| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 ** 2001 September 15 | |
| 3 ** | |
| 4 ** The author disclaims copyright to this source code. In place of | |
| 5 ** a legal notice, here is a blessing: | |
| 6 ** | |
| 7 ** May you do good and not evil. | |
| 8 ** May you find forgiveness for yourself and forgive others. | |
| 9 ** May you share freely, never taking more than you give. | |
| 10 ** | |
| 11 ************************************************************************* | |
| 12 ** This module contains C code that generates VDBE code used to process | |
| 13 ** the WHERE clause of SQL statements. This module is responsible for | |
| 14 ** generating the code that loops through a table looking for applicable | |
| 15 ** rows. Indices are selected and used to speed the search when doing | |
| 16 ** so is applicable. Because this module is responsible for selecting | |
| 17 ** indices, you might also think of this module as the "query optimizer". | |
| 18 */ | |
| 19 #include "sqliteInt.h" | |
| 20 #include "whereInt.h" | |
| 21 | |
| 22 /* Forward declaration of methods */ | |
| 23 static int whereLoopResize(sqlite3*, WhereLoop*, int); | |
| 24 | |
| 25 /* Test variable that can be set to enable WHERE tracing */ | |
| 26 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG) | |
| 27 /***/ int sqlite3WhereTrace = 0; | |
| 28 #endif | |
| 29 | |
| 30 | |
| 31 /* | |
| 32 ** Return the estimated number of output rows from a WHERE clause | |
| 33 */ | |
| 34 u64 sqlite3WhereOutputRowCount(WhereInfo *pWInfo){ | |
| 35 return sqlite3LogEstToInt(pWInfo->nRowOut); | |
| 36 } | |
| 37 | |
| 38 /* | |
| 39 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this | |
| 40 ** WHERE clause returns outputs for DISTINCT processing. | |
| 41 */ | |
| 42 int sqlite3WhereIsDistinct(WhereInfo *pWInfo){ | |
| 43 return pWInfo->eDistinct; | |
| 44 } | |
| 45 | |
| 46 /* | |
| 47 ** Return TRUE if the WHERE clause returns rows in ORDER BY order. | |
| 48 ** Return FALSE if the output needs to be sorted. | |
| 49 */ | |
| 50 int sqlite3WhereIsOrdered(WhereInfo *pWInfo){ | |
| 51 return pWInfo->nOBSat; | |
| 52 } | |
| 53 | |
| 54 /* | |
| 55 ** Return the VDBE address or label to jump to in order to continue | |
| 56 ** immediately with the next row of a WHERE clause. | |
| 57 */ | |
| 58 int sqlite3WhereContinueLabel(WhereInfo *pWInfo){ | |
| 59 assert( pWInfo->iContinue!=0 ); | |
| 60 return pWInfo->iContinue; | |
| 61 } | |
| 62 | |
| 63 /* | |
| 64 ** Return the VDBE address or label to jump to in order to break | |
| 65 ** out of a WHERE loop. | |
| 66 */ | |
| 67 int sqlite3WhereBreakLabel(WhereInfo *pWInfo){ | |
| 68 return pWInfo->iBreak; | |
| 69 } | |
| 70 | |
| 71 /* | |
| 72 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to | |
| 73 ** operate directly on the rowis returned by a WHERE clause. Return | |
| 74 ** ONEPASS_SINGLE (1) if the statement can operation directly because only | |
| 75 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass | |
| 76 ** optimization can be used on multiple | |
| 77 ** | |
| 78 ** If the ONEPASS optimization is used (if this routine returns true) | |
| 79 ** then also write the indices of open cursors used by ONEPASS | |
| 80 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data | |
| 81 ** table and iaCur[1] gets the cursor used by an auxiliary index. | |
| 82 ** Either value may be -1, indicating that cursor is not used. | |
| 83 ** Any cursors returned will have been opened for writing. | |
| 84 ** | |
| 85 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is | |
| 86 ** unable to use the ONEPASS optimization. | |
| 87 */ | |
| 88 int sqlite3WhereOkOnePass(WhereInfo *pWInfo, int *aiCur){ | |
| 89 memcpy(aiCur, pWInfo->aiCurOnePass, sizeof(int)*2); | |
| 90 #ifdef WHERETRACE_ENABLED | |
| 91 if( sqlite3WhereTrace && pWInfo->eOnePass!=ONEPASS_OFF ){ | |
| 92 sqlite3DebugPrintf("%s cursors: %d %d\n", | |
| 93 pWInfo->eOnePass==ONEPASS_SINGLE ? "ONEPASS_SINGLE" : "ONEPASS_MULTI", | |
| 94 aiCur[0], aiCur[1]); | |
| 95 } | |
| 96 #endif | |
| 97 return pWInfo->eOnePass; | |
| 98 } | |
| 99 | |
| 100 /* | |
| 101 ** Move the content of pSrc into pDest | |
| 102 */ | |
| 103 static void whereOrMove(WhereOrSet *pDest, WhereOrSet *pSrc){ | |
| 104 pDest->n = pSrc->n; | |
| 105 memcpy(pDest->a, pSrc->a, pDest->n*sizeof(pDest->a[0])); | |
| 106 } | |
| 107 | |
| 108 /* | |
| 109 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet. | |
| 110 ** | |
| 111 ** The new entry might overwrite an existing entry, or it might be | |
| 112 ** appended, or it might be discarded. Do whatever is the right thing | |
| 113 ** so that pSet keeps the N_OR_COST best entries seen so far. | |
| 114 */ | |
| 115 static int whereOrInsert( | |
| 116 WhereOrSet *pSet, /* The WhereOrSet to be updated */ | |
| 117 Bitmask prereq, /* Prerequisites of the new entry */ | |
| 118 LogEst rRun, /* Run-cost of the new entry */ | |
| 119 LogEst nOut /* Number of outputs for the new entry */ | |
| 120 ){ | |
| 121 u16 i; | |
| 122 WhereOrCost *p; | |
| 123 for(i=pSet->n, p=pSet->a; i>0; i--, p++){ | |
| 124 if( rRun<=p->rRun && (prereq & p->prereq)==prereq ){ | |
| 125 goto whereOrInsert_done; | |
| 126 } | |
| 127 if( p->rRun<=rRun && (p->prereq & prereq)==p->prereq ){ | |
| 128 return 0; | |
| 129 } | |
| 130 } | |
| 131 if( pSet->n<N_OR_COST ){ | |
| 132 p = &pSet->a[pSet->n++]; | |
| 133 p->nOut = nOut; | |
| 134 }else{ | |
| 135 p = pSet->a; | |
| 136 for(i=1; i<pSet->n; i++){ | |
| 137 if( p->rRun>pSet->a[i].rRun ) p = pSet->a + i; | |
| 138 } | |
| 139 if( p->rRun<=rRun ) return 0; | |
| 140 } | |
| 141 whereOrInsert_done: | |
| 142 p->prereq = prereq; | |
| 143 p->rRun = rRun; | |
| 144 if( p->nOut>nOut ) p->nOut = nOut; | |
| 145 return 1; | |
| 146 } | |
| 147 | |
| 148 /* | |
| 149 ** Return the bitmask for the given cursor number. Return 0 if | |
| 150 ** iCursor is not in the set. | |
| 151 */ | |
| 152 Bitmask sqlite3WhereGetMask(WhereMaskSet *pMaskSet, int iCursor){ | |
| 153 int i; | |
| 154 assert( pMaskSet->n<=(int)sizeof(Bitmask)*8 ); | |
| 155 for(i=0; i<pMaskSet->n; i++){ | |
| 156 if( pMaskSet->ix[i]==iCursor ){ | |
| 157 return MASKBIT(i); | |
| 158 } | |
| 159 } | |
| 160 return 0; | |
| 161 } | |
| 162 | |
| 163 /* | |
| 164 ** Create a new mask for cursor iCursor. | |
| 165 ** | |
| 166 ** There is one cursor per table in the FROM clause. The number of | |
| 167 ** tables in the FROM clause is limited by a test early in the | |
| 168 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[] | |
| 169 ** array will never overflow. | |
| 170 */ | |
| 171 static void createMask(WhereMaskSet *pMaskSet, int iCursor){ | |
| 172 assert( pMaskSet->n < ArraySize(pMaskSet->ix) ); | |
| 173 pMaskSet->ix[pMaskSet->n++] = iCursor; | |
| 174 } | |
| 175 | |
| 176 /* | |
| 177 ** Advance to the next WhereTerm that matches according to the criteria | |
| 178 ** established when the pScan object was initialized by whereScanInit(). | |
| 179 ** Return NULL if there are no more matching WhereTerms. | |
| 180 */ | |
| 181 static WhereTerm *whereScanNext(WhereScan *pScan){ | |
| 182 int iCur; /* The cursor on the LHS of the term */ | |
| 183 i16 iColumn; /* The column on the LHS of the term. -1 for IPK */ | |
| 184 Expr *pX; /* An expression being tested */ | |
| 185 WhereClause *pWC; /* Shorthand for pScan->pWC */ | |
| 186 WhereTerm *pTerm; /* The term being tested */ | |
| 187 int k = pScan->k; /* Where to start scanning */ | |
| 188 | |
| 189 while( pScan->iEquiv<=pScan->nEquiv ){ | |
| 190 iCur = pScan->aiCur[pScan->iEquiv-1]; | |
| 191 iColumn = pScan->aiColumn[pScan->iEquiv-1]; | |
| 192 if( iColumn==XN_EXPR && pScan->pIdxExpr==0 ) return 0; | |
| 193 while( (pWC = pScan->pWC)!=0 ){ | |
| 194 for(pTerm=pWC->a+k; k<pWC->nTerm; k++, pTerm++){ | |
| 195 if( pTerm->leftCursor==iCur | |
| 196 && pTerm->u.leftColumn==iColumn | |
| 197 && (iColumn!=XN_EXPR | |
| 198 || sqlite3ExprCompare(pTerm->pExpr->pLeft,pScan->pIdxExpr,iCur)==0) | |
| 199 && (pScan->iEquiv<=1 || !ExprHasProperty(pTerm->pExpr, EP_FromJoin)) | |
| 200 ){ | |
| 201 if( (pTerm->eOperator & WO_EQUIV)!=0 | |
| 202 && pScan->nEquiv<ArraySize(pScan->aiCur) | |
| 203 && (pX = sqlite3ExprSkipCollate(pTerm->pExpr->pRight))->op==TK_COLUMN | |
| 204 ){ | |
| 205 int j; | |
| 206 for(j=0; j<pScan->nEquiv; j++){ | |
| 207 if( pScan->aiCur[j]==pX->iTable | |
| 208 && pScan->aiColumn[j]==pX->iColumn ){ | |
| 209 break; | |
| 210 } | |
| 211 } | |
| 212 if( j==pScan->nEquiv ){ | |
| 213 pScan->aiCur[j] = pX->iTable; | |
| 214 pScan->aiColumn[j] = pX->iColumn; | |
| 215 pScan->nEquiv++; | |
| 216 } | |
| 217 } | |
| 218 if( (pTerm->eOperator & pScan->opMask)!=0 ){ | |
| 219 /* Verify the affinity and collating sequence match */ | |
| 220 if( pScan->zCollName && (pTerm->eOperator & WO_ISNULL)==0 ){ | |
| 221 CollSeq *pColl; | |
| 222 Parse *pParse = pWC->pWInfo->pParse; | |
| 223 pX = pTerm->pExpr; | |
| 224 if( !sqlite3IndexAffinityOk(pX, pScan->idxaff) ){ | |
| 225 continue; | |
| 226 } | |
| 227 assert(pX->pLeft); | |
| 228 pColl = sqlite3BinaryCompareCollSeq(pParse, | |
| 229 pX->pLeft, pX->pRight); | |
| 230 if( pColl==0 ) pColl = pParse->db->pDfltColl; | |
| 231 if( sqlite3StrICmp(pColl->zName, pScan->zCollName) ){ | |
| 232 continue; | |
| 233 } | |
| 234 } | |
| 235 if( (pTerm->eOperator & (WO_EQ|WO_IS))!=0 | |
| 236 && (pX = pTerm->pExpr->pRight)->op==TK_COLUMN | |
| 237 && pX->iTable==pScan->aiCur[0] | |
| 238 && pX->iColumn==pScan->aiColumn[0] | |
| 239 ){ | |
| 240 testcase( pTerm->eOperator & WO_IS ); | |
| 241 continue; | |
| 242 } | |
| 243 pScan->k = k+1; | |
| 244 return pTerm; | |
| 245 } | |
| 246 } | |
| 247 } | |
| 248 pScan->pWC = pScan->pWC->pOuter; | |
| 249 k = 0; | |
| 250 } | |
| 251 pScan->pWC = pScan->pOrigWC; | |
| 252 k = 0; | |
| 253 pScan->iEquiv++; | |
| 254 } | |
| 255 return 0; | |
| 256 } | |
| 257 | |
| 258 /* | |
| 259 ** Initialize a WHERE clause scanner object. Return a pointer to the | |
| 260 ** first match. Return NULL if there are no matches. | |
| 261 ** | |
| 262 ** The scanner will be searching the WHERE clause pWC. It will look | |
| 263 ** for terms of the form "X <op> <expr>" where X is column iColumn of table | |
| 264 ** iCur. The <op> must be one of the operators described by opMask. | |
| 265 ** | |
| 266 ** If the search is for X and the WHERE clause contains terms of the | |
| 267 ** form X=Y then this routine might also return terms of the form | |
| 268 ** "Y <op> <expr>". The number of levels of transitivity is limited, | |
| 269 ** but is enough to handle most commonly occurring SQL statements. | |
| 270 ** | |
| 271 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with | |
| 272 ** index pIdx. | |
| 273 */ | |
| 274 static WhereTerm *whereScanInit( | |
| 275 WhereScan *pScan, /* The WhereScan object being initialized */ | |
| 276 WhereClause *pWC, /* The WHERE clause to be scanned */ | |
| 277 int iCur, /* Cursor to scan for */ | |
| 278 int iColumn, /* Column to scan for */ | |
| 279 u32 opMask, /* Operator(s) to scan for */ | |
| 280 Index *pIdx /* Must be compatible with this index */ | |
| 281 ){ | |
| 282 int j = 0; | |
| 283 | |
| 284 /* memset(pScan, 0, sizeof(*pScan)); */ | |
| 285 pScan->pOrigWC = pWC; | |
| 286 pScan->pWC = pWC; | |
| 287 pScan->pIdxExpr = 0; | |
| 288 if( pIdx ){ | |
| 289 j = iColumn; | |
| 290 iColumn = pIdx->aiColumn[j]; | |
| 291 if( iColumn==XN_EXPR ) pScan->pIdxExpr = pIdx->aColExpr->a[j].pExpr; | |
| 292 } | |
| 293 if( pIdx && iColumn>=0 ){ | |
| 294 pScan->idxaff = pIdx->pTable->aCol[iColumn].affinity; | |
| 295 pScan->zCollName = pIdx->azColl[j]; | |
| 296 }else{ | |
| 297 pScan->idxaff = 0; | |
| 298 pScan->zCollName = 0; | |
| 299 } | |
| 300 pScan->opMask = opMask; | |
| 301 pScan->k = 0; | |
| 302 pScan->aiCur[0] = iCur; | |
| 303 pScan->aiColumn[0] = iColumn; | |
| 304 pScan->nEquiv = 1; | |
| 305 pScan->iEquiv = 1; | |
| 306 return whereScanNext(pScan); | |
| 307 } | |
| 308 | |
| 309 /* | |
| 310 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>" | |
| 311 ** where X is a reference to the iColumn of table iCur and <op> is one of | |
| 312 ** the WO_xx operator codes specified by the op parameter. | |
| 313 ** Return a pointer to the term. Return 0 if not found. | |
| 314 ** | |
| 315 ** If pIdx!=0 then search for terms matching the iColumn-th column of pIdx | |
| 316 ** rather than the iColumn-th column of table iCur. | |
| 317 ** | |
| 318 ** The term returned might by Y=<expr> if there is another constraint in | |
| 319 ** the WHERE clause that specifies that X=Y. Any such constraints will be | |
| 320 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The | |
| 321 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11 | |
| 322 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10 | |
| 323 ** other equivalent values. Hence a search for X will return <expr> if X=A1 | |
| 324 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>. | |
| 325 ** | |
| 326 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>" | |
| 327 ** then try for the one with no dependencies on <expr> - in other words where | |
| 328 ** <expr> is a constant expression of some kind. Only return entries of | |
| 329 ** the form "X <op> Y" where Y is a column in another table if no terms of | |
| 330 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS | |
| 331 ** exist, try to return a term that does not use WO_EQUIV. | |
| 332 */ | |
| 333 WhereTerm *sqlite3WhereFindTerm( | |
| 334 WhereClause *pWC, /* The WHERE clause to be searched */ | |
| 335 int iCur, /* Cursor number of LHS */ | |
| 336 int iColumn, /* Column number of LHS */ | |
| 337 Bitmask notReady, /* RHS must not overlap with this mask */ | |
| 338 u32 op, /* Mask of WO_xx values describing operator */ | |
| 339 Index *pIdx /* Must be compatible with this index, if not NULL */ | |
| 340 ){ | |
| 341 WhereTerm *pResult = 0; | |
| 342 WhereTerm *p; | |
| 343 WhereScan scan; | |
| 344 | |
| 345 p = whereScanInit(&scan, pWC, iCur, iColumn, op, pIdx); | |
| 346 op &= WO_EQ|WO_IS; | |
| 347 while( p ){ | |
| 348 if( (p->prereqRight & notReady)==0 ){ | |
| 349 if( p->prereqRight==0 && (p->eOperator&op)!=0 ){ | |
| 350 testcase( p->eOperator & WO_IS ); | |
| 351 return p; | |
| 352 } | |
| 353 if( pResult==0 ) pResult = p; | |
| 354 } | |
| 355 p = whereScanNext(&scan); | |
| 356 } | |
| 357 return pResult; | |
| 358 } | |
| 359 | |
| 360 /* | |
| 361 ** This function searches pList for an entry that matches the iCol-th column | |
| 362 ** of index pIdx. | |
| 363 ** | |
| 364 ** If such an expression is found, its index in pList->a[] is returned. If | |
| 365 ** no expression is found, -1 is returned. | |
| 366 */ | |
| 367 static int findIndexCol( | |
| 368 Parse *pParse, /* Parse context */ | |
| 369 ExprList *pList, /* Expression list to search */ | |
| 370 int iBase, /* Cursor for table associated with pIdx */ | |
| 371 Index *pIdx, /* Index to match column of */ | |
| 372 int iCol /* Column of index to match */ | |
| 373 ){ | |
| 374 int i; | |
| 375 const char *zColl = pIdx->azColl[iCol]; | |
| 376 | |
| 377 for(i=0; i<pList->nExpr; i++){ | |
| 378 Expr *p = sqlite3ExprSkipCollate(pList->a[i].pExpr); | |
| 379 if( p->op==TK_COLUMN | |
| 380 && p->iColumn==pIdx->aiColumn[iCol] | |
| 381 && p->iTable==iBase | |
| 382 ){ | |
| 383 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pList->a[i].pExpr); | |
| 384 if( pColl && 0==sqlite3StrICmp(pColl->zName, zColl) ){ | |
| 385 return i; | |
| 386 } | |
| 387 } | |
| 388 } | |
| 389 | |
| 390 return -1; | |
| 391 } | |
| 392 | |
| 393 /* | |
| 394 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL | |
| 395 */ | |
| 396 static int indexColumnNotNull(Index *pIdx, int iCol){ | |
| 397 int j; | |
| 398 assert( pIdx!=0 ); | |
| 399 assert( iCol>=0 && iCol<pIdx->nColumn ); | |
| 400 j = pIdx->aiColumn[iCol]; | |
| 401 if( j>=0 ){ | |
| 402 return pIdx->pTable->aCol[j].notNull; | |
| 403 }else if( j==(-1) ){ | |
| 404 return 1; | |
| 405 }else{ | |
| 406 assert( j==(-2) ); | |
| 407 return 0; /* Assume an indexed expression can always yield a NULL */ | |
| 408 | |
| 409 } | |
| 410 } | |
| 411 | |
| 412 /* | |
| 413 ** Return true if the DISTINCT expression-list passed as the third argument | |
| 414 ** is redundant. | |
| 415 ** | |
| 416 ** A DISTINCT list is redundant if any subset of the columns in the | |
| 417 ** DISTINCT list are collectively unique and individually non-null. | |
| 418 */ | |
| 419 static int isDistinctRedundant( | |
| 420 Parse *pParse, /* Parsing context */ | |
| 421 SrcList *pTabList, /* The FROM clause */ | |
| 422 WhereClause *pWC, /* The WHERE clause */ | |
| 423 ExprList *pDistinct /* The result set that needs to be DISTINCT */ | |
| 424 ){ | |
| 425 Table *pTab; | |
| 426 Index *pIdx; | |
| 427 int i; | |
| 428 int iBase; | |
| 429 | |
| 430 /* If there is more than one table or sub-select in the FROM clause of | |
| 431 ** this query, then it will not be possible to show that the DISTINCT | |
| 432 ** clause is redundant. */ | |
| 433 if( pTabList->nSrc!=1 ) return 0; | |
| 434 iBase = pTabList->a[0].iCursor; | |
| 435 pTab = pTabList->a[0].pTab; | |
| 436 | |
| 437 /* If any of the expressions is an IPK column on table iBase, then return | |
| 438 ** true. Note: The (p->iTable==iBase) part of this test may be false if the | |
| 439 ** current SELECT is a correlated sub-query. | |
| 440 */ | |
| 441 for(i=0; i<pDistinct->nExpr; i++){ | |
| 442 Expr *p = sqlite3ExprSkipCollate(pDistinct->a[i].pExpr); | |
| 443 if( p->op==TK_COLUMN && p->iTable==iBase && p->iColumn<0 ) return 1; | |
| 444 } | |
| 445 | |
| 446 /* Loop through all indices on the table, checking each to see if it makes | |
| 447 ** the DISTINCT qualifier redundant. It does so if: | |
| 448 ** | |
| 449 ** 1. The index is itself UNIQUE, and | |
| 450 ** | |
| 451 ** 2. All of the columns in the index are either part of the pDistinct | |
| 452 ** list, or else the WHERE clause contains a term of the form "col=X", | |
| 453 ** where X is a constant value. The collation sequences of the | |
| 454 ** comparison and select-list expressions must match those of the index. | |
| 455 ** | |
| 456 ** 3. All of those index columns for which the WHERE clause does not | |
| 457 ** contain a "col=X" term are subject to a NOT NULL constraint. | |
| 458 */ | |
| 459 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ | |
| 460 if( !IsUniqueIndex(pIdx) ) continue; | |
| 461 for(i=0; i<pIdx->nKeyCol; i++){ | |
| 462 if( 0==sqlite3WhereFindTerm(pWC, iBase, i, ~(Bitmask)0, WO_EQ, pIdx) ){ | |
| 463 if( findIndexCol(pParse, pDistinct, iBase, pIdx, i)<0 ) break; | |
| 464 if( indexColumnNotNull(pIdx, i)==0 ) break; | |
| 465 } | |
| 466 } | |
| 467 if( i==pIdx->nKeyCol ){ | |
| 468 /* This index implies that the DISTINCT qualifier is redundant. */ | |
| 469 return 1; | |
| 470 } | |
| 471 } | |
| 472 | |
| 473 return 0; | |
| 474 } | |
| 475 | |
| 476 | |
| 477 /* | |
| 478 ** Estimate the logarithm of the input value to base 2. | |
| 479 */ | |
| 480 static LogEst estLog(LogEst N){ | |
| 481 return N<=10 ? 0 : sqlite3LogEst(N) - 33; | |
| 482 } | |
| 483 | |
| 484 /* | |
| 485 ** Convert OP_Column opcodes to OP_Copy in previously generated code. | |
| 486 ** | |
| 487 ** This routine runs over generated VDBE code and translates OP_Column | |
| 488 ** opcodes into OP_Copy when the table is being accessed via co-routine | |
| 489 ** instead of via table lookup. | |
| 490 ** | |
| 491 ** If the bIncrRowid parameter is 0, then any OP_Rowid instructions on | |
| 492 ** cursor iTabCur are transformed into OP_Null. Or, if bIncrRowid is non-zero, | |
| 493 ** then each OP_Rowid is transformed into an instruction to increment the | |
| 494 ** value stored in its output register. | |
| 495 */ | |
| 496 static void translateColumnToCopy( | |
| 497 Vdbe *v, /* The VDBE containing code to translate */ | |
| 498 int iStart, /* Translate from this opcode to the end */ | |
| 499 int iTabCur, /* OP_Column/OP_Rowid references to this table */ | |
| 500 int iRegister, /* The first column is in this register */ | |
| 501 int bIncrRowid /* If non-zero, transform OP_rowid to OP_AddImm(1) */ | |
| 502 ){ | |
| 503 VdbeOp *pOp = sqlite3VdbeGetOp(v, iStart); | |
| 504 int iEnd = sqlite3VdbeCurrentAddr(v); | |
| 505 for(; iStart<iEnd; iStart++, pOp++){ | |
| 506 if( pOp->p1!=iTabCur ) continue; | |
| 507 if( pOp->opcode==OP_Column ){ | |
| 508 pOp->opcode = OP_Copy; | |
| 509 pOp->p1 = pOp->p2 + iRegister; | |
| 510 pOp->p2 = pOp->p3; | |
| 511 pOp->p3 = 0; | |
| 512 }else if( pOp->opcode==OP_Rowid ){ | |
| 513 if( bIncrRowid ){ | |
| 514 /* Increment the value stored in the P2 operand of the OP_Rowid. */ | |
| 515 pOp->opcode = OP_AddImm; | |
| 516 pOp->p1 = pOp->p2; | |
| 517 pOp->p2 = 1; | |
| 518 }else{ | |
| 519 pOp->opcode = OP_Null; | |
| 520 pOp->p1 = 0; | |
| 521 pOp->p3 = 0; | |
| 522 } | |
| 523 } | |
| 524 } | |
| 525 } | |
| 526 | |
| 527 /* | |
| 528 ** Two routines for printing the content of an sqlite3_index_info | |
| 529 ** structure. Used for testing and debugging only. If neither | |
| 530 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines | |
| 531 ** are no-ops. | |
| 532 */ | |
| 533 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED) | |
| 534 static void TRACE_IDX_INPUTS(sqlite3_index_info *p){ | |
| 535 int i; | |
| 536 if( !sqlite3WhereTrace ) return; | |
| 537 for(i=0; i<p->nConstraint; i++){ | |
| 538 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n", | |
| 539 i, | |
| 540 p->aConstraint[i].iColumn, | |
| 541 p->aConstraint[i].iTermOffset, | |
| 542 p->aConstraint[i].op, | |
| 543 p->aConstraint[i].usable); | |
| 544 } | |
| 545 for(i=0; i<p->nOrderBy; i++){ | |
| 546 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n", | |
| 547 i, | |
| 548 p->aOrderBy[i].iColumn, | |
| 549 p->aOrderBy[i].desc); | |
| 550 } | |
| 551 } | |
| 552 static void TRACE_IDX_OUTPUTS(sqlite3_index_info *p){ | |
| 553 int i; | |
| 554 if( !sqlite3WhereTrace ) return; | |
| 555 for(i=0; i<p->nConstraint; i++){ | |
| 556 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n", | |
| 557 i, | |
| 558 p->aConstraintUsage[i].argvIndex, | |
| 559 p->aConstraintUsage[i].omit); | |
| 560 } | |
| 561 sqlite3DebugPrintf(" idxNum=%d\n", p->idxNum); | |
| 562 sqlite3DebugPrintf(" idxStr=%s\n", p->idxStr); | |
| 563 sqlite3DebugPrintf(" orderByConsumed=%d\n", p->orderByConsumed); | |
| 564 sqlite3DebugPrintf(" estimatedCost=%g\n", p->estimatedCost); | |
| 565 sqlite3DebugPrintf(" estimatedRows=%lld\n", p->estimatedRows); | |
| 566 } | |
| 567 #else | |
| 568 #define TRACE_IDX_INPUTS(A) | |
| 569 #define TRACE_IDX_OUTPUTS(A) | |
| 570 #endif | |
| 571 | |
| 572 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX | |
| 573 /* | |
| 574 ** Return TRUE if the WHERE clause term pTerm is of a form where it | |
| 575 ** could be used with an index to access pSrc, assuming an appropriate | |
| 576 ** index existed. | |
| 577 */ | |
| 578 static int termCanDriveIndex( | |
| 579 WhereTerm *pTerm, /* WHERE clause term to check */ | |
| 580 struct SrcList_item *pSrc, /* Table we are trying to access */ | |
| 581 Bitmask notReady /* Tables in outer loops of the join */ | |
| 582 ){ | |
| 583 char aff; | |
| 584 if( pTerm->leftCursor!=pSrc->iCursor ) return 0; | |
| 585 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) return 0; | |
| 586 if( (pTerm->prereqRight & notReady)!=0 ) return 0; | |
| 587 if( pTerm->u.leftColumn<0 ) return 0; | |
| 588 aff = pSrc->pTab->aCol[pTerm->u.leftColumn].affinity; | |
| 589 if( !sqlite3IndexAffinityOk(pTerm->pExpr, aff) ) return 0; | |
| 590 testcase( pTerm->pExpr->op==TK_IS ); | |
| 591 return 1; | |
| 592 } | |
| 593 #endif | |
| 594 | |
| 595 | |
| 596 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX | |
| 597 /* | |
| 598 ** Generate code to construct the Index object for an automatic index | |
| 599 ** and to set up the WhereLevel object pLevel so that the code generator | |
| 600 ** makes use of the automatic index. | |
| 601 */ | |
| 602 static void constructAutomaticIndex( | |
| 603 Parse *pParse, /* The parsing context */ | |
| 604 WhereClause *pWC, /* The WHERE clause */ | |
| 605 struct SrcList_item *pSrc, /* The FROM clause term to get the next index */ | |
| 606 Bitmask notReady, /* Mask of cursors that are not available */ | |
| 607 WhereLevel *pLevel /* Write new index here */ | |
| 608 ){ | |
| 609 int nKeyCol; /* Number of columns in the constructed index */ | |
| 610 WhereTerm *pTerm; /* A single term of the WHERE clause */ | |
| 611 WhereTerm *pWCEnd; /* End of pWC->a[] */ | |
| 612 Index *pIdx; /* Object describing the transient index */ | |
| 613 Vdbe *v; /* Prepared statement under construction */ | |
| 614 int addrInit; /* Address of the initialization bypass jump */ | |
| 615 Table *pTable; /* The table being indexed */ | |
| 616 int addrTop; /* Top of the index fill loop */ | |
| 617 int regRecord; /* Register holding an index record */ | |
| 618 int n; /* Column counter */ | |
| 619 int i; /* Loop counter */ | |
| 620 int mxBitCol; /* Maximum column in pSrc->colUsed */ | |
| 621 CollSeq *pColl; /* Collating sequence to on a column */ | |
| 622 WhereLoop *pLoop; /* The Loop object */ | |
| 623 char *zNotUsed; /* Extra space on the end of pIdx */ | |
| 624 Bitmask idxCols; /* Bitmap of columns used for indexing */ | |
| 625 Bitmask extraCols; /* Bitmap of additional columns */ | |
| 626 u8 sentWarning = 0; /* True if a warnning has been issued */ | |
| 627 Expr *pPartial = 0; /* Partial Index Expression */ | |
| 628 int iContinue = 0; /* Jump here to skip excluded rows */ | |
| 629 struct SrcList_item *pTabItem; /* FROM clause term being indexed */ | |
| 630 int addrCounter = 0; /* Address where integer counter is initialized */ | |
| 631 int regBase; /* Array of registers where record is assembled */ | |
| 632 | |
| 633 /* Generate code to skip over the creation and initialization of the | |
| 634 ** transient index on 2nd and subsequent iterations of the loop. */ | |
| 635 v = pParse->pVdbe; | |
| 636 assert( v!=0 ); | |
| 637 addrInit = sqlite3CodeOnce(pParse); VdbeCoverage(v); | |
| 638 | |
| 639 /* Count the number of columns that will be added to the index | |
| 640 ** and used to match WHERE clause constraints */ | |
| 641 nKeyCol = 0; | |
| 642 pTable = pSrc->pTab; | |
| 643 pWCEnd = &pWC->a[pWC->nTerm]; | |
| 644 pLoop = pLevel->pWLoop; | |
| 645 idxCols = 0; | |
| 646 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ | |
| 647 Expr *pExpr = pTerm->pExpr; | |
| 648 assert( !ExprHasProperty(pExpr, EP_FromJoin) /* prereq always non-zero */ | |
| 649 || pExpr->iRightJoinTable!=pSrc->iCursor /* for the right-hand */ | |
| 650 || pLoop->prereq!=0 ); /* table of a LEFT JOIN */ | |
| 651 if( pLoop->prereq==0 | |
| 652 && (pTerm->wtFlags & TERM_VIRTUAL)==0 | |
| 653 && !ExprHasProperty(pExpr, EP_FromJoin) | |
| 654 && sqlite3ExprIsTableConstant(pExpr, pSrc->iCursor) ){ | |
| 655 pPartial = sqlite3ExprAnd(pParse->db, pPartial, | |
| 656 sqlite3ExprDup(pParse->db, pExpr, 0)); | |
| 657 } | |
| 658 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ | |
| 659 int iCol = pTerm->u.leftColumn; | |
| 660 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); | |
| 661 testcase( iCol==BMS ); | |
| 662 testcase( iCol==BMS-1 ); | |
| 663 if( !sentWarning ){ | |
| 664 sqlite3_log(SQLITE_WARNING_AUTOINDEX, | |
| 665 "automatic index on %s(%s)", pTable->zName, | |
| 666 pTable->aCol[iCol].zName); | |
| 667 sentWarning = 1; | |
| 668 } | |
| 669 if( (idxCols & cMask)==0 ){ | |
| 670 if( whereLoopResize(pParse->db, pLoop, nKeyCol+1) ){ | |
| 671 goto end_auto_index_create; | |
| 672 } | |
| 673 pLoop->aLTerm[nKeyCol++] = pTerm; | |
| 674 idxCols |= cMask; | |
| 675 } | |
| 676 } | |
| 677 } | |
| 678 assert( nKeyCol>0 ); | |
| 679 pLoop->u.btree.nEq = pLoop->nLTerm = nKeyCol; | |
| 680 pLoop->wsFlags = WHERE_COLUMN_EQ | WHERE_IDX_ONLY | WHERE_INDEXED | |
| 681 | WHERE_AUTO_INDEX; | |
| 682 | |
| 683 /* Count the number of additional columns needed to create a | |
| 684 ** covering index. A "covering index" is an index that contains all | |
| 685 ** columns that are needed by the query. With a covering index, the | |
| 686 ** original table never needs to be accessed. Automatic indices must | |
| 687 ** be a covering index because the index will not be updated if the | |
| 688 ** original table changes and the index and table cannot both be used | |
| 689 ** if they go out of sync. | |
| 690 */ | |
| 691 extraCols = pSrc->colUsed & (~idxCols | MASKBIT(BMS-1)); | |
| 692 mxBitCol = MIN(BMS-1,pTable->nCol); | |
| 693 testcase( pTable->nCol==BMS-1 ); | |
| 694 testcase( pTable->nCol==BMS-2 ); | |
| 695 for(i=0; i<mxBitCol; i++){ | |
| 696 if( extraCols & MASKBIT(i) ) nKeyCol++; | |
| 697 } | |
| 698 if( pSrc->colUsed & MASKBIT(BMS-1) ){ | |
| 699 nKeyCol += pTable->nCol - BMS + 1; | |
| 700 } | |
| 701 | |
| 702 /* Construct the Index object to describe this index */ | |
| 703 pIdx = sqlite3AllocateIndexObject(pParse->db, nKeyCol+1, 0, &zNotUsed); | |
| 704 if( pIdx==0 ) goto end_auto_index_create; | |
| 705 pLoop->u.btree.pIndex = pIdx; | |
| 706 pIdx->zName = "auto-index"; | |
| 707 pIdx->pTable = pTable; | |
| 708 n = 0; | |
| 709 idxCols = 0; | |
| 710 for(pTerm=pWC->a; pTerm<pWCEnd; pTerm++){ | |
| 711 if( termCanDriveIndex(pTerm, pSrc, notReady) ){ | |
| 712 int iCol = pTerm->u.leftColumn; | |
| 713 Bitmask cMask = iCol>=BMS ? MASKBIT(BMS-1) : MASKBIT(iCol); | |
| 714 testcase( iCol==BMS-1 ); | |
| 715 testcase( iCol==BMS ); | |
| 716 if( (idxCols & cMask)==0 ){ | |
| 717 Expr *pX = pTerm->pExpr; | |
| 718 idxCols |= cMask; | |
| 719 pIdx->aiColumn[n] = pTerm->u.leftColumn; | |
| 720 pColl = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pX->pRight); | |
| 721 pIdx->azColl[n] = pColl ? pColl->zName : sqlite3StrBINARY; | |
| 722 n++; | |
| 723 } | |
| 724 } | |
| 725 } | |
| 726 assert( (u32)n==pLoop->u.btree.nEq ); | |
| 727 | |
| 728 /* Add additional columns needed to make the automatic index into | |
| 729 ** a covering index */ | |
| 730 for(i=0; i<mxBitCol; i++){ | |
| 731 if( extraCols & MASKBIT(i) ){ | |
| 732 pIdx->aiColumn[n] = i; | |
| 733 pIdx->azColl[n] = sqlite3StrBINARY; | |
| 734 n++; | |
| 735 } | |
| 736 } | |
| 737 if( pSrc->colUsed & MASKBIT(BMS-1) ){ | |
| 738 for(i=BMS-1; i<pTable->nCol; i++){ | |
| 739 pIdx->aiColumn[n] = i; | |
| 740 pIdx->azColl[n] = sqlite3StrBINARY; | |
| 741 n++; | |
| 742 } | |
| 743 } | |
| 744 assert( n==nKeyCol ); | |
| 745 pIdx->aiColumn[n] = XN_ROWID; | |
| 746 pIdx->azColl[n] = sqlite3StrBINARY; | |
| 747 | |
| 748 /* Create the automatic index */ | |
| 749 assert( pLevel->iIdxCur>=0 ); | |
| 750 pLevel->iIdxCur = pParse->nTab++; | |
| 751 sqlite3VdbeAddOp2(v, OP_OpenAutoindex, pLevel->iIdxCur, nKeyCol+1); | |
| 752 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); | |
| 753 VdbeComment((v, "for %s", pTable->zName)); | |
| 754 | |
| 755 /* Fill the automatic index with content */ | |
| 756 sqlite3ExprCachePush(pParse); | |
| 757 pTabItem = &pWC->pWInfo->pTabList->a[pLevel->iFrom]; | |
| 758 if( pTabItem->fg.viaCoroutine ){ | |
| 759 int regYield = pTabItem->regReturn; | |
| 760 addrCounter = sqlite3VdbeAddOp2(v, OP_Integer, 0, 0); | |
| 761 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub); | |
| 762 addrTop = sqlite3VdbeAddOp1(v, OP_Yield, regYield); | |
| 763 VdbeCoverage(v); | |
| 764 VdbeComment((v, "next row of \"%s\"", pTabItem->pTab->zName)); | |
| 765 }else{ | |
| 766 addrTop = sqlite3VdbeAddOp1(v, OP_Rewind, pLevel->iTabCur); VdbeCoverage(v); | |
| 767 } | |
| 768 if( pPartial ){ | |
| 769 iContinue = sqlite3VdbeMakeLabel(v); | |
| 770 sqlite3ExprIfFalse(pParse, pPartial, iContinue, SQLITE_JUMPIFNULL); | |
| 771 pLoop->wsFlags |= WHERE_PARTIALIDX; | |
| 772 } | |
| 773 regRecord = sqlite3GetTempReg(pParse); | |
| 774 regBase = sqlite3GenerateIndexKey( | |
| 775 pParse, pIdx, pLevel->iTabCur, regRecord, 0, 0, 0, 0 | |
| 776 ); | |
| 777 sqlite3VdbeAddOp2(v, OP_IdxInsert, pLevel->iIdxCur, regRecord); | |
| 778 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); | |
| 779 if( pPartial ) sqlite3VdbeResolveLabel(v, iContinue); | |
| 780 if( pTabItem->fg.viaCoroutine ){ | |
| 781 sqlite3VdbeChangeP2(v, addrCounter, regBase+n); | |
| 782 translateColumnToCopy(v, addrTop, pLevel->iTabCur, pTabItem->regResult, 1); | |
| 783 sqlite3VdbeGoto(v, addrTop); | |
| 784 pTabItem->fg.viaCoroutine = 0; | |
| 785 }else{ | |
| 786 sqlite3VdbeAddOp2(v, OP_Next, pLevel->iTabCur, addrTop+1); VdbeCoverage(v); | |
| 787 } | |
| 788 sqlite3VdbeChangeP5(v, SQLITE_STMTSTATUS_AUTOINDEX); | |
| 789 sqlite3VdbeJumpHere(v, addrTop); | |
| 790 sqlite3ReleaseTempReg(pParse, regRecord); | |
| 791 sqlite3ExprCachePop(pParse); | |
| 792 | |
| 793 /* Jump here when skipping the initialization */ | |
| 794 sqlite3VdbeJumpHere(v, addrInit); | |
| 795 | |
| 796 end_auto_index_create: | |
| 797 sqlite3ExprDelete(pParse->db, pPartial); | |
| 798 } | |
| 799 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ | |
| 800 | |
| 801 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
| 802 /* | |
| 803 ** Allocate and populate an sqlite3_index_info structure. It is the | |
| 804 ** responsibility of the caller to eventually release the structure | |
| 805 ** by passing the pointer returned by this function to sqlite3_free(). | |
| 806 */ | |
| 807 static sqlite3_index_info *allocateIndexInfo( | |
| 808 Parse *pParse, | |
| 809 WhereClause *pWC, | |
| 810 Bitmask mUnusable, /* Ignore terms with these prereqs */ | |
| 811 struct SrcList_item *pSrc, | |
| 812 ExprList *pOrderBy | |
| 813 ){ | |
| 814 int i, j; | |
| 815 int nTerm; | |
| 816 struct sqlite3_index_constraint *pIdxCons; | |
| 817 struct sqlite3_index_orderby *pIdxOrderBy; | |
| 818 struct sqlite3_index_constraint_usage *pUsage; | |
| 819 WhereTerm *pTerm; | |
| 820 int nOrderBy; | |
| 821 sqlite3_index_info *pIdxInfo; | |
| 822 | |
| 823 /* Count the number of possible WHERE clause constraints referring | |
| 824 ** to this virtual table */ | |
| 825 for(i=nTerm=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ | |
| 826 if( pTerm->leftCursor != pSrc->iCursor ) continue; | |
| 827 if( pTerm->prereqRight & mUnusable ) continue; | |
| 828 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); | |
| 829 testcase( pTerm->eOperator & WO_IN ); | |
| 830 testcase( pTerm->eOperator & WO_ISNULL ); | |
| 831 testcase( pTerm->eOperator & WO_IS ); | |
| 832 testcase( pTerm->eOperator & WO_ALL ); | |
| 833 if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue; | |
| 834 if( pTerm->wtFlags & TERM_VNULL ) continue; | |
| 835 assert( pTerm->u.leftColumn>=(-1) ); | |
| 836 nTerm++; | |
| 837 } | |
| 838 | |
| 839 /* If the ORDER BY clause contains only columns in the current | |
| 840 ** virtual table then allocate space for the aOrderBy part of | |
| 841 ** the sqlite3_index_info structure. | |
| 842 */ | |
| 843 nOrderBy = 0; | |
| 844 if( pOrderBy ){ | |
| 845 int n = pOrderBy->nExpr; | |
| 846 for(i=0; i<n; i++){ | |
| 847 Expr *pExpr = pOrderBy->a[i].pExpr; | |
| 848 if( pExpr->op!=TK_COLUMN || pExpr->iTable!=pSrc->iCursor ) break; | |
| 849 } | |
| 850 if( i==n){ | |
| 851 nOrderBy = n; | |
| 852 } | |
| 853 } | |
| 854 | |
| 855 /* Allocate the sqlite3_index_info structure | |
| 856 */ | |
| 857 pIdxInfo = sqlite3DbMallocZero(pParse->db, sizeof(*pIdxInfo) | |
| 858 + (sizeof(*pIdxCons) + sizeof(*pUsage))*nTerm | |
| 859 + sizeof(*pIdxOrderBy)*nOrderBy ); | |
| 860 if( pIdxInfo==0 ){ | |
| 861 sqlite3ErrorMsg(pParse, "out of memory"); | |
| 862 return 0; | |
| 863 } | |
| 864 | |
| 865 /* Initialize the structure. The sqlite3_index_info structure contains | |
| 866 ** many fields that are declared "const" to prevent xBestIndex from | |
| 867 ** changing them. We have to do some funky casting in order to | |
| 868 ** initialize those fields. | |
| 869 */ | |
| 870 pIdxCons = (struct sqlite3_index_constraint*)&pIdxInfo[1]; | |
| 871 pIdxOrderBy = (struct sqlite3_index_orderby*)&pIdxCons[nTerm]; | |
| 872 pUsage = (struct sqlite3_index_constraint_usage*)&pIdxOrderBy[nOrderBy]; | |
| 873 *(int*)&pIdxInfo->nConstraint = nTerm; | |
| 874 *(int*)&pIdxInfo->nOrderBy = nOrderBy; | |
| 875 *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint = pIdxCons; | |
| 876 *(struct sqlite3_index_orderby**)&pIdxInfo->aOrderBy = pIdxOrderBy; | |
| 877 *(struct sqlite3_index_constraint_usage**)&pIdxInfo->aConstraintUsage = | |
| 878 pUsage; | |
| 879 | |
| 880 for(i=j=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ | |
| 881 u8 op; | |
| 882 if( pTerm->leftCursor != pSrc->iCursor ) continue; | |
| 883 if( pTerm->prereqRight & mUnusable ) continue; | |
| 884 assert( IsPowerOfTwo(pTerm->eOperator & ~WO_EQUIV) ); | |
| 885 testcase( pTerm->eOperator & WO_IN ); | |
| 886 testcase( pTerm->eOperator & WO_IS ); | |
| 887 testcase( pTerm->eOperator & WO_ISNULL ); | |
| 888 testcase( pTerm->eOperator & WO_ALL ); | |
| 889 if( (pTerm->eOperator & ~(WO_ISNULL|WO_EQUIV|WO_IS))==0 ) continue; | |
| 890 if( pTerm->wtFlags & TERM_VNULL ) continue; | |
| 891 assert( pTerm->u.leftColumn>=(-1) ); | |
| 892 pIdxCons[j].iColumn = pTerm->u.leftColumn; | |
| 893 pIdxCons[j].iTermOffset = i; | |
| 894 op = (u8)pTerm->eOperator & WO_ALL; | |
| 895 if( op==WO_IN ) op = WO_EQ; | |
| 896 if( op==WO_MATCH ){ | |
| 897 op = pTerm->eMatchOp; | |
| 898 } | |
| 899 pIdxCons[j].op = op; | |
| 900 /* The direct assignment in the previous line is possible only because | |
| 901 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The | |
| 902 ** following asserts verify this fact. */ | |
| 903 assert( WO_EQ==SQLITE_INDEX_CONSTRAINT_EQ ); | |
| 904 assert( WO_LT==SQLITE_INDEX_CONSTRAINT_LT ); | |
| 905 assert( WO_LE==SQLITE_INDEX_CONSTRAINT_LE ); | |
| 906 assert( WO_GT==SQLITE_INDEX_CONSTRAINT_GT ); | |
| 907 assert( WO_GE==SQLITE_INDEX_CONSTRAINT_GE ); | |
| 908 assert( WO_MATCH==SQLITE_INDEX_CONSTRAINT_MATCH ); | |
| 909 assert( pTerm->eOperator & (WO_IN|WO_EQ|WO_LT|WO_LE|WO_GT|WO_GE|WO_MATCH) ); | |
| 910 j++; | |
| 911 } | |
| 912 for(i=0; i<nOrderBy; i++){ | |
| 913 Expr *pExpr = pOrderBy->a[i].pExpr; | |
| 914 pIdxOrderBy[i].iColumn = pExpr->iColumn; | |
| 915 pIdxOrderBy[i].desc = pOrderBy->a[i].sortOrder; | |
| 916 } | |
| 917 | |
| 918 return pIdxInfo; | |
| 919 } | |
| 920 | |
| 921 /* | |
| 922 ** The table object reference passed as the second argument to this function | |
| 923 ** must represent a virtual table. This function invokes the xBestIndex() | |
| 924 ** method of the virtual table with the sqlite3_index_info object that | |
| 925 ** comes in as the 3rd argument to this function. | |
| 926 ** | |
| 927 ** If an error occurs, pParse is populated with an error message and a | |
| 928 ** non-zero value is returned. Otherwise, 0 is returned and the output | |
| 929 ** part of the sqlite3_index_info structure is left populated. | |
| 930 ** | |
| 931 ** Whether or not an error is returned, it is the responsibility of the | |
| 932 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates | |
| 933 ** that this is required. | |
| 934 */ | |
| 935 static int vtabBestIndex(Parse *pParse, Table *pTab, sqlite3_index_info *p){ | |
| 936 sqlite3_vtab *pVtab = sqlite3GetVTable(pParse->db, pTab)->pVtab; | |
| 937 int i; | |
| 938 int rc; | |
| 939 | |
| 940 TRACE_IDX_INPUTS(p); | |
| 941 rc = pVtab->pModule->xBestIndex(pVtab, p); | |
| 942 TRACE_IDX_OUTPUTS(p); | |
| 943 | |
| 944 if( rc!=SQLITE_OK ){ | |
| 945 if( rc==SQLITE_NOMEM ){ | |
| 946 pParse->db->mallocFailed = 1; | |
| 947 }else if( !pVtab->zErrMsg ){ | |
| 948 sqlite3ErrorMsg(pParse, "%s", sqlite3ErrStr(rc)); | |
| 949 }else{ | |
| 950 sqlite3ErrorMsg(pParse, "%s", pVtab->zErrMsg); | |
| 951 } | |
| 952 } | |
| 953 sqlite3_free(pVtab->zErrMsg); | |
| 954 pVtab->zErrMsg = 0; | |
| 955 | |
| 956 for(i=0; i<p->nConstraint; i++){ | |
| 957 if( !p->aConstraint[i].usable && p->aConstraintUsage[i].argvIndex>0 ){ | |
| 958 sqlite3ErrorMsg(pParse, | |
| 959 "table %s: xBestIndex returned an invalid plan", pTab->zName); | |
| 960 } | |
| 961 } | |
| 962 | |
| 963 return pParse->nErr; | |
| 964 } | |
| 965 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */ | |
| 966 | |
| 967 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | |
| 968 /* | |
| 969 ** Estimate the location of a particular key among all keys in an | |
| 970 ** index. Store the results in aStat as follows: | |
| 971 ** | |
| 972 ** aStat[0] Est. number of rows less than pRec | |
| 973 ** aStat[1] Est. number of rows equal to pRec | |
| 974 ** | |
| 975 ** Return the index of the sample that is the smallest sample that | |
| 976 ** is greater than or equal to pRec. Note that this index is not an index | |
| 977 ** into the aSample[] array - it is an index into a virtual set of samples | |
| 978 ** based on the contents of aSample[] and the number of fields in record | |
| 979 ** pRec. | |
| 980 */ | |
| 981 static int whereKeyStats( | |
| 982 Parse *pParse, /* Database connection */ | |
| 983 Index *pIdx, /* Index to consider domain of */ | |
| 984 UnpackedRecord *pRec, /* Vector of values to consider */ | |
| 985 int roundUp, /* Round up if true. Round down if false */ | |
| 986 tRowcnt *aStat /* OUT: stats written here */ | |
| 987 ){ | |
| 988 IndexSample *aSample = pIdx->aSample; | |
| 989 int iCol; /* Index of required stats in anEq[] etc. */ | |
| 990 int i; /* Index of first sample >= pRec */ | |
| 991 int iSample; /* Smallest sample larger than or equal to pRec */ | |
| 992 int iMin = 0; /* Smallest sample not yet tested */ | |
| 993 int iTest; /* Next sample to test */ | |
| 994 int res; /* Result of comparison operation */ | |
| 995 int nField; /* Number of fields in pRec */ | |
| 996 tRowcnt iLower = 0; /* anLt[] + anEq[] of largest sample pRec is > */ | |
| 997 | |
| 998 #ifndef SQLITE_DEBUG | |
| 999 UNUSED_PARAMETER( pParse ); | |
| 1000 #endif | |
| 1001 assert( pRec!=0 ); | |
| 1002 assert( pIdx->nSample>0 ); | |
| 1003 assert( pRec->nField>0 && pRec->nField<=pIdx->nSampleCol ); | |
| 1004 | |
| 1005 /* Do a binary search to find the first sample greater than or equal | |
| 1006 ** to pRec. If pRec contains a single field, the set of samples to search | |
| 1007 ** is simply the aSample[] array. If the samples in aSample[] contain more | |
| 1008 ** than one fields, all fields following the first are ignored. | |
| 1009 ** | |
| 1010 ** If pRec contains N fields, where N is more than one, then as well as the | |
| 1011 ** samples in aSample[] (truncated to N fields), the search also has to | |
| 1012 ** consider prefixes of those samples. For example, if the set of samples | |
| 1013 ** in aSample is: | |
| 1014 ** | |
| 1015 ** aSample[0] = (a, 5) | |
| 1016 ** aSample[1] = (a, 10) | |
| 1017 ** aSample[2] = (b, 5) | |
| 1018 ** aSample[3] = (c, 100) | |
| 1019 ** aSample[4] = (c, 105) | |
| 1020 ** | |
| 1021 ** Then the search space should ideally be the samples above and the | |
| 1022 ** unique prefixes [a], [b] and [c]. But since that is hard to organize, | |
| 1023 ** the code actually searches this set: | |
| 1024 ** | |
| 1025 ** 0: (a) | |
| 1026 ** 1: (a, 5) | |
| 1027 ** 2: (a, 10) | |
| 1028 ** 3: (a, 10) | |
| 1029 ** 4: (b) | |
| 1030 ** 5: (b, 5) | |
| 1031 ** 6: (c) | |
| 1032 ** 7: (c, 100) | |
| 1033 ** 8: (c, 105) | |
| 1034 ** 9: (c, 105) | |
| 1035 ** | |
| 1036 ** For each sample in the aSample[] array, N samples are present in the | |
| 1037 ** effective sample array. In the above, samples 0 and 1 are based on | |
| 1038 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc. | |
| 1039 ** | |
| 1040 ** Often, sample i of each block of N effective samples has (i+1) fields. | |
| 1041 ** Except, each sample may be extended to ensure that it is greater than or | |
| 1042 ** equal to the previous sample in the array. For example, in the above, | |
| 1043 ** sample 2 is the first sample of a block of N samples, so at first it | |
| 1044 ** appears that it should be 1 field in size. However, that would make it | |
| 1045 ** smaller than sample 1, so the binary search would not work. As a result, | |
| 1046 ** it is extended to two fields. The duplicates that this creates do not | |
| 1047 ** cause any problems. | |
| 1048 */ | |
| 1049 nField = pRec->nField; | |
| 1050 iCol = 0; | |
| 1051 iSample = pIdx->nSample * nField; | |
| 1052 do{ | |
| 1053 int iSamp; /* Index in aSample[] of test sample */ | |
| 1054 int n; /* Number of fields in test sample */ | |
| 1055 | |
| 1056 iTest = (iMin+iSample)/2; | |
| 1057 iSamp = iTest / nField; | |
| 1058 if( iSamp>0 ){ | |
| 1059 /* The proposed effective sample is a prefix of sample aSample[iSamp]. | |
| 1060 ** Specifically, the shortest prefix of at least (1 + iTest%nField) | |
| 1061 ** fields that is greater than the previous effective sample. */ | |
| 1062 for(n=(iTest % nField) + 1; n<nField; n++){ | |
| 1063 if( aSample[iSamp-1].anLt[n-1]!=aSample[iSamp].anLt[n-1] ) break; | |
| 1064 } | |
| 1065 }else{ | |
| 1066 n = iTest + 1; | |
| 1067 } | |
| 1068 | |
| 1069 pRec->nField = n; | |
| 1070 res = sqlite3VdbeRecordCompare(aSample[iSamp].n, aSample[iSamp].p, pRec); | |
| 1071 if( res<0 ){ | |
| 1072 iLower = aSample[iSamp].anLt[n-1] + aSample[iSamp].anEq[n-1]; | |
| 1073 iMin = iTest+1; | |
| 1074 }else if( res==0 && n<nField ){ | |
| 1075 iLower = aSample[iSamp].anLt[n-1]; | |
| 1076 iMin = iTest+1; | |
| 1077 res = -1; | |
| 1078 }else{ | |
| 1079 iSample = iTest; | |
| 1080 iCol = n-1; | |
| 1081 } | |
| 1082 }while( res && iMin<iSample ); | |
| 1083 i = iSample / nField; | |
| 1084 | |
| 1085 #ifdef SQLITE_DEBUG | |
| 1086 /* The following assert statements check that the binary search code | |
| 1087 ** above found the right answer. This block serves no purpose other | |
| 1088 ** than to invoke the asserts. */ | |
| 1089 if( pParse->db->mallocFailed==0 ){ | |
| 1090 if( res==0 ){ | |
| 1091 /* If (res==0) is true, then pRec must be equal to sample i. */ | |
| 1092 assert( i<pIdx->nSample ); | |
| 1093 assert( iCol==nField-1 ); | |
| 1094 pRec->nField = nField; | |
| 1095 assert( 0==sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec) | |
| 1096 || pParse->db->mallocFailed | |
| 1097 ); | |
| 1098 }else{ | |
| 1099 /* Unless i==pIdx->nSample, indicating that pRec is larger than | |
| 1100 ** all samples in the aSample[] array, pRec must be smaller than the | |
| 1101 ** (iCol+1) field prefix of sample i. */ | |
| 1102 assert( i<=pIdx->nSample && i>=0 ); | |
| 1103 pRec->nField = iCol+1; | |
| 1104 assert( i==pIdx->nSample | |
| 1105 || sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)>0 | |
| 1106 || pParse->db->mallocFailed ); | |
| 1107 | |
| 1108 /* if i==0 and iCol==0, then record pRec is smaller than all samples | |
| 1109 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must | |
| 1110 ** be greater than or equal to the (iCol) field prefix of sample i. | |
| 1111 ** If (i>0), then pRec must also be greater than sample (i-1). */ | |
| 1112 if( iCol>0 ){ | |
| 1113 pRec->nField = iCol; | |
| 1114 assert( sqlite3VdbeRecordCompare(aSample[i].n, aSample[i].p, pRec)<=0 | |
| 1115 || pParse->db->mallocFailed ); | |
| 1116 } | |
| 1117 if( i>0 ){ | |
| 1118 pRec->nField = nField; | |
| 1119 assert( sqlite3VdbeRecordCompare(aSample[i-1].n, aSample[i-1].p, pRec)<0 | |
| 1120 || pParse->db->mallocFailed ); | |
| 1121 } | |
| 1122 } | |
| 1123 } | |
| 1124 #endif /* ifdef SQLITE_DEBUG */ | |
| 1125 | |
| 1126 if( res==0 ){ | |
| 1127 /* Record pRec is equal to sample i */ | |
| 1128 assert( iCol==nField-1 ); | |
| 1129 aStat[0] = aSample[i].anLt[iCol]; | |
| 1130 aStat[1] = aSample[i].anEq[iCol]; | |
| 1131 }else{ | |
| 1132 /* At this point, the (iCol+1) field prefix of aSample[i] is the first | |
| 1133 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec | |
| 1134 ** is larger than all samples in the array. */ | |
| 1135 tRowcnt iUpper, iGap; | |
| 1136 if( i>=pIdx->nSample ){ | |
| 1137 iUpper = sqlite3LogEstToInt(pIdx->aiRowLogEst[0]); | |
| 1138 }else{ | |
| 1139 iUpper = aSample[i].anLt[iCol]; | |
| 1140 } | |
| 1141 | |
| 1142 if( iLower>=iUpper ){ | |
| 1143 iGap = 0; | |
| 1144 }else{ | |
| 1145 iGap = iUpper - iLower; | |
| 1146 } | |
| 1147 if( roundUp ){ | |
| 1148 iGap = (iGap*2)/3; | |
| 1149 }else{ | |
| 1150 iGap = iGap/3; | |
| 1151 } | |
| 1152 aStat[0] = iLower + iGap; | |
| 1153 aStat[1] = pIdx->aAvgEq[iCol]; | |
| 1154 } | |
| 1155 | |
| 1156 /* Restore the pRec->nField value before returning. */ | |
| 1157 pRec->nField = nField; | |
| 1158 return i; | |
| 1159 } | |
| 1160 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ | |
| 1161 | |
| 1162 /* | |
| 1163 ** If it is not NULL, pTerm is a term that provides an upper or lower | |
| 1164 ** bound on a range scan. Without considering pTerm, it is estimated | |
| 1165 ** that the scan will visit nNew rows. This function returns the number | |
| 1166 ** estimated to be visited after taking pTerm into account. | |
| 1167 ** | |
| 1168 ** If the user explicitly specified a likelihood() value for this term, | |
| 1169 ** then the return value is the likelihood multiplied by the number of | |
| 1170 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term | |
| 1171 ** has a likelihood of 0.50, and any other term a likelihood of 0.25. | |
| 1172 */ | |
| 1173 static LogEst whereRangeAdjust(WhereTerm *pTerm, LogEst nNew){ | |
| 1174 LogEst nRet = nNew; | |
| 1175 if( pTerm ){ | |
| 1176 if( pTerm->truthProb<=0 ){ | |
| 1177 nRet += pTerm->truthProb; | |
| 1178 }else if( (pTerm->wtFlags & TERM_VNULL)==0 ){ | |
| 1179 nRet -= 20; assert( 20==sqlite3LogEst(4) ); | |
| 1180 } | |
| 1181 } | |
| 1182 return nRet; | |
| 1183 } | |
| 1184 | |
| 1185 | |
| 1186 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | |
| 1187 /* | |
| 1188 ** Return the affinity for a single column of an index. | |
| 1189 */ | |
| 1190 static char sqlite3IndexColumnAffinity(sqlite3 *db, Index *pIdx, int iCol){ | |
| 1191 assert( iCol>=0 && iCol<pIdx->nColumn ); | |
| 1192 if( !pIdx->zColAff ){ | |
| 1193 if( sqlite3IndexAffinityStr(db, pIdx)==0 ) return SQLITE_AFF_BLOB; | |
| 1194 } | |
| 1195 return pIdx->zColAff[iCol]; | |
| 1196 } | |
| 1197 #endif | |
| 1198 | |
| 1199 | |
| 1200 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | |
| 1201 /* | |
| 1202 ** This function is called to estimate the number of rows visited by a | |
| 1203 ** range-scan on a skip-scan index. For example: | |
| 1204 ** | |
| 1205 ** CREATE INDEX i1 ON t1(a, b, c); | |
| 1206 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?; | |
| 1207 ** | |
| 1208 ** Value pLoop->nOut is currently set to the estimated number of rows | |
| 1209 ** visited for scanning (a=? AND b=?). This function reduces that estimate | |
| 1210 ** by some factor to account for the (c BETWEEN ? AND ?) expression based | |
| 1211 ** on the stat4 data for the index. this scan will be peformed multiple | |
| 1212 ** times (once for each (a,b) combination that matches a=?) is dealt with | |
| 1213 ** by the caller. | |
| 1214 ** | |
| 1215 ** It does this by scanning through all stat4 samples, comparing values | |
| 1216 ** extracted from pLower and pUpper with the corresponding column in each | |
| 1217 ** sample. If L and U are the number of samples found to be less than or | |
| 1218 ** equal to the values extracted from pLower and pUpper respectively, and | |
| 1219 ** N is the total number of samples, the pLoop->nOut value is adjusted | |
| 1220 ** as follows: | |
| 1221 ** | |
| 1222 ** nOut = nOut * ( min(U - L, 1) / N ) | |
| 1223 ** | |
| 1224 ** If pLower is NULL, or a value cannot be extracted from the term, L is | |
| 1225 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it, | |
| 1226 ** U is set to N. | |
| 1227 ** | |
| 1228 ** Normally, this function sets *pbDone to 1 before returning. However, | |
| 1229 ** if no value can be extracted from either pLower or pUpper (and so the | |
| 1230 ** estimate of the number of rows delivered remains unchanged), *pbDone | |
| 1231 ** is left as is. | |
| 1232 ** | |
| 1233 ** If an error occurs, an SQLite error code is returned. Otherwise, | |
| 1234 ** SQLITE_OK. | |
| 1235 */ | |
| 1236 static int whereRangeSkipScanEst( | |
| 1237 Parse *pParse, /* Parsing & code generating context */ | |
| 1238 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ | |
| 1239 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ | |
| 1240 WhereLoop *pLoop, /* Update the .nOut value of this loop */ | |
| 1241 int *pbDone /* Set to true if at least one expr. value extracted */ | |
| 1242 ){ | |
| 1243 Index *p = pLoop->u.btree.pIndex; | |
| 1244 int nEq = pLoop->u.btree.nEq; | |
| 1245 sqlite3 *db = pParse->db; | |
| 1246 int nLower = -1; | |
| 1247 int nUpper = p->nSample+1; | |
| 1248 int rc = SQLITE_OK; | |
| 1249 u8 aff = sqlite3IndexColumnAffinity(db, p, nEq); | |
| 1250 CollSeq *pColl; | |
| 1251 | |
| 1252 sqlite3_value *p1 = 0; /* Value extracted from pLower */ | |
| 1253 sqlite3_value *p2 = 0; /* Value extracted from pUpper */ | |
| 1254 sqlite3_value *pVal = 0; /* Value extracted from record */ | |
| 1255 | |
| 1256 pColl = sqlite3LocateCollSeq(pParse, p->azColl[nEq]); | |
| 1257 if( pLower ){ | |
| 1258 rc = sqlite3Stat4ValueFromExpr(pParse, pLower->pExpr->pRight, aff, &p1); | |
| 1259 nLower = 0; | |
| 1260 } | |
| 1261 if( pUpper && rc==SQLITE_OK ){ | |
| 1262 rc = sqlite3Stat4ValueFromExpr(pParse, pUpper->pExpr->pRight, aff, &p2); | |
| 1263 nUpper = p2 ? 0 : p->nSample; | |
| 1264 } | |
| 1265 | |
| 1266 if( p1 || p2 ){ | |
| 1267 int i; | |
| 1268 int nDiff; | |
| 1269 for(i=0; rc==SQLITE_OK && i<p->nSample; i++){ | |
| 1270 rc = sqlite3Stat4Column(db, p->aSample[i].p, p->aSample[i].n, nEq, &pVal); | |
| 1271 if( rc==SQLITE_OK && p1 ){ | |
| 1272 int res = sqlite3MemCompare(p1, pVal, pColl); | |
| 1273 if( res>=0 ) nLower++; | |
| 1274 } | |
| 1275 if( rc==SQLITE_OK && p2 ){ | |
| 1276 int res = sqlite3MemCompare(p2, pVal, pColl); | |
| 1277 if( res>=0 ) nUpper++; | |
| 1278 } | |
| 1279 } | |
| 1280 nDiff = (nUpper - nLower); | |
| 1281 if( nDiff<=0 ) nDiff = 1; | |
| 1282 | |
| 1283 /* If there is both an upper and lower bound specified, and the | |
| 1284 ** comparisons indicate that they are close together, use the fallback | |
| 1285 ** method (assume that the scan visits 1/64 of the rows) for estimating | |
| 1286 ** the number of rows visited. Otherwise, estimate the number of rows | |
| 1287 ** using the method described in the header comment for this function. */ | |
| 1288 if( nDiff!=1 || pUpper==0 || pLower==0 ){ | |
| 1289 int nAdjust = (sqlite3LogEst(p->nSample) - sqlite3LogEst(nDiff)); | |
| 1290 pLoop->nOut -= nAdjust; | |
| 1291 *pbDone = 1; | |
| 1292 WHERETRACE(0x10, ("range skip-scan regions: %u..%u adjust=%d est=%d\n", | |
| 1293 nLower, nUpper, nAdjust*-1, pLoop->nOut)); | |
| 1294 } | |
| 1295 | |
| 1296 }else{ | |
| 1297 assert( *pbDone==0 ); | |
| 1298 } | |
| 1299 | |
| 1300 sqlite3ValueFree(p1); | |
| 1301 sqlite3ValueFree(p2); | |
| 1302 sqlite3ValueFree(pVal); | |
| 1303 | |
| 1304 return rc; | |
| 1305 } | |
| 1306 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ | |
| 1307 | |
| 1308 /* | |
| 1309 ** This function is used to estimate the number of rows that will be visited | |
| 1310 ** by scanning an index for a range of values. The range may have an upper | |
| 1311 ** bound, a lower bound, or both. The WHERE clause terms that set the upper | |
| 1312 ** and lower bounds are represented by pLower and pUpper respectively. For | |
| 1313 ** example, assuming that index p is on t1(a): | |
| 1314 ** | |
| 1315 ** ... FROM t1 WHERE a > ? AND a < ? ... | |
| 1316 ** |_____| |_____| | |
| 1317 ** | | | |
| 1318 ** pLower pUpper | |
| 1319 ** | |
| 1320 ** If either of the upper or lower bound is not present, then NULL is passed in | |
| 1321 ** place of the corresponding WhereTerm. | |
| 1322 ** | |
| 1323 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index | |
| 1324 ** column subject to the range constraint. Or, equivalently, the number of | |
| 1325 ** equality constraints optimized by the proposed index scan. For example, | |
| 1326 ** assuming index p is on t1(a, b), and the SQL query is: | |
| 1327 ** | |
| 1328 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ... | |
| 1329 ** | |
| 1330 ** then nEq is set to 1 (as the range restricted column, b, is the second | |
| 1331 ** left-most column of the index). Or, if the query is: | |
| 1332 ** | |
| 1333 ** ... FROM t1 WHERE a > ? AND a < ? ... | |
| 1334 ** | |
| 1335 ** then nEq is set to 0. | |
| 1336 ** | |
| 1337 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the | |
| 1338 ** number of rows that the index scan is expected to visit without | |
| 1339 ** considering the range constraints. If nEq is 0, then *pnOut is the number of | |
| 1340 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced) | |
| 1341 ** to account for the range constraints pLower and pUpper. | |
| 1342 ** | |
| 1343 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be | |
| 1344 ** used, a single range inequality reduces the search space by a factor of 4. | |
| 1345 ** and a pair of constraints (x>? AND x<?) reduces the expected number of | |
| 1346 ** rows visited by a factor of 64. | |
| 1347 */ | |
| 1348 static int whereRangeScanEst( | |
| 1349 Parse *pParse, /* Parsing & code generating context */ | |
| 1350 WhereLoopBuilder *pBuilder, | |
| 1351 WhereTerm *pLower, /* Lower bound on the range. ex: "x>123" Might be NULL */ | |
| 1352 WhereTerm *pUpper, /* Upper bound on the range. ex: "x<455" Might be NULL */ | |
| 1353 WhereLoop *pLoop /* Modify the .nOut and maybe .rRun fields */ | |
| 1354 ){ | |
| 1355 int rc = SQLITE_OK; | |
| 1356 int nOut = pLoop->nOut; | |
| 1357 LogEst nNew; | |
| 1358 | |
| 1359 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | |
| 1360 Index *p = pLoop->u.btree.pIndex; | |
| 1361 int nEq = pLoop->u.btree.nEq; | |
| 1362 | |
| 1363 if( p->nSample>0 && nEq<p->nSampleCol ){ | |
| 1364 if( nEq==pBuilder->nRecValid ){ | |
| 1365 UnpackedRecord *pRec = pBuilder->pRec; | |
| 1366 tRowcnt a[2]; | |
| 1367 u8 aff; | |
| 1368 | |
| 1369 /* Variable iLower will be set to the estimate of the number of rows in | |
| 1370 ** the index that are less than the lower bound of the range query. The | |
| 1371 ** lower bound being the concatenation of $P and $L, where $P is the | |
| 1372 ** key-prefix formed by the nEq values matched against the nEq left-most | |
| 1373 ** columns of the index, and $L is the value in pLower. | |
| 1374 ** | |
| 1375 ** Or, if pLower is NULL or $L cannot be extracted from it (because it | |
| 1376 ** is not a simple variable or literal value), the lower bound of the | |
| 1377 ** range is $P. Due to a quirk in the way whereKeyStats() works, even | |
| 1378 ** if $L is available, whereKeyStats() is called for both ($P) and | |
| 1379 ** ($P:$L) and the larger of the two returned values is used. | |
| 1380 ** | |
| 1381 ** Similarly, iUpper is to be set to the estimate of the number of rows | |
| 1382 ** less than the upper bound of the range query. Where the upper bound | |
| 1383 ** is either ($P) or ($P:$U). Again, even if $U is available, both values | |
| 1384 ** of iUpper are requested of whereKeyStats() and the smaller used. | |
| 1385 ** | |
| 1386 ** The number of rows between the two bounds is then just iUpper-iLower. | |
| 1387 */ | |
| 1388 tRowcnt iLower; /* Rows less than the lower bound */ | |
| 1389 tRowcnt iUpper; /* Rows less than the upper bound */ | |
| 1390 int iLwrIdx = -2; /* aSample[] for the lower bound */ | |
| 1391 int iUprIdx = -1; /* aSample[] for the upper bound */ | |
| 1392 | |
| 1393 if( pRec ){ | |
| 1394 testcase( pRec->nField!=pBuilder->nRecValid ); | |
| 1395 pRec->nField = pBuilder->nRecValid; | |
| 1396 } | |
| 1397 aff = sqlite3IndexColumnAffinity(pParse->db, p, nEq); | |
| 1398 assert( nEq!=p->nKeyCol || aff==SQLITE_AFF_INTEGER ); | |
| 1399 /* Determine iLower and iUpper using ($P) only. */ | |
| 1400 if( nEq==0 ){ | |
| 1401 iLower = 0; | |
| 1402 iUpper = p->nRowEst0; | |
| 1403 }else{ | |
| 1404 /* Note: this call could be optimized away - since the same values must | |
| 1405 ** have been requested when testing key $P in whereEqualScanEst(). */ | |
| 1406 whereKeyStats(pParse, p, pRec, 0, a); | |
| 1407 iLower = a[0]; | |
| 1408 iUpper = a[0] + a[1]; | |
| 1409 } | |
| 1410 | |
| 1411 assert( pLower==0 || (pLower->eOperator & (WO_GT|WO_GE))!=0 ); | |
| 1412 assert( pUpper==0 || (pUpper->eOperator & (WO_LT|WO_LE))!=0 ); | |
| 1413 assert( p->aSortOrder!=0 ); | |
| 1414 if( p->aSortOrder[nEq] ){ | |
| 1415 /* The roles of pLower and pUpper are swapped for a DESC index */ | |
| 1416 SWAP(WhereTerm*, pLower, pUpper); | |
| 1417 } | |
| 1418 | |
| 1419 /* If possible, improve on the iLower estimate using ($P:$L). */ | |
| 1420 if( pLower ){ | |
| 1421 int bOk; /* True if value is extracted from pExpr */ | |
| 1422 Expr *pExpr = pLower->pExpr->pRight; | |
| 1423 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk); | |
| 1424 if( rc==SQLITE_OK && bOk ){ | |
| 1425 tRowcnt iNew; | |
| 1426 iLwrIdx = whereKeyStats(pParse, p, pRec, 0, a); | |
| 1427 iNew = a[0] + ((pLower->eOperator & (WO_GT|WO_LE)) ? a[1] : 0); | |
| 1428 if( iNew>iLower ) iLower = iNew; | |
| 1429 nOut--; | |
| 1430 pLower = 0; | |
| 1431 } | |
| 1432 } | |
| 1433 | |
| 1434 /* If possible, improve on the iUpper estimate using ($P:$U). */ | |
| 1435 if( pUpper ){ | |
| 1436 int bOk; /* True if value is extracted from pExpr */ | |
| 1437 Expr *pExpr = pUpper->pExpr->pRight; | |
| 1438 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq, &bOk); | |
| 1439 if( rc==SQLITE_OK && bOk ){ | |
| 1440 tRowcnt iNew; | |
| 1441 iUprIdx = whereKeyStats(pParse, p, pRec, 1, a); | |
| 1442 iNew = a[0] + ((pUpper->eOperator & (WO_GT|WO_LE)) ? a[1] : 0); | |
| 1443 if( iNew<iUpper ) iUpper = iNew; | |
| 1444 nOut--; | |
| 1445 pUpper = 0; | |
| 1446 } | |
| 1447 } | |
| 1448 | |
| 1449 pBuilder->pRec = pRec; | |
| 1450 if( rc==SQLITE_OK ){ | |
| 1451 if( iUpper>iLower ){ | |
| 1452 nNew = sqlite3LogEst(iUpper - iLower); | |
| 1453 /* TUNING: If both iUpper and iLower are derived from the same | |
| 1454 ** sample, then assume they are 4x more selective. This brings | |
| 1455 ** the estimated selectivity more in line with what it would be | |
| 1456 ** if estimated without the use of STAT3/4 tables. */ | |
| 1457 if( iLwrIdx==iUprIdx ) nNew -= 20; assert( 20==sqlite3LogEst(4) ); | |
| 1458 }else{ | |
| 1459 nNew = 10; assert( 10==sqlite3LogEst(2) ); | |
| 1460 } | |
| 1461 if( nNew<nOut ){ | |
| 1462 nOut = nNew; | |
| 1463 } | |
| 1464 WHERETRACE(0x10, ("STAT4 range scan: %u..%u est=%d\n", | |
| 1465 (u32)iLower, (u32)iUpper, nOut)); | |
| 1466 } | |
| 1467 }else{ | |
| 1468 int bDone = 0; | |
| 1469 rc = whereRangeSkipScanEst(pParse, pLower, pUpper, pLoop, &bDone); | |
| 1470 if( bDone ) return rc; | |
| 1471 } | |
| 1472 } | |
| 1473 #else | |
| 1474 UNUSED_PARAMETER(pParse); | |
| 1475 UNUSED_PARAMETER(pBuilder); | |
| 1476 assert( pLower || pUpper ); | |
| 1477 #endif | |
| 1478 assert( pUpper==0 || (pUpper->wtFlags & TERM_VNULL)==0 ); | |
| 1479 nNew = whereRangeAdjust(pLower, nOut); | |
| 1480 nNew = whereRangeAdjust(pUpper, nNew); | |
| 1481 | |
| 1482 /* TUNING: If there is both an upper and lower limit and neither limit | |
| 1483 ** has an application-defined likelihood(), assume the range is | |
| 1484 ** reduced by an additional 75%. This means that, by default, an open-ended | |
| 1485 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the | |
| 1486 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to | |
| 1487 ** match 1/64 of the index. */ | |
| 1488 if( pLower && pLower->truthProb>0 && pUpper && pUpper->truthProb>0 ){ | |
| 1489 nNew -= 20; | |
| 1490 } | |
| 1491 | |
| 1492 nOut -= (pLower!=0) + (pUpper!=0); | |
| 1493 if( nNew<10 ) nNew = 10; | |
| 1494 if( nNew<nOut ) nOut = nNew; | |
| 1495 #if defined(WHERETRACE_ENABLED) | |
| 1496 if( pLoop->nOut>nOut ){ | |
| 1497 WHERETRACE(0x10,("Range scan lowers nOut from %d to %d\n", | |
| 1498 pLoop->nOut, nOut)); | |
| 1499 } | |
| 1500 #endif | |
| 1501 pLoop->nOut = (LogEst)nOut; | |
| 1502 return rc; | |
| 1503 } | |
| 1504 | |
| 1505 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | |
| 1506 /* | |
| 1507 ** Estimate the number of rows that will be returned based on | |
| 1508 ** an equality constraint x=VALUE and where that VALUE occurs in | |
| 1509 ** the histogram data. This only works when x is the left-most | |
| 1510 ** column of an index and sqlite_stat3 histogram data is available | |
| 1511 ** for that index. When pExpr==NULL that means the constraint is | |
| 1512 ** "x IS NULL" instead of "x=VALUE". | |
| 1513 ** | |
| 1514 ** Write the estimated row count into *pnRow and return SQLITE_OK. | |
| 1515 ** If unable to make an estimate, leave *pnRow unchanged and return | |
| 1516 ** non-zero. | |
| 1517 ** | |
| 1518 ** This routine can fail if it is unable to load a collating sequence | |
| 1519 ** required for string comparison, or if unable to allocate memory | |
| 1520 ** for a UTF conversion required for comparison. The error is stored | |
| 1521 ** in the pParse structure. | |
| 1522 */ | |
| 1523 static int whereEqualScanEst( | |
| 1524 Parse *pParse, /* Parsing & code generating context */ | |
| 1525 WhereLoopBuilder *pBuilder, | |
| 1526 Expr *pExpr, /* Expression for VALUE in the x=VALUE constraint */ | |
| 1527 tRowcnt *pnRow /* Write the revised row estimate here */ | |
| 1528 ){ | |
| 1529 Index *p = pBuilder->pNew->u.btree.pIndex; | |
| 1530 int nEq = pBuilder->pNew->u.btree.nEq; | |
| 1531 UnpackedRecord *pRec = pBuilder->pRec; | |
| 1532 u8 aff; /* Column affinity */ | |
| 1533 int rc; /* Subfunction return code */ | |
| 1534 tRowcnt a[2]; /* Statistics */ | |
| 1535 int bOk; | |
| 1536 | |
| 1537 assert( nEq>=1 ); | |
| 1538 assert( nEq<=p->nColumn ); | |
| 1539 assert( p->aSample!=0 ); | |
| 1540 assert( p->nSample>0 ); | |
| 1541 assert( pBuilder->nRecValid<nEq ); | |
| 1542 | |
| 1543 /* If values are not available for all fields of the index to the left | |
| 1544 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */ | |
| 1545 if( pBuilder->nRecValid<(nEq-1) ){ | |
| 1546 return SQLITE_NOTFOUND; | |
| 1547 } | |
| 1548 | |
| 1549 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue() | |
| 1550 ** below would return the same value. */ | |
| 1551 if( nEq>=p->nColumn ){ | |
| 1552 *pnRow = 1; | |
| 1553 return SQLITE_OK; | |
| 1554 } | |
| 1555 | |
| 1556 aff = sqlite3IndexColumnAffinity(pParse->db, p, nEq-1); | |
| 1557 rc = sqlite3Stat4ProbeSetValue(pParse, p, &pRec, pExpr, aff, nEq-1, &bOk); | |
| 1558 pBuilder->pRec = pRec; | |
| 1559 if( rc!=SQLITE_OK ) return rc; | |
| 1560 if( bOk==0 ) return SQLITE_NOTFOUND; | |
| 1561 pBuilder->nRecValid = nEq; | |
| 1562 | |
| 1563 whereKeyStats(pParse, p, pRec, 0, a); | |
| 1564 WHERETRACE(0x10,("equality scan regions: %d\n", (int)a[1])); | |
| 1565 *pnRow = a[1]; | |
| 1566 | |
| 1567 return rc; | |
| 1568 } | |
| 1569 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ | |
| 1570 | |
| 1571 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | |
| 1572 /* | |
| 1573 ** Estimate the number of rows that will be returned based on | |
| 1574 ** an IN constraint where the right-hand side of the IN operator | |
| 1575 ** is a list of values. Example: | |
| 1576 ** | |
| 1577 ** WHERE x IN (1,2,3,4) | |
| 1578 ** | |
| 1579 ** Write the estimated row count into *pnRow and return SQLITE_OK. | |
| 1580 ** If unable to make an estimate, leave *pnRow unchanged and return | |
| 1581 ** non-zero. | |
| 1582 ** | |
| 1583 ** This routine can fail if it is unable to load a collating sequence | |
| 1584 ** required for string comparison, or if unable to allocate memory | |
| 1585 ** for a UTF conversion required for comparison. The error is stored | |
| 1586 ** in the pParse structure. | |
| 1587 */ | |
| 1588 static int whereInScanEst( | |
| 1589 Parse *pParse, /* Parsing & code generating context */ | |
| 1590 WhereLoopBuilder *pBuilder, | |
| 1591 ExprList *pList, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */ | |
| 1592 tRowcnt *pnRow /* Write the revised row estimate here */ | |
| 1593 ){ | |
| 1594 Index *p = pBuilder->pNew->u.btree.pIndex; | |
| 1595 i64 nRow0 = sqlite3LogEstToInt(p->aiRowLogEst[0]); | |
| 1596 int nRecValid = pBuilder->nRecValid; | |
| 1597 int rc = SQLITE_OK; /* Subfunction return code */ | |
| 1598 tRowcnt nEst; /* Number of rows for a single term */ | |
| 1599 tRowcnt nRowEst = 0; /* New estimate of the number of rows */ | |
| 1600 int i; /* Loop counter */ | |
| 1601 | |
| 1602 assert( p->aSample!=0 ); | |
| 1603 for(i=0; rc==SQLITE_OK && i<pList->nExpr; i++){ | |
| 1604 nEst = nRow0; | |
| 1605 rc = whereEqualScanEst(pParse, pBuilder, pList->a[i].pExpr, &nEst); | |
| 1606 nRowEst += nEst; | |
| 1607 pBuilder->nRecValid = nRecValid; | |
| 1608 } | |
| 1609 | |
| 1610 if( rc==SQLITE_OK ){ | |
| 1611 if( nRowEst > nRow0 ) nRowEst = nRow0; | |
| 1612 *pnRow = nRowEst; | |
| 1613 WHERETRACE(0x10,("IN row estimate: est=%d\n", nRowEst)); | |
| 1614 } | |
| 1615 assert( pBuilder->nRecValid==nRecValid ); | |
| 1616 return rc; | |
| 1617 } | |
| 1618 #endif /* SQLITE_ENABLE_STAT3_OR_STAT4 */ | |
| 1619 | |
| 1620 | |
| 1621 #ifdef WHERETRACE_ENABLED | |
| 1622 /* | |
| 1623 ** Print the content of a WhereTerm object | |
| 1624 */ | |
| 1625 static void whereTermPrint(WhereTerm *pTerm, int iTerm){ | |
| 1626 if( pTerm==0 ){ | |
| 1627 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm); | |
| 1628 }else{ | |
| 1629 char zType[4]; | |
| 1630 memcpy(zType, "...", 4); | |
| 1631 if( pTerm->wtFlags & TERM_VIRTUAL ) zType[0] = 'V'; | |
| 1632 if( pTerm->eOperator & WO_EQUIV ) zType[1] = 'E'; | |
| 1633 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) zType[2] = 'L'; | |
| 1634 sqlite3DebugPrintf( | |
| 1635 "TERM-%-3d %p %s cursor=%-3d prob=%-3d op=0x%03x wtFlags=0x%04x\n", | |
| 1636 iTerm, pTerm, zType, pTerm->leftCursor, pTerm->truthProb, | |
| 1637 pTerm->eOperator, pTerm->wtFlags); | |
| 1638 sqlite3TreeViewExpr(0, pTerm->pExpr, 0); | |
| 1639 } | |
| 1640 } | |
| 1641 #endif | |
| 1642 | |
| 1643 #ifdef WHERETRACE_ENABLED | |
| 1644 /* | |
| 1645 ** Print a WhereLoop object for debugging purposes | |
| 1646 */ | |
| 1647 static void whereLoopPrint(WhereLoop *p, WhereClause *pWC){ | |
| 1648 WhereInfo *pWInfo = pWC->pWInfo; | |
| 1649 int nb = 1+(pWInfo->pTabList->nSrc+7)/8; | |
| 1650 struct SrcList_item *pItem = pWInfo->pTabList->a + p->iTab; | |
| 1651 Table *pTab = pItem->pTab; | |
| 1652 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p->cId, | |
| 1653 p->iTab, nb, p->maskSelf, nb, p->prereq); | |
| 1654 sqlite3DebugPrintf(" %12s", | |
| 1655 pItem->zAlias ? pItem->zAlias : pTab->zName); | |
| 1656 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ | |
| 1657 const char *zName; | |
| 1658 if( p->u.btree.pIndex && (zName = p->u.btree.pIndex->zName)!=0 ){ | |
| 1659 if( strncmp(zName, "sqlite_autoindex_", 17)==0 ){ | |
| 1660 int i = sqlite3Strlen30(zName) - 1; | |
| 1661 while( zName[i]!='_' ) i--; | |
| 1662 zName += i; | |
| 1663 } | |
| 1664 sqlite3DebugPrintf(".%-16s %2d", zName, p->u.btree.nEq); | |
| 1665 }else{ | |
| 1666 sqlite3DebugPrintf("%20s",""); | |
| 1667 } | |
| 1668 }else{ | |
| 1669 char *z; | |
| 1670 if( p->u.vtab.idxStr ){ | |
| 1671 z = sqlite3_mprintf("(%d,\"%s\",%x)", | |
| 1672 p->u.vtab.idxNum, p->u.vtab.idxStr, p->u.vtab.omitMask); | |
| 1673 }else{ | |
| 1674 z = sqlite3_mprintf("(%d,%x)", p->u.vtab.idxNum, p->u.vtab.omitMask); | |
| 1675 } | |
| 1676 sqlite3DebugPrintf(" %-19s", z); | |
| 1677 sqlite3_free(z); | |
| 1678 } | |
| 1679 if( p->wsFlags & WHERE_SKIPSCAN ){ | |
| 1680 sqlite3DebugPrintf(" f %05x %d-%d", p->wsFlags, p->nLTerm,p->nSkip); | |
| 1681 }else{ | |
| 1682 sqlite3DebugPrintf(" f %05x N %d", p->wsFlags, p->nLTerm); | |
| 1683 } | |
| 1684 sqlite3DebugPrintf(" cost %d,%d,%d\n", p->rSetup, p->rRun, p->nOut); | |
| 1685 if( p->nLTerm && (sqlite3WhereTrace & 0x100)!=0 ){ | |
| 1686 int i; | |
| 1687 for(i=0; i<p->nLTerm; i++){ | |
| 1688 whereTermPrint(p->aLTerm[i], i); | |
| 1689 } | |
| 1690 } | |
| 1691 } | |
| 1692 #endif | |
| 1693 | |
| 1694 /* | |
| 1695 ** Convert bulk memory into a valid WhereLoop that can be passed | |
| 1696 ** to whereLoopClear harmlessly. | |
| 1697 */ | |
| 1698 static void whereLoopInit(WhereLoop *p){ | |
| 1699 p->aLTerm = p->aLTermSpace; | |
| 1700 p->nLTerm = 0; | |
| 1701 p->nLSlot = ArraySize(p->aLTermSpace); | |
| 1702 p->wsFlags = 0; | |
| 1703 } | |
| 1704 | |
| 1705 /* | |
| 1706 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact. | |
| 1707 */ | |
| 1708 static void whereLoopClearUnion(sqlite3 *db, WhereLoop *p){ | |
| 1709 if( p->wsFlags & (WHERE_VIRTUALTABLE|WHERE_AUTO_INDEX) ){ | |
| 1710 if( (p->wsFlags & WHERE_VIRTUALTABLE)!=0 && p->u.vtab.needFree ){ | |
| 1711 sqlite3_free(p->u.vtab.idxStr); | |
| 1712 p->u.vtab.needFree = 0; | |
| 1713 p->u.vtab.idxStr = 0; | |
| 1714 }else if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 && p->u.btree.pIndex!=0 ){ | |
| 1715 sqlite3DbFree(db, p->u.btree.pIndex->zColAff); | |
| 1716 sqlite3DbFree(db, p->u.btree.pIndex); | |
| 1717 p->u.btree.pIndex = 0; | |
| 1718 } | |
| 1719 } | |
| 1720 } | |
| 1721 | |
| 1722 /* | |
| 1723 ** Deallocate internal memory used by a WhereLoop object | |
| 1724 */ | |
| 1725 static void whereLoopClear(sqlite3 *db, WhereLoop *p){ | |
| 1726 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm); | |
| 1727 whereLoopClearUnion(db, p); | |
| 1728 whereLoopInit(p); | |
| 1729 } | |
| 1730 | |
| 1731 /* | |
| 1732 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n. | |
| 1733 */ | |
| 1734 static int whereLoopResize(sqlite3 *db, WhereLoop *p, int n){ | |
| 1735 WhereTerm **paNew; | |
| 1736 if( p->nLSlot>=n ) return SQLITE_OK; | |
| 1737 n = (n+7)&~7; | |
| 1738 paNew = sqlite3DbMallocRaw(db, sizeof(p->aLTerm[0])*n); | |
| 1739 if( paNew==0 ) return SQLITE_NOMEM; | |
| 1740 memcpy(paNew, p->aLTerm, sizeof(p->aLTerm[0])*p->nLSlot); | |
| 1741 if( p->aLTerm!=p->aLTermSpace ) sqlite3DbFree(db, p->aLTerm); | |
| 1742 p->aLTerm = paNew; | |
| 1743 p->nLSlot = n; | |
| 1744 return SQLITE_OK; | |
| 1745 } | |
| 1746 | |
| 1747 /* | |
| 1748 ** Transfer content from the second pLoop into the first. | |
| 1749 */ | |
| 1750 static int whereLoopXfer(sqlite3 *db, WhereLoop *pTo, WhereLoop *pFrom){ | |
| 1751 whereLoopClearUnion(db, pTo); | |
| 1752 if( whereLoopResize(db, pTo, pFrom->nLTerm) ){ | |
| 1753 memset(&pTo->u, 0, sizeof(pTo->u)); | |
| 1754 return SQLITE_NOMEM; | |
| 1755 } | |
| 1756 memcpy(pTo, pFrom, WHERE_LOOP_XFER_SZ); | |
| 1757 memcpy(pTo->aLTerm, pFrom->aLTerm, pTo->nLTerm*sizeof(pTo->aLTerm[0])); | |
| 1758 if( pFrom->wsFlags & WHERE_VIRTUALTABLE ){ | |
| 1759 pFrom->u.vtab.needFree = 0; | |
| 1760 }else if( (pFrom->wsFlags & WHERE_AUTO_INDEX)!=0 ){ | |
| 1761 pFrom->u.btree.pIndex = 0; | |
| 1762 } | |
| 1763 return SQLITE_OK; | |
| 1764 } | |
| 1765 | |
| 1766 /* | |
| 1767 ** Delete a WhereLoop object | |
| 1768 */ | |
| 1769 static void whereLoopDelete(sqlite3 *db, WhereLoop *p){ | |
| 1770 whereLoopClear(db, p); | |
| 1771 sqlite3DbFree(db, p); | |
| 1772 } | |
| 1773 | |
| 1774 /* | |
| 1775 ** Free a WhereInfo structure | |
| 1776 */ | |
| 1777 static void whereInfoFree(sqlite3 *db, WhereInfo *pWInfo){ | |
| 1778 if( ALWAYS(pWInfo) ){ | |
| 1779 int i; | |
| 1780 for(i=0; i<pWInfo->nLevel; i++){ | |
| 1781 WhereLevel *pLevel = &pWInfo->a[i]; | |
| 1782 if( pLevel->pWLoop && (pLevel->pWLoop->wsFlags & WHERE_IN_ABLE) ){ | |
| 1783 sqlite3DbFree(db, pLevel->u.in.aInLoop); | |
| 1784 } | |
| 1785 } | |
| 1786 sqlite3WhereClauseClear(&pWInfo->sWC); | |
| 1787 while( pWInfo->pLoops ){ | |
| 1788 WhereLoop *p = pWInfo->pLoops; | |
| 1789 pWInfo->pLoops = p->pNextLoop; | |
| 1790 whereLoopDelete(db, p); | |
| 1791 } | |
| 1792 sqlite3DbFree(db, pWInfo); | |
| 1793 } | |
| 1794 } | |
| 1795 | |
| 1796 /* | |
| 1797 ** Return TRUE if all of the following are true: | |
| 1798 ** | |
| 1799 ** (1) X has the same or lower cost that Y | |
| 1800 ** (2) X is a proper subset of Y | |
| 1801 ** (3) X skips at least as many columns as Y | |
| 1802 ** | |
| 1803 ** By "proper subset" we mean that X uses fewer WHERE clause terms | |
| 1804 ** than Y and that every WHERE clause term used by X is also used | |
| 1805 ** by Y. | |
| 1806 ** | |
| 1807 ** If X is a proper subset of Y then Y is a better choice and ought | |
| 1808 ** to have a lower cost. This routine returns TRUE when that cost | |
| 1809 ** relationship is inverted and needs to be adjusted. The third rule | |
| 1810 ** was added because if X uses skip-scan less than Y it still might | |
| 1811 ** deserve a lower cost even if it is a proper subset of Y. | |
| 1812 */ | |
| 1813 static int whereLoopCheaperProperSubset( | |
| 1814 const WhereLoop *pX, /* First WhereLoop to compare */ | |
| 1815 const WhereLoop *pY /* Compare against this WhereLoop */ | |
| 1816 ){ | |
| 1817 int i, j; | |
| 1818 if( pX->nLTerm-pX->nSkip >= pY->nLTerm-pY->nSkip ){ | |
| 1819 return 0; /* X is not a subset of Y */ | |
| 1820 } | |
| 1821 if( pY->nSkip > pX->nSkip ) return 0; | |
| 1822 if( pX->rRun >= pY->rRun ){ | |
| 1823 if( pX->rRun > pY->rRun ) return 0; /* X costs more than Y */ | |
| 1824 if( pX->nOut > pY->nOut ) return 0; /* X costs more than Y */ | |
| 1825 } | |
| 1826 for(i=pX->nLTerm-1; i>=0; i--){ | |
| 1827 if( pX->aLTerm[i]==0 ) continue; | |
| 1828 for(j=pY->nLTerm-1; j>=0; j--){ | |
| 1829 if( pY->aLTerm[j]==pX->aLTerm[i] ) break; | |
| 1830 } | |
| 1831 if( j<0 ) return 0; /* X not a subset of Y since term X[i] not used by Y */ | |
| 1832 } | |
| 1833 return 1; /* All conditions meet */ | |
| 1834 } | |
| 1835 | |
| 1836 /* | |
| 1837 ** Try to adjust the cost of WhereLoop pTemplate upwards or downwards so | |
| 1838 ** that: | |
| 1839 ** | |
| 1840 ** (1) pTemplate costs less than any other WhereLoops that are a proper | |
| 1841 ** subset of pTemplate | |
| 1842 ** | |
| 1843 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate | |
| 1844 ** is a proper subset. | |
| 1845 ** | |
| 1846 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer | |
| 1847 ** WHERE clause terms than Y and that every WHERE clause term used by X is | |
| 1848 ** also used by Y. | |
| 1849 */ | |
| 1850 static void whereLoopAdjustCost(const WhereLoop *p, WhereLoop *pTemplate){ | |
| 1851 if( (pTemplate->wsFlags & WHERE_INDEXED)==0 ) return; | |
| 1852 for(; p; p=p->pNextLoop){ | |
| 1853 if( p->iTab!=pTemplate->iTab ) continue; | |
| 1854 if( (p->wsFlags & WHERE_INDEXED)==0 ) continue; | |
| 1855 if( whereLoopCheaperProperSubset(p, pTemplate) ){ | |
| 1856 /* Adjust pTemplate cost downward so that it is cheaper than its | |
| 1857 ** subset p. */ | |
| 1858 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", | |
| 1859 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut-1)); | |
| 1860 pTemplate->rRun = p->rRun; | |
| 1861 pTemplate->nOut = p->nOut - 1; | |
| 1862 }else if( whereLoopCheaperProperSubset(pTemplate, p) ){ | |
| 1863 /* Adjust pTemplate cost upward so that it is costlier than p since | |
| 1864 ** pTemplate is a proper subset of p */ | |
| 1865 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n", | |
| 1866 pTemplate->rRun, pTemplate->nOut, p->rRun, p->nOut+1)); | |
| 1867 pTemplate->rRun = p->rRun; | |
| 1868 pTemplate->nOut = p->nOut + 1; | |
| 1869 } | |
| 1870 } | |
| 1871 } | |
| 1872 | |
| 1873 /* | |
| 1874 ** Search the list of WhereLoops in *ppPrev looking for one that can be | |
| 1875 ** supplanted by pTemplate. | |
| 1876 ** | |
| 1877 ** Return NULL if the WhereLoop list contains an entry that can supplant | |
| 1878 ** pTemplate, in other words if pTemplate does not belong on the list. | |
| 1879 ** | |
| 1880 ** If pX is a WhereLoop that pTemplate can supplant, then return the | |
| 1881 ** link that points to pX. | |
| 1882 ** | |
| 1883 ** If pTemplate cannot supplant any existing element of the list but needs | |
| 1884 ** to be added to the list, then return a pointer to the tail of the list. | |
| 1885 */ | |
| 1886 static WhereLoop **whereLoopFindLesser( | |
| 1887 WhereLoop **ppPrev, | |
| 1888 const WhereLoop *pTemplate | |
| 1889 ){ | |
| 1890 WhereLoop *p; | |
| 1891 for(p=(*ppPrev); p; ppPrev=&p->pNextLoop, p=*ppPrev){ | |
| 1892 if( p->iTab!=pTemplate->iTab || p->iSortIdx!=pTemplate->iSortIdx ){ | |
| 1893 /* If either the iTab or iSortIdx values for two WhereLoop are different | |
| 1894 ** then those WhereLoops need to be considered separately. Neither is | |
| 1895 ** a candidate to replace the other. */ | |
| 1896 continue; | |
| 1897 } | |
| 1898 /* In the current implementation, the rSetup value is either zero | |
| 1899 ** or the cost of building an automatic index (NlogN) and the NlogN | |
| 1900 ** is the same for compatible WhereLoops. */ | |
| 1901 assert( p->rSetup==0 || pTemplate->rSetup==0 | |
| 1902 || p->rSetup==pTemplate->rSetup ); | |
| 1903 | |
| 1904 /* whereLoopAddBtree() always generates and inserts the automatic index | |
| 1905 ** case first. Hence compatible candidate WhereLoops never have a larger | |
| 1906 ** rSetup. Call this SETUP-INVARIANT */ | |
| 1907 assert( p->rSetup>=pTemplate->rSetup ); | |
| 1908 | |
| 1909 /* Any loop using an appliation-defined index (or PRIMARY KEY or | |
| 1910 ** UNIQUE constraint) with one or more == constraints is better | |
| 1911 ** than an automatic index. Unless it is a skip-scan. */ | |
| 1912 if( (p->wsFlags & WHERE_AUTO_INDEX)!=0 | |
| 1913 && (pTemplate->nSkip)==0 | |
| 1914 && (pTemplate->wsFlags & WHERE_INDEXED)!=0 | |
| 1915 && (pTemplate->wsFlags & WHERE_COLUMN_EQ)!=0 | |
| 1916 && (p->prereq & pTemplate->prereq)==pTemplate->prereq | |
| 1917 ){ | |
| 1918 break; | |
| 1919 } | |
| 1920 | |
| 1921 /* If existing WhereLoop p is better than pTemplate, pTemplate can be | |
| 1922 ** discarded. WhereLoop p is better if: | |
| 1923 ** (1) p has no more dependencies than pTemplate, and | |
| 1924 ** (2) p has an equal or lower cost than pTemplate | |
| 1925 */ | |
| 1926 if( (p->prereq & pTemplate->prereq)==p->prereq /* (1) */ | |
| 1927 && p->rSetup<=pTemplate->rSetup /* (2a) */ | |
| 1928 && p->rRun<=pTemplate->rRun /* (2b) */ | |
| 1929 && p->nOut<=pTemplate->nOut /* (2c) */ | |
| 1930 ){ | |
| 1931 return 0; /* Discard pTemplate */ | |
| 1932 } | |
| 1933 | |
| 1934 /* If pTemplate is always better than p, then cause p to be overwritten | |
| 1935 ** with pTemplate. pTemplate is better than p if: | |
| 1936 ** (1) pTemplate has no more dependences than p, and | |
| 1937 ** (2) pTemplate has an equal or lower cost than p. | |
| 1938 */ | |
| 1939 if( (p->prereq & pTemplate->prereq)==pTemplate->prereq /* (1) */ | |
| 1940 && p->rRun>=pTemplate->rRun /* (2a) */ | |
| 1941 && p->nOut>=pTemplate->nOut /* (2b) */ | |
| 1942 ){ | |
| 1943 assert( p->rSetup>=pTemplate->rSetup ); /* SETUP-INVARIANT above */ | |
| 1944 break; /* Cause p to be overwritten by pTemplate */ | |
| 1945 } | |
| 1946 } | |
| 1947 return ppPrev; | |
| 1948 } | |
| 1949 | |
| 1950 /* | |
| 1951 ** Insert or replace a WhereLoop entry using the template supplied. | |
| 1952 ** | |
| 1953 ** An existing WhereLoop entry might be overwritten if the new template | |
| 1954 ** is better and has fewer dependencies. Or the template will be ignored | |
| 1955 ** and no insert will occur if an existing WhereLoop is faster and has | |
| 1956 ** fewer dependencies than the template. Otherwise a new WhereLoop is | |
| 1957 ** added based on the template. | |
| 1958 ** | |
| 1959 ** If pBuilder->pOrSet is not NULL then we care about only the | |
| 1960 ** prerequisites and rRun and nOut costs of the N best loops. That | |
| 1961 ** information is gathered in the pBuilder->pOrSet object. This special | |
| 1962 ** processing mode is used only for OR clause processing. | |
| 1963 ** | |
| 1964 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we | |
| 1965 ** still might overwrite similar loops with the new template if the | |
| 1966 ** new template is better. Loops may be overwritten if the following | |
| 1967 ** conditions are met: | |
| 1968 ** | |
| 1969 ** (1) They have the same iTab. | |
| 1970 ** (2) They have the same iSortIdx. | |
| 1971 ** (3) The template has same or fewer dependencies than the current loop | |
| 1972 ** (4) The template has the same or lower cost than the current loop | |
| 1973 */ | |
| 1974 static int whereLoopInsert(WhereLoopBuilder *pBuilder, WhereLoop *pTemplate){ | |
| 1975 WhereLoop **ppPrev, *p; | |
| 1976 WhereInfo *pWInfo = pBuilder->pWInfo; | |
| 1977 sqlite3 *db = pWInfo->pParse->db; | |
| 1978 | |
| 1979 /* If pBuilder->pOrSet is defined, then only keep track of the costs | |
| 1980 ** and prereqs. | |
| 1981 */ | |
| 1982 if( pBuilder->pOrSet!=0 ){ | |
| 1983 if( pTemplate->nLTerm ){ | |
| 1984 #if WHERETRACE_ENABLED | |
| 1985 u16 n = pBuilder->pOrSet->n; | |
| 1986 int x = | |
| 1987 #endif | |
| 1988 whereOrInsert(pBuilder->pOrSet, pTemplate->prereq, pTemplate->rRun, | |
| 1989 pTemplate->nOut); | |
| 1990 #if WHERETRACE_ENABLED /* 0x8 */ | |
| 1991 if( sqlite3WhereTrace & 0x8 ){ | |
| 1992 sqlite3DebugPrintf(x?" or-%d: ":" or-X: ", n); | |
| 1993 whereLoopPrint(pTemplate, pBuilder->pWC); | |
| 1994 } | |
| 1995 #endif | |
| 1996 } | |
| 1997 return SQLITE_OK; | |
| 1998 } | |
| 1999 | |
| 2000 /* Look for an existing WhereLoop to replace with pTemplate | |
| 2001 */ | |
| 2002 whereLoopAdjustCost(pWInfo->pLoops, pTemplate); | |
| 2003 ppPrev = whereLoopFindLesser(&pWInfo->pLoops, pTemplate); | |
| 2004 | |
| 2005 if( ppPrev==0 ){ | |
| 2006 /* There already exists a WhereLoop on the list that is better | |
| 2007 ** than pTemplate, so just ignore pTemplate */ | |
| 2008 #if WHERETRACE_ENABLED /* 0x8 */ | |
| 2009 if( sqlite3WhereTrace & 0x8 ){ | |
| 2010 sqlite3DebugPrintf(" skip: "); | |
| 2011 whereLoopPrint(pTemplate, pBuilder->pWC); | |
| 2012 } | |
| 2013 #endif | |
| 2014 return SQLITE_OK; | |
| 2015 }else{ | |
| 2016 p = *ppPrev; | |
| 2017 } | |
| 2018 | |
| 2019 /* If we reach this point it means that either p[] should be overwritten | |
| 2020 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new | |
| 2021 ** WhereLoop and insert it. | |
| 2022 */ | |
| 2023 #if WHERETRACE_ENABLED /* 0x8 */ | |
| 2024 if( sqlite3WhereTrace & 0x8 ){ | |
| 2025 if( p!=0 ){ | |
| 2026 sqlite3DebugPrintf("replace: "); | |
| 2027 whereLoopPrint(p, pBuilder->pWC); | |
| 2028 } | |
| 2029 sqlite3DebugPrintf(" add: "); | |
| 2030 whereLoopPrint(pTemplate, pBuilder->pWC); | |
| 2031 } | |
| 2032 #endif | |
| 2033 if( p==0 ){ | |
| 2034 /* Allocate a new WhereLoop to add to the end of the list */ | |
| 2035 *ppPrev = p = sqlite3DbMallocRaw(db, sizeof(WhereLoop)); | |
| 2036 if( p==0 ) return SQLITE_NOMEM; | |
| 2037 whereLoopInit(p); | |
| 2038 p->pNextLoop = 0; | |
| 2039 }else{ | |
| 2040 /* We will be overwriting WhereLoop p[]. But before we do, first | |
| 2041 ** go through the rest of the list and delete any other entries besides | |
| 2042 ** p[] that are also supplated by pTemplate */ | |
| 2043 WhereLoop **ppTail = &p->pNextLoop; | |
| 2044 WhereLoop *pToDel; | |
| 2045 while( *ppTail ){ | |
| 2046 ppTail = whereLoopFindLesser(ppTail, pTemplate); | |
| 2047 if( ppTail==0 ) break; | |
| 2048 pToDel = *ppTail; | |
| 2049 if( pToDel==0 ) break; | |
| 2050 *ppTail = pToDel->pNextLoop; | |
| 2051 #if WHERETRACE_ENABLED /* 0x8 */ | |
| 2052 if( sqlite3WhereTrace & 0x8 ){ | |
| 2053 sqlite3DebugPrintf(" delete: "); | |
| 2054 whereLoopPrint(pToDel, pBuilder->pWC); | |
| 2055 } | |
| 2056 #endif | |
| 2057 whereLoopDelete(db, pToDel); | |
| 2058 } | |
| 2059 } | |
| 2060 whereLoopXfer(db, p, pTemplate); | |
| 2061 if( (p->wsFlags & WHERE_VIRTUALTABLE)==0 ){ | |
| 2062 Index *pIndex = p->u.btree.pIndex; | |
| 2063 if( pIndex && pIndex->tnum==0 ){ | |
| 2064 p->u.btree.pIndex = 0; | |
| 2065 } | |
| 2066 } | |
| 2067 return SQLITE_OK; | |
| 2068 } | |
| 2069 | |
| 2070 /* | |
| 2071 ** Adjust the WhereLoop.nOut value downward to account for terms of the | |
| 2072 ** WHERE clause that reference the loop but which are not used by an | |
| 2073 ** index. | |
| 2074 * | |
| 2075 ** For every WHERE clause term that is not used by the index | |
| 2076 ** and which has a truth probability assigned by one of the likelihood(), | |
| 2077 ** likely(), or unlikely() SQL functions, reduce the estimated number | |
| 2078 ** of output rows by the probability specified. | |
| 2079 ** | |
| 2080 ** TUNING: For every WHERE clause term that is not used by the index | |
| 2081 ** and which does not have an assigned truth probability, heuristics | |
| 2082 ** described below are used to try to estimate the truth probability. | |
| 2083 ** TODO --> Perhaps this is something that could be improved by better | |
| 2084 ** table statistics. | |
| 2085 ** | |
| 2086 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75% | |
| 2087 ** value corresponds to -1 in LogEst notation, so this means decrement | |
| 2088 ** the WhereLoop.nOut field for every such WHERE clause term. | |
| 2089 ** | |
| 2090 ** Heuristic 2: If there exists one or more WHERE clause terms of the | |
| 2091 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the | |
| 2092 ** final output row estimate is no greater than 1/4 of the total number | |
| 2093 ** of rows in the table. In other words, assume that x==EXPR will filter | |
| 2094 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the | |
| 2095 ** "x" column is boolean or else -1 or 0 or 1 is a common default value | |
| 2096 ** on the "x" column and so in that case only cap the output row estimate | |
| 2097 ** at 1/2 instead of 1/4. | |
| 2098 */ | |
| 2099 static void whereLoopOutputAdjust( | |
| 2100 WhereClause *pWC, /* The WHERE clause */ | |
| 2101 WhereLoop *pLoop, /* The loop to adjust downward */ | |
| 2102 LogEst nRow /* Number of rows in the entire table */ | |
| 2103 ){ | |
| 2104 WhereTerm *pTerm, *pX; | |
| 2105 Bitmask notAllowed = ~(pLoop->prereq|pLoop->maskSelf); | |
| 2106 int i, j, k; | |
| 2107 LogEst iReduce = 0; /* pLoop->nOut should not exceed nRow-iReduce */ | |
| 2108 | |
| 2109 assert( (pLoop->wsFlags & WHERE_AUTO_INDEX)==0 ); | |
| 2110 for(i=pWC->nTerm, pTerm=pWC->a; i>0; i--, pTerm++){ | |
| 2111 if( (pTerm->wtFlags & TERM_VIRTUAL)!=0 ) break; | |
| 2112 if( (pTerm->prereqAll & pLoop->maskSelf)==0 ) continue; | |
| 2113 if( (pTerm->prereqAll & notAllowed)!=0 ) continue; | |
| 2114 for(j=pLoop->nLTerm-1; j>=0; j--){ | |
| 2115 pX = pLoop->aLTerm[j]; | |
| 2116 if( pX==0 ) continue; | |
| 2117 if( pX==pTerm ) break; | |
| 2118 if( pX->iParent>=0 && (&pWC->a[pX->iParent])==pTerm ) break; | |
| 2119 } | |
| 2120 if( j<0 ){ | |
| 2121 if( pTerm->truthProb<=0 ){ | |
| 2122 /* If a truth probability is specified using the likelihood() hints, | |
| 2123 ** then use the probability provided by the application. */ | |
| 2124 pLoop->nOut += pTerm->truthProb; | |
| 2125 }else{ | |
| 2126 /* In the absence of explicit truth probabilities, use heuristics to | |
| 2127 ** guess a reasonable truth probability. */ | |
| 2128 pLoop->nOut--; | |
| 2129 if( pTerm->eOperator&(WO_EQ|WO_IS) ){ | |
| 2130 Expr *pRight = pTerm->pExpr->pRight; | |
| 2131 testcase( pTerm->pExpr->op==TK_IS ); | |
| 2132 if( sqlite3ExprIsInteger(pRight, &k) && k>=(-1) && k<=1 ){ | |
| 2133 k = 10; | |
| 2134 }else{ | |
| 2135 k = 20; | |
| 2136 } | |
| 2137 if( iReduce<k ) iReduce = k; | |
| 2138 } | |
| 2139 } | |
| 2140 } | |
| 2141 } | |
| 2142 if( pLoop->nOut > nRow-iReduce ) pLoop->nOut = nRow - iReduce; | |
| 2143 } | |
| 2144 | |
| 2145 /* | |
| 2146 ** Adjust the cost C by the costMult facter T. This only occurs if | |
| 2147 ** compiled with -DSQLITE_ENABLE_COSTMULT | |
| 2148 */ | |
| 2149 #ifdef SQLITE_ENABLE_COSTMULT | |
| 2150 # define ApplyCostMultiplier(C,T) C += T | |
| 2151 #else | |
| 2152 # define ApplyCostMultiplier(C,T) | |
| 2153 #endif | |
| 2154 | |
| 2155 /* | |
| 2156 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the | |
| 2157 ** index pIndex. Try to match one more. | |
| 2158 ** | |
| 2159 ** When this function is called, pBuilder->pNew->nOut contains the | |
| 2160 ** number of rows expected to be visited by filtering using the nEq | |
| 2161 ** terms only. If it is modified, this value is restored before this | |
| 2162 ** function returns. | |
| 2163 ** | |
| 2164 ** If pProbe->tnum==0, that means pIndex is a fake index used for the | |
| 2165 ** INTEGER PRIMARY KEY. | |
| 2166 */ | |
| 2167 static int whereLoopAddBtreeIndex( | |
| 2168 WhereLoopBuilder *pBuilder, /* The WhereLoop factory */ | |
| 2169 struct SrcList_item *pSrc, /* FROM clause term being analyzed */ | |
| 2170 Index *pProbe, /* An index on pSrc */ | |
| 2171 LogEst nInMul /* log(Number of iterations due to IN) */ | |
| 2172 ){ | |
| 2173 WhereInfo *pWInfo = pBuilder->pWInfo; /* WHERE analyse context */ | |
| 2174 Parse *pParse = pWInfo->pParse; /* Parsing context */ | |
| 2175 sqlite3 *db = pParse->db; /* Database connection malloc context */ | |
| 2176 WhereLoop *pNew; /* Template WhereLoop under construction */ | |
| 2177 WhereTerm *pTerm; /* A WhereTerm under consideration */ | |
| 2178 int opMask; /* Valid operators for constraints */ | |
| 2179 WhereScan scan; /* Iterator for WHERE terms */ | |
| 2180 Bitmask saved_prereq; /* Original value of pNew->prereq */ | |
| 2181 u16 saved_nLTerm; /* Original value of pNew->nLTerm */ | |
| 2182 u16 saved_nEq; /* Original value of pNew->u.btree.nEq */ | |
| 2183 u16 saved_nSkip; /* Original value of pNew->nSkip */ | |
| 2184 u32 saved_wsFlags; /* Original value of pNew->wsFlags */ | |
| 2185 LogEst saved_nOut; /* Original value of pNew->nOut */ | |
| 2186 int rc = SQLITE_OK; /* Return code */ | |
| 2187 LogEst rSize; /* Number of rows in the table */ | |
| 2188 LogEst rLogSize; /* Logarithm of table size */ | |
| 2189 WhereTerm *pTop = 0, *pBtm = 0; /* Top and bottom range constraints */ | |
| 2190 | |
| 2191 pNew = pBuilder->pNew; | |
| 2192 if( db->mallocFailed ) return SQLITE_NOMEM; | |
| 2193 | |
| 2194 assert( (pNew->wsFlags & WHERE_VIRTUALTABLE)==0 ); | |
| 2195 assert( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 ); | |
| 2196 if( pNew->wsFlags & WHERE_BTM_LIMIT ){ | |
| 2197 opMask = WO_LT|WO_LE; | |
| 2198 }else if( /*pProbe->tnum<=0 ||*/ (pSrc->fg.jointype & JT_LEFT)!=0 ){ | |
| 2199 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE; | |
| 2200 }else{ | |
| 2201 opMask = WO_EQ|WO_IN|WO_GT|WO_GE|WO_LT|WO_LE|WO_ISNULL|WO_IS; | |
| 2202 } | |
| 2203 if( pProbe->bUnordered ) opMask &= ~(WO_GT|WO_GE|WO_LT|WO_LE); | |
| 2204 | |
| 2205 assert( pNew->u.btree.nEq<pProbe->nColumn ); | |
| 2206 | |
| 2207 saved_nEq = pNew->u.btree.nEq; | |
| 2208 saved_nSkip = pNew->nSkip; | |
| 2209 saved_nLTerm = pNew->nLTerm; | |
| 2210 saved_wsFlags = pNew->wsFlags; | |
| 2211 saved_prereq = pNew->prereq; | |
| 2212 saved_nOut = pNew->nOut; | |
| 2213 pTerm = whereScanInit(&scan, pBuilder->pWC, pSrc->iCursor, saved_nEq, | |
| 2214 opMask, pProbe); | |
| 2215 pNew->rSetup = 0; | |
| 2216 rSize = pProbe->aiRowLogEst[0]; | |
| 2217 rLogSize = estLog(rSize); | |
| 2218 for(; rc==SQLITE_OK && pTerm!=0; pTerm = whereScanNext(&scan)){ | |
| 2219 u16 eOp = pTerm->eOperator; /* Shorthand for pTerm->eOperator */ | |
| 2220 LogEst rCostIdx; | |
| 2221 LogEst nOutUnadjusted; /* nOut before IN() and WHERE adjustments */ | |
| 2222 int nIn = 0; | |
| 2223 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | |
| 2224 int nRecValid = pBuilder->nRecValid; | |
| 2225 #endif | |
| 2226 if( (eOp==WO_ISNULL || (pTerm->wtFlags&TERM_VNULL)!=0) | |
| 2227 && indexColumnNotNull(pProbe, saved_nEq) | |
| 2228 ){ | |
| 2229 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */ | |
| 2230 } | |
| 2231 if( pTerm->prereqRight & pNew->maskSelf ) continue; | |
| 2232 | |
| 2233 /* Do not allow the upper bound of a LIKE optimization range constraint | |
| 2234 ** to mix with a lower range bound from some other source */ | |
| 2235 if( pTerm->wtFlags & TERM_LIKEOPT && pTerm->eOperator==WO_LT ) continue; | |
| 2236 | |
| 2237 pNew->wsFlags = saved_wsFlags; | |
| 2238 pNew->u.btree.nEq = saved_nEq; | |
| 2239 pNew->nLTerm = saved_nLTerm; | |
| 2240 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ | |
| 2241 pNew->aLTerm[pNew->nLTerm++] = pTerm; | |
| 2242 pNew->prereq = (saved_prereq | pTerm->prereqRight) & ~pNew->maskSelf; | |
| 2243 | |
| 2244 assert( nInMul==0 | |
| 2245 || (pNew->wsFlags & WHERE_COLUMN_NULL)!=0 | |
| 2246 || (pNew->wsFlags & WHERE_COLUMN_IN)!=0 | |
| 2247 || (pNew->wsFlags & WHERE_SKIPSCAN)!=0 | |
| 2248 ); | |
| 2249 | |
| 2250 if( eOp & WO_IN ){ | |
| 2251 Expr *pExpr = pTerm->pExpr; | |
| 2252 pNew->wsFlags |= WHERE_COLUMN_IN; | |
| 2253 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ | |
| 2254 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */ | |
| 2255 nIn = 46; assert( 46==sqlite3LogEst(25) ); | |
| 2256 }else if( ALWAYS(pExpr->x.pList && pExpr->x.pList->nExpr) ){ | |
| 2257 /* "x IN (value, value, ...)" */ | |
| 2258 nIn = sqlite3LogEst(pExpr->x.pList->nExpr); | |
| 2259 } | |
| 2260 assert( nIn>0 ); /* RHS always has 2 or more terms... The parser | |
| 2261 ** changes "x IN (?)" into "x=?". */ | |
| 2262 | |
| 2263 }else if( eOp & (WO_EQ|WO_IS) ){ | |
| 2264 int iCol = pProbe->aiColumn[saved_nEq]; | |
| 2265 pNew->wsFlags |= WHERE_COLUMN_EQ; | |
| 2266 assert( saved_nEq==pNew->u.btree.nEq ); | |
| 2267 if( iCol==XN_ROWID | |
| 2268 || (iCol>0 && nInMul==0 && saved_nEq==pProbe->nKeyCol-1) | |
| 2269 ){ | |
| 2270 if( iCol>=0 && pProbe->uniqNotNull==0 ){ | |
| 2271 pNew->wsFlags |= WHERE_UNQ_WANTED; | |
| 2272 }else{ | |
| 2273 pNew->wsFlags |= WHERE_ONEROW; | |
| 2274 } | |
| 2275 } | |
| 2276 }else if( eOp & WO_ISNULL ){ | |
| 2277 pNew->wsFlags |= WHERE_COLUMN_NULL; | |
| 2278 }else if( eOp & (WO_GT|WO_GE) ){ | |
| 2279 testcase( eOp & WO_GT ); | |
| 2280 testcase( eOp & WO_GE ); | |
| 2281 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_BTM_LIMIT; | |
| 2282 pBtm = pTerm; | |
| 2283 pTop = 0; | |
| 2284 if( pTerm->wtFlags & TERM_LIKEOPT ){ | |
| 2285 /* Range contraints that come from the LIKE optimization are | |
| 2286 ** always used in pairs. */ | |
| 2287 pTop = &pTerm[1]; | |
| 2288 assert( (pTop-(pTerm->pWC->a))<pTerm->pWC->nTerm ); | |
| 2289 assert( pTop->wtFlags & TERM_LIKEOPT ); | |
| 2290 assert( pTop->eOperator==WO_LT ); | |
| 2291 if( whereLoopResize(db, pNew, pNew->nLTerm+1) ) break; /* OOM */ | |
| 2292 pNew->aLTerm[pNew->nLTerm++] = pTop; | |
| 2293 pNew->wsFlags |= WHERE_TOP_LIMIT; | |
| 2294 } | |
| 2295 }else{ | |
| 2296 assert( eOp & (WO_LT|WO_LE) ); | |
| 2297 testcase( eOp & WO_LT ); | |
| 2298 testcase( eOp & WO_LE ); | |
| 2299 pNew->wsFlags |= WHERE_COLUMN_RANGE|WHERE_TOP_LIMIT; | |
| 2300 pTop = pTerm; | |
| 2301 pBtm = (pNew->wsFlags & WHERE_BTM_LIMIT)!=0 ? | |
| 2302 pNew->aLTerm[pNew->nLTerm-2] : 0; | |
| 2303 } | |
| 2304 | |
| 2305 /* At this point pNew->nOut is set to the number of rows expected to | |
| 2306 ** be visited by the index scan before considering term pTerm, or the | |
| 2307 ** values of nIn and nInMul. In other words, assuming that all | |
| 2308 ** "x IN(...)" terms are replaced with "x = ?". This block updates | |
| 2309 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */ | |
| 2310 assert( pNew->nOut==saved_nOut ); | |
| 2311 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ | |
| 2312 /* Adjust nOut using stat3/stat4 data. Or, if there is no stat3/stat4 | |
| 2313 ** data, using some other estimate. */ | |
| 2314 whereRangeScanEst(pParse, pBuilder, pBtm, pTop, pNew); | |
| 2315 }else{ | |
| 2316 int nEq = ++pNew->u.btree.nEq; | |
| 2317 assert( eOp & (WO_ISNULL|WO_EQ|WO_IN|WO_IS) ); | |
| 2318 | |
| 2319 assert( pNew->nOut==saved_nOut ); | |
| 2320 if( pTerm->truthProb<=0 && pProbe->aiColumn[saved_nEq]>=0 ){ | |
| 2321 assert( (eOp & WO_IN) || nIn==0 ); | |
| 2322 testcase( eOp & WO_IN ); | |
| 2323 pNew->nOut += pTerm->truthProb; | |
| 2324 pNew->nOut -= nIn; | |
| 2325 }else{ | |
| 2326 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | |
| 2327 tRowcnt nOut = 0; | |
| 2328 if( nInMul==0 | |
| 2329 && pProbe->nSample | |
| 2330 && pNew->u.btree.nEq<=pProbe->nSampleCol | |
| 2331 && ((eOp & WO_IN)==0 || !ExprHasProperty(pTerm->pExpr, EP_xIsSelect)) | |
| 2332 ){ | |
| 2333 Expr *pExpr = pTerm->pExpr; | |
| 2334 if( (eOp & (WO_EQ|WO_ISNULL|WO_IS))!=0 ){ | |
| 2335 testcase( eOp & WO_EQ ); | |
| 2336 testcase( eOp & WO_IS ); | |
| 2337 testcase( eOp & WO_ISNULL ); | |
| 2338 rc = whereEqualScanEst(pParse, pBuilder, pExpr->pRight, &nOut); | |
| 2339 }else{ | |
| 2340 rc = whereInScanEst(pParse, pBuilder, pExpr->x.pList, &nOut); | |
| 2341 } | |
| 2342 if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK; | |
| 2343 if( rc!=SQLITE_OK ) break; /* Jump out of the pTerm loop */ | |
| 2344 if( nOut ){ | |
| 2345 pNew->nOut = sqlite3LogEst(nOut); | |
| 2346 if( pNew->nOut>saved_nOut ) pNew->nOut = saved_nOut; | |
| 2347 pNew->nOut -= nIn; | |
| 2348 } | |
| 2349 } | |
| 2350 if( nOut==0 ) | |
| 2351 #endif | |
| 2352 { | |
| 2353 pNew->nOut += (pProbe->aiRowLogEst[nEq] - pProbe->aiRowLogEst[nEq-1]); | |
| 2354 if( eOp & WO_ISNULL ){ | |
| 2355 /* TUNING: If there is no likelihood() value, assume that a | |
| 2356 ** "col IS NULL" expression matches twice as many rows | |
| 2357 ** as (col=?). */ | |
| 2358 pNew->nOut += 10; | |
| 2359 } | |
| 2360 } | |
| 2361 } | |
| 2362 } | |
| 2363 | |
| 2364 /* Set rCostIdx to the cost of visiting selected rows in index. Add | |
| 2365 ** it to pNew->rRun, which is currently set to the cost of the index | |
| 2366 ** seek only. Then, if this is a non-covering index, add the cost of | |
| 2367 ** visiting the rows in the main table. */ | |
| 2368 rCostIdx = pNew->nOut + 1 + (15*pProbe->szIdxRow)/pSrc->pTab->szTabRow; | |
| 2369 pNew->rRun = sqlite3LogEstAdd(rLogSize, rCostIdx); | |
| 2370 if( (pNew->wsFlags & (WHERE_IDX_ONLY|WHERE_IPK))==0 ){ | |
| 2371 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, pNew->nOut + 16); | |
| 2372 } | |
| 2373 ApplyCostMultiplier(pNew->rRun, pProbe->pTable->costMult); | |
| 2374 | |
| 2375 nOutUnadjusted = pNew->nOut; | |
| 2376 pNew->rRun += nInMul + nIn; | |
| 2377 pNew->nOut += nInMul + nIn; | |
| 2378 whereLoopOutputAdjust(pBuilder->pWC, pNew, rSize); | |
| 2379 rc = whereLoopInsert(pBuilder, pNew); | |
| 2380 | |
| 2381 if( pNew->wsFlags & WHERE_COLUMN_RANGE ){ | |
| 2382 pNew->nOut = saved_nOut; | |
| 2383 }else{ | |
| 2384 pNew->nOut = nOutUnadjusted; | |
| 2385 } | |
| 2386 | |
| 2387 if( (pNew->wsFlags & WHERE_TOP_LIMIT)==0 | |
| 2388 && pNew->u.btree.nEq<pProbe->nColumn | |
| 2389 ){ | |
| 2390 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nInMul+nIn); | |
| 2391 } | |
| 2392 pNew->nOut = saved_nOut; | |
| 2393 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | |
| 2394 pBuilder->nRecValid = nRecValid; | |
| 2395 #endif | |
| 2396 } | |
| 2397 pNew->prereq = saved_prereq; | |
| 2398 pNew->u.btree.nEq = saved_nEq; | |
| 2399 pNew->nSkip = saved_nSkip; | |
| 2400 pNew->wsFlags = saved_wsFlags; | |
| 2401 pNew->nOut = saved_nOut; | |
| 2402 pNew->nLTerm = saved_nLTerm; | |
| 2403 | |
| 2404 /* Consider using a skip-scan if there are no WHERE clause constraints | |
| 2405 ** available for the left-most terms of the index, and if the average | |
| 2406 ** number of repeats in the left-most terms is at least 18. | |
| 2407 ** | |
| 2408 ** The magic number 18 is selected on the basis that scanning 17 rows | |
| 2409 ** is almost always quicker than an index seek (even though if the index | |
| 2410 ** contains fewer than 2^17 rows we assume otherwise in other parts of | |
| 2411 ** the code). And, even if it is not, it should not be too much slower. | |
| 2412 ** On the other hand, the extra seeks could end up being significantly | |
| 2413 ** more expensive. */ | |
| 2414 assert( 42==sqlite3LogEst(18) ); | |
| 2415 if( saved_nEq==saved_nSkip | |
| 2416 && saved_nEq+1<pProbe->nKeyCol | |
| 2417 && pProbe->noSkipScan==0 | |
| 2418 && pProbe->aiRowLogEst[saved_nEq+1]>=42 /* TUNING: Minimum for skip-scan */ | |
| 2419 && (rc = whereLoopResize(db, pNew, pNew->nLTerm+1))==SQLITE_OK | |
| 2420 ){ | |
| 2421 LogEst nIter; | |
| 2422 pNew->u.btree.nEq++; | |
| 2423 pNew->nSkip++; | |
| 2424 pNew->aLTerm[pNew->nLTerm++] = 0; | |
| 2425 pNew->wsFlags |= WHERE_SKIPSCAN; | |
| 2426 nIter = pProbe->aiRowLogEst[saved_nEq] - pProbe->aiRowLogEst[saved_nEq+1]; | |
| 2427 pNew->nOut -= nIter; | |
| 2428 /* TUNING: Because uncertainties in the estimates for skip-scan queries, | |
| 2429 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */ | |
| 2430 nIter += 5; | |
| 2431 whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, nIter + nInMul); | |
| 2432 pNew->nOut = saved_nOut; | |
| 2433 pNew->u.btree.nEq = saved_nEq; | |
| 2434 pNew->nSkip = saved_nSkip; | |
| 2435 pNew->wsFlags = saved_wsFlags; | |
| 2436 } | |
| 2437 | |
| 2438 return rc; | |
| 2439 } | |
| 2440 | |
| 2441 /* | |
| 2442 ** Return True if it is possible that pIndex might be useful in | |
| 2443 ** implementing the ORDER BY clause in pBuilder. | |
| 2444 ** | |
| 2445 ** Return False if pBuilder does not contain an ORDER BY clause or | |
| 2446 ** if there is no way for pIndex to be useful in implementing that | |
| 2447 ** ORDER BY clause. | |
| 2448 */ | |
| 2449 static int indexMightHelpWithOrderBy( | |
| 2450 WhereLoopBuilder *pBuilder, | |
| 2451 Index *pIndex, | |
| 2452 int iCursor | |
| 2453 ){ | |
| 2454 ExprList *pOB; | |
| 2455 ExprList *aColExpr; | |
| 2456 int ii, jj; | |
| 2457 | |
| 2458 if( pIndex->bUnordered ) return 0; | |
| 2459 if( (pOB = pBuilder->pWInfo->pOrderBy)==0 ) return 0; | |
| 2460 for(ii=0; ii<pOB->nExpr; ii++){ | |
| 2461 Expr *pExpr = sqlite3ExprSkipCollate(pOB->a[ii].pExpr); | |
| 2462 if( pExpr->op==TK_COLUMN && pExpr->iTable==iCursor ){ | |
| 2463 if( pExpr->iColumn<0 ) return 1; | |
| 2464 for(jj=0; jj<pIndex->nKeyCol; jj++){ | |
| 2465 if( pExpr->iColumn==pIndex->aiColumn[jj] ) return 1; | |
| 2466 } | |
| 2467 }else if( (aColExpr = pIndex->aColExpr)!=0 ){ | |
| 2468 for(jj=0; jj<pIndex->nKeyCol; jj++){ | |
| 2469 if( pIndex->aiColumn[jj]!=XN_EXPR ) continue; | |
| 2470 if( sqlite3ExprCompare(pExpr,aColExpr->a[jj].pExpr,iCursor)==0 ){ | |
| 2471 return 1; | |
| 2472 } | |
| 2473 } | |
| 2474 } | |
| 2475 } | |
| 2476 return 0; | |
| 2477 } | |
| 2478 | |
| 2479 /* | |
| 2480 ** Return a bitmask where 1s indicate that the corresponding column of | |
| 2481 ** the table is used by an index. Only the first 63 columns are considered. | |
| 2482 */ | |
| 2483 static Bitmask columnsInIndex(Index *pIdx){ | |
| 2484 Bitmask m = 0; | |
| 2485 int j; | |
| 2486 for(j=pIdx->nColumn-1; j>=0; j--){ | |
| 2487 int x = pIdx->aiColumn[j]; | |
| 2488 if( x>=0 ){ | |
| 2489 testcase( x==BMS-1 ); | |
| 2490 testcase( x==BMS-2 ); | |
| 2491 if( x<BMS-1 ) m |= MASKBIT(x); | |
| 2492 } | |
| 2493 } | |
| 2494 return m; | |
| 2495 } | |
| 2496 | |
| 2497 /* Check to see if a partial index with pPartIndexWhere can be used | |
| 2498 ** in the current query. Return true if it can be and false if not. | |
| 2499 */ | |
| 2500 static int whereUsablePartialIndex(int iTab, WhereClause *pWC, Expr *pWhere){ | |
| 2501 int i; | |
| 2502 WhereTerm *pTerm; | |
| 2503 while( pWhere->op==TK_AND ){ | |
| 2504 if( !whereUsablePartialIndex(iTab,pWC,pWhere->pLeft) ) return 0; | |
| 2505 pWhere = pWhere->pRight; | |
| 2506 } | |
| 2507 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){ | |
| 2508 Expr *pExpr = pTerm->pExpr; | |
| 2509 if( sqlite3ExprImpliesExpr(pExpr, pWhere, iTab) | |
| 2510 && (!ExprHasProperty(pExpr, EP_FromJoin) || pExpr->iRightJoinTable==iTab) | |
| 2511 ){ | |
| 2512 return 1; | |
| 2513 } | |
| 2514 } | |
| 2515 return 0; | |
| 2516 } | |
| 2517 | |
| 2518 /* | |
| 2519 ** Add all WhereLoop objects for a single table of the join where the table | |
| 2520 ** is idenfied by pBuilder->pNew->iTab. That table is guaranteed to be | |
| 2521 ** a b-tree table, not a virtual table. | |
| 2522 ** | |
| 2523 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function | |
| 2524 ** are calculated as follows: | |
| 2525 ** | |
| 2526 ** For a full scan, assuming the table (or index) contains nRow rows: | |
| 2527 ** | |
| 2528 ** cost = nRow * 3.0 // full-table scan | |
| 2529 ** cost = nRow * K // scan of covering index | |
| 2530 ** cost = nRow * (K+3.0) // scan of non-covering index | |
| 2531 ** | |
| 2532 ** where K is a value between 1.1 and 3.0 set based on the relative | |
| 2533 ** estimated average size of the index and table records. | |
| 2534 ** | |
| 2535 ** For an index scan, where nVisit is the number of index rows visited | |
| 2536 ** by the scan, and nSeek is the number of seek operations required on | |
| 2537 ** the index b-tree: | |
| 2538 ** | |
| 2539 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index | |
| 2540 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index | |
| 2541 ** | |
| 2542 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the | |
| 2543 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when | |
| 2544 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans. | |
| 2545 ** | |
| 2546 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount | |
| 2547 ** of uncertainty. For this reason, scoring is designed to pick plans that | |
| 2548 ** "do the least harm" if the estimates are inaccurate. For example, a | |
| 2549 ** log(nRow) factor is omitted from a non-covering index scan in order to | |
| 2550 ** bias the scoring in favor of using an index, since the worst-case | |
| 2551 ** performance of using an index is far better than the worst-case performance | |
| 2552 ** of a full table scan. | |
| 2553 */ | |
| 2554 static int whereLoopAddBtree( | |
| 2555 WhereLoopBuilder *pBuilder, /* WHERE clause information */ | |
| 2556 Bitmask mExtra /* Extra prerequesites for using this table */ | |
| 2557 ){ | |
| 2558 WhereInfo *pWInfo; /* WHERE analysis context */ | |
| 2559 Index *pProbe; /* An index we are evaluating */ | |
| 2560 Index sPk; /* A fake index object for the primary key */ | |
| 2561 LogEst aiRowEstPk[2]; /* The aiRowLogEst[] value for the sPk index */ | |
| 2562 i16 aiColumnPk = -1; /* The aColumn[] value for the sPk index */ | |
| 2563 SrcList *pTabList; /* The FROM clause */ | |
| 2564 struct SrcList_item *pSrc; /* The FROM clause btree term to add */ | |
| 2565 WhereLoop *pNew; /* Template WhereLoop object */ | |
| 2566 int rc = SQLITE_OK; /* Return code */ | |
| 2567 int iSortIdx = 1; /* Index number */ | |
| 2568 int b; /* A boolean value */ | |
| 2569 LogEst rSize; /* number of rows in the table */ | |
| 2570 LogEst rLogSize; /* Logarithm of the number of rows in the table */ | |
| 2571 WhereClause *pWC; /* The parsed WHERE clause */ | |
| 2572 Table *pTab; /* Table being queried */ | |
| 2573 | |
| 2574 pNew = pBuilder->pNew; | |
| 2575 pWInfo = pBuilder->pWInfo; | |
| 2576 pTabList = pWInfo->pTabList; | |
| 2577 pSrc = pTabList->a + pNew->iTab; | |
| 2578 pTab = pSrc->pTab; | |
| 2579 pWC = pBuilder->pWC; | |
| 2580 assert( !IsVirtual(pSrc->pTab) ); | |
| 2581 | |
| 2582 if( pSrc->pIBIndex ){ | |
| 2583 /* An INDEXED BY clause specifies a particular index to use */ | |
| 2584 pProbe = pSrc->pIBIndex; | |
| 2585 }else if( !HasRowid(pTab) ){ | |
| 2586 pProbe = pTab->pIndex; | |
| 2587 }else{ | |
| 2588 /* There is no INDEXED BY clause. Create a fake Index object in local | |
| 2589 ** variable sPk to represent the rowid primary key index. Make this | |
| 2590 ** fake index the first in a chain of Index objects with all of the real | |
| 2591 ** indices to follow */ | |
| 2592 Index *pFirst; /* First of real indices on the table */ | |
| 2593 memset(&sPk, 0, sizeof(Index)); | |
| 2594 sPk.nKeyCol = 1; | |
| 2595 sPk.nColumn = 1; | |
| 2596 sPk.aiColumn = &aiColumnPk; | |
| 2597 sPk.aiRowLogEst = aiRowEstPk; | |
| 2598 sPk.onError = OE_Replace; | |
| 2599 sPk.pTable = pTab; | |
| 2600 sPk.szIdxRow = pTab->szTabRow; | |
| 2601 aiRowEstPk[0] = pTab->nRowLogEst; | |
| 2602 aiRowEstPk[1] = 0; | |
| 2603 pFirst = pSrc->pTab->pIndex; | |
| 2604 if( pSrc->fg.notIndexed==0 ){ | |
| 2605 /* The real indices of the table are only considered if the | |
| 2606 ** NOT INDEXED qualifier is omitted from the FROM clause */ | |
| 2607 sPk.pNext = pFirst; | |
| 2608 } | |
| 2609 pProbe = &sPk; | |
| 2610 } | |
| 2611 rSize = pTab->nRowLogEst; | |
| 2612 rLogSize = estLog(rSize); | |
| 2613 | |
| 2614 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX | |
| 2615 /* Automatic indexes */ | |
| 2616 if( !pBuilder->pOrSet /* Not part of an OR optimization */ | |
| 2617 && (pWInfo->wctrlFlags & WHERE_NO_AUTOINDEX)==0 | |
| 2618 && (pWInfo->pParse->db->flags & SQLITE_AutoIndex)!=0 | |
| 2619 && pSrc->pIBIndex==0 /* Has no INDEXED BY clause */ | |
| 2620 && !pSrc->fg.notIndexed /* Has no NOT INDEXED clause */ | |
| 2621 && HasRowid(pTab) /* Not WITHOUT ROWID table. (FIXME: Why not?) */ | |
| 2622 && !pSrc->fg.isCorrelated /* Not a correlated subquery */ | |
| 2623 && !pSrc->fg.isRecursive /* Not a recursive common table expression. */ | |
| 2624 ){ | |
| 2625 /* Generate auto-index WhereLoops */ | |
| 2626 WhereTerm *pTerm; | |
| 2627 WhereTerm *pWCEnd = pWC->a + pWC->nTerm; | |
| 2628 for(pTerm=pWC->a; rc==SQLITE_OK && pTerm<pWCEnd; pTerm++){ | |
| 2629 if( pTerm->prereqRight & pNew->maskSelf ) continue; | |
| 2630 if( termCanDriveIndex(pTerm, pSrc, 0) ){ | |
| 2631 pNew->u.btree.nEq = 1; | |
| 2632 pNew->nSkip = 0; | |
| 2633 pNew->u.btree.pIndex = 0; | |
| 2634 pNew->nLTerm = 1; | |
| 2635 pNew->aLTerm[0] = pTerm; | |
| 2636 /* TUNING: One-time cost for computing the automatic index is | |
| 2637 ** estimated to be X*N*log2(N) where N is the number of rows in | |
| 2638 ** the table being indexed and where X is 7 (LogEst=28) for normal | |
| 2639 ** tables or 1.375 (LogEst=4) for views and subqueries. The value | |
| 2640 ** of X is smaller for views and subqueries so that the query planner | |
| 2641 ** will be more aggressive about generating automatic indexes for | |
| 2642 ** those objects, since there is no opportunity to add schema | |
| 2643 ** indexes on subqueries and views. */ | |
| 2644 pNew->rSetup = rLogSize + rSize + 4; | |
| 2645 if( pTab->pSelect==0 && (pTab->tabFlags & TF_Ephemeral)==0 ){ | |
| 2646 pNew->rSetup += 24; | |
| 2647 } | |
| 2648 ApplyCostMultiplier(pNew->rSetup, pTab->costMult); | |
| 2649 /* TUNING: Each index lookup yields 20 rows in the table. This | |
| 2650 ** is more than the usual guess of 10 rows, since we have no way | |
| 2651 ** of knowing how selective the index will ultimately be. It would | |
| 2652 ** not be unreasonable to make this value much larger. */ | |
| 2653 pNew->nOut = 43; assert( 43==sqlite3LogEst(20) ); | |
| 2654 pNew->rRun = sqlite3LogEstAdd(rLogSize,pNew->nOut); | |
| 2655 pNew->wsFlags = WHERE_AUTO_INDEX; | |
| 2656 pNew->prereq = mExtra | pTerm->prereqRight; | |
| 2657 rc = whereLoopInsert(pBuilder, pNew); | |
| 2658 } | |
| 2659 } | |
| 2660 } | |
| 2661 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */ | |
| 2662 | |
| 2663 /* Loop over all indices | |
| 2664 */ | |
| 2665 for(; rc==SQLITE_OK && pProbe; pProbe=pProbe->pNext, iSortIdx++){ | |
| 2666 if( pProbe->pPartIdxWhere!=0 | |
| 2667 && !whereUsablePartialIndex(pSrc->iCursor, pWC, pProbe->pPartIdxWhere) ){ | |
| 2668 testcase( pNew->iTab!=pSrc->iCursor ); /* See ticket [98d973b8f5] */ | |
| 2669 continue; /* Partial index inappropriate for this query */ | |
| 2670 } | |
| 2671 rSize = pProbe->aiRowLogEst[0]; | |
| 2672 pNew->u.btree.nEq = 0; | |
| 2673 pNew->nSkip = 0; | |
| 2674 pNew->nLTerm = 0; | |
| 2675 pNew->iSortIdx = 0; | |
| 2676 pNew->rSetup = 0; | |
| 2677 pNew->prereq = mExtra; | |
| 2678 pNew->nOut = rSize; | |
| 2679 pNew->u.btree.pIndex = pProbe; | |
| 2680 b = indexMightHelpWithOrderBy(pBuilder, pProbe, pSrc->iCursor); | |
| 2681 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */ | |
| 2682 assert( (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || b==0 ); | |
| 2683 if( pProbe->tnum<=0 ){ | |
| 2684 /* Integer primary key index */ | |
| 2685 pNew->wsFlags = WHERE_IPK; | |
| 2686 | |
| 2687 /* Full table scan */ | |
| 2688 pNew->iSortIdx = b ? iSortIdx : 0; | |
| 2689 /* TUNING: Cost of full table scan is (N*3.0). */ | |
| 2690 pNew->rRun = rSize + 16; | |
| 2691 ApplyCostMultiplier(pNew->rRun, pTab->costMult); | |
| 2692 whereLoopOutputAdjust(pWC, pNew, rSize); | |
| 2693 rc = whereLoopInsert(pBuilder, pNew); | |
| 2694 pNew->nOut = rSize; | |
| 2695 if( rc ) break; | |
| 2696 }else{ | |
| 2697 Bitmask m; | |
| 2698 if( pProbe->isCovering ){ | |
| 2699 pNew->wsFlags = WHERE_IDX_ONLY | WHERE_INDEXED; | |
| 2700 m = 0; | |
| 2701 }else{ | |
| 2702 m = pSrc->colUsed & ~columnsInIndex(pProbe); | |
| 2703 pNew->wsFlags = (m==0) ? (WHERE_IDX_ONLY|WHERE_INDEXED) : WHERE_INDEXED; | |
| 2704 } | |
| 2705 | |
| 2706 /* Full scan via index */ | |
| 2707 if( b | |
| 2708 || !HasRowid(pTab) | |
| 2709 || ( m==0 | |
| 2710 && pProbe->bUnordered==0 | |
| 2711 && (pProbe->szIdxRow<pTab->szTabRow) | |
| 2712 && (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 | |
| 2713 && sqlite3GlobalConfig.bUseCis | |
| 2714 && OptimizationEnabled(pWInfo->pParse->db, SQLITE_CoverIdxScan) | |
| 2715 ) | |
| 2716 ){ | |
| 2717 pNew->iSortIdx = b ? iSortIdx : 0; | |
| 2718 | |
| 2719 /* The cost of visiting the index rows is N*K, where K is | |
| 2720 ** between 1.1 and 3.0, depending on the relative sizes of the | |
| 2721 ** index and table rows. If this is a non-covering index scan, | |
| 2722 ** also add the cost of visiting table rows (N*3.0). */ | |
| 2723 pNew->rRun = rSize + 1 + (15*pProbe->szIdxRow)/pTab->szTabRow; | |
| 2724 if( m!=0 ){ | |
| 2725 pNew->rRun = sqlite3LogEstAdd(pNew->rRun, rSize+16); | |
| 2726 } | |
| 2727 ApplyCostMultiplier(pNew->rRun, pTab->costMult); | |
| 2728 whereLoopOutputAdjust(pWC, pNew, rSize); | |
| 2729 rc = whereLoopInsert(pBuilder, pNew); | |
| 2730 pNew->nOut = rSize; | |
| 2731 if( rc ) break; | |
| 2732 } | |
| 2733 } | |
| 2734 | |
| 2735 rc = whereLoopAddBtreeIndex(pBuilder, pSrc, pProbe, 0); | |
| 2736 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4 | |
| 2737 sqlite3Stat4ProbeFree(pBuilder->pRec); | |
| 2738 pBuilder->nRecValid = 0; | |
| 2739 pBuilder->pRec = 0; | |
| 2740 #endif | |
| 2741 | |
| 2742 /* If there was an INDEXED BY clause, then only that one index is | |
| 2743 ** considered. */ | |
| 2744 if( pSrc->pIBIndex ) break; | |
| 2745 } | |
| 2746 return rc; | |
| 2747 } | |
| 2748 | |
| 2749 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
| 2750 /* | |
| 2751 ** Add all WhereLoop objects for a table of the join identified by | |
| 2752 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table. | |
| 2753 ** | |
| 2754 ** If there are no LEFT or CROSS JOIN joins in the query, both mExtra and | |
| 2755 ** mUnusable are set to 0. Otherwise, mExtra is a mask of all FROM clause | |
| 2756 ** entries that occur before the virtual table in the FROM clause and are | |
| 2757 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the | |
| 2758 ** mUnusable mask contains all FROM clause entries that occur after the | |
| 2759 ** virtual table and are separated from it by at least one LEFT or | |
| 2760 ** CROSS JOIN. | |
| 2761 ** | |
| 2762 ** For example, if the query were: | |
| 2763 ** | |
| 2764 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6; | |
| 2765 ** | |
| 2766 ** then mExtra corresponds to (t1, t2) and mUnusable to (t5, t6). | |
| 2767 ** | |
| 2768 ** All the tables in mExtra must be scanned before the current virtual | |
| 2769 ** table. So any terms for which all prerequisites are satisfied by | |
| 2770 ** mExtra may be specified as "usable" in all calls to xBestIndex. | |
| 2771 ** Conversely, all tables in mUnusable must be scanned after the current | |
| 2772 ** virtual table, so any terms for which the prerequisites overlap with | |
| 2773 ** mUnusable should always be configured as "not-usable" for xBestIndex. | |
| 2774 */ | |
| 2775 static int whereLoopAddVirtual( | |
| 2776 WhereLoopBuilder *pBuilder, /* WHERE clause information */ | |
| 2777 Bitmask mExtra, /* Tables that must be scanned before this one */ | |
| 2778 Bitmask mUnusable /* Tables that must be scanned after this one */ | |
| 2779 ){ | |
| 2780 WhereInfo *pWInfo; /* WHERE analysis context */ | |
| 2781 Parse *pParse; /* The parsing context */ | |
| 2782 WhereClause *pWC; /* The WHERE clause */ | |
| 2783 struct SrcList_item *pSrc; /* The FROM clause term to search */ | |
| 2784 Table *pTab; | |
| 2785 sqlite3 *db; | |
| 2786 sqlite3_index_info *pIdxInfo; | |
| 2787 struct sqlite3_index_constraint *pIdxCons; | |
| 2788 struct sqlite3_index_constraint_usage *pUsage; | |
| 2789 WhereTerm *pTerm; | |
| 2790 int i, j; | |
| 2791 int iTerm, mxTerm; | |
| 2792 int nConstraint; | |
| 2793 int seenIn = 0; /* True if an IN operator is seen */ | |
| 2794 int seenVar = 0; /* True if a non-constant constraint is seen */ | |
| 2795 int iPhase; /* 0: const w/o IN, 1: const, 2: no IN, 2: IN */ | |
| 2796 WhereLoop *pNew; | |
| 2797 int rc = SQLITE_OK; | |
| 2798 | |
| 2799 assert( (mExtra & mUnusable)==0 ); | |
| 2800 pWInfo = pBuilder->pWInfo; | |
| 2801 pParse = pWInfo->pParse; | |
| 2802 db = pParse->db; | |
| 2803 pWC = pBuilder->pWC; | |
| 2804 pNew = pBuilder->pNew; | |
| 2805 pSrc = &pWInfo->pTabList->a[pNew->iTab]; | |
| 2806 pTab = pSrc->pTab; | |
| 2807 assert( IsVirtual(pTab) ); | |
| 2808 pIdxInfo = allocateIndexInfo(pParse, pWC, mUnusable, pSrc,pBuilder->pOrderBy); | |
| 2809 if( pIdxInfo==0 ) return SQLITE_NOMEM; | |
| 2810 pNew->prereq = 0; | |
| 2811 pNew->rSetup = 0; | |
| 2812 pNew->wsFlags = WHERE_VIRTUALTABLE; | |
| 2813 pNew->nLTerm = 0; | |
| 2814 pNew->u.vtab.needFree = 0; | |
| 2815 pUsage = pIdxInfo->aConstraintUsage; | |
| 2816 nConstraint = pIdxInfo->nConstraint; | |
| 2817 if( whereLoopResize(db, pNew, nConstraint) ){ | |
| 2818 sqlite3DbFree(db, pIdxInfo); | |
| 2819 return SQLITE_NOMEM; | |
| 2820 } | |
| 2821 | |
| 2822 for(iPhase=0; iPhase<=3; iPhase++){ | |
| 2823 if( !seenIn && (iPhase&1)!=0 ){ | |
| 2824 iPhase++; | |
| 2825 if( iPhase>3 ) break; | |
| 2826 } | |
| 2827 if( !seenVar && iPhase>1 ) break; | |
| 2828 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; | |
| 2829 for(i=0; i<pIdxInfo->nConstraint; i++, pIdxCons++){ | |
| 2830 j = pIdxCons->iTermOffset; | |
| 2831 pTerm = &pWC->a[j]; | |
| 2832 switch( iPhase ){ | |
| 2833 case 0: /* Constants without IN operator */ | |
| 2834 pIdxCons->usable = 0; | |
| 2835 if( (pTerm->eOperator & WO_IN)!=0 ){ | |
| 2836 seenIn = 1; | |
| 2837 } | |
| 2838 if( (pTerm->prereqRight & ~mExtra)!=0 ){ | |
| 2839 seenVar = 1; | |
| 2840 }else if( (pTerm->eOperator & WO_IN)==0 ){ | |
| 2841 pIdxCons->usable = 1; | |
| 2842 } | |
| 2843 break; | |
| 2844 case 1: /* Constants with IN operators */ | |
| 2845 assert( seenIn ); | |
| 2846 pIdxCons->usable = (pTerm->prereqRight & ~mExtra)==0; | |
| 2847 break; | |
| 2848 case 2: /* Variables without IN */ | |
| 2849 assert( seenVar ); | |
| 2850 pIdxCons->usable = (pTerm->eOperator & WO_IN)==0; | |
| 2851 break; | |
| 2852 default: /* Variables with IN */ | |
| 2853 assert( seenVar && seenIn ); | |
| 2854 pIdxCons->usable = 1; | |
| 2855 break; | |
| 2856 } | |
| 2857 } | |
| 2858 memset(pUsage, 0, sizeof(pUsage[0])*pIdxInfo->nConstraint); | |
| 2859 if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr); | |
| 2860 pIdxInfo->idxStr = 0; | |
| 2861 pIdxInfo->idxNum = 0; | |
| 2862 pIdxInfo->needToFreeIdxStr = 0; | |
| 2863 pIdxInfo->orderByConsumed = 0; | |
| 2864 pIdxInfo->estimatedCost = SQLITE_BIG_DBL / (double)2; | |
| 2865 pIdxInfo->estimatedRows = 25; | |
| 2866 pIdxInfo->idxFlags = 0; | |
| 2867 pIdxInfo->colUsed = (sqlite3_int64)pSrc->colUsed; | |
| 2868 rc = vtabBestIndex(pParse, pTab, pIdxInfo); | |
| 2869 if( rc ) goto whereLoopAddVtab_exit; | |
| 2870 pIdxCons = *(struct sqlite3_index_constraint**)&pIdxInfo->aConstraint; | |
| 2871 pNew->prereq = mExtra; | |
| 2872 mxTerm = -1; | |
| 2873 assert( pNew->nLSlot>=nConstraint ); | |
| 2874 for(i=0; i<nConstraint; i++) pNew->aLTerm[i] = 0; | |
| 2875 pNew->u.vtab.omitMask = 0; | |
| 2876 for(i=0; i<nConstraint; i++, pIdxCons++){ | |
| 2877 if( (iTerm = pUsage[i].argvIndex - 1)>=0 ){ | |
| 2878 j = pIdxCons->iTermOffset; | |
| 2879 if( iTerm>=nConstraint | |
| 2880 || j<0 | |
| 2881 || j>=pWC->nTerm | |
| 2882 || pNew->aLTerm[iTerm]!=0 | |
| 2883 ){ | |
| 2884 rc = SQLITE_ERROR; | |
| 2885 sqlite3ErrorMsg(pParse, "%s.xBestIndex() malfunction", pTab->zName); | |
| 2886 goto whereLoopAddVtab_exit; | |
| 2887 } | |
| 2888 testcase( iTerm==nConstraint-1 ); | |
| 2889 testcase( j==0 ); | |
| 2890 testcase( j==pWC->nTerm-1 ); | |
| 2891 pTerm = &pWC->a[j]; | |
| 2892 pNew->prereq |= pTerm->prereqRight; | |
| 2893 assert( iTerm<pNew->nLSlot ); | |
| 2894 pNew->aLTerm[iTerm] = pTerm; | |
| 2895 if( iTerm>mxTerm ) mxTerm = iTerm; | |
| 2896 testcase( iTerm==15 ); | |
| 2897 testcase( iTerm==16 ); | |
| 2898 if( iTerm<16 && pUsage[i].omit ) pNew->u.vtab.omitMask |= 1<<iTerm; | |
| 2899 if( (pTerm->eOperator & WO_IN)!=0 ){ | |
| 2900 if( pUsage[i].omit==0 ){ | |
| 2901 /* Do not attempt to use an IN constraint if the virtual table | |
| 2902 ** says that the equivalent EQ constraint cannot be safely omitted. | |
| 2903 ** If we do attempt to use such a constraint, some rows might be | |
| 2904 ** repeated in the output. */ | |
| 2905 break; | |
| 2906 } | |
| 2907 /* A virtual table that is constrained by an IN clause may not | |
| 2908 ** consume the ORDER BY clause because (1) the order of IN terms | |
| 2909 ** is not necessarily related to the order of output terms and | |
| 2910 ** (2) Multiple outputs from a single IN value will not merge | |
| 2911 ** together. */ | |
| 2912 pIdxInfo->orderByConsumed = 0; | |
| 2913 pIdxInfo->idxFlags &= ~SQLITE_INDEX_SCAN_UNIQUE; | |
| 2914 } | |
| 2915 } | |
| 2916 } | |
| 2917 if( i>=nConstraint ){ | |
| 2918 pNew->nLTerm = mxTerm+1; | |
| 2919 assert( pNew->nLTerm<=pNew->nLSlot ); | |
| 2920 pNew->u.vtab.idxNum = pIdxInfo->idxNum; | |
| 2921 pNew->u.vtab.needFree = pIdxInfo->needToFreeIdxStr; | |
| 2922 pIdxInfo->needToFreeIdxStr = 0; | |
| 2923 pNew->u.vtab.idxStr = pIdxInfo->idxStr; | |
| 2924 pNew->u.vtab.isOrdered = (i8)(pIdxInfo->orderByConsumed ? | |
| 2925 pIdxInfo->nOrderBy : 0); | |
| 2926 pNew->rSetup = 0; | |
| 2927 pNew->rRun = sqlite3LogEstFromDouble(pIdxInfo->estimatedCost); | |
| 2928 pNew->nOut = sqlite3LogEst(pIdxInfo->estimatedRows); | |
| 2929 | |
| 2930 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated | |
| 2931 ** that the scan will visit at most one row. Clear it otherwise. */ | |
| 2932 if( pIdxInfo->idxFlags & SQLITE_INDEX_SCAN_UNIQUE ){ | |
| 2933 pNew->wsFlags |= WHERE_ONEROW; | |
| 2934 }else{ | |
| 2935 pNew->wsFlags &= ~WHERE_ONEROW; | |
| 2936 } | |
| 2937 whereLoopInsert(pBuilder, pNew); | |
| 2938 if( pNew->u.vtab.needFree ){ | |
| 2939 sqlite3_free(pNew->u.vtab.idxStr); | |
| 2940 pNew->u.vtab.needFree = 0; | |
| 2941 } | |
| 2942 } | |
| 2943 } | |
| 2944 | |
| 2945 whereLoopAddVtab_exit: | |
| 2946 if( pIdxInfo->needToFreeIdxStr ) sqlite3_free(pIdxInfo->idxStr); | |
| 2947 sqlite3DbFree(db, pIdxInfo); | |
| 2948 return rc; | |
| 2949 } | |
| 2950 #endif /* SQLITE_OMIT_VIRTUALTABLE */ | |
| 2951 | |
| 2952 /* | |
| 2953 ** Add WhereLoop entries to handle OR terms. This works for either | |
| 2954 ** btrees or virtual tables. | |
| 2955 */ | |
| 2956 static int whereLoopAddOr( | |
| 2957 WhereLoopBuilder *pBuilder, | |
| 2958 Bitmask mExtra, | |
| 2959 Bitmask mUnusable | |
| 2960 ){ | |
| 2961 WhereInfo *pWInfo = pBuilder->pWInfo; | |
| 2962 WhereClause *pWC; | |
| 2963 WhereLoop *pNew; | |
| 2964 WhereTerm *pTerm, *pWCEnd; | |
| 2965 int rc = SQLITE_OK; | |
| 2966 int iCur; | |
| 2967 WhereClause tempWC; | |
| 2968 WhereLoopBuilder sSubBuild; | |
| 2969 WhereOrSet sSum, sCur; | |
| 2970 struct SrcList_item *pItem; | |
| 2971 | |
| 2972 pWC = pBuilder->pWC; | |
| 2973 pWCEnd = pWC->a + pWC->nTerm; | |
| 2974 pNew = pBuilder->pNew; | |
| 2975 memset(&sSum, 0, sizeof(sSum)); | |
| 2976 pItem = pWInfo->pTabList->a + pNew->iTab; | |
| 2977 iCur = pItem->iCursor; | |
| 2978 | |
| 2979 for(pTerm=pWC->a; pTerm<pWCEnd && rc==SQLITE_OK; pTerm++){ | |
| 2980 if( (pTerm->eOperator & WO_OR)!=0 | |
| 2981 && (pTerm->u.pOrInfo->indexable & pNew->maskSelf)!=0 | |
| 2982 ){ | |
| 2983 WhereClause * const pOrWC = &pTerm->u.pOrInfo->wc; | |
| 2984 WhereTerm * const pOrWCEnd = &pOrWC->a[pOrWC->nTerm]; | |
| 2985 WhereTerm *pOrTerm; | |
| 2986 int once = 1; | |
| 2987 int i, j; | |
| 2988 | |
| 2989 sSubBuild = *pBuilder; | |
| 2990 sSubBuild.pOrderBy = 0; | |
| 2991 sSubBuild.pOrSet = &sCur; | |
| 2992 | |
| 2993 WHERETRACE(0x200, ("Begin processing OR-clause %p\n", pTerm)); | |
| 2994 for(pOrTerm=pOrWC->a; pOrTerm<pOrWCEnd; pOrTerm++){ | |
| 2995 if( (pOrTerm->eOperator & WO_AND)!=0 ){ | |
| 2996 sSubBuild.pWC = &pOrTerm->u.pAndInfo->wc; | |
| 2997 }else if( pOrTerm->leftCursor==iCur ){ | |
| 2998 tempWC.pWInfo = pWC->pWInfo; | |
| 2999 tempWC.pOuter = pWC; | |
| 3000 tempWC.op = TK_AND; | |
| 3001 tempWC.nTerm = 1; | |
| 3002 tempWC.a = pOrTerm; | |
| 3003 sSubBuild.pWC = &tempWC; | |
| 3004 }else{ | |
| 3005 continue; | |
| 3006 } | |
| 3007 sCur.n = 0; | |
| 3008 #ifdef WHERETRACE_ENABLED | |
| 3009 WHERETRACE(0x200, ("OR-term %d of %p has %d subterms:\n", | |
| 3010 (int)(pOrTerm-pOrWC->a), pTerm, sSubBuild.pWC->nTerm)); | |
| 3011 if( sqlite3WhereTrace & 0x400 ){ | |
| 3012 for(i=0; i<sSubBuild.pWC->nTerm; i++){ | |
| 3013 whereTermPrint(&sSubBuild.pWC->a[i], i); | |
| 3014 } | |
| 3015 } | |
| 3016 #endif | |
| 3017 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
| 3018 if( IsVirtual(pItem->pTab) ){ | |
| 3019 rc = whereLoopAddVirtual(&sSubBuild, mExtra, mUnusable); | |
| 3020 }else | |
| 3021 #endif | |
| 3022 { | |
| 3023 rc = whereLoopAddBtree(&sSubBuild, mExtra); | |
| 3024 } | |
| 3025 if( rc==SQLITE_OK ){ | |
| 3026 rc = whereLoopAddOr(&sSubBuild, mExtra, mUnusable); | |
| 3027 } | |
| 3028 assert( rc==SQLITE_OK || sCur.n==0 ); | |
| 3029 if( sCur.n==0 ){ | |
| 3030 sSum.n = 0; | |
| 3031 break; | |
| 3032 }else if( once ){ | |
| 3033 whereOrMove(&sSum, &sCur); | |
| 3034 once = 0; | |
| 3035 }else{ | |
| 3036 WhereOrSet sPrev; | |
| 3037 whereOrMove(&sPrev, &sSum); | |
| 3038 sSum.n = 0; | |
| 3039 for(i=0; i<sPrev.n; i++){ | |
| 3040 for(j=0; j<sCur.n; j++){ | |
| 3041 whereOrInsert(&sSum, sPrev.a[i].prereq | sCur.a[j].prereq, | |
| 3042 sqlite3LogEstAdd(sPrev.a[i].rRun, sCur.a[j].rRun), | |
| 3043 sqlite3LogEstAdd(sPrev.a[i].nOut, sCur.a[j].nOut)); | |
| 3044 } | |
| 3045 } | |
| 3046 } | |
| 3047 } | |
| 3048 pNew->nLTerm = 1; | |
| 3049 pNew->aLTerm[0] = pTerm; | |
| 3050 pNew->wsFlags = WHERE_MULTI_OR; | |
| 3051 pNew->rSetup = 0; | |
| 3052 pNew->iSortIdx = 0; | |
| 3053 memset(&pNew->u, 0, sizeof(pNew->u)); | |
| 3054 for(i=0; rc==SQLITE_OK && i<sSum.n; i++){ | |
| 3055 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs | |
| 3056 ** of all sub-scans required by the OR-scan. However, due to rounding | |
| 3057 ** errors, it may be that the cost of the OR-scan is equal to its | |
| 3058 ** most expensive sub-scan. Add the smallest possible penalty | |
| 3059 ** (equivalent to multiplying the cost by 1.07) to ensure that | |
| 3060 ** this does not happen. Otherwise, for WHERE clauses such as the | |
| 3061 ** following where there is an index on "y": | |
| 3062 ** | |
| 3063 ** WHERE likelihood(x=?, 0.99) OR y=? | |
| 3064 ** | |
| 3065 ** the planner may elect to "OR" together a full-table scan and an | |
| 3066 ** index lookup. And other similarly odd results. */ | |
| 3067 pNew->rRun = sSum.a[i].rRun + 1; | |
| 3068 pNew->nOut = sSum.a[i].nOut; | |
| 3069 pNew->prereq = sSum.a[i].prereq; | |
| 3070 rc = whereLoopInsert(pBuilder, pNew); | |
| 3071 } | |
| 3072 WHERETRACE(0x200, ("End processing OR-clause %p\n", pTerm)); | |
| 3073 } | |
| 3074 } | |
| 3075 return rc; | |
| 3076 } | |
| 3077 | |
| 3078 /* | |
| 3079 ** Add all WhereLoop objects for all tables | |
| 3080 */ | |
| 3081 static int whereLoopAddAll(WhereLoopBuilder *pBuilder){ | |
| 3082 WhereInfo *pWInfo = pBuilder->pWInfo; | |
| 3083 Bitmask mExtra = 0; | |
| 3084 Bitmask mPrior = 0; | |
| 3085 int iTab; | |
| 3086 SrcList *pTabList = pWInfo->pTabList; | |
| 3087 struct SrcList_item *pItem; | |
| 3088 struct SrcList_item *pEnd = &pTabList->a[pWInfo->nLevel]; | |
| 3089 sqlite3 *db = pWInfo->pParse->db; | |
| 3090 int rc = SQLITE_OK; | |
| 3091 WhereLoop *pNew; | |
| 3092 u8 priorJointype = 0; | |
| 3093 | |
| 3094 /* Loop over the tables in the join, from left to right */ | |
| 3095 pNew = pBuilder->pNew; | |
| 3096 whereLoopInit(pNew); | |
| 3097 for(iTab=0, pItem=pTabList->a; pItem<pEnd; iTab++, pItem++){ | |
| 3098 Bitmask mUnusable = 0; | |
| 3099 pNew->iTab = iTab; | |
| 3100 pNew->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, pItem->iCursor); | |
| 3101 if( ((pItem->fg.jointype|priorJointype) & (JT_LEFT|JT_CROSS))!=0 ){ | |
| 3102 /* This condition is true when pItem is the FROM clause term on the | |
| 3103 ** right-hand-side of a LEFT or CROSS JOIN. */ | |
| 3104 mExtra = mPrior; | |
| 3105 } | |
| 3106 priorJointype = pItem->fg.jointype; | |
| 3107 if( IsVirtual(pItem->pTab) ){ | |
| 3108 struct SrcList_item *p; | |
| 3109 for(p=&pItem[1]; p<pEnd; p++){ | |
| 3110 if( mUnusable || (p->fg.jointype & (JT_LEFT|JT_CROSS)) ){ | |
| 3111 mUnusable |= sqlite3WhereGetMask(&pWInfo->sMaskSet, p->iCursor); | |
| 3112 } | |
| 3113 } | |
| 3114 rc = whereLoopAddVirtual(pBuilder, mExtra, mUnusable); | |
| 3115 }else{ | |
| 3116 rc = whereLoopAddBtree(pBuilder, mExtra); | |
| 3117 } | |
| 3118 if( rc==SQLITE_OK ){ | |
| 3119 rc = whereLoopAddOr(pBuilder, mExtra, mUnusable); | |
| 3120 } | |
| 3121 mPrior |= pNew->maskSelf; | |
| 3122 if( rc || db->mallocFailed ) break; | |
| 3123 } | |
| 3124 | |
| 3125 whereLoopClear(db, pNew); | |
| 3126 return rc; | |
| 3127 } | |
| 3128 | |
| 3129 /* | |
| 3130 ** Examine a WherePath (with the addition of the extra WhereLoop of the 5th | |
| 3131 ** parameters) to see if it outputs rows in the requested ORDER BY | |
| 3132 ** (or GROUP BY) without requiring a separate sort operation. Return N: | |
| 3133 ** | |
| 3134 ** N>0: N terms of the ORDER BY clause are satisfied | |
| 3135 ** N==0: No terms of the ORDER BY clause are satisfied | |
| 3136 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied. | |
| 3137 ** | |
| 3138 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as | |
| 3139 ** strict. With GROUP BY and DISTINCT the only requirement is that | |
| 3140 ** equivalent rows appear immediately adjacent to one another. GROUP BY | |
| 3141 ** and DISTINCT do not require rows to appear in any particular order as long | |
| 3142 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT | |
| 3143 ** the pOrderBy terms can be matched in any order. With ORDER BY, the | |
| 3144 ** pOrderBy terms must be matched in strict left-to-right order. | |
| 3145 */ | |
| 3146 static i8 wherePathSatisfiesOrderBy( | |
| 3147 WhereInfo *pWInfo, /* The WHERE clause */ | |
| 3148 ExprList *pOrderBy, /* ORDER BY or GROUP BY or DISTINCT clause to check */ | |
| 3149 WherePath *pPath, /* The WherePath to check */ | |
| 3150 u16 wctrlFlags, /* Might contain WHERE_GROUPBY or WHERE_DISTINCTBY */ | |
| 3151 u16 nLoop, /* Number of entries in pPath->aLoop[] */ | |
| 3152 WhereLoop *pLast, /* Add this WhereLoop to the end of pPath->aLoop[] */ | |
| 3153 Bitmask *pRevMask /* OUT: Mask of WhereLoops to run in reverse order */ | |
| 3154 ){ | |
| 3155 u8 revSet; /* True if rev is known */ | |
| 3156 u8 rev; /* Composite sort order */ | |
| 3157 u8 revIdx; /* Index sort order */ | |
| 3158 u8 isOrderDistinct; /* All prior WhereLoops are order-distinct */ | |
| 3159 u8 distinctColumns; /* True if the loop has UNIQUE NOT NULL columns */ | |
| 3160 u8 isMatch; /* iColumn matches a term of the ORDER BY clause */ | |
| 3161 u16 nKeyCol; /* Number of key columns in pIndex */ | |
| 3162 u16 nColumn; /* Total number of ordered columns in the index */ | |
| 3163 u16 nOrderBy; /* Number terms in the ORDER BY clause */ | |
| 3164 int iLoop; /* Index of WhereLoop in pPath being processed */ | |
| 3165 int i, j; /* Loop counters */ | |
| 3166 int iCur; /* Cursor number for current WhereLoop */ | |
| 3167 int iColumn; /* A column number within table iCur */ | |
| 3168 WhereLoop *pLoop = 0; /* Current WhereLoop being processed. */ | |
| 3169 WhereTerm *pTerm; /* A single term of the WHERE clause */ | |
| 3170 Expr *pOBExpr; /* An expression from the ORDER BY clause */ | |
| 3171 CollSeq *pColl; /* COLLATE function from an ORDER BY clause term */ | |
| 3172 Index *pIndex; /* The index associated with pLoop */ | |
| 3173 sqlite3 *db = pWInfo->pParse->db; /* Database connection */ | |
| 3174 Bitmask obSat = 0; /* Mask of ORDER BY terms satisfied so far */ | |
| 3175 Bitmask obDone; /* Mask of all ORDER BY terms */ | |
| 3176 Bitmask orderDistinctMask; /* Mask of all well-ordered loops */ | |
| 3177 Bitmask ready; /* Mask of inner loops */ | |
| 3178 | |
| 3179 /* | |
| 3180 ** We say the WhereLoop is "one-row" if it generates no more than one | |
| 3181 ** row of output. A WhereLoop is one-row if all of the following are true: | |
| 3182 ** (a) All index columns match with WHERE_COLUMN_EQ. | |
| 3183 ** (b) The index is unique | |
| 3184 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row. | |
| 3185 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags. | |
| 3186 ** | |
| 3187 ** We say the WhereLoop is "order-distinct" if the set of columns from | |
| 3188 ** that WhereLoop that are in the ORDER BY clause are different for every | |
| 3189 ** row of the WhereLoop. Every one-row WhereLoop is automatically | |
| 3190 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause | |
| 3191 ** is not order-distinct. To be order-distinct is not quite the same as being | |
| 3192 ** UNIQUE since a UNIQUE column or index can have multiple rows that | |
| 3193 ** are NULL and NULL values are equivalent for the purpose of order-distinct. | |
| 3194 ** To be order-distinct, the columns must be UNIQUE and NOT NULL. | |
| 3195 ** | |
| 3196 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the | |
| 3197 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is | |
| 3198 ** automatically order-distinct. | |
| 3199 */ | |
| 3200 | |
| 3201 assert( pOrderBy!=0 ); | |
| 3202 if( nLoop && OptimizationDisabled(db, SQLITE_OrderByIdxJoin) ) return 0; | |
| 3203 | |
| 3204 nOrderBy = pOrderBy->nExpr; | |
| 3205 testcase( nOrderBy==BMS-1 ); | |
| 3206 if( nOrderBy>BMS-1 ) return 0; /* Cannot optimize overly large ORDER BYs */ | |
| 3207 isOrderDistinct = 1; | |
| 3208 obDone = MASKBIT(nOrderBy)-1; | |
| 3209 orderDistinctMask = 0; | |
| 3210 ready = 0; | |
| 3211 for(iLoop=0; isOrderDistinct && obSat<obDone && iLoop<=nLoop; iLoop++){ | |
| 3212 if( iLoop>0 ) ready |= pLoop->maskSelf; | |
| 3213 pLoop = iLoop<nLoop ? pPath->aLoop[iLoop] : pLast; | |
| 3214 if( pLoop->wsFlags & WHERE_VIRTUALTABLE ){ | |
| 3215 if( pLoop->u.vtab.isOrdered ) obSat = obDone; | |
| 3216 break; | |
| 3217 } | |
| 3218 iCur = pWInfo->pTabList->a[pLoop->iTab].iCursor; | |
| 3219 | |
| 3220 /* Mark off any ORDER BY term X that is a column in the table of | |
| 3221 ** the current loop for which there is term in the WHERE | |
| 3222 ** clause of the form X IS NULL or X=? that reference only outer | |
| 3223 ** loops. | |
| 3224 */ | |
| 3225 for(i=0; i<nOrderBy; i++){ | |
| 3226 if( MASKBIT(i) & obSat ) continue; | |
| 3227 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); | |
| 3228 if( pOBExpr->op!=TK_COLUMN ) continue; | |
| 3229 if( pOBExpr->iTable!=iCur ) continue; | |
| 3230 pTerm = sqlite3WhereFindTerm(&pWInfo->sWC, iCur, pOBExpr->iColumn, | |
| 3231 ~ready, WO_EQ|WO_ISNULL|WO_IS, 0); | |
| 3232 if( pTerm==0 ) continue; | |
| 3233 if( (pTerm->eOperator&(WO_EQ|WO_IS))!=0 && pOBExpr->iColumn>=0 ){ | |
| 3234 const char *z1, *z2; | |
| 3235 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); | |
| 3236 if( !pColl ) pColl = db->pDfltColl; | |
| 3237 z1 = pColl->zName; | |
| 3238 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pTerm->pExpr); | |
| 3239 if( !pColl ) pColl = db->pDfltColl; | |
| 3240 z2 = pColl->zName; | |
| 3241 if( sqlite3StrICmp(z1, z2)!=0 ) continue; | |
| 3242 testcase( pTerm->pExpr->op==TK_IS ); | |
| 3243 } | |
| 3244 obSat |= MASKBIT(i); | |
| 3245 } | |
| 3246 | |
| 3247 if( (pLoop->wsFlags & WHERE_ONEROW)==0 ){ | |
| 3248 if( pLoop->wsFlags & WHERE_IPK ){ | |
| 3249 pIndex = 0; | |
| 3250 nKeyCol = 0; | |
| 3251 nColumn = 1; | |
| 3252 }else if( (pIndex = pLoop->u.btree.pIndex)==0 || pIndex->bUnordered ){ | |
| 3253 return 0; | |
| 3254 }else{ | |
| 3255 nKeyCol = pIndex->nKeyCol; | |
| 3256 nColumn = pIndex->nColumn; | |
| 3257 assert( nColumn==nKeyCol+1 || !HasRowid(pIndex->pTable) ); | |
| 3258 assert( pIndex->aiColumn[nColumn-1]==XN_ROWID | |
| 3259 || !HasRowid(pIndex->pTable)); | |
| 3260 isOrderDistinct = IsUniqueIndex(pIndex); | |
| 3261 } | |
| 3262 | |
| 3263 /* Loop through all columns of the index and deal with the ones | |
| 3264 ** that are not constrained by == or IN. | |
| 3265 */ | |
| 3266 rev = revSet = 0; | |
| 3267 distinctColumns = 0; | |
| 3268 for(j=0; j<nColumn; j++){ | |
| 3269 u8 bOnce; /* True to run the ORDER BY search loop */ | |
| 3270 | |
| 3271 /* Skip over == and IS NULL terms */ | |
| 3272 if( j<pLoop->u.btree.nEq | |
| 3273 && pLoop->nSkip==0 | |
| 3274 && ((i = pLoop->aLTerm[j]->eOperator) & (WO_EQ|WO_ISNULL|WO_IS))!=0 | |
| 3275 ){ | |
| 3276 if( i & WO_ISNULL ){ | |
| 3277 testcase( isOrderDistinct ); | |
| 3278 isOrderDistinct = 0; | |
| 3279 } | |
| 3280 continue; | |
| 3281 } | |
| 3282 | |
| 3283 /* Get the column number in the table (iColumn) and sort order | |
| 3284 ** (revIdx) for the j-th column of the index. | |
| 3285 */ | |
| 3286 if( pIndex ){ | |
| 3287 iColumn = pIndex->aiColumn[j]; | |
| 3288 revIdx = pIndex->aSortOrder[j]; | |
| 3289 if( iColumn==pIndex->pTable->iPKey ) iColumn = -1; | |
| 3290 }else{ | |
| 3291 iColumn = XN_ROWID; | |
| 3292 revIdx = 0; | |
| 3293 } | |
| 3294 | |
| 3295 /* An unconstrained column that might be NULL means that this | |
| 3296 ** WhereLoop is not well-ordered | |
| 3297 */ | |
| 3298 if( isOrderDistinct | |
| 3299 && iColumn>=0 | |
| 3300 && j>=pLoop->u.btree.nEq | |
| 3301 && pIndex->pTable->aCol[iColumn].notNull==0 | |
| 3302 ){ | |
| 3303 isOrderDistinct = 0; | |
| 3304 } | |
| 3305 | |
| 3306 /* Find the ORDER BY term that corresponds to the j-th column | |
| 3307 ** of the index and mark that ORDER BY term off | |
| 3308 */ | |
| 3309 bOnce = 1; | |
| 3310 isMatch = 0; | |
| 3311 for(i=0; bOnce && i<nOrderBy; i++){ | |
| 3312 if( MASKBIT(i) & obSat ) continue; | |
| 3313 pOBExpr = sqlite3ExprSkipCollate(pOrderBy->a[i].pExpr); | |
| 3314 testcase( wctrlFlags & WHERE_GROUPBY ); | |
| 3315 testcase( wctrlFlags & WHERE_DISTINCTBY ); | |
| 3316 if( (wctrlFlags & (WHERE_GROUPBY|WHERE_DISTINCTBY))==0 ) bOnce = 0; | |
| 3317 if( iColumn>=(-1) ){ | |
| 3318 if( pOBExpr->op!=TK_COLUMN ) continue; | |
| 3319 if( pOBExpr->iTable!=iCur ) continue; | |
| 3320 if( pOBExpr->iColumn!=iColumn ) continue; | |
| 3321 }else{ | |
| 3322 if( sqlite3ExprCompare(pOBExpr,pIndex->aColExpr->a[j].pExpr,iCur) ){ | |
| 3323 continue; | |
| 3324 } | |
| 3325 } | |
| 3326 if( iColumn>=0 ){ | |
| 3327 pColl = sqlite3ExprCollSeq(pWInfo->pParse, pOrderBy->a[i].pExpr); | |
| 3328 if( !pColl ) pColl = db->pDfltColl; | |
| 3329 if( sqlite3StrICmp(pColl->zName, pIndex->azColl[j])!=0 ) continue; | |
| 3330 } | |
| 3331 isMatch = 1; | |
| 3332 break; | |
| 3333 } | |
| 3334 if( isMatch && (wctrlFlags & WHERE_GROUPBY)==0 ){ | |
| 3335 /* Make sure the sort order is compatible in an ORDER BY clause. | |
| 3336 ** Sort order is irrelevant for a GROUP BY clause. */ | |
| 3337 if( revSet ){ | |
| 3338 if( (rev ^ revIdx)!=pOrderBy->a[i].sortOrder ) isMatch = 0; | |
| 3339 }else{ | |
| 3340 rev = revIdx ^ pOrderBy->a[i].sortOrder; | |
| 3341 if( rev ) *pRevMask |= MASKBIT(iLoop); | |
| 3342 revSet = 1; | |
| 3343 } | |
| 3344 } | |
| 3345 if( isMatch ){ | |
| 3346 if( iColumn<0 ){ | |
| 3347 testcase( distinctColumns==0 ); | |
| 3348 distinctColumns = 1; | |
| 3349 } | |
| 3350 obSat |= MASKBIT(i); | |
| 3351 }else{ | |
| 3352 /* No match found */ | |
| 3353 if( j==0 || j<nKeyCol ){ | |
| 3354 testcase( isOrderDistinct!=0 ); | |
| 3355 isOrderDistinct = 0; | |
| 3356 } | |
| 3357 break; | |
| 3358 } | |
| 3359 } /* end Loop over all index columns */ | |
| 3360 if( distinctColumns ){ | |
| 3361 testcase( isOrderDistinct==0 ); | |
| 3362 isOrderDistinct = 1; | |
| 3363 } | |
| 3364 } /* end-if not one-row */ | |
| 3365 | |
| 3366 /* Mark off any other ORDER BY terms that reference pLoop */ | |
| 3367 if( isOrderDistinct ){ | |
| 3368 orderDistinctMask |= pLoop->maskSelf; | |
| 3369 for(i=0; i<nOrderBy; i++){ | |
| 3370 Expr *p; | |
| 3371 Bitmask mTerm; | |
| 3372 if( MASKBIT(i) & obSat ) continue; | |
| 3373 p = pOrderBy->a[i].pExpr; | |
| 3374 mTerm = sqlite3WhereExprUsage(&pWInfo->sMaskSet,p); | |
| 3375 if( mTerm==0 && !sqlite3ExprIsConstant(p) ) continue; | |
| 3376 if( (mTerm&~orderDistinctMask)==0 ){ | |
| 3377 obSat |= MASKBIT(i); | |
| 3378 } | |
| 3379 } | |
| 3380 } | |
| 3381 } /* End the loop over all WhereLoops from outer-most down to inner-most */ | |
| 3382 if( obSat==obDone ) return (i8)nOrderBy; | |
| 3383 if( !isOrderDistinct ){ | |
| 3384 for(i=nOrderBy-1; i>0; i--){ | |
| 3385 Bitmask m = MASKBIT(i) - 1; | |
| 3386 if( (obSat&m)==m ) return i; | |
| 3387 } | |
| 3388 return 0; | |
| 3389 } | |
| 3390 return -1; | |
| 3391 } | |
| 3392 | |
| 3393 | |
| 3394 /* | |
| 3395 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(), | |
| 3396 ** the planner assumes that the specified pOrderBy list is actually a GROUP | |
| 3397 ** BY clause - and so any order that groups rows as required satisfies the | |
| 3398 ** request. | |
| 3399 ** | |
| 3400 ** Normally, in this case it is not possible for the caller to determine | |
| 3401 ** whether or not the rows are really being delivered in sorted order, or | |
| 3402 ** just in some other order that provides the required grouping. However, | |
| 3403 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then | |
| 3404 ** this function may be called on the returned WhereInfo object. It returns | |
| 3405 ** true if the rows really will be sorted in the specified order, or false | |
| 3406 ** otherwise. | |
| 3407 ** | |
| 3408 ** For example, assuming: | |
| 3409 ** | |
| 3410 ** CREATE INDEX i1 ON t1(x, Y); | |
| 3411 ** | |
| 3412 ** then | |
| 3413 ** | |
| 3414 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1 | |
| 3415 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0 | |
| 3416 */ | |
| 3417 int sqlite3WhereIsSorted(WhereInfo *pWInfo){ | |
| 3418 assert( pWInfo->wctrlFlags & WHERE_GROUPBY ); | |
| 3419 assert( pWInfo->wctrlFlags & WHERE_SORTBYGROUP ); | |
| 3420 return pWInfo->sorted; | |
| 3421 } | |
| 3422 | |
| 3423 #ifdef WHERETRACE_ENABLED | |
| 3424 /* For debugging use only: */ | |
| 3425 static const char *wherePathName(WherePath *pPath, int nLoop, WhereLoop *pLast){ | |
| 3426 static char zName[65]; | |
| 3427 int i; | |
| 3428 for(i=0; i<nLoop; i++){ zName[i] = pPath->aLoop[i]->cId; } | |
| 3429 if( pLast ) zName[i++] = pLast->cId; | |
| 3430 zName[i] = 0; | |
| 3431 return zName; | |
| 3432 } | |
| 3433 #endif | |
| 3434 | |
| 3435 /* | |
| 3436 ** Return the cost of sorting nRow rows, assuming that the keys have | |
| 3437 ** nOrderby columns and that the first nSorted columns are already in | |
| 3438 ** order. | |
| 3439 */ | |
| 3440 static LogEst whereSortingCost( | |
| 3441 WhereInfo *pWInfo, | |
| 3442 LogEst nRow, | |
| 3443 int nOrderBy, | |
| 3444 int nSorted | |
| 3445 ){ | |
| 3446 /* TUNING: Estimated cost of a full external sort, where N is | |
| 3447 ** the number of rows to sort is: | |
| 3448 ** | |
| 3449 ** cost = (3.0 * N * log(N)). | |
| 3450 ** | |
| 3451 ** Or, if the order-by clause has X terms but only the last Y | |
| 3452 ** terms are out of order, then block-sorting will reduce the | |
| 3453 ** sorting cost to: | |
| 3454 ** | |
| 3455 ** cost = (3.0 * N * log(N)) * (Y/X) | |
| 3456 ** | |
| 3457 ** The (Y/X) term is implemented using stack variable rScale | |
| 3458 ** below. */ | |
| 3459 LogEst rScale, rSortCost; | |
| 3460 assert( nOrderBy>0 && 66==sqlite3LogEst(100) ); | |
| 3461 rScale = sqlite3LogEst((nOrderBy-nSorted)*100/nOrderBy) - 66; | |
| 3462 rSortCost = nRow + estLog(nRow) + rScale + 16; | |
| 3463 | |
| 3464 /* TUNING: The cost of implementing DISTINCT using a B-TREE is | |
| 3465 ** similar but with a larger constant of proportionality. | |
| 3466 ** Multiply by an additional factor of 3.0. */ | |
| 3467 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ | |
| 3468 rSortCost += 16; | |
| 3469 } | |
| 3470 | |
| 3471 return rSortCost; | |
| 3472 } | |
| 3473 | |
| 3474 /* | |
| 3475 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine | |
| 3476 ** attempts to find the lowest cost path that visits each WhereLoop | |
| 3477 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields. | |
| 3478 ** | |
| 3479 ** Assume that the total number of output rows that will need to be sorted | |
| 3480 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting | |
| 3481 ** costs if nRowEst==0. | |
| 3482 ** | |
| 3483 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation | |
| 3484 ** error occurs. | |
| 3485 */ | |
| 3486 static int wherePathSolver(WhereInfo *pWInfo, LogEst nRowEst){ | |
| 3487 int mxChoice; /* Maximum number of simultaneous paths tracked */ | |
| 3488 int nLoop; /* Number of terms in the join */ | |
| 3489 Parse *pParse; /* Parsing context */ | |
| 3490 sqlite3 *db; /* The database connection */ | |
| 3491 int iLoop; /* Loop counter over the terms of the join */ | |
| 3492 int ii, jj; /* Loop counters */ | |
| 3493 int mxI = 0; /* Index of next entry to replace */ | |
| 3494 int nOrderBy; /* Number of ORDER BY clause terms */ | |
| 3495 LogEst mxCost = 0; /* Maximum cost of a set of paths */ | |
| 3496 LogEst mxUnsorted = 0; /* Maximum unsorted cost of a set of path */ | |
| 3497 int nTo, nFrom; /* Number of valid entries in aTo[] and aFrom[] */ | |
| 3498 WherePath *aFrom; /* All nFrom paths at the previous level */ | |
| 3499 WherePath *aTo; /* The nTo best paths at the current level */ | |
| 3500 WherePath *pFrom; /* An element of aFrom[] that we are working on */ | |
| 3501 WherePath *pTo; /* An element of aTo[] that we are working on */ | |
| 3502 WhereLoop *pWLoop; /* One of the WhereLoop objects */ | |
| 3503 WhereLoop **pX; /* Used to divy up the pSpace memory */ | |
| 3504 LogEst *aSortCost = 0; /* Sorting and partial sorting costs */ | |
| 3505 char *pSpace; /* Temporary memory used by this routine */ | |
| 3506 int nSpace; /* Bytes of space allocated at pSpace */ | |
| 3507 | |
| 3508 pParse = pWInfo->pParse; | |
| 3509 db = pParse->db; | |
| 3510 nLoop = pWInfo->nLevel; | |
| 3511 /* TUNING: For simple queries, only the best path is tracked. | |
| 3512 ** For 2-way joins, the 5 best paths are followed. | |
| 3513 ** For joins of 3 or more tables, track the 10 best paths */ | |
| 3514 mxChoice = (nLoop<=1) ? 1 : (nLoop==2 ? 5 : 10); | |
| 3515 assert( nLoop<=pWInfo->pTabList->nSrc ); | |
| 3516 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d)\n", nRowEst)); | |
| 3517 | |
| 3518 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this | |
| 3519 ** case the purpose of this call is to estimate the number of rows returned | |
| 3520 ** by the overall query. Once this estimate has been obtained, the caller | |
| 3521 ** will invoke this function a second time, passing the estimate as the | |
| 3522 ** nRowEst parameter. */ | |
| 3523 if( pWInfo->pOrderBy==0 || nRowEst==0 ){ | |
| 3524 nOrderBy = 0; | |
| 3525 }else{ | |
| 3526 nOrderBy = pWInfo->pOrderBy->nExpr; | |
| 3527 } | |
| 3528 | |
| 3529 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */ | |
| 3530 nSpace = (sizeof(WherePath)+sizeof(WhereLoop*)*nLoop)*mxChoice*2; | |
| 3531 nSpace += sizeof(LogEst) * nOrderBy; | |
| 3532 pSpace = sqlite3DbMallocRaw(db, nSpace); | |
| 3533 if( pSpace==0 ) return SQLITE_NOMEM; | |
| 3534 aTo = (WherePath*)pSpace; | |
| 3535 aFrom = aTo+mxChoice; | |
| 3536 memset(aFrom, 0, sizeof(aFrom[0])); | |
| 3537 pX = (WhereLoop**)(aFrom+mxChoice); | |
| 3538 for(ii=mxChoice*2, pFrom=aTo; ii>0; ii--, pFrom++, pX += nLoop){ | |
| 3539 pFrom->aLoop = pX; | |
| 3540 } | |
| 3541 if( nOrderBy ){ | |
| 3542 /* If there is an ORDER BY clause and it is not being ignored, set up | |
| 3543 ** space for the aSortCost[] array. Each element of the aSortCost array | |
| 3544 ** is either zero - meaning it has not yet been initialized - or the | |
| 3545 ** cost of sorting nRowEst rows of data where the first X terms of | |
| 3546 ** the ORDER BY clause are already in order, where X is the array | |
| 3547 ** index. */ | |
| 3548 aSortCost = (LogEst*)pX; | |
| 3549 memset(aSortCost, 0, sizeof(LogEst) * nOrderBy); | |
| 3550 } | |
| 3551 assert( aSortCost==0 || &pSpace[nSpace]==(char*)&aSortCost[nOrderBy] ); | |
| 3552 assert( aSortCost!=0 || &pSpace[nSpace]==(char*)pX ); | |
| 3553 | |
| 3554 /* Seed the search with a single WherePath containing zero WhereLoops. | |
| 3555 ** | |
| 3556 ** TUNING: Do not let the number of iterations go above 28. If the cost | |
| 3557 ** of computing an automatic index is not paid back within the first 28 | |
| 3558 ** rows, then do not use the automatic index. */ | |
| 3559 aFrom[0].nRow = MIN(pParse->nQueryLoop, 48); assert( 48==sqlite3LogEst(28) ); | |
| 3560 nFrom = 1; | |
| 3561 assert( aFrom[0].isOrdered==0 ); | |
| 3562 if( nOrderBy ){ | |
| 3563 /* If nLoop is zero, then there are no FROM terms in the query. Since | |
| 3564 ** in this case the query may return a maximum of one row, the results | |
| 3565 ** are already in the requested order. Set isOrdered to nOrderBy to | |
| 3566 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to | |
| 3567 ** -1, indicating that the result set may or may not be ordered, | |
| 3568 ** depending on the loops added to the current plan. */ | |
| 3569 aFrom[0].isOrdered = nLoop>0 ? -1 : nOrderBy; | |
| 3570 } | |
| 3571 | |
| 3572 /* Compute successively longer WherePaths using the previous generation | |
| 3573 ** of WherePaths as the basis for the next. Keep track of the mxChoice | |
| 3574 ** best paths at each generation */ | |
| 3575 for(iLoop=0; iLoop<nLoop; iLoop++){ | |
| 3576 nTo = 0; | |
| 3577 for(ii=0, pFrom=aFrom; ii<nFrom; ii++, pFrom++){ | |
| 3578 for(pWLoop=pWInfo->pLoops; pWLoop; pWLoop=pWLoop->pNextLoop){ | |
| 3579 LogEst nOut; /* Rows visited by (pFrom+pWLoop) */ | |
| 3580 LogEst rCost; /* Cost of path (pFrom+pWLoop) */ | |
| 3581 LogEst rUnsorted; /* Unsorted cost of (pFrom+pWLoop) */ | |
| 3582 i8 isOrdered = pFrom->isOrdered; /* isOrdered for (pFrom+pWLoop) */ | |
| 3583 Bitmask maskNew; /* Mask of src visited by (..) */ | |
| 3584 Bitmask revMask = 0; /* Mask of rev-order loops for (..) */ | |
| 3585 | |
| 3586 if( (pWLoop->prereq & ~pFrom->maskLoop)!=0 ) continue; | |
| 3587 if( (pWLoop->maskSelf & pFrom->maskLoop)!=0 ) continue; | |
| 3588 /* At this point, pWLoop is a candidate to be the next loop. | |
| 3589 ** Compute its cost */ | |
| 3590 rUnsorted = sqlite3LogEstAdd(pWLoop->rSetup,pWLoop->rRun + pFrom->nRow); | |
| 3591 rUnsorted = sqlite3LogEstAdd(rUnsorted, pFrom->rUnsorted); | |
| 3592 nOut = pFrom->nRow + pWLoop->nOut; | |
| 3593 maskNew = pFrom->maskLoop | pWLoop->maskSelf; | |
| 3594 if( isOrdered<0 ){ | |
| 3595 isOrdered = wherePathSatisfiesOrderBy(pWInfo, | |
| 3596 pWInfo->pOrderBy, pFrom, pWInfo->wctrlFlags, | |
| 3597 iLoop, pWLoop, &revMask); | |
| 3598 }else{ | |
| 3599 revMask = pFrom->revLoop; | |
| 3600 } | |
| 3601 if( isOrdered>=0 && isOrdered<nOrderBy ){ | |
| 3602 if( aSortCost[isOrdered]==0 ){ | |
| 3603 aSortCost[isOrdered] = whereSortingCost( | |
| 3604 pWInfo, nRowEst, nOrderBy, isOrdered | |
| 3605 ); | |
| 3606 } | |
| 3607 rCost = sqlite3LogEstAdd(rUnsorted, aSortCost[isOrdered]); | |
| 3608 | |
| 3609 WHERETRACE(0x002, | |
| 3610 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n", | |
| 3611 aSortCost[isOrdered], (nOrderBy-isOrdered), nOrderBy, | |
| 3612 rUnsorted, rCost)); | |
| 3613 }else{ | |
| 3614 rCost = rUnsorted; | |
| 3615 } | |
| 3616 | |
| 3617 /* Check to see if pWLoop should be added to the set of | |
| 3618 ** mxChoice best-so-far paths. | |
| 3619 ** | |
| 3620 ** First look for an existing path among best-so-far paths | |
| 3621 ** that covers the same set of loops and has the same isOrdered | |
| 3622 ** setting as the current path candidate. | |
| 3623 ** | |
| 3624 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent | |
| 3625 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range | |
| 3626 ** of legal values for isOrdered, -1..64. | |
| 3627 */ | |
| 3628 for(jj=0, pTo=aTo; jj<nTo; jj++, pTo++){ | |
| 3629 if( pTo->maskLoop==maskNew | |
| 3630 && ((pTo->isOrdered^isOrdered)&0x80)==0 | |
| 3631 ){ | |
| 3632 testcase( jj==nTo-1 ); | |
| 3633 break; | |
| 3634 } | |
| 3635 } | |
| 3636 if( jj>=nTo ){ | |
| 3637 /* None of the existing best-so-far paths match the candidate. */ | |
| 3638 if( nTo>=mxChoice | |
| 3639 && (rCost>mxCost || (rCost==mxCost && rUnsorted>=mxUnsorted)) | |
| 3640 ){ | |
| 3641 /* The current candidate is no better than any of the mxChoice | |
| 3642 ** paths currently in the best-so-far buffer. So discard | |
| 3643 ** this candidate as not viable. */ | |
| 3644 #ifdef WHERETRACE_ENABLED /* 0x4 */ | |
| 3645 if( sqlite3WhereTrace&0x4 ){ | |
| 3646 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d order=%c\n", | |
| 3647 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, | |
| 3648 isOrdered>=0 ? isOrdered+'0' : '?'); | |
| 3649 } | |
| 3650 #endif | |
| 3651 continue; | |
| 3652 } | |
| 3653 /* If we reach this points it means that the new candidate path | |
| 3654 ** needs to be added to the set of best-so-far paths. */ | |
| 3655 if( nTo<mxChoice ){ | |
| 3656 /* Increase the size of the aTo set by one */ | |
| 3657 jj = nTo++; | |
| 3658 }else{ | |
| 3659 /* New path replaces the prior worst to keep count below mxChoice */ | |
| 3660 jj = mxI; | |
| 3661 } | |
| 3662 pTo = &aTo[jj]; | |
| 3663 #ifdef WHERETRACE_ENABLED /* 0x4 */ | |
| 3664 if( sqlite3WhereTrace&0x4 ){ | |
| 3665 sqlite3DebugPrintf("New %s cost=%-3d,%3d order=%c\n", | |
| 3666 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, | |
| 3667 isOrdered>=0 ? isOrdered+'0' : '?'); | |
| 3668 } | |
| 3669 #endif | |
| 3670 }else{ | |
| 3671 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the | |
| 3672 ** same set of loops and has the sam isOrdered setting as the | |
| 3673 ** candidate path. Check to see if the candidate should replace | |
| 3674 ** pTo or if the candidate should be skipped */ | |
| 3675 if( pTo->rCost<rCost || (pTo->rCost==rCost && pTo->nRow<=nOut) ){ | |
| 3676 #ifdef WHERETRACE_ENABLED /* 0x4 */ | |
| 3677 if( sqlite3WhereTrace&0x4 ){ | |
| 3678 sqlite3DebugPrintf( | |
| 3679 "Skip %s cost=%-3d,%3d order=%c", | |
| 3680 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, | |
| 3681 isOrdered>=0 ? isOrdered+'0' : '?'); | |
| 3682 sqlite3DebugPrintf(" vs %s cost=%-3d,%d order=%c\n", | |
| 3683 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, | |
| 3684 pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); | |
| 3685 } | |
| 3686 #endif | |
| 3687 /* Discard the candidate path from further consideration */ | |
| 3688 testcase( pTo->rCost==rCost ); | |
| 3689 continue; | |
| 3690 } | |
| 3691 testcase( pTo->rCost==rCost+1 ); | |
| 3692 /* Control reaches here if the candidate path is better than the | |
| 3693 ** pTo path. Replace pTo with the candidate. */ | |
| 3694 #ifdef WHERETRACE_ENABLED /* 0x4 */ | |
| 3695 if( sqlite3WhereTrace&0x4 ){ | |
| 3696 sqlite3DebugPrintf( | |
| 3697 "Update %s cost=%-3d,%3d order=%c", | |
| 3698 wherePathName(pFrom, iLoop, pWLoop), rCost, nOut, | |
| 3699 isOrdered>=0 ? isOrdered+'0' : '?'); | |
| 3700 sqlite3DebugPrintf(" was %s cost=%-3d,%3d order=%c\n", | |
| 3701 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, | |
| 3702 pTo->isOrdered>=0 ? pTo->isOrdered+'0' : '?'); | |
| 3703 } | |
| 3704 #endif | |
| 3705 } | |
| 3706 /* pWLoop is a winner. Add it to the set of best so far */ | |
| 3707 pTo->maskLoop = pFrom->maskLoop | pWLoop->maskSelf; | |
| 3708 pTo->revLoop = revMask; | |
| 3709 pTo->nRow = nOut; | |
| 3710 pTo->rCost = rCost; | |
| 3711 pTo->rUnsorted = rUnsorted; | |
| 3712 pTo->isOrdered = isOrdered; | |
| 3713 memcpy(pTo->aLoop, pFrom->aLoop, sizeof(WhereLoop*)*iLoop); | |
| 3714 pTo->aLoop[iLoop] = pWLoop; | |
| 3715 if( nTo>=mxChoice ){ | |
| 3716 mxI = 0; | |
| 3717 mxCost = aTo[0].rCost; | |
| 3718 mxUnsorted = aTo[0].nRow; | |
| 3719 for(jj=1, pTo=&aTo[1]; jj<mxChoice; jj++, pTo++){ | |
| 3720 if( pTo->rCost>mxCost | |
| 3721 || (pTo->rCost==mxCost && pTo->rUnsorted>mxUnsorted) | |
| 3722 ){ | |
| 3723 mxCost = pTo->rCost; | |
| 3724 mxUnsorted = pTo->rUnsorted; | |
| 3725 mxI = jj; | |
| 3726 } | |
| 3727 } | |
| 3728 } | |
| 3729 } | |
| 3730 } | |
| 3731 | |
| 3732 #ifdef WHERETRACE_ENABLED /* >=2 */ | |
| 3733 if( sqlite3WhereTrace & 0x02 ){ | |
| 3734 sqlite3DebugPrintf("---- after round %d ----\n", iLoop); | |
| 3735 for(ii=0, pTo=aTo; ii<nTo; ii++, pTo++){ | |
| 3736 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c", | |
| 3737 wherePathName(pTo, iLoop+1, 0), pTo->rCost, pTo->nRow, | |
| 3738 pTo->isOrdered>=0 ? (pTo->isOrdered+'0') : '?'); | |
| 3739 if( pTo->isOrdered>0 ){ | |
| 3740 sqlite3DebugPrintf(" rev=0x%llx\n", pTo->revLoop); | |
| 3741 }else{ | |
| 3742 sqlite3DebugPrintf("\n"); | |
| 3743 } | |
| 3744 } | |
| 3745 } | |
| 3746 #endif | |
| 3747 | |
| 3748 /* Swap the roles of aFrom and aTo for the next generation */ | |
| 3749 pFrom = aTo; | |
| 3750 aTo = aFrom; | |
| 3751 aFrom = pFrom; | |
| 3752 nFrom = nTo; | |
| 3753 } | |
| 3754 | |
| 3755 if( nFrom==0 ){ | |
| 3756 sqlite3ErrorMsg(pParse, "no query solution"); | |
| 3757 sqlite3DbFree(db, pSpace); | |
| 3758 return SQLITE_ERROR; | |
| 3759 } | |
| 3760 | |
| 3761 /* Find the lowest cost path. pFrom will be left pointing to that path */ | |
| 3762 pFrom = aFrom; | |
| 3763 for(ii=1; ii<nFrom; ii++){ | |
| 3764 if( pFrom->rCost>aFrom[ii].rCost ) pFrom = &aFrom[ii]; | |
| 3765 } | |
| 3766 assert( pWInfo->nLevel==nLoop ); | |
| 3767 /* Load the lowest cost path into pWInfo */ | |
| 3768 for(iLoop=0; iLoop<nLoop; iLoop++){ | |
| 3769 WhereLevel *pLevel = pWInfo->a + iLoop; | |
| 3770 pLevel->pWLoop = pWLoop = pFrom->aLoop[iLoop]; | |
| 3771 pLevel->iFrom = pWLoop->iTab; | |
| 3772 pLevel->iTabCur = pWInfo->pTabList->a[pLevel->iFrom].iCursor; | |
| 3773 } | |
| 3774 if( (pWInfo->wctrlFlags & WHERE_WANT_DISTINCT)!=0 | |
| 3775 && (pWInfo->wctrlFlags & WHERE_DISTINCTBY)==0 | |
| 3776 && pWInfo->eDistinct==WHERE_DISTINCT_NOOP | |
| 3777 && nRowEst | |
| 3778 ){ | |
| 3779 Bitmask notUsed; | |
| 3780 int rc = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pResultSet, pFrom, | |
| 3781 WHERE_DISTINCTBY, nLoop-1, pFrom->aLoop[nLoop-1], ¬Used); | |
| 3782 if( rc==pWInfo->pResultSet->nExpr ){ | |
| 3783 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; | |
| 3784 } | |
| 3785 } | |
| 3786 if( pWInfo->pOrderBy ){ | |
| 3787 if( pWInfo->wctrlFlags & WHERE_DISTINCTBY ){ | |
| 3788 if( pFrom->isOrdered==pWInfo->pOrderBy->nExpr ){ | |
| 3789 pWInfo->eDistinct = WHERE_DISTINCT_ORDERED; | |
| 3790 } | |
| 3791 }else{ | |
| 3792 pWInfo->nOBSat = pFrom->isOrdered; | |
| 3793 if( pWInfo->nOBSat<0 ) pWInfo->nOBSat = 0; | |
| 3794 pWInfo->revMask = pFrom->revLoop; | |
| 3795 } | |
| 3796 if( (pWInfo->wctrlFlags & WHERE_SORTBYGROUP) | |
| 3797 && pWInfo->nOBSat==pWInfo->pOrderBy->nExpr && nLoop>0 | |
| 3798 ){ | |
| 3799 Bitmask revMask = 0; | |
| 3800 int nOrder = wherePathSatisfiesOrderBy(pWInfo, pWInfo->pOrderBy, | |
| 3801 pFrom, 0, nLoop-1, pFrom->aLoop[nLoop-1], &revMask | |
| 3802 ); | |
| 3803 assert( pWInfo->sorted==0 ); | |
| 3804 if( nOrder==pWInfo->pOrderBy->nExpr ){ | |
| 3805 pWInfo->sorted = 1; | |
| 3806 pWInfo->revMask = revMask; | |
| 3807 } | |
| 3808 } | |
| 3809 } | |
| 3810 | |
| 3811 | |
| 3812 pWInfo->nRowOut = pFrom->nRow; | |
| 3813 | |
| 3814 /* Free temporary memory and return success */ | |
| 3815 sqlite3DbFree(db, pSpace); | |
| 3816 return SQLITE_OK; | |
| 3817 } | |
| 3818 | |
| 3819 /* | |
| 3820 ** Most queries use only a single table (they are not joins) and have | |
| 3821 ** simple == constraints against indexed fields. This routine attempts | |
| 3822 ** to plan those simple cases using much less ceremony than the | |
| 3823 ** general-purpose query planner, and thereby yield faster sqlite3_prepare() | |
| 3824 ** times for the common case. | |
| 3825 ** | |
| 3826 ** Return non-zero on success, if this query can be handled by this | |
| 3827 ** no-frills query planner. Return zero if this query needs the | |
| 3828 ** general-purpose query planner. | |
| 3829 */ | |
| 3830 static int whereShortCut(WhereLoopBuilder *pBuilder){ | |
| 3831 WhereInfo *pWInfo; | |
| 3832 struct SrcList_item *pItem; | |
| 3833 WhereClause *pWC; | |
| 3834 WhereTerm *pTerm; | |
| 3835 WhereLoop *pLoop; | |
| 3836 int iCur; | |
| 3837 int j; | |
| 3838 Table *pTab; | |
| 3839 Index *pIdx; | |
| 3840 | |
| 3841 pWInfo = pBuilder->pWInfo; | |
| 3842 if( pWInfo->wctrlFlags & WHERE_FORCE_TABLE ) return 0; | |
| 3843 assert( pWInfo->pTabList->nSrc>=1 ); | |
| 3844 pItem = pWInfo->pTabList->a; | |
| 3845 pTab = pItem->pTab; | |
| 3846 if( IsVirtual(pTab) ) return 0; | |
| 3847 if( pItem->fg.isIndexedBy ) return 0; | |
| 3848 iCur = pItem->iCursor; | |
| 3849 pWC = &pWInfo->sWC; | |
| 3850 pLoop = pBuilder->pNew; | |
| 3851 pLoop->wsFlags = 0; | |
| 3852 pLoop->nSkip = 0; | |
| 3853 pTerm = sqlite3WhereFindTerm(pWC, iCur, -1, 0, WO_EQ|WO_IS, 0); | |
| 3854 if( pTerm ){ | |
| 3855 testcase( pTerm->eOperator & WO_IS ); | |
| 3856 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_IPK|WHERE_ONEROW; | |
| 3857 pLoop->aLTerm[0] = pTerm; | |
| 3858 pLoop->nLTerm = 1; | |
| 3859 pLoop->u.btree.nEq = 1; | |
| 3860 /* TUNING: Cost of a rowid lookup is 10 */ | |
| 3861 pLoop->rRun = 33; /* 33==sqlite3LogEst(10) */ | |
| 3862 }else{ | |
| 3863 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ | |
| 3864 int opMask; | |
| 3865 assert( pLoop->aLTermSpace==pLoop->aLTerm ); | |
| 3866 if( !IsUniqueIndex(pIdx) | |
| 3867 || pIdx->pPartIdxWhere!=0 | |
| 3868 || pIdx->nKeyCol>ArraySize(pLoop->aLTermSpace) | |
| 3869 ) continue; | |
| 3870 opMask = pIdx->uniqNotNull ? (WO_EQ|WO_IS) : WO_EQ; | |
| 3871 for(j=0; j<pIdx->nKeyCol; j++){ | |
| 3872 pTerm = sqlite3WhereFindTerm(pWC, iCur, j, 0, opMask, pIdx); | |
| 3873 if( pTerm==0 ) break; | |
| 3874 testcase( pTerm->eOperator & WO_IS ); | |
| 3875 pLoop->aLTerm[j] = pTerm; | |
| 3876 } | |
| 3877 if( j!=pIdx->nKeyCol ) continue; | |
| 3878 pLoop->wsFlags = WHERE_COLUMN_EQ|WHERE_ONEROW|WHERE_INDEXED; | |
| 3879 if( pIdx->isCovering || (pItem->colUsed & ~columnsInIndex(pIdx))==0 ){ | |
| 3880 pLoop->wsFlags |= WHERE_IDX_ONLY; | |
| 3881 } | |
| 3882 pLoop->nLTerm = j; | |
| 3883 pLoop->u.btree.nEq = j; | |
| 3884 pLoop->u.btree.pIndex = pIdx; | |
| 3885 /* TUNING: Cost of a unique index lookup is 15 */ | |
| 3886 pLoop->rRun = 39; /* 39==sqlite3LogEst(15) */ | |
| 3887 break; | |
| 3888 } | |
| 3889 } | |
| 3890 if( pLoop->wsFlags ){ | |
| 3891 pLoop->nOut = (LogEst)1; | |
| 3892 pWInfo->a[0].pWLoop = pLoop; | |
| 3893 pLoop->maskSelf = sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); | |
| 3894 pWInfo->a[0].iTabCur = iCur; | |
| 3895 pWInfo->nRowOut = 1; | |
| 3896 if( pWInfo->pOrderBy ) pWInfo->nOBSat = pWInfo->pOrderBy->nExpr; | |
| 3897 if( pWInfo->wctrlFlags & WHERE_WANT_DISTINCT ){ | |
| 3898 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; | |
| 3899 } | |
| 3900 #ifdef SQLITE_DEBUG | |
| 3901 pLoop->cId = '0'; | |
| 3902 #endif | |
| 3903 return 1; | |
| 3904 } | |
| 3905 return 0; | |
| 3906 } | |
| 3907 | |
| 3908 /* | |
| 3909 ** Generate the beginning of the loop used for WHERE clause processing. | |
| 3910 ** The return value is a pointer to an opaque structure that contains | |
| 3911 ** information needed to terminate the loop. Later, the calling routine | |
| 3912 ** should invoke sqlite3WhereEnd() with the return value of this function | |
| 3913 ** in order to complete the WHERE clause processing. | |
| 3914 ** | |
| 3915 ** If an error occurs, this routine returns NULL. | |
| 3916 ** | |
| 3917 ** The basic idea is to do a nested loop, one loop for each table in | |
| 3918 ** the FROM clause of a select. (INSERT and UPDATE statements are the | |
| 3919 ** same as a SELECT with only a single table in the FROM clause.) For | |
| 3920 ** example, if the SQL is this: | |
| 3921 ** | |
| 3922 ** SELECT * FROM t1, t2, t3 WHERE ...; | |
| 3923 ** | |
| 3924 ** Then the code generated is conceptually like the following: | |
| 3925 ** | |
| 3926 ** foreach row1 in t1 do \ Code generated | |
| 3927 ** foreach row2 in t2 do |-- by sqlite3WhereBegin() | |
| 3928 ** foreach row3 in t3 do / | |
| 3929 ** ... | |
| 3930 ** end \ Code generated | |
| 3931 ** end |-- by sqlite3WhereEnd() | |
| 3932 ** end / | |
| 3933 ** | |
| 3934 ** Note that the loops might not be nested in the order in which they | |
| 3935 ** appear in the FROM clause if a different order is better able to make | |
| 3936 ** use of indices. Note also that when the IN operator appears in | |
| 3937 ** the WHERE clause, it might result in additional nested loops for | |
| 3938 ** scanning through all values on the right-hand side of the IN. | |
| 3939 ** | |
| 3940 ** There are Btree cursors associated with each table. t1 uses cursor | |
| 3941 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor. | |
| 3942 ** And so forth. This routine generates code to open those VDBE cursors | |
| 3943 ** and sqlite3WhereEnd() generates the code to close them. | |
| 3944 ** | |
| 3945 ** The code that sqlite3WhereBegin() generates leaves the cursors named | |
| 3946 ** in pTabList pointing at their appropriate entries. The [...] code | |
| 3947 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract | |
| 3948 ** data from the various tables of the loop. | |
| 3949 ** | |
| 3950 ** If the WHERE clause is empty, the foreach loops must each scan their | |
| 3951 ** entire tables. Thus a three-way join is an O(N^3) operation. But if | |
| 3952 ** the tables have indices and there are terms in the WHERE clause that | |
| 3953 ** refer to those indices, a complete table scan can be avoided and the | |
| 3954 ** code will run much faster. Most of the work of this routine is checking | |
| 3955 ** to see if there are indices that can be used to speed up the loop. | |
| 3956 ** | |
| 3957 ** Terms of the WHERE clause are also used to limit which rows actually | |
| 3958 ** make it to the "..." in the middle of the loop. After each "foreach", | |
| 3959 ** terms of the WHERE clause that use only terms in that loop and outer | |
| 3960 ** loops are evaluated and if false a jump is made around all subsequent | |
| 3961 ** inner loops (or around the "..." if the test occurs within the inner- | |
| 3962 ** most loop) | |
| 3963 ** | |
| 3964 ** OUTER JOINS | |
| 3965 ** | |
| 3966 ** An outer join of tables t1 and t2 is conceptally coded as follows: | |
| 3967 ** | |
| 3968 ** foreach row1 in t1 do | |
| 3969 ** flag = 0 | |
| 3970 ** foreach row2 in t2 do | |
| 3971 ** start: | |
| 3972 ** ... | |
| 3973 ** flag = 1 | |
| 3974 ** end | |
| 3975 ** if flag==0 then | |
| 3976 ** move the row2 cursor to a null row | |
| 3977 ** goto start | |
| 3978 ** fi | |
| 3979 ** end | |
| 3980 ** | |
| 3981 ** ORDER BY CLAUSE PROCESSING | |
| 3982 ** | |
| 3983 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause | |
| 3984 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement | |
| 3985 ** if there is one. If there is no ORDER BY clause or if this routine | |
| 3986 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL. | |
| 3987 ** | |
| 3988 ** The iIdxCur parameter is the cursor number of an index. If | |
| 3989 ** WHERE_ONETABLE_ONLY is set, iIdxCur is the cursor number of an index | |
| 3990 ** to use for OR clause processing. The WHERE clause should use this | |
| 3991 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is | |
| 3992 ** the first cursor in an array of cursors for all indices. iIdxCur should | |
| 3993 ** be used to compute the appropriate cursor depending on which index is | |
| 3994 ** used. | |
| 3995 */ | |
| 3996 WhereInfo *sqlite3WhereBegin( | |
| 3997 Parse *pParse, /* The parser context */ | |
| 3998 SrcList *pTabList, /* FROM clause: A list of all tables to be scanned */ | |
| 3999 Expr *pWhere, /* The WHERE clause */ | |
| 4000 ExprList *pOrderBy, /* An ORDER BY (or GROUP BY) clause, or NULL */ | |
| 4001 ExprList *pResultSet, /* Result set of the query */ | |
| 4002 u16 wctrlFlags, /* One of the WHERE_* flags defined in sqliteInt.h */ | |
| 4003 int iIdxCur /* If WHERE_ONETABLE_ONLY is set, index cursor number */ | |
| 4004 ){ | |
| 4005 int nByteWInfo; /* Num. bytes allocated for WhereInfo struct */ | |
| 4006 int nTabList; /* Number of elements in pTabList */ | |
| 4007 WhereInfo *pWInfo; /* Will become the return value of this function */ | |
| 4008 Vdbe *v = pParse->pVdbe; /* The virtual database engine */ | |
| 4009 Bitmask notReady; /* Cursors that are not yet positioned */ | |
| 4010 WhereLoopBuilder sWLB; /* The WhereLoop builder */ | |
| 4011 WhereMaskSet *pMaskSet; /* The expression mask set */ | |
| 4012 WhereLevel *pLevel; /* A single level in pWInfo->a[] */ | |
| 4013 WhereLoop *pLoop; /* Pointer to a single WhereLoop object */ | |
| 4014 int ii; /* Loop counter */ | |
| 4015 sqlite3 *db; /* Database connection */ | |
| 4016 int rc; /* Return code */ | |
| 4017 u8 bFordelete = 0; | |
| 4018 | |
| 4019 assert( (wctrlFlags & WHERE_ONEPASS_MULTIROW)==0 || ( | |
| 4020 (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 | |
| 4021 && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 | |
| 4022 )); | |
| 4023 | |
| 4024 /* Variable initialization */ | |
| 4025 db = pParse->db; | |
| 4026 memset(&sWLB, 0, sizeof(sWLB)); | |
| 4027 | |
| 4028 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */ | |
| 4029 testcase( pOrderBy && pOrderBy->nExpr==BMS-1 ); | |
| 4030 if( pOrderBy && pOrderBy->nExpr>=BMS ) pOrderBy = 0; | |
| 4031 sWLB.pOrderBy = pOrderBy; | |
| 4032 | |
| 4033 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via | |
| 4034 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */ | |
| 4035 if( OptimizationDisabled(db, SQLITE_DistinctOpt) ){ | |
| 4036 wctrlFlags &= ~WHERE_WANT_DISTINCT; | |
| 4037 } | |
| 4038 | |
| 4039 /* The number of tables in the FROM clause is limited by the number of | |
| 4040 ** bits in a Bitmask | |
| 4041 */ | |
| 4042 testcase( pTabList->nSrc==BMS ); | |
| 4043 if( pTabList->nSrc>BMS ){ | |
| 4044 sqlite3ErrorMsg(pParse, "at most %d tables in a join", BMS); | |
| 4045 return 0; | |
| 4046 } | |
| 4047 | |
| 4048 /* This function normally generates a nested loop for all tables in | |
| 4049 ** pTabList. But if the WHERE_ONETABLE_ONLY flag is set, then we should | |
| 4050 ** only generate code for the first table in pTabList and assume that | |
| 4051 ** any cursors associated with subsequent tables are uninitialized. | |
| 4052 */ | |
| 4053 nTabList = (wctrlFlags & WHERE_ONETABLE_ONLY) ? 1 : pTabList->nSrc; | |
| 4054 | |
| 4055 /* Allocate and initialize the WhereInfo structure that will become the | |
| 4056 ** return value. A single allocation is used to store the WhereInfo | |
| 4057 ** struct, the contents of WhereInfo.a[], the WhereClause structure | |
| 4058 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte | |
| 4059 ** field (type Bitmask) it must be aligned on an 8-byte boundary on | |
| 4060 ** some architectures. Hence the ROUND8() below. | |
| 4061 */ | |
| 4062 nByteWInfo = ROUND8(sizeof(WhereInfo)+(nTabList-1)*sizeof(WhereLevel)); | |
| 4063 pWInfo = sqlite3DbMallocZero(db, nByteWInfo + sizeof(WhereLoop)); | |
| 4064 if( db->mallocFailed ){ | |
| 4065 sqlite3DbFree(db, pWInfo); | |
| 4066 pWInfo = 0; | |
| 4067 goto whereBeginError; | |
| 4068 } | |
| 4069 pWInfo->aiCurOnePass[0] = pWInfo->aiCurOnePass[1] = -1; | |
| 4070 pWInfo->nLevel = nTabList; | |
| 4071 pWInfo->pParse = pParse; | |
| 4072 pWInfo->pTabList = pTabList; | |
| 4073 pWInfo->pOrderBy = pOrderBy; | |
| 4074 pWInfo->pResultSet = pResultSet; | |
| 4075 pWInfo->iBreak = pWInfo->iContinue = sqlite3VdbeMakeLabel(v); | |
| 4076 pWInfo->wctrlFlags = wctrlFlags; | |
| 4077 pWInfo->savedNQueryLoop = pParse->nQueryLoop; | |
| 4078 assert( pWInfo->eOnePass==ONEPASS_OFF ); /* ONEPASS defaults to OFF */ | |
| 4079 pMaskSet = &pWInfo->sMaskSet; | |
| 4080 sWLB.pWInfo = pWInfo; | |
| 4081 sWLB.pWC = &pWInfo->sWC; | |
| 4082 sWLB.pNew = (WhereLoop*)(((char*)pWInfo)+nByteWInfo); | |
| 4083 assert( EIGHT_BYTE_ALIGNMENT(sWLB.pNew) ); | |
| 4084 whereLoopInit(sWLB.pNew); | |
| 4085 #ifdef SQLITE_DEBUG | |
| 4086 sWLB.pNew->cId = '*'; | |
| 4087 #endif | |
| 4088 | |
| 4089 /* Split the WHERE clause into separate subexpressions where each | |
| 4090 ** subexpression is separated by an AND operator. | |
| 4091 */ | |
| 4092 initMaskSet(pMaskSet); | |
| 4093 sqlite3WhereClauseInit(&pWInfo->sWC, pWInfo); | |
| 4094 sqlite3WhereSplit(&pWInfo->sWC, pWhere, TK_AND); | |
| 4095 | |
| 4096 /* Special case: a WHERE clause that is constant. Evaluate the | |
| 4097 ** expression and either jump over all of the code or fall thru. | |
| 4098 */ | |
| 4099 for(ii=0; ii<sWLB.pWC->nTerm; ii++){ | |
| 4100 if( nTabList==0 || sqlite3ExprIsConstantNotJoin(sWLB.pWC->a[ii].pExpr) ){ | |
| 4101 sqlite3ExprIfFalse(pParse, sWLB.pWC->a[ii].pExpr, pWInfo->iBreak, | |
| 4102 SQLITE_JUMPIFNULL); | |
| 4103 sWLB.pWC->a[ii].wtFlags |= TERM_CODED; | |
| 4104 } | |
| 4105 } | |
| 4106 | |
| 4107 /* Special case: No FROM clause | |
| 4108 */ | |
| 4109 if( nTabList==0 ){ | |
| 4110 if( pOrderBy ) pWInfo->nOBSat = pOrderBy->nExpr; | |
| 4111 if( wctrlFlags & WHERE_WANT_DISTINCT ){ | |
| 4112 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; | |
| 4113 } | |
| 4114 } | |
| 4115 | |
| 4116 /* Assign a bit from the bitmask to every term in the FROM clause. | |
| 4117 ** | |
| 4118 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N. | |
| 4119 ** | |
| 4120 ** The rule of the previous sentence ensures thta if X is the bitmask for | |
| 4121 ** a table T, then X-1 is the bitmask for all other tables to the left of T. | |
| 4122 ** Knowing the bitmask for all tables to the left of a left join is | |
| 4123 ** important. Ticket #3015. | |
| 4124 ** | |
| 4125 ** Note that bitmasks are created for all pTabList->nSrc tables in | |
| 4126 ** pTabList, not just the first nTabList tables. nTabList is normally | |
| 4127 ** equal to pTabList->nSrc but might be shortened to 1 if the | |
| 4128 ** WHERE_ONETABLE_ONLY flag is set. | |
| 4129 */ | |
| 4130 for(ii=0; ii<pTabList->nSrc; ii++){ | |
| 4131 createMask(pMaskSet, pTabList->a[ii].iCursor); | |
| 4132 sqlite3WhereTabFuncArgs(pParse, &pTabList->a[ii], &pWInfo->sWC); | |
| 4133 } | |
| 4134 #ifdef SQLITE_DEBUG | |
| 4135 for(ii=0; ii<pTabList->nSrc; ii++){ | |
| 4136 Bitmask m = sqlite3WhereGetMask(pMaskSet, pTabList->a[ii].iCursor); | |
| 4137 assert( m==MASKBIT(ii) ); | |
| 4138 } | |
| 4139 #endif | |
| 4140 | |
| 4141 /* Analyze all of the subexpressions. */ | |
| 4142 sqlite3WhereExprAnalyze(pTabList, &pWInfo->sWC); | |
| 4143 if( db->mallocFailed ) goto whereBeginError; | |
| 4144 | |
| 4145 if( wctrlFlags & WHERE_WANT_DISTINCT ){ | |
| 4146 if( isDistinctRedundant(pParse, pTabList, &pWInfo->sWC, pResultSet) ){ | |
| 4147 /* The DISTINCT marking is pointless. Ignore it. */ | |
| 4148 pWInfo->eDistinct = WHERE_DISTINCT_UNIQUE; | |
| 4149 }else if( pOrderBy==0 ){ | |
| 4150 /* Try to ORDER BY the result set to make distinct processing easier */ | |
| 4151 pWInfo->wctrlFlags |= WHERE_DISTINCTBY; | |
| 4152 pWInfo->pOrderBy = pResultSet; | |
| 4153 } | |
| 4154 } | |
| 4155 | |
| 4156 /* Construct the WhereLoop objects */ | |
| 4157 WHERETRACE(0xffff,("*** Optimizer Start *** (wctrlFlags: 0x%x)\n", | |
| 4158 wctrlFlags)); | |
| 4159 #if defined(WHERETRACE_ENABLED) | |
| 4160 if( sqlite3WhereTrace & 0x100 ){ /* Display all terms of the WHERE clause */ | |
| 4161 int i; | |
| 4162 for(i=0; i<sWLB.pWC->nTerm; i++){ | |
| 4163 whereTermPrint(&sWLB.pWC->a[i], i); | |
| 4164 } | |
| 4165 } | |
| 4166 #endif | |
| 4167 | |
| 4168 if( nTabList!=1 || whereShortCut(&sWLB)==0 ){ | |
| 4169 rc = whereLoopAddAll(&sWLB); | |
| 4170 if( rc ) goto whereBeginError; | |
| 4171 | |
| 4172 #ifdef WHERETRACE_ENABLED | |
| 4173 if( sqlite3WhereTrace ){ /* Display all of the WhereLoop objects */ | |
| 4174 WhereLoop *p; | |
| 4175 int i; | |
| 4176 static const char zLabel[] = "0123456789abcdefghijklmnopqrstuvwyxz" | |
| 4177 "ABCDEFGHIJKLMNOPQRSTUVWYXZ"; | |
| 4178 for(p=pWInfo->pLoops, i=0; p; p=p->pNextLoop, i++){ | |
| 4179 p->cId = zLabel[i%sizeof(zLabel)]; | |
| 4180 whereLoopPrint(p, sWLB.pWC); | |
| 4181 } | |
| 4182 } | |
| 4183 #endif | |
| 4184 | |
| 4185 wherePathSolver(pWInfo, 0); | |
| 4186 if( db->mallocFailed ) goto whereBeginError; | |
| 4187 if( pWInfo->pOrderBy ){ | |
| 4188 wherePathSolver(pWInfo, pWInfo->nRowOut+1); | |
| 4189 if( db->mallocFailed ) goto whereBeginError; | |
| 4190 } | |
| 4191 } | |
| 4192 if( pWInfo->pOrderBy==0 && (db->flags & SQLITE_ReverseOrder)!=0 ){ | |
| 4193 pWInfo->revMask = (Bitmask)(-1); | |
| 4194 } | |
| 4195 if( pParse->nErr || NEVER(db->mallocFailed) ){ | |
| 4196 goto whereBeginError; | |
| 4197 } | |
| 4198 #ifdef WHERETRACE_ENABLED | |
| 4199 if( sqlite3WhereTrace ){ | |
| 4200 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo->nRowOut); | |
| 4201 if( pWInfo->nOBSat>0 ){ | |
| 4202 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo->nOBSat, pWInfo->revMask); | |
| 4203 } | |
| 4204 switch( pWInfo->eDistinct ){ | |
| 4205 case WHERE_DISTINCT_UNIQUE: { | |
| 4206 sqlite3DebugPrintf(" DISTINCT=unique"); | |
| 4207 break; | |
| 4208 } | |
| 4209 case WHERE_DISTINCT_ORDERED: { | |
| 4210 sqlite3DebugPrintf(" DISTINCT=ordered"); | |
| 4211 break; | |
| 4212 } | |
| 4213 case WHERE_DISTINCT_UNORDERED: { | |
| 4214 sqlite3DebugPrintf(" DISTINCT=unordered"); | |
| 4215 break; | |
| 4216 } | |
| 4217 } | |
| 4218 sqlite3DebugPrintf("\n"); | |
| 4219 for(ii=0; ii<pWInfo->nLevel; ii++){ | |
| 4220 whereLoopPrint(pWInfo->a[ii].pWLoop, sWLB.pWC); | |
| 4221 } | |
| 4222 } | |
| 4223 #endif | |
| 4224 /* Attempt to omit tables from the join that do not effect the result */ | |
| 4225 if( pWInfo->nLevel>=2 | |
| 4226 && pResultSet!=0 | |
| 4227 && OptimizationEnabled(db, SQLITE_OmitNoopJoin) | |
| 4228 ){ | |
| 4229 Bitmask tabUsed = sqlite3WhereExprListUsage(pMaskSet, pResultSet); | |
| 4230 if( sWLB.pOrderBy ){ | |
| 4231 tabUsed |= sqlite3WhereExprListUsage(pMaskSet, sWLB.pOrderBy); | |
| 4232 } | |
| 4233 while( pWInfo->nLevel>=2 ){ | |
| 4234 WhereTerm *pTerm, *pEnd; | |
| 4235 pLoop = pWInfo->a[pWInfo->nLevel-1].pWLoop; | |
| 4236 if( (pWInfo->pTabList->a[pLoop->iTab].fg.jointype & JT_LEFT)==0 ) break; | |
| 4237 if( (wctrlFlags & WHERE_WANT_DISTINCT)==0 | |
| 4238 && (pLoop->wsFlags & WHERE_ONEROW)==0 | |
| 4239 ){ | |
| 4240 break; | |
| 4241 } | |
| 4242 if( (tabUsed & pLoop->maskSelf)!=0 ) break; | |
| 4243 pEnd = sWLB.pWC->a + sWLB.pWC->nTerm; | |
| 4244 for(pTerm=sWLB.pWC->a; pTerm<pEnd; pTerm++){ | |
| 4245 if( (pTerm->prereqAll & pLoop->maskSelf)!=0 | |
| 4246 && !ExprHasProperty(pTerm->pExpr, EP_FromJoin) | |
| 4247 ){ | |
| 4248 break; | |
| 4249 } | |
| 4250 } | |
| 4251 if( pTerm<pEnd ) break; | |
| 4252 WHERETRACE(0xffff, ("-> drop loop %c not used\n", pLoop->cId)); | |
| 4253 pWInfo->nLevel--; | |
| 4254 nTabList--; | |
| 4255 } | |
| 4256 } | |
| 4257 WHERETRACE(0xffff,("*** Optimizer Finished ***\n")); | |
| 4258 pWInfo->pParse->nQueryLoop += pWInfo->nRowOut; | |
| 4259 | |
| 4260 /* If the caller is an UPDATE or DELETE statement that is requesting | |
| 4261 ** to use a one-pass algorithm, determine if this is appropriate. | |
| 4262 ** The one-pass algorithm only works if the WHERE clause constrains | |
| 4263 ** the statement to update or delete a single row. | |
| 4264 */ | |
| 4265 assert( (wctrlFlags & WHERE_ONEPASS_DESIRED)==0 || pWInfo->nLevel==1 ); | |
| 4266 if( (wctrlFlags & WHERE_ONEPASS_DESIRED)!=0 ){ | |
| 4267 int wsFlags = pWInfo->a[0].pWLoop->wsFlags; | |
| 4268 int bOnerow = (wsFlags & WHERE_ONEROW)!=0; | |
| 4269 if( bOnerow || ( (wctrlFlags & WHERE_ONEPASS_MULTIROW) | |
| 4270 && 0==(wsFlags & WHERE_VIRTUALTABLE) | |
| 4271 )){ | |
| 4272 pWInfo->eOnePass = bOnerow ? ONEPASS_SINGLE : ONEPASS_MULTI; | |
| 4273 if( HasRowid(pTabList->a[0].pTab) && (wsFlags & WHERE_IDX_ONLY) ){ | |
| 4274 if( wctrlFlags & WHERE_ONEPASS_MULTIROW ){ | |
| 4275 bFordelete = OPFLAG_FORDELETE; | |
| 4276 } | |
| 4277 pWInfo->a[0].pWLoop->wsFlags = (wsFlags & ~WHERE_IDX_ONLY); | |
| 4278 } | |
| 4279 } | |
| 4280 } | |
| 4281 | |
| 4282 /* Open all tables in the pTabList and any indices selected for | |
| 4283 ** searching those tables. | |
| 4284 */ | |
| 4285 for(ii=0, pLevel=pWInfo->a; ii<nTabList; ii++, pLevel++){ | |
| 4286 Table *pTab; /* Table to open */ | |
| 4287 int iDb; /* Index of database containing table/index */ | |
| 4288 struct SrcList_item *pTabItem; | |
| 4289 | |
| 4290 pTabItem = &pTabList->a[pLevel->iFrom]; | |
| 4291 pTab = pTabItem->pTab; | |
| 4292 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); | |
| 4293 pLoop = pLevel->pWLoop; | |
| 4294 if( (pTab->tabFlags & TF_Ephemeral)!=0 || pTab->pSelect ){ | |
| 4295 /* Do nothing */ | |
| 4296 }else | |
| 4297 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
| 4298 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){ | |
| 4299 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab); | |
| 4300 int iCur = pTabItem->iCursor; | |
| 4301 sqlite3VdbeAddOp4(v, OP_VOpen, iCur, 0, 0, pVTab, P4_VTAB); | |
| 4302 }else if( IsVirtual(pTab) ){ | |
| 4303 /* noop */ | |
| 4304 }else | |
| 4305 #endif | |
| 4306 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 | |
| 4307 && (wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 ){ | |
| 4308 int op = OP_OpenRead; | |
| 4309 if( pWInfo->eOnePass!=ONEPASS_OFF ){ | |
| 4310 op = OP_OpenWrite; | |
| 4311 pWInfo->aiCurOnePass[0] = pTabItem->iCursor; | |
| 4312 }; | |
| 4313 sqlite3OpenTable(pParse, pTabItem->iCursor, iDb, pTab, op); | |
| 4314 assert( pTabItem->iCursor==pLevel->iTabCur ); | |
| 4315 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS-1 ); | |
| 4316 testcase( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol==BMS ); | |
| 4317 if( pWInfo->eOnePass==ONEPASS_OFF && pTab->nCol<BMS && HasRowid(pTab) ){ | |
| 4318 Bitmask b = pTabItem->colUsed; | |
| 4319 int n = 0; | |
| 4320 for(; b; b=b>>1, n++){} | |
| 4321 sqlite3VdbeChangeP4(v, sqlite3VdbeCurrentAddr(v)-1, | |
| 4322 SQLITE_INT_TO_PTR(n), P4_INT32); | |
| 4323 assert( n<=pTab->nCol ); | |
| 4324 } | |
| 4325 #ifdef SQLITE_ENABLE_CURSOR_HINTS | |
| 4326 if( pLoop->u.btree.pIndex!=0 ){ | |
| 4327 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ|bFordelete); | |
| 4328 }else | |
| 4329 #endif | |
| 4330 { | |
| 4331 sqlite3VdbeChangeP5(v, bFordelete); | |
| 4332 } | |
| 4333 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK | |
| 4334 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, pTabItem->iCursor, 0, 0, | |
| 4335 (const u8*)&pTabItem->colUsed, P4_INT64); | |
| 4336 #endif | |
| 4337 }else{ | |
| 4338 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); | |
| 4339 } | |
| 4340 if( pLoop->wsFlags & WHERE_INDEXED ){ | |
| 4341 Index *pIx = pLoop->u.btree.pIndex; | |
| 4342 int iIndexCur; | |
| 4343 int op = OP_OpenRead; | |
| 4344 /* iIdxCur is always set if to a positive value if ONEPASS is possible */ | |
| 4345 assert( iIdxCur!=0 || (pWInfo->wctrlFlags & WHERE_ONEPASS_DESIRED)==0 ); | |
| 4346 if( !HasRowid(pTab) && IsPrimaryKeyIndex(pIx) | |
| 4347 && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0 | |
| 4348 ){ | |
| 4349 /* This is one term of an OR-optimization using the PRIMARY KEY of a | |
| 4350 ** WITHOUT ROWID table. No need for a separate index */ | |
| 4351 iIndexCur = pLevel->iTabCur; | |
| 4352 op = 0; | |
| 4353 }else if( pWInfo->eOnePass!=ONEPASS_OFF ){ | |
| 4354 Index *pJ = pTabItem->pTab->pIndex; | |
| 4355 iIndexCur = iIdxCur; | |
| 4356 assert( wctrlFlags & WHERE_ONEPASS_DESIRED ); | |
| 4357 while( ALWAYS(pJ) && pJ!=pIx ){ | |
| 4358 iIndexCur++; | |
| 4359 pJ = pJ->pNext; | |
| 4360 } | |
| 4361 op = OP_OpenWrite; | |
| 4362 pWInfo->aiCurOnePass[1] = iIndexCur; | |
| 4363 }else if( iIdxCur && (wctrlFlags & WHERE_ONETABLE_ONLY)!=0 ){ | |
| 4364 iIndexCur = iIdxCur; | |
| 4365 if( wctrlFlags & WHERE_REOPEN_IDX ) op = OP_ReopenIdx; | |
| 4366 }else{ | |
| 4367 iIndexCur = pParse->nTab++; | |
| 4368 } | |
| 4369 pLevel->iIdxCur = iIndexCur; | |
| 4370 assert( pIx->pSchema==pTab->pSchema ); | |
| 4371 assert( iIndexCur>=0 ); | |
| 4372 if( op ){ | |
| 4373 sqlite3VdbeAddOp3(v, op, iIndexCur, pIx->tnum, iDb); | |
| 4374 sqlite3VdbeSetP4KeyInfo(pParse, pIx); | |
| 4375 if( (pLoop->wsFlags & WHERE_CONSTRAINT)!=0 | |
| 4376 && (pLoop->wsFlags & (WHERE_COLUMN_RANGE|WHERE_SKIPSCAN))==0 | |
| 4377 && (pWInfo->wctrlFlags&WHERE_ORDERBY_MIN)==0 | |
| 4378 ){ | |
| 4379 sqlite3VdbeChangeP5(v, OPFLAG_SEEKEQ); /* Hint to COMDB2 */ | |
| 4380 } | |
| 4381 VdbeComment((v, "%s", pIx->zName)); | |
| 4382 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK | |
| 4383 { | |
| 4384 u64 colUsed = 0; | |
| 4385 int ii, jj; | |
| 4386 for(ii=0; ii<pIx->nColumn; ii++){ | |
| 4387 jj = pIx->aiColumn[ii]; | |
| 4388 if( jj<0 ) continue; | |
| 4389 if( jj>63 ) jj = 63; | |
| 4390 if( (pTabItem->colUsed & MASKBIT(jj))==0 ) continue; | |
| 4391 colUsed |= ((u64)1)<<(ii<63 ? ii : 63); | |
| 4392 } | |
| 4393 sqlite3VdbeAddOp4Dup8(v, OP_ColumnsUsed, iIndexCur, 0, 0, | |
| 4394 (u8*)&colUsed, P4_INT64); | |
| 4395 } | |
| 4396 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */ | |
| 4397 } | |
| 4398 } | |
| 4399 if( iDb>=0 ) sqlite3CodeVerifySchema(pParse, iDb); | |
| 4400 } | |
| 4401 pWInfo->iTop = sqlite3VdbeCurrentAddr(v); | |
| 4402 if( db->mallocFailed ) goto whereBeginError; | |
| 4403 | |
| 4404 /* Generate the code to do the search. Each iteration of the for | |
| 4405 ** loop below generates code for a single nested loop of the VM | |
| 4406 ** program. | |
| 4407 */ | |
| 4408 notReady = ~(Bitmask)0; | |
| 4409 for(ii=0; ii<nTabList; ii++){ | |
| 4410 int addrExplain; | |
| 4411 int wsFlags; | |
| 4412 pLevel = &pWInfo->a[ii]; | |
| 4413 wsFlags = pLevel->pWLoop->wsFlags; | |
| 4414 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX | |
| 4415 if( (pLevel->pWLoop->wsFlags & WHERE_AUTO_INDEX)!=0 ){ | |
| 4416 constructAutomaticIndex(pParse, &pWInfo->sWC, | |
| 4417 &pTabList->a[pLevel->iFrom], notReady, pLevel); | |
| 4418 if( db->mallocFailed ) goto whereBeginError; | |
| 4419 } | |
| 4420 #endif | |
| 4421 addrExplain = sqlite3WhereExplainOneScan( | |
| 4422 pParse, pTabList, pLevel, ii, pLevel->iFrom, wctrlFlags | |
| 4423 ); | |
| 4424 pLevel->addrBody = sqlite3VdbeCurrentAddr(v); | |
| 4425 notReady = sqlite3WhereCodeOneLoopStart(pWInfo, ii, notReady); | |
| 4426 pWInfo->iContinue = pLevel->addrCont; | |
| 4427 if( (wsFlags&WHERE_MULTI_OR)==0 && (wctrlFlags&WHERE_ONETABLE_ONLY)==0 ){ | |
| 4428 sqlite3WhereAddScanStatus(v, pTabList, pLevel, addrExplain); | |
| 4429 } | |
| 4430 } | |
| 4431 | |
| 4432 /* Done. */ | |
| 4433 VdbeModuleComment((v, "Begin WHERE-core")); | |
| 4434 return pWInfo; | |
| 4435 | |
| 4436 /* Jump here if malloc fails */ | |
| 4437 whereBeginError: | |
| 4438 if( pWInfo ){ | |
| 4439 pParse->nQueryLoop = pWInfo->savedNQueryLoop; | |
| 4440 whereInfoFree(db, pWInfo); | |
| 4441 } | |
| 4442 return 0; | |
| 4443 } | |
| 4444 | |
| 4445 /* | |
| 4446 ** Generate the end of the WHERE loop. See comments on | |
| 4447 ** sqlite3WhereBegin() for additional information. | |
| 4448 */ | |
| 4449 void sqlite3WhereEnd(WhereInfo *pWInfo){ | |
| 4450 Parse *pParse = pWInfo->pParse; | |
| 4451 Vdbe *v = pParse->pVdbe; | |
| 4452 int i; | |
| 4453 WhereLevel *pLevel; | |
| 4454 WhereLoop *pLoop; | |
| 4455 SrcList *pTabList = pWInfo->pTabList; | |
| 4456 sqlite3 *db = pParse->db; | |
| 4457 | |
| 4458 /* Generate loop termination code. | |
| 4459 */ | |
| 4460 VdbeModuleComment((v, "End WHERE-core")); | |
| 4461 sqlite3ExprCacheClear(pParse); | |
| 4462 for(i=pWInfo->nLevel-1; i>=0; i--){ | |
| 4463 int addr; | |
| 4464 pLevel = &pWInfo->a[i]; | |
| 4465 pLoop = pLevel->pWLoop; | |
| 4466 sqlite3VdbeResolveLabel(v, pLevel->addrCont); | |
| 4467 if( pLevel->op!=OP_Noop ){ | |
| 4468 sqlite3VdbeAddOp3(v, pLevel->op, pLevel->p1, pLevel->p2, pLevel->p3); | |
| 4469 sqlite3VdbeChangeP5(v, pLevel->p5); | |
| 4470 VdbeCoverage(v); | |
| 4471 VdbeCoverageIf(v, pLevel->op==OP_Next); | |
| 4472 VdbeCoverageIf(v, pLevel->op==OP_Prev); | |
| 4473 VdbeCoverageIf(v, pLevel->op==OP_VNext); | |
| 4474 } | |
| 4475 if( pLoop->wsFlags & WHERE_IN_ABLE && pLevel->u.in.nIn>0 ){ | |
| 4476 struct InLoop *pIn; | |
| 4477 int j; | |
| 4478 sqlite3VdbeResolveLabel(v, pLevel->addrNxt); | |
| 4479 for(j=pLevel->u.in.nIn, pIn=&pLevel->u.in.aInLoop[j-1]; j>0; j--, pIn--){ | |
| 4480 sqlite3VdbeJumpHere(v, pIn->addrInTop+1); | |
| 4481 sqlite3VdbeAddOp2(v, pIn->eEndLoopOp, pIn->iCur, pIn->addrInTop); | |
| 4482 VdbeCoverage(v); | |
| 4483 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_PrevIfOpen); | |
| 4484 VdbeCoverageIf(v, pIn->eEndLoopOp==OP_NextIfOpen); | |
| 4485 sqlite3VdbeJumpHere(v, pIn->addrInTop-1); | |
| 4486 } | |
| 4487 } | |
| 4488 sqlite3VdbeResolveLabel(v, pLevel->addrBrk); | |
| 4489 if( pLevel->addrSkip ){ | |
| 4490 sqlite3VdbeGoto(v, pLevel->addrSkip); | |
| 4491 VdbeComment((v, "next skip-scan on %s", pLoop->u.btree.pIndex->zName)); | |
| 4492 sqlite3VdbeJumpHere(v, pLevel->addrSkip); | |
| 4493 sqlite3VdbeJumpHere(v, pLevel->addrSkip-2); | |
| 4494 } | |
| 4495 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS | |
| 4496 if( pLevel->addrLikeRep ){ | |
| 4497 int op; | |
| 4498 if( sqlite3VdbeGetOp(v, pLevel->addrLikeRep-1)->p1 ){ | |
| 4499 op = OP_DecrJumpZero; | |
| 4500 }else{ | |
| 4501 op = OP_JumpZeroIncr; | |
| 4502 } | |
| 4503 sqlite3VdbeAddOp2(v, op, pLevel->iLikeRepCntr, pLevel->addrLikeRep); | |
| 4504 VdbeCoverage(v); | |
| 4505 } | |
| 4506 #endif | |
| 4507 if( pLevel->iLeftJoin ){ | |
| 4508 addr = sqlite3VdbeAddOp1(v, OP_IfPos, pLevel->iLeftJoin); VdbeCoverage(v); | |
| 4509 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 | |
| 4510 || (pLoop->wsFlags & WHERE_INDEXED)!=0 ); | |
| 4511 if( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 ){ | |
| 4512 sqlite3VdbeAddOp1(v, OP_NullRow, pTabList->a[i].iCursor); | |
| 4513 } | |
| 4514 if( pLoop->wsFlags & WHERE_INDEXED ){ | |
| 4515 sqlite3VdbeAddOp1(v, OP_NullRow, pLevel->iIdxCur); | |
| 4516 } | |
| 4517 if( pLevel->op==OP_Return ){ | |
| 4518 sqlite3VdbeAddOp2(v, OP_Gosub, pLevel->p1, pLevel->addrFirst); | |
| 4519 }else{ | |
| 4520 sqlite3VdbeGoto(v, pLevel->addrFirst); | |
| 4521 } | |
| 4522 sqlite3VdbeJumpHere(v, addr); | |
| 4523 } | |
| 4524 VdbeModuleComment((v, "End WHERE-loop%d: %s", i, | |
| 4525 pWInfo->pTabList->a[pLevel->iFrom].pTab->zName)); | |
| 4526 } | |
| 4527 | |
| 4528 /* The "break" point is here, just past the end of the outer loop. | |
| 4529 ** Set it. | |
| 4530 */ | |
| 4531 sqlite3VdbeResolveLabel(v, pWInfo->iBreak); | |
| 4532 | |
| 4533 assert( pWInfo->nLevel<=pTabList->nSrc ); | |
| 4534 for(i=0, pLevel=pWInfo->a; i<pWInfo->nLevel; i++, pLevel++){ | |
| 4535 int k, last; | |
| 4536 VdbeOp *pOp; | |
| 4537 Index *pIdx = 0; | |
| 4538 struct SrcList_item *pTabItem = &pTabList->a[pLevel->iFrom]; | |
| 4539 Table *pTab = pTabItem->pTab; | |
| 4540 assert( pTab!=0 ); | |
| 4541 pLoop = pLevel->pWLoop; | |
| 4542 | |
| 4543 /* For a co-routine, change all OP_Column references to the table of | |
| 4544 ** the co-routine into OP_Copy of result contained in a register. | |
| 4545 ** OP_Rowid becomes OP_Null. | |
| 4546 */ | |
| 4547 if( pTabItem->fg.viaCoroutine && !db->mallocFailed ){ | |
| 4548 translateColumnToCopy(v, pLevel->addrBody, pLevel->iTabCur, | |
| 4549 pTabItem->regResult, 0); | |
| 4550 continue; | |
| 4551 } | |
| 4552 | |
| 4553 /* Close all of the cursors that were opened by sqlite3WhereBegin. | |
| 4554 ** Except, do not close cursors that will be reused by the OR optimization | |
| 4555 ** (WHERE_OMIT_OPEN_CLOSE). And do not close the OP_OpenWrite cursors | |
| 4556 ** created for the ONEPASS optimization. | |
| 4557 */ | |
| 4558 if( (pTab->tabFlags & TF_Ephemeral)==0 | |
| 4559 && pTab->pSelect==0 | |
| 4560 && (pWInfo->wctrlFlags & WHERE_OMIT_OPEN_CLOSE)==0 | |
| 4561 ){ | |
| 4562 int ws = pLoop->wsFlags; | |
| 4563 if( pWInfo->eOnePass==ONEPASS_OFF && (ws & WHERE_IDX_ONLY)==0 ){ | |
| 4564 sqlite3VdbeAddOp1(v, OP_Close, pTabItem->iCursor); | |
| 4565 } | |
| 4566 if( (ws & WHERE_INDEXED)!=0 | |
| 4567 && (ws & (WHERE_IPK|WHERE_AUTO_INDEX))==0 | |
| 4568 && pLevel->iIdxCur!=pWInfo->aiCurOnePass[1] | |
| 4569 ){ | |
| 4570 sqlite3VdbeAddOp1(v, OP_Close, pLevel->iIdxCur); | |
| 4571 } | |
| 4572 } | |
| 4573 | |
| 4574 /* If this scan uses an index, make VDBE code substitutions to read data | |
| 4575 ** from the index instead of from the table where possible. In some cases | |
| 4576 ** this optimization prevents the table from ever being read, which can | |
| 4577 ** yield a significant performance boost. | |
| 4578 ** | |
| 4579 ** Calls to the code generator in between sqlite3WhereBegin and | |
| 4580 ** sqlite3WhereEnd will have created code that references the table | |
| 4581 ** directly. This loop scans all that code looking for opcodes | |
| 4582 ** that reference the table and converts them into opcodes that | |
| 4583 ** reference the index. | |
| 4584 */ | |
| 4585 if( pLoop->wsFlags & (WHERE_INDEXED|WHERE_IDX_ONLY) ){ | |
| 4586 pIdx = pLoop->u.btree.pIndex; | |
| 4587 }else if( pLoop->wsFlags & WHERE_MULTI_OR ){ | |
| 4588 pIdx = pLevel->u.pCovidx; | |
| 4589 } | |
| 4590 if( pIdx | |
| 4591 && (pWInfo->eOnePass==ONEPASS_OFF || !HasRowid(pIdx->pTable)) | |
| 4592 && !db->mallocFailed | |
| 4593 ){ | |
| 4594 last = sqlite3VdbeCurrentAddr(v); | |
| 4595 k = pLevel->addrBody; | |
| 4596 pOp = sqlite3VdbeGetOp(v, k); | |
| 4597 for(; k<last; k++, pOp++){ | |
| 4598 if( pOp->p1!=pLevel->iTabCur ) continue; | |
| 4599 if( pOp->opcode==OP_Column ){ | |
| 4600 int x = pOp->p2; | |
| 4601 assert( pIdx->pTable==pTab ); | |
| 4602 if( !HasRowid(pTab) ){ | |
| 4603 Index *pPk = sqlite3PrimaryKeyIndex(pTab); | |
| 4604 x = pPk->aiColumn[x]; | |
| 4605 assert( x>=0 ); | |
| 4606 } | |
| 4607 x = sqlite3ColumnOfIndex(pIdx, x); | |
| 4608 if( x>=0 ){ | |
| 4609 pOp->p2 = x; | |
| 4610 pOp->p1 = pLevel->iIdxCur; | |
| 4611 } | |
| 4612 assert( (pLoop->wsFlags & WHERE_IDX_ONLY)==0 || x>=0 ); | |
| 4613 }else if( pOp->opcode==OP_Rowid ){ | |
| 4614 pOp->p1 = pLevel->iIdxCur; | |
| 4615 pOp->opcode = OP_IdxRowid; | |
| 4616 } | |
| 4617 } | |
| 4618 } | |
| 4619 } | |
| 4620 | |
| 4621 /* Final cleanup | |
| 4622 */ | |
| 4623 pParse->nQueryLoop = pWInfo->savedNQueryLoop; | |
| 4624 whereInfoFree(db, pWInfo); | |
| 4625 return; | |
| 4626 } | |
| OLD | NEW |