OLD | NEW |
| (Empty) |
1 /* | |
2 ** 2010 February 1 | |
3 ** | |
4 ** The author disclaims copyright to this source code. In place of | |
5 ** a legal notice, here is a blessing: | |
6 ** | |
7 ** May you do good and not evil. | |
8 ** May you find forgiveness for yourself and forgive others. | |
9 ** May you share freely, never taking more than you give. | |
10 ** | |
11 ************************************************************************* | |
12 ** | |
13 ** This file contains the implementation of a write-ahead log (WAL) used in | |
14 ** "journal_mode=WAL" mode. | |
15 ** | |
16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT | |
17 ** | |
18 ** A WAL file consists of a header followed by zero or more "frames". | |
19 ** Each frame records the revised content of a single page from the | |
20 ** database file. All changes to the database are recorded by writing | |
21 ** frames into the WAL. Transactions commit when a frame is written that | |
22 ** contains a commit marker. A single WAL can and usually does record | |
23 ** multiple transactions. Periodically, the content of the WAL is | |
24 ** transferred back into the database file in an operation called a | |
25 ** "checkpoint". | |
26 ** | |
27 ** A single WAL file can be used multiple times. In other words, the | |
28 ** WAL can fill up with frames and then be checkpointed and then new | |
29 ** frames can overwrite the old ones. A WAL always grows from beginning | |
30 ** toward the end. Checksums and counters attached to each frame are | |
31 ** used to determine which frames within the WAL are valid and which | |
32 ** are leftovers from prior checkpoints. | |
33 ** | |
34 ** The WAL header is 32 bytes in size and consists of the following eight | |
35 ** big-endian 32-bit unsigned integer values: | |
36 ** | |
37 ** 0: Magic number. 0x377f0682 or 0x377f0683 | |
38 ** 4: File format version. Currently 3007000 | |
39 ** 8: Database page size. Example: 1024 | |
40 ** 12: Checkpoint sequence number | |
41 ** 16: Salt-1, random integer incremented with each checkpoint | |
42 ** 20: Salt-2, a different random integer changing with each ckpt | |
43 ** 24: Checksum-1 (first part of checksum for first 24 bytes of header). | |
44 ** 28: Checksum-2 (second part of checksum for first 24 bytes of header). | |
45 ** | |
46 ** Immediately following the wal-header are zero or more frames. Each | |
47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes | |
48 ** of page data. The frame-header is six big-endian 32-bit unsigned | |
49 ** integer values, as follows: | |
50 ** | |
51 ** 0: Page number. | |
52 ** 4: For commit records, the size of the database image in pages | |
53 ** after the commit. For all other records, zero. | |
54 ** 8: Salt-1 (copied from the header) | |
55 ** 12: Salt-2 (copied from the header) | |
56 ** 16: Checksum-1. | |
57 ** 20: Checksum-2. | |
58 ** | |
59 ** A frame is considered valid if and only if the following conditions are | |
60 ** true: | |
61 ** | |
62 ** (1) The salt-1 and salt-2 values in the frame-header match | |
63 ** salt values in the wal-header | |
64 ** | |
65 ** (2) The checksum values in the final 8 bytes of the frame-header | |
66 ** exactly match the checksum computed consecutively on the | |
67 ** WAL header and the first 8 bytes and the content of all frames | |
68 ** up to and including the current frame. | |
69 ** | |
70 ** The checksum is computed using 32-bit big-endian integers if the | |
71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it | |
72 ** is computed using little-endian if the magic number is 0x377f0682. | |
73 ** The checksum values are always stored in the frame header in a | |
74 ** big-endian format regardless of which byte order is used to compute | |
75 ** the checksum. The checksum is computed by interpreting the input as | |
76 ** an even number of unsigned 32-bit integers: x[0] through x[N]. The | |
77 ** algorithm used for the checksum is as follows: | |
78 ** | |
79 ** for i from 0 to n-1 step 2: | |
80 ** s0 += x[i] + s1; | |
81 ** s1 += x[i+1] + s0; | |
82 ** endfor | |
83 ** | |
84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights | |
85 ** in reverse order (the largest fibonacci weight occurs on the first element | |
86 ** of the sequence being summed.) The s1 value spans all 32-bit | |
87 ** terms of the sequence whereas s0 omits the final term. | |
88 ** | |
89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the | |
90 ** WAL is transferred into the database, then the database is VFS.xSync-ed. | |
91 ** The VFS.xSync operations serve as write barriers - all writes launched | |
92 ** before the xSync must complete before any write that launches after the | |
93 ** xSync begins. | |
94 ** | |
95 ** After each checkpoint, the salt-1 value is incremented and the salt-2 | |
96 ** value is randomized. This prevents old and new frames in the WAL from | |
97 ** being considered valid at the same time and being checkpointing together | |
98 ** following a crash. | |
99 ** | |
100 ** READER ALGORITHM | |
101 ** | |
102 ** To read a page from the database (call it page number P), a reader | |
103 ** first checks the WAL to see if it contains page P. If so, then the | |
104 ** last valid instance of page P that is a followed by a commit frame | |
105 ** or is a commit frame itself becomes the value read. If the WAL | |
106 ** contains no copies of page P that are valid and which are a commit | |
107 ** frame or are followed by a commit frame, then page P is read from | |
108 ** the database file. | |
109 ** | |
110 ** To start a read transaction, the reader records the index of the last | |
111 ** valid frame in the WAL. The reader uses this recorded "mxFrame" value | |
112 ** for all subsequent read operations. New transactions can be appended | |
113 ** to the WAL, but as long as the reader uses its original mxFrame value | |
114 ** and ignores the newly appended content, it will see a consistent snapshot | |
115 ** of the database from a single point in time. This technique allows | |
116 ** multiple concurrent readers to view different versions of the database | |
117 ** content simultaneously. | |
118 ** | |
119 ** The reader algorithm in the previous paragraphs works correctly, but | |
120 ** because frames for page P can appear anywhere within the WAL, the | |
121 ** reader has to scan the entire WAL looking for page P frames. If the | |
122 ** WAL is large (multiple megabytes is typical) that scan can be slow, | |
123 ** and read performance suffers. To overcome this problem, a separate | |
124 ** data structure called the wal-index is maintained to expedite the | |
125 ** search for frames of a particular page. | |
126 ** | |
127 ** WAL-INDEX FORMAT | |
128 ** | |
129 ** Conceptually, the wal-index is shared memory, though VFS implementations | |
130 ** might choose to implement the wal-index using a mmapped file. Because | |
131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL | |
132 ** on a network filesystem. All users of the database must be able to | |
133 ** share memory. | |
134 ** | |
135 ** The wal-index is transient. After a crash, the wal-index can (and should | |
136 ** be) reconstructed from the original WAL file. In fact, the VFS is required | |
137 ** to either truncate or zero the header of the wal-index when the last | |
138 ** connection to it closes. Because the wal-index is transient, it can | |
139 ** use an architecture-specific format; it does not have to be cross-platform. | |
140 ** Hence, unlike the database and WAL file formats which store all values | |
141 ** as big endian, the wal-index can store multi-byte values in the native | |
142 ** byte order of the host computer. | |
143 ** | |
144 ** The purpose of the wal-index is to answer this question quickly: Given | |
145 ** a page number P and a maximum frame index M, return the index of the | |
146 ** last frame in the wal before frame M for page P in the WAL, or return | |
147 ** NULL if there are no frames for page P in the WAL prior to M. | |
148 ** | |
149 ** The wal-index consists of a header region, followed by an one or | |
150 ** more index blocks. | |
151 ** | |
152 ** The wal-index header contains the total number of frames within the WAL | |
153 ** in the mxFrame field. | |
154 ** | |
155 ** Each index block except for the first contains information on | |
156 ** HASHTABLE_NPAGE frames. The first index block contains information on | |
157 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and | |
158 ** HASHTABLE_NPAGE are selected so that together the wal-index header and | |
159 ** first index block are the same size as all other index blocks in the | |
160 ** wal-index. | |
161 ** | |
162 ** Each index block contains two sections, a page-mapping that contains the | |
163 ** database page number associated with each wal frame, and a hash-table | |
164 ** that allows readers to query an index block for a specific page number. | |
165 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE | |
166 ** for the first index block) 32-bit page numbers. The first entry in the | |
167 ** first index-block contains the database page number corresponding to the | |
168 ** first frame in the WAL file. The first entry in the second index block | |
169 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in | |
170 ** the log, and so on. | |
171 ** | |
172 ** The last index block in a wal-index usually contains less than the full | |
173 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers, | |
174 ** depending on the contents of the WAL file. This does not change the | |
175 ** allocated size of the page-mapping array - the page-mapping array merely | |
176 ** contains unused entries. | |
177 ** | |
178 ** Even without using the hash table, the last frame for page P | |
179 ** can be found by scanning the page-mapping sections of each index block | |
180 ** starting with the last index block and moving toward the first, and | |
181 ** within each index block, starting at the end and moving toward the | |
182 ** beginning. The first entry that equals P corresponds to the frame | |
183 ** holding the content for that page. | |
184 ** | |
185 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers. | |
186 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the | |
187 ** hash table for each page number in the mapping section, so the hash | |
188 ** table is never more than half full. The expected number of collisions | |
189 ** prior to finding a match is 1. Each entry of the hash table is an | |
190 ** 1-based index of an entry in the mapping section of the same | |
191 ** index block. Let K be the 1-based index of the largest entry in | |
192 ** the mapping section. (For index blocks other than the last, K will | |
193 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block | |
194 ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table | |
195 ** contain a value of 0. | |
196 ** | |
197 ** To look for page P in the hash table, first compute a hash iKey on | |
198 ** P as follows: | |
199 ** | |
200 ** iKey = (P * 383) % HASHTABLE_NSLOT | |
201 ** | |
202 ** Then start scanning entries of the hash table, starting with iKey | |
203 ** (wrapping around to the beginning when the end of the hash table is | |
204 ** reached) until an unused hash slot is found. Let the first unused slot | |
205 ** be at index iUnused. (iUnused might be less than iKey if there was | |
206 ** wrap-around.) Because the hash table is never more than half full, | |
207 ** the search is guaranteed to eventually hit an unused entry. Let | |
208 ** iMax be the value between iKey and iUnused, closest to iUnused, | |
209 ** where aHash[iMax]==P. If there is no iMax entry (if there exists | |
210 ** no hash slot such that aHash[i]==p) then page P is not in the | |
211 ** current index block. Otherwise the iMax-th mapping entry of the | |
212 ** current index block corresponds to the last entry that references | |
213 ** page P. | |
214 ** | |
215 ** A hash search begins with the last index block and moves toward the | |
216 ** first index block, looking for entries corresponding to page P. On | |
217 ** average, only two or three slots in each index block need to be | |
218 ** examined in order to either find the last entry for page P, or to | |
219 ** establish that no such entry exists in the block. Each index block | |
220 ** holds over 4000 entries. So two or three index blocks are sufficient | |
221 ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10 | |
222 ** comparisons (on average) suffice to either locate a frame in the | |
223 ** WAL or to establish that the frame does not exist in the WAL. This | |
224 ** is much faster than scanning the entire 10MB WAL. | |
225 ** | |
226 ** Note that entries are added in order of increasing K. Hence, one | |
227 ** reader might be using some value K0 and a second reader that started | |
228 ** at a later time (after additional transactions were added to the WAL | |
229 ** and to the wal-index) might be using a different value K1, where K1>K0. | |
230 ** Both readers can use the same hash table and mapping section to get | |
231 ** the correct result. There may be entries in the hash table with | |
232 ** K>K0 but to the first reader, those entries will appear to be unused | |
233 ** slots in the hash table and so the first reader will get an answer as | |
234 ** if no values greater than K0 had ever been inserted into the hash table | |
235 ** in the first place - which is what reader one wants. Meanwhile, the | |
236 ** second reader using K1 will see additional values that were inserted | |
237 ** later, which is exactly what reader two wants. | |
238 ** | |
239 ** When a rollback occurs, the value of K is decreased. Hash table entries | |
240 ** that correspond to frames greater than the new K value are removed | |
241 ** from the hash table at this point. | |
242 */ | |
243 #ifndef SQLITE_OMIT_WAL | |
244 | |
245 #include "wal.h" | |
246 | |
247 /* | |
248 ** Trace output macros | |
249 */ | |
250 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) | |
251 int sqlite3WalTrace = 0; | |
252 # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X | |
253 #else | |
254 # define WALTRACE(X) | |
255 #endif | |
256 | |
257 /* | |
258 ** The maximum (and only) versions of the wal and wal-index formats | |
259 ** that may be interpreted by this version of SQLite. | |
260 ** | |
261 ** If a client begins recovering a WAL file and finds that (a) the checksum | |
262 ** values in the wal-header are correct and (b) the version field is not | |
263 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN. | |
264 ** | |
265 ** Similarly, if a client successfully reads a wal-index header (i.e. the | |
266 ** checksum test is successful) and finds that the version field is not | |
267 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite | |
268 ** returns SQLITE_CANTOPEN. | |
269 */ | |
270 #define WAL_MAX_VERSION 3007000 | |
271 #define WALINDEX_MAX_VERSION 3007000 | |
272 | |
273 /* | |
274 ** Indices of various locking bytes. WAL_NREADER is the number | |
275 ** of available reader locks and should be at least 3. The default | |
276 ** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5. | |
277 */ | |
278 #define WAL_WRITE_LOCK 0 | |
279 #define WAL_ALL_BUT_WRITE 1 | |
280 #define WAL_CKPT_LOCK 1 | |
281 #define WAL_RECOVER_LOCK 2 | |
282 #define WAL_READ_LOCK(I) (3+(I)) | |
283 #define WAL_NREADER (SQLITE_SHM_NLOCK-3) | |
284 | |
285 | |
286 /* Object declarations */ | |
287 typedef struct WalIndexHdr WalIndexHdr; | |
288 typedef struct WalIterator WalIterator; | |
289 typedef struct WalCkptInfo WalCkptInfo; | |
290 | |
291 | |
292 /* | |
293 ** The following object holds a copy of the wal-index header content. | |
294 ** | |
295 ** The actual header in the wal-index consists of two copies of this | |
296 ** object followed by one instance of the WalCkptInfo object. | |
297 ** For all versions of SQLite through 3.10.0 and probably beyond, | |
298 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and | |
299 ** the total header size is 136 bytes. | |
300 ** | |
301 ** The szPage value can be any power of 2 between 512 and 32768, inclusive. | |
302 ** Or it can be 1 to represent a 65536-byte page. The latter case was | |
303 ** added in 3.7.1 when support for 64K pages was added. | |
304 */ | |
305 struct WalIndexHdr { | |
306 u32 iVersion; /* Wal-index version */ | |
307 u32 unused; /* Unused (padding) field */ | |
308 u32 iChange; /* Counter incremented each transaction */ | |
309 u8 isInit; /* 1 when initialized */ | |
310 u8 bigEndCksum; /* True if checksums in WAL are big-endian */ | |
311 u16 szPage; /* Database page size in bytes. 1==64K */ | |
312 u32 mxFrame; /* Index of last valid frame in the WAL */ | |
313 u32 nPage; /* Size of database in pages */ | |
314 u32 aFrameCksum[2]; /* Checksum of last frame in log */ | |
315 u32 aSalt[2]; /* Two salt values copied from WAL header */ | |
316 u32 aCksum[2]; /* Checksum over all prior fields */ | |
317 }; | |
318 | |
319 /* | |
320 ** A copy of the following object occurs in the wal-index immediately | |
321 ** following the second copy of the WalIndexHdr. This object stores | |
322 ** information used by checkpoint. | |
323 ** | |
324 ** nBackfill is the number of frames in the WAL that have been written | |
325 ** back into the database. (We call the act of moving content from WAL to | |
326 ** database "backfilling".) The nBackfill number is never greater than | |
327 ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads | |
328 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread). | |
329 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from | |
330 ** mxFrame back to zero when the WAL is reset. | |
331 ** | |
332 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint | |
333 ** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however | |
334 ** the nBackfillAttempted is set before any backfilling is done and the | |
335 ** nBackfill is only set after all backfilling completes. So if a checkpoint | |
336 ** crashes, nBackfillAttempted might be larger than nBackfill. The | |
337 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted. | |
338 ** | |
339 ** The aLock[] field is a set of bytes used for locking. These bytes should | |
340 ** never be read or written. | |
341 ** | |
342 ** There is one entry in aReadMark[] for each reader lock. If a reader | |
343 ** holds read-lock K, then the value in aReadMark[K] is no greater than | |
344 ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff) | |
345 ** for any aReadMark[] means that entry is unused. aReadMark[0] is | |
346 ** a special case; its value is never used and it exists as a place-holder | |
347 ** to avoid having to offset aReadMark[] indexs by one. Readers holding | |
348 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content | |
349 ** directly from the database. | |
350 ** | |
351 ** The value of aReadMark[K] may only be changed by a thread that | |
352 ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of | |
353 ** aReadMark[K] cannot changed while there is a reader is using that mark | |
354 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K). | |
355 ** | |
356 ** The checkpointer may only transfer frames from WAL to database where | |
357 ** the frame numbers are less than or equal to every aReadMark[] that is | |
358 ** in use (that is, every aReadMark[j] for which there is a corresponding | |
359 ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the | |
360 ** largest value and will increase an unused aReadMark[] to mxFrame if there | |
361 ** is not already an aReadMark[] equal to mxFrame. The exception to the | |
362 ** previous sentence is when nBackfill equals mxFrame (meaning that everything | |
363 ** in the WAL has been backfilled into the database) then new readers | |
364 ** will choose aReadMark[0] which has value 0 and hence such reader will | |
365 ** get all their all content directly from the database file and ignore | |
366 ** the WAL. | |
367 ** | |
368 ** Writers normally append new frames to the end of the WAL. However, | |
369 ** if nBackfill equals mxFrame (meaning that all WAL content has been | |
370 ** written back into the database) and if no readers are using the WAL | |
371 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then | |
372 ** the writer will first "reset" the WAL back to the beginning and start | |
373 ** writing new content beginning at frame 1. | |
374 ** | |
375 ** We assume that 32-bit loads are atomic and so no locks are needed in | |
376 ** order to read from any aReadMark[] entries. | |
377 */ | |
378 struct WalCkptInfo { | |
379 u32 nBackfill; /* Number of WAL frames backfilled into DB */ | |
380 u32 aReadMark[WAL_NREADER]; /* Reader marks */ | |
381 u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */ | |
382 u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */ | |
383 u32 notUsed0; /* Available for future enhancements */ | |
384 }; | |
385 #define READMARK_NOT_USED 0xffffffff | |
386 | |
387 | |
388 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at | |
389 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems | |
390 ** only support mandatory file-locks, we do not read or write data | |
391 ** from the region of the file on which locks are applied. | |
392 */ | |
393 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock)) | |
394 #define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo)) | |
395 | |
396 /* Size of header before each frame in wal */ | |
397 #define WAL_FRAME_HDRSIZE 24 | |
398 | |
399 /* Size of write ahead log header, including checksum. */ | |
400 /* #define WAL_HDRSIZE 24 */ | |
401 #define WAL_HDRSIZE 32 | |
402 | |
403 /* WAL magic value. Either this value, or the same value with the least | |
404 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit | |
405 ** big-endian format in the first 4 bytes of a WAL file. | |
406 ** | |
407 ** If the LSB is set, then the checksums for each frame within the WAL | |
408 ** file are calculated by treating all data as an array of 32-bit | |
409 ** big-endian words. Otherwise, they are calculated by interpreting | |
410 ** all data as 32-bit little-endian words. | |
411 */ | |
412 #define WAL_MAGIC 0x377f0682 | |
413 | |
414 /* | |
415 ** Return the offset of frame iFrame in the write-ahead log file, | |
416 ** assuming a database page size of szPage bytes. The offset returned | |
417 ** is to the start of the write-ahead log frame-header. | |
418 */ | |
419 #define walFrameOffset(iFrame, szPage) ( \ | |
420 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \ | |
421 ) | |
422 | |
423 /* | |
424 ** An open write-ahead log file is represented by an instance of the | |
425 ** following object. | |
426 */ | |
427 struct Wal { | |
428 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */ | |
429 sqlite3_file *pDbFd; /* File handle for the database file */ | |
430 sqlite3_file *pWalFd; /* File handle for WAL file */ | |
431 u32 iCallback; /* Value to pass to log callback (or 0) */ | |
432 i64 mxWalSize; /* Truncate WAL to this size upon reset */ | |
433 int nWiData; /* Size of array apWiData */ | |
434 int szFirstBlock; /* Size of first block written to WAL file */ | |
435 volatile u32 **apWiData; /* Pointer to wal-index content in memory */ | |
436 u32 szPage; /* Database page size */ | |
437 i16 readLock; /* Which read lock is being held. -1 for none */ | |
438 u8 syncFlags; /* Flags to use to sync header writes */ | |
439 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */ | |
440 u8 writeLock; /* True if in a write transaction */ | |
441 u8 ckptLock; /* True if holding a checkpoint lock */ | |
442 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */ | |
443 u8 truncateOnCommit; /* True to truncate WAL file on commit */ | |
444 u8 syncHeader; /* Fsync the WAL header if true */ | |
445 u8 padToSectorBoundary; /* Pad transactions out to the next sector */ | |
446 WalIndexHdr hdr; /* Wal-index header for current transaction */ | |
447 u32 minFrame; /* Ignore wal frames before this one */ | |
448 const char *zWalName; /* Name of WAL file */ | |
449 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */ | |
450 #ifdef SQLITE_DEBUG | |
451 u8 lockError; /* True if a locking error has occurred */ | |
452 #endif | |
453 #ifdef SQLITE_ENABLE_SNAPSHOT | |
454 WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */ | |
455 #endif | |
456 }; | |
457 | |
458 /* | |
459 ** Candidate values for Wal.exclusiveMode. | |
460 */ | |
461 #define WAL_NORMAL_MODE 0 | |
462 #define WAL_EXCLUSIVE_MODE 1 | |
463 #define WAL_HEAPMEMORY_MODE 2 | |
464 | |
465 /* | |
466 ** Possible values for WAL.readOnly | |
467 */ | |
468 #define WAL_RDWR 0 /* Normal read/write connection */ | |
469 #define WAL_RDONLY 1 /* The WAL file is readonly */ | |
470 #define WAL_SHM_RDONLY 2 /* The SHM file is readonly */ | |
471 | |
472 /* | |
473 ** Each page of the wal-index mapping contains a hash-table made up of | |
474 ** an array of HASHTABLE_NSLOT elements of the following type. | |
475 */ | |
476 typedef u16 ht_slot; | |
477 | |
478 /* | |
479 ** This structure is used to implement an iterator that loops through | |
480 ** all frames in the WAL in database page order. Where two or more frames | |
481 ** correspond to the same database page, the iterator visits only the | |
482 ** frame most recently written to the WAL (in other words, the frame with | |
483 ** the largest index). | |
484 ** | |
485 ** The internals of this structure are only accessed by: | |
486 ** | |
487 ** walIteratorInit() - Create a new iterator, | |
488 ** walIteratorNext() - Step an iterator, | |
489 ** walIteratorFree() - Free an iterator. | |
490 ** | |
491 ** This functionality is used by the checkpoint code (see walCheckpoint()). | |
492 */ | |
493 struct WalIterator { | |
494 int iPrior; /* Last result returned from the iterator */ | |
495 int nSegment; /* Number of entries in aSegment[] */ | |
496 struct WalSegment { | |
497 int iNext; /* Next slot in aIndex[] not yet returned */ | |
498 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */ | |
499 u32 *aPgno; /* Array of page numbers. */ | |
500 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */ | |
501 int iZero; /* Frame number associated with aPgno[0] */ | |
502 } aSegment[1]; /* One for every 32KB page in the wal-index */ | |
503 }; | |
504 | |
505 /* | |
506 ** Define the parameters of the hash tables in the wal-index file. There | |
507 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the | |
508 ** wal-index. | |
509 ** | |
510 ** Changing any of these constants will alter the wal-index format and | |
511 ** create incompatibilities. | |
512 */ | |
513 #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */ | |
514 #define HASHTABLE_HASH_1 383 /* Should be prime */ | |
515 #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */ | |
516 | |
517 /* | |
518 ** The block of page numbers associated with the first hash-table in a | |
519 ** wal-index is smaller than usual. This is so that there is a complete | |
520 ** hash-table on each aligned 32KB page of the wal-index. | |
521 */ | |
522 #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32))) | |
523 | |
524 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */ | |
525 #define WALINDEX_PGSZ ( \ | |
526 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \ | |
527 ) | |
528 | |
529 /* | |
530 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index | |
531 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are | |
532 ** numbered from zero. | |
533 ** | |
534 ** If this call is successful, *ppPage is set to point to the wal-index | |
535 ** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs, | |
536 ** then an SQLite error code is returned and *ppPage is set to 0. | |
537 */ | |
538 static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){ | |
539 int rc = SQLITE_OK; | |
540 | |
541 /* Enlarge the pWal->apWiData[] array if required */ | |
542 if( pWal->nWiData<=iPage ){ | |
543 int nByte = sizeof(u32*)*(iPage+1); | |
544 volatile u32 **apNew; | |
545 apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte); | |
546 if( !apNew ){ | |
547 *ppPage = 0; | |
548 return SQLITE_NOMEM; | |
549 } | |
550 memset((void*)&apNew[pWal->nWiData], 0, | |
551 sizeof(u32*)*(iPage+1-pWal->nWiData)); | |
552 pWal->apWiData = apNew; | |
553 pWal->nWiData = iPage+1; | |
554 } | |
555 | |
556 /* Request a pointer to the required page from the VFS */ | |
557 if( pWal->apWiData[iPage]==0 ){ | |
558 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ | |
559 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ); | |
560 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM; | |
561 }else{ | |
562 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ, | |
563 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage] | |
564 ); | |
565 if( rc==SQLITE_READONLY ){ | |
566 pWal->readOnly |= WAL_SHM_RDONLY; | |
567 rc = SQLITE_OK; | |
568 } | |
569 } | |
570 } | |
571 | |
572 *ppPage = pWal->apWiData[iPage]; | |
573 assert( iPage==0 || *ppPage || rc!=SQLITE_OK ); | |
574 return rc; | |
575 } | |
576 | |
577 /* | |
578 ** Return a pointer to the WalCkptInfo structure in the wal-index. | |
579 */ | |
580 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){ | |
581 assert( pWal->nWiData>0 && pWal->apWiData[0] ); | |
582 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]); | |
583 } | |
584 | |
585 /* | |
586 ** Return a pointer to the WalIndexHdr structure in the wal-index. | |
587 */ | |
588 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){ | |
589 assert( pWal->nWiData>0 && pWal->apWiData[0] ); | |
590 return (volatile WalIndexHdr*)pWal->apWiData[0]; | |
591 } | |
592 | |
593 /* | |
594 ** The argument to this macro must be of type u32. On a little-endian | |
595 ** architecture, it returns the u32 value that results from interpreting | |
596 ** the 4 bytes as a big-endian value. On a big-endian architecture, it | |
597 ** returns the value that would be produced by interpreting the 4 bytes | |
598 ** of the input value as a little-endian integer. | |
599 */ | |
600 #define BYTESWAP32(x) ( \ | |
601 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \ | |
602 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \ | |
603 ) | |
604 | |
605 /* | |
606 ** Generate or extend an 8 byte checksum based on the data in | |
607 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or | |
608 ** initial values of 0 and 0 if aIn==NULL). | |
609 ** | |
610 ** The checksum is written back into aOut[] before returning. | |
611 ** | |
612 ** nByte must be a positive multiple of 8. | |
613 */ | |
614 static void walChecksumBytes( | |
615 int nativeCksum, /* True for native byte-order, false for non-native */ | |
616 u8 *a, /* Content to be checksummed */ | |
617 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */ | |
618 const u32 *aIn, /* Initial checksum value input */ | |
619 u32 *aOut /* OUT: Final checksum value output */ | |
620 ){ | |
621 u32 s1, s2; | |
622 u32 *aData = (u32 *)a; | |
623 u32 *aEnd = (u32 *)&a[nByte]; | |
624 | |
625 if( aIn ){ | |
626 s1 = aIn[0]; | |
627 s2 = aIn[1]; | |
628 }else{ | |
629 s1 = s2 = 0; | |
630 } | |
631 | |
632 assert( nByte>=8 ); | |
633 assert( (nByte&0x00000007)==0 ); | |
634 | |
635 if( nativeCksum ){ | |
636 do { | |
637 s1 += *aData++ + s2; | |
638 s2 += *aData++ + s1; | |
639 }while( aData<aEnd ); | |
640 }else{ | |
641 do { | |
642 s1 += BYTESWAP32(aData[0]) + s2; | |
643 s2 += BYTESWAP32(aData[1]) + s1; | |
644 aData += 2; | |
645 }while( aData<aEnd ); | |
646 } | |
647 | |
648 aOut[0] = s1; | |
649 aOut[1] = s2; | |
650 } | |
651 | |
652 static void walShmBarrier(Wal *pWal){ | |
653 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){ | |
654 sqlite3OsShmBarrier(pWal->pDbFd); | |
655 } | |
656 } | |
657 | |
658 /* | |
659 ** Write the header information in pWal->hdr into the wal-index. | |
660 ** | |
661 ** The checksum on pWal->hdr is updated before it is written. | |
662 */ | |
663 static void walIndexWriteHdr(Wal *pWal){ | |
664 volatile WalIndexHdr *aHdr = walIndexHdr(pWal); | |
665 const int nCksum = offsetof(WalIndexHdr, aCksum); | |
666 | |
667 assert( pWal->writeLock ); | |
668 pWal->hdr.isInit = 1; | |
669 pWal->hdr.iVersion = WALINDEX_MAX_VERSION; | |
670 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum); | |
671 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); | |
672 walShmBarrier(pWal); | |
673 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr)); | |
674 } | |
675 | |
676 /* | |
677 ** This function encodes a single frame header and writes it to a buffer | |
678 ** supplied by the caller. A frame-header is made up of a series of | |
679 ** 4-byte big-endian integers, as follows: | |
680 ** | |
681 ** 0: Page number. | |
682 ** 4: For commit records, the size of the database image in pages | |
683 ** after the commit. For all other records, zero. | |
684 ** 8: Salt-1 (copied from the wal-header) | |
685 ** 12: Salt-2 (copied from the wal-header) | |
686 ** 16: Checksum-1. | |
687 ** 20: Checksum-2. | |
688 */ | |
689 static void walEncodeFrame( | |
690 Wal *pWal, /* The write-ahead log */ | |
691 u32 iPage, /* Database page number for frame */ | |
692 u32 nTruncate, /* New db size (or 0 for non-commit frames) */ | |
693 u8 *aData, /* Pointer to page data */ | |
694 u8 *aFrame /* OUT: Write encoded frame here */ | |
695 ){ | |
696 int nativeCksum; /* True for native byte-order checksums */ | |
697 u32 *aCksum = pWal->hdr.aFrameCksum; | |
698 assert( WAL_FRAME_HDRSIZE==24 ); | |
699 sqlite3Put4byte(&aFrame[0], iPage); | |
700 sqlite3Put4byte(&aFrame[4], nTruncate); | |
701 memcpy(&aFrame[8], pWal->hdr.aSalt, 8); | |
702 | |
703 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); | |
704 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); | |
705 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); | |
706 | |
707 sqlite3Put4byte(&aFrame[16], aCksum[0]); | |
708 sqlite3Put4byte(&aFrame[20], aCksum[1]); | |
709 } | |
710 | |
711 /* | |
712 ** Check to see if the frame with header in aFrame[] and content | |
713 ** in aData[] is valid. If it is a valid frame, fill *piPage and | |
714 ** *pnTruncate and return true. Return if the frame is not valid. | |
715 */ | |
716 static int walDecodeFrame( | |
717 Wal *pWal, /* The write-ahead log */ | |
718 u32 *piPage, /* OUT: Database page number for frame */ | |
719 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */ | |
720 u8 *aData, /* Pointer to page data (for checksum) */ | |
721 u8 *aFrame /* Frame data */ | |
722 ){ | |
723 int nativeCksum; /* True for native byte-order checksums */ | |
724 u32 *aCksum = pWal->hdr.aFrameCksum; | |
725 u32 pgno; /* Page number of the frame */ | |
726 assert( WAL_FRAME_HDRSIZE==24 ); | |
727 | |
728 /* A frame is only valid if the salt values in the frame-header | |
729 ** match the salt values in the wal-header. | |
730 */ | |
731 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){ | |
732 return 0; | |
733 } | |
734 | |
735 /* A frame is only valid if the page number is creater than zero. | |
736 */ | |
737 pgno = sqlite3Get4byte(&aFrame[0]); | |
738 if( pgno==0 ){ | |
739 return 0; | |
740 } | |
741 | |
742 /* A frame is only valid if a checksum of the WAL header, | |
743 ** all prior frams, the first 16 bytes of this frame-header, | |
744 ** and the frame-data matches the checksum in the last 8 | |
745 ** bytes of this frame-header. | |
746 */ | |
747 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN); | |
748 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum); | |
749 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum); | |
750 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16]) | |
751 || aCksum[1]!=sqlite3Get4byte(&aFrame[20]) | |
752 ){ | |
753 /* Checksum failed. */ | |
754 return 0; | |
755 } | |
756 | |
757 /* If we reach this point, the frame is valid. Return the page number | |
758 ** and the new database size. | |
759 */ | |
760 *piPage = pgno; | |
761 *pnTruncate = sqlite3Get4byte(&aFrame[4]); | |
762 return 1; | |
763 } | |
764 | |
765 | |
766 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) | |
767 /* | |
768 ** Names of locks. This routine is used to provide debugging output and is not | |
769 ** a part of an ordinary build. | |
770 */ | |
771 static const char *walLockName(int lockIdx){ | |
772 if( lockIdx==WAL_WRITE_LOCK ){ | |
773 return "WRITE-LOCK"; | |
774 }else if( lockIdx==WAL_CKPT_LOCK ){ | |
775 return "CKPT-LOCK"; | |
776 }else if( lockIdx==WAL_RECOVER_LOCK ){ | |
777 return "RECOVER-LOCK"; | |
778 }else{ | |
779 static char zName[15]; | |
780 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]", | |
781 lockIdx-WAL_READ_LOCK(0)); | |
782 return zName; | |
783 } | |
784 } | |
785 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */ | |
786 | |
787 | |
788 /* | |
789 ** Set or release locks on the WAL. Locks are either shared or exclusive. | |
790 ** A lock cannot be moved directly between shared and exclusive - it must go | |
791 ** through the unlocked state first. | |
792 ** | |
793 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops. | |
794 */ | |
795 static int walLockShared(Wal *pWal, int lockIdx){ | |
796 int rc; | |
797 if( pWal->exclusiveMode ) return SQLITE_OK; | |
798 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, | |
799 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED); | |
800 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal, | |
801 walLockName(lockIdx), rc ? "failed" : "ok")); | |
802 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) | |
803 return rc; | |
804 } | |
805 static void walUnlockShared(Wal *pWal, int lockIdx){ | |
806 if( pWal->exclusiveMode ) return; | |
807 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1, | |
808 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED); | |
809 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx))); | |
810 } | |
811 static int walLockExclusive(Wal *pWal, int lockIdx, int n){ | |
812 int rc; | |
813 if( pWal->exclusiveMode ) return SQLITE_OK; | |
814 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, | |
815 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE); | |
816 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal, | |
817 walLockName(lockIdx), n, rc ? "failed" : "ok")); | |
818 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); ) | |
819 return rc; | |
820 } | |
821 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){ | |
822 if( pWal->exclusiveMode ) return; | |
823 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n, | |
824 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE); | |
825 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal, | |
826 walLockName(lockIdx), n)); | |
827 } | |
828 | |
829 /* | |
830 ** Compute a hash on a page number. The resulting hash value must land | |
831 ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances | |
832 ** the hash to the next value in the event of a collision. | |
833 */ | |
834 static int walHash(u32 iPage){ | |
835 assert( iPage>0 ); | |
836 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 ); | |
837 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1); | |
838 } | |
839 static int walNextHash(int iPriorHash){ | |
840 return (iPriorHash+1)&(HASHTABLE_NSLOT-1); | |
841 } | |
842 | |
843 /* | |
844 ** Return pointers to the hash table and page number array stored on | |
845 ** page iHash of the wal-index. The wal-index is broken into 32KB pages | |
846 ** numbered starting from 0. | |
847 ** | |
848 ** Set output variable *paHash to point to the start of the hash table | |
849 ** in the wal-index file. Set *piZero to one less than the frame | |
850 ** number of the first frame indexed by this hash table. If a | |
851 ** slot in the hash table is set to N, it refers to frame number | |
852 ** (*piZero+N) in the log. | |
853 ** | |
854 ** Finally, set *paPgno so that *paPgno[1] is the page number of the | |
855 ** first frame indexed by the hash table, frame (*piZero+1). | |
856 */ | |
857 static int walHashGet( | |
858 Wal *pWal, /* WAL handle */ | |
859 int iHash, /* Find the iHash'th table */ | |
860 volatile ht_slot **paHash, /* OUT: Pointer to hash index */ | |
861 volatile u32 **paPgno, /* OUT: Pointer to page number array */ | |
862 u32 *piZero /* OUT: Frame associated with *paPgno[0] */ | |
863 ){ | |
864 int rc; /* Return code */ | |
865 volatile u32 *aPgno; | |
866 | |
867 rc = walIndexPage(pWal, iHash, &aPgno); | |
868 assert( rc==SQLITE_OK || iHash>0 ); | |
869 | |
870 if( rc==SQLITE_OK ){ | |
871 u32 iZero; | |
872 volatile ht_slot *aHash; | |
873 | |
874 aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE]; | |
875 if( iHash==0 ){ | |
876 aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)]; | |
877 iZero = 0; | |
878 }else{ | |
879 iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE; | |
880 } | |
881 | |
882 *paPgno = &aPgno[-1]; | |
883 *paHash = aHash; | |
884 *piZero = iZero; | |
885 } | |
886 return rc; | |
887 } | |
888 | |
889 /* | |
890 ** Return the number of the wal-index page that contains the hash-table | |
891 ** and page-number array that contain entries corresponding to WAL frame | |
892 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages | |
893 ** are numbered starting from 0. | |
894 */ | |
895 static int walFramePage(u32 iFrame){ | |
896 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE; | |
897 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE) | |
898 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE) | |
899 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)) | |
900 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE) | |
901 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE)) | |
902 ); | |
903 return iHash; | |
904 } | |
905 | |
906 /* | |
907 ** Return the page number associated with frame iFrame in this WAL. | |
908 */ | |
909 static u32 walFramePgno(Wal *pWal, u32 iFrame){ | |
910 int iHash = walFramePage(iFrame); | |
911 if( iHash==0 ){ | |
912 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1]; | |
913 } | |
914 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE]; | |
915 } | |
916 | |
917 /* | |
918 ** Remove entries from the hash table that point to WAL slots greater | |
919 ** than pWal->hdr.mxFrame. | |
920 ** | |
921 ** This function is called whenever pWal->hdr.mxFrame is decreased due | |
922 ** to a rollback or savepoint. | |
923 ** | |
924 ** At most only the hash table containing pWal->hdr.mxFrame needs to be | |
925 ** updated. Any later hash tables will be automatically cleared when | |
926 ** pWal->hdr.mxFrame advances to the point where those hash tables are | |
927 ** actually needed. | |
928 */ | |
929 static void walCleanupHash(Wal *pWal){ | |
930 volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */ | |
931 volatile u32 *aPgno = 0; /* Page number array for hash table */ | |
932 u32 iZero = 0; /* frame == (aHash[x]+iZero) */ | |
933 int iLimit = 0; /* Zero values greater than this */ | |
934 int nByte; /* Number of bytes to zero in aPgno[] */ | |
935 int i; /* Used to iterate through aHash[] */ | |
936 | |
937 assert( pWal->writeLock ); | |
938 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 ); | |
939 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE ); | |
940 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 ); | |
941 | |
942 if( pWal->hdr.mxFrame==0 ) return; | |
943 | |
944 /* Obtain pointers to the hash-table and page-number array containing | |
945 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed | |
946 ** that the page said hash-table and array reside on is already mapped. | |
947 */ | |
948 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) ); | |
949 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] ); | |
950 walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero); | |
951 | |
952 /* Zero all hash-table entries that correspond to frame numbers greater | |
953 ** than pWal->hdr.mxFrame. | |
954 */ | |
955 iLimit = pWal->hdr.mxFrame - iZero; | |
956 assert( iLimit>0 ); | |
957 for(i=0; i<HASHTABLE_NSLOT; i++){ | |
958 if( aHash[i]>iLimit ){ | |
959 aHash[i] = 0; | |
960 } | |
961 } | |
962 | |
963 /* Zero the entries in the aPgno array that correspond to frames with | |
964 ** frame numbers greater than pWal->hdr.mxFrame. | |
965 */ | |
966 nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]); | |
967 memset((void *)&aPgno[iLimit+1], 0, nByte); | |
968 | |
969 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT | |
970 /* Verify that the every entry in the mapping region is still reachable | |
971 ** via the hash table even after the cleanup. | |
972 */ | |
973 if( iLimit ){ | |
974 int j; /* Loop counter */ | |
975 int iKey; /* Hash key */ | |
976 for(j=1; j<=iLimit; j++){ | |
977 for(iKey=walHash(aPgno[j]); aHash[iKey]; iKey=walNextHash(iKey)){ | |
978 if( aHash[iKey]==j ) break; | |
979 } | |
980 assert( aHash[iKey]==j ); | |
981 } | |
982 } | |
983 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ | |
984 } | |
985 | |
986 | |
987 /* | |
988 ** Set an entry in the wal-index that will map database page number | |
989 ** pPage into WAL frame iFrame. | |
990 */ | |
991 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){ | |
992 int rc; /* Return code */ | |
993 u32 iZero = 0; /* One less than frame number of aPgno[1] */ | |
994 volatile u32 *aPgno = 0; /* Page number array */ | |
995 volatile ht_slot *aHash = 0; /* Hash table */ | |
996 | |
997 rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero); | |
998 | |
999 /* Assuming the wal-index file was successfully mapped, populate the | |
1000 ** page number array and hash table entry. | |
1001 */ | |
1002 if( rc==SQLITE_OK ){ | |
1003 int iKey; /* Hash table key */ | |
1004 int idx; /* Value to write to hash-table slot */ | |
1005 int nCollide; /* Number of hash collisions */ | |
1006 | |
1007 idx = iFrame - iZero; | |
1008 assert( idx <= HASHTABLE_NSLOT/2 + 1 ); | |
1009 | |
1010 /* If this is the first entry to be added to this hash-table, zero the | |
1011 ** entire hash table and aPgno[] array before proceeding. | |
1012 */ | |
1013 if( idx==1 ){ | |
1014 int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]); | |
1015 memset((void*)&aPgno[1], 0, nByte); | |
1016 } | |
1017 | |
1018 /* If the entry in aPgno[] is already set, then the previous writer | |
1019 ** must have exited unexpectedly in the middle of a transaction (after | |
1020 ** writing one or more dirty pages to the WAL to free up memory). | |
1021 ** Remove the remnants of that writers uncommitted transaction from | |
1022 ** the hash-table before writing any new entries. | |
1023 */ | |
1024 if( aPgno[idx] ){ | |
1025 walCleanupHash(pWal); | |
1026 assert( !aPgno[idx] ); | |
1027 } | |
1028 | |
1029 /* Write the aPgno[] array entry and the hash-table slot. */ | |
1030 nCollide = idx; | |
1031 for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){ | |
1032 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT; | |
1033 } | |
1034 aPgno[idx] = iPage; | |
1035 aHash[iKey] = (ht_slot)idx; | |
1036 | |
1037 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT | |
1038 /* Verify that the number of entries in the hash table exactly equals | |
1039 ** the number of entries in the mapping region. | |
1040 */ | |
1041 { | |
1042 int i; /* Loop counter */ | |
1043 int nEntry = 0; /* Number of entries in the hash table */ | |
1044 for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; } | |
1045 assert( nEntry==idx ); | |
1046 } | |
1047 | |
1048 /* Verify that the every entry in the mapping region is reachable | |
1049 ** via the hash table. This turns out to be a really, really expensive | |
1050 ** thing to check, so only do this occasionally - not on every | |
1051 ** iteration. | |
1052 */ | |
1053 if( (idx&0x3ff)==0 ){ | |
1054 int i; /* Loop counter */ | |
1055 for(i=1; i<=idx; i++){ | |
1056 for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){ | |
1057 if( aHash[iKey]==i ) break; | |
1058 } | |
1059 assert( aHash[iKey]==i ); | |
1060 } | |
1061 } | |
1062 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */ | |
1063 } | |
1064 | |
1065 | |
1066 return rc; | |
1067 } | |
1068 | |
1069 | |
1070 /* | |
1071 ** Recover the wal-index by reading the write-ahead log file. | |
1072 ** | |
1073 ** This routine first tries to establish an exclusive lock on the | |
1074 ** wal-index to prevent other threads/processes from doing anything | |
1075 ** with the WAL or wal-index while recovery is running. The | |
1076 ** WAL_RECOVER_LOCK is also held so that other threads will know | |
1077 ** that this thread is running recovery. If unable to establish | |
1078 ** the necessary locks, this routine returns SQLITE_BUSY. | |
1079 */ | |
1080 static int walIndexRecover(Wal *pWal){ | |
1081 int rc; /* Return Code */ | |
1082 i64 nSize; /* Size of log file */ | |
1083 u32 aFrameCksum[2] = {0, 0}; | |
1084 int iLock; /* Lock offset to lock for checkpoint */ | |
1085 int nLock; /* Number of locks to hold */ | |
1086 | |
1087 /* Obtain an exclusive lock on all byte in the locking range not already | |
1088 ** locked by the caller. The caller is guaranteed to have locked the | |
1089 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte. | |
1090 ** If successful, the same bytes that are locked here are unlocked before | |
1091 ** this function returns. | |
1092 */ | |
1093 assert( pWal->ckptLock==1 || pWal->ckptLock==0 ); | |
1094 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 ); | |
1095 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE ); | |
1096 assert( pWal->writeLock ); | |
1097 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock; | |
1098 nLock = SQLITE_SHM_NLOCK - iLock; | |
1099 rc = walLockExclusive(pWal, iLock, nLock); | |
1100 if( rc ){ | |
1101 return rc; | |
1102 } | |
1103 WALTRACE(("WAL%p: recovery begin...\n", pWal)); | |
1104 | |
1105 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); | |
1106 | |
1107 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize); | |
1108 if( rc!=SQLITE_OK ){ | |
1109 goto recovery_error; | |
1110 } | |
1111 | |
1112 if( nSize>WAL_HDRSIZE ){ | |
1113 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */ | |
1114 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */ | |
1115 int szFrame; /* Number of bytes in buffer aFrame[] */ | |
1116 u8 *aData; /* Pointer to data part of aFrame buffer */ | |
1117 int iFrame; /* Index of last frame read */ | |
1118 i64 iOffset; /* Next offset to read from log file */ | |
1119 int szPage; /* Page size according to the log */ | |
1120 u32 magic; /* Magic value read from WAL header */ | |
1121 u32 version; /* Magic value read from WAL header */ | |
1122 int isValid; /* True if this frame is valid */ | |
1123 | |
1124 /* Read in the WAL header. */ | |
1125 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0); | |
1126 if( rc!=SQLITE_OK ){ | |
1127 goto recovery_error; | |
1128 } | |
1129 | |
1130 /* If the database page size is not a power of two, or is greater than | |
1131 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid | |
1132 ** data. Similarly, if the 'magic' value is invalid, ignore the whole | |
1133 ** WAL file. | |
1134 */ | |
1135 magic = sqlite3Get4byte(&aBuf[0]); | |
1136 szPage = sqlite3Get4byte(&aBuf[8]); | |
1137 if( (magic&0xFFFFFFFE)!=WAL_MAGIC | |
1138 || szPage&(szPage-1) | |
1139 || szPage>SQLITE_MAX_PAGE_SIZE | |
1140 || szPage<512 | |
1141 ){ | |
1142 goto finished; | |
1143 } | |
1144 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001); | |
1145 pWal->szPage = szPage; | |
1146 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]); | |
1147 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8); | |
1148 | |
1149 /* Verify that the WAL header checksum is correct */ | |
1150 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN, | |
1151 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum | |
1152 ); | |
1153 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24]) | |
1154 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28]) | |
1155 ){ | |
1156 goto finished; | |
1157 } | |
1158 | |
1159 /* Verify that the version number on the WAL format is one that | |
1160 ** are able to understand */ | |
1161 version = sqlite3Get4byte(&aBuf[4]); | |
1162 if( version!=WAL_MAX_VERSION ){ | |
1163 rc = SQLITE_CANTOPEN_BKPT; | |
1164 goto finished; | |
1165 } | |
1166 | |
1167 /* Malloc a buffer to read frames into. */ | |
1168 szFrame = szPage + WAL_FRAME_HDRSIZE; | |
1169 aFrame = (u8 *)sqlite3_malloc64(szFrame); | |
1170 if( !aFrame ){ | |
1171 rc = SQLITE_NOMEM; | |
1172 goto recovery_error; | |
1173 } | |
1174 aData = &aFrame[WAL_FRAME_HDRSIZE]; | |
1175 | |
1176 /* Read all frames from the log file. */ | |
1177 iFrame = 0; | |
1178 for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){ | |
1179 u32 pgno; /* Database page number for frame */ | |
1180 u32 nTruncate; /* dbsize field from frame header */ | |
1181 | |
1182 /* Read and decode the next log frame. */ | |
1183 iFrame++; | |
1184 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset); | |
1185 if( rc!=SQLITE_OK ) break; | |
1186 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame); | |
1187 if( !isValid ) break; | |
1188 rc = walIndexAppend(pWal, iFrame, pgno); | |
1189 if( rc!=SQLITE_OK ) break; | |
1190 | |
1191 /* If nTruncate is non-zero, this is a commit record. */ | |
1192 if( nTruncate ){ | |
1193 pWal->hdr.mxFrame = iFrame; | |
1194 pWal->hdr.nPage = nTruncate; | |
1195 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); | |
1196 testcase( szPage<=32768 ); | |
1197 testcase( szPage>=65536 ); | |
1198 aFrameCksum[0] = pWal->hdr.aFrameCksum[0]; | |
1199 aFrameCksum[1] = pWal->hdr.aFrameCksum[1]; | |
1200 } | |
1201 } | |
1202 | |
1203 sqlite3_free(aFrame); | |
1204 } | |
1205 | |
1206 finished: | |
1207 if( rc==SQLITE_OK ){ | |
1208 volatile WalCkptInfo *pInfo; | |
1209 int i; | |
1210 pWal->hdr.aFrameCksum[0] = aFrameCksum[0]; | |
1211 pWal->hdr.aFrameCksum[1] = aFrameCksum[1]; | |
1212 walIndexWriteHdr(pWal); | |
1213 | |
1214 /* Reset the checkpoint-header. This is safe because this thread is | |
1215 ** currently holding locks that exclude all other readers, writers and | |
1216 ** checkpointers. | |
1217 */ | |
1218 pInfo = walCkptInfo(pWal); | |
1219 pInfo->nBackfill = 0; | |
1220 pInfo->nBackfillAttempted = pWal->hdr.mxFrame; | |
1221 pInfo->aReadMark[0] = 0; | |
1222 for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; | |
1223 if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame; | |
1224 | |
1225 /* If more than one frame was recovered from the log file, report an | |
1226 ** event via sqlite3_log(). This is to help with identifying performance | |
1227 ** problems caused by applications routinely shutting down without | |
1228 ** checkpointing the log file. | |
1229 */ | |
1230 if( pWal->hdr.nPage ){ | |
1231 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL, | |
1232 "recovered %d frames from WAL file %s", | |
1233 pWal->hdr.mxFrame, pWal->zWalName | |
1234 ); | |
1235 } | |
1236 } | |
1237 | |
1238 recovery_error: | |
1239 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok")); | |
1240 walUnlockExclusive(pWal, iLock, nLock); | |
1241 return rc; | |
1242 } | |
1243 | |
1244 /* | |
1245 ** Close an open wal-index. | |
1246 */ | |
1247 static void walIndexClose(Wal *pWal, int isDelete){ | |
1248 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){ | |
1249 int i; | |
1250 for(i=0; i<pWal->nWiData; i++){ | |
1251 sqlite3_free((void *)pWal->apWiData[i]); | |
1252 pWal->apWiData[i] = 0; | |
1253 } | |
1254 }else{ | |
1255 sqlite3OsShmUnmap(pWal->pDbFd, isDelete); | |
1256 } | |
1257 } | |
1258 | |
1259 /* | |
1260 ** Open a connection to the WAL file zWalName. The database file must | |
1261 ** already be opened on connection pDbFd. The buffer that zWalName points | |
1262 ** to must remain valid for the lifetime of the returned Wal* handle. | |
1263 ** | |
1264 ** A SHARED lock should be held on the database file when this function | |
1265 ** is called. The purpose of this SHARED lock is to prevent any other | |
1266 ** client from unlinking the WAL or wal-index file. If another process | |
1267 ** were to do this just after this client opened one of these files, the | |
1268 ** system would be badly broken. | |
1269 ** | |
1270 ** If the log file is successfully opened, SQLITE_OK is returned and | |
1271 ** *ppWal is set to point to a new WAL handle. If an error occurs, | |
1272 ** an SQLite error code is returned and *ppWal is left unmodified. | |
1273 */ | |
1274 int sqlite3WalOpen( | |
1275 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */ | |
1276 sqlite3_file *pDbFd, /* The open database file */ | |
1277 const char *zWalName, /* Name of the WAL file */ | |
1278 int bNoShm, /* True to run in heap-memory mode */ | |
1279 i64 mxWalSize, /* Truncate WAL to this size on reset */ | |
1280 Wal **ppWal /* OUT: Allocated Wal handle */ | |
1281 ){ | |
1282 int rc; /* Return Code */ | |
1283 Wal *pRet; /* Object to allocate and return */ | |
1284 int flags; /* Flags passed to OsOpen() */ | |
1285 | |
1286 assert( zWalName && zWalName[0] ); | |
1287 assert( pDbFd ); | |
1288 | |
1289 /* In the amalgamation, the os_unix.c and os_win.c source files come before | |
1290 ** this source file. Verify that the #defines of the locking byte offsets | |
1291 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value. | |
1292 ** For that matter, if the lock offset ever changes from its initial design | |
1293 ** value of 120, we need to know that so there is an assert() to check it. | |
1294 */ | |
1295 assert( 120==WALINDEX_LOCK_OFFSET ); | |
1296 assert( 136==WALINDEX_HDR_SIZE ); | |
1297 #ifdef WIN_SHM_BASE | |
1298 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET ); | |
1299 #endif | |
1300 #ifdef UNIX_SHM_BASE | |
1301 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET ); | |
1302 #endif | |
1303 | |
1304 | |
1305 /* Allocate an instance of struct Wal to return. */ | |
1306 *ppWal = 0; | |
1307 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile); | |
1308 if( !pRet ){ | |
1309 return SQLITE_NOMEM; | |
1310 } | |
1311 | |
1312 pRet->pVfs = pVfs; | |
1313 pRet->pWalFd = (sqlite3_file *)&pRet[1]; | |
1314 pRet->pDbFd = pDbFd; | |
1315 pRet->readLock = -1; | |
1316 pRet->mxWalSize = mxWalSize; | |
1317 pRet->zWalName = zWalName; | |
1318 pRet->syncHeader = 1; | |
1319 pRet->padToSectorBoundary = 1; | |
1320 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE); | |
1321 | |
1322 /* Open file handle on the write-ahead log file. */ | |
1323 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL); | |
1324 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags); | |
1325 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){ | |
1326 pRet->readOnly = WAL_RDONLY; | |
1327 } | |
1328 | |
1329 if( rc!=SQLITE_OK ){ | |
1330 walIndexClose(pRet, 0); | |
1331 sqlite3OsClose(pRet->pWalFd); | |
1332 sqlite3_free(pRet); | |
1333 }else{ | |
1334 int iDC = sqlite3OsDeviceCharacteristics(pDbFd); | |
1335 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; } | |
1336 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){ | |
1337 pRet->padToSectorBoundary = 0; | |
1338 } | |
1339 *ppWal = pRet; | |
1340 WALTRACE(("WAL%d: opened\n", pRet)); | |
1341 } | |
1342 return rc; | |
1343 } | |
1344 | |
1345 /* | |
1346 ** Change the size to which the WAL file is trucated on each reset. | |
1347 */ | |
1348 void sqlite3WalLimit(Wal *pWal, i64 iLimit){ | |
1349 if( pWal ) pWal->mxWalSize = iLimit; | |
1350 } | |
1351 | |
1352 /* | |
1353 ** Find the smallest page number out of all pages held in the WAL that | |
1354 ** has not been returned by any prior invocation of this method on the | |
1355 ** same WalIterator object. Write into *piFrame the frame index where | |
1356 ** that page was last written into the WAL. Write into *piPage the page | |
1357 ** number. | |
1358 ** | |
1359 ** Return 0 on success. If there are no pages in the WAL with a page | |
1360 ** number larger than *piPage, then return 1. | |
1361 */ | |
1362 static int walIteratorNext( | |
1363 WalIterator *p, /* Iterator */ | |
1364 u32 *piPage, /* OUT: The page number of the next page */ | |
1365 u32 *piFrame /* OUT: Wal frame index of next page */ | |
1366 ){ | |
1367 u32 iMin; /* Result pgno must be greater than iMin */ | |
1368 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */ | |
1369 int i; /* For looping through segments */ | |
1370 | |
1371 iMin = p->iPrior; | |
1372 assert( iMin<0xffffffff ); | |
1373 for(i=p->nSegment-1; i>=0; i--){ | |
1374 struct WalSegment *pSegment = &p->aSegment[i]; | |
1375 while( pSegment->iNext<pSegment->nEntry ){ | |
1376 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]]; | |
1377 if( iPg>iMin ){ | |
1378 if( iPg<iRet ){ | |
1379 iRet = iPg; | |
1380 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext]; | |
1381 } | |
1382 break; | |
1383 } | |
1384 pSegment->iNext++; | |
1385 } | |
1386 } | |
1387 | |
1388 *piPage = p->iPrior = iRet; | |
1389 return (iRet==0xFFFFFFFF); | |
1390 } | |
1391 | |
1392 /* | |
1393 ** This function merges two sorted lists into a single sorted list. | |
1394 ** | |
1395 ** aLeft[] and aRight[] are arrays of indices. The sort key is | |
1396 ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following | |
1397 ** is guaranteed for all J<K: | |
1398 ** | |
1399 ** aContent[aLeft[J]] < aContent[aLeft[K]] | |
1400 ** aContent[aRight[J]] < aContent[aRight[K]] | |
1401 ** | |
1402 ** This routine overwrites aRight[] with a new (probably longer) sequence | |
1403 ** of indices such that the aRight[] contains every index that appears in | |
1404 ** either aLeft[] or the old aRight[] and such that the second condition | |
1405 ** above is still met. | |
1406 ** | |
1407 ** The aContent[aLeft[X]] values will be unique for all X. And the | |
1408 ** aContent[aRight[X]] values will be unique too. But there might be | |
1409 ** one or more combinations of X and Y such that | |
1410 ** | |
1411 ** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]] | |
1412 ** | |
1413 ** When that happens, omit the aLeft[X] and use the aRight[Y] index. | |
1414 */ | |
1415 static void walMerge( | |
1416 const u32 *aContent, /* Pages in wal - keys for the sort */ | |
1417 ht_slot *aLeft, /* IN: Left hand input list */ | |
1418 int nLeft, /* IN: Elements in array *paLeft */ | |
1419 ht_slot **paRight, /* IN/OUT: Right hand input list */ | |
1420 int *pnRight, /* IN/OUT: Elements in *paRight */ | |
1421 ht_slot *aTmp /* Temporary buffer */ | |
1422 ){ | |
1423 int iLeft = 0; /* Current index in aLeft */ | |
1424 int iRight = 0; /* Current index in aRight */ | |
1425 int iOut = 0; /* Current index in output buffer */ | |
1426 int nRight = *pnRight; | |
1427 ht_slot *aRight = *paRight; | |
1428 | |
1429 assert( nLeft>0 && nRight>0 ); | |
1430 while( iRight<nRight || iLeft<nLeft ){ | |
1431 ht_slot logpage; | |
1432 Pgno dbpage; | |
1433 | |
1434 if( (iLeft<nLeft) | |
1435 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]]) | |
1436 ){ | |
1437 logpage = aLeft[iLeft++]; | |
1438 }else{ | |
1439 logpage = aRight[iRight++]; | |
1440 } | |
1441 dbpage = aContent[logpage]; | |
1442 | |
1443 aTmp[iOut++] = logpage; | |
1444 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++; | |
1445 | |
1446 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage ); | |
1447 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage ); | |
1448 } | |
1449 | |
1450 *paRight = aLeft; | |
1451 *pnRight = iOut; | |
1452 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut); | |
1453 } | |
1454 | |
1455 /* | |
1456 ** Sort the elements in list aList using aContent[] as the sort key. | |
1457 ** Remove elements with duplicate keys, preferring to keep the | |
1458 ** larger aList[] values. | |
1459 ** | |
1460 ** The aList[] entries are indices into aContent[]. The values in | |
1461 ** aList[] are to be sorted so that for all J<K: | |
1462 ** | |
1463 ** aContent[aList[J]] < aContent[aList[K]] | |
1464 ** | |
1465 ** For any X and Y such that | |
1466 ** | |
1467 ** aContent[aList[X]] == aContent[aList[Y]] | |
1468 ** | |
1469 ** Keep the larger of the two values aList[X] and aList[Y] and discard | |
1470 ** the smaller. | |
1471 */ | |
1472 static void walMergesort( | |
1473 const u32 *aContent, /* Pages in wal */ | |
1474 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */ | |
1475 ht_slot *aList, /* IN/OUT: List to sort */ | |
1476 int *pnList /* IN/OUT: Number of elements in aList[] */ | |
1477 ){ | |
1478 struct Sublist { | |
1479 int nList; /* Number of elements in aList */ | |
1480 ht_slot *aList; /* Pointer to sub-list content */ | |
1481 }; | |
1482 | |
1483 const int nList = *pnList; /* Size of input list */ | |
1484 int nMerge = 0; /* Number of elements in list aMerge */ | |
1485 ht_slot *aMerge = 0; /* List to be merged */ | |
1486 int iList; /* Index into input list */ | |
1487 u32 iSub = 0; /* Index into aSub array */ | |
1488 struct Sublist aSub[13]; /* Array of sub-lists */ | |
1489 | |
1490 memset(aSub, 0, sizeof(aSub)); | |
1491 assert( nList<=HASHTABLE_NPAGE && nList>0 ); | |
1492 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) ); | |
1493 | |
1494 for(iList=0; iList<nList; iList++){ | |
1495 nMerge = 1; | |
1496 aMerge = &aList[iList]; | |
1497 for(iSub=0; iList & (1<<iSub); iSub++){ | |
1498 struct Sublist *p; | |
1499 assert( iSub<ArraySize(aSub) ); | |
1500 p = &aSub[iSub]; | |
1501 assert( p->aList && p->nList<=(1<<iSub) ); | |
1502 assert( p->aList==&aList[iList&~((2<<iSub)-1)] ); | |
1503 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); | |
1504 } | |
1505 aSub[iSub].aList = aMerge; | |
1506 aSub[iSub].nList = nMerge; | |
1507 } | |
1508 | |
1509 for(iSub++; iSub<ArraySize(aSub); iSub++){ | |
1510 if( nList & (1<<iSub) ){ | |
1511 struct Sublist *p; | |
1512 assert( iSub<ArraySize(aSub) ); | |
1513 p = &aSub[iSub]; | |
1514 assert( p->nList<=(1<<iSub) ); | |
1515 assert( p->aList==&aList[nList&~((2<<iSub)-1)] ); | |
1516 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer); | |
1517 } | |
1518 } | |
1519 assert( aMerge==aList ); | |
1520 *pnList = nMerge; | |
1521 | |
1522 #ifdef SQLITE_DEBUG | |
1523 { | |
1524 int i; | |
1525 for(i=1; i<*pnList; i++){ | |
1526 assert( aContent[aList[i]] > aContent[aList[i-1]] ); | |
1527 } | |
1528 } | |
1529 #endif | |
1530 } | |
1531 | |
1532 /* | |
1533 ** Free an iterator allocated by walIteratorInit(). | |
1534 */ | |
1535 static void walIteratorFree(WalIterator *p){ | |
1536 sqlite3_free(p); | |
1537 } | |
1538 | |
1539 /* | |
1540 ** Construct a WalInterator object that can be used to loop over all | |
1541 ** pages in the WAL in ascending order. The caller must hold the checkpoint | |
1542 ** lock. | |
1543 ** | |
1544 ** On success, make *pp point to the newly allocated WalInterator object | |
1545 ** return SQLITE_OK. Otherwise, return an error code. If this routine | |
1546 ** returns an error, the value of *pp is undefined. | |
1547 ** | |
1548 ** The calling routine should invoke walIteratorFree() to destroy the | |
1549 ** WalIterator object when it has finished with it. | |
1550 */ | |
1551 static int walIteratorInit(Wal *pWal, WalIterator **pp){ | |
1552 WalIterator *p; /* Return value */ | |
1553 int nSegment; /* Number of segments to merge */ | |
1554 u32 iLast; /* Last frame in log */ | |
1555 int nByte; /* Number of bytes to allocate */ | |
1556 int i; /* Iterator variable */ | |
1557 ht_slot *aTmp; /* Temp space used by merge-sort */ | |
1558 int rc = SQLITE_OK; /* Return Code */ | |
1559 | |
1560 /* This routine only runs while holding the checkpoint lock. And | |
1561 ** it only runs if there is actually content in the log (mxFrame>0). | |
1562 */ | |
1563 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 ); | |
1564 iLast = pWal->hdr.mxFrame; | |
1565 | |
1566 /* Allocate space for the WalIterator object. */ | |
1567 nSegment = walFramePage(iLast) + 1; | |
1568 nByte = sizeof(WalIterator) | |
1569 + (nSegment-1)*sizeof(struct WalSegment) | |
1570 + iLast*sizeof(ht_slot); | |
1571 p = (WalIterator *)sqlite3_malloc64(nByte); | |
1572 if( !p ){ | |
1573 return SQLITE_NOMEM; | |
1574 } | |
1575 memset(p, 0, nByte); | |
1576 p->nSegment = nSegment; | |
1577 | |
1578 /* Allocate temporary space used by the merge-sort routine. This block | |
1579 ** of memory will be freed before this function returns. | |
1580 */ | |
1581 aTmp = (ht_slot *)sqlite3_malloc64( | |
1582 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast) | |
1583 ); | |
1584 if( !aTmp ){ | |
1585 rc = SQLITE_NOMEM; | |
1586 } | |
1587 | |
1588 for(i=0; rc==SQLITE_OK && i<nSegment; i++){ | |
1589 volatile ht_slot *aHash; | |
1590 u32 iZero; | |
1591 volatile u32 *aPgno; | |
1592 | |
1593 rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero); | |
1594 if( rc==SQLITE_OK ){ | |
1595 int j; /* Counter variable */ | |
1596 int nEntry; /* Number of entries in this segment */ | |
1597 ht_slot *aIndex; /* Sorted index for this segment */ | |
1598 | |
1599 aPgno++; | |
1600 if( (i+1)==nSegment ){ | |
1601 nEntry = (int)(iLast - iZero); | |
1602 }else{ | |
1603 nEntry = (int)((u32*)aHash - (u32*)aPgno); | |
1604 } | |
1605 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero]; | |
1606 iZero++; | |
1607 | |
1608 for(j=0; j<nEntry; j++){ | |
1609 aIndex[j] = (ht_slot)j; | |
1610 } | |
1611 walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry); | |
1612 p->aSegment[i].iZero = iZero; | |
1613 p->aSegment[i].nEntry = nEntry; | |
1614 p->aSegment[i].aIndex = aIndex; | |
1615 p->aSegment[i].aPgno = (u32 *)aPgno; | |
1616 } | |
1617 } | |
1618 sqlite3_free(aTmp); | |
1619 | |
1620 if( rc!=SQLITE_OK ){ | |
1621 walIteratorFree(p); | |
1622 } | |
1623 *pp = p; | |
1624 return rc; | |
1625 } | |
1626 | |
1627 /* | |
1628 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and | |
1629 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a | |
1630 ** busy-handler function. Invoke it and retry the lock until either the | |
1631 ** lock is successfully obtained or the busy-handler returns 0. | |
1632 */ | |
1633 static int walBusyLock( | |
1634 Wal *pWal, /* WAL connection */ | |
1635 int (*xBusy)(void*), /* Function to call when busy */ | |
1636 void *pBusyArg, /* Context argument for xBusyHandler */ | |
1637 int lockIdx, /* Offset of first byte to lock */ | |
1638 int n /* Number of bytes to lock */ | |
1639 ){ | |
1640 int rc; | |
1641 do { | |
1642 rc = walLockExclusive(pWal, lockIdx, n); | |
1643 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) ); | |
1644 return rc; | |
1645 } | |
1646 | |
1647 /* | |
1648 ** The cache of the wal-index header must be valid to call this function. | |
1649 ** Return the page-size in bytes used by the database. | |
1650 */ | |
1651 static int walPagesize(Wal *pWal){ | |
1652 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); | |
1653 } | |
1654 | |
1655 /* | |
1656 ** The following is guaranteed when this function is called: | |
1657 ** | |
1658 ** a) the WRITER lock is held, | |
1659 ** b) the entire log file has been checkpointed, and | |
1660 ** c) any existing readers are reading exclusively from the database | |
1661 ** file - there are no readers that may attempt to read a frame from | |
1662 ** the log file. | |
1663 ** | |
1664 ** This function updates the shared-memory structures so that the next | |
1665 ** client to write to the database (which may be this one) does so by | |
1666 ** writing frames into the start of the log file. | |
1667 ** | |
1668 ** The value of parameter salt1 is used as the aSalt[1] value in the | |
1669 ** new wal-index header. It should be passed a pseudo-random value (i.e. | |
1670 ** one obtained from sqlite3_randomness()). | |
1671 */ | |
1672 static void walRestartHdr(Wal *pWal, u32 salt1){ | |
1673 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); | |
1674 int i; /* Loop counter */ | |
1675 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */ | |
1676 pWal->nCkpt++; | |
1677 pWal->hdr.mxFrame = 0; | |
1678 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0])); | |
1679 memcpy(&pWal->hdr.aSalt[1], &salt1, 4); | |
1680 walIndexWriteHdr(pWal); | |
1681 pInfo->nBackfill = 0; | |
1682 pInfo->nBackfillAttempted = 0; | |
1683 pInfo->aReadMark[1] = 0; | |
1684 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED; | |
1685 assert( pInfo->aReadMark[0]==0 ); | |
1686 } | |
1687 | |
1688 /* | |
1689 ** Copy as much content as we can from the WAL back into the database file | |
1690 ** in response to an sqlite3_wal_checkpoint() request or the equivalent. | |
1691 ** | |
1692 ** The amount of information copies from WAL to database might be limited | |
1693 ** by active readers. This routine will never overwrite a database page | |
1694 ** that a concurrent reader might be using. | |
1695 ** | |
1696 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when | |
1697 ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if | |
1698 ** checkpoints are always run by a background thread or background | |
1699 ** process, foreground threads will never block on a lengthy fsync call. | |
1700 ** | |
1701 ** Fsync is called on the WAL before writing content out of the WAL and | |
1702 ** into the database. This ensures that if the new content is persistent | |
1703 ** in the WAL and can be recovered following a power-loss or hard reset. | |
1704 ** | |
1705 ** Fsync is also called on the database file if (and only if) the entire | |
1706 ** WAL content is copied into the database file. This second fsync makes | |
1707 ** it safe to delete the WAL since the new content will persist in the | |
1708 ** database file. | |
1709 ** | |
1710 ** This routine uses and updates the nBackfill field of the wal-index header. | |
1711 ** This is the only routine that will increase the value of nBackfill. | |
1712 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase | |
1713 ** its value.) | |
1714 ** | |
1715 ** The caller must be holding sufficient locks to ensure that no other | |
1716 ** checkpoint is running (in any other thread or process) at the same | |
1717 ** time. | |
1718 */ | |
1719 static int walCheckpoint( | |
1720 Wal *pWal, /* Wal connection */ | |
1721 int eMode, /* One of PASSIVE, FULL or RESTART */ | |
1722 int (*xBusy)(void*), /* Function to call when busy */ | |
1723 void *pBusyArg, /* Context argument for xBusyHandler */ | |
1724 int sync_flags, /* Flags for OsSync() (or 0) */ | |
1725 u8 *zBuf /* Temporary buffer to use */ | |
1726 ){ | |
1727 int rc = SQLITE_OK; /* Return code */ | |
1728 int szPage; /* Database page-size */ | |
1729 WalIterator *pIter = 0; /* Wal iterator context */ | |
1730 u32 iDbpage = 0; /* Next database page to write */ | |
1731 u32 iFrame = 0; /* Wal frame containing data for iDbpage */ | |
1732 u32 mxSafeFrame; /* Max frame that can be backfilled */ | |
1733 u32 mxPage; /* Max database page to write */ | |
1734 int i; /* Loop counter */ | |
1735 volatile WalCkptInfo *pInfo; /* The checkpoint status information */ | |
1736 | |
1737 szPage = walPagesize(pWal); | |
1738 testcase( szPage<=32768 ); | |
1739 testcase( szPage>=65536 ); | |
1740 pInfo = walCkptInfo(pWal); | |
1741 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ | |
1742 | |
1743 /* Allocate the iterator */ | |
1744 rc = walIteratorInit(pWal, &pIter); | |
1745 if( rc!=SQLITE_OK ){ | |
1746 return rc; | |
1747 } | |
1748 assert( pIter ); | |
1749 | |
1750 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked | |
1751 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ | |
1752 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); | |
1753 | |
1754 /* Compute in mxSafeFrame the index of the last frame of the WAL that is | |
1755 ** safe to write into the database. Frames beyond mxSafeFrame might | |
1756 ** overwrite database pages that are in use by active readers and thus | |
1757 ** cannot be backfilled from the WAL. | |
1758 */ | |
1759 mxSafeFrame = pWal->hdr.mxFrame; | |
1760 mxPage = pWal->hdr.nPage; | |
1761 for(i=1; i<WAL_NREADER; i++){ | |
1762 /* Thread-sanitizer reports that the following is an unsafe read, | |
1763 ** as some other thread may be in the process of updating the value | |
1764 ** of the aReadMark[] slot. The assumption here is that if that is | |
1765 ** happening, the other client may only be increasing the value, | |
1766 ** not decreasing it. So assuming either that either the "old" or | |
1767 ** "new" version of the value is read, and not some arbitrary value | |
1768 ** that would never be written by a real client, things are still | |
1769 ** safe. */ | |
1770 u32 y = pInfo->aReadMark[i]; | |
1771 if( mxSafeFrame>y ){ | |
1772 assert( y<=pWal->hdr.mxFrame ); | |
1773 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1); | |
1774 if( rc==SQLITE_OK ){ | |
1775 pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED); | |
1776 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); | |
1777 }else if( rc==SQLITE_BUSY ){ | |
1778 mxSafeFrame = y; | |
1779 xBusy = 0; | |
1780 }else{ | |
1781 goto walcheckpoint_out; | |
1782 } | |
1783 } | |
1784 } | |
1785 | |
1786 if( pInfo->nBackfill<mxSafeFrame | |
1787 && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK | |
1788 ){ | |
1789 i64 nSize; /* Current size of database file */ | |
1790 u32 nBackfill = pInfo->nBackfill; | |
1791 | |
1792 pInfo->nBackfillAttempted = mxSafeFrame; | |
1793 | |
1794 /* Sync the WAL to disk */ | |
1795 if( sync_flags ){ | |
1796 rc = sqlite3OsSync(pWal->pWalFd, sync_flags); | |
1797 } | |
1798 | |
1799 /* If the database may grow as a result of this checkpoint, hint | |
1800 ** about the eventual size of the db file to the VFS layer. | |
1801 */ | |
1802 if( rc==SQLITE_OK ){ | |
1803 i64 nReq = ((i64)mxPage * szPage); | |
1804 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize); | |
1805 if( rc==SQLITE_OK && nSize<nReq ){ | |
1806 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq); | |
1807 } | |
1808 } | |
1809 | |
1810 | |
1811 /* Iterate through the contents of the WAL, copying data to the db file */ | |
1812 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){ | |
1813 i64 iOffset; | |
1814 assert( walFramePgno(pWal, iFrame)==iDbpage ); | |
1815 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){ | |
1816 continue; | |
1817 } | |
1818 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE; | |
1819 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */ | |
1820 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset); | |
1821 if( rc!=SQLITE_OK ) break; | |
1822 iOffset = (iDbpage-1)*(i64)szPage; | |
1823 testcase( IS_BIG_INT(iOffset) ); | |
1824 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset); | |
1825 if( rc!=SQLITE_OK ) break; | |
1826 } | |
1827 | |
1828 /* If work was actually accomplished... */ | |
1829 if( rc==SQLITE_OK ){ | |
1830 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){ | |
1831 i64 szDb = pWal->hdr.nPage*(i64)szPage; | |
1832 testcase( IS_BIG_INT(szDb) ); | |
1833 rc = sqlite3OsTruncate(pWal->pDbFd, szDb); | |
1834 if( rc==SQLITE_OK && sync_flags ){ | |
1835 rc = sqlite3OsSync(pWal->pDbFd, sync_flags); | |
1836 } | |
1837 } | |
1838 if( rc==SQLITE_OK ){ | |
1839 pInfo->nBackfill = mxSafeFrame; | |
1840 } | |
1841 } | |
1842 | |
1843 /* Release the reader lock held while backfilling */ | |
1844 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1); | |
1845 } | |
1846 | |
1847 if( rc==SQLITE_BUSY ){ | |
1848 /* Reset the return code so as not to report a checkpoint failure | |
1849 ** just because there are active readers. */ | |
1850 rc = SQLITE_OK; | |
1851 } | |
1852 } | |
1853 | |
1854 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the | |
1855 ** entire wal file has been copied into the database file, then block | |
1856 ** until all readers have finished using the wal file. This ensures that | |
1857 ** the next process to write to the database restarts the wal file. | |
1858 */ | |
1859 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){ | |
1860 assert( pWal->writeLock ); | |
1861 if( pInfo->nBackfill<pWal->hdr.mxFrame ){ | |
1862 rc = SQLITE_BUSY; | |
1863 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){ | |
1864 u32 salt1; | |
1865 sqlite3_randomness(4, &salt1); | |
1866 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); | |
1867 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1); | |
1868 if( rc==SQLITE_OK ){ | |
1869 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){ | |
1870 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as | |
1871 ** SQLITE_CHECKPOINT_RESTART with the addition that it also | |
1872 ** truncates the log file to zero bytes just prior to a | |
1873 ** successful return. | |
1874 ** | |
1875 ** In theory, it might be safe to do this without updating the | |
1876 ** wal-index header in shared memory, as all subsequent reader or | |
1877 ** writer clients should see that the entire log file has been | |
1878 ** checkpointed and behave accordingly. This seems unsafe though, | |
1879 ** as it would leave the system in a state where the contents of | |
1880 ** the wal-index header do not match the contents of the | |
1881 ** file-system. To avoid this, update the wal-index header to | |
1882 ** indicate that the log file contains zero valid frames. */ | |
1883 walRestartHdr(pWal, salt1); | |
1884 rc = sqlite3OsTruncate(pWal->pWalFd, 0); | |
1885 } | |
1886 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); | |
1887 } | |
1888 } | |
1889 } | |
1890 | |
1891 walcheckpoint_out: | |
1892 walIteratorFree(pIter); | |
1893 return rc; | |
1894 } | |
1895 | |
1896 /* | |
1897 ** If the WAL file is currently larger than nMax bytes in size, truncate | |
1898 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it. | |
1899 */ | |
1900 static void walLimitSize(Wal *pWal, i64 nMax){ | |
1901 i64 sz; | |
1902 int rx; | |
1903 sqlite3BeginBenignMalloc(); | |
1904 rx = sqlite3OsFileSize(pWal->pWalFd, &sz); | |
1905 if( rx==SQLITE_OK && (sz > nMax ) ){ | |
1906 rx = sqlite3OsTruncate(pWal->pWalFd, nMax); | |
1907 } | |
1908 sqlite3EndBenignMalloc(); | |
1909 if( rx ){ | |
1910 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName); | |
1911 } | |
1912 } | |
1913 | |
1914 /* | |
1915 ** Close a connection to a log file. | |
1916 */ | |
1917 int sqlite3WalClose( | |
1918 Wal *pWal, /* Wal to close */ | |
1919 int sync_flags, /* Flags to pass to OsSync() (or 0) */ | |
1920 int nBuf, | |
1921 u8 *zBuf /* Buffer of at least nBuf bytes */ | |
1922 ){ | |
1923 int rc = SQLITE_OK; | |
1924 if( pWal ){ | |
1925 int isDelete = 0; /* True to unlink wal and wal-index files */ | |
1926 | |
1927 /* If an EXCLUSIVE lock can be obtained on the database file (using the | |
1928 ** ordinary, rollback-mode locking methods, this guarantees that the | |
1929 ** connection associated with this log file is the only connection to | |
1930 ** the database. In this case checkpoint the database and unlink both | |
1931 ** the wal and wal-index files. | |
1932 ** | |
1933 ** The EXCLUSIVE lock is not released before returning. | |
1934 */ | |
1935 rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE); | |
1936 if( rc==SQLITE_OK ){ | |
1937 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){ | |
1938 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE; | |
1939 } | |
1940 rc = sqlite3WalCheckpoint( | |
1941 pWal, SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0 | |
1942 ); | |
1943 if( rc==SQLITE_OK ){ | |
1944 int bPersist = -1; | |
1945 sqlite3OsFileControlHint( | |
1946 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist | |
1947 ); | |
1948 if( bPersist!=1 ){ | |
1949 /* Try to delete the WAL file if the checkpoint completed and | |
1950 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal | |
1951 ** mode (!bPersist) */ | |
1952 isDelete = 1; | |
1953 }else if( pWal->mxWalSize>=0 ){ | |
1954 /* Try to truncate the WAL file to zero bytes if the checkpoint | |
1955 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent | |
1956 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a | |
1957 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate | |
1958 ** to zero bytes as truncating to the journal_size_limit might | |
1959 ** leave a corrupt WAL file on disk. */ | |
1960 walLimitSize(pWal, 0); | |
1961 } | |
1962 } | |
1963 } | |
1964 | |
1965 walIndexClose(pWal, isDelete); | |
1966 sqlite3OsClose(pWal->pWalFd); | |
1967 if( isDelete ){ | |
1968 sqlite3BeginBenignMalloc(); | |
1969 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0); | |
1970 sqlite3EndBenignMalloc(); | |
1971 } | |
1972 WALTRACE(("WAL%p: closed\n", pWal)); | |
1973 sqlite3_free((void *)pWal->apWiData); | |
1974 sqlite3_free(pWal); | |
1975 } | |
1976 return rc; | |
1977 } | |
1978 | |
1979 /* | |
1980 ** Try to read the wal-index header. Return 0 on success and 1 if | |
1981 ** there is a problem. | |
1982 ** | |
1983 ** The wal-index is in shared memory. Another thread or process might | |
1984 ** be writing the header at the same time this procedure is trying to | |
1985 ** read it, which might result in inconsistency. A dirty read is detected | |
1986 ** by verifying that both copies of the header are the same and also by | |
1987 ** a checksum on the header. | |
1988 ** | |
1989 ** If and only if the read is consistent and the header is different from | |
1990 ** pWal->hdr, then pWal->hdr is updated to the content of the new header | |
1991 ** and *pChanged is set to 1. | |
1992 ** | |
1993 ** If the checksum cannot be verified return non-zero. If the header | |
1994 ** is read successfully and the checksum verified, return zero. | |
1995 */ | |
1996 static int walIndexTryHdr(Wal *pWal, int *pChanged){ | |
1997 u32 aCksum[2]; /* Checksum on the header content */ | |
1998 WalIndexHdr h1, h2; /* Two copies of the header content */ | |
1999 WalIndexHdr volatile *aHdr; /* Header in shared memory */ | |
2000 | |
2001 /* The first page of the wal-index must be mapped at this point. */ | |
2002 assert( pWal->nWiData>0 && pWal->apWiData[0] ); | |
2003 | |
2004 /* Read the header. This might happen concurrently with a write to the | |
2005 ** same area of shared memory on a different CPU in a SMP, | |
2006 ** meaning it is possible that an inconsistent snapshot is read | |
2007 ** from the file. If this happens, return non-zero. | |
2008 ** | |
2009 ** There are two copies of the header at the beginning of the wal-index. | |
2010 ** When reading, read [0] first then [1]. Writes are in the reverse order. | |
2011 ** Memory barriers are used to prevent the compiler or the hardware from | |
2012 ** reordering the reads and writes. | |
2013 */ | |
2014 aHdr = walIndexHdr(pWal); | |
2015 memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); | |
2016 walShmBarrier(pWal); | |
2017 memcpy(&h2, (void *)&aHdr[1], sizeof(h2)); | |
2018 | |
2019 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){ | |
2020 return 1; /* Dirty read */ | |
2021 } | |
2022 if( h1.isInit==0 ){ | |
2023 return 1; /* Malformed header - probably all zeros */ | |
2024 } | |
2025 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum); | |
2026 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){ | |
2027 return 1; /* Checksum does not match */ | |
2028 } | |
2029 | |
2030 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){ | |
2031 *pChanged = 1; | |
2032 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr)); | |
2033 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16); | |
2034 testcase( pWal->szPage<=32768 ); | |
2035 testcase( pWal->szPage>=65536 ); | |
2036 } | |
2037 | |
2038 /* The header was successfully read. Return zero. */ | |
2039 return 0; | |
2040 } | |
2041 | |
2042 /* | |
2043 ** Read the wal-index header from the wal-index and into pWal->hdr. | |
2044 ** If the wal-header appears to be corrupt, try to reconstruct the | |
2045 ** wal-index from the WAL before returning. | |
2046 ** | |
2047 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is | |
2048 ** changed by this operation. If pWal->hdr is unchanged, set *pChanged | |
2049 ** to 0. | |
2050 ** | |
2051 ** If the wal-index header is successfully read, return SQLITE_OK. | |
2052 ** Otherwise an SQLite error code. | |
2053 */ | |
2054 static int walIndexReadHdr(Wal *pWal, int *pChanged){ | |
2055 int rc; /* Return code */ | |
2056 int badHdr; /* True if a header read failed */ | |
2057 volatile u32 *page0; /* Chunk of wal-index containing header */ | |
2058 | |
2059 /* Ensure that page 0 of the wal-index (the page that contains the | |
2060 ** wal-index header) is mapped. Return early if an error occurs here. | |
2061 */ | |
2062 assert( pChanged ); | |
2063 rc = walIndexPage(pWal, 0, &page0); | |
2064 if( rc!=SQLITE_OK ){ | |
2065 return rc; | |
2066 }; | |
2067 assert( page0 || pWal->writeLock==0 ); | |
2068 | |
2069 /* If the first page of the wal-index has been mapped, try to read the | |
2070 ** wal-index header immediately, without holding any lock. This usually | |
2071 ** works, but may fail if the wal-index header is corrupt or currently | |
2072 ** being modified by another thread or process. | |
2073 */ | |
2074 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1); | |
2075 | |
2076 /* If the first attempt failed, it might have been due to a race | |
2077 ** with a writer. So get a WRITE lock and try again. | |
2078 */ | |
2079 assert( badHdr==0 || pWal->writeLock==0 ); | |
2080 if( badHdr ){ | |
2081 if( pWal->readOnly & WAL_SHM_RDONLY ){ | |
2082 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){ | |
2083 walUnlockShared(pWal, WAL_WRITE_LOCK); | |
2084 rc = SQLITE_READONLY_RECOVERY; | |
2085 } | |
2086 }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){ | |
2087 pWal->writeLock = 1; | |
2088 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){ | |
2089 badHdr = walIndexTryHdr(pWal, pChanged); | |
2090 if( badHdr ){ | |
2091 /* If the wal-index header is still malformed even while holding | |
2092 ** a WRITE lock, it can only mean that the header is corrupted and | |
2093 ** needs to be reconstructed. So run recovery to do exactly that. | |
2094 */ | |
2095 rc = walIndexRecover(pWal); | |
2096 *pChanged = 1; | |
2097 } | |
2098 } | |
2099 pWal->writeLock = 0; | |
2100 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); | |
2101 } | |
2102 } | |
2103 | |
2104 /* If the header is read successfully, check the version number to make | |
2105 ** sure the wal-index was not constructed with some future format that | |
2106 ** this version of SQLite cannot understand. | |
2107 */ | |
2108 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){ | |
2109 rc = SQLITE_CANTOPEN_BKPT; | |
2110 } | |
2111 | |
2112 return rc; | |
2113 } | |
2114 | |
2115 /* | |
2116 ** This is the value that walTryBeginRead returns when it needs to | |
2117 ** be retried. | |
2118 */ | |
2119 #define WAL_RETRY (-1) | |
2120 | |
2121 /* | |
2122 ** Attempt to start a read transaction. This might fail due to a race or | |
2123 ** other transient condition. When that happens, it returns WAL_RETRY to | |
2124 ** indicate to the caller that it is safe to retry immediately. | |
2125 ** | |
2126 ** On success return SQLITE_OK. On a permanent failure (such an | |
2127 ** I/O error or an SQLITE_BUSY because another process is running | |
2128 ** recovery) return a positive error code. | |
2129 ** | |
2130 ** The useWal parameter is true to force the use of the WAL and disable | |
2131 ** the case where the WAL is bypassed because it has been completely | |
2132 ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr() | |
2133 ** to make a copy of the wal-index header into pWal->hdr. If the | |
2134 ** wal-index header has changed, *pChanged is set to 1 (as an indication | |
2135 ** to the caller that the local paget cache is obsolete and needs to be | |
2136 ** flushed.) When useWal==1, the wal-index header is assumed to already | |
2137 ** be loaded and the pChanged parameter is unused. | |
2138 ** | |
2139 ** The caller must set the cnt parameter to the number of prior calls to | |
2140 ** this routine during the current read attempt that returned WAL_RETRY. | |
2141 ** This routine will start taking more aggressive measures to clear the | |
2142 ** race conditions after multiple WAL_RETRY returns, and after an excessive | |
2143 ** number of errors will ultimately return SQLITE_PROTOCOL. The | |
2144 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue | |
2145 ** and is not honoring the locking protocol. There is a vanishingly small | |
2146 ** chance that SQLITE_PROTOCOL could be returned because of a run of really | |
2147 ** bad luck when there is lots of contention for the wal-index, but that | |
2148 ** possibility is so small that it can be safely neglected, we believe. | |
2149 ** | |
2150 ** On success, this routine obtains a read lock on | |
2151 ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is | |
2152 ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1) | |
2153 ** that means the Wal does not hold any read lock. The reader must not | |
2154 ** access any database page that is modified by a WAL frame up to and | |
2155 ** including frame number aReadMark[pWal->readLock]. The reader will | |
2156 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0 | |
2157 ** Or if pWal->readLock==0, then the reader will ignore the WAL | |
2158 ** completely and get all content directly from the database file. | |
2159 ** If the useWal parameter is 1 then the WAL will never be ignored and | |
2160 ** this routine will always set pWal->readLock>0 on success. | |
2161 ** When the read transaction is completed, the caller must release the | |
2162 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1. | |
2163 ** | |
2164 ** This routine uses the nBackfill and aReadMark[] fields of the header | |
2165 ** to select a particular WAL_READ_LOCK() that strives to let the | |
2166 ** checkpoint process do as much work as possible. This routine might | |
2167 ** update values of the aReadMark[] array in the header, but if it does | |
2168 ** so it takes care to hold an exclusive lock on the corresponding | |
2169 ** WAL_READ_LOCK() while changing values. | |
2170 */ | |
2171 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){ | |
2172 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */ | |
2173 u32 mxReadMark; /* Largest aReadMark[] value */ | |
2174 int mxI; /* Index of largest aReadMark[] value */ | |
2175 int i; /* Loop counter */ | |
2176 int rc = SQLITE_OK; /* Return code */ | |
2177 u32 mxFrame; /* Wal frame to lock to */ | |
2178 | |
2179 assert( pWal->readLock<0 ); /* Not currently locked */ | |
2180 | |
2181 /* Take steps to avoid spinning forever if there is a protocol error. | |
2182 ** | |
2183 ** Circumstances that cause a RETRY should only last for the briefest | |
2184 ** instances of time. No I/O or other system calls are done while the | |
2185 ** locks are held, so the locks should not be held for very long. But | |
2186 ** if we are unlucky, another process that is holding a lock might get | |
2187 ** paged out or take a page-fault that is time-consuming to resolve, | |
2188 ** during the few nanoseconds that it is holding the lock. In that case, | |
2189 ** it might take longer than normal for the lock to free. | |
2190 ** | |
2191 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few | |
2192 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this | |
2193 ** is more of a scheduler yield than an actual delay. But on the 10th | |
2194 ** an subsequent retries, the delays start becoming longer and longer, | |
2195 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds. | |
2196 ** The total delay time before giving up is less than 10 seconds. | |
2197 */ | |
2198 if( cnt>5 ){ | |
2199 int nDelay = 1; /* Pause time in microseconds */ | |
2200 if( cnt>100 ){ | |
2201 VVA_ONLY( pWal->lockError = 1; ) | |
2202 return SQLITE_PROTOCOL; | |
2203 } | |
2204 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39; | |
2205 sqlite3OsSleep(pWal->pVfs, nDelay); | |
2206 } | |
2207 | |
2208 if( !useWal ){ | |
2209 rc = walIndexReadHdr(pWal, pChanged); | |
2210 if( rc==SQLITE_BUSY ){ | |
2211 /* If there is not a recovery running in another thread or process | |
2212 ** then convert BUSY errors to WAL_RETRY. If recovery is known to | |
2213 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here | |
2214 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY | |
2215 ** would be technically correct. But the race is benign since with | |
2216 ** WAL_RETRY this routine will be called again and will probably be | |
2217 ** right on the second iteration. | |
2218 */ | |
2219 if( pWal->apWiData[0]==0 ){ | |
2220 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY. | |
2221 ** We assume this is a transient condition, so return WAL_RETRY. The | |
2222 ** xShmMap() implementation used by the default unix and win32 VFS | |
2223 ** modules may return SQLITE_BUSY due to a race condition in the | |
2224 ** code that determines whether or not the shared-memory region | |
2225 ** must be zeroed before the requested page is returned. | |
2226 */ | |
2227 rc = WAL_RETRY; | |
2228 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){ | |
2229 walUnlockShared(pWal, WAL_RECOVER_LOCK); | |
2230 rc = WAL_RETRY; | |
2231 }else if( rc==SQLITE_BUSY ){ | |
2232 rc = SQLITE_BUSY_RECOVERY; | |
2233 } | |
2234 } | |
2235 if( rc!=SQLITE_OK ){ | |
2236 return rc; | |
2237 } | |
2238 } | |
2239 | |
2240 pInfo = walCkptInfo(pWal); | |
2241 if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame | |
2242 #ifdef SQLITE_ENABLE_SNAPSHOT | |
2243 && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0 | |
2244 || 0==memcmp(&pWal->hdr, pWal->pSnapshot, sizeof(WalIndexHdr))) | |
2245 #endif | |
2246 ){ | |
2247 /* The WAL has been completely backfilled (or it is empty). | |
2248 ** and can be safely ignored. | |
2249 */ | |
2250 rc = walLockShared(pWal, WAL_READ_LOCK(0)); | |
2251 walShmBarrier(pWal); | |
2252 if( rc==SQLITE_OK ){ | |
2253 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){ | |
2254 /* It is not safe to allow the reader to continue here if frames | |
2255 ** may have been appended to the log before READ_LOCK(0) was obtained. | |
2256 ** When holding READ_LOCK(0), the reader ignores the entire log file, | |
2257 ** which implies that the database file contains a trustworthy | |
2258 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from | |
2259 ** happening, this is usually correct. | |
2260 ** | |
2261 ** However, if frames have been appended to the log (or if the log | |
2262 ** is wrapped and written for that matter) before the READ_LOCK(0) | |
2263 ** is obtained, that is not necessarily true. A checkpointer may | |
2264 ** have started to backfill the appended frames but crashed before | |
2265 ** it finished. Leaving a corrupt image in the database file. | |
2266 */ | |
2267 walUnlockShared(pWal, WAL_READ_LOCK(0)); | |
2268 return WAL_RETRY; | |
2269 } | |
2270 pWal->readLock = 0; | |
2271 return SQLITE_OK; | |
2272 }else if( rc!=SQLITE_BUSY ){ | |
2273 return rc; | |
2274 } | |
2275 } | |
2276 | |
2277 /* If we get this far, it means that the reader will want to use | |
2278 ** the WAL to get at content from recent commits. The job now is | |
2279 ** to select one of the aReadMark[] entries that is closest to | |
2280 ** but not exceeding pWal->hdr.mxFrame and lock that entry. | |
2281 */ | |
2282 mxReadMark = 0; | |
2283 mxI = 0; | |
2284 mxFrame = pWal->hdr.mxFrame; | |
2285 #ifdef SQLITE_ENABLE_SNAPSHOT | |
2286 if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){ | |
2287 mxFrame = pWal->pSnapshot->mxFrame; | |
2288 } | |
2289 #endif | |
2290 for(i=1; i<WAL_NREADER; i++){ | |
2291 u32 thisMark = pInfo->aReadMark[i]; | |
2292 if( mxReadMark<=thisMark && thisMark<=mxFrame ){ | |
2293 assert( thisMark!=READMARK_NOT_USED ); | |
2294 mxReadMark = thisMark; | |
2295 mxI = i; | |
2296 } | |
2297 } | |
2298 if( (pWal->readOnly & WAL_SHM_RDONLY)==0 | |
2299 && (mxReadMark<mxFrame || mxI==0) | |
2300 ){ | |
2301 for(i=1; i<WAL_NREADER; i++){ | |
2302 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1); | |
2303 if( rc==SQLITE_OK ){ | |
2304 mxReadMark = pInfo->aReadMark[i] = mxFrame; | |
2305 mxI = i; | |
2306 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1); | |
2307 break; | |
2308 }else if( rc!=SQLITE_BUSY ){ | |
2309 return rc; | |
2310 } | |
2311 } | |
2312 } | |
2313 if( mxI==0 ){ | |
2314 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 ); | |
2315 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK; | |
2316 } | |
2317 | |
2318 rc = walLockShared(pWal, WAL_READ_LOCK(mxI)); | |
2319 if( rc ){ | |
2320 return rc==SQLITE_BUSY ? WAL_RETRY : rc; | |
2321 } | |
2322 /* Now that the read-lock has been obtained, check that neither the | |
2323 ** value in the aReadMark[] array or the contents of the wal-index | |
2324 ** header have changed. | |
2325 ** | |
2326 ** It is necessary to check that the wal-index header did not change | |
2327 ** between the time it was read and when the shared-lock was obtained | |
2328 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility | |
2329 ** that the log file may have been wrapped by a writer, or that frames | |
2330 ** that occur later in the log than pWal->hdr.mxFrame may have been | |
2331 ** copied into the database by a checkpointer. If either of these things | |
2332 ** happened, then reading the database with the current value of | |
2333 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry | |
2334 ** instead. | |
2335 ** | |
2336 ** Before checking that the live wal-index header has not changed | |
2337 ** since it was read, set Wal.minFrame to the first frame in the wal | |
2338 ** file that has not yet been checkpointed. This client will not need | |
2339 ** to read any frames earlier than minFrame from the wal file - they | |
2340 ** can be safely read directly from the database file. | |
2341 ** | |
2342 ** Because a ShmBarrier() call is made between taking the copy of | |
2343 ** nBackfill and checking that the wal-header in shared-memory still | |
2344 ** matches the one cached in pWal->hdr, it is guaranteed that the | |
2345 ** checkpointer that set nBackfill was not working with a wal-index | |
2346 ** header newer than that cached in pWal->hdr. If it were, that could | |
2347 ** cause a problem. The checkpointer could omit to checkpoint | |
2348 ** a version of page X that lies before pWal->minFrame (call that version | |
2349 ** A) on the basis that there is a newer version (version B) of the same | |
2350 ** page later in the wal file. But if version B happens to like past | |
2351 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume | |
2352 ** that it can read version A from the database file. However, since | |
2353 ** we can guarantee that the checkpointer that set nBackfill could not | |
2354 ** see any pages past pWal->hdr.mxFrame, this problem does not come up. | |
2355 */ | |
2356 pWal->minFrame = pInfo->nBackfill+1; | |
2357 walShmBarrier(pWal); | |
2358 if( pInfo->aReadMark[mxI]!=mxReadMark | |
2359 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) | |
2360 ){ | |
2361 walUnlockShared(pWal, WAL_READ_LOCK(mxI)); | |
2362 return WAL_RETRY; | |
2363 }else{ | |
2364 assert( mxReadMark<=pWal->hdr.mxFrame ); | |
2365 pWal->readLock = (i16)mxI; | |
2366 } | |
2367 return rc; | |
2368 } | |
2369 | |
2370 /* | |
2371 ** Begin a read transaction on the database. | |
2372 ** | |
2373 ** This routine used to be called sqlite3OpenSnapshot() and with good reason: | |
2374 ** it takes a snapshot of the state of the WAL and wal-index for the current | |
2375 ** instant in time. The current thread will continue to use this snapshot. | |
2376 ** Other threads might append new content to the WAL and wal-index but | |
2377 ** that extra content is ignored by the current thread. | |
2378 ** | |
2379 ** If the database contents have changes since the previous read | |
2380 ** transaction, then *pChanged is set to 1 before returning. The | |
2381 ** Pager layer will use this to know that is cache is stale and | |
2382 ** needs to be flushed. | |
2383 */ | |
2384 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){ | |
2385 int rc; /* Return code */ | |
2386 int cnt = 0; /* Number of TryBeginRead attempts */ | |
2387 | |
2388 #ifdef SQLITE_ENABLE_SNAPSHOT | |
2389 int bChanged = 0; | |
2390 WalIndexHdr *pSnapshot = pWal->pSnapshot; | |
2391 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ | |
2392 bChanged = 1; | |
2393 } | |
2394 #endif | |
2395 | |
2396 do{ | |
2397 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt); | |
2398 }while( rc==WAL_RETRY ); | |
2399 testcase( (rc&0xff)==SQLITE_BUSY ); | |
2400 testcase( (rc&0xff)==SQLITE_IOERR ); | |
2401 testcase( rc==SQLITE_PROTOCOL ); | |
2402 testcase( rc==SQLITE_OK ); | |
2403 | |
2404 #ifdef SQLITE_ENABLE_SNAPSHOT | |
2405 if( rc==SQLITE_OK ){ | |
2406 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){ | |
2407 /* At this point the client has a lock on an aReadMark[] slot holding | |
2408 ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr | |
2409 ** is populated with the wal-index header corresponding to the head | |
2410 ** of the wal file. Verify that pSnapshot is still valid before | |
2411 ** continuing. Reasons why pSnapshot might no longer be valid: | |
2412 ** | |
2413 ** (1) The WAL file has been reset since the snapshot was taken. | |
2414 ** In this case, the salt will have changed. | |
2415 ** | |
2416 ** (2) A checkpoint as been attempted that wrote frames past | |
2417 ** pSnapshot->mxFrame into the database file. Note that the | |
2418 ** checkpoint need not have completed for this to cause problems. | |
2419 */ | |
2420 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); | |
2421 | |
2422 assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 ); | |
2423 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame ); | |
2424 | |
2425 /* It is possible that there is a checkpointer thread running | |
2426 ** concurrent with this code. If this is the case, it may be that the | |
2427 ** checkpointer has already determined that it will checkpoint | |
2428 ** snapshot X, where X is later in the wal file than pSnapshot, but | |
2429 ** has not yet set the pInfo->nBackfillAttempted variable to indicate | |
2430 ** its intent. To avoid the race condition this leads to, ensure that | |
2431 ** there is no checkpointer process by taking a shared CKPT lock | |
2432 ** before checking pInfo->nBackfillAttempted. */ | |
2433 rc = walLockShared(pWal, WAL_CKPT_LOCK); | |
2434 | |
2435 if( rc==SQLITE_OK ){ | |
2436 /* Check that the wal file has not been wrapped. Assuming that it has | |
2437 ** not, also check that no checkpointer has attempted to checkpoint any | |
2438 ** frames beyond pSnapshot->mxFrame. If either of these conditions are | |
2439 ** true, return SQLITE_BUSY_SNAPSHOT. Otherwise, overwrite pWal->hdr | |
2440 ** with *pSnapshot and set *pChanged as appropriate for opening the | |
2441 ** snapshot. */ | |
2442 if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt)) | |
2443 && pSnapshot->mxFrame>=pInfo->nBackfillAttempted | |
2444 ){ | |
2445 assert( pWal->readLock>0 ); | |
2446 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr)); | |
2447 *pChanged = bChanged; | |
2448 }else{ | |
2449 rc = SQLITE_BUSY_SNAPSHOT; | |
2450 } | |
2451 | |
2452 /* Release the shared CKPT lock obtained above. */ | |
2453 walUnlockShared(pWal, WAL_CKPT_LOCK); | |
2454 } | |
2455 | |
2456 | |
2457 if( rc!=SQLITE_OK ){ | |
2458 sqlite3WalEndReadTransaction(pWal); | |
2459 } | |
2460 } | |
2461 } | |
2462 #endif | |
2463 return rc; | |
2464 } | |
2465 | |
2466 /* | |
2467 ** Finish with a read transaction. All this does is release the | |
2468 ** read-lock. | |
2469 */ | |
2470 void sqlite3WalEndReadTransaction(Wal *pWal){ | |
2471 sqlite3WalEndWriteTransaction(pWal); | |
2472 if( pWal->readLock>=0 ){ | |
2473 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); | |
2474 pWal->readLock = -1; | |
2475 } | |
2476 } | |
2477 | |
2478 /* | |
2479 ** Search the wal file for page pgno. If found, set *piRead to the frame that | |
2480 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead | |
2481 ** to zero. | |
2482 ** | |
2483 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an | |
2484 ** error does occur, the final value of *piRead is undefined. | |
2485 */ | |
2486 int sqlite3WalFindFrame( | |
2487 Wal *pWal, /* WAL handle */ | |
2488 Pgno pgno, /* Database page number to read data for */ | |
2489 u32 *piRead /* OUT: Frame number (or zero) */ | |
2490 ){ | |
2491 u32 iRead = 0; /* If !=0, WAL frame to return data from */ | |
2492 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */ | |
2493 int iHash; /* Used to loop through N hash tables */ | |
2494 int iMinHash; | |
2495 | |
2496 /* This routine is only be called from within a read transaction. */ | |
2497 assert( pWal->readLock>=0 || pWal->lockError ); | |
2498 | |
2499 /* If the "last page" field of the wal-index header snapshot is 0, then | |
2500 ** no data will be read from the wal under any circumstances. Return early | |
2501 ** in this case as an optimization. Likewise, if pWal->readLock==0, | |
2502 ** then the WAL is ignored by the reader so return early, as if the | |
2503 ** WAL were empty. | |
2504 */ | |
2505 if( iLast==0 || pWal->readLock==0 ){ | |
2506 *piRead = 0; | |
2507 return SQLITE_OK; | |
2508 } | |
2509 | |
2510 /* Search the hash table or tables for an entry matching page number | |
2511 ** pgno. Each iteration of the following for() loop searches one | |
2512 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames). | |
2513 ** | |
2514 ** This code might run concurrently to the code in walIndexAppend() | |
2515 ** that adds entries to the wal-index (and possibly to this hash | |
2516 ** table). This means the value just read from the hash | |
2517 ** slot (aHash[iKey]) may have been added before or after the | |
2518 ** current read transaction was opened. Values added after the | |
2519 ** read transaction was opened may have been written incorrectly - | |
2520 ** i.e. these slots may contain garbage data. However, we assume | |
2521 ** that any slots written before the current read transaction was | |
2522 ** opened remain unmodified. | |
2523 ** | |
2524 ** For the reasons above, the if(...) condition featured in the inner | |
2525 ** loop of the following block is more stringent that would be required | |
2526 ** if we had exclusive access to the hash-table: | |
2527 ** | |
2528 ** (aPgno[iFrame]==pgno): | |
2529 ** This condition filters out normal hash-table collisions. | |
2530 ** | |
2531 ** (iFrame<=iLast): | |
2532 ** This condition filters out entries that were added to the hash | |
2533 ** table after the current read-transaction had started. | |
2534 */ | |
2535 iMinHash = walFramePage(pWal->minFrame); | |
2536 for(iHash=walFramePage(iLast); iHash>=iMinHash && iRead==0; iHash--){ | |
2537 volatile ht_slot *aHash; /* Pointer to hash table */ | |
2538 volatile u32 *aPgno; /* Pointer to array of page numbers */ | |
2539 u32 iZero; /* Frame number corresponding to aPgno[0] */ | |
2540 int iKey; /* Hash slot index */ | |
2541 int nCollide; /* Number of hash collisions remaining */ | |
2542 int rc; /* Error code */ | |
2543 | |
2544 rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero); | |
2545 if( rc!=SQLITE_OK ){ | |
2546 return rc; | |
2547 } | |
2548 nCollide = HASHTABLE_NSLOT; | |
2549 for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){ | |
2550 u32 iFrame = aHash[iKey] + iZero; | |
2551 if( iFrame<=iLast && iFrame>=pWal->minFrame && aPgno[aHash[iKey]]==pgno ){ | |
2552 assert( iFrame>iRead || CORRUPT_DB ); | |
2553 iRead = iFrame; | |
2554 } | |
2555 if( (nCollide--)==0 ){ | |
2556 return SQLITE_CORRUPT_BKPT; | |
2557 } | |
2558 } | |
2559 } | |
2560 | |
2561 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT | |
2562 /* If expensive assert() statements are available, do a linear search | |
2563 ** of the wal-index file content. Make sure the results agree with the | |
2564 ** result obtained using the hash indexes above. */ | |
2565 { | |
2566 u32 iRead2 = 0; | |
2567 u32 iTest; | |
2568 assert( pWal->minFrame>0 ); | |
2569 for(iTest=iLast; iTest>=pWal->minFrame; iTest--){ | |
2570 if( walFramePgno(pWal, iTest)==pgno ){ | |
2571 iRead2 = iTest; | |
2572 break; | |
2573 } | |
2574 } | |
2575 assert( iRead==iRead2 ); | |
2576 } | |
2577 #endif | |
2578 | |
2579 *piRead = iRead; | |
2580 return SQLITE_OK; | |
2581 } | |
2582 | |
2583 /* | |
2584 ** Read the contents of frame iRead from the wal file into buffer pOut | |
2585 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an | |
2586 ** error code otherwise. | |
2587 */ | |
2588 int sqlite3WalReadFrame( | |
2589 Wal *pWal, /* WAL handle */ | |
2590 u32 iRead, /* Frame to read */ | |
2591 int nOut, /* Size of buffer pOut in bytes */ | |
2592 u8 *pOut /* Buffer to write page data to */ | |
2593 ){ | |
2594 int sz; | |
2595 i64 iOffset; | |
2596 sz = pWal->hdr.szPage; | |
2597 sz = (sz&0xfe00) + ((sz&0x0001)<<16); | |
2598 testcase( sz<=32768 ); | |
2599 testcase( sz>=65536 ); | |
2600 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE; | |
2601 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */ | |
2602 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset); | |
2603 } | |
2604 | |
2605 /* | |
2606 ** Return the size of the database in pages (or zero, if unknown). | |
2607 */ | |
2608 Pgno sqlite3WalDbsize(Wal *pWal){ | |
2609 if( pWal && ALWAYS(pWal->readLock>=0) ){ | |
2610 return pWal->hdr.nPage; | |
2611 } | |
2612 return 0; | |
2613 } | |
2614 | |
2615 | |
2616 /* | |
2617 ** This function starts a write transaction on the WAL. | |
2618 ** | |
2619 ** A read transaction must have already been started by a prior call | |
2620 ** to sqlite3WalBeginReadTransaction(). | |
2621 ** | |
2622 ** If another thread or process has written into the database since | |
2623 ** the read transaction was started, then it is not possible for this | |
2624 ** thread to write as doing so would cause a fork. So this routine | |
2625 ** returns SQLITE_BUSY in that case and no write transaction is started. | |
2626 ** | |
2627 ** There can only be a single writer active at a time. | |
2628 */ | |
2629 int sqlite3WalBeginWriteTransaction(Wal *pWal){ | |
2630 int rc; | |
2631 | |
2632 /* Cannot start a write transaction without first holding a read | |
2633 ** transaction. */ | |
2634 assert( pWal->readLock>=0 ); | |
2635 | |
2636 if( pWal->readOnly ){ | |
2637 return SQLITE_READONLY; | |
2638 } | |
2639 | |
2640 /* Only one writer allowed at a time. Get the write lock. Return | |
2641 ** SQLITE_BUSY if unable. | |
2642 */ | |
2643 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1); | |
2644 if( rc ){ | |
2645 return rc; | |
2646 } | |
2647 pWal->writeLock = 1; | |
2648 | |
2649 /* If another connection has written to the database file since the | |
2650 ** time the read transaction on this connection was started, then | |
2651 ** the write is disallowed. | |
2652 */ | |
2653 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){ | |
2654 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); | |
2655 pWal->writeLock = 0; | |
2656 rc = SQLITE_BUSY_SNAPSHOT; | |
2657 } | |
2658 | |
2659 return rc; | |
2660 } | |
2661 | |
2662 /* | |
2663 ** End a write transaction. The commit has already been done. This | |
2664 ** routine merely releases the lock. | |
2665 */ | |
2666 int sqlite3WalEndWriteTransaction(Wal *pWal){ | |
2667 if( pWal->writeLock ){ | |
2668 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1); | |
2669 pWal->writeLock = 0; | |
2670 pWal->truncateOnCommit = 0; | |
2671 } | |
2672 return SQLITE_OK; | |
2673 } | |
2674 | |
2675 /* | |
2676 ** If any data has been written (but not committed) to the log file, this | |
2677 ** function moves the write-pointer back to the start of the transaction. | |
2678 ** | |
2679 ** Additionally, the callback function is invoked for each frame written | |
2680 ** to the WAL since the start of the transaction. If the callback returns | |
2681 ** other than SQLITE_OK, it is not invoked again and the error code is | |
2682 ** returned to the caller. | |
2683 ** | |
2684 ** Otherwise, if the callback function does not return an error, this | |
2685 ** function returns SQLITE_OK. | |
2686 */ | |
2687 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){ | |
2688 int rc = SQLITE_OK; | |
2689 if( ALWAYS(pWal->writeLock) ){ | |
2690 Pgno iMax = pWal->hdr.mxFrame; | |
2691 Pgno iFrame; | |
2692 | |
2693 /* Restore the clients cache of the wal-index header to the state it | |
2694 ** was in before the client began writing to the database. | |
2695 */ | |
2696 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr)); | |
2697 | |
2698 for(iFrame=pWal->hdr.mxFrame+1; | |
2699 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax; | |
2700 iFrame++ | |
2701 ){ | |
2702 /* This call cannot fail. Unless the page for which the page number | |
2703 ** is passed as the second argument is (a) in the cache and | |
2704 ** (b) has an outstanding reference, then xUndo is either a no-op | |
2705 ** (if (a) is false) or simply expels the page from the cache (if (b) | |
2706 ** is false). | |
2707 ** | |
2708 ** If the upper layer is doing a rollback, it is guaranteed that there | |
2709 ** are no outstanding references to any page other than page 1. And | |
2710 ** page 1 is never written to the log until the transaction is | |
2711 ** committed. As a result, the call to xUndo may not fail. | |
2712 */ | |
2713 assert( walFramePgno(pWal, iFrame)!=1 ); | |
2714 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame)); | |
2715 } | |
2716 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal); | |
2717 } | |
2718 return rc; | |
2719 } | |
2720 | |
2721 /* | |
2722 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32 | |
2723 ** values. This function populates the array with values required to | |
2724 ** "rollback" the write position of the WAL handle back to the current | |
2725 ** point in the event of a savepoint rollback (via WalSavepointUndo()). | |
2726 */ | |
2727 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){ | |
2728 assert( pWal->writeLock ); | |
2729 aWalData[0] = pWal->hdr.mxFrame; | |
2730 aWalData[1] = pWal->hdr.aFrameCksum[0]; | |
2731 aWalData[2] = pWal->hdr.aFrameCksum[1]; | |
2732 aWalData[3] = pWal->nCkpt; | |
2733 } | |
2734 | |
2735 /* | |
2736 ** Move the write position of the WAL back to the point identified by | |
2737 ** the values in the aWalData[] array. aWalData must point to an array | |
2738 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated | |
2739 ** by a call to WalSavepoint(). | |
2740 */ | |
2741 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){ | |
2742 int rc = SQLITE_OK; | |
2743 | |
2744 assert( pWal->writeLock ); | |
2745 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame ); | |
2746 | |
2747 if( aWalData[3]!=pWal->nCkpt ){ | |
2748 /* This savepoint was opened immediately after the write-transaction | |
2749 ** was started. Right after that, the writer decided to wrap around | |
2750 ** to the start of the log. Update the savepoint values to match. | |
2751 */ | |
2752 aWalData[0] = 0; | |
2753 aWalData[3] = pWal->nCkpt; | |
2754 } | |
2755 | |
2756 if( aWalData[0]<pWal->hdr.mxFrame ){ | |
2757 pWal->hdr.mxFrame = aWalData[0]; | |
2758 pWal->hdr.aFrameCksum[0] = aWalData[1]; | |
2759 pWal->hdr.aFrameCksum[1] = aWalData[2]; | |
2760 walCleanupHash(pWal); | |
2761 } | |
2762 | |
2763 return rc; | |
2764 } | |
2765 | |
2766 /* | |
2767 ** This function is called just before writing a set of frames to the log | |
2768 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending | |
2769 ** to the current log file, it is possible to overwrite the start of the | |
2770 ** existing log file with the new frames (i.e. "reset" the log). If so, | |
2771 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left | |
2772 ** unchanged. | |
2773 ** | |
2774 ** SQLITE_OK is returned if no error is encountered (regardless of whether | |
2775 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned | |
2776 ** if an error occurs. | |
2777 */ | |
2778 static int walRestartLog(Wal *pWal){ | |
2779 int rc = SQLITE_OK; | |
2780 int cnt; | |
2781 | |
2782 if( pWal->readLock==0 ){ | |
2783 volatile WalCkptInfo *pInfo = walCkptInfo(pWal); | |
2784 assert( pInfo->nBackfill==pWal->hdr.mxFrame ); | |
2785 if( pInfo->nBackfill>0 ){ | |
2786 u32 salt1; | |
2787 sqlite3_randomness(4, &salt1); | |
2788 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); | |
2789 if( rc==SQLITE_OK ){ | |
2790 /* If all readers are using WAL_READ_LOCK(0) (in other words if no | |
2791 ** readers are currently using the WAL), then the transactions | |
2792 ** frames will overwrite the start of the existing log. Update the | |
2793 ** wal-index header to reflect this. | |
2794 ** | |
2795 ** In theory it would be Ok to update the cache of the header only | |
2796 ** at this point. But updating the actual wal-index header is also | |
2797 ** safe and means there is no special case for sqlite3WalUndo() | |
2798 ** to handle if this transaction is rolled back. */ | |
2799 walRestartHdr(pWal, salt1); | |
2800 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1); | |
2801 }else if( rc!=SQLITE_BUSY ){ | |
2802 return rc; | |
2803 } | |
2804 } | |
2805 walUnlockShared(pWal, WAL_READ_LOCK(0)); | |
2806 pWal->readLock = -1; | |
2807 cnt = 0; | |
2808 do{ | |
2809 int notUsed; | |
2810 rc = walTryBeginRead(pWal, ¬Used, 1, ++cnt); | |
2811 }while( rc==WAL_RETRY ); | |
2812 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */ | |
2813 testcase( (rc&0xff)==SQLITE_IOERR ); | |
2814 testcase( rc==SQLITE_PROTOCOL ); | |
2815 testcase( rc==SQLITE_OK ); | |
2816 } | |
2817 return rc; | |
2818 } | |
2819 | |
2820 /* | |
2821 ** Information about the current state of the WAL file and where | |
2822 ** the next fsync should occur - passed from sqlite3WalFrames() into | |
2823 ** walWriteToLog(). | |
2824 */ | |
2825 typedef struct WalWriter { | |
2826 Wal *pWal; /* The complete WAL information */ | |
2827 sqlite3_file *pFd; /* The WAL file to which we write */ | |
2828 sqlite3_int64 iSyncPoint; /* Fsync at this offset */ | |
2829 int syncFlags; /* Flags for the fsync */ | |
2830 int szPage; /* Size of one page */ | |
2831 } WalWriter; | |
2832 | |
2833 /* | |
2834 ** Write iAmt bytes of content into the WAL file beginning at iOffset. | |
2835 ** Do a sync when crossing the p->iSyncPoint boundary. | |
2836 ** | |
2837 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt, | |
2838 ** first write the part before iSyncPoint, then sync, then write the | |
2839 ** rest. | |
2840 */ | |
2841 static int walWriteToLog( | |
2842 WalWriter *p, /* WAL to write to */ | |
2843 void *pContent, /* Content to be written */ | |
2844 int iAmt, /* Number of bytes to write */ | |
2845 sqlite3_int64 iOffset /* Start writing at this offset */ | |
2846 ){ | |
2847 int rc; | |
2848 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){ | |
2849 int iFirstAmt = (int)(p->iSyncPoint - iOffset); | |
2850 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset); | |
2851 if( rc ) return rc; | |
2852 iOffset += iFirstAmt; | |
2853 iAmt -= iFirstAmt; | |
2854 pContent = (void*)(iFirstAmt + (char*)pContent); | |
2855 assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) ); | |
2856 rc = sqlite3OsSync(p->pFd, p->syncFlags & SQLITE_SYNC_MASK); | |
2857 if( iAmt==0 || rc ) return rc; | |
2858 } | |
2859 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset); | |
2860 return rc; | |
2861 } | |
2862 | |
2863 /* | |
2864 ** Write out a single frame of the WAL | |
2865 */ | |
2866 static int walWriteOneFrame( | |
2867 WalWriter *p, /* Where to write the frame */ | |
2868 PgHdr *pPage, /* The page of the frame to be written */ | |
2869 int nTruncate, /* The commit flag. Usually 0. >0 for commit */ | |
2870 sqlite3_int64 iOffset /* Byte offset at which to write */ | |
2871 ){ | |
2872 int rc; /* Result code from subfunctions */ | |
2873 void *pData; /* Data actually written */ | |
2874 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */ | |
2875 #if defined(SQLITE_HAS_CODEC) | |
2876 if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM; | |
2877 #else | |
2878 pData = pPage->pData; | |
2879 #endif | |
2880 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame); | |
2881 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset); | |
2882 if( rc ) return rc; | |
2883 /* Write the page data */ | |
2884 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame)); | |
2885 return rc; | |
2886 } | |
2887 | |
2888 /* | |
2889 ** Write a set of frames to the log. The caller must hold the write-lock | |
2890 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()). | |
2891 */ | |
2892 int sqlite3WalFrames( | |
2893 Wal *pWal, /* Wal handle to write to */ | |
2894 int szPage, /* Database page-size in bytes */ | |
2895 PgHdr *pList, /* List of dirty pages to write */ | |
2896 Pgno nTruncate, /* Database size after this commit */ | |
2897 int isCommit, /* True if this is a commit */ | |
2898 int sync_flags /* Flags to pass to OsSync() (or 0) */ | |
2899 ){ | |
2900 int rc; /* Used to catch return codes */ | |
2901 u32 iFrame; /* Next frame address */ | |
2902 PgHdr *p; /* Iterator to run through pList with. */ | |
2903 PgHdr *pLast = 0; /* Last frame in list */ | |
2904 int nExtra = 0; /* Number of extra copies of last page */ | |
2905 int szFrame; /* The size of a single frame */ | |
2906 i64 iOffset; /* Next byte to write in WAL file */ | |
2907 WalWriter w; /* The writer */ | |
2908 | |
2909 assert( pList ); | |
2910 assert( pWal->writeLock ); | |
2911 | |
2912 /* If this frame set completes a transaction, then nTruncate>0. If | |
2913 ** nTruncate==0 then this frame set does not complete the transaction. */ | |
2914 assert( (isCommit!=0)==(nTruncate!=0) ); | |
2915 | |
2916 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG) | |
2917 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){} | |
2918 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n", | |
2919 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill")); | |
2920 } | |
2921 #endif | |
2922 | |
2923 /* See if it is possible to write these frames into the start of the | |
2924 ** log file, instead of appending to it at pWal->hdr.mxFrame. | |
2925 */ | |
2926 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){ | |
2927 return rc; | |
2928 } | |
2929 | |
2930 /* If this is the first frame written into the log, write the WAL | |
2931 ** header to the start of the WAL file. See comments at the top of | |
2932 ** this source file for a description of the WAL header format. | |
2933 */ | |
2934 iFrame = pWal->hdr.mxFrame; | |
2935 if( iFrame==0 ){ | |
2936 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */ | |
2937 u32 aCksum[2]; /* Checksum for wal-header */ | |
2938 | |
2939 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN)); | |
2940 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION); | |
2941 sqlite3Put4byte(&aWalHdr[8], szPage); | |
2942 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt); | |
2943 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt); | |
2944 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8); | |
2945 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum); | |
2946 sqlite3Put4byte(&aWalHdr[24], aCksum[0]); | |
2947 sqlite3Put4byte(&aWalHdr[28], aCksum[1]); | |
2948 | |
2949 pWal->szPage = szPage; | |
2950 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN; | |
2951 pWal->hdr.aFrameCksum[0] = aCksum[0]; | |
2952 pWal->hdr.aFrameCksum[1] = aCksum[1]; | |
2953 pWal->truncateOnCommit = 1; | |
2954 | |
2955 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0); | |
2956 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok")); | |
2957 if( rc!=SQLITE_OK ){ | |
2958 return rc; | |
2959 } | |
2960 | |
2961 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless | |
2962 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise | |
2963 ** an out-of-order write following a WAL restart could result in | |
2964 ** database corruption. See the ticket: | |
2965 ** | |
2966 ** http://localhost:591/sqlite/info/ff5be73dee | |
2967 */ | |
2968 if( pWal->syncHeader && sync_flags ){ | |
2969 rc = sqlite3OsSync(pWal->pWalFd, sync_flags & SQLITE_SYNC_MASK); | |
2970 if( rc ) return rc; | |
2971 } | |
2972 } | |
2973 assert( (int)pWal->szPage==szPage ); | |
2974 | |
2975 /* Setup information needed to write frames into the WAL */ | |
2976 w.pWal = pWal; | |
2977 w.pFd = pWal->pWalFd; | |
2978 w.iSyncPoint = 0; | |
2979 w.syncFlags = sync_flags; | |
2980 w.szPage = szPage; | |
2981 iOffset = walFrameOffset(iFrame+1, szPage); | |
2982 szFrame = szPage + WAL_FRAME_HDRSIZE; | |
2983 | |
2984 /* Write all frames into the log file exactly once */ | |
2985 for(p=pList; p; p=p->pDirty){ | |
2986 int nDbSize; /* 0 normally. Positive == commit flag */ | |
2987 iFrame++; | |
2988 assert( iOffset==walFrameOffset(iFrame, szPage) ); | |
2989 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0; | |
2990 rc = walWriteOneFrame(&w, p, nDbSize, iOffset); | |
2991 if( rc ) return rc; | |
2992 pLast = p; | |
2993 iOffset += szFrame; | |
2994 } | |
2995 | |
2996 /* If this is the end of a transaction, then we might need to pad | |
2997 ** the transaction and/or sync the WAL file. | |
2998 ** | |
2999 ** Padding and syncing only occur if this set of frames complete a | |
3000 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL | |
3001 ** or synchronous==OFF, then no padding or syncing are needed. | |
3002 ** | |
3003 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not | |
3004 ** needed and only the sync is done. If padding is needed, then the | |
3005 ** final frame is repeated (with its commit mark) until the next sector | |
3006 ** boundary is crossed. Only the part of the WAL prior to the last | |
3007 ** sector boundary is synced; the part of the last frame that extends | |
3008 ** past the sector boundary is written after the sync. | |
3009 */ | |
3010 if( isCommit && (sync_flags & WAL_SYNC_TRANSACTIONS)!=0 ){ | |
3011 if( pWal->padToSectorBoundary ){ | |
3012 int sectorSize = sqlite3SectorSize(pWal->pWalFd); | |
3013 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize; | |
3014 while( iOffset<w.iSyncPoint ){ | |
3015 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset); | |
3016 if( rc ) return rc; | |
3017 iOffset += szFrame; | |
3018 nExtra++; | |
3019 } | |
3020 }else{ | |
3021 rc = sqlite3OsSync(w.pFd, sync_flags & SQLITE_SYNC_MASK); | |
3022 } | |
3023 } | |
3024 | |
3025 /* If this frame set completes the first transaction in the WAL and | |
3026 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the | |
3027 ** journal size limit, if possible. | |
3028 */ | |
3029 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){ | |
3030 i64 sz = pWal->mxWalSize; | |
3031 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){ | |
3032 sz = walFrameOffset(iFrame+nExtra+1, szPage); | |
3033 } | |
3034 walLimitSize(pWal, sz); | |
3035 pWal->truncateOnCommit = 0; | |
3036 } | |
3037 | |
3038 /* Append data to the wal-index. It is not necessary to lock the | |
3039 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index | |
3040 ** guarantees that there are no other writers, and no data that may | |
3041 ** be in use by existing readers is being overwritten. | |
3042 */ | |
3043 iFrame = pWal->hdr.mxFrame; | |
3044 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){ | |
3045 iFrame++; | |
3046 rc = walIndexAppend(pWal, iFrame, p->pgno); | |
3047 } | |
3048 while( rc==SQLITE_OK && nExtra>0 ){ | |
3049 iFrame++; | |
3050 nExtra--; | |
3051 rc = walIndexAppend(pWal, iFrame, pLast->pgno); | |
3052 } | |
3053 | |
3054 if( rc==SQLITE_OK ){ | |
3055 /* Update the private copy of the header. */ | |
3056 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16)); | |
3057 testcase( szPage<=32768 ); | |
3058 testcase( szPage>=65536 ); | |
3059 pWal->hdr.mxFrame = iFrame; | |
3060 if( isCommit ){ | |
3061 pWal->hdr.iChange++; | |
3062 pWal->hdr.nPage = nTruncate; | |
3063 } | |
3064 /* If this is a commit, update the wal-index header too. */ | |
3065 if( isCommit ){ | |
3066 walIndexWriteHdr(pWal); | |
3067 pWal->iCallback = iFrame; | |
3068 } | |
3069 } | |
3070 | |
3071 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok")); | |
3072 return rc; | |
3073 } | |
3074 | |
3075 /* | |
3076 ** This routine is called to implement sqlite3_wal_checkpoint() and | |
3077 ** related interfaces. | |
3078 ** | |
3079 ** Obtain a CHECKPOINT lock and then backfill as much information as | |
3080 ** we can from WAL into the database. | |
3081 ** | |
3082 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler | |
3083 ** callback. In this case this function runs a blocking checkpoint. | |
3084 */ | |
3085 int sqlite3WalCheckpoint( | |
3086 Wal *pWal, /* Wal connection */ | |
3087 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */ | |
3088 int (*xBusy)(void*), /* Function to call when busy */ | |
3089 void *pBusyArg, /* Context argument for xBusyHandler */ | |
3090 int sync_flags, /* Flags to sync db file with (or 0) */ | |
3091 int nBuf, /* Size of temporary buffer */ | |
3092 u8 *zBuf, /* Temporary buffer to use */ | |
3093 int *pnLog, /* OUT: Number of frames in WAL */ | |
3094 int *pnCkpt /* OUT: Number of backfilled frames in WAL */ | |
3095 ){ | |
3096 int rc; /* Return code */ | |
3097 int isChanged = 0; /* True if a new wal-index header is loaded */ | |
3098 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */ | |
3099 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */ | |
3100 | |
3101 assert( pWal->ckptLock==0 ); | |
3102 assert( pWal->writeLock==0 ); | |
3103 | |
3104 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked | |
3105 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */ | |
3106 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 ); | |
3107 | |
3108 if( pWal->readOnly ) return SQLITE_READONLY; | |
3109 WALTRACE(("WAL%p: checkpoint begins\n", pWal)); | |
3110 | |
3111 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive | |
3112 ** "checkpoint" lock on the database file. */ | |
3113 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1); | |
3114 if( rc ){ | |
3115 /* EVIDENCE-OF: R-10421-19736 If any other process is running a | |
3116 ** checkpoint operation at the same time, the lock cannot be obtained and | |
3117 ** SQLITE_BUSY is returned. | |
3118 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured, | |
3119 ** it will not be invoked in this case. | |
3120 */ | |
3121 testcase( rc==SQLITE_BUSY ); | |
3122 testcase( xBusy!=0 ); | |
3123 return rc; | |
3124 } | |
3125 pWal->ckptLock = 1; | |
3126 | |
3127 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and | |
3128 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database | |
3129 ** file. | |
3130 ** | |
3131 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained | |
3132 ** immediately, and a busy-handler is configured, it is invoked and the | |
3133 ** writer lock retried until either the busy-handler returns 0 or the | |
3134 ** lock is successfully obtained. | |
3135 */ | |
3136 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){ | |
3137 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1); | |
3138 if( rc==SQLITE_OK ){ | |
3139 pWal->writeLock = 1; | |
3140 }else if( rc==SQLITE_BUSY ){ | |
3141 eMode2 = SQLITE_CHECKPOINT_PASSIVE; | |
3142 xBusy2 = 0; | |
3143 rc = SQLITE_OK; | |
3144 } | |
3145 } | |
3146 | |
3147 /* Read the wal-index header. */ | |
3148 if( rc==SQLITE_OK ){ | |
3149 rc = walIndexReadHdr(pWal, &isChanged); | |
3150 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){ | |
3151 sqlite3OsUnfetch(pWal->pDbFd, 0, 0); | |
3152 } | |
3153 } | |
3154 | |
3155 /* Copy data from the log to the database file. */ | |
3156 if( rc==SQLITE_OK ){ | |
3157 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){ | |
3158 rc = SQLITE_CORRUPT_BKPT; | |
3159 }else{ | |
3160 rc = walCheckpoint(pWal, eMode2, xBusy2, pBusyArg, sync_flags, zBuf); | |
3161 } | |
3162 | |
3163 /* If no error occurred, set the output variables. */ | |
3164 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){ | |
3165 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame; | |
3166 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill); | |
3167 } | |
3168 } | |
3169 | |
3170 if( isChanged ){ | |
3171 /* If a new wal-index header was loaded before the checkpoint was | |
3172 ** performed, then the pager-cache associated with pWal is now | |
3173 ** out of date. So zero the cached wal-index header to ensure that | |
3174 ** next time the pager opens a snapshot on this database it knows that | |
3175 ** the cache needs to be reset. | |
3176 */ | |
3177 memset(&pWal->hdr, 0, sizeof(WalIndexHdr)); | |
3178 } | |
3179 | |
3180 /* Release the locks. */ | |
3181 sqlite3WalEndWriteTransaction(pWal); | |
3182 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1); | |
3183 pWal->ckptLock = 0; | |
3184 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok")); | |
3185 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc); | |
3186 } | |
3187 | |
3188 /* Return the value to pass to a sqlite3_wal_hook callback, the | |
3189 ** number of frames in the WAL at the point of the last commit since | |
3190 ** sqlite3WalCallback() was called. If no commits have occurred since | |
3191 ** the last call, then return 0. | |
3192 */ | |
3193 int sqlite3WalCallback(Wal *pWal){ | |
3194 u32 ret = 0; | |
3195 if( pWal ){ | |
3196 ret = pWal->iCallback; | |
3197 pWal->iCallback = 0; | |
3198 } | |
3199 return (int)ret; | |
3200 } | |
3201 | |
3202 /* | |
3203 ** This function is called to change the WAL subsystem into or out | |
3204 ** of locking_mode=EXCLUSIVE. | |
3205 ** | |
3206 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE | |
3207 ** into locking_mode=NORMAL. This means that we must acquire a lock | |
3208 ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL | |
3209 ** or if the acquisition of the lock fails, then return 0. If the | |
3210 ** transition out of exclusive-mode is successful, return 1. This | |
3211 ** operation must occur while the pager is still holding the exclusive | |
3212 ** lock on the main database file. | |
3213 ** | |
3214 ** If op is one, then change from locking_mode=NORMAL into | |
3215 ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must | |
3216 ** be released. Return 1 if the transition is made and 0 if the | |
3217 ** WAL is already in exclusive-locking mode - meaning that this | |
3218 ** routine is a no-op. The pager must already hold the exclusive lock | |
3219 ** on the main database file before invoking this operation. | |
3220 ** | |
3221 ** If op is negative, then do a dry-run of the op==1 case but do | |
3222 ** not actually change anything. The pager uses this to see if it | |
3223 ** should acquire the database exclusive lock prior to invoking | |
3224 ** the op==1 case. | |
3225 */ | |
3226 int sqlite3WalExclusiveMode(Wal *pWal, int op){ | |
3227 int rc; | |
3228 assert( pWal->writeLock==0 ); | |
3229 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 ); | |
3230 | |
3231 /* pWal->readLock is usually set, but might be -1 if there was a | |
3232 ** prior error while attempting to acquire are read-lock. This cannot | |
3233 ** happen if the connection is actually in exclusive mode (as no xShmLock | |
3234 ** locks are taken in this case). Nor should the pager attempt to | |
3235 ** upgrade to exclusive-mode following such an error. | |
3236 */ | |
3237 assert( pWal->readLock>=0 || pWal->lockError ); | |
3238 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) ); | |
3239 | |
3240 if( op==0 ){ | |
3241 if( pWal->exclusiveMode ){ | |
3242 pWal->exclusiveMode = 0; | |
3243 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){ | |
3244 pWal->exclusiveMode = 1; | |
3245 } | |
3246 rc = pWal->exclusiveMode==0; | |
3247 }else{ | |
3248 /* Already in locking_mode=NORMAL */ | |
3249 rc = 0; | |
3250 } | |
3251 }else if( op>0 ){ | |
3252 assert( pWal->exclusiveMode==0 ); | |
3253 assert( pWal->readLock>=0 ); | |
3254 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock)); | |
3255 pWal->exclusiveMode = 1; | |
3256 rc = 1; | |
3257 }else{ | |
3258 rc = pWal->exclusiveMode==0; | |
3259 } | |
3260 return rc; | |
3261 } | |
3262 | |
3263 /* | |
3264 ** Return true if the argument is non-NULL and the WAL module is using | |
3265 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the | |
3266 ** WAL module is using shared-memory, return false. | |
3267 */ | |
3268 int sqlite3WalHeapMemory(Wal *pWal){ | |
3269 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ); | |
3270 } | |
3271 | |
3272 #ifdef SQLITE_ENABLE_SNAPSHOT | |
3273 /* Create a snapshot object. The content of a snapshot is opaque to | |
3274 ** every other subsystem, so the WAL module can put whatever it needs | |
3275 ** in the object. | |
3276 */ | |
3277 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){ | |
3278 int rc = SQLITE_OK; | |
3279 WalIndexHdr *pRet; | |
3280 | |
3281 assert( pWal->readLock>=0 && pWal->writeLock==0 ); | |
3282 | |
3283 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr)); | |
3284 if( pRet==0 ){ | |
3285 rc = SQLITE_NOMEM; | |
3286 }else{ | |
3287 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr)); | |
3288 *ppSnapshot = (sqlite3_snapshot*)pRet; | |
3289 } | |
3290 | |
3291 return rc; | |
3292 } | |
3293 | |
3294 /* Try to open on pSnapshot when the next read-transaction starts | |
3295 */ | |
3296 void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot){ | |
3297 pWal->pSnapshot = (WalIndexHdr*)pSnapshot; | |
3298 } | |
3299 #endif /* SQLITE_ENABLE_SNAPSHOT */ | |
3300 | |
3301 #ifdef SQLITE_ENABLE_ZIPVFS | |
3302 /* | |
3303 ** If the argument is not NULL, it points to a Wal object that holds a | |
3304 ** read-lock. This function returns the database page-size if it is known, | |
3305 ** or zero if it is not (or if pWal is NULL). | |
3306 */ | |
3307 int sqlite3WalFramesize(Wal *pWal){ | |
3308 assert( pWal==0 || pWal->readLock>=0 ); | |
3309 return (pWal ? pWal->szPage : 0); | |
3310 } | |
3311 #endif | |
3312 | |
3313 /* Return the sqlite3_file object for the WAL file | |
3314 */ | |
3315 sqlite3_file *sqlite3WalFile(Wal *pWal){ | |
3316 return pWal->pWalFd; | |
3317 } | |
3318 | |
3319 #endif /* #ifndef SQLITE_OMIT_WAL */ | |
OLD | NEW |