OLD | NEW |
| (Empty) |
1 # 2014 May 6. | |
2 # | |
3 # The author disclaims copyright to this source code. In place of | |
4 # a legal notice, here is a blessing: | |
5 # | |
6 # May you do good and not evil. | |
7 # May you find forgiveness for yourself and forgive others. | |
8 # May you share freely, never taking more than you give. | |
9 # | |
10 #*********************************************************************** | |
11 # This file implements regression tests for SQLite library. | |
12 # | |
13 # The tests in this file are brute force tests of the multi-threaded | |
14 # sorter. | |
15 # | |
16 | |
17 set testdir [file dirname $argv0] | |
18 source $testdir/tester.tcl | |
19 set testprefix sort4 | |
20 db close | |
21 sqlite3_shutdown | |
22 sqlite3_config_pmasz 10 | |
23 sqlite3_initialize | |
24 sqlite3 db test.db | |
25 | |
26 | |
27 # Configure the sorter to use 3 background threads. | |
28 # | |
29 # EVIDENCE-OF: R-19249-32353 SQLITE_LIMIT_WORKER_THREADS The maximum | |
30 # number of auxiliary worker threads that a single prepared statement | |
31 # may start. | |
32 # | |
33 do_test sort4-init001 { | |
34 db eval {PRAGMA threads=5} | |
35 sqlite3_limit db SQLITE_LIMIT_WORKER_THREADS -1 | |
36 } {5} | |
37 do_test sort4-init002 { | |
38 sqlite3_limit db SQLITE_LIMIT_WORKER_THREADS 3 | |
39 db eval {PRAGMA threads} | |
40 } {3} | |
41 | |
42 | |
43 # Minimum number of seconds to run for. If the value is 0, each test | |
44 # is run exactly once. Otherwise, tests are repeated until the timeout | |
45 # expires. | |
46 set SORT4TIMEOUT 0 | |
47 if {[permutation] == "multithread"} { set SORT4TIMEOUT 300 } | |
48 | |
49 #-------------------------------------------------------------------- | |
50 # Set up a table "t1" containing $nRow rows. Each row contains also | |
51 # contains blob fields that collectively contain at least $nPayload | |
52 # bytes of content. The table schema is as follows: | |
53 # | |
54 # CREATE TABLE t1(a INTEGER, <extra-columns>, b INTEGER); | |
55 # | |
56 # For each row, the values of columns "a" and "b" are set to the same | |
57 # pseudo-randomly selected integer. The "extra-columns", of which there | |
58 # are at most eight, are named c0, c1, c2 etc. Column c0 contains a 4 | |
59 # byte string. Column c1 an 8 byte string. Field c2 16 bytes, and so on. | |
60 # | |
61 # This table is intended to be used for testing queries of the form: | |
62 # | |
63 # SELECT a, <cols>, b FROM t1 ORDER BY a; | |
64 # | |
65 # The test code checks that rows are returned in order, and that the | |
66 # values of "a" and "b" are the same for each row (the idea being that | |
67 # if field "b" at the end of the sorter record has not been corrupted, | |
68 # the rest of the record is probably Ok as well). | |
69 # | |
70 proc populate_table {nRow nPayload} { | |
71 set nCol 0 | |
72 | |
73 set n 0 | |
74 for {set nCol 0} {$n < $nPayload} {incr nCol} { | |
75 incr n [expr (4 << $nCol)] | |
76 } | |
77 | |
78 set cols [lrange [list xxx c0 c1 c2 c3 c4 c5 c6 c7] 1 $nCol] | |
79 set data [lrange [list xxx \ | |
80 randomblob(4) randomblob(8) randomblob(16) randomblob(32) \ | |
81 randomblob(64) randomblob(128) randomblob(256) randomblob(512) \ | |
82 ] 1 $nCol] | |
83 | |
84 execsql { DROP TABLE IF EXISTS t1 } | |
85 | |
86 db transaction { | |
87 execsql "CREATE TABLE t1(a, [join $cols ,], b);" | |
88 set insert "INSERT INTO t1 VALUES(:k, [join $data ,], :k)" | |
89 for {set i 0} {$i < $nRow} {incr i} { | |
90 set k [expr int(rand()*1000000000)] | |
91 execsql $insert | |
92 } | |
93 } | |
94 } | |
95 | |
96 # Helper for [do_sorter_test] | |
97 # | |
98 proc sorter_test {nRow nRead nPayload} { | |
99 set res [list] | |
100 | |
101 set nLoad [expr ($nRow > $nRead) ? $nRead : $nRow] | |
102 | |
103 set nPayload [expr (($nPayload+3)/4) * 4] | |
104 set cols [list] | |
105 foreach {mask col} { | |
106 0x04 c0 0x08 c1 0x10 c2 0x20 c3 | |
107 0x40 c4 0x80 c5 0x100 c6 0x200 c7 | |
108 } { | |
109 if {$nPayload & $mask} { lappend cols $col } | |
110 } | |
111 | |
112 # Create two SELECT statements. Statement $sql1 uses the sorter to sort | |
113 # $nRow records of a bit over $nPayload bytes each read from the "t1" | |
114 # table created by [populate_table] proc above. Rows are sorted in order | |
115 # of the integer field in each "t1" record. | |
116 # | |
117 # The second SQL statement sorts the same set of rows as the first, but | |
118 # uses a LIMIT clause, causing SQLite to use a temp table instead of the | |
119 # sorter for sorting. | |
120 # | |
121 set sql1 "SELECT a, [join $cols ,], b FROM t1 WHERE rowid<=$nRow ORDER BY a" | |
122 set sql2 "SELECT a FROM t1 WHERE rowid<=$nRow ORDER BY a LIMIT $nRead" | |
123 | |
124 # Pass the two SQL statements to a helper command written in C. This | |
125 # command steps statement $sql1 $nRead times and compares the integer | |
126 # values in the rows returned with the results of executing $sql2. If | |
127 # the comparison fails (indicating some bug in the sorter), a Tcl | |
128 # exception is thrown. | |
129 # | |
130 sorter_test_sort4_helper db $sql1 $nRead $sql2 | |
131 set {} {} | |
132 } | |
133 | |
134 # Usage: | |
135 # | |
136 # do_sorter_test <testname> <args>... | |
137 # | |
138 # where <args> are any of the following switches: | |
139 # | |
140 # -rows N (number of rows to have sorter sort) | |
141 # -read N (number of rows to read out of sorter) | |
142 # -payload N (bytes of payload to read with each row) | |
143 # -cachesize N (Value for "PRAGMA cache_size = ?") | |
144 # -repeats N (number of times to repeat test) | |
145 # -fakeheap BOOL (true to use separate allocations for in-memory records) | |
146 # | |
147 proc do_sorter_test {tn args} { | |
148 set a(-rows) 1000 | |
149 set a(-repeats) 1 | |
150 set a(-read) 100 | |
151 set a(-payload) 100 | |
152 set a(-cachesize) 100 | |
153 set a(-fakeheap) 0 | |
154 | |
155 foreach {s val} $args { | |
156 if {[info exists a($s)]==0} { | |
157 unset a(-cachesize) | |
158 set optlist "[join [array names a] ,] or -cachesize" | |
159 error "Unknown option $s, expected $optlist" | |
160 } | |
161 set a($s) $val | |
162 } | |
163 if {[permutation] == "memsys3" || [permutation] == "memsys5"} { | |
164 set a(-fakeheap) 0 | |
165 } | |
166 if {$a(-fakeheap)} { sorter_test_fakeheap 1 } | |
167 | |
168 | |
169 db eval "PRAGMA cache_size = $a(-cachesize)" | |
170 do_test $tn [subst -nocommands { | |
171 for {set i 0} {[set i] < $a(-repeats)} {incr i} { | |
172 sorter_test $a(-rows) $a(-read) $a(-payload) | |
173 } | |
174 }] {} | |
175 | |
176 if {$a(-fakeheap)} { sorter_test_fakeheap 0 } | |
177 } | |
178 | |
179 proc clock_seconds {} { | |
180 db one {SELECT strftime('%s')} | |
181 } | |
182 | |
183 #------------------------------------------------------------------------- | |
184 # Begin tests here. | |
185 | |
186 # Create a test database. | |
187 do_test 1 { | |
188 execsql "PRAGMA page_size = 4096" | |
189 populate_table 100000 500 | |
190 } {} | |
191 | |
192 set iTimeLimit [expr [clock_seconds] + $SORT4TIMEOUT] | |
193 | |
194 for {set t 2} {1} {incr tn} { | |
195 do_sorter_test $t.2 -repeats 10 -rows 1000 -read 100 | |
196 do_sorter_test $t.3 -repeats 10 -rows 100000 -read 1000 | |
197 do_sorter_test $t.4 -repeats 10 -rows 100000 -read 1000 -payload 500 | |
198 do_sorter_test $t.5 -repeats 10 -rows 100000 -read 100000 -payload 8 | |
199 do_sorter_test $t.6 -repeats 10 -rows 100000 -read 10 -payload 8 | |
200 do_sorter_test $t.7 -repeats 10 -rows 10000 -read 10000 -payload 8 -fakeheap 1 | |
201 do_sorter_test $t.8 -repeats 10 -rows 100000 -read 10000 -cachesize 250 | |
202 | |
203 set iNow [clock_seconds] | |
204 if {$iNow>=$iTimeLimit} break | |
205 do_test "$testprefix-([expr $iTimeLimit-$iNow] seconds remain)" {} {} | |
206 } | |
207 | |
208 finish_test | |
OLD | NEW |