE/SHIFT case cannot happen because SHIFTs come before | |
1226 ** REDUCEs on the list. If we reach this point it must be because | |
1227 ** the parser conflict had already been resolved. */ | |
1228 } | |
1229 return errcnt; | |
1230 } | |
1231 /********************* From the file "configlist.c" *************************/ | |
1232 /* | |
1233 ** Routines to processing a configuration list and building a state | |
1234 ** in the LEMON parser generator. | |
1235 */ | |
1236 | |
1237 static struct config *freelist = 0; /* List of free configurations */ | |
1238 static struct config *current = 0; /* Top of list of configurations */ | |
1239 static struct config **currentend = 0; /* Last on list of configs */ | |
1240 static struct config *basis = 0; /* Top of list of basis configs */ | |
1241 static struct config **basisend = 0; /* End of list of basis configs */ | |
1242 | |
1243 /* Return a pointer to a new configuration */ | |
1244 PRIVATE struct config *newconfig(){ | |
1245 struct config *newcfg; | |
1246 if( freelist==0 ){ | |
1247 int i; | |
1248 int amt = 3; | |
1249 freelist = (struct config *)calloc( amt, sizeof(struct config) ); | |
1250 if( freelist==0 ){ | |
1251 fprintf(stderr,"Unable to allocate memory for a new configuration."); | |
1252 exit(1); | |
1253 } | |
1254 for(i=0; i<amt-1; i++) freelist[i].next = &freelist[i+1]; | |
1255 freelist[amt-1].next = 0; | |
1256 } | |
1257 newcfg = freelist; | |
1258 freelist = freelist->next; | |
1259 return newcfg; | |
1260 } | |
1261 | |
1262 /* The configuration "old" is no longer used */ | |
1263 PRIVATE void deleteconfig(struct config *old) | |
1264 { | |
1265 old->next = freelist; | |
1266 freelist = old; | |
1267 } | |
1268 | |
1269 /* Initialized the configuration list builder */ | |
1270 void Configlist_init(){ | |
1271 current = 0; | |
1272 currentend = ¤t; | |
1273 basis = 0; | |
1274 basisend = &basis; | |
1275 Configtable_init(); | |
1276 return; | |
1277 } | |
1278 | |
1279 /* Initialized the configuration list builder */ | |
1280 void Configlist_reset(){ | |
1281 current = 0; | |
1282 currentend = ¤t; | |
1283 basis = 0; | |
1284 basisend = &basis; | |
1285 Configtable_clear(0); | |
1286 return; | |
1287 } | |
1288 | |
1289 /* Add another configuration to the configuration list */ | |
1290 struct config *Configlist_add( | |
1291 struct rule *rp, /* The rule */ | |
1292 int dot /* Index into the RHS of the rule where the dot goes */ | |
1293 ){ | |
1294 struct config *cfp, model; | |
1295 | |
1296 assert( currentend!=0 ); | |
1297 model.rp = rp; | |
1298 model.dot = dot; | |
1299 cfp = Configtable_find(&model); | |
1300 if( cfp==0 ){ | |
1301 cfp = newconfig(); | |
1302 cfp->rp = rp; | |
1303 cfp->dot = dot; | |
1304 cfp->fws = SetNew(); | |
1305 cfp->stp = 0; | |
1306 cfp->fplp = cfp->bplp = 0; | |
1307 cfp->next = 0; | |
1308 cfp->bp = 0; | |
1309 *currentend = cfp; | |
1310 currentend = &cfp->next; | |
1311 Configtable_insert(cfp); | |
1312 } | |
1313 return cfp; | |
1314 } | |
1315 | |
1316 /* Add a basis configuration to the configuration list */ | |
1317 struct config *Configlist_addbasis(struct rule *rp, int dot) | |
1318 { | |
1319 struct config *cfp, model; | |
1320 | |
1321 assert( basisend!=0 ); | |
1322 assert( currentend!=0 ); | |
1323 model.rp = rp; | |
1324 model.dot = dot; | |
1325 cfp = Configtable_find(&model); | |
1326 if( cfp==0 ){ | |
1327 cfp = newconfig(); | |
1328 cfp->rp = rp; | |
1329 cfp->dot = dot; | |
1330 cfp->fws = SetNew(); | |
1331 cfp->stp = 0; | |
1332 cfp->fplp = cfp->bplp = 0; | |
1333 cfp->next = 0; | |
1334 cfp->bp = 0; | |
1335 *currentend = cfp; | |
1336 currentend = &cfp->next; | |
1337 *basisend = cfp; | |
1338 basisend = &cfp->bp; | |
1339 Configtable_insert(cfp); | |
1340 } | |
1341 return cfp; | |
1342 } | |
1343 | |
1344 /* Compute the closure of the configuration list */ | |
1345 void Configlist_closure(struct lemon *lemp) | |
1346 { | |
1347 struct config *cfp, *newcfp; | |
1348 struct rule *rp, *newrp; | |
1349 struct symbol *sp, *xsp; | |
1350 int i, dot; | |
1351 | |
1352 assert( currentend!=0 ); | |
1353 for(cfp=current; cfp; cfp=cfp->next){ | |
1354 rp = cfp->rp; | |
1355 dot = cfp->dot; | |
1356 if( dot>=rp->nrhs ) continue; | |
1357 sp = rp->rhs[dot]; | |
1358 if( sp->type==NONTERMINAL ){ | |
1359 if( sp->rule==0 && sp!=lemp->errsym ){ | |
1360 ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.", | |
1361 sp->name); | |
1362 lemp->errorcnt++; | |
1363 } | |
1364 for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){ | |
1365 newcfp = Configlist_add(newrp,0); | |
1366 for(i=dot+1; i<rp->nrhs; i++){ | |
1367 xsp = rp->rhs[i]; | |
1368 if( xsp->type==TERMINAL ){ | |
1369 SetAdd(newcfp->fws,xsp->index); | |
1370 break; | |
1371 }else if( xsp->type==MULTITERMINAL ){ | |
1372 int k; | |
1373 for(k=0; k<xsp->nsubsym; k++){ | |
1374 SetAdd(newcfp->fws, xsp->subsym[k]->index); | |
1375 } | |
1376 break; | |
1377 }else{ | |
1378 SetUnion(newcfp->fws,xsp->firstset); | |
1379 if( xsp->lambda==LEMON_FALSE ) break; | |
1380 } | |
1381 } | |
1382 if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp); | |
1383 } | |
1384 } | |
1385 } | |
1386 return; | |
1387 } | |
1388 | |
1389 /* Sort the configuration list */ | |
1390 void Configlist_sort(){ | |
1391 current = (struct config*)msort((char*)current,(char**)&(current->next), | |
1392 Configcmp); | |
1393 currentend = 0; | |
1394 return; | |
1395 } | |
1396 | |
1397 /* Sort the basis configuration list */ | |
1398 void Configlist_sortbasis(){ | |
1399 basis = (struct config*)msort((char*)current,(char**)&(current->bp), | |
1400 Configcmp); | |
1401 basisend = 0; | |
1402 return; | |
1403 } | |
1404 | |
1405 /* Return a pointer to the head of the configuration list and | |
1406 ** reset the list */ | |
1407 struct config *Configlist_return(){ | |
1408 struct config *old; | |
1409 old = current; | |
1410 current = 0; | |
1411 currentend = 0; | |
1412 return old; | |
1413 } | |
1414 | |
1415 /* Return a pointer to the head of the configuration list and | |
1416 ** reset the list */ | |
1417 struct config *Configlist_basis(){ | |
1418 struct config *old; | |
1419 old = basis; | |
1420 basis = 0; | |
1421 basisend = 0; | |
1422 return old; | |
1423 } | |
1424 | |
1425 /* Free all elements of the given configuration list */ | |
1426 void Configlist_eat(struct config *cfp) | |
1427 { | |
1428 struct config *nextcfp; | |
1429 for(; cfp; cfp=nextcfp){ | |
1430 nextcfp = cfp->next; | |
1431 assert( cfp->fplp==0 ); | |
1432 assert( cfp->bplp==0 ); | |
1433 if( cfp->fws ) SetFree(cfp->fws); | |
1434 deleteconfig(cfp); | |
1435 } | |
1436 return; | |
1437 } | |
1438 /***************** From the file "error.c" *********************************/ | |
1439 /* | |
1440 ** Code for printing error message. | |
1441 */ | |
1442 | |
1443 void ErrorMsg(const char *filename, int lineno, const char *format, ...){ | |
1444 va_list ap; | |
1445 fprintf(stderr, "%s:%d: ", filename, lineno); | |
1446 va_start(ap, format); | |
1447 vfprintf(stderr,format,ap); | |
1448 va_end(ap); | |
1449 fprintf(stderr, "\n"); | |
1450 } | |
1451 /**************** From the file "main.c" ************************************/ | |
1452 /* | |
1453 ** Main program file for the LEMON parser generator. | |
1454 */ | |
1455 | |
1456 /* Report an out-of-memory condition and abort. This function | |
1457 ** is used mostly by the "MemoryCheck" macro in struct.h | |
1458 */ | |
1459 void memory_error(){ | |
1460 fprintf(stderr,"Out of memory. Aborting...\n"); | |
1461 exit(1); | |
1462 } | |
1463 | |
1464 static int nDefine = 0; /* Number of -D options on the command line */ | |
1465 static char **azDefine = 0; /* Name of the -D macros */ | |
1466 | |
1467 /* This routine is called with the argument to each -D command-line option. | |
1468 ** Add the macro defined to the azDefine array. | |
1469 */ | |
1470 static void handle_D_option(char *z){ | |
1471 char **paz; | |
1472 nDefine++; | |
1473 azDefine = (char **) realloc(azDefine, sizeof(azDefine[0])*nDefine); | |
1474 if( azDefine==0 ){ | |
1475 fprintf(stderr,"out of memory\n"); | |
1476 exit(1); | |
1477 } | |
1478 paz = &azDefine[nDefine-1]; | |
1479 *paz = (char *) malloc( lemonStrlen(z)+1 ); | |
1480 if( *paz==0 ){ | |
1481 fprintf(stderr,"out of memory\n"); | |
1482 exit(1); | |
1483 } | |
1484 lemon_strcpy(*paz, z); | |
1485 for(z=*paz; *z && *z!='='; z++){} | |
1486 *z = 0; | |
1487 } | |
1488 | |
1489 static char *user_templatename = NULL; | |
1490 static void handle_T_option(char *z){ | |
1491 user_templatename = (char *) malloc( lemonStrlen(z)+1 ); | |
1492 if( user_templatename==0 ){ | |
1493 memory_error(); | |
1494 } | |
1495 lemon_strcpy(user_templatename, z); | |
1496 } | |
1497 | |
1498 /* forward reference */ | |
1499 static const char *minimum_size_type(int lwr, int upr, int *pnByte); | |
1500 | |
1501 /* Print a single line of the "Parser Stats" output | |
1502 */ | |
1503 static void stats_line(const char *zLabel, int iValue){ | |
1504 int nLabel = lemonStrlen(zLabel); | |
1505 printf(" %s%.*s %5d\n", zLabel, | |
1506 35-nLabel, "................................", | |
1507 iValue); | |
1508 } | |
1509 | |
1510 /* The main program. Parse the command line and do it... */ | |
1511 int main(int argc, char **argv) | |
1512 { | |
1513 static int version = 0; | |
1514 static int rpflag = 0; | |
1515 static int basisflag = 0; | |
1516 static int compress = 0; | |
1517 static int quiet = 0; | |
1518 static int statistics = 0; | |
1519 static int mhflag = 0; | |
1520 static int nolinenosflag = 0; | |
1521 static int noResort = 0; | |
1522 static struct s_options options[] = { | |
1523 {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."}, | |
1524 {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."}, | |
1525 {OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."}, | |
1526 {OPT_FSTR, "f", 0, "Ignored. (Placeholder for -f compiler options.)"}, | |
1527 {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."}, | |
1528 {OPT_FSTR, "I", 0, "Ignored. (Placeholder for '-I' compiler options.)"}, | |
1529 {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file."}, | |
1530 {OPT_FLAG, "l", (char*)&nolinenosflag, "Do not print #line statements."}, | |
1531 {OPT_FSTR, "O", 0, "Ignored. (Placeholder for '-O' compiler options.)"}, | |
1532 {OPT_FLAG, "p", (char*)&showPrecedenceConflict, | |
1533 "Show conflicts resolved by precedence rules"}, | |
1534 {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."}, | |
1535 {OPT_FLAG, "r", (char*)&noResort, "Do not sort or renumber states"}, | |
1536 {OPT_FLAG, "s", (char*)&statistics, | |
1537 "Print parser stats to standard output."}, | |
1538 {OPT_FLAG, "x", (char*)&version, "Print the version number."}, | |
1539 {OPT_FSTR, "T", (char*)handle_T_option, "Specify a template file."}, | |
1540 {OPT_FSTR, "W", 0, "Ignored. (Placeholder for '-W' compiler options.)"}, | |
1541 {OPT_FLAG,0,0,0} | |
1542 }; | |
1543 int i; | |
1544 int exitcode; | |
1545 struct lemon lem; | |
1546 | |
1547 OptInit(argv,options,stderr); | |
1548 if( version ){ | |
1549 printf("Lemon version 1.0\n"); | |
1550 exit(0); | |
1551 } | |
1552 if( OptNArgs()!=1 ){ | |
1553 fprintf(stderr,"Exactly one filename argument is required.\n"); | |
1554 exit(1); | |
1555 } | |
1556 memset(&lem, 0, sizeof(lem)); | |
1557 lem.errorcnt = 0; | |
1558 | |
1559 /* Initialize the machine */ | |
1560 Strsafe_init(); | |
1561 Symbol_init(); | |
1562 State_init(); | |
1563 lem.argv0 = argv[0]; | |
1564 lem.filename = OptArg(0); | |
1565 lem.basisflag = basisflag; | |
1566 lem.nolinenosflag = nolinenosflag; | |
1567 Symbol_new("$"); | |
1568 lem.errsym = Symbol_new("error"); | |
1569 lem.errsym->useCnt = 0; | |
1570 | |
1571 /* Parse the input file */ | |
1572 Parse(&lem); | |
1573 if( lem.errorcnt ) exit(lem.errorcnt); | |
1574 if( lem.nrule==0 ){ | |
1575 fprintf(stderr,"Empty grammar.\n"); | |
1576 exit(1); | |
1577 } | |
1578 | |
1579 /* Count and index the symbols of the grammar */ | |
1580 Symbol_new("{default}"); | |
1581 lem.nsymbol = Symbol_count(); | |
1582 lem.symbols = Symbol_arrayof(); | |
1583 for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i; | |
1584 qsort(lem.symbols,lem.nsymbol,sizeof(struct symbol*), Symbolcmpp); | |
1585 for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i; | |
1586 while( lem.symbols[i-1]->type==MULTITERMINAL ){ i--; } | |
1587 assert( strcmp(lem.symbols[i-1]->name,"{default}")==0 ); | |
1588 lem.nsymbol = i - 1; | |
1589 for(i=1; ISUPPER(lem.symbols[i]->name[0]); i++); | |
1590 lem.nterminal = i; | |
1591 | |
1592 /* Generate a reprint of the grammar, if requested on the command line */ | |
1593 if( rpflag ){ | |
1594 Reprint(&lem); | |
1595 }else{ | |
1596 /* Initialize the size for all follow and first sets */ | |
1597 SetSize(lem.nterminal+1); | |
1598 | |
1599 /* Find the precedence for every production rule (that has one) */ | |
1600 FindRulePrecedences(&lem); | |
1601 | |
1602 /* Compute the lambda-nonterminals and the first-sets for every | |
1603 ** nonterminal */ | |
1604 FindFirstSets(&lem); | |
1605 | |
1606 /* Compute all LR(0) states. Also record follow-set propagation | |
1607 ** links so that the follow-set can be computed later */ | |
1608 lem.nstate = 0; | |
1609 FindStates(&lem); | |
1610 lem.sorted = State_arrayof(); | |
1611 | |
1612 /* Tie up loose ends on the propagation links */ | |
1613 FindLinks(&lem); | |
1614 | |
1615 /* Compute the follow set of every reducible configuration */ | |
1616 FindFollowSets(&lem); | |
1617 | |
1618 /* Compute the action tables */ | |
1619 FindActions(&lem); | |
1620 | |
1621 /* Compress the action tables */ | |
1622 if( compress==0 ) CompressTables(&lem); | |
1623 | |
1624 /* Reorder and renumber the states so that states with fewer choices | |
1625 ** occur at the end. This is an optimization that helps make the | |
1626 ** generated parser tables smaller. */ | |
1627 if( noResort==0 ) ResortStates(&lem); | |
1628 | |
1629 /* Generate a report of the parser generated. (the "y.output" file) */ | |
1630 if( !quiet ) ReportOutput(&lem); | |
1631 | |
1632 /* Generate the source code for the parser */ | |
1633 ReportTable(&lem, mhflag); | |
1634 | |
1635 /* Produce a header file for use by the scanner. (This step is | |
1636 ** omitted if the "-m" option is used because makeheaders will | |
1637 ** generate the file for us.) */ | |
1638 if( !mhflag ) ReportHeader(&lem); | |
1639 } | |
1640 if( statistics ){ | |
1641 printf("Parser statistics:\n"); | |
1642 stats_line("terminal symbols", lem.nterminal); | |
1643 stats_line("non-terminal symbols", lem.nsymbol - lem.nterminal); | |
1644 stats_line("total symbols", lem.nsymbol); | |
1645 stats_line("rules", lem.nrule); | |
1646 stats_line("states", lem.nxstate); | |
1647 stats_line("conflicts", lem.nconflict); | |
1648 stats_line("action table entries", lem.nactiontab); | |
1649 stats_line("total table size (bytes)", lem.tablesize); | |
1650 } | |
1651 if( lem.nconflict > 0 ){ | |
1652 fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict); | |
1653 } | |
1654 | |
1655 /* return 0 on success, 1 on failure. */ | |
1656 exitcode = ((lem.errorcnt > 0) || (lem.nconflict > 0)) ? 1 : 0; | |
1657 exit(exitcode); | |
1658 return (exitcode); | |
1659 } | |
1660 /******************** From the file "msort.c" *******************************/ | |
1661 /* | |
1662 ** A generic merge-sort program. | |
1663 ** | |
1664 ** USAGE: | |
1665 ** Let "ptr" be a pointer to some structure which is at the head of | |
1666 ** a null-terminated list. Then to sort the list call: | |
1667 ** | |
1668 ** ptr = msort(ptr,&(ptr->next),cmpfnc); | |
1669 ** | |
1670 ** In the above, "cmpfnc" is a pointer to a function which compares | |
1671 ** two instances of the structure and returns an integer, as in | |
1672 ** strcmp. The second argument is a pointer to the pointer to the | |
1673 ** second element of the linked list. This address is used to compute | |
1674 ** the offset to the "next" field within the structure. The offset to | |
1675 ** the "next" field must be constant for all structures in the list. | |
1676 ** | |
1677 ** The function returns a new pointer which is the head of the list | |
1678 ** after sorting. | |
1679 ** | |
1680 ** ALGORITHM: | |
1681 ** Merge-sort. | |
1682 */ | |
1683 | |
1684 /* | |
1685 ** Return a pointer to the next structure in the linked list. | |
1686 */ | |
1687 #define NEXT(A) (*(char**)(((char*)A)+offset)) | |
1688 | |
1689 /* | |
1690 ** Inputs: | |
1691 ** a: A sorted, null-terminated linked list. (May be null). | |
1692 ** b: A sorted, null-terminated linked list. (May be null). | |
1693 ** cmp: A pointer to the comparison function. | |
1694 ** offset: Offset in the structure to the "next" field. | |
1695 ** | |
1696 ** Return Value: | |
1697 ** A pointer to the head of a sorted list containing the elements | |
1698 ** of both a and b. | |
1699 ** | |
1700 ** Side effects: | |
1701 ** The "next" pointers for elements in the lists a and b are | |
1702 ** changed. | |
1703 */ | |
1704 static char *merge( | |
1705 char *a, | |
1706 char *b, | |
1707 int (*cmp)(const char*,const char*), | |
1708 int offset | |
1709 ){ | |
1710 char *ptr, *head; | |
1711 | |
1712 if( a==0 ){ | |
1713 head = b; | |
1714 }else if( b==0 ){ | |
1715 head = a; | |
1716 }else{ | |
1717 if( (*cmp)(a,b)<=0 ){ | |
1718 ptr = a; | |
1719 a = NEXT(a); | |
1720 }else{ | |
1721 ptr = b; | |
1722 b = NEXT(b); | |
1723 } | |
1724 head = ptr; | |
1725 while( a && b ){ | |
1726 if( (*cmp)(a,b)<=0 ){ | |
1727 NEXT(ptr) = a; | |
1728 ptr = a; | |
1729 a = NEXT(a); | |
1730 }else{ | |
1731 NEXT(ptr) = b; | |
1732 ptr = b; | |
1733 b = NEXT(b); | |
1734 } | |
1735 } | |
1736 if( a ) NEXT(ptr) = a; | |
1737 else NEXT(ptr) = b; | |
1738 } | |
1739 return head; | |
1740 } | |
1741 | |
1742 /* | |
1743 ** Inputs: | |
1744 ** list: Pointer to a singly-linked list of structures. | |
1745 ** next: Pointer to pointer to the second element of the list. | |
1746 ** cmp: A comparison function. | |
1747 ** | |
1748 ** Return Value: | |
1749 ** A pointer to the head of a sorted list containing the elements | |
1750 ** orginally in list. | |
1751 ** | |
1752 ** Side effects: | |
1753 ** The "next" pointers for elements in list are changed. | |
1754 */ | |
1755 #define LISTSIZE 30 | |
1756 static char *msort( | |
1757 char *list, | |
1758 char **next, | |
1759 int (*cmp)(const char*,const char*) | |
1760 ){ | |
1761 unsigned long offset; | |
1762 char *ep; | |
1763 char *set[LISTSIZE]; | |
1764 int i; | |
1765 offset = (unsigned long)((char*)next - (char*)list); | |
1766 for(i=0; i<LISTSIZE; i++) set[i] = 0; | |
1767 while( list ){ | |
1768 ep = list; | |
1769 list = NEXT(list); | |
1770 NEXT(ep) = 0; | |
1771 for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){ | |
1772 ep = merge(ep,set[i],cmp,offset); | |
1773 set[i] = 0; | |
1774 } | |
1775 set[i] = ep; | |
1776 } | |
1777 ep = 0; | |
1778 for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(set[i],ep,cmp,offset); | |
1779 return ep; | |
1780 } | |
1781 /************************ From the file "option.c" **************************/ | |
1782 static char **argv; | |
1783 static struct s_options *op; | |
1784 static FILE *errstream; | |
1785 | |
1786 #define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0) | |
1787 | |
1788 /* | |
1789 ** Print the command line with a carrot pointing to the k-th character | |
1790 ** of the n-th field. | |
1791 */ | |
1792 static void errline(int n, int k, FILE *err) | |
1793 { | |
1794 int spcnt, i; | |
1795 if( argv[0] ) fprintf(err,"%s",argv[0]); | |
1796 spcnt = lemonStrlen(argv[0]) + 1; | |
1797 for(i=1; i<n && argv[i]; i++){ | |
1798 fprintf(err," %s",argv[i]); | |
1799 spcnt += lemonStrlen(argv[i])+1; | |
1800 } | |
1801 spcnt += k; | |
1802 for(; argv[i]; i++) fprintf(err," %s",argv[i]); | |
1803 if( spcnt<20 ){ | |
1804 fprintf(err,"\n%*s^-- here\n",spcnt,""); | |
1805 }else{ | |
1806 fprintf(err,"\n%*shere --^\n",spcnt-7,""); | |
1807 } | |
1808 } | |
1809 | |
1810 /* | |
1811 ** Return the index of the N-th non-switch argument. Return -1 | |
1812 ** if N is out of range. | |
1813 */ | |
1814 static int argindex(int n) | |
1815 { | |
1816 int i; | |
1817 int dashdash = 0; | |
1818 if( argv!=0 && *argv!=0 ){ | |
1819 for(i=1; argv[i]; i++){ | |
1820 if( dashdash || !ISOPT(argv[i]) ){ | |
1821 if( n==0 ) return i; | |
1822 n--; | |
1823 } | |
1824 if( strcmp(argv[i],"--")==0 ) dashdash = 1; | |
1825 } | |
1826 } | |
1827 return -1; | |
1828 } | |
1829 | |
1830 static char emsg[] = "Command line syntax error: "; | |
1831 | |
1832 /* | |
1833 ** Process a flag command line argument. | |
1834 */ | |
1835 static int handleflags(int i, FILE *err) | |
1836 { | |
1837 int v; | |
1838 int errcnt = 0; | |
1839 int j; | |
1840 for(j=0; op[j].label; j++){ | |
1841 if( strncmp(&argv[i][1],op[j].label,lemonStrlen(op[j].label))==0 ) break; | |
1842 } | |
1843 v = argv[i][0]=='-' ? 1 : 0; | |
1844 if( op[j].label==0 ){ | |
1845 if( err ){ | |
1846 fprintf(err,"%sundefined option.\n",emsg); | |
1847 errline(i,1,err); | |
1848 } | |
1849 errcnt++; | |
1850 }else if( op[j].arg==0 ){ | |
1851 /* Ignore this option */ | |
1852 }else if( op[j].type==OPT_FLAG ){ | |
1853 *((int*)op[j].arg) = v; | |
1854 }else if( op[j].type==OPT_FFLAG ){ | |
1855 (*(void(*)(int))(op[j].arg))(v); | |
1856 }else if( op[j].type==OPT_FSTR ){ | |
1857 (*(void(*)(char *))(op[j].arg))(&argv[i][2]); | |
1858 }else{ | |
1859 if( err ){ | |
1860 fprintf(err,"%smissing argument on switch.\n",emsg); | |
1861 errline(i,1,err); | |
1862 } | |
1863 errcnt++; | |
1864 } | |
1865 return errcnt; | |
1866 } | |
1867 | |
1868 /* | |
1869 ** Process a command line switch which has an argument. | |
1870 */ | |
1871 static int handleswitch(int i, FILE *err) | |
1872 { | |
1873 int lv = 0; | |
1874 double dv = 0.0; | |
1875 char *sv = 0, *end; | |
1876 char *cp; | |
1877 int j; | |
1878 int errcnt = 0; | |
1879 cp = strchr(argv[i],'='); | |
1880 assert( cp!=0 ); | |
1881 *cp = 0; | |
1882 for(j=0; op[j].label; j++){ | |
1883 if( strcmp(argv[i],op[j].label)==0 ) break; | |
1884 } | |
1885 *cp = '='; | |
1886 if( op[j].label==0 ){ | |
1887 if( err ){ | |
1888 fprintf(err,"%sundefined option.\n",emsg); | |
1889 errline(i,0,err); | |
1890 } | |
1891 errcnt++; | |
1892 }else{ | |
1893 cp++; | |
1894 switch( op[j].type ){ | |
1895 case OPT_FLAG: | |
1896 case OPT_FFLAG: | |
1897 if( err ){ | |
1898 fprintf(err,"%soption requires an argument.\n",emsg); | |
1899 errline(i,0,err); | |
1900 } | |
1901 errcnt++; | |
1902 break; | |
1903 case OPT_DBL: | |
1904 case OPT_FDBL: | |
1905 dv = strtod(cp,&end); | |
1906 if( *end ){ | |
1907 if( err ){ | |
1908 fprintf(err, | |
1909 "%sillegal character in floating-point argument.\n",emsg); | |
1910 errline(i,(int)((char*)end-(char*)argv[i]),err); | |
1911 } | |
1912 errcnt++; | |
1913 } | |
1914 break; | |
1915 case OPT_INT: | |
1916 case OPT_FINT: | |
1917 lv = strtol(cp,&end,0); | |
1918 if( *end ){ | |
1919 if( err ){ | |
1920 fprintf(err,"%sillegal character in integer argument.\n",emsg); | |
1921 errline(i,(int)((char*)end-(char*)argv[i]),err); | |
1922 } | |
1923 errcnt++; | |
1924 } | |
1925 break; | |
1926 case OPT_STR: | |
1927 case OPT_FSTR: | |
1928 sv = cp; | |
1929 break; | |
1930 } | |
1931 switch( op[j].type ){ | |
1932 case OPT_FLAG: | |
1933 case OPT_FFLAG: | |
1934 break; | |
1935 case OPT_DBL: | |
1936 *(double*)(op[j].arg) = dv; | |
1937 break; | |
1938 case OPT_FDBL: | |
1939 (*(void(*)(double))(op[j].arg))(dv); | |
1940 break; | |
1941 case OPT_INT: | |
1942 *(int*)(op[j].arg) = lv; | |
1943 break; | |
1944 case OPT_FINT: | |
1945 (*(void(*)(int))(op[j].arg))((int)lv); | |
1946 break; | |
1947 case OPT_STR: | |
1948 *(char**)(op[j].arg) = sv; | |
1949 break; | |
1950 case OPT_FSTR: | |
1951 (*(void(*)(char *))(op[j].arg))(sv); | |
1952 break; | |
1953 } | |
1954 } | |
1955 return errcnt; | |
1956 } | |
1957 | |
1958 int OptInit(char **a, struct s_options *o, FILE *err) | |
1959 { | |
1960 int errcnt = 0; | |
1961 argv = a; | |
1962 op = o; | |
1963 errstream = err; | |
1964 if( argv && *argv && op ){ | |
1965 int i; | |
1966 for(i=1; argv[i]; i++){ | |
1967 if( argv[i][0]=='+' || argv[i][0]=='-' ){ | |
1968 errcnt += handleflags(i,err); | |
1969 }else if( strchr(argv[i],'=') ){ | |
1970 errcnt += handleswitch(i,err); | |
1971 } | |
1972 } | |
1973 } | |
1974 if( errcnt>0 ){ | |
1975 fprintf(err,"Valid command line options for \"%s\" are:\n",*a); | |
1976 OptPrint(); | |
1977 exit(1); | |
1978 } | |
1979 return 0; | |
1980 } | |
1981 | |
1982 int OptNArgs(){ | |
1983 int cnt = 0; | |
1984 int dashdash = 0; | |
1985 int i; | |
1986 if( argv!=0 && argv[0]!=0 ){ | |
1987 for(i=1; argv[i]; i++){ | |
1988 if( dashdash || !ISOPT(argv[i]) ) cnt++; | |
1989 if( strcmp(argv[i],"--")==0 ) dashdash = 1; | |
1990 } | |
1991 } | |
1992 return cnt; | |
1993 } | |
1994 | |
1995 char *OptArg(int n) | |
1996 { | |
1997 int i; | |
1998 i = argindex(n); | |
1999 return i>=0 ? argv[i] : 0; | |
2000 } | |
2001 | |
2002 void OptErr(int n) | |
2003 { | |
2004 int i; | |
2005 i = argindex(n); | |
2006 if( i>=0 ) errline(i,0,errstream); | |
2007 } | |
2008 | |
2009 void OptPrint(){ | |
2010 int i; | |
2011 int max, len; | |
2012 max = 0; | |
2013 for(i=0; op[i].label; i++){ | |
2014 len = lemonStrlen(op[i].label) + 1; | |
2015 switch( op[i].type ){ | |
2016 case OPT_FLAG: | |
2017 case OPT_FFLAG: | |
2018 break; | |
2019 case OPT_INT: | |
2020 case OPT_FINT: | |
2021 len += 9; /* length of "<integer>" */ | |
2022 break; | |
2023 case OPT_DBL: | |
2024 case OPT_FDBL: | |
2025 len += 6; /* length of "<real>" */ | |
2026 break; | |
2027 case OPT_STR: | |
2028 case OPT_FSTR: | |
2029 len += 8; /* length of "<string>" */ | |
2030 break; | |
2031 } | |
2032 if( len>max ) max = len; | |
2033 } | |
2034 for(i=0; op[i].label; i++){ | |
2035 switch( op[i].type ){ | |
2036 case OPT_FLAG: | |
2037 case OPT_FFLAG: | |
2038 fprintf(errstream," -%-*s %s\n",max,op[i].label,op[i].message); | |
2039 break; | |
2040 case OPT_INT: | |
2041 case OPT_FINT: | |
2042 fprintf(errstream," -%s<integer>%*s %s\n",op[i].label, | |
2043 (int)(max-lemonStrlen(op[i].label)-9),"",op[i].message); | |
2044 break; | |
2045 case OPT_DBL: | |
2046 case OPT_FDBL: | |
2047 fprintf(errstream," -%s<real>%*s %s\n",op[i].label, | |
2048 (int)(max-lemonStrlen(op[i].label)-6),"",op[i].message); | |
2049 break; | |
2050 case OPT_STR: | |
2051 case OPT_FSTR: | |
2052 fprintf(errstream," -%s<string>%*s %s\n",op[i].label, | |
2053 (int)(max-lemonStrlen(op[i].label)-8),"",op[i].message); | |
2054 break; | |
2055 } | |
2056 } | |
2057 } | |
2058 /*********************** From the file "parse.c" ****************************/ | |
2059 /* | |
2060 ** Input file parser for the LEMON parser generator. | |
2061 */ | |
2062 | |
2063 /* The state of the parser */ | |
2064 enum e_state { | |
2065 INITIALIZE, | |
2066 WAITING_FOR_DECL_OR_RULE, | |
2067 WAITING_FOR_DECL_KEYWORD, | |
2068 WAITING_FOR_DECL_ARG, | |
2069 WAITING_FOR_PRECEDENCE_SYMBOL, | |
2070 WAITING_FOR_ARROW, | |
2071 IN_RHS, | |
2072 LHS_ALIAS_1, | |
2073 LHS_ALIAS_2, | |
2074 LHS_ALIAS_3, | |
2075 RHS_ALIAS_1, | |
2076 RHS_ALIAS_2, | |
2077 PRECEDENCE_MARK_1, | |
2078 PRECEDENCE_MARK_2, | |
2079 RESYNC_AFTER_RULE_ERROR, | |
2080 RESYNC_AFTER_DECL_ERROR, | |
2081 WAITING_FOR_DESTRUCTOR_SYMBOL, | |
2082 WAITING_FOR_DATATYPE_SYMBOL, | |
2083 WAITING_FOR_FALLBACK_ID, | |
2084 WAITING_FOR_WILDCARD_ID, | |
2085 WAITING_FOR_CLASS_ID, | |
2086 WAITING_FOR_CLASS_TOKEN | |
2087 }; | |
2088 struct pstate { | |
2089 char *filename; /* Name of the input file */ | |
2090 int tokenlineno; /* Linenumber at which current token starts */ | |
2091 int errorcnt; /* Number of errors so far */ | |
2092 char *tokenstart; /* Text of current token */ | |
2093 struct lemon *gp; /* Global state vector */ | |
2094 enum e_state state; /* The state of the parser */ | |
2095 struct symbol *fallback; /* The fallback token */ | |
2096 struct symbol *tkclass; /* Token class symbol */ | |
2097 struct symbol *lhs; /* Left-hand side of current rule */ | |
2098 const char *lhsalias; /* Alias for the LHS */ | |
2099 int nrhs; /* Number of right-hand side symbols seen */ | |
2100 struct symbol *rhs[MAXRHS]; /* RHS symbols */ | |
2101 const char *alias[MAXRHS]; /* Aliases for each RHS symbol (or NULL) */ | |
2102 struct rule *prevrule; /* Previous rule parsed */ | |
2103 const char *declkeyword; /* Keyword of a declaration */ | |
2104 char **declargslot; /* Where the declaration argument should be put */ | |
2105 int insertLineMacro; /* Add #line before declaration insert */ | |
2106 int *decllinenoslot; /* Where to write declaration line number */ | |
2107 enum e_assoc declassoc; /* Assign this association to decl arguments */ | |
2108 int preccounter; /* Assign this precedence to decl arguments */ | |
2109 struct rule *firstrule; /* Pointer to first rule in the grammar */ | |
2110 struct rule *lastrule; /* Pointer to the most recently parsed rule */ | |
2111 }; | |
2112 | |
2113 /* Parse a single token */ | |
2114 static void parseonetoken(struct pstate *psp) | |
2115 { | |
2116 const char *x; | |
2117 x = Strsafe(psp->tokenstart); /* Save the token permanently */ | |
2118 #if 0 | |
2119 printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno, | |
2120 x,psp->state); | |
2121 #endif | |
2122 switch( psp->state ){ | |
2123 case INITIALIZE: | |
2124 psp->prevrule = 0; | |
2125 psp->preccounter = 0; | |
2126 psp->firstrule = psp->lastrule = 0; | |
2127 psp->gp->nrule = 0; | |
2128 /* Fall thru to next case */ | |
2129 case WAITING_FOR_DECL_OR_RULE: | |
2130 if( x[0]=='%' ){ | |
2131 psp->state = WAITING_FOR_DECL_KEYWORD; | |
2132 }else if( ISLOWER(x[0]) ){ | |
2133 psp->lhs = Symbol_new(x); | |
2134 psp->nrhs = 0; | |
2135 psp->lhsalias = 0; | |
2136 psp->state = WAITING_FOR_ARROW; | |
2137 }else if( x[0]=='{' ){ | |
2138 if( psp->prevrule==0 ){ | |
2139 ErrorMsg(psp->filename,psp->tokenlineno, | |
2140 "There is no prior rule upon which to attach the code \ | |
2141 fragment which begins on this line."); | |
2142 psp->errorcnt++; | |
2143 }else if( psp->prevrule->code!=0 ){ | |
2144 ErrorMsg(psp->filename,psp->tokenlineno, | |
2145 "Code fragment beginning on this line is not the first \ | |
2146 to follow the previous rule."); | |
2147 psp->errorcnt++; | |
2148 }else{ | |
2149 psp->prevrule->line = psp->tokenlineno; | |
2150 psp->prevrule->code = &x[1]; | |
2151 } | |
2152 }else if( x[0]=='[' ){ | |
2153 psp->state = PRECEDENCE_MARK_1; | |
2154 }else{ | |
2155 ErrorMsg(psp->filename,psp->tokenlineno, | |
2156 "Token \"%s\" should be either \"%%\" or a nonterminal name.", | |
2157 x); | |
2158 psp->errorcnt++; | |
2159 } | |
2160 break; | |
2161 case PRECEDENCE_MARK_1: | |
2162 if( !ISUPPER(x[0]) ){ | |
2163 ErrorMsg(psp->filename,psp->tokenlineno, | |
2164 "The precedence symbol must be a terminal."); | |
2165 psp->errorcnt++; | |
2166 }else if( psp->prevrule==0 ){ | |
2167 ErrorMsg(psp->filename,psp->tokenlineno, | |
2168 "There is no prior rule to assign precedence \"[%s]\".",x); | |
2169 psp->errorcnt++; | |
2170 }else if( psp->prevrule->precsym!=0 ){ | |
2171 ErrorMsg(psp->filename,psp->tokenlineno, | |
2172 "Precedence mark on this line is not the first \ | |
2173 to follow the previous rule."); | |
2174 psp->errorcnt++; | |
2175 }else{ | |
2176 psp->prevrule->precsym = Symbol_new(x); | |
2177 } | |
2178 psp->state = PRECEDENCE_MARK_2; | |
2179 break; | |
2180 case PRECEDENCE_MARK_2: | |
2181 if( x[0]!=']' ){ | |
2182 ErrorMsg(psp->filename,psp->tokenlineno, | |
2183 "Missing \"]\" on precedence mark."); | |
2184 psp->errorcnt++; | |
2185 } | |
2186 psp->state = WAITING_FOR_DECL_OR_RULE; | |
2187 break; | |
2188 case WAITING_FOR_ARROW: | |
2189 if( x[0]==':' && x[1]==':' && x[2]=='=' ){ | |
2190 psp->state = IN_RHS; | |
2191 }else if( x[0]=='(' ){ | |
2192 psp->state = LHS_ALIAS_1; | |
2193 }else{ | |
2194 ErrorMsg(psp->filename,psp->tokenlineno, | |
2195 "Expected to see a \":\" following the LHS symbol \"%s\".", | |
2196 psp->lhs->name); | |
2197 psp->errorcnt++; | |
2198 psp->state = RESYNC_AFTER_RULE_ERROR; | |
2199 } | |
2200 break; | |
2201 case LHS_ALIAS_1: | |
2202 if( ISALPHA(x[0]) ){ | |
2203 psp->lhsalias = x; | |
2204 psp->state = LHS_ALIAS_2; | |
2205 }else{ | |
2206 ErrorMsg(psp->filename,psp->tokenlineno, | |
2207 "\"%s\" is not a valid alias for the LHS \"%s\"\n", | |
2208 x,psp->lhs->name); | |
2209 psp->errorcnt++; | |
2210 psp->state = RESYNC_AFTER_RULE_ERROR; | |
2211 } | |
2212 break; | |
2213 case LHS_ALIAS_2: | |
2214 if( x[0]==')' ){ | |
2215 psp->state = LHS_ALIAS_3; | |
2216 }else{ | |
2217 ErrorMsg(psp->filename,psp->tokenlineno, | |
2218 "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias); | |
2219 psp->errorcnt++; | |
2220 psp->state = RESYNC_AFTER_RULE_ERROR; | |
2221 } | |
2222 break; | |
2223 case LHS_ALIAS_3: | |
2224 if( x[0]==':' && x[1]==':' && x[2]=='=' ){ | |
2225 psp->state = IN_RHS; | |
2226 }else{ | |
2227 ErrorMsg(psp->filename,psp->tokenlineno, | |
2228 "Missing \"->\" following: \"%s(%s)\".", | |
2229 psp->lhs->name,psp->lhsalias); | |
2230 psp->errorcnt++; | |
2231 psp->state = RESYNC_AFTER_RULE_ERROR; | |
2232 } | |
2233 break; | |
2234 case IN_RHS: | |
2235 if( x[0]=='.' ){ | |
2236 struct rule *rp; | |
2237 rp = (struct rule *)calloc( sizeof(struct rule) + | |
2238 sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1); | |
2239 if( rp==0 ){ | |
2240 ErrorMsg(psp->filename,psp->tokenlineno, | |
2241 "Can't allocate enough memory for this rule."); | |
2242 psp->errorcnt++; | |
2243 psp->prevrule = 0; | |
2244 }else{ | |
2245 int i; | |
2246 rp->ruleline = psp->tokenlineno; | |
2247 rp->rhs = (struct symbol**)&rp[1]; | |
2248 rp->rhsalias = (const char**)&(rp->rhs[psp->nrhs]); | |
2249 for(i=0; i<psp->nrhs; i++){ | |
2250 rp->rhs[i] = psp->rhs[i]; | |
2251 rp->rhsalias[i] = psp->alias[i]; | |
2252 } | |
2253 rp->lhs = psp->lhs; | |
2254 rp->lhsalias = psp->lhsalias; | |
2255 rp->nrhs = psp->nrhs; | |
2256 rp->code = 0; | |
2257 rp->precsym = 0; | |
2258 rp->index = psp->gp->nrule++; | |
2259 rp->nextlhs = rp->lhs->rule; | |
2260 rp->lhs->rule = rp; | |
2261 rp->next = 0; | |
2262 if( psp->firstrule==0 ){ | |
2263 psp->firstrule = psp->lastrule = rp; | |
2264 }else{ | |
2265 psp->lastrule->next = rp; | |
2266 psp->lastrule = rp; | |
2267 } | |
2268 psp->prevrule = rp; | |
2269 } | |
2270 psp->state = WAITING_FOR_DECL_OR_RULE; | |
2271 }else if( ISALPHA(x[0]) ){ | |
2272 if( psp->nrhs>=MAXRHS ){ | |
2273 ErrorMsg(psp->filename,psp->tokenlineno, | |
2274 "Too many symbols on RHS of rule beginning at \"%s\".", | |
2275 x); | |
2276 psp->errorcnt++; | |
2277 psp->state = RESYNC_AFTER_RULE_ERROR; | |
2278 }else{ | |
2279 psp->rhs[psp->nrhs] = Symbol_new(x); | |
2280 psp->alias[psp->nrhs] = 0; | |
2281 psp->nrhs++; | |
2282 } | |
2283 }else if( (x[0]=='|' || x[0]=='/') && psp->nrhs>0 ){ | |
2284 struct symbol *msp = psp->rhs[psp->nrhs-1]; | |
2285 if( msp->type!=MULTITERMINAL ){ | |
2286 struct symbol *origsp = msp; | |
2287 msp = (struct symbol *) calloc(1,sizeof(*msp)); | |
2288 memset(msp, 0, sizeof(*msp)); | |
2289 msp->type = MULTITERMINAL; | |
2290 msp->nsubsym = 1; | |
2291 msp->subsym = (struct symbol **) calloc(1,sizeof(struct symbol*)); | |
2292 msp->subsym[0] = origsp; | |
2293 msp->name = origsp->name; | |
2294 psp->rhs[psp->nrhs-1] = msp; | |
2295 } | |
2296 msp->nsubsym++; | |
2297 msp->subsym = (struct symbol **) realloc(msp->subsym, | |
2298 sizeof(struct symbol*)*msp->nsubsym); | |
2299 msp->subsym[msp->nsubsym-1] = Symbol_new(&x[1]); | |
2300 if( ISLOWER(x[1]) || ISLOWER(msp->subsym[0]->name[0]) ){ | |
2301 ErrorMsg(psp->filename,psp->tokenlineno, | |
2302 "Cannot form a compound containing a non-terminal"); | |
2303 psp->errorcnt++; | |
2304 } | |
2305 }else if( x[0]=='(' && psp->nrhs>0 ){ | |
2306 psp->state = RHS_ALIAS_1; | |
2307 }else{ | |
2308 ErrorMsg(psp->filename,psp->tokenlineno, | |
2309 "Illegal character on RHS of rule: \"%s\".",x); | |
2310 psp->errorcnt++; | |
2311 psp->state = RESYNC_AFTER_RULE_ERROR; | |
2312 } | |
2313 break; | |
2314 case RHS_ALIAS_1: | |
2315 if( ISALPHA(x[0]) ){ | |
2316 psp->alias[psp->nrhs-1] = x; | |
2317 psp->state = RHS_ALIAS_2; | |
2318 }else{ | |
2319 ErrorMsg(psp->filename,psp->tokenlineno, | |
2320 "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n", | |
2321 x,psp->rhs[psp->nrhs-1]->name); | |
2322 psp->errorcnt++; | |
2323 psp->state = RESYNC_AFTER_RULE_ERROR; | |
2324 } | |
2325 break; | |
2326 case RHS_ALIAS_2: | |
2327 if( x[0]==')' ){ | |
2328 psp->state = IN_RHS; | |
2329 }else{ | |
2330 ErrorMsg(psp->filename,psp->tokenlineno, | |
2331 "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias); | |
2332 psp->errorcnt++; | |
2333 psp->state = RESYNC_AFTER_RULE_ERROR; | |
2334 } | |
2335 break; | |
2336 case WAITING_FOR_DECL_KEYWORD: | |
2337 if( ISALPHA(x[0]) ){ | |
2338 psp->declkeyword = x; | |
2339 psp->declargslot = 0; | |
2340 psp->decllinenoslot = 0; | |
2341 psp->insertLineMacro = 1; | |
2342 psp->state = WAITING_FOR_DECL_ARG; | |
2343 if( strcmp(x,"name")==0 ){ | |
2344 psp->declargslot = &(psp->gp->name); | |
2345 psp->insertLineMacro = 0; | |
2346 }else if( strcmp(x,"include")==0 ){ | |
2347 psp->declargslot = &(psp->gp->include); | |
2348 }else if( strcmp(x,"code")==0 ){ | |
2349 psp->declargslot = &(psp->gp->extracode); | |
2350 }else if( strcmp(x,"token_destructor")==0 ){ | |
2351 psp->declargslot = &psp->gp->tokendest; | |
2352 }else if( strcmp(x,"default_destructor")==0 ){ | |
2353 psp->declargslot = &psp->gp->vardest; | |
2354 }else if( strcmp(x,"token_prefix")==0 ){ | |
2355 psp->declargslot = &psp->gp->tokenprefix; | |
2356 psp->insertLineMacro = 0; | |
2357 }else if( strcmp(x,"syntax_error")==0 ){ | |
2358 psp->declargslot = &(psp->gp->error); | |
2359 }else if( strcmp(x,"parse_accept")==0 ){ | |
2360 psp->declargslot = &(psp->gp->accept); | |
2361 }else if( strcmp(x,"parse_failure")==0 ){ | |
2362 psp->declargslot = &(psp->gp->failure); | |
2363 }else if( strcmp(x,"stack_overflow")==0 ){ | |
2364 psp->declargslot = &(psp->gp->overflow); | |
2365 }else if( strcmp(x,"extra_argument")==0 ){ | |
2366 psp->declargslot = &(psp->gp->arg); | |
2367 psp->insertLineMacro = 0; | |
2368 }else if( strcmp(x,"token_type")==0 ){ | |
2369 psp->declargslot = &(psp->gp->tokentype); | |
2370 psp->insertLineMacro = 0; | |
2371 }else if( strcmp(x,"default_type")==0 ){ | |
2372 psp->declargslot = &(psp->gp->vartype); | |
2373 psp->insertLineMacro = 0; | |
2374 }else if( strcmp(x,"stack_size")==0 ){ | |
2375 psp->declargslot = &(psp->gp->stacksize); | |
2376 psp->insertLineMacro = 0; | |
2377 }else if( strcmp(x,"start_symbol")==0 ){ | |
2378 psp->declargslot = &(psp->gp->start); | |
2379 psp->insertLineMacro = 0; | |
2380 }else if( strcmp(x,"left")==0 ){ | |
2381 psp->preccounter++; | |
2382 psp->declassoc = LEFT; | |
2383 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; | |
2384 }else if( strcmp(x,"right")==0 ){ | |
2385 psp->preccounter++; | |
2386 psp->declassoc = RIGHT; | |
2387 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; | |
2388 }else if( strcmp(x,"nonassoc")==0 ){ | |
2389 psp->preccounter++; | |
2390 psp->declassoc = NONE; | |
2391 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL; | |
2392 }else if( strcmp(x,"destructor")==0 ){ | |
2393 psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL; | |
2394 }else if( strcmp(x,"type")==0 ){ | |
2395 psp->state = WAITING_FOR_DATATYPE_SYMBOL; | |
2396 }else if( strcmp(x,"fallback")==0 ){ | |
2397 psp->fallback = 0; | |
2398 psp->state = WAITING_FOR_FALLBACK_ID; | |
2399 }else if( strcmp(x,"wildcard")==0 ){ | |
2400 psp->state = WAITING_FOR_WILDCARD_ID; | |
2401 }else if( strcmp(x,"token_class")==0 ){ | |
2402 psp->state = WAITING_FOR_CLASS_ID; | |
2403 }else{ | |
2404 ErrorMsg(psp->filename,psp->tokenlineno, | |
2405 "Unknown declaration keyword: \"%%%s\".",x); | |
2406 psp->errorcnt++; | |
2407 psp->state = RESYNC_AFTER_DECL_ERROR; | |
2408 } | |
2409 }else{ | |
2410 ErrorMsg(psp->filename,psp->tokenlineno, | |
2411 "Illegal declaration keyword: \"%s\".",x); | |
2412 psp->errorcnt++; | |
2413 psp->state = RESYNC_AFTER_DECL_ERROR; | |
2414 } | |
2415 break; | |
2416 case WAITING_FOR_DESTRUCTOR_SYMBOL: | |
2417 if( !ISALPHA(x[0]) ){ | |
2418 ErrorMsg(psp->filename,psp->tokenlineno, | |
2419 "Symbol name missing after %%destructor keyword"); | |
2420 psp->errorcnt++; | |
2421 psp->state = RESYNC_AFTER_DECL_ERROR; | |
2422 }else{ | |
2423 struct symbol *sp = Symbol_new(x); | |
2424 psp->declargslot = &sp->destructor; | |
2425 psp->decllinenoslot = &sp->destLineno; | |
2426 psp->insertLineMacro = 1; | |
2427 psp->state = WAITING_FOR_DECL_ARG; | |
2428 } | |
2429 break; | |
2430 case WAITING_FOR_DATATYPE_SYMBOL: | |
2431 if( !ISALPHA(x[0]) ){ | |
2432 ErrorMsg(psp->filename,psp->tokenlineno, | |
2433 "Symbol name missing after %%type keyword"); | |
2434 psp->errorcnt++; | |
2435 psp->state = RESYNC_AFTER_DECL_ERROR; | |
2436 }else{ | |
2437 struct symbol *sp = Symbol_find(x); | |
2438 if((sp) && (sp->datatype)){ | |
2439 ErrorMsg(psp->filename,psp->tokenlineno, | |
2440 "Symbol %%type \"%s\" already defined", x); | |
2441 psp->errorcnt++; | |
2442 psp->state = RESYNC_AFTER_DECL_ERROR; | |
2443 }else{ | |
2444 if (!sp){ | |
2445 sp = Symbol_new(x); | |
2446 } | |
2447 psp->declargslot = &sp->datatype; | |
2448 psp->insertLineMacro = 0; | |
2449 psp->state = WAITING_FOR_DECL_ARG; | |
2450 } | |
2451 } | |
2452 break; | |
2453 case WAITING_FOR_PRECEDENCE_SYMBOL: | |
2454 if( x[0]=='.' ){ | |
2455 psp->state = WAITING_FOR_DECL_OR_RULE; | |
2456 }else if( ISUPPER(x[0]) ){ | |
2457 struct symbol *sp; | |
2458 sp = Symbol_new(x); | |
2459 if( sp->prec>=0 ){ | |
2460 ErrorMsg(psp->filename,psp->tokenlineno, | |
2461 "Symbol \"%s\" has already be given a precedence.",x); | |
2462 psp->errorcnt++; | |
2463 }else{ | |
2464 sp->prec = psp->preccounter; | |
2465 sp->assoc = psp->declassoc; | |
2466 } | |
2467 }else{ | |
2468 ErrorMsg(psp->filename,psp->tokenlineno, | |
2469 "Can't assign a precedence to \"%s\".",x); | |
2470 psp->errorcnt++; | |
2471 } | |
2472 break; | |
2473 case WAITING_FOR_DECL_ARG: | |
2474 if( x[0]=='{' || x[0]=='\"' || ISALNUM(x[0]) ){ | |
2475 const char *zOld, *zNew; | |
2476 char *zBuf, *z; | |
2477 int nOld, n, nLine = 0, nNew, nBack; | |
2478 int addLineMacro; | |
2479 char zLine[50]; | |
2480 zNew = x; | |
2481 if( zNew[0]=='"' || zNew[0]=='{' ) zNew++; | |
2482 nNew = lemonStrlen(zNew); | |
2483 if( *psp->declargslot ){ | |
2484 zOld = *psp->declargslot; | |
2485 }else{ | |
2486 zOld = ""; | |
2487 } | |
2488 nOld = lemonStrlen(zOld); | |
2489 n = nOld + nNew + 20; | |
2490 addLineMacro = !psp->gp->nolinenosflag && psp->insertLineMacro && | |
2491 (psp->decllinenoslot==0 || psp->decllinenoslot[0]!=0); | |
2492 if( addLineMacro ){ | |
2493 for(z=psp->filename, nBack=0; *z; z++){ | |
2494 if( *z=='\\' ) nBack++; | |
2495 } | |
2496 lemon_sprintf(zLine, "#line %d ", psp->tokenlineno); | |
2497 nLine = lemonStrlen(zLine); | |
2498 n += nLine + lemonStrlen(psp->filename) + nBack; | |
2499 } | |
2500 *psp->declargslot = (char *) realloc(*psp->declargslot, n); | |
2501 zBuf = *psp->declargslot + nOld; | |
2502 if( addLineMacro ){ | |
2503 if( nOld && zBuf[-1]!='\n' ){ | |
2504 *(zBuf++) = '\n'; | |
2505 } | |
2506 memcpy(zBuf, zLine, nLine); | |
2507 zBuf += nLine; | |
2508 *(zBuf++) = '"'; | |
2509 for(z=psp->filename; *z; z++){ | |
2510 if( *z=='\\' ){ | |
2511 *(zBuf++) = '\\'; | |
2512 } | |
2513 *(zBuf++) = *z; | |
2514 } | |
2515 *(zBuf++) = '"'; | |
2516 *(zBuf++) = '\n'; | |
2517 } | |
2518 if( psp->decllinenoslot && psp->decllinenoslot[0]==0 ){ | |
2519 psp->decllinenoslot[0] = psp->tokenlineno; | |
2520 } | |
2521 memcpy(zBuf, zNew, nNew); | |
2522 zBuf += nNew; | |
2523 *zBuf = 0; | |
2524 psp->state = WAITING_FOR_DECL_OR_RULE; | |
2525 }else{ | |
2526 ErrorMsg(psp->filename,psp->tokenlineno, | |
2527 "Illegal argument to %%%s: %s",psp->declkeyword,x); | |
2528 psp->errorcnt++; | |
2529 psp->state = RESYNC_AFTER_DECL_ERROR; | |
2530 } | |
2531 break; | |
2532 case WAITING_FOR_FALLBACK_ID: | |
2533 if( x[0]=='.' ){ | |
2534 psp->state = WAITING_FOR_DECL_OR_RULE; | |
2535 }else if( !ISUPPER(x[0]) ){ | |
2536 ErrorMsg(psp->filename, psp->tokenlineno, | |
2537 "%%fallback argument \"%s\" should be a token", x); | |
2538 psp->errorcnt++; | |
2539 }else{ | |
2540 struct symbol *sp = Symbol_new(x); | |
2541 if( psp->fallback==0 ){ | |
2542 psp->fallback = sp; | |
2543 }else if( sp->fallback ){ | |
2544 ErrorMsg(psp->filename, psp->tokenlineno, | |
2545 "More than one fallback assigned to token %s", x); | |
2546 psp->errorcnt++; | |
2547 }else{ | |
2548 sp->fallback = psp->fallback; | |
2549 psp->gp->has_fallback = 1; | |
2550 } | |
2551 } | |
2552 break; | |
2553 case WAITING_FOR_WILDCARD_ID: | |
2554 if( x[0]=='.' ){ | |
2555 psp->state = WAITING_FOR_DECL_OR_RULE; | |
2556 }else if( !ISUPPER(x[0]) ){ | |
2557 ErrorMsg(psp->filename, psp->tokenlineno, | |
2558 "%%wildcard argument \"%s\" should be a token", x); | |
2559 psp->errorcnt++; | |
2560 }else{ | |
2561 struct symbol *sp = Symbol_new(x); | |
2562 if( psp->gp->wildcard==0 ){ | |
2563 psp->gp->wildcard = sp; | |
2564 }else{ | |
2565 ErrorMsg(psp->filename, psp->tokenlineno, | |
2566 "Extra wildcard to token: %s", x); | |
2567 psp->errorcnt++; | |
2568 } | |
2569 } | |
2570 break; | |
2571 case WAITING_FOR_CLASS_ID: | |
2572 if( !ISLOWER(x[0]) ){ | |
2573 ErrorMsg(psp->filename, psp->tokenlineno, | |
2574 "%%token_class must be followed by an identifier: ", x); | |
2575 psp->errorcnt++; | |
2576 psp->state = RESYNC_AFTER_DECL_ERROR; | |
2577 }else if( Symbol_find(x) ){ | |
2578 ErrorMsg(psp->filename, psp->tokenlineno, | |
2579 "Symbol \"%s\" already used", x); | |
2580 psp->errorcnt++; | |
2581 psp->state = RESYNC_AFTER_DECL_ERROR; | |
2582 }else{ | |
2583 psp->tkclass = Symbol_new(x); | |
2584 psp->tkclass->type = MULTITERMINAL; | |
2585 psp->state = WAITING_FOR_CLASS_TOKEN; | |
2586 } | |
2587 break; | |
2588 case WAITING_FOR_CLASS_TOKEN: | |
2589 if( x[0]=='.' ){ | |
2590 psp->state = WAITING_FOR_DECL_OR_RULE; | |
2591 }else if( ISUPPER(x[0]) || ((x[0]=='|' || x[0]=='/') && ISUPPER(x[1])) ){ | |
2592 struct symbol *msp = psp->tkclass; | |
2593 msp->nsubsym++; | |
2594 msp->subsym = (struct symbol **) realloc(msp->subsym, | |
2595 sizeof(struct symbol*)*msp->nsubsym); | |
2596 if( !ISUPPER(x[0]) ) x++; | |
2597 msp->subsym[msp->nsubsym-1] = Symbol_new(x); | |
2598 }else{ | |
2599 ErrorMsg(psp->filename, psp->tokenlineno, | |
2600 "%%token_class argument \"%s\" should be a token", x); | |
2601 psp->errorcnt++; | |
2602 psp->state = RESYNC_AFTER_DECL_ERROR; | |
2603 } | |
2604 break; | |
2605 case RESYNC_AFTER_RULE_ERROR: | |
2606 /* if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE; | |
2607 ** break; */ | |
2608 case RESYNC_AFTER_DECL_ERROR: | |
2609 if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE; | |
2610 if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD; | |
2611 break; | |
2612 } | |
2613 } | |
2614 | |
2615 /* Run the preprocessor over the input file text. The global variables | |
2616 ** azDefine[0] through azDefine[nDefine-1] contains the names of all defined | |
2617 ** macros. This routine looks for "%ifdef" and "%ifndef" and "%endif" and | |
2618 ** comments them out. Text in between is also commented out as appropriate. | |
2619 */ | |
2620 static void preprocess_input(char *z){ | |
2621 int i, j, k, n; | |
2622 int exclude = 0; | |
2623 int start = 0; | |
2624 int lineno = 1; | |
2625 int start_lineno = 1; | |
2626 for(i=0; z[i]; i++){ | |
2627 if( z[i]=='\n' ) lineno++; | |
2628 if( z[i]!='%' || (i>0 && z[i-1]!='\n') ) continue; | |
2629 if( strncmp(&z[i],"%endif",6)==0 && ISSPACE(z[i+6]) ){ | |
2630 if( exclude ){ | |
2631 exclude--; | |
2632 if( exclude==0 ){ | |
2633 for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' '; | |
2634 } | |
2635 } | |
2636 for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' '; | |
2637 }else if( (strncmp(&z[i],"%ifdef",6)==0 && ISSPACE(z[i+6])) | |
2638 || (strncmp(&z[i],"%ifndef",7)==0 && ISSPACE(z[i+7])) ){ | |
2639 if( exclude ){ | |
2640 exclude++; | |
2641 }else{ | |
2642 for(j=i+7; ISSPACE(z[j]); j++){} | |
2643 for(n=0; z[j+n] && !ISSPACE(z[j+n]); n++){} | |
2644 exclude = 1; | |
2645 for(k=0; k<nDefine; k++){ | |
2646 if( strncmp(azDefine[k],&z[j],n)==0 && lemonStrlen(azDefine[k])==n ){ | |
2647 exclude = 0; | |
2648 break; | |
2649 } | |
2650 } | |
2651 if( z[i+3]=='n' ) exclude = !exclude; | |
2652 if( exclude ){ | |
2653 start = i; | |
2654 start_lineno = lineno; | |
2655 } | |
2656 } | |
2657 for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' '; | |
2658 } | |
2659 } | |
2660 if( exclude ){ | |
2661 fprintf(stderr,"unterminated %%ifdef starting on line %d\n", start_lineno); | |
2662 exit(1); | |
2663 } | |
2664 } | |
2665 | |
2666 /* In spite of its name, this function is really a scanner. It read | |
2667 ** in the entire input file (all at once) then tokenizes it. Each | |
2668 ** token is passed to the function "parseonetoken" which builds all | |
2669 ** the appropriate data structures in the global state vector "gp". | |
2670 */ | |
2671 void Parse(struct lemon *gp) | |
2672 { | |
2673 struct pstate ps; | |
2674 FILE *fp; | |
2675 char *filebuf; | |
2676 unsigned int filesize; | |
2677 int lineno; | |
2678 int c; | |
2679 char *cp, *nextcp; | |
2680 int startline = 0; | |
2681 | |
2682 memset(&ps, '\0', sizeof(ps)); | |
2683 ps.gp = gp; | |
2684 ps.filename = gp->filename; | |
2685 ps.errorcnt = 0; | |
2686 ps.state = INITIALIZE; | |
2687 | |
2688 /* Begin by reading the input file */ | |
2689 fp = fopen(ps.filename,"rb"); | |
2690 if( fp==0 ){ | |
2691 ErrorMsg(ps.filename,0,"Can't open this file for reading."); | |
2692 gp->errorcnt++; | |
2693 return; | |
2694 } | |
2695 fseek(fp,0,2); | |
2696 filesize = ftell(fp); | |
2697 rewind(fp); | |
2698 filebuf = (char *)malloc( filesize+1 ); | |
2699 if( filesize>100000000 || filebuf==0 ){ | |
2700 ErrorMsg(ps.filename,0,"Input file too large."); | |
2701 gp->errorcnt++; | |
2702 fclose(fp); | |
2703 return; | |
2704 } | |
2705 if( fread(filebuf,1,filesize,fp)!=filesize ){ | |
2706 ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.", | |
2707 filesize); | |
2708 free(filebuf); | |
2709 gp->errorcnt++; | |
2710 fclose(fp); | |
2711 return; | |
2712 } | |
2713 fclose(fp); | |
2714 filebuf[filesize] = 0; | |
2715 | |
2716 /* Make an initial pass through the file to handle %ifdef and %ifndef */ | |
2717 preprocess_input(filebuf); | |
2718 | |
2719 /* Now scan the text of the input file */ | |
2720 lineno = 1; | |
2721 for(cp=filebuf; (c= *cp)!=0; ){ | |
2722 if( c=='\n' ) lineno++; /* Keep track of the line number */ | |
2723 if( ISSPACE(c) ){ cp++; continue; } /* Skip all white space */ | |
2724 if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments */ | |
2725 cp+=2; | |
2726 while( (c= *cp)!=0 && c!='\n' ) cp++; | |
2727 continue; | |
2728 } | |
2729 if( c=='/' && cp[1]=='*' ){ /* Skip C style comments */ | |
2730 cp+=2; | |
2731 while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){ | |
2732 if( c=='\n' ) lineno++; | |
2733 cp++; | |
2734 } | |
2735 if( c ) cp++; | |
2736 continue; | |
2737 } | |
2738 ps.tokenstart = cp; /* Mark the beginning of the token */ | |
2739 ps.tokenlineno = lineno; /* Linenumber on which token begins */ | |
2740 if( c=='\"' ){ /* String literals */ | |
2741 cp++; | |
2742 while( (c= *cp)!=0 && c!='\"' ){ | |
2743 if( c=='\n' ) lineno++; | |
2744 cp++; | |
2745 } | |
2746 if( c==0 ){ | |
2747 ErrorMsg(ps.filename,startline, | |
2748 "String starting on this line is not terminated before the end of the file."); | |
2749 ps.errorcnt++; | |
2750 nextcp = cp; | |
2751 }else{ | |
2752 nextcp = cp+1; | |
2753 } | |
2754 }else if( c=='{' ){ /* A block of C code */ | |
2755 int level; | |
2756 cp++; | |
2757 for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){ | |
2758 if( c=='\n' ) lineno++; | |
2759 else if( c=='{' ) level++; | |
2760 else if( c=='}' ) level--; | |
2761 else if( c=='/' && cp[1]=='*' ){ /* Skip comments */ | |
2762 int prevc; | |
2763 cp = &cp[2]; | |
2764 prevc = 0; | |
2765 while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){ | |
2766 if( c=='\n' ) lineno++; | |
2767 prevc = c; | |
2768 cp++; | |
2769 } | |
2770 }else if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments too */ | |
2771 cp = &cp[2]; | |
2772 while( (c= *cp)!=0 && c!='\n' ) cp++; | |
2773 if( c ) lineno++; | |
2774 }else if( c=='\'' || c=='\"' ){ /* String a character literals */ | |
2775 int startchar, prevc; | |
2776 startchar = c; | |
2777 prevc = 0; | |
2778 for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){ | |
2779 if( c=='\n' ) lineno++; | |
2780 if( prevc=='\\' ) prevc = 0; | |
2781 else prevc = c; | |
2782 } | |
2783 } | |
2784 } | |
2785 if( c==0 ){ | |
2786 ErrorMsg(ps.filename,ps.tokenlineno, | |
2787 "C code starting on this line is not terminated before the end of the file."); | |
2788 ps.errorcnt++; | |
2789 nextcp = cp; | |
2790 }else{ | |
2791 nextcp = cp+1; | |
2792 } | |
2793 }else if( ISALNUM(c) ){ /* Identifiers */ | |
2794 while( (c= *cp)!=0 && (ISALNUM(c) || c=='_') ) cp++; | |
2795 nextcp = cp; | |
2796 }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */ | |
2797 cp += 3; | |
2798 nextcp = cp; | |
2799 }else if( (c=='/' || c=='|') && ISALPHA(cp[1]) ){ | |
2800 cp += 2; | |
2801 while( (c = *cp)!=0 && (ISALNUM(c) || c=='_') ) cp++; | |
2802 nextcp = cp; | |
2803 }else{ /* All other (one character) operators */ | |
2804 cp++; | |
2805 nextcp = cp; | |
2806 } | |
2807 c = *cp; | |
2808 *cp = 0; /* Null terminate the token */ | |
2809 parseonetoken(&ps); /* Parse the token */ | |
2810 *cp = (char)c; /* Restore the buffer */ | |
2811 cp = nextcp; | |
2812 } | |
2813 free(filebuf); /* Release the buffer after parsing */ | |
2814 gp->rule = ps.firstrule; | |
2815 gp->errorcnt = ps.errorcnt; | |
2816 } | |
2817 /*************************** From the file "plink.c" *********************/ | |
2818 /* | |
2819 ** Routines processing configuration follow-set propagation links | |
2820 ** in the LEMON parser generator. | |
2821 */ | |
2822 static struct plink *plink_freelist = 0; | |
2823 | |
2824 /* Allocate a new plink */ | |
2825 struct plink *Plink_new(){ | |
2826 struct plink *newlink; | |
2827 | |
2828 if( plink_freelist==0 ){ | |
2829 int i; | |
2830 int amt = 100; | |
2831 plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) ); | |
2832 if( plink_freelist==0 ){ | |
2833 fprintf(stderr, | |
2834 "Unable to allocate memory for a new follow-set propagation link.\n"); | |
2835 exit(1); | |
2836 } | |
2837 for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1]; | |
2838 plink_freelist[amt-1].next = 0; | |
2839 } | |
2840 newlink = plink_freelist; | |
2841 plink_freelist = plink_freelist->next; | |
2842 return newlink; | |
2843 } | |
2844 | |
2845 /* Add a plink to a plink list */ | |
2846 void Plink_add(struct plink **plpp, struct config *cfp) | |
2847 { | |
2848 struct plink *newlink; | |
2849 newlink = Plink_new(); | |
2850 newlink->next = *plpp; | |
2851 *plpp = newlink; | |
2852 newlink->cfp = cfp; | |
2853 } | |
2854 | |
2855 /* Transfer every plink on the list "from" to the list "to" */ | |
2856 void Plink_copy(struct plink **to, struct plink *from) | |
2857 { | |
2858 struct plink *nextpl; | |
2859 while( from ){ | |
2860 nextpl = from->next; | |
2861 from->next = *to; | |
2862 *to = from; | |
2863 from = nextpl; | |
2864 } | |
2865 } | |
2866 | |
2867 /* Delete every plink on the list */ | |
2868 void Plink_delete(struct plink *plp) | |
2869 { | |
2870 struct plink *nextpl; | |
2871 | |
2872 while( plp ){ | |
2873 nextpl = plp->next; | |
2874 plp->next = plink_freelist; | |
2875 plink_freelist = plp; | |
2876 plp = nextpl; | |
2877 } | |
2878 } | |
2879 /*********************** From the file "report.c" **************************/ | |
2880 /* | |
2881 ** Procedures for generating reports and tables in the LEMON parser generator. | |
2882 */ | |
2883 | |
2884 /* Generate a filename with the given suffix. Space to hold the | |
2885 ** name comes from malloc() and must be freed by the calling | |
2886 ** function. | |
2887 */ | |
2888 PRIVATE char *file_makename(struct lemon *lemp, const char *suffix) | |
2889 { | |
2890 char *name; | |
2891 char *cp; | |
2892 | |
2893 name = (char*)malloc( lemonStrlen(lemp->filename) + lemonStrlen(suffix) + 5 ); | |
2894 if( name==0 ){ | |
2895 fprintf(stderr,"Can't allocate space for a filename.\n"); | |
2896 exit(1); | |
2897 } | |
2898 lemon_strcpy(name,lemp->filename); | |
2899 cp = strrchr(name,'.'); | |
2900 if( cp ) *cp = 0; | |
2901 lemon_strcat(name,suffix); | |
2902 return name; | |
2903 } | |
2904 | |
2905 /* Open a file with a name based on the name of the input file, | |
2906 ** but with a different (specified) suffix, and return a pointer | |
2907 ** to the stream */ | |
2908 PRIVATE FILE *file_open( | |
2909 struct lemon *lemp, | |
2910 const char *suffix, | |
2911 const char *mode | |
2912 ){ | |
2913 FILE *fp; | |
2914 | |
2915 if( lemp->outname ) free(lemp->outname); | |
2916 lemp->outname = file_makename(lemp, suffix); | |
2917 fp = fopen(lemp->outname,mode); | |
2918 if( fp==0 && *mode=='w' ){ | |
2919 fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname); | |
2920 lemp->errorcnt++; | |
2921 return 0; | |
2922 } | |
2923 return fp; | |
2924 } | |
2925 | |
2926 /* Duplicate the input file without comments and without actions | |
2927 ** on rules */ | |
2928 void Reprint(struct lemon *lemp) | |
2929 { | |
2930 struct rule *rp; | |
2931 struct symbol *sp; | |
2932 int i, j, maxlen, len, ncolumns, skip; | |
2933 printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename); | |
2934 maxlen = 10; | |
2935 for(i=0; i<lemp->nsymbol; i++){ | |
2936 sp = lemp->symbols[i]; | |
2937 len = lemonStrlen(sp->name); | |
2938 if( len>maxlen ) maxlen = len; | |
2939 } | |
2940 ncolumns = 76/(maxlen+5); | |
2941 if( ncolumns<1 ) ncolumns = 1; | |
2942 skip = (lemp->nsymbol + ncolumns - 1)/ncolumns; | |
2943 for(i=0; i<skip; i++){ | |
2944 printf("//"); | |
2945 for(j=i; j<lemp->nsymbol; j+=skip){ | |
2946 sp = lemp->symbols[j]; | |
2947 assert( sp->index==j ); | |
2948 printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name); | |
2949 } | |
2950 printf("\n"); | |
2951 } | |
2952 for(rp=lemp->rule; rp; rp=rp->next){ | |
2953 printf("%s",rp->lhs->name); | |
2954 /* if( rp->lhsalias ) printf("(%s)",rp->lhsalias); */ | |
2955 printf(" ::="); | |
2956 for(i=0; i<rp->nrhs; i++){ | |
2957 sp = rp->rhs[i]; | |
2958 if( sp->type==MULTITERMINAL ){ | |
2959 printf(" %s", sp->subsym[0]->name); | |
2960 for(j=1; j<sp->nsubsym; j++){ | |
2961 printf("|%s", sp->subsym[j]->name); | |
2962 } | |
2963 }else{ | |
2964 printf(" %s", sp->name); | |
2965 } | |
2966 /* if( rp->rhsalias[i] ) printf("(%s)",rp->rhsalias[i]); */ | |
2967 } | |
2968 printf("."); | |
2969 if( rp->precsym ) printf(" [%s]",rp->precsym->name); | |
2970 /* if( rp->code ) printf("\n %s",rp->code); */ | |
2971 printf("\n"); | |
2972 } | |
2973 } | |
2974 | |
2975 /* Print a single rule. | |
2976 */ | |
2977 void RulePrint(FILE *fp, struct rule *rp, int iCursor){ | |
2978 struct symbol *sp; | |
2979 int i, j; | |
2980 fprintf(fp,"%s ::=",rp->lhs->name); | |
2981 for(i=0; i<=rp->nrhs; i++){ | |
2982 if( i==iCursor ) fprintf(fp," *"); | |
2983 if( i==rp->nrhs ) break; | |
2984 sp = rp->rhs[i]; | |
2985 if( sp->type==MULTITERMINAL ){ | |
2986 fprintf(fp," %s", sp->subsym[0]->name); | |
2987 for(j=1; j<sp->nsubsym; j++){ | |
2988 fprintf(fp,"|%s",sp->subsym[j]->name); | |
2989 } | |
2990 }else{ | |
2991 fprintf(fp," %s", sp->name); | |
2992 } | |
2993 } | |
2994 } | |
2995 | |
2996 /* Print the rule for a configuration. | |
2997 */ | |
2998 void ConfigPrint(FILE *fp, struct config *cfp){ | |
2999 RulePrint(fp, cfp->rp, cfp->dot); | |
3000 } | |
3001 | |
3002 /* #define TEST */ | |
3003 #if 0 | |
3004 /* Print a set */ | |
3005 PRIVATE void SetPrint(out,set,lemp) | |
3006 FILE *out; | |
3007 char *set; | |
3008 struct lemon *lemp; | |
3009 { | |
3010 int i; | |
3011 char *spacer; | |
3012 spacer = ""; | |
3013 fprintf(out,"%12s[",""); | |
3014 for(i=0; i<lemp->nterminal; i++){ | |
3015 if( SetFind(set,i) ){ | |
3016 fprintf(out,"%s%s",spacer,lemp->symbols[i]->name); | |
3017 spacer = " "; | |
3018 } | |
3019 } | |
3020 fprintf(out,"]\n"); | |
3021 } | |
3022 | |
3023 /* Print a plink chain */ | |
3024 PRIVATE void PlinkPrint(out,plp,tag) | |
3025 FILE *out; | |
3026 struct plink *plp; | |
3027 char *tag; | |
3028 { | |
3029 while( plp ){ | |
3030 fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->statenum); | |
3031 ConfigPrint(out,plp->cfp); | |
3032 fprintf(out,"\n"); | |
3033 plp = plp->next; | |
3034 } | |
3035 } | |
3036 #endif | |
3037 | |
3038 /* Print an action to the given file descriptor. Return FALSE if | |
3039 ** nothing was actually printed. | |
3040 */ | |
3041 int PrintAction( | |
3042 struct action *ap, /* The action to print */ | |
3043 FILE *fp, /* Print the action here */ | |
3044 int indent /* Indent by this amount */ | |
3045 ){ | |
3046 int result = 1; | |
3047 switch( ap->type ){ | |
3048 case SHIFT: { | |
3049 struct state *stp = ap->x.stp; | |
3050 fprintf(fp,"%*s shift %-7d",indent,ap->sp->name,stp->statenum); | |
3051 break; | |
3052 } | |
3053 case REDUCE: { | |
3054 struct rule *rp = ap->x.rp; | |
3055 fprintf(fp,"%*s reduce %-7d",indent,ap->sp->name,rp->index); | |
3056 RulePrint(fp, rp, -1); | |
3057 break; | |
3058 } | |
3059 case SHIFTREDUCE: { | |
3060 struct rule *rp = ap->x.rp; | |
3061 fprintf(fp,"%*s shift-reduce %-7d",indent,ap->sp->name,rp->index); | |
3062 RulePrint(fp, rp, -1); | |
3063 break; | |
3064 } | |
3065 case ACCEPT: | |
3066 fprintf(fp,"%*s accept",indent,ap->sp->name); | |
3067 break; | |
3068 case ERROR: | |
3069 fprintf(fp,"%*s error",indent,ap->sp->name); | |
3070 break; | |
3071 case SRCONFLICT: | |
3072 case RRCONFLICT: | |
3073 fprintf(fp,"%*s reduce %-7d ** Parsing conflict **", | |
3074 indent,ap->sp->name,ap->x.rp->index); | |
3075 break; | |
3076 case SSCONFLICT: | |
3077 fprintf(fp,"%*s shift %-7d ** Parsing conflict **", | |
3078 indent,ap->sp->name,ap->x.stp->statenum); | |
3079 break; | |
3080 case SH_RESOLVED: | |
3081 if( showPrecedenceConflict ){ | |
3082 fprintf(fp,"%*s shift %-7d -- dropped by precedence", | |
3083 indent,ap->sp->name,ap->x.stp->statenum); | |
3084 }else{ | |
3085 result = 0; | |
3086 } | |
3087 break; | |
3088 case RD_RESOLVED: | |
3089 if( showPrecedenceConflict ){ | |
3090 fprintf(fp,"%*s reduce %-7d -- dropped by precedence", | |
3091 indent,ap->sp->name,ap->x.rp->index); | |
3092 }else{ | |
3093 result = 0; | |
3094 } | |
3095 break; | |
3096 case NOT_USED: | |
3097 result = 0; | |
3098 break; | |
3099 } | |
3100 return result; | |
3101 } | |
3102 | |
3103 /* Generate the "*.out" log file */ | |
3104 void ReportOutput(struct lemon *lemp) | |
3105 { | |
3106 int i; | |
3107 struct state *stp; | |
3108 struct config *cfp; | |
3109 struct action *ap; | |
3110 FILE *fp; | |
3111 | |
3112 fp = file_open(lemp,".out","wb"); | |
3113 if( fp==0 ) return; | |
3114 for(i=0; i<lemp->nxstate; i++){ | |
3115 stp = lemp->sorted[i]; | |
3116 fprintf(fp,"State %d:\n",stp->statenum); | |
3117 if( lemp->basisflag ) cfp=stp->bp; | |
3118 else cfp=stp->cfp; | |
3119 while( cfp ){ | |
3120 char buf[20]; | |
3121 if( cfp->dot==cfp->rp->nrhs ){ | |
3122 lemon_sprintf(buf,"(%d)",cfp->rp->index); | |
3123 fprintf(fp," %5s ",buf); | |
3124 }else{ | |
3125 fprintf(fp," "); | |
3126 } | |
3127 ConfigPrint(fp,cfp); | |
3128 fprintf(fp,"\n"); | |
3129 #if 0 | |
3130 SetPrint(fp,cfp->fws,lemp); | |
3131 PlinkPrint(fp,cfp->fplp,"To "); | |
3132 PlinkPrint(fp,cfp->bplp,"From"); | |
3133 #endif | |
3134 if( lemp->basisflag ) cfp=cfp->bp; | |
3135 else cfp=cfp->next; | |
3136 } | |
3137 fprintf(fp,"\n"); | |
3138 for(ap=stp->ap; ap; ap=ap->next){ | |
3139 if( PrintAction(ap,fp,30) ) fprintf(fp,"\n"); | |
3140 } | |
3141 fprintf(fp,"\n"); | |
3142 } | |
3143 fprintf(fp, "----------------------------------------------------\n"); | |
3144 fprintf(fp, "Symbols:\n"); | |
3145 for(i=0; i<lemp->nsymbol; i++){ | |
3146 int j; | |
3147 struct symbol *sp; | |
3148 | |
3149 sp = lemp->symbols[i]; | |
3150 fprintf(fp, " %3d: %s", i, sp->name); | |
3151 if( sp->type==NONTERMINAL ){ | |
3152 fprintf(fp, ":"); | |
3153 if( sp->lambda ){ | |
3154 fprintf(fp, " <lambda>"); | |
3155 } | |
3156 for(j=0; j<lemp->nterminal; j++){ | |
3157 if( sp->firstset && SetFind(sp->firstset, j) ){ | |
3158 fprintf(fp, " %s", lemp->symbols[j]->name); | |
3159 } | |
3160 } | |
3161 } | |
3162 fprintf(fp, "\n"); | |
3163 } | |
3164 fclose(fp); | |
3165 return; | |
3166 } | |
3167 | |
3168 /* Search for the file "name" which is in the same directory as | |
3169 ** the exacutable */ | |
3170 PRIVATE char *pathsearch(char *argv0, char *name, int modemask) | |
3171 { | |
3172 const char *pathlist; | |
3173 char *pathbufptr; | |
3174 char *pathbuf; | |
3175 char *path,*cp; | |
3176 char c; | |
3177 | |
3178 #ifdef __WIN32__ | |
3179 cp = strrchr(argv0,'\\'); | |
3180 #else | |
3181 cp = strrchr(argv0,'/'); | |
3182 #endif | |
3183 if( cp ){ | |
3184 c = *cp; | |
3185 *cp = 0; | |
3186 path = (char *)malloc( lemonStrlen(argv0) + lemonStrlen(name) + 2 ); | |
3187 if( path ) lemon_sprintf(path,"%s/%s",argv0,name); | |
3188 *cp = c; | |
3189 }else{ | |
3190 pathlist = getenv("PATH"); | |
3191 if( pathlist==0 ) pathlist = ".:/bin:/usr/bin"; | |
3192 pathbuf = (char *) malloc( lemonStrlen(pathlist) + 1 ); | |
3193 path = (char *)malloc( lemonStrlen(pathlist)+lemonStrlen(name)+2 ); | |
3194 if( (pathbuf != 0) && (path!=0) ){ | |
3195 pathbufptr = pathbuf; | |
3196 lemon_strcpy(pathbuf, pathlist); | |
3197 while( *pathbuf ){ | |
3198 cp = strchr(pathbuf,':'); | |
3199 if( cp==0 ) cp = &pathbuf[lemonStrlen(pathbuf)]; | |
3200 c = *cp; | |
3201 *cp = 0; | |
3202 lemon_sprintf(path,"%s/%s",pathbuf,name); | |
3203 *cp = c; | |
3204 if( c==0 ) pathbuf[0] = 0; | |
3205 else pathbuf = &cp[1]; | |
3206 if( access(path,modemask)==0 ) break; | |
3207 } | |
3208 free(pathbufptr); | |
3209 } | |
3210 } | |
3211 return path; | |
3212 } | |
3213 | |
3214 /* Given an action, compute the integer value for that action | |
3215 ** which is to be put in the action table of the generated machine. | |
3216 ** Return negative if no action should be generated. | |
3217 */ | |
3218 PRIVATE int compute_action(struct lemon *lemp, struct action *ap) | |
3219 { | |
3220 int act; | |
3221 switch( ap->type ){ | |
3222 case SHIFT: act = ap->x.stp->statenum; break; | |
3223 case SHIFTREDUCE: act = ap->x.rp->index + lemp->nstate; break; | |
3224 case REDUCE: act = ap->x.rp->index + lemp->nstate+lemp->nrule; break; | |
3225 case ERROR: act = lemp->nstate + lemp->nrule*2; break; | |
3226 case ACCEPT: act = lemp->nstate + lemp->nrule*2 + 1; break; | |
3227 default: act = -1; break; | |
3228 } | |
3229 return act; | |
3230 } | |
3231 | |
3232 #define LINESIZE 1000 | |
3233 /* The next cluster of routines are for reading the template file | |
3234 ** and writing the results to the generated parser */ | |
3235 /* The first function transfers data from "in" to "out" until | |
3236 ** a line is seen which begins with "%%". The line number is | |
3237 ** tracked. | |
3238 ** | |
3239 ** if name!=0, then any word that begin with "Parse" is changed to | |
3240 ** begin with *name instead. | |
3241 */ | |
3242 PRIVATE void tplt_xfer(char *name, FILE *in, FILE *out, int *lineno) | |
3243 { | |
3244 int i, iStart; | |
3245 char line[LINESIZE]; | |
3246 while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){ | |
3247 (*lineno)++; | |
3248 iStart = 0; | |
3249 if( name ){ | |
3250 for(i=0; line[i]; i++){ | |
3251 if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0 | |
3252 && (i==0 || !ISALPHA(line[i-1])) | |
3253 ){ | |
3254 if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]); | |
3255 fprintf(out,"%s",name); | |
3256 i += 4; | |
3257 iStart = i+1; | |
3258 } | |
3259 } | |
3260 } | |
3261 fprintf(out,"%s",&line[iStart]); | |
3262 } | |
3263 } | |
3264 | |
3265 /* The next function finds the template file and opens it, returning | |
3266 ** a pointer to the opened file. */ | |
3267 PRIVATE FILE *tplt_open(struct lemon *lemp) | |
3268 { | |
3269 static char templatename[] = "lempar.c"; | |
3270 char buf[1000]; | |
3271 FILE *in; | |
3272 char *tpltname; | |
3273 char *cp; | |
3274 | |
3275 /* first, see if user specified a template filename on the command line. */ | |
3276 if (user_templatename != 0) { | |
3277 if( access(user_templatename,004)==-1 ){ | |
3278 fprintf(stderr,"Can't find the parser driver template file \"%s\".\n", | |
3279 user_templatename); | |
3280 lemp->errorcnt++; | |
3281 return 0; | |
3282 } | |
3283 in = fopen(user_templatename,"rb"); | |
3284 if( in==0 ){ | |
3285 fprintf(stderr,"Can't open the template file \"%s\".\n", | |
3286 user_templatename); | |
3287 lemp->errorcnt++; | |
3288 return 0; | |
3289 } | |
3290 return in; | |
3291 } | |
3292 | |
3293 cp = strrchr(lemp->filename,'.'); | |
3294 if( cp ){ | |
3295 lemon_sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename); | |
3296 }else{ | |
3297 lemon_sprintf(buf,"%s.lt",lemp->filename); | |
3298 } | |
3299 if( access(buf,004)==0 ){ | |
3300 tpltname = buf; | |
3301 }else if( access(templatename,004)==0 ){ | |
3302 tpltname = templatename; | |
3303 }else{ | |
3304 tpltname = pathsearch(lemp->argv0,templatename,0); | |
3305 } | |
3306 if( tpltname==0 ){ | |
3307 fprintf(stderr,"Can't find the parser driver template file \"%s\".\n", | |
3308 templatename); | |
3309 lemp->errorcnt++; | |
3310 return 0; | |
3311 } | |
3312 in = fopen(tpltname,"rb"); | |
3313 if( in==0 ){ | |
3314 fprintf(stderr,"Can't open the template file \"%s\".\n",templatename); | |
3315 lemp->errorcnt++; | |
3316 return 0; | |
3317 } | |
3318 return in; | |
3319 } | |
3320 | |
3321 /* Print a #line directive line to the output file. */ | |
3322 PRIVATE void tplt_linedir(FILE *out, int lineno, char *filename) | |
3323 { | |
3324 fprintf(out,"#line %d \"",lineno); | |
3325 while( *filename ){ | |
3326 if( *filename == '\\' ) putc('\\',out); | |
3327 putc(*filename,out); | |
3328 filename++; | |
3329 } | |
3330 fprintf(out,"\"\n"); | |
3331 } | |
3332 | |
3333 /* Print a string to the file and keep the linenumber up to date */ | |
3334 PRIVATE void tplt_print(FILE *out, struct lemon *lemp, char *str, int *lineno) | |
3335 { | |
3336 if( str==0 ) return; | |
3337 while( *str ){ | |
3338 putc(*str,out); | |
3339 if( *str=='\n' ) (*lineno)++; | |
3340 str++; | |
3341 } | |
3342 if( str[-1]!='\n' ){ | |
3343 putc('\n',out); | |
3344 (*lineno)++; | |
3345 } | |
3346 if (!lemp->nolinenosflag) { | |
3347 (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); | |
3348 } | |
3349 return; | |
3350 } | |
3351 | |
3352 /* | |
3353 ** The following routine emits code for the destructor for the | |
3354 ** symbol sp | |
3355 */ | |
3356 void emit_destructor_code( | |
3357 FILE *out, | |
3358 struct symbol *sp, | |
3359 struct lemon *lemp, | |
3360 int *lineno | |
3361 ){ | |
3362 char *cp = 0; | |
3363 | |
3364 if( sp->type==TERMINAL ){ | |
3365 cp = lemp->tokendest; | |
3366 if( cp==0 ) return; | |
3367 fprintf(out,"{\n"); (*lineno)++; | |
3368 }else if( sp->destructor ){ | |
3369 cp = sp->destructor; | |
3370 fprintf(out,"{\n"); (*lineno)++; | |
3371 if( !lemp->nolinenosflag ){ | |
3372 (*lineno)++; | |
3373 tplt_linedir(out,sp->destLineno,lemp->filename); | |
3374 } | |
3375 }else if( lemp->vardest ){ | |
3376 cp = lemp->vardest; | |
3377 if( cp==0 ) return; | |
3378 fprintf(out,"{\n"); (*lineno)++; | |
3379 }else{ | |
3380 assert( 0 ); /* Cannot happen */ | |
3381 } | |
3382 for(; *cp; cp++){ | |
3383 if( *cp=='$' && cp[1]=='$' ){ | |
3384 fprintf(out,"(yypminor->yy%d)",sp->dtnum); | |
3385 cp++; | |
3386 continue; | |
3387 } | |
3388 if( *cp=='\n' ) (*lineno)++; | |
3389 fputc(*cp,out); | |
3390 } | |
3391 fprintf(out,"\n"); (*lineno)++; | |
3392 if (!lemp->nolinenosflag) { | |
3393 (*lineno)++; tplt_linedir(out,*lineno,lemp->outname); | |
3394 } | |
3395 fprintf(out,"}\n"); (*lineno)++; | |
3396 return; | |
3397 } | |
3398 | |
3399 /* | |
3400 ** Return TRUE (non-zero) if the given symbol has a destructor. | |
3401 */ | |
3402 int has_destructor(struct symbol *sp, struct lemon *lemp) | |
3403 { | |
3404 int ret; | |
3405 if( sp->type==TERMINAL ){ | |
3406 ret = lemp->tokendest!=0; | |
3407 }else{ | |
3408 ret = lemp->vardest!=0 || sp->destructor!=0; | |
3409 } | |
3410 return ret; | |
3411 } | |
3412 | |
3413 /* | |
3414 ** Append text to a dynamically allocated string. If zText is 0 then | |
3415 ** reset the string to be empty again. Always return the complete text | |
3416 ** of the string (which is overwritten with each call). | |
3417 ** | |
3418 ** n bytes of zText are stored. If n==0 then all of zText up to the first | |
3419 ** \000 terminator is stored. zText can contain up to two instances of | |
3420 ** %d. The values of p1 and p2 are written into the first and second | |
3421 ** %d. | |
3422 ** | |
3423 ** If n==-1, then the previous character is overwritten. | |
3424 */ | |
3425 PRIVATE char *append_str(const char *zText, int n, int p1, int p2){ | |
3426 static char empty[1] = { 0 }; | |
3427 static char *z = 0; | |
3428 static int alloced = 0; | |
3429 static int used = 0; | |
3430 int c; | |
3431 char zInt[40]; | |
3432 if( zText==0 ){ | |
3433 used = 0; | |
3434 return z; | |
3435 } | |
3436 if( n<=0 ){ | |
3437 if( n<0 ){ | |
3438 used += n; | |
3439 assert( used>=0 ); | |
3440 } | |
3441 n = lemonStrlen(zText); | |
3442 } | |
3443 if( (int) (n+sizeof(zInt)*2+used) >= alloced ){ | |
3444 alloced = n + sizeof(zInt)*2 + used + 200; | |
3445 z = (char *) realloc(z, alloced); | |
3446 } | |
3447 if( z==0 ) return empty; | |
3448 while( n-- > 0 ){ | |
3449 c = *(zText++); | |
3450 if( c=='%' && n>0 && zText[0]=='d' ){ | |
3451 lemon_sprintf(zInt, "%d", p1); | |
3452 p1 = p2; | |
3453 lemon_strcpy(&z[used], zInt); | |
3454 used += lemonStrlen(&z[used]); | |
3455 zText++; | |
3456 n--; | |
3457 }else{ | |
3458 z[used++] = (char)c; | |
3459 } | |
3460 } | |
3461 z[used] = 0; | |
3462 return z; | |
3463 } | |
3464 | |
3465 /* | |
3466 ** zCode is a string that is the action associated with a rule. Expand | |
3467 ** the symbols in this string so that the refer to elements of the parser | |
3468 ** stack. | |
3469 */ | |
3470 PRIVATE void translate_code(struct lemon *lemp, struct rule *rp){ | |
3471 char *cp, *xp; | |
3472 int i; | |
3473 char lhsused = 0; /* True if the LHS element has been used */ | |
3474 char used[MAXRHS]; /* True for each RHS element which is used */ | |
3475 | |
3476 for(i=0; i<rp->nrhs; i++) used[i] = 0; | |
3477 lhsused = 0; | |
3478 | |
3479 if( rp->code==0 ){ | |
3480 static char newlinestr[2] = { '\n', '\0' }; | |
3481 rp->code = newlinestr; | |
3482 rp->line = rp->ruleline; | |
3483 } | |
3484 | |
3485 append_str(0,0,0,0); | |
3486 | |
3487 /* This const cast is wrong but harmless, if we're careful. */ | |
3488 for(cp=(char *)rp->code; *cp; cp++){ | |
3489 if( ISALPHA(*cp) && (cp==rp->code || (!ISALNUM(cp[-1]) && cp[-1]!='_')) ){ | |
3490 char saved; | |
3491 for(xp= &cp[1]; ISALNUM(*xp) || *xp=='_'; xp++); | |
3492 saved = *xp; | |
3493 *xp = 0; | |
3494 if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){ | |
3495 append_str("yygotominor.yy%d",0,rp->lhs->dtnum,0); | |
3496 cp = xp; | |
3497 lhsused = 1; | |
3498 }else{ | |
3499 for(i=0; i<rp->nrhs; i++){ | |
3500 if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){ | |
3501 if( cp!=rp->code && cp[-1]=='@' ){ | |
3502 /* If the argument is of the form @X then substituted | |
3503 ** the token number of X, not the value of X */ | |
3504 append_str("yymsp[%d].major",-1,i-rp->nrhs+1,0); | |
3505 }else{ | |
3506 struct symbol *sp = rp->rhs[i]; | |
3507 int dtnum; | |
3508 if( sp->type==MULTITERMINAL ){ | |
3509 dtnum = sp->subsym[0]->dtnum; | |
3510 }else{ | |
3511 dtnum = sp->dtnum; | |
3512 } | |
3513 append_str("yymsp[%d].minor.yy%d",0,i-rp->nrhs+1, dtnum); | |
3514 } | |
3515 cp = xp; | |
3516 used[i] = 1; | |
3517 break; | |
3518 } | |
3519 } | |
3520 } | |
3521 *xp = saved; | |
3522 } | |
3523 append_str(cp, 1, 0, 0); | |
3524 } /* End loop */ | |
3525 | |
3526 /* Check to make sure the LHS has been used */ | |
3527 if( rp->lhsalias && !lhsused ){ | |
3528 ErrorMsg(lemp->filename,rp->ruleline, | |
3529 "Label \"%s\" for \"%s(%s)\" is never used.", | |
3530 rp->lhsalias,rp->lhs->name,rp->lhsalias); | |
3531 lemp->errorcnt++; | |
3532 } | |
3533 | |
3534 /* Generate destructor code for RHS symbols which are not used in the | |
3535 ** reduce code */ | |
3536 for(i=0; i<rp->nrhs; i++){ | |
3537 if( rp->rhsalias[i] && !used[i] ){ | |
3538 ErrorMsg(lemp->filename,rp->ruleline, | |
3539 "Label %s for \"%s(%s)\" is never used.", | |
3540 rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]); | |
3541 lemp->errorcnt++; | |
3542 }else if( rp->rhsalias[i]==0 ){ | |
3543 if( has_destructor(rp->rhs[i],lemp) ){ | |
3544 append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0, | |
3545 rp->rhs[i]->index,i-rp->nrhs+1); | |
3546 }else{ | |
3547 /* No destructor defined for this term */ | |
3548 } | |
3549 } | |
3550 } | |
3551 if( rp->code ){ | |
3552 cp = append_str(0,0,0,0); | |
3553 rp->code = Strsafe(cp?cp:""); | |
3554 } | |
3555 } | |
3556 | |
3557 /* | |
3558 ** Generate code which executes when the rule "rp" is reduced. Write | |
3559 ** the code to "out". Make sure lineno stays up-to-date. | |
3560 */ | |
3561 PRIVATE void emit_code( | |
3562 FILE *out, | |
3563 struct rule *rp, | |
3564 struct lemon *lemp, | |
3565 int *lineno | |
3566 ){ | |
3567 const char *cp; | |
3568 | |
3569 /* Generate code to do the reduce action */ | |
3570 if( rp->code ){ | |
3571 if( !lemp->nolinenosflag ){ | |
3572 (*lineno)++; | |
3573 tplt_linedir(out,rp->line,lemp->filename); | |
3574 } | |
3575 fprintf(out,"{%s",rp->code); | |
3576 for(cp=rp->code; *cp; cp++){ | |
3577 if( *cp=='\n' ) (*lineno)++; | |
3578 } /* End loop */ | |
3579 fprintf(out,"}\n"); (*lineno)++; | |
3580 if( !lemp->nolinenosflag ){ | |
3581 (*lineno)++; | |
3582 tplt_linedir(out,*lineno,lemp->outname); | |
3583 } | |
3584 } /* End if( rp->code ) */ | |
3585 | |
3586 return; | |
3587 } | |
3588 | |
3589 /* | |
3590 ** Print the definition of the union used for the parser's data stack. | |
3591 ** This union contains fields for every possible data type for tokens | |
3592 ** and nonterminals. In the process of computing and printing this | |
3593 ** union, also set the ".dtnum" field of every terminal and nonterminal | |
3594 ** symbol. | |
3595 */ | |
3596 void print_stack_union( | |
3597 FILE *out, /* The output stream */ | |
3598 struct lemon *lemp, /* The main info structure for this parser */ | |
3599 int *plineno, /* Pointer to the line number */ | |
3600 int mhflag /* True if generating makeheaders output */ | |
3601 ){ | |
3602 int lineno = *plineno; /* The line number of the output */ | |
3603 char **types; /* A hash table of datatypes */ | |
3604 int arraysize; /* Size of the "types" array */ | |
3605 int maxdtlength; /* Maximum length of any ".datatype" field. */ | |
3606 char *stddt; /* Standardized name for a datatype */ | |
3607 int i,j; /* Loop counters */ | |
3608 unsigned hash; /* For hashing the name of a type */ | |
3609 const char *name; /* Name of the parser */ | |
3610 | |
3611 /* Allocate and initialize types[] and allocate stddt[] */ | |
3612 arraysize = lemp->nsymbol * 2; | |
3613 types = (char**)calloc( arraysize, sizeof(char*) ); | |
3614 if( types==0 ){ | |
3615 fprintf(stderr,"Out of memory.\n"); | |
3616 exit(1); | |
3617 } | |
3618 for(i=0; i<arraysize; i++) types[i] = 0; | |
3619 maxdtlength = 0; | |
3620 if( lemp->vartype ){ | |
3621 maxdtlength = lemonStrlen(lemp->vartype); | |
3622 } | |
3623 for(i=0; i<lemp->nsymbol; i++){ | |
3624 int len; | |
3625 struct symbol *sp = lemp->symbols[i]; | |
3626 if( sp->datatype==0 ) continue; | |
3627 len = lemonStrlen(sp->datatype); | |
3628 if( len>maxdtlength ) maxdtlength = len; | |
3629 } | |
3630 stddt = (char*)malloc( maxdtlength*2 + 1 ); | |
3631 if( stddt==0 ){ | |
3632 fprintf(stderr,"Out of memory.\n"); | |
3633 exit(1); | |
3634 } | |
3635 | |
3636 /* Build a hash table of datatypes. The ".dtnum" field of each symbol | |
3637 ** is filled in with the hash index plus 1. A ".dtnum" value of 0 is | |
3638 ** used for terminal symbols. If there is no %default_type defined then | |
3639 ** 0 is also used as the .dtnum value for nonterminals which do not specify | |
3640 ** a datatype using the %type directive. | |
3641 */ | |
3642 for(i=0; i<lemp->nsymbol; i++){ | |
3643 struct symbol *sp = lemp->symbols[i]; | |
3644 char *cp; | |
3645 if( sp==lemp->errsym ){ | |
3646 sp->dtnum = arraysize+1; | |
3647 continue; | |
3648 } | |
3649 if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){ | |
3650 sp->dtnum = 0; | |
3651 continue; | |
3652 } | |
3653 cp = sp->datatype; | |
3654 if( cp==0 ) cp = lemp->vartype; | |
3655 j = 0; | |
3656 while( ISSPACE(*cp) ) cp++; | |
3657 while( *cp ) stddt[j++] = *cp++; | |
3658 while( j>0 && ISSPACE(stddt[j-1]) ) j--; | |
3659 stddt[j] = 0; | |
3660 if( lemp->tokentype && strcmp(stddt, lemp->tokentype)==0 ){ | |
3661 sp->dtnum = 0; | |
3662 continue; | |
3663 } | |
3664 hash = 0; | |
3665 for(j=0; stddt[j]; j++){ | |
3666 hash = hash*53 + stddt[j]; | |
3667 } | |
3668 hash = (hash & 0x7fffffff)%arraysize; | |
3669 while( types[hash] ){ | |
3670 if( strcmp(types[hash],stddt)==0 ){ | |
3671 sp->dtnum = hash + 1; | |
3672 break; | |
3673 } | |
3674 hash++; | |
3675 if( hash>=(unsigned)arraysize ) hash = 0; | |
3676 } | |
3677 if( types[hash]==0 ){ | |
3678 sp->dtnum = hash + 1; | |
3679 types[hash] = (char*)malloc( lemonStrlen(stddt)+1 ); | |
3680 if( types[hash]==0 ){ | |
3681 fprintf(stderr,"Out of memory.\n"); | |
3682 exit(1); | |
3683 } | |
3684 lemon_strcpy(types[hash],stddt); | |
3685 } | |
3686 } | |
3687 | |
3688 /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */ | |
3689 name = lemp->name ? lemp->name : "Parse"; | |
3690 lineno = *plineno; | |
3691 if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; } | |
3692 fprintf(out,"#define %sTOKENTYPE %s\n",name, | |
3693 lemp->tokentype?lemp->tokentype:"void*"); lineno++; | |
3694 if( mhflag ){ fprintf(out,"#endif\n"); lineno++; } | |
3695 fprintf(out,"typedef union {\n"); lineno++; | |
3696 fprintf(out," int yyinit;\n"); lineno++; | |
3697 fprintf(out," %sTOKENTYPE yy0;\n",name); lineno++; | |
3698 for(i=0; i<arraysize; i++){ | |
3699 if( types[i]==0 ) continue; | |
3700 fprintf(out," %s yy%d;\n",types[i],i+1); lineno++; | |
3701 free(types[i]); | |
3702 } | |
3703 if( lemp->errsym->useCnt ){ | |
3704 fprintf(out," int yy%d;\n",lemp->errsym->dtnum); lineno++; | |
3705 } | |
3706 free(stddt); | |
3707 free(types); | |
3708 fprintf(out,"} YYMINORTYPE;\n"); lineno++; | |
3709 *plineno = lineno; | |
3710 } | |
3711 | |
3712 /* | |
3713 ** Return the name of a C datatype able to represent values between | |
3714 ** lwr and upr, inclusive. If pnByte!=NULL then also write the sizeof | |
3715 ** for that type (1, 2, or 4) into *pnByte. | |
3716 */ | |
3717 static const char *minimum_size_type(int lwr, int upr, int *pnByte){ | |
3718 const char *zType = "int"; | |
3719 int nByte = 4; | |
3720 if( lwr>=0 ){ | |
3721 if( upr<=255 ){ | |
3722 zType = "unsigned char"; | |
3723 nByte = 1; | |
3724 }else if( upr<65535 ){ | |
3725 zType = "unsigned short int"; | |
3726 nByte = 2; | |
3727 }else{ | |
3728 zType = "unsigned int"; | |
3729 nByte = 4; | |
3730 } | |
3731 }else if( lwr>=-127 && upr<=127 ){ | |
3732 zType = "signed char"; | |
3733 nByte = 1; | |
3734 }else if( lwr>=-32767 && upr<32767 ){ | |
3735 zType = "short"; | |
3736 nByte = 2; | |
3737 } | |
3738 if( pnByte ) *pnByte = nByte; | |
3739 return zType; | |
3740 } | |
3741 | |
3742 /* | |
3743 ** Each state contains a set of token transaction and a set of | |
3744 ** nonterminal transactions. Each of these sets makes an instance | |
3745 ** of the following structure. An array of these structures is used | |
3746 ** to order the creation of entries in the yy_action[] table. | |
3747 */ | |
3748 struct axset { | |
3749 struct state *stp; /* A pointer to a state */ | |
3750 int isTkn; /* True to use tokens. False for non-terminals */ | |
3751 int nAction; /* Number of actions */ | |
3752 int iOrder; /* Original order of action sets */ | |
3753 }; | |
3754 | |
3755 /* | |
3756 ** Compare to axset structures for sorting purposes | |
3757 */ | |
3758 static int axset_compare(const void *a, const void *b){ | |
3759 struct axset *p1 = (struct axset*)a; | |
3760 struct axset *p2 = (struct axset*)b; | |
3761 int c; | |
3762 c = p2->nAction - p1->nAction; | |
3763 if( c==0 ){ | |
3764 c = p1->iOrder - p2->iOrder; | |
3765 } | |
3766 assert( c!=0 || p1==p2 ); | |
3767 return c; | |
3768 } | |
3769 | |
3770 /* | |
3771 ** Write text on "out" that describes the rule "rp". | |
3772 */ | |
3773 static void writeRuleText(FILE *out, struct rule *rp){ | |
3774 int j; | |
3775 fprintf(out,"%s ::=", rp->lhs->name); | |
3776 for(j=0; j<rp->nrhs; j++){ | |
3777 struct symbol *sp = rp->rhs[j]; | |
3778 if( sp->type!=MULTITERMINAL ){ | |
3779 fprintf(out," %s", sp->name); | |
3780 }else{ | |
3781 int k; | |
3782 fprintf(out," %s", sp->subsym[0]->name); | |
3783 for(k=1; k<sp->nsubsym; k++){ | |
3784 fprintf(out,"|%s",sp->subsym[k]->name); | |
3785 } | |
3786 } | |
3787 } | |
3788 } | |
3789 | |
3790 | |
3791 /* Generate C source code for the parser */ | |
3792 void ReportTable( | |
3793 struct lemon *lemp, | |
3794 int mhflag /* Output in makeheaders format if true */ | |
3795 ){ | |
3796 FILE *out, *in; | |
3797 char line[LINESIZE]; | |
3798 int lineno; | |
3799 struct state *stp; | |
3800 struct action *ap; | |
3801 struct rule *rp; | |
3802 struct acttab *pActtab; | |
3803 int i, j, n, sz; | |
3804 int szActionType; /* sizeof(YYACTIONTYPE) */ | |
3805 int szCodeType; /* sizeof(YYCODETYPE) */ | |
3806 const char *name; | |
3807 int mnTknOfst, mxTknOfst; | |
3808 int mnNtOfst, mxNtOfst; | |
3809 struct axset *ax; | |
3810 | |
3811 in = tplt_open(lemp); | |
3812 if( in==0 ) return; | |
3813 out = file_open(lemp,".c","wb"); | |
3814 if( out==0 ){ | |
3815 fclose(in); | |
3816 return; | |
3817 } | |
3818 lineno = 1; | |
3819 tplt_xfer(lemp->name,in,out,&lineno); | |
3820 | |
3821 /* Generate the include code, if any */ | |
3822 tplt_print(out,lemp,lemp->include,&lineno); | |
3823 if( mhflag ){ | |
3824 char *incName = file_makename(lemp, ".h"); | |
3825 fprintf(out,"#include \"%s\"\n", incName); lineno++; | |
3826 free(incName); | |
3827 } | |
3828 tplt_xfer(lemp->name,in,out,&lineno); | |
3829 | |
3830 /* Generate #defines for all tokens */ | |
3831 if( mhflag ){ | |
3832 const char *prefix; | |
3833 fprintf(out,"#if INTERFACE\n"); lineno++; | |
3834 if( lemp->tokenprefix ) prefix = lemp->tokenprefix; | |
3835 else prefix = ""; | |
3836 for(i=1; i<lemp->nterminal; i++){ | |
3837 fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i); | |
3838 lineno++; | |
3839 } | |
3840 fprintf(out,"#endif\n"); lineno++; | |
3841 } | |
3842 tplt_xfer(lemp->name,in,out,&lineno); | |
3843 | |
3844 /* Generate the defines */ | |
3845 fprintf(out,"#define YYCODETYPE %s\n", | |
3846 minimum_size_type(0, lemp->nsymbol+1, &szCodeType)); lineno++; | |
3847 fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol+1); lineno++; | |
3848 fprintf(out,"#define YYACTIONTYPE %s\n", | |
3849 minimum_size_type(0,lemp->nstate+lemp->nrule*2+5,&szActionType)); lineno++; | |
3850 if( lemp->wildcard ){ | |
3851 fprintf(out,"#define YYWILDCARD %d\n", | |
3852 lemp->wildcard->index); lineno++; | |
3853 } | |
3854 print_stack_union(out,lemp,&lineno,mhflag); | |
3855 fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++; | |
3856 if( lemp->stacksize ){ | |
3857 fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize); lineno++; | |
3858 }else{ | |
3859 fprintf(out,"#define YYSTACKDEPTH 100\n"); lineno++; | |
3860 } | |
3861 fprintf(out, "#endif\n"); lineno++; | |
3862 if( mhflag ){ | |
3863 fprintf(out,"#if INTERFACE\n"); lineno++; | |
3864 } | |
3865 name = lemp->name ? lemp->name : "Parse"; | |
3866 if( lemp->arg && lemp->arg[0] ){ | |
3867 i = lemonStrlen(lemp->arg); | |
3868 while( i>=1 && ISSPACE(lemp->arg[i-1]) ) i--; | |
3869 while( i>=1 && (ISALNUM(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--; | |
3870 fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg); lineno++; | |
3871 fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg); lineno++; | |
3872 fprintf(out,"#define %sARG_FETCH %s = yypParser->%s\n", | |
3873 name,lemp->arg,&lemp->arg[i]); lineno++; | |
3874 fprintf(out,"#define %sARG_STORE yypParser->%s = %s\n", | |
3875 name,&lemp->arg[i],&lemp->arg[i]); lineno++; | |
3876 }else{ | |
3877 fprintf(out,"#define %sARG_SDECL\n",name); lineno++; | |
3878 fprintf(out,"#define %sARG_PDECL\n",name); lineno++; | |
3879 fprintf(out,"#define %sARG_FETCH\n",name); lineno++; | |
3880 fprintf(out,"#define %sARG_STORE\n",name); lineno++; | |
3881 } | |
3882 if( mhflag ){ | |
3883 fprintf(out,"#endif\n"); lineno++; | |
3884 } | |
3885 if( lemp->errsym->useCnt ){ | |
3886 fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++; | |
3887 fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++; | |
3888 } | |
3889 if( lemp->has_fallback ){ | |
3890 fprintf(out,"#define YYFALLBACK 1\n"); lineno++; | |
3891 } | |
3892 | |
3893 /* Compute the action table, but do not output it yet. The action | |
3894 ** table must be computed before generating the YYNSTATE macro because | |
3895 ** we need to know how many states can be eliminated. | |
3896 */ | |
3897 ax = (struct axset *) calloc(lemp->nxstate*2, sizeof(ax[0])); | |
3898 if( ax==0 ){ | |
3899 fprintf(stderr,"malloc failed\n"); | |
3900 exit(1); | |
3901 } | |
3902 for(i=0; i<lemp->nxstate; i++){ | |
3903 stp = lemp->sorted[i]; | |
3904 ax[i*2].stp = stp; | |
3905 ax[i*2].isTkn = 1; | |
3906 ax[i*2].nAction = stp->nTknAct; | |
3907 ax[i*2+1].stp = stp; | |
3908 ax[i*2+1].isTkn = 0; | |
3909 ax[i*2+1].nAction = stp->nNtAct; | |
3910 } | |
3911 mxTknOfst = mnTknOfst = 0; | |
3912 mxNtOfst = mnNtOfst = 0; | |
3913 /* In an effort to minimize the action table size, use the heuristic | |
3914 ** of placing the largest action sets first */ | |
3915 for(i=0; i<lemp->nxstate*2; i++) ax[i].iOrder = i; | |
3916 qsort(ax, lemp->nxstate*2, sizeof(ax[0]), axset_compare); | |
3917 pActtab = acttab_alloc(); | |
3918 for(i=0; i<lemp->nxstate*2 && ax[i].nAction>0; i++){ | |
3919 stp = ax[i].stp; | |
3920 if( ax[i].isTkn ){ | |
3921 for(ap=stp->ap; ap; ap=ap->next){ | |
3922 int action; | |
3923 if( ap->sp->index>=lemp->nterminal ) continue; | |
3924 action = compute_action(lemp, ap); | |
3925 if( action<0 ) continue; | |
3926 acttab_action(pActtab, ap->sp->index, action); | |
3927 } | |
3928 stp->iTknOfst = acttab_insert(pActtab); | |
3929 if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst; | |
3930 if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst; | |
3931 }else{ | |
3932 for(ap=stp->ap; ap; ap=ap->next){ | |
3933 int action; | |
3934 if( ap->sp->index<lemp->nterminal ) continue; | |
3935 if( ap->sp->index==lemp->nsymbol ) continue; | |
3936 action = compute_action(lemp, ap); | |
3937 if( action<0 ) continue; | |
3938 acttab_action(pActtab, ap->sp->index, action); | |
3939 } | |
3940 stp->iNtOfst = acttab_insert(pActtab); | |
3941 if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst; | |
3942 if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst; | |
3943 } | |
3944 #if 0 /* Uncomment for a trace of how the yy_action[] table fills out */ | |
3945 { int jj, nn; | |
3946 for(jj=nn=0; jj<pActtab->nAction; jj++){ | |
3947 if( pActtab->aAction[jj].action<0 ) nn++; | |
3948 } | |
3949 printf("%4d: State %3d %s n: %2d size: %5d freespace: %d\n", | |
3950 i, stp->statenum, ax[i].isTkn ? "Token" : "Var ", | |
3951 ax[i].nAction, pActtab->nAction, nn); | |
3952 } | |
3953 #endif | |
3954 } | |
3955 free(ax); | |
3956 | |
3957 /* Finish rendering the constants now that the action table has | |
3958 ** been computed */ | |
3959 fprintf(out,"#define YYNSTATE %d\n",lemp->nxstate); lineno++; | |
3960 fprintf(out,"#define YYNRULE %d\n",lemp->nrule); lineno++; | |
3961 fprintf(out,"#define YY_MAX_SHIFT %d\n",lemp->nxstate-1); lineno++; | |
3962 fprintf(out,"#define YY_MIN_SHIFTREDUCE %d\n",lemp->nstate); lineno++; | |
3963 i = lemp->nstate + lemp->nrule; | |
3964 fprintf(out,"#define YY_MAX_SHIFTREDUCE %d\n", i-1); lineno++; | |
3965 fprintf(out,"#define YY_MIN_REDUCE %d\n", i); lineno++; | |
3966 i = lemp->nstate + lemp->nrule*2; | |
3967 fprintf(out,"#define YY_MAX_REDUCE %d\n", i-1); lineno++; | |
3968 fprintf(out,"#define YY_ERROR_ACTION %d\n", i); lineno++; | |
3969 fprintf(out,"#define YY_ACCEPT_ACTION %d\n", i+1); lineno++; | |
3970 fprintf(out,"#define YY_NO_ACTION %d\n", i+2); lineno++; | |
3971 tplt_xfer(lemp->name,in,out,&lineno); | |
3972 | |
3973 /* Now output the action table and its associates: | |
3974 ** | |
3975 ** yy_action[] A single table containing all actions. | |
3976 ** yy_lookahead[] A table containing the lookahead for each entry in | |
3977 ** yy_action. Used to detect hash collisions. | |
3978 ** yy_shift_ofst[] For each state, the offset into yy_action for | |
3979 ** shifting terminals. | |
3980 ** yy_reduce_ofst[] For each state, the offset into yy_action for | |
3981 ** shifting non-terminals after a reduce. | |
3982 ** yy_default[] Default action for each state. | |
3983 */ | |
3984 | |
3985 /* Output the yy_action table */ | |
3986 lemp->nactiontab = n = acttab_size(pActtab); | |
3987 lemp->tablesize += n*szActionType; | |
3988 fprintf(out,"#define YY_ACTTAB_COUNT (%d)\n", n); lineno++; | |
3989 fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++; | |
3990 for(i=j=0; i<n; i++){ | |
3991 int action = acttab_yyaction(pActtab, i); | |
3992 if( action<0 ) action = lemp->nstate + lemp->nrule + 2; | |
3993 if( j==0 ) fprintf(out," /* %5d */ ", i); | |
3994 fprintf(out, " %4d,", action); | |
3995 if( j==9 || i==n-1 ){ | |
3996 fprintf(out, "\n"); lineno++; | |
3997 j = 0; | |
3998 }else{ | |
3999 j++; | |
4000 } | |
4001 } | |
4002 fprintf(out, "};\n"); lineno++; | |
4003 | |
4004 /* Output the yy_lookahead table */ | |
4005 lemp->tablesize += n*szCodeType; | |
4006 fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++; | |
4007 for(i=j=0; i<n; i++){ | |
4008 int la = acttab_yylookahead(pActtab, i); | |
4009 if( la<0 ) la = lemp->nsymbol; | |
4010 if( j==0 ) fprintf(out," /* %5d */ ", i); | |
4011 fprintf(out, " %4d,", la); | |
4012 if( j==9 || i==n-1 ){ | |
4013 fprintf(out, "\n"); lineno++; | |
4014 j = 0; | |
4015 }else{ | |
4016 j++; | |
4017 } | |
4018 } | |
4019 fprintf(out, "};\n"); lineno++; | |
4020 | |
4021 /* Output the yy_shift_ofst[] table */ | |
4022 fprintf(out, "#define YY_SHIFT_USE_DFLT (%d)\n", mnTknOfst-1); lineno++; | |
4023 n = lemp->nxstate; | |
4024 while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--; | |
4025 fprintf(out, "#define YY_SHIFT_COUNT (%d)\n", n-1); lineno++; | |
4026 fprintf(out, "#define YY_SHIFT_MIN (%d)\n", mnTknOfst); lineno++; | |
4027 fprintf(out, "#define YY_SHIFT_MAX (%d)\n", mxTknOfst); lineno++; | |
4028 fprintf(out, "static const %s yy_shift_ofst[] = {\n", | |
4029 minimum_size_type(mnTknOfst-1, mxTknOfst, &sz)); lineno++; | |
4030 lemp->tablesize += n*sz; | |
4031 for(i=j=0; i<n; i++){ | |
4032 int ofst; | |
4033 stp = lemp->sorted[i]; | |
4034 ofst = stp->iTknOfst; | |
4035 if( ofst==NO_OFFSET ) ofst = mnTknOfst - 1; | |
4036 if( j==0 ) fprintf(out," /* %5d */ ", i); | |
4037 fprintf(out, " %4d,", ofst); | |
4038 if( j==9 || i==n-1 ){ | |
4039 fprintf(out, "\n"); lineno++; | |
4040 j = 0; | |
4041 }else{ | |
4042 j++; | |
4043 } | |
4044 } | |
4045 fprintf(out, "};\n"); lineno++; | |
4046 | |
4047 /* Output the yy_reduce_ofst[] table */ | |
4048 fprintf(out, "#define YY_REDUCE_USE_DFLT (%d)\n", mnNtOfst-1); lineno++; | |
4049 n = lemp->nxstate; | |
4050 while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--; | |
4051 fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++; | |
4052 fprintf(out, "#define YY_REDUCE_MIN (%d)\n", mnNtOfst); lineno++; | |
4053 fprintf(out, "#define YY_REDUCE_MAX (%d)\n", mxNtOfst); lineno++; | |
4054 fprintf(out, "static const %s yy_reduce_ofst[] = {\n", | |
4055 minimum_size_type(mnNtOfst-1, mxNtOfst, &sz)); lineno++; | |
4056 lemp->tablesize += n*sz; | |
4057 for(i=j=0; i<n; i++){ | |
4058 int ofst; | |
4059 stp = lemp->sorted[i]; | |
4060 ofst = stp->iNtOfst; | |
4061 if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1; | |
4062 if( j==0 ) fprintf(out," /* %5d */ ", i); | |
4063 fprintf(out, " %4d,", ofst); | |
4064 if( j==9 || i==n-1 ){ | |
4065 fprintf(out, "\n"); lineno++; | |
4066 j = 0; | |
4067 }else{ | |
4068 j++; | |
4069 } | |
4070 } | |
4071 fprintf(out, "};\n"); lineno++; | |
4072 | |
4073 /* Output the default action table */ | |
4074 fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++; | |
4075 n = lemp->nxstate; | |
4076 lemp->tablesize += n*szActionType; | |
4077 for(i=j=0; i<n; i++){ | |
4078 stp = lemp->sorted[i]; | |
4079 if( j==0 ) fprintf(out," /* %5d */ ", i); | |
4080 fprintf(out, " %4d,", stp->iDfltReduce+lemp->nstate+lemp->nrule); | |
4081 if( j==9 || i==n-1 ){ | |
4082 fprintf(out, "\n"); lineno++; | |
4083 j = 0; | |
4084 }else{ | |
4085 j++; | |
4086 } | |
4087 } | |
4088 fprintf(out, "};\n"); lineno++; | |
4089 tplt_xfer(lemp->name,in,out,&lineno); | |
4090 | |
4091 /* Generate the table of fallback tokens. | |
4092 */ | |
4093 if( lemp->has_fallback ){ | |
4094 int mx = lemp->nterminal - 1; | |
4095 while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; } | |
4096 lemp->tablesize += (mx+1)*szCodeType; | |
4097 for(i=0; i<=mx; i++){ | |
4098 struct symbol *p = lemp->symbols[i]; | |
4099 if( p->fallback==0 ){ | |
4100 fprintf(out, " 0, /* %10s => nothing */\n", p->name); | |
4101 }else{ | |
4102 fprintf(out, " %3d, /* %10s => %s */\n", p->fallback->index, | |
4103 p->name, p->fallback->name); | |
4104 } | |
4105 lineno++; | |
4106 } | |
4107 } | |
4108 tplt_xfer(lemp->name, in, out, &lineno); | |
4109 | |
4110 /* Generate a table containing the symbolic name of every symbol | |
4111 */ | |
4112 for(i=0; i<lemp->nsymbol; i++){ | |
4113 lemon_sprintf(line,"\"%s\",",lemp->symbols[i]->name); | |
4114 fprintf(out," %-15s",line); | |
4115 if( (i&3)==3 ){ fprintf(out,"\n"); lineno++; } | |
4116 } | |
4117 if( (i&3)!=0 ){ fprintf(out,"\n"); lineno++; } | |
4118 tplt_xfer(lemp->name,in,out,&lineno); | |
4119 | |
4120 /* Generate a table containing a text string that describes every | |
4121 ** rule in the rule set of the grammar. This information is used | |
4122 ** when tracing REDUCE actions. | |
4123 */ | |
4124 for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){ | |
4125 assert( rp->index==i ); | |
4126 fprintf(out," /* %3d */ \"", i); | |
4127 writeRuleText(out, rp); | |
4128 fprintf(out,"\",\n"); lineno++; | |
4129 } | |
4130 tplt_xfer(lemp->name,in,out,&lineno); | |
4131 | |
4132 /* Generate code which executes every time a symbol is popped from | |
4133 ** the stack while processing errors or while destroying the parser. | |
4134 ** (In other words, generate the %destructor actions) | |
4135 */ | |
4136 if( lemp->tokendest ){ | |
4137 int once = 1; | |
4138 for(i=0; i<lemp->nsymbol; i++){ | |
4139 struct symbol *sp = lemp->symbols[i]; | |
4140 if( sp==0 || sp->type!=TERMINAL ) continue; | |
4141 if( once ){ | |
4142 fprintf(out, " /* TERMINAL Destructor */\n"); lineno++; | |
4143 once = 0; | |
4144 } | |
4145 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++; | |
4146 } | |
4147 for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++); | |
4148 if( i<lemp->nsymbol ){ | |
4149 emit_destructor_code(out,lemp->symbols[i],lemp,&lineno); | |
4150 fprintf(out," break;\n"); lineno++; | |
4151 } | |
4152 } | |
4153 if( lemp->vardest ){ | |
4154 struct symbol *dflt_sp = 0; | |
4155 int once = 1; | |
4156 for(i=0; i<lemp->nsymbol; i++){ | |
4157 struct symbol *sp = lemp->symbols[i]; | |
4158 if( sp==0 || sp->type==TERMINAL || | |
4159 sp->index<=0 || sp->destructor!=0 ) continue; | |
4160 if( once ){ | |
4161 fprintf(out, " /* Default NON-TERMINAL Destructor */\n"); lineno++; | |
4162 once = 0; | |
4163 } | |
4164 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++; | |
4165 dflt_sp = sp; | |
4166 } | |
4167 if( dflt_sp!=0 ){ | |
4168 emit_destructor_code(out,dflt_sp,lemp,&lineno); | |
4169 } | |
4170 fprintf(out," break;\n"); lineno++; | |
4171 } | |
4172 for(i=0; i<lemp->nsymbol; i++){ | |
4173 struct symbol *sp = lemp->symbols[i]; | |
4174 if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue; | |
4175 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++; | |
4176 | |
4177 /* Combine duplicate destructors into a single case */ | |
4178 for(j=i+1; j<lemp->nsymbol; j++){ | |
4179 struct symbol *sp2 = lemp->symbols[j]; | |
4180 if( sp2 && sp2->type!=TERMINAL && sp2->destructor | |
4181 && sp2->dtnum==sp->dtnum | |
4182 && strcmp(sp->destructor,sp2->destructor)==0 ){ | |
4183 fprintf(out," case %d: /* %s */\n", | |
4184 sp2->index, sp2->name); lineno++; | |
4185 sp2->destructor = 0; | |
4186 } | |
4187 } | |
4188 | |
4189 emit_destructor_code(out,lemp->symbols[i],lemp,&lineno); | |
4190 fprintf(out," break;\n"); lineno++; | |
4191 } | |
4192 tplt_xfer(lemp->name,in,out,&lineno); | |
4193 | |
4194 /* Generate code which executes whenever the parser stack overflows */ | |
4195 tplt_print(out,lemp,lemp->overflow,&lineno); | |
4196 tplt_xfer(lemp->name,in,out,&lineno); | |
4197 | |
4198 /* Generate the table of rule information | |
4199 ** | |
4200 ** Note: This code depends on the fact that rules are number | |
4201 ** sequentually beginning with 0. | |
4202 */ | |
4203 for(rp=lemp->rule; rp; rp=rp->next){ | |
4204 fprintf(out," { %d, %d },\n",rp->lhs->index,rp->nrhs); lineno++; | |
4205 } | |
4206 tplt_xfer(lemp->name,in,out,&lineno); | |
4207 | |
4208 /* Generate code which execution during each REDUCE action */ | |
4209 for(rp=lemp->rule; rp; rp=rp->next){ | |
4210 translate_code(lemp, rp); | |
4211 } | |
4212 /* First output rules other than the default: rule */ | |
4213 for(rp=lemp->rule; rp; rp=rp->next){ | |
4214 struct rule *rp2; /* Other rules with the same action */ | |
4215 if( rp->code==0 ) continue; | |
4216 if( rp->code[0]=='\n' && rp->code[1]==0 ) continue; /* Will be default: */ | |
4217 fprintf(out," case %d: /* ", rp->index); | |
4218 writeRuleText(out, rp); | |
4219 fprintf(out, " */\n"); lineno++; | |
4220 for(rp2=rp->next; rp2; rp2=rp2->next){ | |
4221 if( rp2->code==rp->code ){ | |
4222 fprintf(out," case %d: /* ", rp2->index); | |
4223 writeRuleText(out, rp2); | |
4224 fprintf(out," */ yytestcase(yyruleno==%d);\n", rp2->index); lineno++; | |
4225 rp2->code = 0; | |
4226 } | |
4227 } | |
4228 emit_code(out,rp,lemp,&lineno); | |
4229 fprintf(out," break;\n"); lineno++; | |
4230 rp->code = 0; | |
4231 } | |
4232 /* Finally, output the default: rule. We choose as the default: all | |
4233 ** empty actions. */ | |
4234 fprintf(out," default:\n"); lineno++; | |
4235 for(rp=lemp->rule; rp; rp=rp->next){ | |
4236 if( rp->code==0 ) continue; | |
4237 assert( rp->code[0]=='\n' && rp->code[1]==0 ); | |
4238 fprintf(out," /* (%d) ", rp->index); | |
4239 writeRuleText(out, rp); | |
4240 fprintf(out, " */ yytestcase(yyruleno==%d);\n", rp->index); lineno++; | |
4241 } | |
4242 fprintf(out," break;\n"); lineno++; | |
4243 tplt_xfer(lemp->name,in,out,&lineno); | |
4244 | |
4245 /* Generate code which executes if a parse fails */ | |
4246 tplt_print(out,lemp,lemp->failure,&lineno); | |
4247 tplt_xfer(lemp->name,in,out,&lineno); | |
4248 | |
4249 /* Generate code which executes when a syntax error occurs */ | |
4250 tplt_print(out,lemp,lemp->error,&lineno); | |
4251 tplt_xfer(lemp->name,in,out,&lineno); | |
4252 | |
4253 /* Generate code which executes when the parser accepts its input */ | |
4254 tplt_print(out,lemp,lemp->accept,&lineno); | |
4255 tplt_xfer(lemp->name,in,out,&lineno); | |
4256 | |
4257 /* Append any addition code the user desires */ | |
4258 tplt_print(out,lemp,lemp->extracode,&lineno); | |
4259 | |
4260 fclose(in); | |
4261 fclose(out); | |
4262 return; | |
4263 } | |
4264 | |
4265 /* Generate a header file for the parser */ | |
4266 void ReportHeader(struct lemon *lemp) | |
4267 { | |
4268 FILE *out, *in; | |
4269 const char *prefix; | |
4270 char line[LINESIZE]; | |
4271 char pattern[LINESIZE]; | |
4272 int i; | |
4273 | |
4274 if( lemp->tokenprefix ) prefix = lemp->tokenprefix; | |
4275 else prefix = ""; | |
4276 in = file_open(lemp,".h","rb"); | |
4277 if( in ){ | |
4278 int nextChar; | |
4279 for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){ | |
4280 lemon_sprintf(pattern,"#define %s%-30s %3d\n", | |
4281 prefix,lemp->symbols[i]->name,i); | |
4282 if( strcmp(line,pattern) ) break; | |
4283 } | |
4284 nextChar = fgetc(in); | |
4285 fclose(in); | |
4286 if( i==lemp->nterminal && nextChar==EOF ){ | |
4287 /* No change in the file. Don't rewrite it. */ | |
4288 return; | |
4289 } | |
4290 } | |
4291 out = file_open(lemp,".h","wb"); | |
4292 if( out ){ | |
4293 for(i=1; i<lemp->nterminal; i++){ | |
4294 fprintf(out,"#define %s%-30s %3d\n",prefix,lemp->symbols[i]->name,i); | |
4295 } | |
4296 fclose(out); | |
4297 } | |
4298 return; | |
4299 } | |
4300 | |
4301 /* Reduce the size of the action tables, if possible, by making use | |
4302 ** of defaults. | |
4303 ** | |
4304 ** In this version, we take the most frequent REDUCE action and make | |
4305 ** it the default. Except, there is no default if the wildcard token | |
4306 ** is a possible look-ahead. | |
4307 */ | |
4308 void CompressTables(struct lemon *lemp) | |
4309 { | |
4310 struct state *stp; | |
4311 struct action *ap, *ap2; | |
4312 struct rule *rp, *rp2, *rbest; | |
4313 int nbest, n; | |
4314 int i; | |
4315 int usesWildcard; | |
4316 | |
4317 for(i=0; i<lemp->nstate; i++){ | |
4318 stp = lemp->sorted[i]; | |
4319 nbest = 0; | |
4320 rbest = 0; | |
4321 usesWildcard = 0; | |
4322 | |
4323 for(ap=stp->ap; ap; ap=ap->next){ | |
4324 if( ap->type==SHIFT && ap->sp==lemp->wildcard ){ | |
4325 usesWildcard = 1; | |
4326 } | |
4327 if( ap->type!=REDUCE ) continue; | |
4328 rp = ap->x.rp; | |
4329 if( rp->lhsStart ) continue; | |
4330 if( rp==rbest ) continue; | |
4331 n = 1; | |
4332 for(ap2=ap->next; ap2; ap2=ap2->next){ | |
4333 if( ap2->type!=REDUCE ) continue; | |
4334 rp2 = ap2->x.rp; | |
4335 if( rp2==rbest ) continue; | |
4336 if( rp2==rp ) n++; | |
4337 } | |
4338 if( n>nbest ){ | |
4339 nbest = n; | |
4340 rbest = rp; | |
4341 } | |
4342 } | |
4343 | |
4344 /* Do not make a default if the number of rules to default | |
4345 ** is not at least 1 or if the wildcard token is a possible | |
4346 ** lookahead. | |
4347 */ | |
4348 if( nbest<1 || usesWildcard ) continue; | |
4349 | |
4350 | |
4351 /* Combine matching REDUCE actions into a single default */ | |
4352 for(ap=stp->ap; ap; ap=ap->next){ | |
4353 if( ap->type==REDUCE && ap->x.rp==rbest ) break; | |
4354 } | |
4355 assert( ap ); | |
4356 ap->sp = Symbol_new("{default}"); | |
4357 for(ap=ap->next; ap; ap=ap->next){ | |
4358 if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED; | |
4359 } | |
4360 stp->ap = Action_sort(stp->ap); | |
4361 | |
4362 for(ap=stp->ap; ap; ap=ap->next){ | |
4363 if( ap->type==SHIFT ) break; | |
4364 if( ap->type==REDUCE && ap->x.rp!=rbest ) break; | |
4365 } | |
4366 if( ap==0 ){ | |
4367 stp->autoReduce = 1; | |
4368 stp->pDfltReduce = rbest; | |
4369 } | |
4370 } | |
4371 | |
4372 /* Make a second pass over all states and actions. Convert | |
4373 ** every action that is a SHIFT to an autoReduce state into | |
4374 ** a SHIFTREDUCE action. | |
4375 */ | |
4376 for(i=0; i<lemp->nstate; i++){ | |
4377 stp = lemp->sorted[i]; | |
4378 for(ap=stp->ap; ap; ap=ap->next){ | |
4379 struct state *pNextState; | |
4380 if( ap->type!=SHIFT ) continue; | |
4381 pNextState = ap->x.stp; | |
4382 if( pNextState->autoReduce && pNextState->pDfltReduce!=0 ){ | |
4383 ap->type = SHIFTREDUCE; | |
4384 ap->x.rp = pNextState->pDfltReduce; | |
4385 } | |
4386 } | |
4387 } | |
4388 } | |
4389 | |
4390 | |
4391 /* | |
4392 ** Compare two states for sorting purposes. The smaller state is the | |
4393 ** one with the most non-terminal actions. If they have the same number | |
4394 ** of non-terminal actions, then the smaller is the one with the most | |
4395 ** token actions. | |
4396 */ | |
4397 static int stateResortCompare(const void *a, const void *b){ | |
4398 const struct state *pA = *(const struct state**)a; | |
4399 const struct state *pB = *(const struct state**)b; | |
4400 int n; | |
4401 | |
4402 n = pB->nNtAct - pA->nNtAct; | |
4403 if( n==0 ){ | |
4404 n = pB->nTknAct - pA->nTknAct; | |
4405 if( n==0 ){ | |
4406 n = pB->statenum - pA->statenum; | |
4407 } | |
4408 } | |
4409 assert( n!=0 ); | |
4410 return n; | |
4411 } | |
4412 | |
4413 | |
4414 /* | |
4415 ** Renumber and resort states so that states with fewer choices | |
4416 ** occur at the end. Except, keep state 0 as the first state. | |
4417 */ | |
4418 void ResortStates(struct lemon *lemp) | |
4419 { | |
4420 int i; | |
4421 struct state *stp; | |
4422 struct action *ap; | |
4423 | |
4424 for(i=0; i<lemp->nstate; i++){ | |
4425 stp = lemp->sorted[i]; | |
4426 stp->nTknAct = stp->nNtAct = 0; | |
4427 stp->iDfltReduce = lemp->nrule; /* Init dflt action to "syntax error" */ | |
4428 stp->iTknOfst = NO_OFFSET; | |
4429 stp->iNtOfst = NO_OFFSET; | |
4430 for(ap=stp->ap; ap; ap=ap->next){ | |
4431 int iAction = compute_action(lemp,ap); | |
4432 if( iAction>=0 ){ | |
4433 if( ap->sp->index<lemp->nterminal ){ | |
4434 stp->nTknAct++; | |
4435 }else if( ap->sp->index<lemp->nsymbol ){ | |
4436 stp->nNtAct++; | |
4437 }else{ | |
4438 assert( stp->autoReduce==0 || stp->pDfltReduce==ap->x.rp ); | |
4439 stp->iDfltReduce = iAction - lemp->nstate - lemp->nrule; | |
4440 } | |
4441 } | |
4442 } | |
4443 } | |
4444 qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]), | |
4445 stateResortCompare); | |
4446 for(i=0; i<lemp->nstate; i++){ | |
4447 lemp->sorted[i]->statenum = i; | |
4448 } | |
4449 lemp->nxstate = lemp->nstate; | |
4450 while( lemp->nxstate>1 && lemp->sorted[lemp->nxstate-1]->autoReduce ){ | |
4451 lemp->nxstate--; | |
4452 } | |
4453 } | |
4454 | |
4455 | |
4456 /***************** From the file "set.c" ************************************/ | |
4457 /* | |
4458 ** Set manipulation routines for the LEMON parser generator. | |
4459 */ | |
4460 | |
4461 static int size = 0; | |
4462 | |
4463 /* Set the set size */ | |
4464 void SetSize(int n) | |
4465 { | |
4466 size = n+1; | |
4467 } | |
4468 | |
4469 /* Allocate a new set */ | |
4470 char *SetNew(){ | |
4471 char *s; | |
4472 s = (char*)calloc( size, 1); | |
4473 if( s==0 ){ | |
4474 extern void memory_error(); | |
4475 memory_error(); | |
4476 } | |
4477 return s; | |
4478 } | |
4479 | |
4480 /* Deallocate a set */ | |
4481 void SetFree(char *s) | |
4482 { | |
4483 free(s); | |
4484 } | |
4485 | |
4486 /* Add a new element to the set. Return TRUE if the element was added | |
4487 ** and FALSE if it was already there. */ | |
4488 int SetAdd(char *s, int e) | |
4489 { | |
4490 int rv; | |
4491 assert( e>=0 && e<size ); | |
4492 rv = s[e]; | |
4493 s[e] = 1; | |
4494 return !rv; | |
4495 } | |
4496 | |
4497 /* Add every element of s2 to s1. Return TRUE if s1 changes. */ | |
4498 int SetUnion(char *s1, char *s2) | |
4499 { | |
4500 int i, progress; | |
4501 progress = 0; | |
4502 for(i=0; i<size; i++){ | |
4503 if( s2[i]==0 ) continue; | |
4504 if( s1[i]==0 ){ | |
4505 progress = 1; | |
4506 s1[i] = 1; | |
4507 } | |
4508 } | |
4509 return progress; | |
4510 } | |
4511 /********************** From the file "table.c" ****************************/ | |
4512 /* | |
4513 ** All code in this file has been automatically generated | |
4514 ** from a specification in the file | |
4515 ** "table.q" | |
4516 ** by the associative array code building program "aagen". | |
4517 ** Do not edit this file! Instead, edit the specification | |
4518 ** file, then rerun aagen. | |
4519 */ | |
4520 /* | |
4521 ** Code for processing tables in the LEMON parser generator. | |
4522 */ | |
4523 | |
4524 PRIVATE unsigned strhash(const char *x) | |
4525 { | |
4526 unsigned h = 0; | |
4527 while( *x ) h = h*13 + *(x++); | |
4528 return h; | |
4529 } | |
4530 | |
4531 /* Works like strdup, sort of. Save a string in malloced memory, but | |
4532 ** keep strings in a table so that the same string is not in more | |
4533 ** than one place. | |
4534 */ | |
4535 const char *Strsafe(const char *y) | |
4536 { | |
4537 const char *z; | |
4538 char *cpy; | |
4539 | |
4540 if( y==0 ) return 0; | |
4541 z = Strsafe_find(y); | |
4542 if( z==0 && (cpy=(char *)malloc( lemonStrlen(y)+1 ))!=0 ){ | |
4543 lemon_strcpy(cpy,y); | |
4544 z = cpy; | |
4545 Strsafe_insert(z); | |
4546 } | |
4547 MemoryCheck(z); | |
4548 return z; | |
4549 } | |
4550 | |
4551 /* There is one instance of the following structure for each | |
4552 ** associative array of type "x1". | |
4553 */ | |
4554 struct s_x1 { | |
4555 int size; /* The number of available slots. */ | |
4556 /* Must be a power of 2 greater than or */ | |
4557 /* equal to 1 */ | |
4558 int count; /* Number of currently slots filled */ | |
4559 struct s_x1node *tbl; /* The data stored here */ | |
4560 struct s_x1node **ht; /* Hash table for lookups */ | |
4561 }; | |
4562 | |
4563 /* There is one instance of this structure for every data element | |
4564 ** in an associative array of type "x1". | |
4565 */ | |
4566 typedef struct s_x1node { | |
4567 const char *data; /* The data */ | |
4568 struct s_x1node *next; /* Next entry with the same hash */ | |
4569 struct s_x1node **from; /* Previous link */ | |
4570 } x1node; | |
4571 | |
4572 /* There is only one instance of the array, which is the following */ | |
4573 static struct s_x1 *x1a; | |
4574 | |
4575 /* Allocate a new associative array */ | |
4576 void Strsafe_init(){ | |
4577 if( x1a ) return; | |
4578 x1a = (struct s_x1*)malloc( sizeof(struct s_x1) ); | |
4579 if( x1a ){ | |
4580 x1a->size = 1024; | |
4581 x1a->count = 0; | |
4582 x1a->tbl = (x1node*)calloc(1024, sizeof(x1node) + sizeof(x1node*)); | |
4583 if( x1a->tbl==0 ){ | |
4584 free(x1a); | |
4585 x1a = 0; | |
4586 }else{ | |
4587 int i; | |
4588 x1a->ht = (x1node**)&(x1a->tbl[1024]); | |
4589 for(i=0; i<1024; i++) x1a->ht[i] = 0; | |
4590 } | |
4591 } | |
4592 } | |
4593 /* Insert a new record into the array. Return TRUE if successful. | |
4594 ** Prior data with the same key is NOT overwritten */ | |
4595 int Strsafe_insert(const char *data) | |
4596 { | |
4597 x1node *np; | |
4598 unsigned h; | |
4599 unsigned ph; | |
4600 | |
4601 if( x1a==0 ) return 0; | |
4602 ph = strhash(data); | |
4603 h = ph & (x1a->size-1); | |
4604 np = x1a->ht[h]; | |
4605 while( np ){ | |
4606 if( strcmp(np->data,data)==0 ){ | |
4607 /* An existing entry with the same key is found. */ | |
4608 /* Fail because overwrite is not allows. */ | |
4609 return 0; | |
4610 } | |
4611 np = np->next; | |
4612 } | |
4613 if( x1a->count>=x1a->size ){ | |
4614 /* Need to make the hash table bigger */ | |
4615 int i,arrSize; | |
4616 struct s_x1 array; | |
4617 array.size = arrSize = x1a->size*2; | |
4618 array.count = x1a->count; | |
4619 array.tbl = (x1node*)calloc(arrSize, sizeof(x1node) + sizeof(x1node*)); | |
4620 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ | |
4621 array.ht = (x1node**)&(array.tbl[arrSize]); | |
4622 for(i=0; i<arrSize; i++) array.ht[i] = 0; | |
4623 for(i=0; i<x1a->count; i++){ | |
4624 x1node *oldnp, *newnp; | |
4625 oldnp = &(x1a->tbl[i]); | |
4626 h = strhash(oldnp->data) & (arrSize-1); | |
4627 newnp = &(array.tbl[i]); | |
4628 if( array.ht[h] ) array.ht[h]->from = &(newnp->next); | |
4629 newnp->next = array.ht[h]; | |
4630 newnp->data = oldnp->data; | |
4631 newnp->from = &(array.ht[h]); | |
4632 array.ht[h] = newnp; | |
4633 } | |
4634 free(x1a->tbl); | |
4635 *x1a = array; | |
4636 } | |
4637 /* Insert the new data */ | |
4638 h = ph & (x1a->size-1); | |
4639 np = &(x1a->tbl[x1a->count++]); | |
4640 np->data = data; | |
4641 if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next); | |
4642 np->next = x1a->ht[h]; | |
4643 x1a->ht[h] = np; | |
4644 np->from = &(x1a->ht[h]); | |
4645 return 1; | |
4646 } | |
4647 | |
4648 /* Return a pointer to data assigned to the given key. Return NULL | |
4649 ** if no such key. */ | |
4650 const char *Strsafe_find(const char *key) | |
4651 { | |
4652 unsigned h; | |
4653 x1node *np; | |
4654 | |
4655 if( x1a==0 ) return 0; | |
4656 h = strhash(key) & (x1a->size-1); | |
4657 np = x1a->ht[h]; | |
4658 while( np ){ | |
4659 if( strcmp(np->data,key)==0 ) break; | |
4660 np = np->next; | |
4661 } | |
4662 return np ? np->data : 0; | |
4663 } | |
4664 | |
4665 /* Return a pointer to the (terminal or nonterminal) symbol "x". | |
4666 ** Create a new symbol if this is the first time "x" has been seen. | |
4667 */ | |
4668 struct symbol *Symbol_new(const char *x) | |
4669 { | |
4670 struct symbol *sp; | |
4671 | |
4672 sp = Symbol_find(x); | |
4673 if( sp==0 ){ | |
4674 sp = (struct symbol *)calloc(1, sizeof(struct symbol) ); | |
4675 MemoryCheck(sp); | |
4676 sp->name = Strsafe(x); | |
4677 sp->type = ISUPPER(*x) ? TERMINAL : NONTERMINAL; | |
4678 sp->rule = 0; | |
4679 sp->fallback = 0; | |
4680 sp->prec = -1; | |
4681 sp->assoc = UNK; | |
4682 sp->firstset = 0; | |
4683 sp->lambda = LEMON_FALSE; | |
4684 sp->destructor = 0; | |
4685 sp->destLineno = 0; | |
4686 sp->datatype = 0; | |
4687 sp->useCnt = 0; | |
4688 Symbol_insert(sp,sp->name); | |
4689 } | |
4690 sp->useCnt++; | |
4691 return sp; | |
4692 } | |
4693 | |
4694 /* Compare two symbols for sorting purposes. Return negative, | |
4695 ** zero, or positive if a is less then, equal to, or greater | |
4696 ** than b. | |
4697 ** | |
4698 ** Symbols that begin with upper case letters (terminals or tokens) | |
4699 ** must sort before symbols that begin with lower case letters | |
4700 ** (non-terminals). And MULTITERMINAL symbols (created using the | |
4701 ** %token_class directive) must sort at the very end. Other than | |
4702 ** that, the order does not matter. | |
4703 ** | |
4704 ** We find experimentally that leaving the symbols in their original | |
4705 ** order (the order they appeared in the grammar file) gives the | |
4706 ** smallest parser tables in SQLite. | |
4707 */ | |
4708 int Symbolcmpp(const void *_a, const void *_b) | |
4709 { | |
4710 const struct symbol *a = *(const struct symbol **) _a; | |
4711 const struct symbol *b = *(const struct symbol **) _b; | |
4712 int i1 = a->type==MULTITERMINAL ? 3 : a->name[0]>'Z' ? 2 : 1; | |
4713 int i2 = b->type==MULTITERMINAL ? 3 : b->name[0]>'Z' ? 2 : 1; | |
4714 return i1==i2 ? a->index - b->index : i1 - i2; | |
4715 } | |
4716 | |
4717 /* There is one instance of the following structure for each | |
4718 ** associative array of type "x2". | |
4719 */ | |
4720 struct s_x2 { | |
4721 int size; /* The number of available slots. */ | |
4722 /* Must be a power of 2 greater than or */ | |
4723 /* equal to 1 */ | |
4724 int count; /* Number of currently slots filled */ | |
4725 struct s_x2node *tbl; /* The data stored here */ | |
4726 struct s_x2node **ht; /* Hash table for lookups */ | |
4727 }; | |
4728 | |
4729 /* There is one instance of this structure for every data element | |
4730 ** in an associative array of type "x2". | |
4731 */ | |
4732 typedef struct s_x2node { | |
4733 struct symbol *data; /* The data */ | |
4734 const char *key; /* The key */ | |
4735 struct s_x2node *next; /* Next entry with the same hash */ | |
4736 struct s_x2node **from; /* Previous link */ | |
4737 } x2node; | |
4738 | |
4739 /* There is only one instance of the array, which is the following */ | |
4740 static struct s_x2 *x2a; | |
4741 | |
4742 /* Allocate a new associative array */ | |
4743 void Symbol_init(){ | |
4744 if( x2a ) return; | |
4745 x2a = (struct s_x2*)malloc( sizeof(struct s_x2) ); | |
4746 if( x2a ){ | |
4747 x2a->size = 128; | |
4748 x2a->count = 0; | |
4749 x2a->tbl = (x2node*)calloc(128, sizeof(x2node) + sizeof(x2node*)); | |
4750 if( x2a->tbl==0 ){ | |
4751 free(x2a); | |
4752 x2a = 0; | |
4753 }else{ | |
4754 int i; | |
4755 x2a->ht = (x2node**)&(x2a->tbl[128]); | |
4756 for(i=0; i<128; i++) x2a->ht[i] = 0; | |
4757 } | |
4758 } | |
4759 } | |
4760 /* Insert a new record into the array. Return TRUE if successful. | |
4761 ** Prior data with the same key is NOT overwritten */ | |
4762 int Symbol_insert(struct symbol *data, const char *key) | |
4763 { | |
4764 x2node *np; | |
4765 unsigned h; | |
4766 unsigned ph; | |
4767 | |
4768 if( x2a==0 ) return 0; | |
4769 ph = strhash(key); | |
4770 h = ph & (x2a->size-1); | |
4771 np = x2a->ht[h]; | |
4772 while( np ){ | |
4773 if( strcmp(np->key,key)==0 ){ | |
4774 /* An existing entry with the same key is found. */ | |
4775 /* Fail because overwrite is not allows. */ | |
4776 return 0; | |
4777 } | |
4778 np = np->next; | |
4779 } | |
4780 if( x2a->count>=x2a->size ){ | |
4781 /* Need to make the hash table bigger */ | |
4782 int i,arrSize; | |
4783 struct s_x2 array; | |
4784 array.size = arrSize = x2a->size*2; | |
4785 array.count = x2a->count; | |
4786 array.tbl = (x2node*)calloc(arrSize, sizeof(x2node) + sizeof(x2node*)); | |
4787 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ | |
4788 array.ht = (x2node**)&(array.tbl[arrSize]); | |
4789 for(i=0; i<arrSize; i++) array.ht[i] = 0; | |
4790 for(i=0; i<x2a->count; i++){ | |
4791 x2node *oldnp, *newnp; | |
4792 oldnp = &(x2a->tbl[i]); | |
4793 h = strhash(oldnp->key) & (arrSize-1); | |
4794 newnp = &(array.tbl[i]); | |
4795 if( array.ht[h] ) array.ht[h]->from = &(newnp->next); | |
4796 newnp->next = array.ht[h]; | |
4797 newnp->key = oldnp->key; | |
4798 newnp->data = oldnp->data; | |
4799 newnp->from = &(array.ht[h]); | |
4800 array.ht[h] = newnp; | |
4801 } | |
4802 free(x2a->tbl); | |
4803 *x2a = array; | |
4804 } | |
4805 /* Insert the new data */ | |
4806 h = ph & (x2a->size-1); | |
4807 np = &(x2a->tbl[x2a->count++]); | |
4808 np->key = key; | |
4809 np->data = data; | |
4810 if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next); | |
4811 np->next = x2a->ht[h]; | |
4812 x2a->ht[h] = np; | |
4813 np->from = &(x2a->ht[h]); | |
4814 return 1; | |
4815 } | |
4816 | |
4817 /* Return a pointer to data assigned to the given key. Return NULL | |
4818 ** if no such key. */ | |
4819 struct symbol *Symbol_find(const char *key) | |
4820 { | |
4821 unsigned h; | |
4822 x2node *np; | |
4823 | |
4824 if( x2a==0 ) return 0; | |
4825 h = strhash(key) & (x2a->size-1); | |
4826 np = x2a->ht[h]; | |
4827 while( np ){ | |
4828 if( strcmp(np->key,key)==0 ) break; | |
4829 np = np->next; | |
4830 } | |
4831 return np ? np->data : 0; | |
4832 } | |
4833 | |
4834 /* Return the n-th data. Return NULL if n is out of range. */ | |
4835 struct symbol *Symbol_Nth(int n) | |
4836 { | |
4837 struct symbol *data; | |
4838 if( x2a && n>0 && n<=x2a->count ){ | |
4839 data = x2a->tbl[n-1].data; | |
4840 }else{ | |
4841 data = 0; | |
4842 } | |
4843 return data; | |
4844 } | |
4845 | |
4846 /* Return the size of the array */ | |
4847 int Symbol_count() | |
4848 { | |
4849 return x2a ? x2a->count : 0; | |
4850 } | |
4851 | |
4852 /* Return an array of pointers to all data in the table. | |
4853 ** The array is obtained from malloc. Return NULL if memory allocation | |
4854 ** problems, or if the array is empty. */ | |
4855 struct symbol **Symbol_arrayof() | |
4856 { | |
4857 struct symbol **array; | |
4858 int i,arrSize; | |
4859 if( x2a==0 ) return 0; | |
4860 arrSize = x2a->count; | |
4861 array = (struct symbol **)calloc(arrSize, sizeof(struct symbol *)); | |
4862 if( array ){ | |
4863 for(i=0; i<arrSize; i++) array[i] = x2a->tbl[i].data; | |
4864 } | |
4865 return array; | |
4866 } | |
4867 | |
4868 /* Compare two configurations */ | |
4869 int Configcmp(const char *_a,const char *_b) | |
4870 { | |
4871 const struct config *a = (struct config *) _a; | |
4872 const struct config *b = (struct config *) _b; | |
4873 int x; | |
4874 x = a->rp->index - b->rp->index; | |
4875 if( x==0 ) x = a->dot - b->dot; | |
4876 return x; | |
4877 } | |
4878 | |
4879 /* Compare two states */ | |
4880 PRIVATE int statecmp(struct config *a, struct config *b) | |
4881 { | |
4882 int rc; | |
4883 for(rc=0; rc==0 && a && b; a=a->bp, b=b->bp){ | |
4884 rc = a->rp->index - b->rp->index; | |
4885 if( rc==0 ) rc = a->dot - b->dot; | |
4886 } | |
4887 if( rc==0 ){ | |
4888 if( a ) rc = 1; | |
4889 if( b ) rc = -1; | |
4890 } | |
4891 return rc; | |
4892 } | |
4893 | |
4894 /* Hash a state */ | |
4895 PRIVATE unsigned statehash(struct config *a) | |
4896 { | |
4897 unsigned h=0; | |
4898 while( a ){ | |
4899 h = h*571 + a->rp->index*37 + a->dot; | |
4900 a = a->bp; | |
4901 } | |
4902 return h; | |
4903 } | |
4904 | |
4905 /* Allocate a new state structure */ | |
4906 struct state *State_new() | |
4907 { | |
4908 struct state *newstate; | |
4909 newstate = (struct state *)calloc(1, sizeof(struct state) ); | |
4910 MemoryCheck(newstate); | |
4911 return newstate; | |
4912 } | |
4913 | |
4914 /* There is one instance of the following structure for each | |
4915 ** associative array of type "x3". | |
4916 */ | |
4917 struct s_x3 { | |
4918 int size; /* The number of available slots. */ | |
4919 /* Must be a power of 2 greater than or */ | |
4920 /* equal to 1 */ | |
4921 int count; /* Number of currently slots filled */ | |
4922 struct s_x3node *tbl; /* The data stored here */ | |
4923 struct s_x3node **ht; /* Hash table for lookups */ | |
4924 }; | |
4925 | |
4926 /* There is one instance of this structure for every data element | |
4927 ** in an associative array of type "x3". | |
4928 */ | |
4929 typedef struct s_x3node { | |
4930 struct state *data; /* The data */ | |
4931 struct config *key; /* The key */ | |
4932 struct s_x3node *next; /* Next entry with the same hash */ | |
4933 struct s_x3node **from; /* Previous link */ | |
4934 } x3node; | |
4935 | |
4936 /* There is only one instance of the array, which is the following */ | |
4937 static struct s_x3 *x3a; | |
4938 | |
4939 /* Allocate a new associative array */ | |
4940 void State_init(){ | |
4941 if( x3a ) return; | |
4942 x3a = (struct s_x3*)malloc( sizeof(struct s_x3) ); | |
4943 if( x3a ){ | |
4944 x3a->size = 128; | |
4945 x3a->count = 0; | |
4946 x3a->tbl = (x3node*)calloc(128, sizeof(x3node) + sizeof(x3node*)); | |
4947 if( x3a->tbl==0 ){ | |
4948 free(x3a); | |
4949 x3a = 0; | |
4950 }else{ | |
4951 int i; | |
4952 x3a->ht = (x3node**)&(x3a->tbl[128]); | |
4953 for(i=0; i<128; i++) x3a->ht[i] = 0; | |
4954 } | |
4955 } | |
4956 } | |
4957 /* Insert a new record into the array. Return TRUE if successful. | |
4958 ** Prior data with the same key is NOT overwritten */ | |
4959 int State_insert(struct state *data, struct config *key) | |
4960 { | |
4961 x3node *np; | |
4962 unsigned h; | |
4963 unsigned ph; | |
4964 | |
4965 if( x3a==0 ) return 0; | |
4966 ph = statehash(key); | |
4967 h = ph & (x3a->size-1); | |
4968 np = x3a->ht[h]; | |
4969 while( np ){ | |
4970 if( statecmp(np->key,key)==0 ){ | |
4971 /* An existing entry with the same key is found. */ | |
4972 /* Fail because overwrite is not allows. */ | |
4973 return 0; | |
4974 } | |
4975 np = np->next; | |
4976 } | |
4977 if( x3a->count>=x3a->size ){ | |
4978 /* Need to make the hash table bigger */ | |
4979 int i,arrSize; | |
4980 struct s_x3 array; | |
4981 array.size = arrSize = x3a->size*2; | |
4982 array.count = x3a->count; | |
4983 array.tbl = (x3node*)calloc(arrSize, sizeof(x3node) + sizeof(x3node*)); | |
4984 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ | |
4985 array.ht = (x3node**)&(array.tbl[arrSize]); | |
4986 for(i=0; i<arrSize; i++) array.ht[i] = 0; | |
4987 for(i=0; i<x3a->count; i++){ | |
4988 x3node *oldnp, *newnp; | |
4989 oldnp = &(x3a->tbl[i]); | |
4990 h = statehash(oldnp->key) & (arrSize-1); | |
4991 newnp = &(array.tbl[i]); | |
4992 if( array.ht[h] ) array.ht[h]->from = &(newnp->next); | |
4993 newnp->next = array.ht[h]; | |
4994 newnp->key = oldnp->key; | |
4995 newnp->data = oldnp->data; | |
4996 newnp->from = &(array.ht[h]); | |
4997 array.ht[h] = newnp; | |
4998 } | |
4999 free(x3a->tbl); | |
5000 *x3a = array; | |
5001 } | |
5002 /* Insert the new data */ | |
5003 h = ph & (x3a->size-1); | |
5004 np = &(x3a->tbl[x3a->count++]); | |
5005 np->key = key; | |
5006 np->data = data; | |
5007 if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next); | |
5008 np->next = x3a->ht[h]; | |
5009 x3a->ht[h] = np; | |
5010 np->from = &(x3a->ht[h]); | |
5011 return 1; | |
5012 } | |
5013 | |
5014 /* Return a pointer to data assigned to the given key. Return NULL | |
5015 ** if no such key. */ | |
5016 struct state *State_find(struct config *key) | |
5017 { | |
5018 unsigned h; | |
5019 x3node *np; | |
5020 | |
5021 if( x3a==0 ) return 0; | |
5022 h = statehash(key) & (x3a->size-1); | |
5023 np = x3a->ht[h]; | |
5024 while( np ){ | |
5025 if( statecmp(np->key,key)==0 ) break; | |
5026 np = np->next; | |
5027 } | |
5028 return np ? np->data : 0; | |
5029 } | |
5030 | |
5031 /* Return an array of pointers to all data in the table. | |
5032 ** The array is obtained from malloc. Return NULL if memory allocation | |
5033 ** problems, or if the array is empty. */ | |
5034 struct state **State_arrayof() | |
5035 { | |
5036 struct state **array; | |
5037 int i,arrSize; | |
5038 if( x3a==0 ) return 0; | |
5039 arrSize = x3a->count; | |
5040 array = (struct state **)calloc(arrSize, sizeof(struct state *)); | |
5041 if( array ){ | |
5042 for(i=0; i<arrSize; i++) array[i] = x3a->tbl[i].data; | |
5043 } | |
5044 return array; | |
5045 } | |
5046 | |
5047 /* Hash a configuration */ | |
5048 PRIVATE unsigned confighash(struct config *a) | |
5049 { | |
5050 unsigned h=0; | |
5051 h = h*571 + a->rp->index*37 + a->dot; | |
5052 return h; | |
5053 } | |
5054 | |
5055 /* There is one instance of the following structure for each | |
5056 ** associative array of type "x4". | |
5057 */ | |
5058 struct s_x4 { | |
5059 int size; /* The number of available slots. */ | |
5060 /* Must be a power of 2 greater than or */ | |
5061 /* equal to 1 */ | |
5062 int count; /* Number of currently slots filled */ | |
5063 struct s_x4node *tbl; /* The data stored here */ | |
5064 struct s_x4node **ht; /* Hash table for lookups */ | |
5065 }; | |
5066 | |
5067 /* There is one instance of this structure for every data element | |
5068 ** in an associative array of type "x4". | |
5069 */ | |
5070 typedef struct s_x4node { | |
5071 struct config *data; /* The data */ | |
5072 struct s_x4node *next; /* Next entry with the same hash */ | |
5073 struct s_x4node **from; /* Previous link */ | |
5074 } x4node; | |
5075 | |
5076 /* There is only one instance of the array, which is the following */ | |
5077 static struct s_x4 *x4a; | |
5078 | |
5079 /* Allocate a new associative array */ | |
5080 void Configtable_init(){ | |
5081 if( x4a ) return; | |
5082 x4a = (struct s_x4*)malloc( sizeof(struct s_x4) ); | |
5083 if( x4a ){ | |
5084 x4a->size = 64; | |
5085 x4a->count = 0; | |
5086 x4a->tbl = (x4node*)calloc(64, sizeof(x4node) + sizeof(x4node*)); | |
5087 if( x4a->tbl==0 ){ | |
5088 free(x4a); | |
5089 x4a = 0; | |
5090 }else{ | |
5091 int i; | |
5092 x4a->ht = (x4node**)&(x4a->tbl[64]); | |
5093 for(i=0; i<64; i++) x4a->ht[i] = 0; | |
5094 } | |
5095 } | |
5096 } | |
5097 /* Insert a new record into the array. Return TRUE if successful. | |
5098 ** Prior data with the same key is NOT overwritten */ | |
5099 int Configtable_insert(struct config *data) | |
5100 { | |
5101 x4node *np; | |
5102 unsigned h; | |
5103 unsigned ph; | |
5104 | |
5105 if( x4a==0 ) return 0; | |
5106 ph = confighash(data); | |
5107 h = ph & (x4a->size-1); | |
5108 np = x4a->ht[h]; | |
5109 while( np ){ | |
5110 if( Configcmp((const char *) np->data,(const char *) data)==0 ){ | |
5111 /* An existing entry with the same key is found. */ | |
5112 /* Fail because overwrite is not allows. */ | |
5113 return 0; | |
5114 } | |
5115 np = np->next; | |
5116 } | |
5117 if( x4a->count>=x4a->size ){ | |
5118 /* Need to make the hash table bigger */ | |
5119 int i,arrSize; | |
5120 struct s_x4 array; | |
5121 array.size = arrSize = x4a->size*2; | |
5122 array.count = x4a->count; | |
5123 array.tbl = (x4node*)calloc(arrSize, sizeof(x4node) + sizeof(x4node*)); | |
5124 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */ | |
5125 array.ht = (x4node**)&(array.tbl[arrSize]); | |
5126 for(i=0; i<arrSize; i++) array.ht[i] = 0; | |
5127 for(i=0; i<x4a->count; i++){ | |
5128 x4node *oldnp, *newnp; | |
5129 oldnp = &(x4a->tbl[i]); | |
5130 h = confighash(oldnp->data) & (arrSize-1); | |
5131 newnp = &(array.tbl[i]); | |
5132 if( array.ht[h] ) array.ht[h]->from = &(newnp->next); | |
5133 newnp->next = array.ht[h]; | |
5134 newnp->data = oldnp->data; | |
5135 newnp->from = &(array.ht[h]); | |
5136 array.ht[h] = newnp; | |
5137 } | |
5138 free(x4a->tbl); | |
5139 *x4a = array; | |
5140 } | |
5141 /* Insert the new data */ | |
5142 h = ph & (x4a->size-1); | |
5143 np = &(x4a->tbl[x4a->count++]); | |
5144 np->data = data; | |
5145 if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next); | |
5146 np->next = x4a->ht[h]; | |
5147 x4a->ht[h] = np; | |
5148 np->from = &(x4a->ht[h]); | |
5149 return 1; | |
5150 } | |
5151 | |
5152 /* Return a pointer to data assigned to the given key. Return NULL | |
5153 ** if no such key. */ | |
5154 struct config *Configtable_find(struct config *key) | |
5155 { | |
5156 int h; | |
5157 x4node *np; | |
5158 | |
5159 if( x4a==0 ) return 0; | |
5160 h = confighash(key) & (x4a->size-1); | |
5161 np = x4a->ht[h]; | |
5162 while( np ){ | |
5163 if( Configcmp((const char *) np->data,(const char *) key)==0 ) break; | |
5164 np = np->next; | |
5165 } | |
5166 return np ? np->data : 0; | |
5167 } | |
5168 | |
5169 /* Remove all data from the table. Pass each data to the function "f" | |
5170 ** as it is removed. ("f" may be null to avoid this step.) */ | |
5171 void Configtable_clear(int(*f)(struct config *)) | |
5172 { | |
5173 int i; | |
5174 if( x4a==0 || x4a->count==0 ) return; | |
5175 if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data); | |
5176 for(i=0; i<x4a->size; i++) x4a->ht[i] = 0; | |
5177 x4a->count = 0; | |
5178 return; | |
5179 } | |
OLD | NEW |