Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(418)

Side by Side Diff: third_party/sqlite/sqlite-src-3100200/src/vdbeapi.c

Issue 2846743003: [sql] Remove SQLite 3.10.2 reference directory. (Closed)
Patch Set: Created 3 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file contains code use to implement APIs that are part of the
14 ** VDBE.
15 */
16 #include "sqliteInt.h"
17 #include "vdbeInt.h"
18
19 #ifndef SQLITE_OMIT_DEPRECATED
20 /*
21 ** Return TRUE (non-zero) of the statement supplied as an argument needs
22 ** to be recompiled. A statement needs to be recompiled whenever the
23 ** execution environment changes in a way that would alter the program
24 ** that sqlite3_prepare() generates. For example, if new functions or
25 ** collating sequences are registered or if an authorizer function is
26 ** added or changed.
27 */
28 int sqlite3_expired(sqlite3_stmt *pStmt){
29 Vdbe *p = (Vdbe*)pStmt;
30 return p==0 || p->expired;
31 }
32 #endif
33
34 /*
35 ** Check on a Vdbe to make sure it has not been finalized. Log
36 ** an error and return true if it has been finalized (or is otherwise
37 ** invalid). Return false if it is ok.
38 */
39 static int vdbeSafety(Vdbe *p){
40 if( p->db==0 ){
41 sqlite3_log(SQLITE_MISUSE, "API called with finalized prepared statement");
42 return 1;
43 }else{
44 return 0;
45 }
46 }
47 static int vdbeSafetyNotNull(Vdbe *p){
48 if( p==0 ){
49 sqlite3_log(SQLITE_MISUSE, "API called with NULL prepared statement");
50 return 1;
51 }else{
52 return vdbeSafety(p);
53 }
54 }
55
56 #ifndef SQLITE_OMIT_TRACE
57 /*
58 ** Invoke the profile callback. This routine is only called if we already
59 ** know that the profile callback is defined and needs to be invoked.
60 */
61 static SQLITE_NOINLINE void invokeProfileCallback(sqlite3 *db, Vdbe *p){
62 sqlite3_int64 iNow;
63 assert( p->startTime>0 );
64 assert( db->xProfile!=0 );
65 assert( db->init.busy==0 );
66 assert( p->zSql!=0 );
67 sqlite3OsCurrentTimeInt64(db->pVfs, &iNow);
68 db->xProfile(db->pProfileArg, p->zSql, (iNow - p->startTime)*1000000);
69 p->startTime = 0;
70 }
71 /*
72 ** The checkProfileCallback(DB,P) macro checks to see if a profile callback
73 ** is needed, and it invokes the callback if it is needed.
74 */
75 # define checkProfileCallback(DB,P) \
76 if( ((P)->startTime)>0 ){ invokeProfileCallback(DB,P); }
77 #else
78 # define checkProfileCallback(DB,P) /*no-op*/
79 #endif
80
81 /*
82 ** The following routine destroys a virtual machine that is created by
83 ** the sqlite3_compile() routine. The integer returned is an SQLITE_
84 ** success/failure code that describes the result of executing the virtual
85 ** machine.
86 **
87 ** This routine sets the error code and string returned by
88 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
89 */
90 int sqlite3_finalize(sqlite3_stmt *pStmt){
91 int rc;
92 if( pStmt==0 ){
93 /* IMPLEMENTATION-OF: R-57228-12904 Invoking sqlite3_finalize() on a NULL
94 ** pointer is a harmless no-op. */
95 rc = SQLITE_OK;
96 }else{
97 Vdbe *v = (Vdbe*)pStmt;
98 sqlite3 *db = v->db;
99 if( vdbeSafety(v) ) return SQLITE_MISUSE_BKPT;
100 sqlite3_mutex_enter(db->mutex);
101 checkProfileCallback(db, v);
102 rc = sqlite3VdbeFinalize(v);
103 rc = sqlite3ApiExit(db, rc);
104 sqlite3LeaveMutexAndCloseZombie(db);
105 }
106 return rc;
107 }
108
109 /*
110 ** Terminate the current execution of an SQL statement and reset it
111 ** back to its starting state so that it can be reused. A success code from
112 ** the prior execution is returned.
113 **
114 ** This routine sets the error code and string returned by
115 ** sqlite3_errcode(), sqlite3_errmsg() and sqlite3_errmsg16().
116 */
117 int sqlite3_reset(sqlite3_stmt *pStmt){
118 int rc;
119 if( pStmt==0 ){
120 rc = SQLITE_OK;
121 }else{
122 Vdbe *v = (Vdbe*)pStmt;
123 sqlite3 *db = v->db;
124 sqlite3_mutex_enter(db->mutex);
125 checkProfileCallback(db, v);
126 rc = sqlite3VdbeReset(v);
127 sqlite3VdbeRewind(v);
128 assert( (rc & (db->errMask))==rc );
129 rc = sqlite3ApiExit(db, rc);
130 sqlite3_mutex_leave(db->mutex);
131 }
132 return rc;
133 }
134
135 /*
136 ** Set all the parameters in the compiled SQL statement to NULL.
137 */
138 int sqlite3_clear_bindings(sqlite3_stmt *pStmt){
139 int i;
140 int rc = SQLITE_OK;
141 Vdbe *p = (Vdbe*)pStmt;
142 #if SQLITE_THREADSAFE
143 sqlite3_mutex *mutex = ((Vdbe*)pStmt)->db->mutex;
144 #endif
145 sqlite3_mutex_enter(mutex);
146 for(i=0; i<p->nVar; i++){
147 sqlite3VdbeMemRelease(&p->aVar[i]);
148 p->aVar[i].flags = MEM_Null;
149 }
150 if( p->isPrepareV2 && p->expmask ){
151 p->expired = 1;
152 }
153 sqlite3_mutex_leave(mutex);
154 return rc;
155 }
156
157
158 /**************************** sqlite3_value_ *******************************
159 ** The following routines extract information from a Mem or sqlite3_value
160 ** structure.
161 */
162 const void *sqlite3_value_blob(sqlite3_value *pVal){
163 Mem *p = (Mem*)pVal;
164 if( p->flags & (MEM_Blob|MEM_Str) ){
165 if( sqlite3VdbeMemExpandBlob(p)!=SQLITE_OK ){
166 assert( p->flags==MEM_Null && p->z==0 );
167 return 0;
168 }
169 p->flags |= MEM_Blob;
170 return p->n ? p->z : 0;
171 }else{
172 return sqlite3_value_text(pVal);
173 }
174 }
175 int sqlite3_value_bytes(sqlite3_value *pVal){
176 return sqlite3ValueBytes(pVal, SQLITE_UTF8);
177 }
178 int sqlite3_value_bytes16(sqlite3_value *pVal){
179 return sqlite3ValueBytes(pVal, SQLITE_UTF16NATIVE);
180 }
181 double sqlite3_value_double(sqlite3_value *pVal){
182 return sqlite3VdbeRealValue((Mem*)pVal);
183 }
184 int sqlite3_value_int(sqlite3_value *pVal){
185 return (int)sqlite3VdbeIntValue((Mem*)pVal);
186 }
187 sqlite_int64 sqlite3_value_int64(sqlite3_value *pVal){
188 return sqlite3VdbeIntValue((Mem*)pVal);
189 }
190 unsigned int sqlite3_value_subtype(sqlite3_value *pVal){
191 return ((Mem*)pVal)->eSubtype;
192 }
193 const unsigned char *sqlite3_value_text(sqlite3_value *pVal){
194 return (const unsigned char *)sqlite3ValueText(pVal, SQLITE_UTF8);
195 }
196 #ifndef SQLITE_OMIT_UTF16
197 const void *sqlite3_value_text16(sqlite3_value* pVal){
198 return sqlite3ValueText(pVal, SQLITE_UTF16NATIVE);
199 }
200 const void *sqlite3_value_text16be(sqlite3_value *pVal){
201 return sqlite3ValueText(pVal, SQLITE_UTF16BE);
202 }
203 const void *sqlite3_value_text16le(sqlite3_value *pVal){
204 return sqlite3ValueText(pVal, SQLITE_UTF16LE);
205 }
206 #endif /* SQLITE_OMIT_UTF16 */
207 /* EVIDENCE-OF: R-12793-43283 Every value in SQLite has one of five
208 ** fundamental datatypes: 64-bit signed integer 64-bit IEEE floating
209 ** point number string BLOB NULL
210 */
211 int sqlite3_value_type(sqlite3_value* pVal){
212 static const u8 aType[] = {
213 SQLITE_BLOB, /* 0x00 */
214 SQLITE_NULL, /* 0x01 */
215 SQLITE_TEXT, /* 0x02 */
216 SQLITE_NULL, /* 0x03 */
217 SQLITE_INTEGER, /* 0x04 */
218 SQLITE_NULL, /* 0x05 */
219 SQLITE_INTEGER, /* 0x06 */
220 SQLITE_NULL, /* 0x07 */
221 SQLITE_FLOAT, /* 0x08 */
222 SQLITE_NULL, /* 0x09 */
223 SQLITE_FLOAT, /* 0x0a */
224 SQLITE_NULL, /* 0x0b */
225 SQLITE_INTEGER, /* 0x0c */
226 SQLITE_NULL, /* 0x0d */
227 SQLITE_INTEGER, /* 0x0e */
228 SQLITE_NULL, /* 0x0f */
229 SQLITE_BLOB, /* 0x10 */
230 SQLITE_NULL, /* 0x11 */
231 SQLITE_TEXT, /* 0x12 */
232 SQLITE_NULL, /* 0x13 */
233 SQLITE_INTEGER, /* 0x14 */
234 SQLITE_NULL, /* 0x15 */
235 SQLITE_INTEGER, /* 0x16 */
236 SQLITE_NULL, /* 0x17 */
237 SQLITE_FLOAT, /* 0x18 */
238 SQLITE_NULL, /* 0x19 */
239 SQLITE_FLOAT, /* 0x1a */
240 SQLITE_NULL, /* 0x1b */
241 SQLITE_INTEGER, /* 0x1c */
242 SQLITE_NULL, /* 0x1d */
243 SQLITE_INTEGER, /* 0x1e */
244 SQLITE_NULL, /* 0x1f */
245 };
246 return aType[pVal->flags&MEM_AffMask];
247 }
248
249 /* Make a copy of an sqlite3_value object
250 */
251 sqlite3_value *sqlite3_value_dup(const sqlite3_value *pOrig){
252 sqlite3_value *pNew;
253 if( pOrig==0 ) return 0;
254 pNew = sqlite3_malloc( sizeof(*pNew) );
255 if( pNew==0 ) return 0;
256 memset(pNew, 0, sizeof(*pNew));
257 memcpy(pNew, pOrig, MEMCELLSIZE);
258 pNew->flags &= ~MEM_Dyn;
259 pNew->db = 0;
260 if( pNew->flags&(MEM_Str|MEM_Blob) ){
261 pNew->flags &= ~(MEM_Static|MEM_Dyn);
262 pNew->flags |= MEM_Ephem;
263 if( sqlite3VdbeMemMakeWriteable(pNew)!=SQLITE_OK ){
264 sqlite3ValueFree(pNew);
265 pNew = 0;
266 }
267 }
268 return pNew;
269 }
270
271 /* Destroy an sqlite3_value object previously obtained from
272 ** sqlite3_value_dup().
273 */
274 void sqlite3_value_free(sqlite3_value *pOld){
275 sqlite3ValueFree(pOld);
276 }
277
278
279 /**************************** sqlite3_result_ *******************************
280 ** The following routines are used by user-defined functions to specify
281 ** the function result.
282 **
283 ** The setStrOrError() function calls sqlite3VdbeMemSetStr() to store the
284 ** result as a string or blob but if the string or blob is too large, it
285 ** then sets the error code to SQLITE_TOOBIG
286 **
287 ** The invokeValueDestructor(P,X) routine invokes destructor function X()
288 ** on value P is not going to be used and need to be destroyed.
289 */
290 static void setResultStrOrError(
291 sqlite3_context *pCtx, /* Function context */
292 const char *z, /* String pointer */
293 int n, /* Bytes in string, or negative */
294 u8 enc, /* Encoding of z. 0 for BLOBs */
295 void (*xDel)(void*) /* Destructor function */
296 ){
297 if( sqlite3VdbeMemSetStr(pCtx->pOut, z, n, enc, xDel)==SQLITE_TOOBIG ){
298 sqlite3_result_error_toobig(pCtx);
299 }
300 }
301 static int invokeValueDestructor(
302 const void *p, /* Value to destroy */
303 void (*xDel)(void*), /* The destructor */
304 sqlite3_context *pCtx /* Set a SQLITE_TOOBIG error if no NULL */
305 ){
306 assert( xDel!=SQLITE_DYNAMIC );
307 if( xDel==0 ){
308 /* noop */
309 }else if( xDel==SQLITE_TRANSIENT ){
310 /* noop */
311 }else{
312 xDel((void*)p);
313 }
314 if( pCtx ) sqlite3_result_error_toobig(pCtx);
315 return SQLITE_TOOBIG;
316 }
317 void sqlite3_result_blob(
318 sqlite3_context *pCtx,
319 const void *z,
320 int n,
321 void (*xDel)(void *)
322 ){
323 assert( n>=0 );
324 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
325 setResultStrOrError(pCtx, z, n, 0, xDel);
326 }
327 void sqlite3_result_blob64(
328 sqlite3_context *pCtx,
329 const void *z,
330 sqlite3_uint64 n,
331 void (*xDel)(void *)
332 ){
333 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
334 assert( xDel!=SQLITE_DYNAMIC );
335 if( n>0x7fffffff ){
336 (void)invokeValueDestructor(z, xDel, pCtx);
337 }else{
338 setResultStrOrError(pCtx, z, (int)n, 0, xDel);
339 }
340 }
341 void sqlite3_result_double(sqlite3_context *pCtx, double rVal){
342 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
343 sqlite3VdbeMemSetDouble(pCtx->pOut, rVal);
344 }
345 void sqlite3_result_error(sqlite3_context *pCtx, const char *z, int n){
346 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
347 pCtx->isError = SQLITE_ERROR;
348 pCtx->fErrorOrAux = 1;
349 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF8, SQLITE_TRANSIENT);
350 }
351 #ifndef SQLITE_OMIT_UTF16
352 void sqlite3_result_error16(sqlite3_context *pCtx, const void *z, int n){
353 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
354 pCtx->isError = SQLITE_ERROR;
355 pCtx->fErrorOrAux = 1;
356 sqlite3VdbeMemSetStr(pCtx->pOut, z, n, SQLITE_UTF16NATIVE, SQLITE_TRANSIENT);
357 }
358 #endif
359 void sqlite3_result_int(sqlite3_context *pCtx, int iVal){
360 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
361 sqlite3VdbeMemSetInt64(pCtx->pOut, (i64)iVal);
362 }
363 void sqlite3_result_int64(sqlite3_context *pCtx, i64 iVal){
364 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
365 sqlite3VdbeMemSetInt64(pCtx->pOut, iVal);
366 }
367 void sqlite3_result_null(sqlite3_context *pCtx){
368 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
369 sqlite3VdbeMemSetNull(pCtx->pOut);
370 }
371 void sqlite3_result_subtype(sqlite3_context *pCtx, unsigned int eSubtype){
372 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
373 pCtx->pOut->eSubtype = eSubtype & 0xff;
374 }
375 void sqlite3_result_text(
376 sqlite3_context *pCtx,
377 const char *z,
378 int n,
379 void (*xDel)(void *)
380 ){
381 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
382 setResultStrOrError(pCtx, z, n, SQLITE_UTF8, xDel);
383 }
384 void sqlite3_result_text64(
385 sqlite3_context *pCtx,
386 const char *z,
387 sqlite3_uint64 n,
388 void (*xDel)(void *),
389 unsigned char enc
390 ){
391 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
392 assert( xDel!=SQLITE_DYNAMIC );
393 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
394 if( n>0x7fffffff ){
395 (void)invokeValueDestructor(z, xDel, pCtx);
396 }else{
397 setResultStrOrError(pCtx, z, (int)n, enc, xDel);
398 }
399 }
400 #ifndef SQLITE_OMIT_UTF16
401 void sqlite3_result_text16(
402 sqlite3_context *pCtx,
403 const void *z,
404 int n,
405 void (*xDel)(void *)
406 ){
407 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
408 setResultStrOrError(pCtx, z, n, SQLITE_UTF16NATIVE, xDel);
409 }
410 void sqlite3_result_text16be(
411 sqlite3_context *pCtx,
412 const void *z,
413 int n,
414 void (*xDel)(void *)
415 ){
416 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
417 setResultStrOrError(pCtx, z, n, SQLITE_UTF16BE, xDel);
418 }
419 void sqlite3_result_text16le(
420 sqlite3_context *pCtx,
421 const void *z,
422 int n,
423 void (*xDel)(void *)
424 ){
425 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
426 setResultStrOrError(pCtx, z, n, SQLITE_UTF16LE, xDel);
427 }
428 #endif /* SQLITE_OMIT_UTF16 */
429 void sqlite3_result_value(sqlite3_context *pCtx, sqlite3_value *pValue){
430 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
431 sqlite3VdbeMemCopy(pCtx->pOut, pValue);
432 }
433 void sqlite3_result_zeroblob(sqlite3_context *pCtx, int n){
434 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
435 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, n);
436 }
437 int sqlite3_result_zeroblob64(sqlite3_context *pCtx, u64 n){
438 Mem *pOut = pCtx->pOut;
439 assert( sqlite3_mutex_held(pOut->db->mutex) );
440 if( n>(u64)pOut->db->aLimit[SQLITE_LIMIT_LENGTH] ){
441 return SQLITE_TOOBIG;
442 }
443 sqlite3VdbeMemSetZeroBlob(pCtx->pOut, (int)n);
444 return SQLITE_OK;
445 }
446 void sqlite3_result_error_code(sqlite3_context *pCtx, int errCode){
447 pCtx->isError = errCode;
448 pCtx->fErrorOrAux = 1;
449 #ifdef SQLITE_DEBUG
450 if( pCtx->pVdbe ) pCtx->pVdbe->rcApp = errCode;
451 #endif
452 if( pCtx->pOut->flags & MEM_Null ){
453 sqlite3VdbeMemSetStr(pCtx->pOut, sqlite3ErrStr(errCode), -1,
454 SQLITE_UTF8, SQLITE_STATIC);
455 }
456 }
457
458 /* Force an SQLITE_TOOBIG error. */
459 void sqlite3_result_error_toobig(sqlite3_context *pCtx){
460 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
461 pCtx->isError = SQLITE_TOOBIG;
462 pCtx->fErrorOrAux = 1;
463 sqlite3VdbeMemSetStr(pCtx->pOut, "string or blob too big", -1,
464 SQLITE_UTF8, SQLITE_STATIC);
465 }
466
467 /* An SQLITE_NOMEM error. */
468 void sqlite3_result_error_nomem(sqlite3_context *pCtx){
469 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
470 sqlite3VdbeMemSetNull(pCtx->pOut);
471 pCtx->isError = SQLITE_NOMEM;
472 pCtx->fErrorOrAux = 1;
473 pCtx->pOut->db->mallocFailed = 1;
474 }
475
476 /*
477 ** This function is called after a transaction has been committed. It
478 ** invokes callbacks registered with sqlite3_wal_hook() as required.
479 */
480 static int doWalCallbacks(sqlite3 *db){
481 int rc = SQLITE_OK;
482 #ifndef SQLITE_OMIT_WAL
483 int i;
484 for(i=0; i<db->nDb; i++){
485 Btree *pBt = db->aDb[i].pBt;
486 if( pBt ){
487 int nEntry;
488 sqlite3BtreeEnter(pBt);
489 nEntry = sqlite3PagerWalCallback(sqlite3BtreePager(pBt));
490 sqlite3BtreeLeave(pBt);
491 if( db->xWalCallback && nEntry>0 && rc==SQLITE_OK ){
492 rc = db->xWalCallback(db->pWalArg, db, db->aDb[i].zName, nEntry);
493 }
494 }
495 }
496 #endif
497 return rc;
498 }
499
500
501 /*
502 ** Execute the statement pStmt, either until a row of data is ready, the
503 ** statement is completely executed or an error occurs.
504 **
505 ** This routine implements the bulk of the logic behind the sqlite_step()
506 ** API. The only thing omitted is the automatic recompile if a
507 ** schema change has occurred. That detail is handled by the
508 ** outer sqlite3_step() wrapper procedure.
509 */
510 static int sqlite3Step(Vdbe *p){
511 sqlite3 *db;
512 int rc;
513
514 assert(p);
515 if( p->magic!=VDBE_MAGIC_RUN ){
516 /* We used to require that sqlite3_reset() be called before retrying
517 ** sqlite3_step() after any error or after SQLITE_DONE. But beginning
518 ** with version 3.7.0, we changed this so that sqlite3_reset() would
519 ** be called automatically instead of throwing the SQLITE_MISUSE error.
520 ** This "automatic-reset" change is not technically an incompatibility,
521 ** since any application that receives an SQLITE_MISUSE is broken by
522 ** definition.
523 **
524 ** Nevertheless, some published applications that were originally written
525 ** for version 3.6.23 or earlier do in fact depend on SQLITE_MISUSE
526 ** returns, and those were broken by the automatic-reset change. As a
527 ** a work-around, the SQLITE_OMIT_AUTORESET compile-time restores the
528 ** legacy behavior of returning SQLITE_MISUSE for cases where the
529 ** previous sqlite3_step() returned something other than a SQLITE_LOCKED
530 ** or SQLITE_BUSY error.
531 */
532 #ifdef SQLITE_OMIT_AUTORESET
533 if( (rc = p->rc&0xff)==SQLITE_BUSY || rc==SQLITE_LOCKED ){
534 sqlite3_reset((sqlite3_stmt*)p);
535 }else{
536 return SQLITE_MISUSE_BKPT;
537 }
538 #else
539 sqlite3_reset((sqlite3_stmt*)p);
540 #endif
541 }
542
543 /* Check that malloc() has not failed. If it has, return early. */
544 db = p->db;
545 if( db->mallocFailed ){
546 p->rc = SQLITE_NOMEM;
547 return SQLITE_NOMEM;
548 }
549
550 if( p->pc<=0 && p->expired ){
551 p->rc = SQLITE_SCHEMA;
552 rc = SQLITE_ERROR;
553 goto end_of_step;
554 }
555 if( p->pc<0 ){
556 /* If there are no other statements currently running, then
557 ** reset the interrupt flag. This prevents a call to sqlite3_interrupt
558 ** from interrupting a statement that has not yet started.
559 */
560 if( db->nVdbeActive==0 ){
561 db->u1.isInterrupted = 0;
562 }
563
564 assert( db->nVdbeWrite>0 || db->autoCommit==0
565 || (db->nDeferredCons==0 && db->nDeferredImmCons==0)
566 );
567
568 #ifndef SQLITE_OMIT_TRACE
569 if( db->xProfile && !db->init.busy && p->zSql ){
570 sqlite3OsCurrentTimeInt64(db->pVfs, &p->startTime);
571 }else{
572 assert( p->startTime==0 );
573 }
574 #endif
575
576 db->nVdbeActive++;
577 if( p->readOnly==0 ) db->nVdbeWrite++;
578 if( p->bIsReader ) db->nVdbeRead++;
579 p->pc = 0;
580 }
581 #ifdef SQLITE_DEBUG
582 p->rcApp = SQLITE_OK;
583 #endif
584 #ifndef SQLITE_OMIT_EXPLAIN
585 if( p->explain ){
586 rc = sqlite3VdbeList(p);
587 }else
588 #endif /* SQLITE_OMIT_EXPLAIN */
589 {
590 db->nVdbeExec++;
591 rc = sqlite3VdbeExec(p);
592 db->nVdbeExec--;
593 }
594
595 #ifndef SQLITE_OMIT_TRACE
596 /* If the statement completed successfully, invoke the profile callback */
597 if( rc!=SQLITE_ROW ) checkProfileCallback(db, p);
598 #endif
599
600 if( rc==SQLITE_DONE ){
601 assert( p->rc==SQLITE_OK );
602 p->rc = doWalCallbacks(db);
603 if( p->rc!=SQLITE_OK ){
604 rc = SQLITE_ERROR;
605 }
606 }
607
608 db->errCode = rc;
609 if( SQLITE_NOMEM==sqlite3ApiExit(p->db, p->rc) ){
610 p->rc = SQLITE_NOMEM;
611 }
612 end_of_step:
613 /* At this point local variable rc holds the value that should be
614 ** returned if this statement was compiled using the legacy
615 ** sqlite3_prepare() interface. According to the docs, this can only
616 ** be one of the values in the first assert() below. Variable p->rc
617 ** contains the value that would be returned if sqlite3_finalize()
618 ** were called on statement p.
619 */
620 assert( rc==SQLITE_ROW || rc==SQLITE_DONE || rc==SQLITE_ERROR
621 || (rc&0xff)==SQLITE_BUSY || rc==SQLITE_MISUSE
622 );
623 assert( (p->rc!=SQLITE_ROW && p->rc!=SQLITE_DONE) || p->rc==p->rcApp );
624 if( p->isPrepareV2 && rc!=SQLITE_ROW && rc!=SQLITE_DONE ){
625 /* If this statement was prepared using sqlite3_prepare_v2(), and an
626 ** error has occurred, then return the error code in p->rc to the
627 ** caller. Set the error code in the database handle to the same value.
628 */
629 rc = sqlite3VdbeTransferError(p);
630 }
631 return (rc&db->errMask);
632 }
633
634 /*
635 ** This is the top-level implementation of sqlite3_step(). Call
636 ** sqlite3Step() to do most of the work. If a schema error occurs,
637 ** call sqlite3Reprepare() and try again.
638 */
639 int sqlite3_step(sqlite3_stmt *pStmt){
640 int rc = SQLITE_OK; /* Result from sqlite3Step() */
641 int rc2 = SQLITE_OK; /* Result from sqlite3Reprepare() */
642 Vdbe *v = (Vdbe*)pStmt; /* the prepared statement */
643 int cnt = 0; /* Counter to prevent infinite loop of reprepares */
644 sqlite3 *db; /* The database connection */
645
646 if( vdbeSafetyNotNull(v) ){
647 return SQLITE_MISUSE_BKPT;
648 }
649 db = v->db;
650 sqlite3_mutex_enter(db->mutex);
651 v->doingRerun = 0;
652 while( (rc = sqlite3Step(v))==SQLITE_SCHEMA
653 && cnt++ < SQLITE_MAX_SCHEMA_RETRY ){
654 int savedPc = v->pc;
655 rc2 = rc = sqlite3Reprepare(v);
656 if( rc!=SQLITE_OK) break;
657 sqlite3_reset(pStmt);
658 if( savedPc>=0 ) v->doingRerun = 1;
659 assert( v->expired==0 );
660 }
661 if( rc2!=SQLITE_OK ){
662 /* This case occurs after failing to recompile an sql statement.
663 ** The error message from the SQL compiler has already been loaded
664 ** into the database handle. This block copies the error message
665 ** from the database handle into the statement and sets the statement
666 ** program counter to 0 to ensure that when the statement is
667 ** finalized or reset the parser error message is available via
668 ** sqlite3_errmsg() and sqlite3_errcode().
669 */
670 const char *zErr = (const char *)sqlite3_value_text(db->pErr);
671 sqlite3DbFree(db, v->zErrMsg);
672 if( !db->mallocFailed ){
673 v->zErrMsg = sqlite3DbStrDup(db, zErr);
674 v->rc = rc2;
675 } else {
676 v->zErrMsg = 0;
677 v->rc = rc = SQLITE_NOMEM;
678 }
679 }
680 rc = sqlite3ApiExit(db, rc);
681 sqlite3_mutex_leave(db->mutex);
682 return rc;
683 }
684
685
686 /*
687 ** Extract the user data from a sqlite3_context structure and return a
688 ** pointer to it.
689 */
690 void *sqlite3_user_data(sqlite3_context *p){
691 assert( p && p->pFunc );
692 return p->pFunc->pUserData;
693 }
694
695 /*
696 ** Extract the user data from a sqlite3_context structure and return a
697 ** pointer to it.
698 **
699 ** IMPLEMENTATION-OF: R-46798-50301 The sqlite3_context_db_handle() interface
700 ** returns a copy of the pointer to the database connection (the 1st
701 ** parameter) of the sqlite3_create_function() and
702 ** sqlite3_create_function16() routines that originally registered the
703 ** application defined function.
704 */
705 sqlite3 *sqlite3_context_db_handle(sqlite3_context *p){
706 assert( p && p->pOut );
707 return p->pOut->db;
708 }
709
710 /*
711 ** Return the current time for a statement. If the current time
712 ** is requested more than once within the same run of a single prepared
713 ** statement, the exact same time is returned for each invocation regardless
714 ** of the amount of time that elapses between invocations. In other words,
715 ** the time returned is always the time of the first call.
716 */
717 sqlite3_int64 sqlite3StmtCurrentTime(sqlite3_context *p){
718 int rc;
719 #ifndef SQLITE_ENABLE_STAT3_OR_STAT4
720 sqlite3_int64 *piTime = &p->pVdbe->iCurrentTime;
721 assert( p->pVdbe!=0 );
722 #else
723 sqlite3_int64 iTime = 0;
724 sqlite3_int64 *piTime = p->pVdbe!=0 ? &p->pVdbe->iCurrentTime : &iTime;
725 #endif
726 if( *piTime==0 ){
727 rc = sqlite3OsCurrentTimeInt64(p->pOut->db->pVfs, piTime);
728 if( rc ) *piTime = 0;
729 }
730 return *piTime;
731 }
732
733 /*
734 ** The following is the implementation of an SQL function that always
735 ** fails with an error message stating that the function is used in the
736 ** wrong context. The sqlite3_overload_function() API might construct
737 ** SQL function that use this routine so that the functions will exist
738 ** for name resolution but are actually overloaded by the xFindFunction
739 ** method of virtual tables.
740 */
741 void sqlite3InvalidFunction(
742 sqlite3_context *context, /* The function calling context */
743 int NotUsed, /* Number of arguments to the function */
744 sqlite3_value **NotUsed2 /* Value of each argument */
745 ){
746 const char *zName = context->pFunc->zName;
747 char *zErr;
748 UNUSED_PARAMETER2(NotUsed, NotUsed2);
749 zErr = sqlite3_mprintf(
750 "unable to use function %s in the requested context", zName);
751 sqlite3_result_error(context, zErr, -1);
752 sqlite3_free(zErr);
753 }
754
755 /*
756 ** Create a new aggregate context for p and return a pointer to
757 ** its pMem->z element.
758 */
759 static SQLITE_NOINLINE void *createAggContext(sqlite3_context *p, int nByte){
760 Mem *pMem = p->pMem;
761 assert( (pMem->flags & MEM_Agg)==0 );
762 if( nByte<=0 ){
763 sqlite3VdbeMemSetNull(pMem);
764 pMem->z = 0;
765 }else{
766 sqlite3VdbeMemClearAndResize(pMem, nByte);
767 pMem->flags = MEM_Agg;
768 pMem->u.pDef = p->pFunc;
769 if( pMem->z ){
770 memset(pMem->z, 0, nByte);
771 }
772 }
773 return (void*)pMem->z;
774 }
775
776 /*
777 ** Allocate or return the aggregate context for a user function. A new
778 ** context is allocated on the first call. Subsequent calls return the
779 ** same context that was returned on prior calls.
780 */
781 void *sqlite3_aggregate_context(sqlite3_context *p, int nByte){
782 assert( p && p->pFunc && p->pFunc->xStep );
783 assert( sqlite3_mutex_held(p->pOut->db->mutex) );
784 testcase( nByte<0 );
785 if( (p->pMem->flags & MEM_Agg)==0 ){
786 return createAggContext(p, nByte);
787 }else{
788 return (void*)p->pMem->z;
789 }
790 }
791
792 /*
793 ** Return the auxiliary data pointer, if any, for the iArg'th argument to
794 ** the user-function defined by pCtx.
795 */
796 void *sqlite3_get_auxdata(sqlite3_context *pCtx, int iArg){
797 AuxData *pAuxData;
798
799 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
800 #if SQLITE_ENABLE_STAT3_OR_STAT4
801 if( pCtx->pVdbe==0 ) return 0;
802 #else
803 assert( pCtx->pVdbe!=0 );
804 #endif
805 for(pAuxData=pCtx->pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){
806 if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break;
807 }
808
809 return (pAuxData ? pAuxData->pAux : 0);
810 }
811
812 /*
813 ** Set the auxiliary data pointer and delete function, for the iArg'th
814 ** argument to the user-function defined by pCtx. Any previous value is
815 ** deleted by calling the delete function specified when it was set.
816 */
817 void sqlite3_set_auxdata(
818 sqlite3_context *pCtx,
819 int iArg,
820 void *pAux,
821 void (*xDelete)(void*)
822 ){
823 AuxData *pAuxData;
824 Vdbe *pVdbe = pCtx->pVdbe;
825
826 assert( sqlite3_mutex_held(pCtx->pOut->db->mutex) );
827 if( iArg<0 ) goto failed;
828 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
829 if( pVdbe==0 ) goto failed;
830 #else
831 assert( pVdbe!=0 );
832 #endif
833
834 for(pAuxData=pVdbe->pAuxData; pAuxData; pAuxData=pAuxData->pNext){
835 if( pAuxData->iOp==pCtx->iOp && pAuxData->iArg==iArg ) break;
836 }
837 if( pAuxData==0 ){
838 pAuxData = sqlite3DbMallocZero(pVdbe->db, sizeof(AuxData));
839 if( !pAuxData ) goto failed;
840 pAuxData->iOp = pCtx->iOp;
841 pAuxData->iArg = iArg;
842 pAuxData->pNext = pVdbe->pAuxData;
843 pVdbe->pAuxData = pAuxData;
844 if( pCtx->fErrorOrAux==0 ){
845 pCtx->isError = 0;
846 pCtx->fErrorOrAux = 1;
847 }
848 }else if( pAuxData->xDelete ){
849 pAuxData->xDelete(pAuxData->pAux);
850 }
851
852 pAuxData->pAux = pAux;
853 pAuxData->xDelete = xDelete;
854 return;
855
856 failed:
857 if( xDelete ){
858 xDelete(pAux);
859 }
860 }
861
862 #ifndef SQLITE_OMIT_DEPRECATED
863 /*
864 ** Return the number of times the Step function of an aggregate has been
865 ** called.
866 **
867 ** This function is deprecated. Do not use it for new code. It is
868 ** provide only to avoid breaking legacy code. New aggregate function
869 ** implementations should keep their own counts within their aggregate
870 ** context.
871 */
872 int sqlite3_aggregate_count(sqlite3_context *p){
873 assert( p && p->pMem && p->pFunc && p->pFunc->xStep );
874 return p->pMem->n;
875 }
876 #endif
877
878 /*
879 ** Return the number of columns in the result set for the statement pStmt.
880 */
881 int sqlite3_column_count(sqlite3_stmt *pStmt){
882 Vdbe *pVm = (Vdbe *)pStmt;
883 return pVm ? pVm->nResColumn : 0;
884 }
885
886 /*
887 ** Return the number of values available from the current row of the
888 ** currently executing statement pStmt.
889 */
890 int sqlite3_data_count(sqlite3_stmt *pStmt){
891 Vdbe *pVm = (Vdbe *)pStmt;
892 if( pVm==0 || pVm->pResultSet==0 ) return 0;
893 return pVm->nResColumn;
894 }
895
896 /*
897 ** Return a pointer to static memory containing an SQL NULL value.
898 */
899 static const Mem *columnNullValue(void){
900 /* Even though the Mem structure contains an element
901 ** of type i64, on certain architectures (x86) with certain compiler
902 ** switches (-Os), gcc may align this Mem object on a 4-byte boundary
903 ** instead of an 8-byte one. This all works fine, except that when
904 ** running with SQLITE_DEBUG defined the SQLite code sometimes assert()s
905 ** that a Mem structure is located on an 8-byte boundary. To prevent
906 ** these assert()s from failing, when building with SQLITE_DEBUG defined
907 ** using gcc, we force nullMem to be 8-byte aligned using the magical
908 ** __attribute__((aligned(8))) macro. */
909 static const Mem nullMem
910 #if defined(SQLITE_DEBUG) && defined(__GNUC__)
911 __attribute__((aligned(8)))
912 #endif
913 = {
914 /* .u = */ {0},
915 /* .flags = */ (u16)MEM_Null,
916 /* .enc = */ (u8)0,
917 /* .eSubtype = */ (u8)0,
918 /* .n = */ (int)0,
919 /* .z = */ (char*)0,
920 /* .zMalloc = */ (char*)0,
921 /* .szMalloc = */ (int)0,
922 /* .uTemp = */ (u32)0,
923 /* .db = */ (sqlite3*)0,
924 /* .xDel = */ (void(*)(void*))0,
925 #ifdef SQLITE_DEBUG
926 /* .pScopyFrom = */ (Mem*)0,
927 /* .pFiller = */ (void*)0,
928 #endif
929 };
930 return &nullMem;
931 }
932
933 /*
934 ** Check to see if column iCol of the given statement is valid. If
935 ** it is, return a pointer to the Mem for the value of that column.
936 ** If iCol is not valid, return a pointer to a Mem which has a value
937 ** of NULL.
938 */
939 static Mem *columnMem(sqlite3_stmt *pStmt, int i){
940 Vdbe *pVm;
941 Mem *pOut;
942
943 pVm = (Vdbe *)pStmt;
944 if( pVm && pVm->pResultSet!=0 && i<pVm->nResColumn && i>=0 ){
945 sqlite3_mutex_enter(pVm->db->mutex);
946 pOut = &pVm->pResultSet[i];
947 }else{
948 if( pVm && ALWAYS(pVm->db) ){
949 sqlite3_mutex_enter(pVm->db->mutex);
950 sqlite3Error(pVm->db, SQLITE_RANGE);
951 }
952 pOut = (Mem*)columnNullValue();
953 }
954 return pOut;
955 }
956
957 /*
958 ** This function is called after invoking an sqlite3_value_XXX function on a
959 ** column value (i.e. a value returned by evaluating an SQL expression in the
960 ** select list of a SELECT statement) that may cause a malloc() failure. If
961 ** malloc() has failed, the threads mallocFailed flag is cleared and the result
962 ** code of statement pStmt set to SQLITE_NOMEM.
963 **
964 ** Specifically, this is called from within:
965 **
966 ** sqlite3_column_int()
967 ** sqlite3_column_int64()
968 ** sqlite3_column_text()
969 ** sqlite3_column_text16()
970 ** sqlite3_column_real()
971 ** sqlite3_column_bytes()
972 ** sqlite3_column_bytes16()
973 ** sqiite3_column_blob()
974 */
975 static void columnMallocFailure(sqlite3_stmt *pStmt)
976 {
977 /* If malloc() failed during an encoding conversion within an
978 ** sqlite3_column_XXX API, then set the return code of the statement to
979 ** SQLITE_NOMEM. The next call to _step() (if any) will return SQLITE_ERROR
980 ** and _finalize() will return NOMEM.
981 */
982 Vdbe *p = (Vdbe *)pStmt;
983 if( p ){
984 p->rc = sqlite3ApiExit(p->db, p->rc);
985 sqlite3_mutex_leave(p->db->mutex);
986 }
987 }
988
989 /**************************** sqlite3_column_ *******************************
990 ** The following routines are used to access elements of the current row
991 ** in the result set.
992 */
993 const void *sqlite3_column_blob(sqlite3_stmt *pStmt, int i){
994 const void *val;
995 val = sqlite3_value_blob( columnMem(pStmt,i) );
996 /* Even though there is no encoding conversion, value_blob() might
997 ** need to call malloc() to expand the result of a zeroblob()
998 ** expression.
999 */
1000 columnMallocFailure(pStmt);
1001 return val;
1002 }
1003 int sqlite3_column_bytes(sqlite3_stmt *pStmt, int i){
1004 int val = sqlite3_value_bytes( columnMem(pStmt,i) );
1005 columnMallocFailure(pStmt);
1006 return val;
1007 }
1008 int sqlite3_column_bytes16(sqlite3_stmt *pStmt, int i){
1009 int val = sqlite3_value_bytes16( columnMem(pStmt,i) );
1010 columnMallocFailure(pStmt);
1011 return val;
1012 }
1013 double sqlite3_column_double(sqlite3_stmt *pStmt, int i){
1014 double val = sqlite3_value_double( columnMem(pStmt,i) );
1015 columnMallocFailure(pStmt);
1016 return val;
1017 }
1018 int sqlite3_column_int(sqlite3_stmt *pStmt, int i){
1019 int val = sqlite3_value_int( columnMem(pStmt,i) );
1020 columnMallocFailure(pStmt);
1021 return val;
1022 }
1023 sqlite_int64 sqlite3_column_int64(sqlite3_stmt *pStmt, int i){
1024 sqlite_int64 val = sqlite3_value_int64( columnMem(pStmt,i) );
1025 columnMallocFailure(pStmt);
1026 return val;
1027 }
1028 const unsigned char *sqlite3_column_text(sqlite3_stmt *pStmt, int i){
1029 const unsigned char *val = sqlite3_value_text( columnMem(pStmt,i) );
1030 columnMallocFailure(pStmt);
1031 return val;
1032 }
1033 sqlite3_value *sqlite3_column_value(sqlite3_stmt *pStmt, int i){
1034 Mem *pOut = columnMem(pStmt, i);
1035 if( pOut->flags&MEM_Static ){
1036 pOut->flags &= ~MEM_Static;
1037 pOut->flags |= MEM_Ephem;
1038 }
1039 columnMallocFailure(pStmt);
1040 return (sqlite3_value *)pOut;
1041 }
1042 #ifndef SQLITE_OMIT_UTF16
1043 const void *sqlite3_column_text16(sqlite3_stmt *pStmt, int i){
1044 const void *val = sqlite3_value_text16( columnMem(pStmt,i) );
1045 columnMallocFailure(pStmt);
1046 return val;
1047 }
1048 #endif /* SQLITE_OMIT_UTF16 */
1049 int sqlite3_column_type(sqlite3_stmt *pStmt, int i){
1050 int iType = sqlite3_value_type( columnMem(pStmt,i) );
1051 columnMallocFailure(pStmt);
1052 return iType;
1053 }
1054
1055 /*
1056 ** Convert the N-th element of pStmt->pColName[] into a string using
1057 ** xFunc() then return that string. If N is out of range, return 0.
1058 **
1059 ** There are up to 5 names for each column. useType determines which
1060 ** name is returned. Here are the names:
1061 **
1062 ** 0 The column name as it should be displayed for output
1063 ** 1 The datatype name for the column
1064 ** 2 The name of the database that the column derives from
1065 ** 3 The name of the table that the column derives from
1066 ** 4 The name of the table column that the result column derives from
1067 **
1068 ** If the result is not a simple column reference (if it is an expression
1069 ** or a constant) then useTypes 2, 3, and 4 return NULL.
1070 */
1071 static const void *columnName(
1072 sqlite3_stmt *pStmt,
1073 int N,
1074 const void *(*xFunc)(Mem*),
1075 int useType
1076 ){
1077 const void *ret;
1078 Vdbe *p;
1079 int n;
1080 sqlite3 *db;
1081 #ifdef SQLITE_ENABLE_API_ARMOR
1082 if( pStmt==0 ){
1083 (void)SQLITE_MISUSE_BKPT;
1084 return 0;
1085 }
1086 #endif
1087 ret = 0;
1088 p = (Vdbe *)pStmt;
1089 db = p->db;
1090 assert( db!=0 );
1091 n = sqlite3_column_count(pStmt);
1092 if( N<n && N>=0 ){
1093 N += useType*n;
1094 sqlite3_mutex_enter(db->mutex);
1095 assert( db->mallocFailed==0 );
1096 ret = xFunc(&p->aColName[N]);
1097 /* A malloc may have failed inside of the xFunc() call. If this
1098 ** is the case, clear the mallocFailed flag and return NULL.
1099 */
1100 if( db->mallocFailed ){
1101 db->mallocFailed = 0;
1102 ret = 0;
1103 }
1104 sqlite3_mutex_leave(db->mutex);
1105 }
1106 return ret;
1107 }
1108
1109 /*
1110 ** Return the name of the Nth column of the result set returned by SQL
1111 ** statement pStmt.
1112 */
1113 const char *sqlite3_column_name(sqlite3_stmt *pStmt, int N){
1114 return columnName(
1115 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_NAME);
1116 }
1117 #ifndef SQLITE_OMIT_UTF16
1118 const void *sqlite3_column_name16(sqlite3_stmt *pStmt, int N){
1119 return columnName(
1120 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_NAME);
1121 }
1122 #endif
1123
1124 /*
1125 ** Constraint: If you have ENABLE_COLUMN_METADATA then you must
1126 ** not define OMIT_DECLTYPE.
1127 */
1128 #if defined(SQLITE_OMIT_DECLTYPE) && defined(SQLITE_ENABLE_COLUMN_METADATA)
1129 # error "Must not define both SQLITE_OMIT_DECLTYPE \
1130 and SQLITE_ENABLE_COLUMN_METADATA"
1131 #endif
1132
1133 #ifndef SQLITE_OMIT_DECLTYPE
1134 /*
1135 ** Return the column declaration type (if applicable) of the 'i'th column
1136 ** of the result set of SQL statement pStmt.
1137 */
1138 const char *sqlite3_column_decltype(sqlite3_stmt *pStmt, int N){
1139 return columnName(
1140 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DECLTYPE);
1141 }
1142 #ifndef SQLITE_OMIT_UTF16
1143 const void *sqlite3_column_decltype16(sqlite3_stmt *pStmt, int N){
1144 return columnName(
1145 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DECLTYPE);
1146 }
1147 #endif /* SQLITE_OMIT_UTF16 */
1148 #endif /* SQLITE_OMIT_DECLTYPE */
1149
1150 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1151 /*
1152 ** Return the name of the database from which a result column derives.
1153 ** NULL is returned if the result column is an expression or constant or
1154 ** anything else which is not an unambiguous reference to a database column.
1155 */
1156 const char *sqlite3_column_database_name(sqlite3_stmt *pStmt, int N){
1157 return columnName(
1158 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_DATABASE);
1159 }
1160 #ifndef SQLITE_OMIT_UTF16
1161 const void *sqlite3_column_database_name16(sqlite3_stmt *pStmt, int N){
1162 return columnName(
1163 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_DATABASE);
1164 }
1165 #endif /* SQLITE_OMIT_UTF16 */
1166
1167 /*
1168 ** Return the name of the table from which a result column derives.
1169 ** NULL is returned if the result column is an expression or constant or
1170 ** anything else which is not an unambiguous reference to a database column.
1171 */
1172 const char *sqlite3_column_table_name(sqlite3_stmt *pStmt, int N){
1173 return columnName(
1174 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_TABLE);
1175 }
1176 #ifndef SQLITE_OMIT_UTF16
1177 const void *sqlite3_column_table_name16(sqlite3_stmt *pStmt, int N){
1178 return columnName(
1179 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_TABLE);
1180 }
1181 #endif /* SQLITE_OMIT_UTF16 */
1182
1183 /*
1184 ** Return the name of the table column from which a result column derives.
1185 ** NULL is returned if the result column is an expression or constant or
1186 ** anything else which is not an unambiguous reference to a database column.
1187 */
1188 const char *sqlite3_column_origin_name(sqlite3_stmt *pStmt, int N){
1189 return columnName(
1190 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text, COLNAME_COLUMN);
1191 }
1192 #ifndef SQLITE_OMIT_UTF16
1193 const void *sqlite3_column_origin_name16(sqlite3_stmt *pStmt, int N){
1194 return columnName(
1195 pStmt, N, (const void*(*)(Mem*))sqlite3_value_text16, COLNAME_COLUMN);
1196 }
1197 #endif /* SQLITE_OMIT_UTF16 */
1198 #endif /* SQLITE_ENABLE_COLUMN_METADATA */
1199
1200
1201 /******************************* sqlite3_bind_ ***************************
1202 **
1203 ** Routines used to attach values to wildcards in a compiled SQL statement.
1204 */
1205 /*
1206 ** Unbind the value bound to variable i in virtual machine p. This is the
1207 ** the same as binding a NULL value to the column. If the "i" parameter is
1208 ** out of range, then SQLITE_RANGE is returned. Othewise SQLITE_OK.
1209 **
1210 ** A successful evaluation of this routine acquires the mutex on p.
1211 ** the mutex is released if any kind of error occurs.
1212 **
1213 ** The error code stored in database p->db is overwritten with the return
1214 ** value in any case.
1215 */
1216 static int vdbeUnbind(Vdbe *p, int i){
1217 Mem *pVar;
1218 if( vdbeSafetyNotNull(p) ){
1219 return SQLITE_MISUSE_BKPT;
1220 }
1221 sqlite3_mutex_enter(p->db->mutex);
1222 if( p->magic!=VDBE_MAGIC_RUN || p->pc>=0 ){
1223 sqlite3Error(p->db, SQLITE_MISUSE);
1224 sqlite3_mutex_leave(p->db->mutex);
1225 sqlite3_log(SQLITE_MISUSE,
1226 "bind on a busy prepared statement: [%s]", p->zSql);
1227 return SQLITE_MISUSE_BKPT;
1228 }
1229 if( i<1 || i>p->nVar ){
1230 sqlite3Error(p->db, SQLITE_RANGE);
1231 sqlite3_mutex_leave(p->db->mutex);
1232 return SQLITE_RANGE;
1233 }
1234 i--;
1235 pVar = &p->aVar[i];
1236 sqlite3VdbeMemRelease(pVar);
1237 pVar->flags = MEM_Null;
1238 sqlite3Error(p->db, SQLITE_OK);
1239
1240 /* If the bit corresponding to this variable in Vdbe.expmask is set, then
1241 ** binding a new value to this variable invalidates the current query plan.
1242 **
1243 ** IMPLEMENTATION-OF: R-48440-37595 If the specific value bound to host
1244 ** parameter in the WHERE clause might influence the choice of query plan
1245 ** for a statement, then the statement will be automatically recompiled,
1246 ** as if there had been a schema change, on the first sqlite3_step() call
1247 ** following any change to the bindings of that parameter.
1248 */
1249 if( p->isPrepareV2 &&
1250 ((i<32 && p->expmask & ((u32)1 << i)) || p->expmask==0xffffffff)
1251 ){
1252 p->expired = 1;
1253 }
1254 return SQLITE_OK;
1255 }
1256
1257 /*
1258 ** Bind a text or BLOB value.
1259 */
1260 static int bindText(
1261 sqlite3_stmt *pStmt, /* The statement to bind against */
1262 int i, /* Index of the parameter to bind */
1263 const void *zData, /* Pointer to the data to be bound */
1264 int nData, /* Number of bytes of data to be bound */
1265 void (*xDel)(void*), /* Destructor for the data */
1266 u8 encoding /* Encoding for the data */
1267 ){
1268 Vdbe *p = (Vdbe *)pStmt;
1269 Mem *pVar;
1270 int rc;
1271
1272 rc = vdbeUnbind(p, i);
1273 if( rc==SQLITE_OK ){
1274 if( zData!=0 ){
1275 pVar = &p->aVar[i-1];
1276 rc = sqlite3VdbeMemSetStr(pVar, zData, nData, encoding, xDel);
1277 if( rc==SQLITE_OK && encoding!=0 ){
1278 rc = sqlite3VdbeChangeEncoding(pVar, ENC(p->db));
1279 }
1280 sqlite3Error(p->db, rc);
1281 rc = sqlite3ApiExit(p->db, rc);
1282 }
1283 sqlite3_mutex_leave(p->db->mutex);
1284 }else if( xDel!=SQLITE_STATIC && xDel!=SQLITE_TRANSIENT ){
1285 xDel((void*)zData);
1286 }
1287 return rc;
1288 }
1289
1290
1291 /*
1292 ** Bind a blob value to an SQL statement variable.
1293 */
1294 int sqlite3_bind_blob(
1295 sqlite3_stmt *pStmt,
1296 int i,
1297 const void *zData,
1298 int nData,
1299 void (*xDel)(void*)
1300 ){
1301 return bindText(pStmt, i, zData, nData, xDel, 0);
1302 }
1303 int sqlite3_bind_blob64(
1304 sqlite3_stmt *pStmt,
1305 int i,
1306 const void *zData,
1307 sqlite3_uint64 nData,
1308 void (*xDel)(void*)
1309 ){
1310 assert( xDel!=SQLITE_DYNAMIC );
1311 if( nData>0x7fffffff ){
1312 return invokeValueDestructor(zData, xDel, 0);
1313 }else{
1314 return bindText(pStmt, i, zData, (int)nData, xDel, 0);
1315 }
1316 }
1317 int sqlite3_bind_double(sqlite3_stmt *pStmt, int i, double rValue){
1318 int rc;
1319 Vdbe *p = (Vdbe *)pStmt;
1320 rc = vdbeUnbind(p, i);
1321 if( rc==SQLITE_OK ){
1322 sqlite3VdbeMemSetDouble(&p->aVar[i-1], rValue);
1323 sqlite3_mutex_leave(p->db->mutex);
1324 }
1325 return rc;
1326 }
1327 int sqlite3_bind_int(sqlite3_stmt *p, int i, int iValue){
1328 return sqlite3_bind_int64(p, i, (i64)iValue);
1329 }
1330 int sqlite3_bind_int64(sqlite3_stmt *pStmt, int i, sqlite_int64 iValue){
1331 int rc;
1332 Vdbe *p = (Vdbe *)pStmt;
1333 rc = vdbeUnbind(p, i);
1334 if( rc==SQLITE_OK ){
1335 sqlite3VdbeMemSetInt64(&p->aVar[i-1], iValue);
1336 sqlite3_mutex_leave(p->db->mutex);
1337 }
1338 return rc;
1339 }
1340 int sqlite3_bind_null(sqlite3_stmt *pStmt, int i){
1341 int rc;
1342 Vdbe *p = (Vdbe*)pStmt;
1343 rc = vdbeUnbind(p, i);
1344 if( rc==SQLITE_OK ){
1345 sqlite3_mutex_leave(p->db->mutex);
1346 }
1347 return rc;
1348 }
1349 int sqlite3_bind_text(
1350 sqlite3_stmt *pStmt,
1351 int i,
1352 const char *zData,
1353 int nData,
1354 void (*xDel)(void*)
1355 ){
1356 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF8);
1357 }
1358 int sqlite3_bind_text64(
1359 sqlite3_stmt *pStmt,
1360 int i,
1361 const char *zData,
1362 sqlite3_uint64 nData,
1363 void (*xDel)(void*),
1364 unsigned char enc
1365 ){
1366 assert( xDel!=SQLITE_DYNAMIC );
1367 if( nData>0x7fffffff ){
1368 return invokeValueDestructor(zData, xDel, 0);
1369 }else{
1370 if( enc==SQLITE_UTF16 ) enc = SQLITE_UTF16NATIVE;
1371 return bindText(pStmt, i, zData, (int)nData, xDel, enc);
1372 }
1373 }
1374 #ifndef SQLITE_OMIT_UTF16
1375 int sqlite3_bind_text16(
1376 sqlite3_stmt *pStmt,
1377 int i,
1378 const void *zData,
1379 int nData,
1380 void (*xDel)(void*)
1381 ){
1382 return bindText(pStmt, i, zData, nData, xDel, SQLITE_UTF16NATIVE);
1383 }
1384 #endif /* SQLITE_OMIT_UTF16 */
1385 int sqlite3_bind_value(sqlite3_stmt *pStmt, int i, const sqlite3_value *pValue){
1386 int rc;
1387 switch( sqlite3_value_type((sqlite3_value*)pValue) ){
1388 case SQLITE_INTEGER: {
1389 rc = sqlite3_bind_int64(pStmt, i, pValue->u.i);
1390 break;
1391 }
1392 case SQLITE_FLOAT: {
1393 rc = sqlite3_bind_double(pStmt, i, pValue->u.r);
1394 break;
1395 }
1396 case SQLITE_BLOB: {
1397 if( pValue->flags & MEM_Zero ){
1398 rc = sqlite3_bind_zeroblob(pStmt, i, pValue->u.nZero);
1399 }else{
1400 rc = sqlite3_bind_blob(pStmt, i, pValue->z, pValue->n,SQLITE_TRANSIENT);
1401 }
1402 break;
1403 }
1404 case SQLITE_TEXT: {
1405 rc = bindText(pStmt,i, pValue->z, pValue->n, SQLITE_TRANSIENT,
1406 pValue->enc);
1407 break;
1408 }
1409 default: {
1410 rc = sqlite3_bind_null(pStmt, i);
1411 break;
1412 }
1413 }
1414 return rc;
1415 }
1416 int sqlite3_bind_zeroblob(sqlite3_stmt *pStmt, int i, int n){
1417 int rc;
1418 Vdbe *p = (Vdbe *)pStmt;
1419 rc = vdbeUnbind(p, i);
1420 if( rc==SQLITE_OK ){
1421 sqlite3VdbeMemSetZeroBlob(&p->aVar[i-1], n);
1422 sqlite3_mutex_leave(p->db->mutex);
1423 }
1424 return rc;
1425 }
1426 int sqlite3_bind_zeroblob64(sqlite3_stmt *pStmt, int i, sqlite3_uint64 n){
1427 int rc;
1428 Vdbe *p = (Vdbe *)pStmt;
1429 sqlite3_mutex_enter(p->db->mutex);
1430 if( n>(u64)p->db->aLimit[SQLITE_LIMIT_LENGTH] ){
1431 rc = SQLITE_TOOBIG;
1432 }else{
1433 assert( (n & 0x7FFFFFFF)==n );
1434 rc = sqlite3_bind_zeroblob(pStmt, i, n);
1435 }
1436 rc = sqlite3ApiExit(p->db, rc);
1437 sqlite3_mutex_leave(p->db->mutex);
1438 return rc;
1439 }
1440
1441 /*
1442 ** Return the number of wildcards that can be potentially bound to.
1443 ** This routine is added to support DBD::SQLite.
1444 */
1445 int sqlite3_bind_parameter_count(sqlite3_stmt *pStmt){
1446 Vdbe *p = (Vdbe*)pStmt;
1447 return p ? p->nVar : 0;
1448 }
1449
1450 /*
1451 ** Return the name of a wildcard parameter. Return NULL if the index
1452 ** is out of range or if the wildcard is unnamed.
1453 **
1454 ** The result is always UTF-8.
1455 */
1456 const char *sqlite3_bind_parameter_name(sqlite3_stmt *pStmt, int i){
1457 Vdbe *p = (Vdbe*)pStmt;
1458 if( p==0 || i<1 || i>p->nzVar ){
1459 return 0;
1460 }
1461 return p->azVar[i-1];
1462 }
1463
1464 /*
1465 ** Given a wildcard parameter name, return the index of the variable
1466 ** with that name. If there is no variable with the given name,
1467 ** return 0.
1468 */
1469 int sqlite3VdbeParameterIndex(Vdbe *p, const char *zName, int nName){
1470 int i;
1471 if( p==0 ){
1472 return 0;
1473 }
1474 if( zName ){
1475 for(i=0; i<p->nzVar; i++){
1476 const char *z = p->azVar[i];
1477 if( z && strncmp(z,zName,nName)==0 && z[nName]==0 ){
1478 return i+1;
1479 }
1480 }
1481 }
1482 return 0;
1483 }
1484 int sqlite3_bind_parameter_index(sqlite3_stmt *pStmt, const char *zName){
1485 return sqlite3VdbeParameterIndex((Vdbe*)pStmt, zName, sqlite3Strlen30(zName));
1486 }
1487
1488 /*
1489 ** Transfer all bindings from the first statement over to the second.
1490 */
1491 int sqlite3TransferBindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1492 Vdbe *pFrom = (Vdbe*)pFromStmt;
1493 Vdbe *pTo = (Vdbe*)pToStmt;
1494 int i;
1495 assert( pTo->db==pFrom->db );
1496 assert( pTo->nVar==pFrom->nVar );
1497 sqlite3_mutex_enter(pTo->db->mutex);
1498 for(i=0; i<pFrom->nVar; i++){
1499 sqlite3VdbeMemMove(&pTo->aVar[i], &pFrom->aVar[i]);
1500 }
1501 sqlite3_mutex_leave(pTo->db->mutex);
1502 return SQLITE_OK;
1503 }
1504
1505 #ifndef SQLITE_OMIT_DEPRECATED
1506 /*
1507 ** Deprecated external interface. Internal/core SQLite code
1508 ** should call sqlite3TransferBindings.
1509 **
1510 ** It is misuse to call this routine with statements from different
1511 ** database connections. But as this is a deprecated interface, we
1512 ** will not bother to check for that condition.
1513 **
1514 ** If the two statements contain a different number of bindings, then
1515 ** an SQLITE_ERROR is returned. Nothing else can go wrong, so otherwise
1516 ** SQLITE_OK is returned.
1517 */
1518 int sqlite3_transfer_bindings(sqlite3_stmt *pFromStmt, sqlite3_stmt *pToStmt){
1519 Vdbe *pFrom = (Vdbe*)pFromStmt;
1520 Vdbe *pTo = (Vdbe*)pToStmt;
1521 if( pFrom->nVar!=pTo->nVar ){
1522 return SQLITE_ERROR;
1523 }
1524 if( pTo->isPrepareV2 && pTo->expmask ){
1525 pTo->expired = 1;
1526 }
1527 if( pFrom->isPrepareV2 && pFrom->expmask ){
1528 pFrom->expired = 1;
1529 }
1530 return sqlite3TransferBindings(pFromStmt, pToStmt);
1531 }
1532 #endif
1533
1534 /*
1535 ** Return the sqlite3* database handle to which the prepared statement given
1536 ** in the argument belongs. This is the same database handle that was
1537 ** the first argument to the sqlite3_prepare() that was used to create
1538 ** the statement in the first place.
1539 */
1540 sqlite3 *sqlite3_db_handle(sqlite3_stmt *pStmt){
1541 return pStmt ? ((Vdbe*)pStmt)->db : 0;
1542 }
1543
1544 /*
1545 ** Return true if the prepared statement is guaranteed to not modify the
1546 ** database.
1547 */
1548 int sqlite3_stmt_readonly(sqlite3_stmt *pStmt){
1549 return pStmt ? ((Vdbe*)pStmt)->readOnly : 1;
1550 }
1551
1552 /*
1553 ** Return true if the prepared statement is in need of being reset.
1554 */
1555 int sqlite3_stmt_busy(sqlite3_stmt *pStmt){
1556 Vdbe *v = (Vdbe*)pStmt;
1557 return v!=0 && v->pc>=0 && v->magic==VDBE_MAGIC_RUN;
1558 }
1559
1560 /*
1561 ** Return a pointer to the next prepared statement after pStmt associated
1562 ** with database connection pDb. If pStmt is NULL, return the first
1563 ** prepared statement for the database connection. Return NULL if there
1564 ** are no more.
1565 */
1566 sqlite3_stmt *sqlite3_next_stmt(sqlite3 *pDb, sqlite3_stmt *pStmt){
1567 sqlite3_stmt *pNext;
1568 #ifdef SQLITE_ENABLE_API_ARMOR
1569 if( !sqlite3SafetyCheckOk(pDb) ){
1570 (void)SQLITE_MISUSE_BKPT;
1571 return 0;
1572 }
1573 #endif
1574 sqlite3_mutex_enter(pDb->mutex);
1575 if( pStmt==0 ){
1576 pNext = (sqlite3_stmt*)pDb->pVdbe;
1577 }else{
1578 pNext = (sqlite3_stmt*)((Vdbe*)pStmt)->pNext;
1579 }
1580 sqlite3_mutex_leave(pDb->mutex);
1581 return pNext;
1582 }
1583
1584 /*
1585 ** Return the value of a status counter for a prepared statement
1586 */
1587 int sqlite3_stmt_status(sqlite3_stmt *pStmt, int op, int resetFlag){
1588 Vdbe *pVdbe = (Vdbe*)pStmt;
1589 u32 v;
1590 #ifdef SQLITE_ENABLE_API_ARMOR
1591 if( !pStmt ){
1592 (void)SQLITE_MISUSE_BKPT;
1593 return 0;
1594 }
1595 #endif
1596 v = pVdbe->aCounter[op];
1597 if( resetFlag ) pVdbe->aCounter[op] = 0;
1598 return (int)v;
1599 }
1600
1601 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
1602 /*
1603 ** Return status data for a single loop within query pStmt.
1604 */
1605 int sqlite3_stmt_scanstatus(
1606 sqlite3_stmt *pStmt, /* Prepared statement being queried */
1607 int idx, /* Index of loop to report on */
1608 int iScanStatusOp, /* Which metric to return */
1609 void *pOut /* OUT: Write the answer here */
1610 ){
1611 Vdbe *p = (Vdbe*)pStmt;
1612 ScanStatus *pScan;
1613 if( idx<0 || idx>=p->nScan ) return 1;
1614 pScan = &p->aScan[idx];
1615 switch( iScanStatusOp ){
1616 case SQLITE_SCANSTAT_NLOOP: {
1617 *(sqlite3_int64*)pOut = p->anExec[pScan->addrLoop];
1618 break;
1619 }
1620 case SQLITE_SCANSTAT_NVISIT: {
1621 *(sqlite3_int64*)pOut = p->anExec[pScan->addrVisit];
1622 break;
1623 }
1624 case SQLITE_SCANSTAT_EST: {
1625 double r = 1.0;
1626 LogEst x = pScan->nEst;
1627 while( x<100 ){
1628 x += 10;
1629 r *= 0.5;
1630 }
1631 *(double*)pOut = r*sqlite3LogEstToInt(x);
1632 break;
1633 }
1634 case SQLITE_SCANSTAT_NAME: {
1635 *(const char**)pOut = pScan->zName;
1636 break;
1637 }
1638 case SQLITE_SCANSTAT_EXPLAIN: {
1639 if( pScan->addrExplain ){
1640 *(const char**)pOut = p->aOp[ pScan->addrExplain ].p4.z;
1641 }else{
1642 *(const char**)pOut = 0;
1643 }
1644 break;
1645 }
1646 case SQLITE_SCANSTAT_SELECTID: {
1647 if( pScan->addrExplain ){
1648 *(int*)pOut = p->aOp[ pScan->addrExplain ].p1;
1649 }else{
1650 *(int*)pOut = -1;
1651 }
1652 break;
1653 }
1654 default: {
1655 return 1;
1656 }
1657 }
1658 return 0;
1659 }
1660
1661 /*
1662 ** Zero all counters associated with the sqlite3_stmt_scanstatus() data.
1663 */
1664 void sqlite3_stmt_scanstatus_reset(sqlite3_stmt *pStmt){
1665 Vdbe *p = (Vdbe*)pStmt;
1666 memset(p->anExec, 0, p->nOp * sizeof(i64));
1667 }
1668 #endif /* SQLITE_ENABLE_STMT_SCANSTATUS */
OLDNEW
« no previous file with comments | « third_party/sqlite/sqlite-src-3100200/src/vdbeInt.h ('k') | third_party/sqlite/sqlite-src-3100200/src/vdbeaux.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698