OLD | NEW |
| (Empty) |
1 /* | |
2 ** 2006 June 10 | |
3 ** | |
4 ** The author disclaims copyright to this source code. In place of | |
5 ** a legal notice, here is a blessing: | |
6 ** | |
7 ** May you do good and not evil. | |
8 ** May you find forgiveness for yourself and forgive others. | |
9 ** May you share freely, never taking more than you give. | |
10 ** | |
11 ************************************************************************* | |
12 ** This file contains code used to help implement virtual tables. | |
13 */ | |
14 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
15 #include "sqliteInt.h" | |
16 | |
17 /* | |
18 ** Before a virtual table xCreate() or xConnect() method is invoked, the | |
19 ** sqlite3.pVtabCtx member variable is set to point to an instance of | |
20 ** this struct allocated on the stack. It is used by the implementation of | |
21 ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which | |
22 ** are invoked only from within xCreate and xConnect methods. | |
23 */ | |
24 struct VtabCtx { | |
25 VTable *pVTable; /* The virtual table being constructed */ | |
26 Table *pTab; /* The Table object to which the virtual table belongs */ | |
27 VtabCtx *pPrior; /* Parent context (if any) */ | |
28 int bDeclared; /* True after sqlite3_declare_vtab() is called */ | |
29 }; | |
30 | |
31 /* | |
32 ** The actual function that does the work of creating a new module. | |
33 ** This function implements the sqlite3_create_module() and | |
34 ** sqlite3_create_module_v2() interfaces. | |
35 */ | |
36 static int createModule( | |
37 sqlite3 *db, /* Database in which module is registered */ | |
38 const char *zName, /* Name assigned to this module */ | |
39 const sqlite3_module *pModule, /* The definition of the module */ | |
40 void *pAux, /* Context pointer for xCreate/xConnect */ | |
41 void (*xDestroy)(void *) /* Module destructor function */ | |
42 ){ | |
43 int rc = SQLITE_OK; | |
44 int nName; | |
45 | |
46 sqlite3_mutex_enter(db->mutex); | |
47 nName = sqlite3Strlen30(zName); | |
48 if( sqlite3HashFind(&db->aModule, zName) ){ | |
49 rc = SQLITE_MISUSE_BKPT; | |
50 }else{ | |
51 Module *pMod; | |
52 pMod = (Module *)sqlite3DbMallocRaw(db, sizeof(Module) + nName + 1); | |
53 if( pMod ){ | |
54 Module *pDel; | |
55 char *zCopy = (char *)(&pMod[1]); | |
56 memcpy(zCopy, zName, nName+1); | |
57 pMod->zName = zCopy; | |
58 pMod->pModule = pModule; | |
59 pMod->pAux = pAux; | |
60 pMod->xDestroy = xDestroy; | |
61 pMod->pEpoTab = 0; | |
62 pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,(void*)pMod); | |
63 assert( pDel==0 || pDel==pMod ); | |
64 if( pDel ){ | |
65 db->mallocFailed = 1; | |
66 sqlite3DbFree(db, pDel); | |
67 } | |
68 } | |
69 } | |
70 rc = sqlite3ApiExit(db, rc); | |
71 if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux); | |
72 | |
73 sqlite3_mutex_leave(db->mutex); | |
74 return rc; | |
75 } | |
76 | |
77 | |
78 /* | |
79 ** External API function used to create a new virtual-table module. | |
80 */ | |
81 int sqlite3_create_module( | |
82 sqlite3 *db, /* Database in which module is registered */ | |
83 const char *zName, /* Name assigned to this module */ | |
84 const sqlite3_module *pModule, /* The definition of the module */ | |
85 void *pAux /* Context pointer for xCreate/xConnect */ | |
86 ){ | |
87 #ifdef SQLITE_ENABLE_API_ARMOR | |
88 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; | |
89 #endif | |
90 return createModule(db, zName, pModule, pAux, 0); | |
91 } | |
92 | |
93 /* | |
94 ** External API function used to create a new virtual-table module. | |
95 */ | |
96 int sqlite3_create_module_v2( | |
97 sqlite3 *db, /* Database in which module is registered */ | |
98 const char *zName, /* Name assigned to this module */ | |
99 const sqlite3_module *pModule, /* The definition of the module */ | |
100 void *pAux, /* Context pointer for xCreate/xConnect */ | |
101 void (*xDestroy)(void *) /* Module destructor function */ | |
102 ){ | |
103 #ifdef SQLITE_ENABLE_API_ARMOR | |
104 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT; | |
105 #endif | |
106 return createModule(db, zName, pModule, pAux, xDestroy); | |
107 } | |
108 | |
109 /* | |
110 ** Lock the virtual table so that it cannot be disconnected. | |
111 ** Locks nest. Every lock should have a corresponding unlock. | |
112 ** If an unlock is omitted, resources leaks will occur. | |
113 ** | |
114 ** If a disconnect is attempted while a virtual table is locked, | |
115 ** the disconnect is deferred until all locks have been removed. | |
116 */ | |
117 void sqlite3VtabLock(VTable *pVTab){ | |
118 pVTab->nRef++; | |
119 } | |
120 | |
121 | |
122 /* | |
123 ** pTab is a pointer to a Table structure representing a virtual-table. | |
124 ** Return a pointer to the VTable object used by connection db to access | |
125 ** this virtual-table, if one has been created, or NULL otherwise. | |
126 */ | |
127 VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){ | |
128 VTable *pVtab; | |
129 assert( IsVirtual(pTab) ); | |
130 for(pVtab=pTab->pVTable; pVtab && pVtab->db!=db; pVtab=pVtab->pNext); | |
131 return pVtab; | |
132 } | |
133 | |
134 /* | |
135 ** Decrement the ref-count on a virtual table object. When the ref-count | |
136 ** reaches zero, call the xDisconnect() method to delete the object. | |
137 */ | |
138 void sqlite3VtabUnlock(VTable *pVTab){ | |
139 sqlite3 *db = pVTab->db; | |
140 | |
141 assert( db ); | |
142 assert( pVTab->nRef>0 ); | |
143 assert( db->magic==SQLITE_MAGIC_OPEN || db->magic==SQLITE_MAGIC_ZOMBIE ); | |
144 | |
145 pVTab->nRef--; | |
146 if( pVTab->nRef==0 ){ | |
147 sqlite3_vtab *p = pVTab->pVtab; | |
148 if( p ){ | |
149 p->pModule->xDisconnect(p); | |
150 } | |
151 sqlite3DbFree(db, pVTab); | |
152 } | |
153 } | |
154 | |
155 /* | |
156 ** Table p is a virtual table. This function moves all elements in the | |
157 ** p->pVTable list to the sqlite3.pDisconnect lists of their associated | |
158 ** database connections to be disconnected at the next opportunity. | |
159 ** Except, if argument db is not NULL, then the entry associated with | |
160 ** connection db is left in the p->pVTable list. | |
161 */ | |
162 static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){ | |
163 VTable *pRet = 0; | |
164 VTable *pVTable = p->pVTable; | |
165 p->pVTable = 0; | |
166 | |
167 /* Assert that the mutex (if any) associated with the BtShared database | |
168 ** that contains table p is held by the caller. See header comments | |
169 ** above function sqlite3VtabUnlockList() for an explanation of why | |
170 ** this makes it safe to access the sqlite3.pDisconnect list of any | |
171 ** database connection that may have an entry in the p->pVTable list. | |
172 */ | |
173 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) ); | |
174 | |
175 while( pVTable ){ | |
176 sqlite3 *db2 = pVTable->db; | |
177 VTable *pNext = pVTable->pNext; | |
178 assert( db2 ); | |
179 if( db2==db ){ | |
180 pRet = pVTable; | |
181 p->pVTable = pRet; | |
182 pRet->pNext = 0; | |
183 }else{ | |
184 pVTable->pNext = db2->pDisconnect; | |
185 db2->pDisconnect = pVTable; | |
186 } | |
187 pVTable = pNext; | |
188 } | |
189 | |
190 assert( !db || pRet ); | |
191 return pRet; | |
192 } | |
193 | |
194 /* | |
195 ** Table *p is a virtual table. This function removes the VTable object | |
196 ** for table *p associated with database connection db from the linked | |
197 ** list in p->pVTab. It also decrements the VTable ref count. This is | |
198 ** used when closing database connection db to free all of its VTable | |
199 ** objects without disturbing the rest of the Schema object (which may | |
200 ** be being used by other shared-cache connections). | |
201 */ | |
202 void sqlite3VtabDisconnect(sqlite3 *db, Table *p){ | |
203 VTable **ppVTab; | |
204 | |
205 assert( IsVirtual(p) ); | |
206 assert( sqlite3BtreeHoldsAllMutexes(db) ); | |
207 assert( sqlite3_mutex_held(db->mutex) ); | |
208 | |
209 for(ppVTab=&p->pVTable; *ppVTab; ppVTab=&(*ppVTab)->pNext){ | |
210 if( (*ppVTab)->db==db ){ | |
211 VTable *pVTab = *ppVTab; | |
212 *ppVTab = pVTab->pNext; | |
213 sqlite3VtabUnlock(pVTab); | |
214 break; | |
215 } | |
216 } | |
217 } | |
218 | |
219 | |
220 /* | |
221 ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list. | |
222 ** | |
223 ** This function may only be called when the mutexes associated with all | |
224 ** shared b-tree databases opened using connection db are held by the | |
225 ** caller. This is done to protect the sqlite3.pDisconnect list. The | |
226 ** sqlite3.pDisconnect list is accessed only as follows: | |
227 ** | |
228 ** 1) By this function. In this case, all BtShared mutexes and the mutex | |
229 ** associated with the database handle itself must be held. | |
230 ** | |
231 ** 2) By function vtabDisconnectAll(), when it adds a VTable entry to | |
232 ** the sqlite3.pDisconnect list. In this case either the BtShared mutex | |
233 ** associated with the database the virtual table is stored in is held | |
234 ** or, if the virtual table is stored in a non-sharable database, then | |
235 ** the database handle mutex is held. | |
236 ** | |
237 ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously | |
238 ** by multiple threads. It is thread-safe. | |
239 */ | |
240 void sqlite3VtabUnlockList(sqlite3 *db){ | |
241 VTable *p = db->pDisconnect; | |
242 db->pDisconnect = 0; | |
243 | |
244 assert( sqlite3BtreeHoldsAllMutexes(db) ); | |
245 assert( sqlite3_mutex_held(db->mutex) ); | |
246 | |
247 if( p ){ | |
248 sqlite3ExpirePreparedStatements(db); | |
249 do { | |
250 VTable *pNext = p->pNext; | |
251 sqlite3VtabUnlock(p); | |
252 p = pNext; | |
253 }while( p ); | |
254 } | |
255 } | |
256 | |
257 /* | |
258 ** Clear any and all virtual-table information from the Table record. | |
259 ** This routine is called, for example, just before deleting the Table | |
260 ** record. | |
261 ** | |
262 ** Since it is a virtual-table, the Table structure contains a pointer | |
263 ** to the head of a linked list of VTable structures. Each VTable | |
264 ** structure is associated with a single sqlite3* user of the schema. | |
265 ** The reference count of the VTable structure associated with database | |
266 ** connection db is decremented immediately (which may lead to the | |
267 ** structure being xDisconnected and free). Any other VTable structures | |
268 ** in the list are moved to the sqlite3.pDisconnect list of the associated | |
269 ** database connection. | |
270 */ | |
271 void sqlite3VtabClear(sqlite3 *db, Table *p){ | |
272 if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p); | |
273 if( p->azModuleArg ){ | |
274 int i; | |
275 for(i=0; i<p->nModuleArg; i++){ | |
276 if( i!=1 ) sqlite3DbFree(db, p->azModuleArg[i]); | |
277 } | |
278 sqlite3DbFree(db, p->azModuleArg); | |
279 } | |
280 } | |
281 | |
282 /* | |
283 ** Add a new module argument to pTable->azModuleArg[]. | |
284 ** The string is not copied - the pointer is stored. The | |
285 ** string will be freed automatically when the table is | |
286 ** deleted. | |
287 */ | |
288 static void addModuleArgument(sqlite3 *db, Table *pTable, char *zArg){ | |
289 int nBytes = sizeof(char *)*(2+pTable->nModuleArg); | |
290 char **azModuleArg; | |
291 azModuleArg = sqlite3DbRealloc(db, pTable->azModuleArg, nBytes); | |
292 if( azModuleArg==0 ){ | |
293 sqlite3DbFree(db, zArg); | |
294 }else{ | |
295 int i = pTable->nModuleArg++; | |
296 azModuleArg[i] = zArg; | |
297 azModuleArg[i+1] = 0; | |
298 pTable->azModuleArg = azModuleArg; | |
299 } | |
300 } | |
301 | |
302 /* | |
303 ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE | |
304 ** statement. The module name has been parsed, but the optional list | |
305 ** of parameters that follow the module name are still pending. | |
306 */ | |
307 void sqlite3VtabBeginParse( | |
308 Parse *pParse, /* Parsing context */ | |
309 Token *pName1, /* Name of new table, or database name */ | |
310 Token *pName2, /* Name of new table or NULL */ | |
311 Token *pModuleName, /* Name of the module for the virtual table */ | |
312 int ifNotExists /* No error if the table already exists */ | |
313 ){ | |
314 int iDb; /* The database the table is being created in */ | |
315 Table *pTable; /* The new virtual table */ | |
316 sqlite3 *db; /* Database connection */ | |
317 | |
318 sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists); | |
319 pTable = pParse->pNewTable; | |
320 if( pTable==0 ) return; | |
321 assert( 0==pTable->pIndex ); | |
322 | |
323 db = pParse->db; | |
324 iDb = sqlite3SchemaToIndex(db, pTable->pSchema); | |
325 assert( iDb>=0 ); | |
326 | |
327 pTable->tabFlags |= TF_Virtual; | |
328 pTable->nModuleArg = 0; | |
329 addModuleArgument(db, pTable, sqlite3NameFromToken(db, pModuleName)); | |
330 addModuleArgument(db, pTable, 0); | |
331 addModuleArgument(db, pTable, sqlite3DbStrDup(db, pTable->zName)); | |
332 assert( (pParse->sNameToken.z==pName2->z && pName2->z!=0) | |
333 || (pParse->sNameToken.z==pName1->z && pName2->z==0) | |
334 ); | |
335 pParse->sNameToken.n = (int)( | |
336 &pModuleName->z[pModuleName->n] - pParse->sNameToken.z | |
337 ); | |
338 | |
339 #ifndef SQLITE_OMIT_AUTHORIZATION | |
340 /* Creating a virtual table invokes the authorization callback twice. | |
341 ** The first invocation, to obtain permission to INSERT a row into the | |
342 ** sqlite_master table, has already been made by sqlite3StartTable(). | |
343 ** The second call, to obtain permission to create the table, is made now. | |
344 */ | |
345 if( pTable->azModuleArg ){ | |
346 sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName, | |
347 pTable->azModuleArg[0], pParse->db->aDb[iDb].zName); | |
348 } | |
349 #endif | |
350 } | |
351 | |
352 /* | |
353 ** This routine takes the module argument that has been accumulating | |
354 ** in pParse->zArg[] and appends it to the list of arguments on the | |
355 ** virtual table currently under construction in pParse->pTable. | |
356 */ | |
357 static void addArgumentToVtab(Parse *pParse){ | |
358 if( pParse->sArg.z && pParse->pNewTable ){ | |
359 const char *z = (const char*)pParse->sArg.z; | |
360 int n = pParse->sArg.n; | |
361 sqlite3 *db = pParse->db; | |
362 addModuleArgument(db, pParse->pNewTable, sqlite3DbStrNDup(db, z, n)); | |
363 } | |
364 } | |
365 | |
366 /* | |
367 ** The parser calls this routine after the CREATE VIRTUAL TABLE statement | |
368 ** has been completely parsed. | |
369 */ | |
370 void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){ | |
371 Table *pTab = pParse->pNewTable; /* The table being constructed */ | |
372 sqlite3 *db = pParse->db; /* The database connection */ | |
373 | |
374 if( pTab==0 ) return; | |
375 addArgumentToVtab(pParse); | |
376 pParse->sArg.z = 0; | |
377 if( pTab->nModuleArg<1 ) return; | |
378 | |
379 /* If the CREATE VIRTUAL TABLE statement is being entered for the | |
380 ** first time (in other words if the virtual table is actually being | |
381 ** created now instead of just being read out of sqlite_master) then | |
382 ** do additional initialization work and store the statement text | |
383 ** in the sqlite_master table. | |
384 */ | |
385 if( !db->init.busy ){ | |
386 char *zStmt; | |
387 char *zWhere; | |
388 int iDb; | |
389 int iReg; | |
390 Vdbe *v; | |
391 | |
392 /* Compute the complete text of the CREATE VIRTUAL TABLE statement */ | |
393 if( pEnd ){ | |
394 pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n; | |
395 } | |
396 zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken); | |
397 | |
398 /* A slot for the record has already been allocated in the | |
399 ** SQLITE_MASTER table. We just need to update that slot with all | |
400 ** the information we've collected. | |
401 ** | |
402 ** The VM register number pParse->regRowid holds the rowid of an | |
403 ** entry in the sqlite_master table tht was created for this vtab | |
404 ** by sqlite3StartTable(). | |
405 */ | |
406 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); | |
407 sqlite3NestedParse(pParse, | |
408 "UPDATE %Q.%s " | |
409 "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q " | |
410 "WHERE rowid=#%d", | |
411 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), | |
412 pTab->zName, | |
413 pTab->zName, | |
414 zStmt, | |
415 pParse->regRowid | |
416 ); | |
417 sqlite3DbFree(db, zStmt); | |
418 v = sqlite3GetVdbe(pParse); | |
419 sqlite3ChangeCookie(pParse, iDb); | |
420 | |
421 sqlite3VdbeAddOp2(v, OP_Expire, 0, 0); | |
422 zWhere = sqlite3MPrintf(db, "name='%q' AND type='table'", pTab->zName); | |
423 sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere); | |
424 | |
425 iReg = ++pParse->nMem; | |
426 sqlite3VdbeLoadString(v, iReg, pTab->zName); | |
427 sqlite3VdbeAddOp2(v, OP_VCreate, iDb, iReg); | |
428 } | |
429 | |
430 /* If we are rereading the sqlite_master table create the in-memory | |
431 ** record of the table. The xConnect() method is not called until | |
432 ** the first time the virtual table is used in an SQL statement. This | |
433 ** allows a schema that contains virtual tables to be loaded before | |
434 ** the required virtual table implementations are registered. */ | |
435 else { | |
436 Table *pOld; | |
437 Schema *pSchema = pTab->pSchema; | |
438 const char *zName = pTab->zName; | |
439 assert( sqlite3SchemaMutexHeld(db, 0, pSchema) ); | |
440 pOld = sqlite3HashInsert(&pSchema->tblHash, zName, pTab); | |
441 if( pOld ){ | |
442 db->mallocFailed = 1; | |
443 assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */ | |
444 return; | |
445 } | |
446 pParse->pNewTable = 0; | |
447 } | |
448 } | |
449 | |
450 /* | |
451 ** The parser calls this routine when it sees the first token | |
452 ** of an argument to the module name in a CREATE VIRTUAL TABLE statement. | |
453 */ | |
454 void sqlite3VtabArgInit(Parse *pParse){ | |
455 addArgumentToVtab(pParse); | |
456 pParse->sArg.z = 0; | |
457 pParse->sArg.n = 0; | |
458 } | |
459 | |
460 /* | |
461 ** The parser calls this routine for each token after the first token | |
462 ** in an argument to the module name in a CREATE VIRTUAL TABLE statement. | |
463 */ | |
464 void sqlite3VtabArgExtend(Parse *pParse, Token *p){ | |
465 Token *pArg = &pParse->sArg; | |
466 if( pArg->z==0 ){ | |
467 pArg->z = p->z; | |
468 pArg->n = p->n; | |
469 }else{ | |
470 assert(pArg->z <= p->z); | |
471 pArg->n = (int)(&p->z[p->n] - pArg->z); | |
472 } | |
473 } | |
474 | |
475 /* | |
476 ** Invoke a virtual table constructor (either xCreate or xConnect). The | |
477 ** pointer to the function to invoke is passed as the fourth parameter | |
478 ** to this procedure. | |
479 */ | |
480 static int vtabCallConstructor( | |
481 sqlite3 *db, | |
482 Table *pTab, | |
483 Module *pMod, | |
484 int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**), | |
485 char **pzErr | |
486 ){ | |
487 VtabCtx sCtx; | |
488 VTable *pVTable; | |
489 int rc; | |
490 const char *const*azArg = (const char *const*)pTab->azModuleArg; | |
491 int nArg = pTab->nModuleArg; | |
492 char *zErr = 0; | |
493 char *zModuleName; | |
494 int iDb; | |
495 VtabCtx *pCtx; | |
496 | |
497 /* Check that the virtual-table is not already being initialized */ | |
498 for(pCtx=db->pVtabCtx; pCtx; pCtx=pCtx->pPrior){ | |
499 if( pCtx->pTab==pTab ){ | |
500 *pzErr = sqlite3MPrintf(db, | |
501 "vtable constructor called recursively: %s", pTab->zName | |
502 ); | |
503 return SQLITE_LOCKED; | |
504 } | |
505 } | |
506 | |
507 zModuleName = sqlite3MPrintf(db, "%s", pTab->zName); | |
508 if( !zModuleName ){ | |
509 return SQLITE_NOMEM; | |
510 } | |
511 | |
512 pVTable = sqlite3DbMallocZero(db, sizeof(VTable)); | |
513 if( !pVTable ){ | |
514 sqlite3DbFree(db, zModuleName); | |
515 return SQLITE_NOMEM; | |
516 } | |
517 pVTable->db = db; | |
518 pVTable->pMod = pMod; | |
519 | |
520 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); | |
521 pTab->azModuleArg[1] = db->aDb[iDb].zName; | |
522 | |
523 /* Invoke the virtual table constructor */ | |
524 assert( &db->pVtabCtx ); | |
525 assert( xConstruct ); | |
526 sCtx.pTab = pTab; | |
527 sCtx.pVTable = pVTable; | |
528 sCtx.pPrior = db->pVtabCtx; | |
529 sCtx.bDeclared = 0; | |
530 db->pVtabCtx = &sCtx; | |
531 rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr); | |
532 db->pVtabCtx = sCtx.pPrior; | |
533 if( rc==SQLITE_NOMEM ) db->mallocFailed = 1; | |
534 assert( sCtx.pTab==pTab ); | |
535 | |
536 if( SQLITE_OK!=rc ){ | |
537 if( zErr==0 ){ | |
538 *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName); | |
539 }else { | |
540 *pzErr = sqlite3MPrintf(db, "%s", zErr); | |
541 sqlite3_free(zErr); | |
542 } | |
543 sqlite3DbFree(db, pVTable); | |
544 }else if( ALWAYS(pVTable->pVtab) ){ | |
545 /* Justification of ALWAYS(): A correct vtab constructor must allocate | |
546 ** the sqlite3_vtab object if successful. */ | |
547 memset(pVTable->pVtab, 0, sizeof(pVTable->pVtab[0])); | |
548 pVTable->pVtab->pModule = pMod->pModule; | |
549 pVTable->nRef = 1; | |
550 if( sCtx.bDeclared==0 ){ | |
551 const char *zFormat = "vtable constructor did not declare schema: %s"; | |
552 *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName); | |
553 sqlite3VtabUnlock(pVTable); | |
554 rc = SQLITE_ERROR; | |
555 }else{ | |
556 int iCol; | |
557 u8 oooHidden = 0; | |
558 /* If everything went according to plan, link the new VTable structure | |
559 ** into the linked list headed by pTab->pVTable. Then loop through the | |
560 ** columns of the table to see if any of them contain the token "hidden". | |
561 ** If so, set the Column COLFLAG_HIDDEN flag and remove the token from | |
562 ** the type string. */ | |
563 pVTable->pNext = pTab->pVTable; | |
564 pTab->pVTable = pVTable; | |
565 | |
566 for(iCol=0; iCol<pTab->nCol; iCol++){ | |
567 char *zType = pTab->aCol[iCol].zType; | |
568 int nType; | |
569 int i = 0; | |
570 if( !zType ){ | |
571 pTab->tabFlags |= oooHidden; | |
572 continue; | |
573 } | |
574 nType = sqlite3Strlen30(zType); | |
575 if( sqlite3StrNICmp("hidden", zType, 6)||(zType[6] && zType[6]!=' ') ){ | |
576 for(i=0; i<nType; i++){ | |
577 if( (0==sqlite3StrNICmp(" hidden", &zType[i], 7)) | |
578 && (zType[i+7]=='\0' || zType[i+7]==' ') | |
579 ){ | |
580 i++; | |
581 break; | |
582 } | |
583 } | |
584 } | |
585 if( i<nType ){ | |
586 int j; | |
587 int nDel = 6 + (zType[i+6] ? 1 : 0); | |
588 for(j=i; (j+nDel)<=nType; j++){ | |
589 zType[j] = zType[j+nDel]; | |
590 } | |
591 if( zType[i]=='\0' && i>0 ){ | |
592 assert(zType[i-1]==' '); | |
593 zType[i-1] = '\0'; | |
594 } | |
595 pTab->aCol[iCol].colFlags |= COLFLAG_HIDDEN; | |
596 oooHidden = TF_OOOHidden; | |
597 }else{ | |
598 pTab->tabFlags |= oooHidden; | |
599 } | |
600 } | |
601 } | |
602 } | |
603 | |
604 sqlite3DbFree(db, zModuleName); | |
605 return rc; | |
606 } | |
607 | |
608 /* | |
609 ** This function is invoked by the parser to call the xConnect() method | |
610 ** of the virtual table pTab. If an error occurs, an error code is returned | |
611 ** and an error left in pParse. | |
612 ** | |
613 ** This call is a no-op if table pTab is not a virtual table. | |
614 */ | |
615 int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){ | |
616 sqlite3 *db = pParse->db; | |
617 const char *zMod; | |
618 Module *pMod; | |
619 int rc; | |
620 | |
621 assert( pTab ); | |
622 if( (pTab->tabFlags & TF_Virtual)==0 || sqlite3GetVTable(db, pTab) ){ | |
623 return SQLITE_OK; | |
624 } | |
625 | |
626 /* Locate the required virtual table module */ | |
627 zMod = pTab->azModuleArg[0]; | |
628 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); | |
629 | |
630 if( !pMod ){ | |
631 const char *zModule = pTab->azModuleArg[0]; | |
632 sqlite3ErrorMsg(pParse, "no such module: %s", zModule); | |
633 rc = SQLITE_ERROR; | |
634 }else{ | |
635 char *zErr = 0; | |
636 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr); | |
637 if( rc!=SQLITE_OK ){ | |
638 sqlite3ErrorMsg(pParse, "%s", zErr); | |
639 } | |
640 sqlite3DbFree(db, zErr); | |
641 } | |
642 | |
643 return rc; | |
644 } | |
645 /* | |
646 ** Grow the db->aVTrans[] array so that there is room for at least one | |
647 ** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise. | |
648 */ | |
649 static int growVTrans(sqlite3 *db){ | |
650 const int ARRAY_INCR = 5; | |
651 | |
652 /* Grow the sqlite3.aVTrans array if required */ | |
653 if( (db->nVTrans%ARRAY_INCR)==0 ){ | |
654 VTable **aVTrans; | |
655 int nBytes = sizeof(sqlite3_vtab *) * (db->nVTrans + ARRAY_INCR); | |
656 aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes); | |
657 if( !aVTrans ){ | |
658 return SQLITE_NOMEM; | |
659 } | |
660 memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR); | |
661 db->aVTrans = aVTrans; | |
662 } | |
663 | |
664 return SQLITE_OK; | |
665 } | |
666 | |
667 /* | |
668 ** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should | |
669 ** have already been reserved using growVTrans(). | |
670 */ | |
671 static void addToVTrans(sqlite3 *db, VTable *pVTab){ | |
672 /* Add pVtab to the end of sqlite3.aVTrans */ | |
673 db->aVTrans[db->nVTrans++] = pVTab; | |
674 sqlite3VtabLock(pVTab); | |
675 } | |
676 | |
677 /* | |
678 ** This function is invoked by the vdbe to call the xCreate method | |
679 ** of the virtual table named zTab in database iDb. | |
680 ** | |
681 ** If an error occurs, *pzErr is set to point an an English language | |
682 ** description of the error and an SQLITE_XXX error code is returned. | |
683 ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr. | |
684 */ | |
685 int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){ | |
686 int rc = SQLITE_OK; | |
687 Table *pTab; | |
688 Module *pMod; | |
689 const char *zMod; | |
690 | |
691 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName); | |
692 assert( pTab && (pTab->tabFlags & TF_Virtual)!=0 && !pTab->pVTable ); | |
693 | |
694 /* Locate the required virtual table module */ | |
695 zMod = pTab->azModuleArg[0]; | |
696 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod); | |
697 | |
698 /* If the module has been registered and includes a Create method, | |
699 ** invoke it now. If the module has not been registered, return an | |
700 ** error. Otherwise, do nothing. | |
701 */ | |
702 if( pMod==0 || pMod->pModule->xCreate==0 || pMod->pModule->xDestroy==0 ){ | |
703 *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod); | |
704 rc = SQLITE_ERROR; | |
705 }else{ | |
706 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr); | |
707 } | |
708 | |
709 /* Justification of ALWAYS(): The xConstructor method is required to | |
710 ** create a valid sqlite3_vtab if it returns SQLITE_OK. */ | |
711 if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){ | |
712 rc = growVTrans(db); | |
713 if( rc==SQLITE_OK ){ | |
714 addToVTrans(db, sqlite3GetVTable(db, pTab)); | |
715 } | |
716 } | |
717 | |
718 return rc; | |
719 } | |
720 | |
721 /* | |
722 ** This function is used to set the schema of a virtual table. It is only | |
723 ** valid to call this function from within the xCreate() or xConnect() of a | |
724 ** virtual table module. | |
725 */ | |
726 int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){ | |
727 VtabCtx *pCtx; | |
728 Parse *pParse; | |
729 int rc = SQLITE_OK; | |
730 Table *pTab; | |
731 char *zErr = 0; | |
732 | |
733 #ifdef SQLITE_ENABLE_API_ARMOR | |
734 if( !sqlite3SafetyCheckOk(db) || zCreateTable==0 ){ | |
735 return SQLITE_MISUSE_BKPT; | |
736 } | |
737 #endif | |
738 sqlite3_mutex_enter(db->mutex); | |
739 pCtx = db->pVtabCtx; | |
740 if( !pCtx || pCtx->bDeclared ){ | |
741 sqlite3Error(db, SQLITE_MISUSE); | |
742 sqlite3_mutex_leave(db->mutex); | |
743 return SQLITE_MISUSE_BKPT; | |
744 } | |
745 pTab = pCtx->pTab; | |
746 assert( (pTab->tabFlags & TF_Virtual)!=0 ); | |
747 | |
748 pParse = sqlite3StackAllocZero(db, sizeof(*pParse)); | |
749 if( pParse==0 ){ | |
750 rc = SQLITE_NOMEM; | |
751 }else{ | |
752 pParse->declareVtab = 1; | |
753 pParse->db = db; | |
754 pParse->nQueryLoop = 1; | |
755 | |
756 if( SQLITE_OK==sqlite3RunParser(pParse, zCreateTable, &zErr) | |
757 && pParse->pNewTable | |
758 && !db->mallocFailed | |
759 && !pParse->pNewTable->pSelect | |
760 && (pParse->pNewTable->tabFlags & TF_Virtual)==0 | |
761 ){ | |
762 if( !pTab->aCol ){ | |
763 pTab->aCol = pParse->pNewTable->aCol; | |
764 pTab->nCol = pParse->pNewTable->nCol; | |
765 pParse->pNewTable->nCol = 0; | |
766 pParse->pNewTable->aCol = 0; | |
767 } | |
768 pCtx->bDeclared = 1; | |
769 }else{ | |
770 sqlite3ErrorWithMsg(db, SQLITE_ERROR, (zErr ? "%s" : 0), zErr); | |
771 sqlite3DbFree(db, zErr); | |
772 rc = SQLITE_ERROR; | |
773 } | |
774 pParse->declareVtab = 0; | |
775 | |
776 if( pParse->pVdbe ){ | |
777 sqlite3VdbeFinalize(pParse->pVdbe); | |
778 } | |
779 sqlite3DeleteTable(db, pParse->pNewTable); | |
780 sqlite3ParserReset(pParse); | |
781 sqlite3StackFree(db, pParse); | |
782 } | |
783 | |
784 assert( (rc&0xff)==rc ); | |
785 rc = sqlite3ApiExit(db, rc); | |
786 sqlite3_mutex_leave(db->mutex); | |
787 return rc; | |
788 } | |
789 | |
790 /* | |
791 ** This function is invoked by the vdbe to call the xDestroy method | |
792 ** of the virtual table named zTab in database iDb. This occurs | |
793 ** when a DROP TABLE is mentioned. | |
794 ** | |
795 ** This call is a no-op if zTab is not a virtual table. | |
796 */ | |
797 int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){ | |
798 int rc = SQLITE_OK; | |
799 Table *pTab; | |
800 | |
801 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zName); | |
802 if( ALWAYS(pTab!=0 && pTab->pVTable!=0) ){ | |
803 VTable *p; | |
804 int (*xDestroy)(sqlite3_vtab *); | |
805 for(p=pTab->pVTable; p; p=p->pNext){ | |
806 assert( p->pVtab ); | |
807 if( p->pVtab->nRef>0 ){ | |
808 return SQLITE_LOCKED; | |
809 } | |
810 } | |
811 p = vtabDisconnectAll(db, pTab); | |
812 xDestroy = p->pMod->pModule->xDestroy; | |
813 assert( xDestroy!=0 ); /* Checked before the virtual table is created */ | |
814 rc = xDestroy(p->pVtab); | |
815 /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */ | |
816 if( rc==SQLITE_OK ){ | |
817 assert( pTab->pVTable==p && p->pNext==0 ); | |
818 p->pVtab = 0; | |
819 pTab->pVTable = 0; | |
820 sqlite3VtabUnlock(p); | |
821 } | |
822 } | |
823 | |
824 return rc; | |
825 } | |
826 | |
827 /* | |
828 ** This function invokes either the xRollback or xCommit method | |
829 ** of each of the virtual tables in the sqlite3.aVTrans array. The method | |
830 ** called is identified by the second argument, "offset", which is | |
831 ** the offset of the method to call in the sqlite3_module structure. | |
832 ** | |
833 ** The array is cleared after invoking the callbacks. | |
834 */ | |
835 static void callFinaliser(sqlite3 *db, int offset){ | |
836 int i; | |
837 if( db->aVTrans ){ | |
838 VTable **aVTrans = db->aVTrans; | |
839 db->aVTrans = 0; | |
840 for(i=0; i<db->nVTrans; i++){ | |
841 VTable *pVTab = aVTrans[i]; | |
842 sqlite3_vtab *p = pVTab->pVtab; | |
843 if( p ){ | |
844 int (*x)(sqlite3_vtab *); | |
845 x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset); | |
846 if( x ) x(p); | |
847 } | |
848 pVTab->iSavepoint = 0; | |
849 sqlite3VtabUnlock(pVTab); | |
850 } | |
851 sqlite3DbFree(db, aVTrans); | |
852 db->nVTrans = 0; | |
853 } | |
854 } | |
855 | |
856 /* | |
857 ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans | |
858 ** array. Return the error code for the first error that occurs, or | |
859 ** SQLITE_OK if all xSync operations are successful. | |
860 ** | |
861 ** If an error message is available, leave it in p->zErrMsg. | |
862 */ | |
863 int sqlite3VtabSync(sqlite3 *db, Vdbe *p){ | |
864 int i; | |
865 int rc = SQLITE_OK; | |
866 VTable **aVTrans = db->aVTrans; | |
867 | |
868 db->aVTrans = 0; | |
869 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ | |
870 int (*x)(sqlite3_vtab *); | |
871 sqlite3_vtab *pVtab = aVTrans[i]->pVtab; | |
872 if( pVtab && (x = pVtab->pModule->xSync)!=0 ){ | |
873 rc = x(pVtab); | |
874 sqlite3VtabImportErrmsg(p, pVtab); | |
875 } | |
876 } | |
877 db->aVTrans = aVTrans; | |
878 return rc; | |
879 } | |
880 | |
881 /* | |
882 ** Invoke the xRollback method of all virtual tables in the | |
883 ** sqlite3.aVTrans array. Then clear the array itself. | |
884 */ | |
885 int sqlite3VtabRollback(sqlite3 *db){ | |
886 callFinaliser(db, offsetof(sqlite3_module,xRollback)); | |
887 return SQLITE_OK; | |
888 } | |
889 | |
890 /* | |
891 ** Invoke the xCommit method of all virtual tables in the | |
892 ** sqlite3.aVTrans array. Then clear the array itself. | |
893 */ | |
894 int sqlite3VtabCommit(sqlite3 *db){ | |
895 callFinaliser(db, offsetof(sqlite3_module,xCommit)); | |
896 return SQLITE_OK; | |
897 } | |
898 | |
899 /* | |
900 ** If the virtual table pVtab supports the transaction interface | |
901 ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is | |
902 ** not currently open, invoke the xBegin method now. | |
903 ** | |
904 ** If the xBegin call is successful, place the sqlite3_vtab pointer | |
905 ** in the sqlite3.aVTrans array. | |
906 */ | |
907 int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){ | |
908 int rc = SQLITE_OK; | |
909 const sqlite3_module *pModule; | |
910 | |
911 /* Special case: If db->aVTrans is NULL and db->nVTrans is greater | |
912 ** than zero, then this function is being called from within a | |
913 ** virtual module xSync() callback. It is illegal to write to | |
914 ** virtual module tables in this case, so return SQLITE_LOCKED. | |
915 */ | |
916 if( sqlite3VtabInSync(db) ){ | |
917 return SQLITE_LOCKED; | |
918 } | |
919 if( !pVTab ){ | |
920 return SQLITE_OK; | |
921 } | |
922 pModule = pVTab->pVtab->pModule; | |
923 | |
924 if( pModule->xBegin ){ | |
925 int i; | |
926 | |
927 /* If pVtab is already in the aVTrans array, return early */ | |
928 for(i=0; i<db->nVTrans; i++){ | |
929 if( db->aVTrans[i]==pVTab ){ | |
930 return SQLITE_OK; | |
931 } | |
932 } | |
933 | |
934 /* Invoke the xBegin method. If successful, add the vtab to the | |
935 ** sqlite3.aVTrans[] array. */ | |
936 rc = growVTrans(db); | |
937 if( rc==SQLITE_OK ){ | |
938 rc = pModule->xBegin(pVTab->pVtab); | |
939 if( rc==SQLITE_OK ){ | |
940 int iSvpt = db->nStatement + db->nSavepoint; | |
941 addToVTrans(db, pVTab); | |
942 if( iSvpt ) rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, iSvpt-1); | |
943 } | |
944 } | |
945 } | |
946 return rc; | |
947 } | |
948 | |
949 /* | |
950 ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all | |
951 ** virtual tables that currently have an open transaction. Pass iSavepoint | |
952 ** as the second argument to the virtual table method invoked. | |
953 ** | |
954 ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is | |
955 ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is | |
956 ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with | |
957 ** an open transaction is invoked. | |
958 ** | |
959 ** If any virtual table method returns an error code other than SQLITE_OK, | |
960 ** processing is abandoned and the error returned to the caller of this | |
961 ** function immediately. If all calls to virtual table methods are successful, | |
962 ** SQLITE_OK is returned. | |
963 */ | |
964 int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){ | |
965 int rc = SQLITE_OK; | |
966 | |
967 assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN ); | |
968 assert( iSavepoint>=-1 ); | |
969 if( db->aVTrans ){ | |
970 int i; | |
971 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){ | |
972 VTable *pVTab = db->aVTrans[i]; | |
973 const sqlite3_module *pMod = pVTab->pMod->pModule; | |
974 if( pVTab->pVtab && pMod->iVersion>=2 ){ | |
975 int (*xMethod)(sqlite3_vtab *, int); | |
976 switch( op ){ | |
977 case SAVEPOINT_BEGIN: | |
978 xMethod = pMod->xSavepoint; | |
979 pVTab->iSavepoint = iSavepoint+1; | |
980 break; | |
981 case SAVEPOINT_ROLLBACK: | |
982 xMethod = pMod->xRollbackTo; | |
983 break; | |
984 default: | |
985 xMethod = pMod->xRelease; | |
986 break; | |
987 } | |
988 if( xMethod && pVTab->iSavepoint>iSavepoint ){ | |
989 rc = xMethod(pVTab->pVtab, iSavepoint); | |
990 } | |
991 } | |
992 } | |
993 } | |
994 return rc; | |
995 } | |
996 | |
997 /* | |
998 ** The first parameter (pDef) is a function implementation. The | |
999 ** second parameter (pExpr) is the first argument to this function. | |
1000 ** If pExpr is a column in a virtual table, then let the virtual | |
1001 ** table implementation have an opportunity to overload the function. | |
1002 ** | |
1003 ** This routine is used to allow virtual table implementations to | |
1004 ** overload MATCH, LIKE, GLOB, and REGEXP operators. | |
1005 ** | |
1006 ** Return either the pDef argument (indicating no change) or a | |
1007 ** new FuncDef structure that is marked as ephemeral using the | |
1008 ** SQLITE_FUNC_EPHEM flag. | |
1009 */ | |
1010 FuncDef *sqlite3VtabOverloadFunction( | |
1011 sqlite3 *db, /* Database connection for reporting malloc problems */ | |
1012 FuncDef *pDef, /* Function to possibly overload */ | |
1013 int nArg, /* Number of arguments to the function */ | |
1014 Expr *pExpr /* First argument to the function */ | |
1015 ){ | |
1016 Table *pTab; | |
1017 sqlite3_vtab *pVtab; | |
1018 sqlite3_module *pMod; | |
1019 void (*xFunc)(sqlite3_context*,int,sqlite3_value**) = 0; | |
1020 void *pArg = 0; | |
1021 FuncDef *pNew; | |
1022 int rc = 0; | |
1023 char *zLowerName; | |
1024 unsigned char *z; | |
1025 | |
1026 | |
1027 /* Check to see the left operand is a column in a virtual table */ | |
1028 if( NEVER(pExpr==0) ) return pDef; | |
1029 if( pExpr->op!=TK_COLUMN ) return pDef; | |
1030 pTab = pExpr->pTab; | |
1031 if( NEVER(pTab==0) ) return pDef; | |
1032 if( (pTab->tabFlags & TF_Virtual)==0 ) return pDef; | |
1033 pVtab = sqlite3GetVTable(db, pTab)->pVtab; | |
1034 assert( pVtab!=0 ); | |
1035 assert( pVtab->pModule!=0 ); | |
1036 pMod = (sqlite3_module *)pVtab->pModule; | |
1037 if( pMod->xFindFunction==0 ) return pDef; | |
1038 | |
1039 /* Call the xFindFunction method on the virtual table implementation | |
1040 ** to see if the implementation wants to overload this function | |
1041 */ | |
1042 zLowerName = sqlite3DbStrDup(db, pDef->zName); | |
1043 if( zLowerName ){ | |
1044 for(z=(unsigned char*)zLowerName; *z; z++){ | |
1045 *z = sqlite3UpperToLower[*z]; | |
1046 } | |
1047 rc = pMod->xFindFunction(pVtab, nArg, zLowerName, &xFunc, &pArg); | |
1048 sqlite3DbFree(db, zLowerName); | |
1049 } | |
1050 if( rc==0 ){ | |
1051 return pDef; | |
1052 } | |
1053 | |
1054 /* Create a new ephemeral function definition for the overloaded | |
1055 ** function */ | |
1056 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) | |
1057 + sqlite3Strlen30(pDef->zName) + 1); | |
1058 if( pNew==0 ){ | |
1059 return pDef; | |
1060 } | |
1061 *pNew = *pDef; | |
1062 pNew->zName = (char *)&pNew[1]; | |
1063 memcpy(pNew->zName, pDef->zName, sqlite3Strlen30(pDef->zName)+1); | |
1064 pNew->xFunc = xFunc; | |
1065 pNew->pUserData = pArg; | |
1066 pNew->funcFlags |= SQLITE_FUNC_EPHEM; | |
1067 return pNew; | |
1068 } | |
1069 | |
1070 /* | |
1071 ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[] | |
1072 ** array so that an OP_VBegin will get generated for it. Add pTab to the | |
1073 ** array if it is missing. If pTab is already in the array, this routine | |
1074 ** is a no-op. | |
1075 */ | |
1076 void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){ | |
1077 Parse *pToplevel = sqlite3ParseToplevel(pParse); | |
1078 int i, n; | |
1079 Table **apVtabLock; | |
1080 | |
1081 assert( IsVirtual(pTab) ); | |
1082 for(i=0; i<pToplevel->nVtabLock; i++){ | |
1083 if( pTab==pToplevel->apVtabLock[i] ) return; | |
1084 } | |
1085 n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]); | |
1086 apVtabLock = sqlite3_realloc64(pToplevel->apVtabLock, n); | |
1087 if( apVtabLock ){ | |
1088 pToplevel->apVtabLock = apVtabLock; | |
1089 pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab; | |
1090 }else{ | |
1091 pToplevel->db->mallocFailed = 1; | |
1092 } | |
1093 } | |
1094 | |
1095 /* | |
1096 ** Check to see if virtual tale module pMod can be have an eponymous | |
1097 ** virtual table instance. If it can, create one if one does not already | |
1098 ** exist. Return non-zero if the eponymous virtual table instance exists | |
1099 ** when this routine returns, and return zero if it does not exist. | |
1100 ** | |
1101 ** An eponymous virtual table instance is one that is named after its | |
1102 ** module, and more importantly, does not require a CREATE VIRTUAL TABLE | |
1103 ** statement in order to come into existance. Eponymous virtual table | |
1104 ** instances always exist. They cannot be DROP-ed. | |
1105 ** | |
1106 ** Any virtual table module for which xConnect and xCreate are the same | |
1107 ** method can have an eponymous virtual table instance. | |
1108 */ | |
1109 int sqlite3VtabEponymousTableInit(Parse *pParse, Module *pMod){ | |
1110 const sqlite3_module *pModule = pMod->pModule; | |
1111 Table *pTab; | |
1112 char *zErr = 0; | |
1113 int nName; | |
1114 int rc; | |
1115 sqlite3 *db = pParse->db; | |
1116 if( pMod->pEpoTab ) return 1; | |
1117 if( pModule->xCreate!=0 && pModule->xCreate!=pModule->xConnect ) return 0; | |
1118 nName = sqlite3Strlen30(pMod->zName) + 1; | |
1119 pTab = sqlite3DbMallocZero(db, sizeof(Table) + nName); | |
1120 if( pTab==0 ) return 0; | |
1121 pMod->pEpoTab = pTab; | |
1122 pTab->zName = (char*)&pTab[1]; | |
1123 memcpy(pTab->zName, pMod->zName, nName); | |
1124 pTab->nRef = 1; | |
1125 pTab->pSchema = db->aDb[0].pSchema; | |
1126 pTab->tabFlags |= TF_Virtual; | |
1127 pTab->nModuleArg = 0; | |
1128 pTab->iPKey = -1; | |
1129 addModuleArgument(db, pTab, sqlite3DbStrDup(db, pTab->zName)); | |
1130 addModuleArgument(db, pTab, 0); | |
1131 addModuleArgument(db, pTab, sqlite3DbStrDup(db, pTab->zName)); | |
1132 rc = vtabCallConstructor(db, pTab, pMod, pModule->xConnect, &zErr); | |
1133 if( rc ){ | |
1134 sqlite3ErrorMsg(pParse, "%s", zErr); | |
1135 sqlite3DbFree(db, zErr); | |
1136 sqlite3VtabEponymousTableClear(db, pMod); | |
1137 return 0; | |
1138 } | |
1139 return 1; | |
1140 } | |
1141 | |
1142 /* | |
1143 ** Erase the eponymous virtual table instance associated with | |
1144 ** virtual table module pMod, if it exists. | |
1145 */ | |
1146 void sqlite3VtabEponymousTableClear(sqlite3 *db, Module *pMod){ | |
1147 Table *pTab = pMod->pEpoTab; | |
1148 if( pTab!=0 ){ | |
1149 sqlite3DeleteColumnNames(db, pTab); | |
1150 sqlite3VtabClear(db, pTab); | |
1151 sqlite3DbFree(db, pTab); | |
1152 pMod->pEpoTab = 0; | |
1153 } | |
1154 } | |
1155 | |
1156 /* | |
1157 ** Return the ON CONFLICT resolution mode in effect for the virtual | |
1158 ** table update operation currently in progress. | |
1159 ** | |
1160 ** The results of this routine are undefined unless it is called from | |
1161 ** within an xUpdate method. | |
1162 */ | |
1163 int sqlite3_vtab_on_conflict(sqlite3 *db){ | |
1164 static const unsigned char aMap[] = { | |
1165 SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE | |
1166 }; | |
1167 #ifdef SQLITE_ENABLE_API_ARMOR | |
1168 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; | |
1169 #endif | |
1170 assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 ); | |
1171 assert( OE_Ignore==4 && OE_Replace==5 ); | |
1172 assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 ); | |
1173 return (int)aMap[db->vtabOnConflict-1]; | |
1174 } | |
1175 | |
1176 /* | |
1177 ** Call from within the xCreate() or xConnect() methods to provide | |
1178 ** the SQLite core with additional information about the behavior | |
1179 ** of the virtual table being implemented. | |
1180 */ | |
1181 int sqlite3_vtab_config(sqlite3 *db, int op, ...){ | |
1182 va_list ap; | |
1183 int rc = SQLITE_OK; | |
1184 | |
1185 #ifdef SQLITE_ENABLE_API_ARMOR | |
1186 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT; | |
1187 #endif | |
1188 sqlite3_mutex_enter(db->mutex); | |
1189 va_start(ap, op); | |
1190 switch( op ){ | |
1191 case SQLITE_VTAB_CONSTRAINT_SUPPORT: { | |
1192 VtabCtx *p = db->pVtabCtx; | |
1193 if( !p ){ | |
1194 rc = SQLITE_MISUSE_BKPT; | |
1195 }else{ | |
1196 assert( p->pTab==0 || (p->pTab->tabFlags & TF_Virtual)!=0 ); | |
1197 p->pVTable->bConstraint = (u8)va_arg(ap, int); | |
1198 } | |
1199 break; | |
1200 } | |
1201 default: | |
1202 rc = SQLITE_MISUSE_BKPT; | |
1203 break; | |
1204 } | |
1205 va_end(ap); | |
1206 | |
1207 if( rc!=SQLITE_OK ) sqlite3Error(db, rc); | |
1208 sqlite3_mutex_leave(db->mutex); | |
1209 return rc; | |
1210 } | |
1211 | |
1212 #endif /* SQLITE_OMIT_VIRTUALTABLE */ | |
OLD | NEW |