OLD | NEW |
| (Empty) |
1 # 2005 November 30 | |
2 # | |
3 # The author disclaims copyright to this source code. In place of | |
4 # a legal notice, here is a blessing: | |
5 # | |
6 # May you do good and not evil. | |
7 # May you find forgiveness for yourself and forgive others. | |
8 # May you share freely, never taking more than you give. | |
9 # | |
10 #*********************************************************************** | |
11 # | |
12 # This file contains test cases focused on the two memory-management APIs, | |
13 # sqlite3_soft_heap_limit() and sqlite3_release_memory(). | |
14 # | |
15 # Prior to version 3.6.2, calling sqlite3_release_memory() or exceeding | |
16 # the configured soft heap limit could cause sqlite to upgrade database | |
17 # locks and flush dirty pages to the file system. As of 3.6.2, this is | |
18 # no longer the case. In version 3.6.2, sqlite3_release_memory() only | |
19 # reclaims clean pages. This test file has been updated accordingly. | |
20 # | |
21 # $Id: malloc5.test,v 1.22 2009/04/11 19:09:54 drh Exp $ | |
22 | |
23 set testdir [file dirname $argv0] | |
24 source $testdir/tester.tcl | |
25 source $testdir/malloc_common.tcl | |
26 db close | |
27 | |
28 # Only run these tests if memory debugging is turned on. | |
29 # | |
30 if {!$MEMDEBUG} { | |
31 puts "Skipping malloc5 tests: not compiled with -DSQLITE_MEMDEBUG..." | |
32 finish_test | |
33 return | |
34 } | |
35 | |
36 # Skip these tests if OMIT_MEMORY_MANAGEMENT was defined at compile time. | |
37 ifcapable !memorymanage { | |
38 finish_test | |
39 return | |
40 } | |
41 | |
42 test_set_config_pagecache 0 100 | |
43 | |
44 sqlite3_soft_heap_limit 0 | |
45 sqlite3 db test.db | |
46 db eval {PRAGMA cache_size=1} | |
47 | |
48 do_test malloc5-1.1 { | |
49 # Simplest possible test. Call sqlite3_release_memory when there is exactly | |
50 # one unused page in a single pager cache. The page cannot be freed, as | |
51 # it is dirty. So sqlite3_release_memory() returns 0. | |
52 # | |
53 execsql { | |
54 PRAGMA auto_vacuum=OFF; | |
55 BEGIN; | |
56 CREATE TABLE abc(a, b, c); | |
57 } | |
58 sqlite3_release_memory | |
59 } {0} | |
60 | |
61 do_test malloc5-1.2 { | |
62 # Test that the transaction started in the above test is still active. | |
63 # The lock on the database file should not have been upgraded (this was | |
64 # not the case before version 3.6.2). | |
65 # | |
66 sqlite3 db2 test.db | |
67 execsql {PRAGMA cache_size=2; SELECT * FROM sqlite_master } db2 | |
68 } {} | |
69 do_test malloc5-1.3 { | |
70 # Call [sqlite3_release_memory] when there is exactly one unused page | |
71 # in the cache belonging to db2. | |
72 # | |
73 set ::pgalloc [sqlite3_release_memory] | |
74 } {0} | |
75 | |
76 # The sizes of memory allocations from system malloc() might vary, | |
77 # depending on the memory allocator algorithms used. The following | |
78 # routine is designed to support answers that fall within a range | |
79 # of values while also supplying easy-to-understand "expected" values | |
80 # when errors occur. | |
81 # | |
82 proc value_in_range {target x args} { | |
83 set v [lindex $args 0] | |
84 if {$v!=""} { | |
85 if {$v<$target*$x} {return $v} | |
86 if {$v>$target/$x} {return $v} | |
87 } | |
88 return "number between [expr {int($target*$x)}] and [expr {int($target/$x)}]" | |
89 } | |
90 set mrange 0.98 ;# plus or minus 2% | |
91 | |
92 | |
93 do_test malloc5-1.4 { | |
94 # Commit the transaction and open a new one. Read 1 page into the cache. | |
95 # Because the page is not dirty, it is eligible for collection even | |
96 # before the transaction is concluded. | |
97 # | |
98 execsql { | |
99 COMMIT; | |
100 BEGIN; | |
101 SELECT * FROM abc; | |
102 } | |
103 value_in_range $::pgalloc $::mrange [sqlite3_release_memory] | |
104 } [value_in_range $::pgalloc $::mrange] | |
105 | |
106 do_test malloc5-1.5 { | |
107 # Conclude the transaction opened in the previous [do_test] block. This | |
108 # causes another page (page 1) to become eligible for recycling. | |
109 # | |
110 execsql { COMMIT } | |
111 value_in_range $::pgalloc $::mrange [sqlite3_release_memory] | |
112 } [value_in_range $::pgalloc $::mrange] | |
113 | |
114 do_test malloc5-1.6 { | |
115 # Manipulate the cache so that it contains two unused pages. One requires | |
116 # a journal-sync to free, the other does not. | |
117 db2 close | |
118 execsql { | |
119 BEGIN; | |
120 SELECT * FROM abc; | |
121 CREATE TABLE def(d, e, f); | |
122 } | |
123 value_in_range $::pgalloc $::mrange [sqlite3_release_memory 500] | |
124 } [value_in_range $::pgalloc $::mrange] | |
125 | |
126 do_test malloc5-1.7 { | |
127 # Database should not be locked this time. | |
128 sqlite3 db2 test.db | |
129 catchsql { SELECT * FROM abc } db2 | |
130 } {0 {}} | |
131 do_test malloc5-1.8 { | |
132 # Try to release another block of memory. This will fail as the only | |
133 # pages currently in the cache are dirty (page 3) or pinned (page 1). | |
134 db2 close | |
135 sqlite3_release_memory 500 | |
136 } 0 | |
137 do_test malloc5-1.8 { | |
138 # Database is still not locked. | |
139 # | |
140 sqlite3 db2 test.db | |
141 catchsql { SELECT * FROM abc } db2 | |
142 } {0 {}} | |
143 do_test malloc5-1.9 { | |
144 execsql { | |
145 COMMIT; | |
146 } | |
147 } {} | |
148 | |
149 do_test malloc5-2.1 { | |
150 # Put some data in tables abc and def. Both tables are still wholly | |
151 # contained within their root pages. | |
152 execsql { | |
153 INSERT INTO abc VALUES(1, 2, 3); | |
154 INSERT INTO abc VALUES(4, 5, 6); | |
155 INSERT INTO def VALUES(7, 8, 9); | |
156 INSERT INTO def VALUES(10,11,12); | |
157 } | |
158 } {} | |
159 do_test malloc5-2.2 { | |
160 # Load the root-page for table def into the cache. Then query table abc. | |
161 # Halfway through the query call sqlite3_release_memory(). The goal of this | |
162 # test is to make sure we don't free pages that are in use (specifically, | |
163 # the root of table abc). | |
164 sqlite3_release_memory | |
165 set nRelease 0 | |
166 execsql { | |
167 BEGIN; | |
168 SELECT * FROM def; | |
169 } | |
170 set data [list] | |
171 db eval {SELECT * FROM abc} { | |
172 incr nRelease [sqlite3_release_memory] | |
173 lappend data $a $b $c | |
174 } | |
175 execsql { | |
176 COMMIT; | |
177 } | |
178 list $nRelease $data | |
179 } [list $pgalloc [list 1 2 3 4 5 6]] | |
180 | |
181 do_test malloc5-3.1 { | |
182 # Simple test to show that if two pagers are opened from within this | |
183 # thread, memory is freed from both when sqlite3_release_memory() is | |
184 # called. | |
185 execsql { | |
186 BEGIN; | |
187 SELECT * FROM abc; | |
188 } | |
189 execsql { | |
190 SELECT * FROM sqlite_master; | |
191 BEGIN; | |
192 SELECT * FROM def; | |
193 } db2 | |
194 value_in_range [expr $::pgalloc*2] 0.99 [sqlite3_release_memory] | |
195 } [value_in_range [expr $::pgalloc * 2] 0.99] | |
196 do_test malloc5-3.2 { | |
197 concat \ | |
198 [execsql {SELECT * FROM abc; COMMIT}] \ | |
199 [execsql {SELECT * FROM def; COMMIT} db2] | |
200 } {1 2 3 4 5 6 7 8 9 10 11 12} | |
201 | |
202 db2 close | |
203 puts "Highwater mark: [sqlite3_memory_highwater]" | |
204 | |
205 # The following two test cases each execute a transaction in which | |
206 # 10000 rows are inserted into table abc. The first test case is used | |
207 # to ensure that more than 1MB of dynamic memory is used to perform | |
208 # the transaction. | |
209 # | |
210 # The second test case sets the "soft-heap-limit" to 100,000 bytes (0.1 MB) | |
211 # and tests to see that this limit is not exceeded at any point during | |
212 # transaction execution. | |
213 # | |
214 # Before executing malloc5-4.* we save the value of the current soft heap | |
215 # limit in variable ::soft_limit. The original value is restored after | |
216 # running the tests. | |
217 # | |
218 set ::soft_limit [sqlite3_soft_heap_limit -1] | |
219 execsql {PRAGMA cache_size=2000} | |
220 do_test malloc5-4.1 { | |
221 execsql {BEGIN;} | |
222 execsql {DELETE FROM abc;} | |
223 for {set i 0} {$i < 10000} {incr i} { | |
224 execsql "INSERT INTO abc VALUES($i, $i, '[string repeat X 100]');" | |
225 } | |
226 execsql {COMMIT;} | |
227 db cache flush | |
228 sqlite3_release_memory | |
229 sqlite3_memory_highwater 1 | |
230 execsql {SELECT * FROM abc} | |
231 set nMaxBytes [sqlite3_memory_highwater 1] | |
232 puts -nonewline " (Highwater mark: $nMaxBytes) " | |
233 expr $nMaxBytes > 1000000 | |
234 } {1} | |
235 do_test malloc5-4.2 { | |
236 db eval {PRAGMA cache_size=1} | |
237 db cache flush | |
238 sqlite3_release_memory | |
239 sqlite3_soft_heap_limit 100000 | |
240 sqlite3_memory_highwater 1 | |
241 execsql {SELECT * FROM abc} | |
242 set nMaxBytes [sqlite3_memory_highwater 1] | |
243 puts -nonewline " (Highwater mark: $nMaxBytes) " | |
244 expr $nMaxBytes <= 110000 | |
245 } {1} | |
246 do_test malloc5-4.3 { | |
247 # Check that the content of table abc is at least roughly as expected. | |
248 execsql { | |
249 SELECT count(*), sum(a), sum(b) FROM abc; | |
250 } | |
251 } [list 10000 [expr int(10000.0 * 4999.5)] [expr int(10000.0 * 4999.5)]] | |
252 | |
253 # Restore the soft heap limit. | |
254 sqlite3_soft_heap_limit $::soft_limit | |
255 | |
256 # Test that there are no problems calling sqlite3_release_memory when | |
257 # there are open in-memory databases. | |
258 # | |
259 # At one point these tests would cause a seg-fault. | |
260 # | |
261 do_test malloc5-5.1 { | |
262 db close | |
263 sqlite3 db :memory: | |
264 execsql { | |
265 BEGIN; | |
266 CREATE TABLE abc(a, b, c); | |
267 INSERT INTO abc VALUES('abcdefghi', 1234567890, NULL); | |
268 INSERT INTO abc SELECT * FROM abc; | |
269 INSERT INTO abc SELECT * FROM abc; | |
270 INSERT INTO abc SELECT * FROM abc; | |
271 INSERT INTO abc SELECT * FROM abc; | |
272 INSERT INTO abc SELECT * FROM abc; | |
273 INSERT INTO abc SELECT * FROM abc; | |
274 INSERT INTO abc SELECT * FROM abc; | |
275 } | |
276 sqlite3_release_memory | |
277 } 0 | |
278 do_test malloc5-5.2 { | |
279 sqlite3_soft_heap_limit 5000 | |
280 execsql { | |
281 COMMIT; | |
282 PRAGMA temp_store = memory; | |
283 SELECT * FROM abc ORDER BY a; | |
284 } | |
285 expr 1 | |
286 } {1} | |
287 sqlite3_soft_heap_limit $::soft_limit | |
288 | |
289 #------------------------------------------------------------------------- | |
290 # The following test cases (malloc5-6.*) test the new global LRU list | |
291 # used to determine the pages to recycle when sqlite3_release_memory is | |
292 # called and there is more than one pager open. | |
293 # | |
294 proc nPage {db} { | |
295 set bt [btree_from_db $db] | |
296 array set stats [btree_pager_stats $bt] | |
297 set stats(page) | |
298 } | |
299 db close | |
300 forcedelete test.db test.db-journal test2.db test2.db-journal | |
301 | |
302 # This block of test-cases (malloc5-6.1.*) prepares two database files | |
303 # for the subsequent tests. | |
304 do_test malloc5-6.1.1 { | |
305 sqlite3 db test.db | |
306 execsql { | |
307 PRAGMA page_size=1024; | |
308 PRAGMA default_cache_size=2; | |
309 } | |
310 execsql { | |
311 PRAGMA temp_store = memory; | |
312 BEGIN; | |
313 CREATE TABLE abc(a PRIMARY KEY, b, c); | |
314 INSERT INTO abc VALUES(randstr(50,50), randstr(75,75), randstr(100,100)); | |
315 INSERT INTO abc | |
316 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; | |
317 INSERT INTO abc | |
318 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; | |
319 INSERT INTO abc | |
320 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; | |
321 INSERT INTO abc | |
322 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; | |
323 INSERT INTO abc | |
324 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; | |
325 INSERT INTO abc | |
326 SELECT randstr(50,50), randstr(75,75), randstr(100,100) FROM abc; | |
327 COMMIT; | |
328 } | |
329 forcecopy test.db test2.db | |
330 sqlite3 db2 test2.db | |
331 db2 eval {PRAGMA cache_size=2} | |
332 list \ | |
333 [expr ([file size test.db]/1024)>20] [expr ([file size test2.db]/1024)>20] | |
334 } {1 1} | |
335 do_test malloc5-6.1.2 { | |
336 list [execsql {PRAGMA cache_size}] [execsql {PRAGMA cache_size} db2] | |
337 } {2 2} | |
338 | |
339 do_test malloc5-6.2.1 { | |
340 execsql {SELECT * FROM abc} db2 | |
341 execsql {SELECT * FROM abc} db | |
342 expr [nPage db] + [nPage db2] | |
343 } {4} | |
344 | |
345 do_test malloc5-6.2.2 { | |
346 # If we now try to reclaim some memory, it should come from the db2 cache. | |
347 sqlite3_release_memory 3000 | |
348 expr [nPage db] + [nPage db2] | |
349 } {4} | |
350 do_test malloc5-6.2.3 { | |
351 # Access the db2 cache again, so that all the db2 pages have been used | |
352 # more recently than all the db pages. Then try to reclaim 3000 bytes. | |
353 # This time, 3 pages should be pulled from the db cache. | |
354 execsql { SELECT * FROM abc } db2 | |
355 sqlite3_release_memory 3000 | |
356 expr [nPage db] + [nPage db2] | |
357 } {4} | |
358 | |
359 do_test malloc5-6.3.1 { | |
360 # Now open a transaction and update 2 pages in the db2 cache. Then | |
361 # do a SELECT on the db cache so that all the db pages are more recently | |
362 # used than the db2 pages. When we try to free memory, SQLite should | |
363 # free the non-dirty db2 pages, then the db pages, then finally use | |
364 # sync() to free up the dirty db2 pages. The only page that cannot be | |
365 # freed is page1 of db2. Because there is an open transaction, the | |
366 # btree layer holds a reference to page 1 in the db2 cache. | |
367 execsql { | |
368 BEGIN; | |
369 UPDATE abc SET c = randstr(100,100) | |
370 WHERE rowid = 1 OR rowid = (SELECT max(rowid) FROM abc); | |
371 } db2 | |
372 execsql { SELECT * FROM abc } db | |
373 expr [nPage db] + [nPage db2] | |
374 } {4} | |
375 do_test malloc5-6.3.2 { | |
376 # Try to release 7700 bytes. This should release all the | |
377 # non-dirty pages held by db2. | |
378 sqlite3_release_memory [expr 7*1132] | |
379 list [nPage db] [nPage db2] | |
380 } {1 3} | |
381 do_test malloc5-6.3.3 { | |
382 # Try to release another 1000 bytes. This should come fromt the db | |
383 # cache, since all three pages held by db2 are either in-use or diry. | |
384 sqlite3_release_memory 1000 | |
385 list [nPage db] [nPage db2] | |
386 } {1 3} | |
387 do_test malloc5-6.3.4 { | |
388 # Now release 9900 more (about 9 pages worth). This should expunge | |
389 # the rest of the db cache. But the db2 cache remains intact, because | |
390 # SQLite tries to avoid calling sync(). | |
391 if {$::tcl_platform(wordSize)==8} { | |
392 sqlite3_release_memory 10500 | |
393 } else { | |
394 sqlite3_release_memory 9900 | |
395 } | |
396 list [nPage db] [nPage db2] | |
397 } {1 3} | |
398 do_test malloc5-6.3.5 { | |
399 # But if we are really insistent, SQLite will consent to call sync() | |
400 # if there is no other option. UPDATE: As of 3.6.2, SQLite will not | |
401 # call sync() in this scenario. So no further memory can be reclaimed. | |
402 sqlite3_release_memory 1000 | |
403 list [nPage db] [nPage db2] | |
404 } {1 3} | |
405 do_test malloc5-6.3.6 { | |
406 # The referenced page (page 1 of the db2 cache) will not be freed no | |
407 # matter how much memory we ask for: | |
408 sqlite3_release_memory 31459 | |
409 list [nPage db] [nPage db2] | |
410 } {1 3} | |
411 | |
412 db2 close | |
413 | |
414 sqlite3_soft_heap_limit $::soft_limit | |
415 test_restore_config_pagecache | |
416 finish_test | |
417 catch {db close} | |
OLD | NEW |