Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(74)

Side by Side Diff: third_party/sqlite/sqlite-src-3100200/src/wherecode.c

Issue 2846743003: [sql] Remove SQLite 3.10.2 reference directory. (Closed)
Patch Set: Created 3 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 ** 2015-06-06
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
14 **
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit. This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code. The original where.c
18 ** file retains the code that does query planning and analysis.
19 */
20 #include "sqliteInt.h"
21 #include "whereInt.h"
22
23 #ifndef SQLITE_OMIT_EXPLAIN
24 /*
25 ** This routine is a helper for explainIndexRange() below
26 **
27 ** pStr holds the text of an expression that we are building up one term
28 ** at a time. This routine adds a new term to the end of the expression.
29 ** Terms are separated by AND so add the "AND" text for second and subsequent
30 ** terms only.
31 */
32 static void explainAppendTerm(
33 StrAccum *pStr, /* The text expression being built */
34 int iTerm, /* Index of this term. First is zero */
35 const char *zColumn, /* Name of the column */
36 const char *zOp /* Name of the operator */
37 ){
38 if( iTerm ) sqlite3StrAccumAppend(pStr, " AND ", 5);
39 sqlite3StrAccumAppendAll(pStr, zColumn);
40 sqlite3StrAccumAppend(pStr, zOp, 1);
41 sqlite3StrAccumAppend(pStr, "?", 1);
42 }
43
44 /*
45 ** Return the name of the i-th column of the pIdx index.
46 */
47 static const char *explainIndexColumnName(Index *pIdx, int i){
48 i = pIdx->aiColumn[i];
49 if( i==XN_EXPR ) return "<expr>";
50 if( i==XN_ROWID ) return "rowid";
51 return pIdx->pTable->aCol[i].zName;
52 }
53
54 /*
55 ** Argument pLevel describes a strategy for scanning table pTab. This
56 ** function appends text to pStr that describes the subset of table
57 ** rows scanned by the strategy in the form of an SQL expression.
58 **
59 ** For example, if the query:
60 **
61 ** SELECT * FROM t1 WHERE a=1 AND b>2;
62 **
63 ** is run and there is an index on (a, b), then this function returns a
64 ** string similar to:
65 **
66 ** "a=? AND b>?"
67 */
68 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
69 Index *pIndex = pLoop->u.btree.pIndex;
70 u16 nEq = pLoop->u.btree.nEq;
71 u16 nSkip = pLoop->nSkip;
72 int i, j;
73
74 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
75 sqlite3StrAccumAppend(pStr, " (", 2);
76 for(i=0; i<nEq; i++){
77 const char *z = explainIndexColumnName(pIndex, i);
78 if( i ) sqlite3StrAccumAppend(pStr, " AND ", 5);
79 sqlite3XPrintf(pStr, 0, i>=nSkip ? "%s=?" : "ANY(%s)", z);
80 }
81
82 j = i;
83 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
84 const char *z = explainIndexColumnName(pIndex, i);
85 explainAppendTerm(pStr, i++, z, ">");
86 }
87 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
88 const char *z = explainIndexColumnName(pIndex, j);
89 explainAppendTerm(pStr, i, z, "<");
90 }
91 sqlite3StrAccumAppend(pStr, ")", 1);
92 }
93
94 /*
95 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
96 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
97 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
98 ** is added to the output to describe the table scan strategy in pLevel.
99 **
100 ** If an OP_Explain opcode is added to the VM, its address is returned.
101 ** Otherwise, if no OP_Explain is coded, zero is returned.
102 */
103 int sqlite3WhereExplainOneScan(
104 Parse *pParse, /* Parse context */
105 SrcList *pTabList, /* Table list this loop refers to */
106 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */
107 int iLevel, /* Value for "level" column of output */
108 int iFrom, /* Value for "from" column of output */
109 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */
110 ){
111 int ret = 0;
112 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
113 if( pParse->explain==2 )
114 #endif
115 {
116 struct SrcList_item *pItem = &pTabList->a[pLevel->iFrom];
117 Vdbe *v = pParse->pVdbe; /* VM being constructed */
118 sqlite3 *db = pParse->db; /* Database handle */
119 int iId = pParse->iSelectId; /* Select id (left-most output column) */
120 int isSearch; /* True for a SEARCH. False for SCAN. */
121 WhereLoop *pLoop; /* The controlling WhereLoop object */
122 u32 flags; /* Flags that describe this loop */
123 char *zMsg; /* Text to add to EQP output */
124 StrAccum str; /* EQP output string */
125 char zBuf[100]; /* Initial space for EQP output string */
126
127 pLoop = pLevel->pWLoop;
128 flags = pLoop->wsFlags;
129 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_ONETABLE_ONLY) ) return 0;
130
131 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
132 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
133 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
134
135 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
136 sqlite3StrAccumAppendAll(&str, isSearch ? "SEARCH" : "SCAN");
137 if( pItem->pSelect ){
138 sqlite3XPrintf(&str, 0, " SUBQUERY %d", pItem->iSelectId);
139 }else{
140 sqlite3XPrintf(&str, 0, " TABLE %s", pItem->zName);
141 }
142
143 if( pItem->zAlias ){
144 sqlite3XPrintf(&str, 0, " AS %s", pItem->zAlias);
145 }
146 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
147 const char *zFmt = 0;
148 Index *pIdx;
149
150 assert( pLoop->u.btree.pIndex!=0 );
151 pIdx = pLoop->u.btree.pIndex;
152 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
153 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
154 if( isSearch ){
155 zFmt = "PRIMARY KEY";
156 }
157 }else if( flags & WHERE_PARTIALIDX ){
158 zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
159 }else if( flags & WHERE_AUTO_INDEX ){
160 zFmt = "AUTOMATIC COVERING INDEX";
161 }else if( flags & WHERE_IDX_ONLY ){
162 zFmt = "COVERING INDEX %s";
163 }else{
164 zFmt = "INDEX %s";
165 }
166 if( zFmt ){
167 sqlite3StrAccumAppend(&str, " USING ", 7);
168 sqlite3XPrintf(&str, 0, zFmt, pIdx->zName);
169 explainIndexRange(&str, pLoop);
170 }
171 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
172 const char *zRangeOp;
173 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
174 zRangeOp = "=";
175 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
176 zRangeOp = ">? AND rowid<";
177 }else if( flags&WHERE_BTM_LIMIT ){
178 zRangeOp = ">";
179 }else{
180 assert( flags&WHERE_TOP_LIMIT);
181 zRangeOp = "<";
182 }
183 sqlite3XPrintf(&str, 0, " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
184 }
185 #ifndef SQLITE_OMIT_VIRTUALTABLE
186 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
187 sqlite3XPrintf(&str, 0, " VIRTUAL TABLE INDEX %d:%s",
188 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
189 }
190 #endif
191 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
192 if( pLoop->nOut>=10 ){
193 sqlite3XPrintf(&str, 0, " (~%llu rows)", sqlite3LogEstToInt(pLoop->nOut));
194 }else{
195 sqlite3StrAccumAppend(&str, " (~1 row)", 9);
196 }
197 #endif
198 zMsg = sqlite3StrAccumFinish(&str);
199 ret = sqlite3VdbeAddOp4(v, OP_Explain, iId, iLevel, iFrom, zMsg,P4_DYNAMIC);
200 }
201 return ret;
202 }
203 #endif /* SQLITE_OMIT_EXPLAIN */
204
205 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
206 /*
207 ** Configure the VM passed as the first argument with an
208 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
209 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
210 ** clause that the scan reads data from.
211 **
212 ** If argument addrExplain is not 0, it must be the address of an
213 ** OP_Explain instruction that describes the same loop.
214 */
215 void sqlite3WhereAddScanStatus(
216 Vdbe *v, /* Vdbe to add scanstatus entry to */
217 SrcList *pSrclist, /* FROM clause pLvl reads data from */
218 WhereLevel *pLvl, /* Level to add scanstatus() entry for */
219 int addrExplain /* Address of OP_Explain (or 0) */
220 ){
221 const char *zObj = 0;
222 WhereLoop *pLoop = pLvl->pWLoop;
223 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){
224 zObj = pLoop->u.btree.pIndex->zName;
225 }else{
226 zObj = pSrclist->a[pLvl->iFrom].zName;
227 }
228 sqlite3VdbeScanStatus(
229 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
230 );
231 }
232 #endif
233
234
235 /*
236 ** Disable a term in the WHERE clause. Except, do not disable the term
237 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
238 ** or USING clause of that join.
239 **
240 ** Consider the term t2.z='ok' in the following queries:
241 **
242 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
243 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
244 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
245 **
246 ** The t2.z='ok' is disabled in the in (2) because it originates
247 ** in the ON clause. The term is disabled in (3) because it is not part
248 ** of a LEFT OUTER JOIN. In (1), the term is not disabled.
249 **
250 ** Disabling a term causes that term to not be tested in the inner loop
251 ** of the join. Disabling is an optimization. When terms are satisfied
252 ** by indices, we disable them to prevent redundant tests in the inner
253 ** loop. We would get the correct results if nothing were ever disabled,
254 ** but joins might run a little slower. The trick is to disable as much
255 ** as we can without disabling too much. If we disabled in (1), we'd get
256 ** the wrong answer. See ticket #813.
257 **
258 ** If all the children of a term are disabled, then that term is also
259 ** automatically disabled. In this way, terms get disabled if derived
260 ** virtual terms are tested first. For example:
261 **
262 ** x GLOB 'abc*' AND x>='abc' AND x<'acd'
263 ** \___________/ \______/ \_____/
264 ** parent child1 child2
265 **
266 ** Only the parent term was in the original WHERE clause. The child1
267 ** and child2 terms were added by the LIKE optimization. If both of
268 ** the virtual child terms are valid, then testing of the parent can be
269 ** skipped.
270 **
271 ** Usually the parent term is marked as TERM_CODED. But if the parent
272 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
273 ** The TERM_LIKECOND marking indicates that the term should be coded inside
274 ** a conditional such that is only evaluated on the second pass of a
275 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
276 */
277 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
278 int nLoop = 0;
279 while( pTerm
280 && (pTerm->wtFlags & TERM_CODED)==0
281 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
282 && (pLevel->notReady & pTerm->prereqAll)==0
283 ){
284 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
285 pTerm->wtFlags |= TERM_LIKECOND;
286 }else{
287 pTerm->wtFlags |= TERM_CODED;
288 }
289 if( pTerm->iParent<0 ) break;
290 pTerm = &pTerm->pWC->a[pTerm->iParent];
291 pTerm->nChild--;
292 if( pTerm->nChild!=0 ) break;
293 nLoop++;
294 }
295 }
296
297 /*
298 ** Code an OP_Affinity opcode to apply the column affinity string zAff
299 ** to the n registers starting at base.
300 **
301 ** As an optimization, SQLITE_AFF_BLOB entries (which are no-ops) at the
302 ** beginning and end of zAff are ignored. If all entries in zAff are
303 ** SQLITE_AFF_BLOB, then no code gets generated.
304 **
305 ** This routine makes its own copy of zAff so that the caller is free
306 ** to modify zAff after this routine returns.
307 */
308 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
309 Vdbe *v = pParse->pVdbe;
310 if( zAff==0 ){
311 assert( pParse->db->mallocFailed );
312 return;
313 }
314 assert( v!=0 );
315
316 /* Adjust base and n to skip over SQLITE_AFF_BLOB entries at the beginning
317 ** and end of the affinity string.
318 */
319 while( n>0 && zAff[0]==SQLITE_AFF_BLOB ){
320 n--;
321 base++;
322 zAff++;
323 }
324 while( n>1 && zAff[n-1]==SQLITE_AFF_BLOB ){
325 n--;
326 }
327
328 /* Code the OP_Affinity opcode if there is anything left to do. */
329 if( n>0 ){
330 sqlite3VdbeAddOp2(v, OP_Affinity, base, n);
331 sqlite3VdbeChangeP4(v, -1, zAff, n);
332 sqlite3ExprCacheAffinityChange(pParse, base, n);
333 }
334 }
335
336
337 /*
338 ** Generate code for a single equality term of the WHERE clause. An equality
339 ** term can be either X=expr or X IN (...). pTerm is the term to be
340 ** coded.
341 **
342 ** The current value for the constraint is left in register iReg.
343 **
344 ** For a constraint of the form X=expr, the expression is evaluated and its
345 ** result is left on the stack. For constraints of the form X IN (...)
346 ** this routine sets up a loop that will iterate over all values of X.
347 */
348 static int codeEqualityTerm(
349 Parse *pParse, /* The parsing context */
350 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
351 WhereLevel *pLevel, /* The level of the FROM clause we are working on */
352 int iEq, /* Index of the equality term within this level */
353 int bRev, /* True for reverse-order IN operations */
354 int iTarget /* Attempt to leave results in this register */
355 ){
356 Expr *pX = pTerm->pExpr;
357 Vdbe *v = pParse->pVdbe;
358 int iReg; /* Register holding results */
359
360 assert( iTarget>0 );
361 if( pX->op==TK_EQ || pX->op==TK_IS ){
362 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
363 }else if( pX->op==TK_ISNULL ){
364 iReg = iTarget;
365 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
366 #ifndef SQLITE_OMIT_SUBQUERY
367 }else{
368 int eType;
369 int iTab;
370 struct InLoop *pIn;
371 WhereLoop *pLoop = pLevel->pWLoop;
372
373 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
374 && pLoop->u.btree.pIndex!=0
375 && pLoop->u.btree.pIndex->aSortOrder[iEq]
376 ){
377 testcase( iEq==0 );
378 testcase( bRev );
379 bRev = !bRev;
380 }
381 assert( pX->op==TK_IN );
382 iReg = iTarget;
383 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0);
384 if( eType==IN_INDEX_INDEX_DESC ){
385 testcase( bRev );
386 bRev = !bRev;
387 }
388 iTab = pX->iTable;
389 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
390 VdbeCoverageIf(v, bRev);
391 VdbeCoverageIf(v, !bRev);
392 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
393 pLoop->wsFlags |= WHERE_IN_ABLE;
394 if( pLevel->u.in.nIn==0 ){
395 pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
396 }
397 pLevel->u.in.nIn++;
398 pLevel->u.in.aInLoop =
399 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
400 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
401 pIn = pLevel->u.in.aInLoop;
402 if( pIn ){
403 pIn += pLevel->u.in.nIn - 1;
404 pIn->iCur = iTab;
405 if( eType==IN_INDEX_ROWID ){
406 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iReg);
407 }else{
408 pIn->addrInTop = sqlite3VdbeAddOp3(v, OP_Column, iTab, 0, iReg);
409 }
410 pIn->eEndLoopOp = bRev ? OP_PrevIfOpen : OP_NextIfOpen;
411 sqlite3VdbeAddOp1(v, OP_IsNull, iReg); VdbeCoverage(v);
412 }else{
413 pLevel->u.in.nIn = 0;
414 }
415 #endif
416 }
417 disableTerm(pLevel, pTerm);
418 return iReg;
419 }
420
421 /*
422 ** Generate code that will evaluate all == and IN constraints for an
423 ** index scan.
424 **
425 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
426 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
427 ** The index has as many as three equality constraints, but in this
428 ** example, the third "c" value is an inequality. So only two
429 ** constraints are coded. This routine will generate code to evaluate
430 ** a==5 and b IN (1,2,3). The current values for a and b will be stored
431 ** in consecutive registers and the index of the first register is returned.
432 **
433 ** In the example above nEq==2. But this subroutine works for any value
434 ** of nEq including 0. If nEq==0, this routine is nearly a no-op.
435 ** The only thing it does is allocate the pLevel->iMem memory cell and
436 ** compute the affinity string.
437 **
438 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints
439 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is
440 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
441 ** occurs after the nEq quality constraints.
442 **
443 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
444 ** the index of the first memory cell in that range. The code that
445 ** calls this routine will use that memory range to store keys for
446 ** start and termination conditions of the loop.
447 ** key value of the loop. If one or more IN operators appear, then
448 ** this routine allocates an additional nEq memory cells for internal
449 ** use.
450 **
451 ** Before returning, *pzAff is set to point to a buffer containing a
452 ** copy of the column affinity string of the index allocated using
453 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
454 ** with equality constraints that use BLOB or NONE affinity are set to
455 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
456 **
457 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
458 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
459 **
460 ** In the example above, the index on t1(a) has TEXT affinity. But since
461 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
462 ** no conversion should be attempted before using a t2.b value as part of
463 ** a key to search the index. Hence the first byte in the returned affinity
464 ** string in this example would be set to SQLITE_AFF_BLOB.
465 */
466 static int codeAllEqualityTerms(
467 Parse *pParse, /* Parsing context */
468 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
469 int bRev, /* Reverse the order of IN operators */
470 int nExtraReg, /* Number of extra registers to allocate */
471 char **pzAff /* OUT: Set to point to affinity string */
472 ){
473 u16 nEq; /* The number of == or IN constraints to code */
474 u16 nSkip; /* Number of left-most columns to skip */
475 Vdbe *v = pParse->pVdbe; /* The vm under construction */
476 Index *pIdx; /* The index being used for this loop */
477 WhereTerm *pTerm; /* A single constraint term */
478 WhereLoop *pLoop; /* The WhereLoop object */
479 int j; /* Loop counter */
480 int regBase; /* Base register */
481 int nReg; /* Number of registers to allocate */
482 char *zAff; /* Affinity string to return */
483
484 /* This module is only called on query plans that use an index. */
485 pLoop = pLevel->pWLoop;
486 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
487 nEq = pLoop->u.btree.nEq;
488 nSkip = pLoop->nSkip;
489 pIdx = pLoop->u.btree.pIndex;
490 assert( pIdx!=0 );
491
492 /* Figure out how many memory cells we will need then allocate them.
493 */
494 regBase = pParse->nMem + 1;
495 nReg = pLoop->u.btree.nEq + nExtraReg;
496 pParse->nMem += nReg;
497
498 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
499 if( !zAff ){
500 pParse->db->mallocFailed = 1;
501 }
502
503 if( nSkip ){
504 int iIdxCur = pLevel->iIdxCur;
505 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
506 VdbeCoverageIf(v, bRev==0);
507 VdbeCoverageIf(v, bRev!=0);
508 VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
509 j = sqlite3VdbeAddOp0(v, OP_Goto);
510 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
511 iIdxCur, 0, regBase, nSkip);
512 VdbeCoverageIf(v, bRev==0);
513 VdbeCoverageIf(v, bRev!=0);
514 sqlite3VdbeJumpHere(v, j);
515 for(j=0; j<nSkip; j++){
516 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
517 testcase( pIdx->aiColumn[j]==XN_EXPR );
518 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
519 }
520 }
521
522 /* Evaluate the equality constraints
523 */
524 assert( zAff==0 || (int)strlen(zAff)>=nEq );
525 for(j=nSkip; j<nEq; j++){
526 int r1;
527 pTerm = pLoop->aLTerm[j];
528 assert( pTerm!=0 );
529 /* The following testcase is true for indices with redundant columns.
530 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
531 testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
532 testcase( pTerm->wtFlags & TERM_VIRTUAL );
533 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
534 if( r1!=regBase+j ){
535 if( nReg==1 ){
536 sqlite3ReleaseTempReg(pParse, regBase);
537 regBase = r1;
538 }else{
539 sqlite3VdbeAddOp2(v, OP_SCopy, r1, regBase+j);
540 }
541 }
542 testcase( pTerm->eOperator & WO_ISNULL );
543 testcase( pTerm->eOperator & WO_IN );
544 if( (pTerm->eOperator & (WO_ISNULL|WO_IN))==0 ){
545 Expr *pRight = pTerm->pExpr->pRight;
546 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
547 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
548 VdbeCoverage(v);
549 }
550 if( zAff ){
551 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
552 zAff[j] = SQLITE_AFF_BLOB;
553 }
554 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
555 zAff[j] = SQLITE_AFF_BLOB;
556 }
557 }
558 }
559 }
560 *pzAff = zAff;
561 return regBase;
562 }
563
564 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
565 /*
566 ** If the most recently coded instruction is a constant range contraint
567 ** that originated from the LIKE optimization, then change the P3 to be
568 ** pLoop->iLikeRepCntr and set P5.
569 **
570 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
571 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range
572 ** scan loop run twice, once for strings and a second time for BLOBs.
573 ** The OP_String opcodes on the second pass convert the upper and lower
574 ** bound string contants to blobs. This routine makes the necessary changes
575 ** to the OP_String opcodes for that to happen.
576 **
577 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
578 ** only the one pass through the string space is required, so this routine
579 ** becomes a no-op.
580 */
581 static void whereLikeOptimizationStringFixup(
582 Vdbe *v, /* prepared statement under construction */
583 WhereLevel *pLevel, /* The loop that contains the LIKE operator */
584 WhereTerm *pTerm /* The upper or lower bound just coded */
585 ){
586 if( pTerm->wtFlags & TERM_LIKEOPT ){
587 VdbeOp *pOp;
588 assert( pLevel->iLikeRepCntr>0 );
589 pOp = sqlite3VdbeGetOp(v, -1);
590 assert( pOp!=0 );
591 assert( pOp->opcode==OP_String8
592 || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
593 pOp->p3 = pLevel->iLikeRepCntr;
594 pOp->p5 = 1;
595 }
596 }
597 #else
598 # define whereLikeOptimizationStringFixup(A,B,C)
599 #endif
600
601 #ifdef SQLITE_ENABLE_CURSOR_HINTS
602 /*
603 ** Information is passed from codeCursorHint() down to individual nodes of
604 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
605 ** structure.
606 */
607 struct CCurHint {
608 int iTabCur; /* Cursor for the main table */
609 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */
610 Index *pIdx; /* The index used to access the table */
611 };
612
613 /*
614 ** This function is called for every node of an expression that is a candidate
615 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference
616 ** the table CCurHint.iTabCur, verify that the same column can be
617 ** accessed through the index. If it cannot, then set pWalker->eCode to 1.
618 */
619 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
620 struct CCurHint *pHint = pWalker->u.pCCurHint;
621 assert( pHint->pIdx!=0 );
622 if( pExpr->op==TK_COLUMN
623 && pExpr->iTable==pHint->iTabCur
624 && sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn)<0
625 ){
626 pWalker->eCode = 1;
627 }
628 return WRC_Continue;
629 }
630
631
632 /*
633 ** This function is called on every node of an expression tree used as an
634 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
635 ** that accesses any table other than the one identified by
636 ** CCurHint.iTabCur, then do the following:
637 **
638 ** 1) allocate a register and code an OP_Column instruction to read
639 ** the specified column into the new register, and
640 **
641 ** 2) transform the expression node to a TK_REGISTER node that reads
642 ** from the newly populated register.
643 **
644 ** Also, if the node is a TK_COLUMN that does access the table idenified
645 ** by pCCurHint.iTabCur, and an index is being used (which we will
646 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
647 ** an access of the index rather than the original table.
648 */
649 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
650 int rc = WRC_Continue;
651 struct CCurHint *pHint = pWalker->u.pCCurHint;
652 if( pExpr->op==TK_COLUMN ){
653 if( pExpr->iTable!=pHint->iTabCur ){
654 Vdbe *v = pWalker->pParse->pVdbe;
655 int reg = ++pWalker->pParse->nMem; /* Register for column value */
656 sqlite3ExprCodeGetColumnOfTable(
657 v, pExpr->pTab, pExpr->iTable, pExpr->iColumn, reg
658 );
659 pExpr->op = TK_REGISTER;
660 pExpr->iTable = reg;
661 }else if( pHint->pIdx!=0 ){
662 pExpr->iTable = pHint->iIdxCur;
663 pExpr->iColumn = sqlite3ColumnOfIndex(pHint->pIdx, pExpr->iColumn);
664 assert( pExpr->iColumn>=0 );
665 }
666 }else if( pExpr->op==TK_AGG_FUNCTION ){
667 /* An aggregate function in the WHERE clause of a query means this must
668 ** be a correlated sub-query, and expression pExpr is an aggregate from
669 ** the parent context. Do not walk the function arguments in this case.
670 **
671 ** todo: It should be possible to replace this node with a TK_REGISTER
672 ** expression, as the result of the expression must be stored in a
673 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
674 rc = WRC_Prune;
675 }
676 return rc;
677 }
678
679 /*
680 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
681 */
682 static void codeCursorHint(
683 WhereInfo *pWInfo, /* The where clause */
684 WhereLevel *pLevel, /* Which loop to provide hints for */
685 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */
686 ){
687 Parse *pParse = pWInfo->pParse;
688 sqlite3 *db = pParse->db;
689 Vdbe *v = pParse->pVdbe;
690 Expr *pExpr = 0;
691 WhereLoop *pLoop = pLevel->pWLoop;
692 int iCur;
693 WhereClause *pWC;
694 WhereTerm *pTerm;
695 int i, j;
696 struct CCurHint sHint;
697 Walker sWalker;
698
699 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
700 iCur = pLevel->iTabCur;
701 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
702 sHint.iTabCur = iCur;
703 sHint.iIdxCur = pLevel->iIdxCur;
704 sHint.pIdx = pLoop->u.btree.pIndex;
705 memset(&sWalker, 0, sizeof(sWalker));
706 sWalker.pParse = pParse;
707 sWalker.u.pCCurHint = &sHint;
708 pWC = &pWInfo->sWC;
709 for(i=0; i<pWC->nTerm; i++){
710 pTerm = &pWC->a[i];
711 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
712 if( pTerm->prereqAll & pLevel->notReady ) continue;
713 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue;
714
715 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
716 ** the cursor. These terms are not needed as hints for a pure range
717 ** scan (that has no == terms) so omit them. */
718 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
719 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
720 if( j<pLoop->nLTerm ) continue;
721 }
722
723 /* No subqueries or non-deterministic functions allowed */
724 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
725
726 /* For an index scan, make sure referenced columns are actually in
727 ** the index. */
728 if( sHint.pIdx!=0 ){
729 sWalker.eCode = 0;
730 sWalker.xExprCallback = codeCursorHintCheckExpr;
731 sqlite3WalkExpr(&sWalker, pTerm->pExpr);
732 if( sWalker.eCode ) continue;
733 }
734
735 /* If we survive all prior tests, that means this term is worth hinting */
736 pExpr = sqlite3ExprAnd(db, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
737 }
738 if( pExpr!=0 ){
739 sWalker.xExprCallback = codeCursorHintFixExpr;
740 sqlite3WalkExpr(&sWalker, pExpr);
741 sqlite3VdbeAddOp4(v, OP_CursorHint,
742 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
743 (const char*)pExpr, P4_EXPR);
744 }
745 }
746 #else
747 # define codeCursorHint(A,B,C) /* No-op */
748 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
749
750 /*
751 ** Generate code for the start of the iLevel-th loop in the WHERE clause
752 ** implementation described by pWInfo.
753 */
754 Bitmask sqlite3WhereCodeOneLoopStart(
755 WhereInfo *pWInfo, /* Complete information about the WHERE clause */
756 int iLevel, /* Which level of pWInfo->a[] should be coded */
757 Bitmask notReady /* Which tables are currently available */
758 ){
759 int j, k; /* Loop counters */
760 int iCur; /* The VDBE cursor for the table */
761 int addrNxt; /* Where to jump to continue with the next IN case */
762 int omitTable; /* True if we use the index only */
763 int bRev; /* True if we need to scan in reverse order */
764 WhereLevel *pLevel; /* The where level to be coded */
765 WhereLoop *pLoop; /* The WhereLoop object being coded */
766 WhereClause *pWC; /* Decomposition of the entire WHERE clause */
767 WhereTerm *pTerm; /* A WHERE clause term */
768 Parse *pParse; /* Parsing context */
769 sqlite3 *db; /* Database connection */
770 Vdbe *v; /* The prepared stmt under constructions */
771 struct SrcList_item *pTabItem; /* FROM clause term being coded */
772 int addrBrk; /* Jump here to break out of the loop */
773 int addrCont; /* Jump here to continue with next cycle */
774 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */
775 int iReleaseReg = 0; /* Temp register to free before returning */
776
777 pParse = pWInfo->pParse;
778 v = pParse->pVdbe;
779 pWC = &pWInfo->sWC;
780 db = pParse->db;
781 pLevel = &pWInfo->a[iLevel];
782 pLoop = pLevel->pWLoop;
783 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
784 iCur = pTabItem->iCursor;
785 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
786 bRev = (pWInfo->revMask>>iLevel)&1;
787 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
788 && (pWInfo->wctrlFlags & WHERE_FORCE_TABLE)==0;
789 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
790
791 /* Create labels for the "break" and "continue" instructions
792 ** for the current loop. Jump to addrBrk to break out of a loop.
793 ** Jump to cont to go immediately to the next iteration of the
794 ** loop.
795 **
796 ** When there is an IN operator, we also have a "addrNxt" label that
797 ** means to continue with the next IN value combination. When
798 ** there are no IN operators in the constraints, the "addrNxt" label
799 ** is the same as "addrBrk".
800 */
801 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(v);
802 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(v);
803
804 /* If this is the right table of a LEFT OUTER JOIN, allocate and
805 ** initialize a memory cell that records if this table matches any
806 ** row of the left table of the join.
807 */
808 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
809 pLevel->iLeftJoin = ++pParse->nMem;
810 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
811 VdbeComment((v, "init LEFT JOIN no-match flag"));
812 }
813
814 /* Special case of a FROM clause subquery implemented as a co-routine */
815 if( pTabItem->fg.viaCoroutine ){
816 int regYield = pTabItem->regReturn;
817 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
818 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
819 VdbeCoverage(v);
820 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName));
821 pLevel->op = OP_Goto;
822 }else
823
824 #ifndef SQLITE_OMIT_VIRTUALTABLE
825 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
826 /* Case 1: The table is a virtual-table. Use the VFilter and VNext
827 ** to access the data.
828 */
829 int iReg; /* P3 Value for OP_VFilter */
830 int addrNotFound;
831 int nConstraint = pLoop->nLTerm;
832
833 sqlite3ExprCachePush(pParse);
834 iReg = sqlite3GetTempRange(pParse, nConstraint+2);
835 addrNotFound = pLevel->addrBrk;
836 for(j=0; j<nConstraint; j++){
837 int iTarget = iReg+j+2;
838 pTerm = pLoop->aLTerm[j];
839 if( pTerm==0 ) continue;
840 if( pTerm->eOperator & WO_IN ){
841 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
842 addrNotFound = pLevel->addrNxt;
843 }else{
844 sqlite3ExprCode(pParse, pTerm->pExpr->pRight, iTarget);
845 }
846 }
847 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
848 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
849 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
850 pLoop->u.vtab.idxStr,
851 pLoop->u.vtab.needFree ? P4_MPRINTF : P4_STATIC);
852 VdbeCoverage(v);
853 pLoop->u.vtab.needFree = 0;
854 for(j=0; j<nConstraint && j<16; j++){
855 if( (pLoop->u.vtab.omitMask>>j)&1 ){
856 disableTerm(pLevel, pLoop->aLTerm[j]);
857 }
858 }
859 pLevel->p1 = iCur;
860 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
861 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
862 sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
863 sqlite3ExprCachePop(pParse);
864 }else
865 #endif /* SQLITE_OMIT_VIRTUALTABLE */
866
867 if( (pLoop->wsFlags & WHERE_IPK)!=0
868 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
869 ){
870 /* Case 2: We can directly reference a single row using an
871 ** equality comparison against the ROWID field. Or
872 ** we reference multiple rows using a "rowid IN (...)"
873 ** construct.
874 */
875 assert( pLoop->u.btree.nEq==1 );
876 pTerm = pLoop->aLTerm[0];
877 assert( pTerm!=0 );
878 assert( pTerm->pExpr!=0 );
879 assert( omitTable==0 );
880 testcase( pTerm->wtFlags & TERM_VIRTUAL );
881 iReleaseReg = ++pParse->nMem;
882 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
883 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
884 addrNxt = pLevel->addrNxt;
885 sqlite3VdbeAddOp2(v, OP_MustBeInt, iRowidReg, addrNxt); VdbeCoverage(v);
886 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, addrNxt, iRowidReg);
887 VdbeCoverage(v);
888 sqlite3ExprCacheAffinityChange(pParse, iRowidReg, 1);
889 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
890 VdbeComment((v, "pk"));
891 pLevel->op = OP_Noop;
892 }else if( (pLoop->wsFlags & WHERE_IPK)!=0
893 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
894 ){
895 /* Case 3: We have an inequality comparison against the ROWID field.
896 */
897 int testOp = OP_Noop;
898 int start;
899 int memEndValue = 0;
900 WhereTerm *pStart, *pEnd;
901
902 assert( omitTable==0 );
903 j = 0;
904 pStart = pEnd = 0;
905 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
906 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
907 assert( pStart!=0 || pEnd!=0 );
908 if( bRev ){
909 pTerm = pStart;
910 pStart = pEnd;
911 pEnd = pTerm;
912 }
913 codeCursorHint(pWInfo, pLevel, pEnd);
914 if( pStart ){
915 Expr *pX; /* The expression that defines the start bound */
916 int r1, rTemp; /* Registers for holding the start boundary */
917
918 /* The following constant maps TK_xx codes into corresponding
919 ** seek opcodes. It depends on a particular ordering of TK_xx
920 */
921 const u8 aMoveOp[] = {
922 /* TK_GT */ OP_SeekGT,
923 /* TK_LE */ OP_SeekLE,
924 /* TK_LT */ OP_SeekLT,
925 /* TK_GE */ OP_SeekGE
926 };
927 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */
928 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */
929 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */
930
931 assert( (pStart->wtFlags & TERM_VNULL)==0 );
932 testcase( pStart->wtFlags & TERM_VIRTUAL );
933 pX = pStart->pExpr;
934 assert( pX!=0 );
935 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
936 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
937 sqlite3VdbeAddOp3(v, aMoveOp[pX->op-TK_GT], iCur, addrBrk, r1);
938 VdbeComment((v, "pk"));
939 VdbeCoverageIf(v, pX->op==TK_GT);
940 VdbeCoverageIf(v, pX->op==TK_LE);
941 VdbeCoverageIf(v, pX->op==TK_LT);
942 VdbeCoverageIf(v, pX->op==TK_GE);
943 sqlite3ExprCacheAffinityChange(pParse, r1, 1);
944 sqlite3ReleaseTempReg(pParse, rTemp);
945 disableTerm(pLevel, pStart);
946 }else{
947 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrBrk);
948 VdbeCoverageIf(v, bRev==0);
949 VdbeCoverageIf(v, bRev!=0);
950 }
951 if( pEnd ){
952 Expr *pX;
953 pX = pEnd->pExpr;
954 assert( pX!=0 );
955 assert( (pEnd->wtFlags & TERM_VNULL)==0 );
956 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
957 testcase( pEnd->wtFlags & TERM_VIRTUAL );
958 memEndValue = ++pParse->nMem;
959 sqlite3ExprCode(pParse, pX->pRight, memEndValue);
960 if( pX->op==TK_LT || pX->op==TK_GT ){
961 testOp = bRev ? OP_Le : OP_Ge;
962 }else{
963 testOp = bRev ? OP_Lt : OP_Gt;
964 }
965 disableTerm(pLevel, pEnd);
966 }
967 start = sqlite3VdbeCurrentAddr(v);
968 pLevel->op = bRev ? OP_Prev : OP_Next;
969 pLevel->p1 = iCur;
970 pLevel->p2 = start;
971 assert( pLevel->p5==0 );
972 if( testOp!=OP_Noop ){
973 iRowidReg = ++pParse->nMem;
974 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
975 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
976 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
977 VdbeCoverageIf(v, testOp==OP_Le);
978 VdbeCoverageIf(v, testOp==OP_Lt);
979 VdbeCoverageIf(v, testOp==OP_Ge);
980 VdbeCoverageIf(v, testOp==OP_Gt);
981 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
982 }
983 }else if( pLoop->wsFlags & WHERE_INDEXED ){
984 /* Case 4: A scan using an index.
985 **
986 ** The WHERE clause may contain zero or more equality
987 ** terms ("==" or "IN" operators) that refer to the N
988 ** left-most columns of the index. It may also contain
989 ** inequality constraints (>, <, >= or <=) on the indexed
990 ** column that immediately follows the N equalities. Only
991 ** the right-most column can be an inequality - the rest must
992 ** use the "==" and "IN" operators. For example, if the
993 ** index is on (x,y,z), then the following clauses are all
994 ** optimized:
995 **
996 ** x=5
997 ** x=5 AND y=10
998 ** x=5 AND y<10
999 ** x=5 AND y>5 AND y<10
1000 ** x=5 AND y=5 AND z<=10
1001 **
1002 ** The z<10 term of the following cannot be used, only
1003 ** the x=5 term:
1004 **
1005 ** x=5 AND z<10
1006 **
1007 ** N may be zero if there are inequality constraints.
1008 ** If there are no inequality constraints, then N is at
1009 ** least one.
1010 **
1011 ** This case is also used when there are no WHERE clause
1012 ** constraints but an index is selected anyway, in order
1013 ** to force the output order to conform to an ORDER BY.
1014 */
1015 static const u8 aStartOp[] = {
1016 0,
1017 0,
1018 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
1019 OP_Last, /* 3: (!start_constraints && startEq && bRev) */
1020 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */
1021 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */
1022 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */
1023 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */
1024 };
1025 static const u8 aEndOp[] = {
1026 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */
1027 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */
1028 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */
1029 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */
1030 };
1031 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */
1032 int regBase; /* Base register holding constraint values */
1033 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
1034 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
1035 int startEq; /* True if range start uses ==, >= or <= */
1036 int endEq; /* True if range end uses ==, >= or <= */
1037 int start_constraints; /* Start of range is constrained */
1038 int nConstraint; /* Number of constraint terms */
1039 Index *pIdx; /* The index we will be using */
1040 int iIdxCur; /* The VDBE cursor for the index */
1041 int nExtraReg = 0; /* Number of extra registers needed */
1042 int op; /* Instruction opcode */
1043 char *zStartAff; /* Affinity for start of range constraint */
1044 char cEndAff = 0; /* Affinity for end of range constraint */
1045 u8 bSeekPastNull = 0; /* True to seek past initial nulls */
1046 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */
1047
1048 pIdx = pLoop->u.btree.pIndex;
1049 iIdxCur = pLevel->iIdxCur;
1050 assert( nEq>=pLoop->nSkip );
1051
1052 /* If this loop satisfies a sort order (pOrderBy) request that
1053 ** was passed to this function to implement a "SELECT min(x) ..."
1054 ** query, then the caller will only allow the loop to run for
1055 ** a single iteration. This means that the first row returned
1056 ** should not have a NULL value stored in 'x'. If column 'x' is
1057 ** the first one after the nEq equality constraints in the index,
1058 ** this requires some special handling.
1059 */
1060 assert( pWInfo->pOrderBy==0
1061 || pWInfo->pOrderBy->nExpr==1
1062 || (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 );
1063 if( (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)!=0
1064 && pWInfo->nOBSat>0
1065 && (pIdx->nKeyCol>nEq)
1066 ){
1067 assert( pLoop->nSkip==0 );
1068 bSeekPastNull = 1;
1069 nExtraReg = 1;
1070 }
1071
1072 /* Find any inequality constraint terms for the start and end
1073 ** of the range.
1074 */
1075 j = nEq;
1076 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1077 pRangeStart = pLoop->aLTerm[j++];
1078 nExtraReg = 1;
1079 /* Like optimization range constraints always occur in pairs */
1080 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1081 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1082 }
1083 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1084 pRangeEnd = pLoop->aLTerm[j++];
1085 nExtraReg = 1;
1086 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1087 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1088 assert( pRangeStart!=0 ); /* LIKE opt constraints */
1089 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */
1090 pLevel->iLikeRepCntr = ++pParse->nMem;
1091 testcase( bRev );
1092 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1093 sqlite3VdbeAddOp2(v, OP_Integer,
1094 bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC),
1095 pLevel->iLikeRepCntr);
1096 VdbeComment((v, "LIKE loop counter"));
1097 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1098 }
1099 #endif
1100 if( pRangeStart==0
1101 && (j = pIdx->aiColumn[nEq])>=0
1102 && pIdx->pTable->aCol[j].notNull==0
1103 ){
1104 bSeekPastNull = 1;
1105 }
1106 }
1107 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1108
1109 /* If we are doing a reverse order scan on an ascending index, or
1110 ** a forward order scan on a descending index, interchange the
1111 ** start and end terms (pRangeStart and pRangeEnd).
1112 */
1113 if( (nEq<pIdx->nKeyCol && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC))
1114 || (bRev && pIdx->nKeyCol==nEq)
1115 ){
1116 SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1117 SWAP(u8, bSeekPastNull, bStopAtNull);
1118 }
1119
1120 /* Generate code to evaluate all constraint terms using == or IN
1121 ** and store the values of those terms in an array of registers
1122 ** starting at regBase.
1123 */
1124 codeCursorHint(pWInfo, pLevel, pRangeEnd);
1125 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1126 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1127 if( zStartAff ) cEndAff = zStartAff[nEq];
1128 addrNxt = pLevel->addrNxt;
1129
1130 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1131 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1132 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1133 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1134 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1135 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1136 start_constraints = pRangeStart || nEq>0;
1137
1138 /* Seek the index cursor to the start of the range. */
1139 nConstraint = nEq;
1140 if( pRangeStart ){
1141 Expr *pRight = pRangeStart->pExpr->pRight;
1142 sqlite3ExprCode(pParse, pRight, regBase+nEq);
1143 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1144 if( (pRangeStart->wtFlags & TERM_VNULL)==0
1145 && sqlite3ExprCanBeNull(pRight)
1146 ){
1147 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1148 VdbeCoverage(v);
1149 }
1150 if( zStartAff ){
1151 if( sqlite3CompareAffinity(pRight, zStartAff[nEq])==SQLITE_AFF_BLOB){
1152 /* Since the comparison is to be performed with no conversions
1153 ** applied to the operands, set the affinity to apply to pRight to
1154 ** SQLITE_AFF_BLOB. */
1155 zStartAff[nEq] = SQLITE_AFF_BLOB;
1156 }
1157 if( sqlite3ExprNeedsNoAffinityChange(pRight, zStartAff[nEq]) ){
1158 zStartAff[nEq] = SQLITE_AFF_BLOB;
1159 }
1160 }
1161 nConstraint++;
1162 testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1163 }else if( bSeekPastNull ){
1164 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1165 nConstraint++;
1166 startEq = 0;
1167 start_constraints = 1;
1168 }
1169 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1170 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1171 assert( op!=0 );
1172 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1173 VdbeCoverage(v);
1174 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind );
1175 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last );
1176 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT );
1177 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE );
1178 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE );
1179 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT );
1180
1181 /* Load the value for the inequality constraint at the end of the
1182 ** range (if any).
1183 */
1184 nConstraint = nEq;
1185 if( pRangeEnd ){
1186 Expr *pRight = pRangeEnd->pExpr->pRight;
1187 sqlite3ExprCacheRemove(pParse, regBase+nEq, 1);
1188 sqlite3ExprCode(pParse, pRight, regBase+nEq);
1189 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
1190 if( (pRangeEnd->wtFlags & TERM_VNULL)==0
1191 && sqlite3ExprCanBeNull(pRight)
1192 ){
1193 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1194 VdbeCoverage(v);
1195 }
1196 if( sqlite3CompareAffinity(pRight, cEndAff)!=SQLITE_AFF_BLOB
1197 && !sqlite3ExprNeedsNoAffinityChange(pRight, cEndAff)
1198 ){
1199 codeApplyAffinity(pParse, regBase+nEq, 1, &cEndAff);
1200 }
1201 nConstraint++;
1202 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
1203 }else if( bStopAtNull ){
1204 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1205 endEq = 0;
1206 nConstraint++;
1207 }
1208 sqlite3DbFree(db, zStartAff);
1209
1210 /* Top of the loop body */
1211 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1212
1213 /* Check if the index cursor is past the end of the range. */
1214 if( nConstraint ){
1215 op = aEndOp[bRev*2 + endEq];
1216 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1217 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT );
1218 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE );
1219 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT );
1220 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE );
1221 }
1222
1223 /* Seek the table cursor, if required */
1224 disableTerm(pLevel, pRangeStart);
1225 disableTerm(pLevel, pRangeEnd);
1226 if( omitTable ){
1227 /* pIdx is a covering index. No need to access the main table. */
1228 }else if( HasRowid(pIdx->pTable) ){
1229 iRowidReg = ++pParse->nMem;
1230 sqlite3VdbeAddOp2(v, OP_IdxRowid, iIdxCur, iRowidReg);
1231 sqlite3ExprCacheStore(pParse, iCur, -1, iRowidReg);
1232 if( pWInfo->eOnePass!=ONEPASS_OFF ){
1233 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, iRowidReg);
1234 VdbeCoverage(v);
1235 }else{
1236 sqlite3VdbeAddOp2(v, OP_Seek, iCur, iRowidReg); /* Deferred seek */
1237 }
1238 }else if( iCur!=iIdxCur ){
1239 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1240 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1241 for(j=0; j<pPk->nKeyCol; j++){
1242 k = sqlite3ColumnOfIndex(pIdx, pPk->aiColumn[j]);
1243 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
1244 }
1245 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
1246 iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
1247 }
1248
1249 /* Record the instruction used to terminate the loop. Disable
1250 ** WHERE clause terms made redundant by the index range scan.
1251 */
1252 if( pLoop->wsFlags & WHERE_ONEROW ){
1253 pLevel->op = OP_Noop;
1254 }else if( bRev ){
1255 pLevel->op = OP_Prev;
1256 }else{
1257 pLevel->op = OP_Next;
1258 }
1259 pLevel->p1 = iIdxCur;
1260 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
1261 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
1262 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1263 }else{
1264 assert( pLevel->p5==0 );
1265 }
1266 }else
1267
1268 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
1269 if( pLoop->wsFlags & WHERE_MULTI_OR ){
1270 /* Case 5: Two or more separately indexed terms connected by OR
1271 **
1272 ** Example:
1273 **
1274 ** CREATE TABLE t1(a,b,c,d);
1275 ** CREATE INDEX i1 ON t1(a);
1276 ** CREATE INDEX i2 ON t1(b);
1277 ** CREATE INDEX i3 ON t1(c);
1278 **
1279 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
1280 **
1281 ** In the example, there are three indexed terms connected by OR.
1282 ** The top of the loop looks like this:
1283 **
1284 ** Null 1 # Zero the rowset in reg 1
1285 **
1286 ** Then, for each indexed term, the following. The arguments to
1287 ** RowSetTest are such that the rowid of the current row is inserted
1288 ** into the RowSet. If it is already present, control skips the
1289 ** Gosub opcode and jumps straight to the code generated by WhereEnd().
1290 **
1291 ** sqlite3WhereBegin(<term>)
1292 ** RowSetTest # Insert rowid into rowset
1293 ** Gosub 2 A
1294 ** sqlite3WhereEnd()
1295 **
1296 ** Following the above, code to terminate the loop. Label A, the target
1297 ** of the Gosub above, jumps to the instruction right after the Goto.
1298 **
1299 ** Null 1 # Zero the rowset in reg 1
1300 ** Goto B # The loop is finished.
1301 **
1302 ** A: <loop body> # Return data, whatever.
1303 **
1304 ** Return 2 # Jump back to the Gosub
1305 **
1306 ** B: <after the loop>
1307 **
1308 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
1309 ** use an ephemeral index instead of a RowSet to record the primary
1310 ** keys of the rows we have already seen.
1311 **
1312 */
1313 WhereClause *pOrWc; /* The OR-clause broken out into subterms */
1314 SrcList *pOrTab; /* Shortened table list or OR-clause generation */
1315 Index *pCov = 0; /* Potential covering index (or NULL) */
1316 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */
1317
1318 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */
1319 int regRowset = 0; /* Register for RowSet object */
1320 int regRowid = 0; /* Register holding rowid */
1321 int iLoopBody = sqlite3VdbeMakeLabel(v); /* Start of loop body */
1322 int iRetInit; /* Address of regReturn init */
1323 int untestedTerms = 0; /* Some terms not completely tested */
1324 int ii; /* Loop counter */
1325 u16 wctrlFlags; /* Flags for sub-WHERE clause */
1326 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */
1327 Table *pTab = pTabItem->pTab;
1328
1329 pTerm = pLoop->aLTerm[0];
1330 assert( pTerm!=0 );
1331 assert( pTerm->eOperator & WO_OR );
1332 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
1333 pOrWc = &pTerm->u.pOrInfo->wc;
1334 pLevel->op = OP_Return;
1335 pLevel->p1 = regReturn;
1336
1337 /* Set up a new SrcList in pOrTab containing the table being scanned
1338 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
1339 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
1340 */
1341 if( pWInfo->nLevel>1 ){
1342 int nNotReady; /* The number of notReady tables */
1343 struct SrcList_item *origSrc; /* Original list of tables */
1344 nNotReady = pWInfo->nLevel - iLevel - 1;
1345 pOrTab = sqlite3StackAllocRaw(db,
1346 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
1347 if( pOrTab==0 ) return notReady;
1348 pOrTab->nAlloc = (u8)(nNotReady + 1);
1349 pOrTab->nSrc = pOrTab->nAlloc;
1350 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
1351 origSrc = pWInfo->pTabList->a;
1352 for(k=1; k<=nNotReady; k++){
1353 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
1354 }
1355 }else{
1356 pOrTab = pWInfo->pTabList;
1357 }
1358
1359 /* Initialize the rowset register to contain NULL. An SQL NULL is
1360 ** equivalent to an empty rowset. Or, create an ephemeral index
1361 ** capable of holding primary keys in the case of a WITHOUT ROWID.
1362 **
1363 ** Also initialize regReturn to contain the address of the instruction
1364 ** immediately following the OP_Return at the bottom of the loop. This
1365 ** is required in a few obscure LEFT JOIN cases where control jumps
1366 ** over the top of the loop into the body of it. In this case the
1367 ** correct response for the end-of-loop code (the OP_Return) is to
1368 ** fall through to the next instruction, just as an OP_Next does if
1369 ** called on an uninitialized cursor.
1370 */
1371 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1372 if( HasRowid(pTab) ){
1373 regRowset = ++pParse->nMem;
1374 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
1375 }else{
1376 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1377 regRowset = pParse->nTab++;
1378 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
1379 sqlite3VdbeSetP4KeyInfo(pParse, pPk);
1380 }
1381 regRowid = ++pParse->nMem;
1382 }
1383 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
1384
1385 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y
1386 ** Then for every term xN, evaluate as the subexpression: xN AND z
1387 ** That way, terms in y that are factored into the disjunction will
1388 ** be picked up by the recursive calls to sqlite3WhereBegin() below.
1389 **
1390 ** Actually, each subexpression is converted to "xN AND w" where w is
1391 ** the "interesting" terms of z - terms that did not originate in the
1392 ** ON or USING clause of a LEFT JOIN, and terms that are usable as
1393 ** indices.
1394 **
1395 ** This optimization also only applies if the (x1 OR x2 OR ...) term
1396 ** is not contained in the ON clause of a LEFT JOIN.
1397 ** See ticket http://www.sqlite.org/src/info/f2369304e4
1398 */
1399 if( pWC->nTerm>1 ){
1400 int iTerm;
1401 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
1402 Expr *pExpr = pWC->a[iTerm].pExpr;
1403 if( &pWC->a[iTerm] == pTerm ) continue;
1404 if( ExprHasProperty(pExpr, EP_FromJoin) ) continue;
1405 if( (pWC->a[iTerm].wtFlags & TERM_VIRTUAL)!=0 ) continue;
1406 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
1407 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
1408 pExpr = sqlite3ExprDup(db, pExpr, 0);
1409 pAndExpr = sqlite3ExprAnd(db, pAndExpr, pExpr);
1410 }
1411 if( pAndExpr ){
1412 pAndExpr = sqlite3PExpr(pParse, TK_AND|TKFLG_DONTFOLD, 0, pAndExpr, 0);
1413 }
1414 }
1415
1416 /* Run a separate WHERE clause for each term of the OR clause. After
1417 ** eliminating duplicates from other WHERE clauses, the action for each
1418 ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
1419 */
1420 wctrlFlags = WHERE_OMIT_OPEN_CLOSE
1421 | WHERE_FORCE_TABLE
1422 | WHERE_ONETABLE_ONLY
1423 | WHERE_NO_AUTOINDEX;
1424 for(ii=0; ii<pOrWc->nTerm; ii++){
1425 WhereTerm *pOrTerm = &pOrWc->a[ii];
1426 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
1427 WhereInfo *pSubWInfo; /* Info for single OR-term scan */
1428 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
1429 int jmp1 = 0; /* Address of jump operation */
1430 if( pAndExpr && !ExprHasProperty(pOrExpr, EP_FromJoin) ){
1431 pAndExpr->pLeft = pOrExpr;
1432 pOrExpr = pAndExpr;
1433 }
1434 /* Loop through table entries that match term pOrTerm. */
1435 WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
1436 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
1437 wctrlFlags, iCovCur);
1438 assert( pSubWInfo || pParse->nErr || db->mallocFailed );
1439 if( pSubWInfo ){
1440 WhereLoop *pSubLoop;
1441 int addrExplain = sqlite3WhereExplainOneScan(
1442 pParse, pOrTab, &pSubWInfo->a[0], iLevel, pLevel->iFrom, 0
1443 );
1444 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
1445
1446 /* This is the sub-WHERE clause body. First skip over
1447 ** duplicate rows from prior sub-WHERE clauses, and record the
1448 ** rowid (or PRIMARY KEY) for the current row so that the same
1449 ** row will be skipped in subsequent sub-WHERE clauses.
1450 */
1451 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
1452 int r;
1453 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
1454 if( HasRowid(pTab) ){
1455 r = sqlite3ExprCodeGetColumn(pParse, pTab, -1, iCur, regRowid, 0);
1456 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
1457 r,iSet);
1458 VdbeCoverage(v);
1459 }else{
1460 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
1461 int nPk = pPk->nKeyCol;
1462 int iPk;
1463
1464 /* Read the PK into an array of temp registers. */
1465 r = sqlite3GetTempRange(pParse, nPk);
1466 for(iPk=0; iPk<nPk; iPk++){
1467 int iCol = pPk->aiColumn[iPk];
1468 sqlite3ExprCodeGetColumnToReg(pParse, pTab, iCol, iCur, r+iPk);
1469 }
1470
1471 /* Check if the temp table already contains this key. If so,
1472 ** the row has already been included in the result set and
1473 ** can be ignored (by jumping past the Gosub below). Otherwise,
1474 ** insert the key into the temp table and proceed with processing
1475 ** the row.
1476 **
1477 ** Use some of the same optimizations as OP_RowSetTest: If iSet
1478 ** is zero, assume that the key cannot already be present in
1479 ** the temp table. And if iSet is -1, assume that there is no
1480 ** need to insert the key into the temp table, as it will never
1481 ** be tested for. */
1482 if( iSet ){
1483 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
1484 VdbeCoverage(v);
1485 }
1486 if( iSet>=0 ){
1487 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
1488 sqlite3VdbeAddOp3(v, OP_IdxInsert, regRowset, regRowid, 0);
1489 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1490 }
1491
1492 /* Release the array of temp registers */
1493 sqlite3ReleaseTempRange(pParse, r, nPk);
1494 }
1495 }
1496
1497 /* Invoke the main loop body as a subroutine */
1498 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
1499
1500 /* Jump here (skipping the main loop body subroutine) if the
1501 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
1502 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
1503
1504 /* The pSubWInfo->untestedTerms flag means that this OR term
1505 ** contained one or more AND term from a notReady table. The
1506 ** terms from the notReady table could not be tested and will
1507 ** need to be tested later.
1508 */
1509 if( pSubWInfo->untestedTerms ) untestedTerms = 1;
1510
1511 /* If all of the OR-connected terms are optimized using the same
1512 ** index, and the index is opened using the same cursor number
1513 ** by each call to sqlite3WhereBegin() made by this loop, it may
1514 ** be possible to use that index as a covering index.
1515 **
1516 ** If the call to sqlite3WhereBegin() above resulted in a scan that
1517 ** uses an index, and this is either the first OR-connected term
1518 ** processed or the index is the same as that used by all previous
1519 ** terms, set pCov to the candidate covering index. Otherwise, set
1520 ** pCov to NULL to indicate that no candidate covering index will
1521 ** be available.
1522 */
1523 pSubLoop = pSubWInfo->a[0].pWLoop;
1524 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
1525 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
1526 && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
1527 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
1528 ){
1529 assert( pSubWInfo->a[0].iIdxCur==iCovCur );
1530 pCov = pSubLoop->u.btree.pIndex;
1531 wctrlFlags |= WHERE_REOPEN_IDX;
1532 }else{
1533 pCov = 0;
1534 }
1535
1536 /* Finish the loop through table entries that match term pOrTerm. */
1537 sqlite3WhereEnd(pSubWInfo);
1538 }
1539 }
1540 }
1541 pLevel->u.pCovidx = pCov;
1542 if( pCov ) pLevel->iIdxCur = iCovCur;
1543 if( pAndExpr ){
1544 pAndExpr->pLeft = 0;
1545 sqlite3ExprDelete(db, pAndExpr);
1546 }
1547 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
1548 sqlite3VdbeGoto(v, pLevel->addrBrk);
1549 sqlite3VdbeResolveLabel(v, iLoopBody);
1550
1551 if( pWInfo->nLevel>1 ) sqlite3StackFree(db, pOrTab);
1552 if( !untestedTerms ) disableTerm(pLevel, pTerm);
1553 }else
1554 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1555
1556 {
1557 /* Case 6: There is no usable index. We must do a complete
1558 ** scan of the entire table.
1559 */
1560 static const u8 aStep[] = { OP_Next, OP_Prev };
1561 static const u8 aStart[] = { OP_Rewind, OP_Last };
1562 assert( bRev==0 || bRev==1 );
1563 if( pTabItem->fg.isRecursive ){
1564 /* Tables marked isRecursive have only a single row that is stored in
1565 ** a pseudo-cursor. No need to Rewind or Next such cursors. */
1566 pLevel->op = OP_Noop;
1567 }else{
1568 codeCursorHint(pWInfo, pLevel, 0);
1569 pLevel->op = aStep[bRev];
1570 pLevel->p1 = iCur;
1571 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrBrk);
1572 VdbeCoverageIf(v, bRev==0);
1573 VdbeCoverageIf(v, bRev!=0);
1574 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
1575 }
1576 }
1577
1578 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1579 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
1580 #endif
1581
1582 /* Insert code to test every subexpression that can be completely
1583 ** computed using the current set of tables.
1584 */
1585 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
1586 Expr *pE;
1587 int skipLikeAddr = 0;
1588 testcase( pTerm->wtFlags & TERM_VIRTUAL );
1589 testcase( pTerm->wtFlags & TERM_CODED );
1590 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1591 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
1592 testcase( pWInfo->untestedTerms==0
1593 && (pWInfo->wctrlFlags & WHERE_ONETABLE_ONLY)!=0 );
1594 pWInfo->untestedTerms = 1;
1595 continue;
1596 }
1597 pE = pTerm->pExpr;
1598 assert( pE!=0 );
1599 if( pLevel->iLeftJoin && !ExprHasProperty(pE, EP_FromJoin) ){
1600 continue;
1601 }
1602 if( pTerm->wtFlags & TERM_LIKECOND ){
1603 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1604 continue;
1605 #else
1606 assert( pLevel->iLikeRepCntr>0 );
1607 skipLikeAddr = sqlite3VdbeAddOp1(v, OP_IfNot, pLevel->iLikeRepCntr);
1608 VdbeCoverage(v);
1609 #endif
1610 }
1611 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
1612 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
1613 pTerm->wtFlags |= TERM_CODED;
1614 }
1615
1616 /* Insert code to test for implied constraints based on transitivity
1617 ** of the "==" operator.
1618 **
1619 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
1620 ** and we are coding the t1 loop and the t2 loop has not yet coded,
1621 ** then we cannot use the "t1.a=t2.b" constraint, but we can code
1622 ** the implied "t1.a=123" constraint.
1623 */
1624 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
1625 Expr *pE, *pEAlt;
1626 WhereTerm *pAlt;
1627 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1628 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
1629 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
1630 if( pTerm->leftCursor!=iCur ) continue;
1631 if( pLevel->iLeftJoin ) continue;
1632 pE = pTerm->pExpr;
1633 assert( !ExprHasProperty(pE, EP_FromJoin) );
1634 assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
1635 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.leftColumn, notReady,
1636 WO_EQ|WO_IN|WO_IS, 0);
1637 if( pAlt==0 ) continue;
1638 if( pAlt->wtFlags & (TERM_CODED) ) continue;
1639 testcase( pAlt->eOperator & WO_EQ );
1640 testcase( pAlt->eOperator & WO_IS );
1641 testcase( pAlt->eOperator & WO_IN );
1642 VdbeModuleComment((v, "begin transitive constraint"));
1643 pEAlt = sqlite3StackAllocRaw(db, sizeof(*pEAlt));
1644 if( pEAlt ){
1645 *pEAlt = *pAlt->pExpr;
1646 pEAlt->pLeft = pE->pLeft;
1647 sqlite3ExprIfFalse(pParse, pEAlt, addrCont, SQLITE_JUMPIFNULL);
1648 sqlite3StackFree(db, pEAlt);
1649 }
1650 }
1651
1652 /* For a LEFT OUTER JOIN, generate code that will record the fact that
1653 ** at least one row of the right table has matched the left table.
1654 */
1655 if( pLevel->iLeftJoin ){
1656 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
1657 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
1658 VdbeComment((v, "record LEFT JOIN hit"));
1659 sqlite3ExprCacheClear(pParse);
1660 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
1661 testcase( pTerm->wtFlags & TERM_VIRTUAL );
1662 testcase( pTerm->wtFlags & TERM_CODED );
1663 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1664 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
1665 assert( pWInfo->untestedTerms );
1666 continue;
1667 }
1668 assert( pTerm->pExpr );
1669 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
1670 pTerm->wtFlags |= TERM_CODED;
1671 }
1672 }
1673
1674 return pLevel->notReady;
1675 }
OLDNEW
« no previous file with comments | « third_party/sqlite/sqlite-src-3100200/src/whereInt.h ('k') | third_party/sqlite/sqlite-src-3100200/src/whereexpr.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698