Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(23)

Side by Side Diff: third_party/sqlite/sqlite-src-3100200/src/vdbe.c

Issue 2846743003: [sql] Remove SQLite 3.10.2 reference directory. (Closed)
Patch Set: Created 3 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
14 **
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files. The formatting
17 ** of the code in this file is, therefore, important. See other comments
18 ** in this file for details. If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
20 */
21 #include "sqliteInt.h"
22 #include "vdbeInt.h"
23
24 /*
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell. This macro verifies that shallow copies are
27 ** not misused. A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content. If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy. This macro verifies that nothing
31 ** like that ever happens.
32 */
33 #ifdef SQLITE_DEBUG
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
35 #else
36 # define memAboutToChange(P,M)
37 #endif
38
39 /*
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly. This variable has no function other than to
44 ** help verify the correct operation of the library.
45 */
46 #ifdef SQLITE_TEST
47 int sqlite3_search_count = 0;
48 #endif
49
50 /*
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
54 **
55 ** This facility is used for testing purposes only. It does not function
56 ** in an ordinary build.
57 */
58 #ifdef SQLITE_TEST
59 int sqlite3_interrupt_count = 0;
60 #endif
61
62 /*
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed. The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times. This variable
66 ** has no function other than to help verify the correct operation of the
67 ** library.
68 */
69 #ifdef SQLITE_TEST
70 int sqlite3_sort_count = 0;
71 #endif
72
73 /*
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly. This variable has no function other than to
78 ** help verify the correct operation of the library.
79 */
80 #ifdef SQLITE_TEST
81 int sqlite3_max_blobsize = 0;
82 static void updateMaxBlobsize(Mem *p){
83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84 sqlite3_max_blobsize = p->n;
85 }
86 }
87 #endif
88
89 /*
90 ** The next global variable is incremented each time the OP_Found opcode
91 ** is executed. This is used to test whether or not the foreign key
92 ** operation implemented using OP_FkIsZero is working. This variable
93 ** has no function other than to help verify the correct operation of the
94 ** library.
95 */
96 #ifdef SQLITE_TEST
97 int sqlite3_found_count = 0;
98 #endif
99
100 /*
101 ** Test a register to see if it exceeds the current maximum blob size.
102 ** If it does, record the new maximum blob size.
103 */
104 #if defined(SQLITE_TEST) && !defined(SQLITE_OMIT_BUILTIN_TEST)
105 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
106 #else
107 # define UPDATE_MAX_BLOBSIZE(P)
108 #endif
109
110 /*
111 ** Invoke the VDBE coverage callback, if that callback is defined. This
112 ** feature is used for test suite validation only and does not appear an
113 ** production builds.
114 **
115 ** M is an integer, 2 or 3, that indices how many different ways the
116 ** branch can go. It is usually 2. "I" is the direction the branch
117 ** goes. 0 means falls through. 1 means branch is taken. 2 means the
118 ** second alternative branch is taken.
119 **
120 ** iSrcLine is the source code line (from the __LINE__ macro) that
121 ** generated the VDBE instruction. This instrumentation assumes that all
122 ** source code is in a single file (the amalgamation). Special values 1
123 ** and 2 for the iSrcLine parameter mean that this particular branch is
124 ** always taken or never taken, respectively.
125 */
126 #if !defined(SQLITE_VDBE_COVERAGE)
127 # define VdbeBranchTaken(I,M)
128 #else
129 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
130 static void vdbeTakeBranch(int iSrcLine, u8 I, u8 M){
131 if( iSrcLine<=2 && ALWAYS(iSrcLine>0) ){
132 M = iSrcLine;
133 /* Assert the truth of VdbeCoverageAlwaysTaken() and
134 ** VdbeCoverageNeverTaken() */
135 assert( (M & I)==I );
136 }else{
137 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/
138 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
139 iSrcLine,I,M);
140 }
141 }
142 #endif
143
144 /*
145 ** Convert the given register into a string if it isn't one
146 ** already. Return non-zero if a malloc() fails.
147 */
148 #define Stringify(P, enc) \
149 if(((P)->flags&(MEM_Str|MEM_Blob))==0 && sqlite3VdbeMemStringify(P,enc,0)) \
150 { goto no_mem; }
151
152 /*
153 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
154 ** a pointer to a dynamically allocated string where some other entity
155 ** is responsible for deallocating that string. Because the register
156 ** does not control the string, it might be deleted without the register
157 ** knowing it.
158 **
159 ** This routine converts an ephemeral string into a dynamically allocated
160 ** string that the register itself controls. In other words, it
161 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
162 */
163 #define Deephemeralize(P) \
164 if( ((P)->flags&MEM_Ephem)!=0 \
165 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
166
167 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
168 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
169
170 /*
171 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
172 ** if we run out of memory.
173 */
174 static VdbeCursor *allocateCursor(
175 Vdbe *p, /* The virtual machine */
176 int iCur, /* Index of the new VdbeCursor */
177 int nField, /* Number of fields in the table or index */
178 int iDb, /* Database the cursor belongs to, or -1 */
179 u8 eCurType /* Type of the new cursor */
180 ){
181 /* Find the memory cell that will be used to store the blob of memory
182 ** required for this VdbeCursor structure. It is convenient to use a
183 ** vdbe memory cell to manage the memory allocation required for a
184 ** VdbeCursor structure for the following reasons:
185 **
186 ** * Sometimes cursor numbers are used for a couple of different
187 ** purposes in a vdbe program. The different uses might require
188 ** different sized allocations. Memory cells provide growable
189 ** allocations.
190 **
191 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
192 ** be freed lazily via the sqlite3_release_memory() API. This
193 ** minimizes the number of malloc calls made by the system.
194 **
195 ** Memory cells for cursors are allocated at the top of the address
196 ** space. Memory cell (p->nMem) corresponds to cursor 0. Space for
197 ** cursor 1 is managed by memory cell (p->nMem-1), etc.
198 */
199 Mem *pMem = &p->aMem[p->nMem-iCur];
200
201 int nByte;
202 VdbeCursor *pCx = 0;
203 nByte =
204 ROUND8(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
205 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
206
207 assert( iCur<p->nCursor );
208 if( p->apCsr[iCur] ){
209 sqlite3VdbeFreeCursor(p, p->apCsr[iCur]);
210 p->apCsr[iCur] = 0;
211 }
212 if( SQLITE_OK==sqlite3VdbeMemClearAndResize(pMem, nByte) ){
213 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->z;
214 memset(pCx, 0, sizeof(VdbeCursor));
215 pCx->eCurType = eCurType;
216 pCx->iDb = iDb;
217 pCx->nField = nField;
218 pCx->aOffset = &pCx->aType[nField];
219 if( eCurType==CURTYPE_BTREE ){
220 pCx->uc.pCursor = (BtCursor*)
221 &pMem->z[ROUND8(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
222 sqlite3BtreeCursorZero(pCx->uc.pCursor);
223 }
224 }
225 return pCx;
226 }
227
228 /*
229 ** Try to convert a value into a numeric representation if we can
230 ** do so without loss of information. In other words, if the string
231 ** looks like a number, convert it into a number. If it does not
232 ** look like a number, leave it alone.
233 **
234 ** If the bTryForInt flag is true, then extra effort is made to give
235 ** an integer representation. Strings that look like floating point
236 ** values but which have no fractional component (example: '48.00')
237 ** will have a MEM_Int representation when bTryForInt is true.
238 **
239 ** If bTryForInt is false, then if the input string contains a decimal
240 ** point or exponential notation, the result is only MEM_Real, even
241 ** if there is an exact integer representation of the quantity.
242 */
243 static void applyNumericAffinity(Mem *pRec, int bTryForInt){
244 double rValue;
245 i64 iValue;
246 u8 enc = pRec->enc;
247 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real))==MEM_Str );
248 if( sqlite3AtoF(pRec->z, &rValue, pRec->n, enc)==0 ) return;
249 if( 0==sqlite3Atoi64(pRec->z, &iValue, pRec->n, enc) ){
250 pRec->u.i = iValue;
251 pRec->flags |= MEM_Int;
252 }else{
253 pRec->u.r = rValue;
254 pRec->flags |= MEM_Real;
255 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
256 }
257 }
258
259 /*
260 ** Processing is determine by the affinity parameter:
261 **
262 ** SQLITE_AFF_INTEGER:
263 ** SQLITE_AFF_REAL:
264 ** SQLITE_AFF_NUMERIC:
265 ** Try to convert pRec to an integer representation or a
266 ** floating-point representation if an integer representation
267 ** is not possible. Note that the integer representation is
268 ** always preferred, even if the affinity is REAL, because
269 ** an integer representation is more space efficient on disk.
270 **
271 ** SQLITE_AFF_TEXT:
272 ** Convert pRec to a text representation.
273 **
274 ** SQLITE_AFF_BLOB:
275 ** No-op. pRec is unchanged.
276 */
277 static void applyAffinity(
278 Mem *pRec, /* The value to apply affinity to */
279 char affinity, /* The affinity to be applied */
280 u8 enc /* Use this text encoding */
281 ){
282 if( affinity>=SQLITE_AFF_NUMERIC ){
283 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
284 || affinity==SQLITE_AFF_NUMERIC );
285 if( (pRec->flags & MEM_Int)==0 ){
286 if( (pRec->flags & MEM_Real)==0 ){
287 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
288 }else{
289 sqlite3VdbeIntegerAffinity(pRec);
290 }
291 }
292 }else if( affinity==SQLITE_AFF_TEXT ){
293 /* Only attempt the conversion to TEXT if there is an integer or real
294 ** representation (blob and NULL do not get converted) but no string
295 ** representation.
296 */
297 if( 0==(pRec->flags&MEM_Str) && (pRec->flags&(MEM_Real|MEM_Int)) ){
298 sqlite3VdbeMemStringify(pRec, enc, 1);
299 }
300 pRec->flags &= ~(MEM_Real|MEM_Int);
301 }
302 }
303
304 /*
305 ** Try to convert the type of a function argument or a result column
306 ** into a numeric representation. Use either INTEGER or REAL whichever
307 ** is appropriate. But only do the conversion if it is possible without
308 ** loss of information and return the revised type of the argument.
309 */
310 int sqlite3_value_numeric_type(sqlite3_value *pVal){
311 int eType = sqlite3_value_type(pVal);
312 if( eType==SQLITE_TEXT ){
313 Mem *pMem = (Mem*)pVal;
314 applyNumericAffinity(pMem, 0);
315 eType = sqlite3_value_type(pVal);
316 }
317 return eType;
318 }
319
320 /*
321 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
322 ** not the internal Mem* type.
323 */
324 void sqlite3ValueApplyAffinity(
325 sqlite3_value *pVal,
326 u8 affinity,
327 u8 enc
328 ){
329 applyAffinity((Mem *)pVal, affinity, enc);
330 }
331
332 /*
333 ** pMem currently only holds a string type (or maybe a BLOB that we can
334 ** interpret as a string if we want to). Compute its corresponding
335 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
336 ** accordingly.
337 */
338 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
339 assert( (pMem->flags & (MEM_Int|MEM_Real))==0 );
340 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
341 if( sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc)==0 ){
342 return 0;
343 }
344 if( sqlite3Atoi64(pMem->z, &pMem->u.i, pMem->n, pMem->enc)==SQLITE_OK ){
345 return MEM_Int;
346 }
347 return MEM_Real;
348 }
349
350 /*
351 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
352 ** none.
353 **
354 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
355 ** But it does set pMem->u.r and pMem->u.i appropriately.
356 */
357 static u16 numericType(Mem *pMem){
358 if( pMem->flags & (MEM_Int|MEM_Real) ){
359 return pMem->flags & (MEM_Int|MEM_Real);
360 }
361 if( pMem->flags & (MEM_Str|MEM_Blob) ){
362 return computeNumericType(pMem);
363 }
364 return 0;
365 }
366
367 #ifdef SQLITE_DEBUG
368 /*
369 ** Write a nice string representation of the contents of cell pMem
370 ** into buffer zBuf, length nBuf.
371 */
372 void sqlite3VdbeMemPrettyPrint(Mem *pMem, char *zBuf){
373 char *zCsr = zBuf;
374 int f = pMem->flags;
375
376 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
377
378 if( f&MEM_Blob ){
379 int i;
380 char c;
381 if( f & MEM_Dyn ){
382 c = 'z';
383 assert( (f & (MEM_Static|MEM_Ephem))==0 );
384 }else if( f & MEM_Static ){
385 c = 't';
386 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
387 }else if( f & MEM_Ephem ){
388 c = 'e';
389 assert( (f & (MEM_Static|MEM_Dyn))==0 );
390 }else{
391 c = 's';
392 }
393
394 sqlite3_snprintf(100, zCsr, "%c", c);
395 zCsr += sqlite3Strlen30(zCsr);
396 sqlite3_snprintf(100, zCsr, "%d[", pMem->n);
397 zCsr += sqlite3Strlen30(zCsr);
398 for(i=0; i<16 && i<pMem->n; i++){
399 sqlite3_snprintf(100, zCsr, "%02X", ((int)pMem->z[i] & 0xFF));
400 zCsr += sqlite3Strlen30(zCsr);
401 }
402 for(i=0; i<16 && i<pMem->n; i++){
403 char z = pMem->z[i];
404 if( z<32 || z>126 ) *zCsr++ = '.';
405 else *zCsr++ = z;
406 }
407
408 sqlite3_snprintf(100, zCsr, "]%s", encnames[pMem->enc]);
409 zCsr += sqlite3Strlen30(zCsr);
410 if( f & MEM_Zero ){
411 sqlite3_snprintf(100, zCsr,"+%dz",pMem->u.nZero);
412 zCsr += sqlite3Strlen30(zCsr);
413 }
414 *zCsr = '\0';
415 }else if( f & MEM_Str ){
416 int j, k;
417 zBuf[0] = ' ';
418 if( f & MEM_Dyn ){
419 zBuf[1] = 'z';
420 assert( (f & (MEM_Static|MEM_Ephem))==0 );
421 }else if( f & MEM_Static ){
422 zBuf[1] = 't';
423 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
424 }else if( f & MEM_Ephem ){
425 zBuf[1] = 'e';
426 assert( (f & (MEM_Static|MEM_Dyn))==0 );
427 }else{
428 zBuf[1] = 's';
429 }
430 k = 2;
431 sqlite3_snprintf(100, &zBuf[k], "%d", pMem->n);
432 k += sqlite3Strlen30(&zBuf[k]);
433 zBuf[k++] = '[';
434 for(j=0; j<15 && j<pMem->n; j++){
435 u8 c = pMem->z[j];
436 if( c>=0x20 && c<0x7f ){
437 zBuf[k++] = c;
438 }else{
439 zBuf[k++] = '.';
440 }
441 }
442 zBuf[k++] = ']';
443 sqlite3_snprintf(100,&zBuf[k], encnames[pMem->enc]);
444 k += sqlite3Strlen30(&zBuf[k]);
445 zBuf[k++] = 0;
446 }
447 }
448 #endif
449
450 #ifdef SQLITE_DEBUG
451 /*
452 ** Print the value of a register for tracing purposes:
453 */
454 static void memTracePrint(Mem *p){
455 if( p->flags & MEM_Undefined ){
456 printf(" undefined");
457 }else if( p->flags & MEM_Null ){
458 printf(" NULL");
459 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
460 printf(" si:%lld", p->u.i);
461 }else if( p->flags & MEM_Int ){
462 printf(" i:%lld", p->u.i);
463 #ifndef SQLITE_OMIT_FLOATING_POINT
464 }else if( p->flags & MEM_Real ){
465 printf(" r:%g", p->u.r);
466 #endif
467 }else if( p->flags & MEM_RowSet ){
468 printf(" (rowset)");
469 }else{
470 char zBuf[200];
471 sqlite3VdbeMemPrettyPrint(p, zBuf);
472 printf(" %s", zBuf);
473 }
474 }
475 static void registerTrace(int iReg, Mem *p){
476 printf("REG[%d] = ", iReg);
477 memTracePrint(p);
478 printf("\n");
479 }
480 #endif
481
482 #ifdef SQLITE_DEBUG
483 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
484 #else
485 # define REGISTER_TRACE(R,M)
486 #endif
487
488
489 #ifdef VDBE_PROFILE
490
491 /*
492 ** hwtime.h contains inline assembler code for implementing
493 ** high-performance timing routines.
494 */
495 #include "hwtime.h"
496
497 #endif
498
499 #ifndef NDEBUG
500 /*
501 ** This function is only called from within an assert() expression. It
502 ** checks that the sqlite3.nTransaction variable is correctly set to
503 ** the number of non-transaction savepoints currently in the
504 ** linked list starting at sqlite3.pSavepoint.
505 **
506 ** Usage:
507 **
508 ** assert( checkSavepointCount(db) );
509 */
510 static int checkSavepointCount(sqlite3 *db){
511 int n = 0;
512 Savepoint *p;
513 for(p=db->pSavepoint; p; p=p->pNext) n++;
514 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
515 return 1;
516 }
517 #endif
518
519 /*
520 ** Return the register of pOp->p2 after first preparing it to be
521 ** overwritten with an integer value.
522 */
523 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
524 sqlite3VdbeMemSetNull(pOut);
525 pOut->flags = MEM_Int;
526 return pOut;
527 }
528 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
529 Mem *pOut;
530 assert( pOp->p2>0 );
531 assert( pOp->p2<=(p->nMem-p->nCursor) );
532 pOut = &p->aMem[pOp->p2];
533 memAboutToChange(p, pOut);
534 if( VdbeMemDynamic(pOut) ){
535 return out2PrereleaseWithClear(pOut);
536 }else{
537 pOut->flags = MEM_Int;
538 return pOut;
539 }
540 }
541
542
543 /*
544 ** Execute as much of a VDBE program as we can.
545 ** This is the core of sqlite3_step().
546 */
547 int sqlite3VdbeExec(
548 Vdbe *p /* The VDBE */
549 ){
550 Op *aOp = p->aOp; /* Copy of p->aOp */
551 Op *pOp = aOp; /* Current operation */
552 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
553 Op *pOrigOp; /* Value of pOp at the top of the loop */
554 #endif
555 int rc = SQLITE_OK; /* Value to return */
556 sqlite3 *db = p->db; /* The database */
557 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
558 u8 encoding = ENC(db); /* The database encoding */
559 int iCompare = 0; /* Result of last OP_Compare operation */
560 unsigned nVmStep = 0; /* Number of virtual machine steps */
561 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
562 unsigned nProgressLimit = 0;/* Invoke xProgress() when nVmStep reaches this */
563 #endif
564 Mem *aMem = p->aMem; /* Copy of p->aMem */
565 Mem *pIn1 = 0; /* 1st input operand */
566 Mem *pIn2 = 0; /* 2nd input operand */
567 Mem *pIn3 = 0; /* 3rd input operand */
568 Mem *pOut = 0; /* Output operand */
569 int *aPermute = 0; /* Permutation of columns for OP_Compare */
570 i64 lastRowid = db->lastRowid; /* Saved value of the last insert ROWID */
571 #ifdef VDBE_PROFILE
572 u64 start; /* CPU clock count at start of opcode */
573 #endif
574 /*** INSERT STACK UNION HERE ***/
575
576 assert( p->magic==VDBE_MAGIC_RUN ); /* sqlite3_step() verifies this */
577 sqlite3VdbeEnter(p);
578 if( p->rc==SQLITE_NOMEM ){
579 /* This happens if a malloc() inside a call to sqlite3_column_text() or
580 ** sqlite3_column_text16() failed. */
581 goto no_mem;
582 }
583 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
584 assert( p->bIsReader || p->readOnly!=0 );
585 p->rc = SQLITE_OK;
586 p->iCurrentTime = 0;
587 assert( p->explain==0 );
588 p->pResultSet = 0;
589 db->busyHandler.nBusy = 0;
590 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
591 sqlite3VdbeIOTraceSql(p);
592 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
593 if( db->xProgress ){
594 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
595 assert( 0 < db->nProgressOps );
596 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
597 }
598 #endif
599 #ifdef SQLITE_DEBUG
600 sqlite3BeginBenignMalloc();
601 if( p->pc==0
602 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
603 ){
604 int i;
605 int once = 1;
606 sqlite3VdbePrintSql(p);
607 if( p->db->flags & SQLITE_VdbeListing ){
608 printf("VDBE Program Listing:\n");
609 for(i=0; i<p->nOp; i++){
610 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
611 }
612 }
613 if( p->db->flags & SQLITE_VdbeEQP ){
614 for(i=0; i<p->nOp; i++){
615 if( aOp[i].opcode==OP_Explain ){
616 if( once ) printf("VDBE Query Plan:\n");
617 printf("%s\n", aOp[i].p4.z);
618 once = 0;
619 }
620 }
621 }
622 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n");
623 }
624 sqlite3EndBenignMalloc();
625 #endif
626 for(pOp=&aOp[p->pc]; rc==SQLITE_OK; pOp++){
627 assert( pOp>=aOp && pOp<&aOp[p->nOp]);
628 if( db->mallocFailed ) goto no_mem;
629 #ifdef VDBE_PROFILE
630 start = sqlite3Hwtime();
631 #endif
632 nVmStep++;
633 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
634 if( p->anExec ) p->anExec[(int)(pOp-aOp)]++;
635 #endif
636
637 /* Only allow tracing if SQLITE_DEBUG is defined.
638 */
639 #ifdef SQLITE_DEBUG
640 if( db->flags & SQLITE_VdbeTrace ){
641 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
642 }
643 #endif
644
645
646 /* Check to see if we need to simulate an interrupt. This only happens
647 ** if we have a special test build.
648 */
649 #ifdef SQLITE_TEST
650 if( sqlite3_interrupt_count>0 ){
651 sqlite3_interrupt_count--;
652 if( sqlite3_interrupt_count==0 ){
653 sqlite3_interrupt(db);
654 }
655 }
656 #endif
657
658 /* Sanity checking on other operands */
659 #ifdef SQLITE_DEBUG
660 assert( pOp->opflags==sqlite3OpcodeProperty[pOp->opcode] );
661 if( (pOp->opflags & OPFLG_IN1)!=0 ){
662 assert( pOp->p1>0 );
663 assert( pOp->p1<=(p->nMem-p->nCursor) );
664 assert( memIsValid(&aMem[pOp->p1]) );
665 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
666 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
667 }
668 if( (pOp->opflags & OPFLG_IN2)!=0 ){
669 assert( pOp->p2>0 );
670 assert( pOp->p2<=(p->nMem-p->nCursor) );
671 assert( memIsValid(&aMem[pOp->p2]) );
672 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
673 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
674 }
675 if( (pOp->opflags & OPFLG_IN3)!=0 ){
676 assert( pOp->p3>0 );
677 assert( pOp->p3<=(p->nMem-p->nCursor) );
678 assert( memIsValid(&aMem[pOp->p3]) );
679 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
680 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
681 }
682 if( (pOp->opflags & OPFLG_OUT2)!=0 ){
683 assert( pOp->p2>0 );
684 assert( pOp->p2<=(p->nMem-p->nCursor) );
685 memAboutToChange(p, &aMem[pOp->p2]);
686 }
687 if( (pOp->opflags & OPFLG_OUT3)!=0 ){
688 assert( pOp->p3>0 );
689 assert( pOp->p3<=(p->nMem-p->nCursor) );
690 memAboutToChange(p, &aMem[pOp->p3]);
691 }
692 #endif
693 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
694 pOrigOp = pOp;
695 #endif
696
697 switch( pOp->opcode ){
698
699 /*****************************************************************************
700 ** What follows is a massive switch statement where each case implements a
701 ** separate instruction in the virtual machine. If we follow the usual
702 ** indentation conventions, each case should be indented by 6 spaces. But
703 ** that is a lot of wasted space on the left margin. So the code within
704 ** the switch statement will break with convention and be flush-left. Another
705 ** big comment (similar to this one) will mark the point in the code where
706 ** we transition back to normal indentation.
707 **
708 ** The formatting of each case is important. The makefile for SQLite
709 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
710 ** file looking for lines that begin with "case OP_". The opcodes.h files
711 ** will be filled with #defines that give unique integer values to each
712 ** opcode and the opcodes.c file is filled with an array of strings where
713 ** each string is the symbolic name for the corresponding opcode. If the
714 ** case statement is followed by a comment of the form "/# same as ... #/"
715 ** that comment is used to determine the particular value of the opcode.
716 **
717 ** Other keywords in the comment that follows each case are used to
718 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
719 ** Keywords include: in1, in2, in3, out2, out3. See
720 ** the mkopcodeh.awk script for additional information.
721 **
722 ** Documentation about VDBE opcodes is generated by scanning this file
723 ** for lines of that contain "Opcode:". That line and all subsequent
724 ** comment lines are used in the generation of the opcode.html documentation
725 ** file.
726 **
727 ** SUMMARY:
728 **
729 ** Formatting is important to scripts that scan this file.
730 ** Do not deviate from the formatting style currently in use.
731 **
732 *****************************************************************************/
733
734 /* Opcode: Goto * P2 * * *
735 **
736 ** An unconditional jump to address P2.
737 ** The next instruction executed will be
738 ** the one at index P2 from the beginning of
739 ** the program.
740 **
741 ** The P1 parameter is not actually used by this opcode. However, it
742 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
743 ** that this Goto is the bottom of a loop and that the lines from P2 down
744 ** to the current line should be indented for EXPLAIN output.
745 */
746 case OP_Goto: { /* jump */
747 jump_to_p2_and_check_for_interrupt:
748 pOp = &aOp[pOp->p2 - 1];
749
750 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
751 ** OP_VNext, OP_RowSetNext, or OP_SorterNext) all jump here upon
752 ** completion. Check to see if sqlite3_interrupt() has been called
753 ** or if the progress callback needs to be invoked.
754 **
755 ** This code uses unstructured "goto" statements and does not look clean.
756 ** But that is not due to sloppy coding habits. The code is written this
757 ** way for performance, to avoid having to run the interrupt and progress
758 ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
759 ** faster according to "valgrind --tool=cachegrind" */
760 check_for_interrupt:
761 if( db->u1.isInterrupted ) goto abort_due_to_interrupt;
762 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
763 /* Call the progress callback if it is configured and the required number
764 ** of VDBE ops have been executed (either since this invocation of
765 ** sqlite3VdbeExec() or since last time the progress callback was called).
766 ** If the progress callback returns non-zero, exit the virtual machine with
767 ** a return code SQLITE_ABORT.
768 */
769 if( db->xProgress!=0 && nVmStep>=nProgressLimit ){
770 assert( db->nProgressOps!=0 );
771 nProgressLimit = nVmStep + db->nProgressOps - (nVmStep%db->nProgressOps);
772 if( db->xProgress(db->pProgressArg) ){
773 rc = SQLITE_INTERRUPT;
774 goto vdbe_error_halt;
775 }
776 }
777 #endif
778
779 break;
780 }
781
782 /* Opcode: Gosub P1 P2 * * *
783 **
784 ** Write the current address onto register P1
785 ** and then jump to address P2.
786 */
787 case OP_Gosub: { /* jump */
788 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
789 pIn1 = &aMem[pOp->p1];
790 assert( VdbeMemDynamic(pIn1)==0 );
791 memAboutToChange(p, pIn1);
792 pIn1->flags = MEM_Int;
793 pIn1->u.i = (int)(pOp-aOp);
794 REGISTER_TRACE(pOp->p1, pIn1);
795
796 /* Most jump operations do a goto to this spot in order to update
797 ** the pOp pointer. */
798 jump_to_p2:
799 pOp = &aOp[pOp->p2 - 1];
800 break;
801 }
802
803 /* Opcode: Return P1 * * * *
804 **
805 ** Jump to the next instruction after the address in register P1. After
806 ** the jump, register P1 becomes undefined.
807 */
808 case OP_Return: { /* in1 */
809 pIn1 = &aMem[pOp->p1];
810 assert( pIn1->flags==MEM_Int );
811 pOp = &aOp[pIn1->u.i];
812 pIn1->flags = MEM_Undefined;
813 break;
814 }
815
816 /* Opcode: InitCoroutine P1 P2 P3 * *
817 **
818 ** Set up register P1 so that it will Yield to the coroutine
819 ** located at address P3.
820 **
821 ** If P2!=0 then the coroutine implementation immediately follows
822 ** this opcode. So jump over the coroutine implementation to
823 ** address P2.
824 **
825 ** See also: EndCoroutine
826 */
827 case OP_InitCoroutine: { /* jump */
828 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
829 assert( pOp->p2>=0 && pOp->p2<p->nOp );
830 assert( pOp->p3>=0 && pOp->p3<p->nOp );
831 pOut = &aMem[pOp->p1];
832 assert( !VdbeMemDynamic(pOut) );
833 pOut->u.i = pOp->p3 - 1;
834 pOut->flags = MEM_Int;
835 if( pOp->p2 ) goto jump_to_p2;
836 break;
837 }
838
839 /* Opcode: EndCoroutine P1 * * * *
840 **
841 ** The instruction at the address in register P1 is a Yield.
842 ** Jump to the P2 parameter of that Yield.
843 ** After the jump, register P1 becomes undefined.
844 **
845 ** See also: InitCoroutine
846 */
847 case OP_EndCoroutine: { /* in1 */
848 VdbeOp *pCaller;
849 pIn1 = &aMem[pOp->p1];
850 assert( pIn1->flags==MEM_Int );
851 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
852 pCaller = &aOp[pIn1->u.i];
853 assert( pCaller->opcode==OP_Yield );
854 assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
855 pOp = &aOp[pCaller->p2 - 1];
856 pIn1->flags = MEM_Undefined;
857 break;
858 }
859
860 /* Opcode: Yield P1 P2 * * *
861 **
862 ** Swap the program counter with the value in register P1. This
863 ** has the effect of yielding to a coroutine.
864 **
865 ** If the coroutine that is launched by this instruction ends with
866 ** Yield or Return then continue to the next instruction. But if
867 ** the coroutine launched by this instruction ends with
868 ** EndCoroutine, then jump to P2 rather than continuing with the
869 ** next instruction.
870 **
871 ** See also: InitCoroutine
872 */
873 case OP_Yield: { /* in1, jump */
874 int pcDest;
875 pIn1 = &aMem[pOp->p1];
876 assert( VdbeMemDynamic(pIn1)==0 );
877 pIn1->flags = MEM_Int;
878 pcDest = (int)pIn1->u.i;
879 pIn1->u.i = (int)(pOp - aOp);
880 REGISTER_TRACE(pOp->p1, pIn1);
881 pOp = &aOp[pcDest];
882 break;
883 }
884
885 /* Opcode: HaltIfNull P1 P2 P3 P4 P5
886 ** Synopsis: if r[P3]=null halt
887 **
888 ** Check the value in register P3. If it is NULL then Halt using
889 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the
890 ** value in register P3 is not NULL, then this routine is a no-op.
891 ** The P5 parameter should be 1.
892 */
893 case OP_HaltIfNull: { /* in3 */
894 pIn3 = &aMem[pOp->p3];
895 if( (pIn3->flags & MEM_Null)==0 ) break;
896 /* Fall through into OP_Halt */
897 }
898
899 /* Opcode: Halt P1 P2 * P4 P5
900 **
901 ** Exit immediately. All open cursors, etc are closed
902 ** automatically.
903 **
904 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
905 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
906 ** For errors, it can be some other value. If P1!=0 then P2 will determine
907 ** whether or not to rollback the current transaction. Do not rollback
908 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
909 ** then back out all changes that have occurred during this execution of the
910 ** VDBE, but do not rollback the transaction.
911 **
912 ** If P4 is not null then it is an error message string.
913 **
914 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
915 **
916 ** 0: (no change)
917 ** 1: NOT NULL contraint failed: P4
918 ** 2: UNIQUE constraint failed: P4
919 ** 3: CHECK constraint failed: P4
920 ** 4: FOREIGN KEY constraint failed: P4
921 **
922 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
923 ** omitted.
924 **
925 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
926 ** every program. So a jump past the last instruction of the program
927 ** is the same as executing Halt.
928 */
929 case OP_Halt: {
930 const char *zType;
931 const char *zLogFmt;
932 VdbeFrame *pFrame;
933 int pcx;
934
935 pcx = (int)(pOp - aOp);
936 if( pOp->p1==SQLITE_OK && p->pFrame ){
937 /* Halt the sub-program. Return control to the parent frame. */
938 pFrame = p->pFrame;
939 p->pFrame = pFrame->pParent;
940 p->nFrame--;
941 sqlite3VdbeSetChanges(db, p->nChange);
942 pcx = sqlite3VdbeFrameRestore(pFrame);
943 lastRowid = db->lastRowid;
944 if( pOp->p2==OE_Ignore ){
945 /* Instruction pcx is the OP_Program that invoked the sub-program
946 ** currently being halted. If the p2 instruction of this OP_Halt
947 ** instruction is set to OE_Ignore, then the sub-program is throwing
948 ** an IGNORE exception. In this case jump to the address specified
949 ** as the p2 of the calling OP_Program. */
950 pcx = p->aOp[pcx].p2-1;
951 }
952 aOp = p->aOp;
953 aMem = p->aMem;
954 pOp = &aOp[pcx];
955 break;
956 }
957 p->rc = pOp->p1;
958 p->errorAction = (u8)pOp->p2;
959 p->pc = pcx;
960 if( p->rc ){
961 if( pOp->p5 ){
962 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
963 "FOREIGN KEY" };
964 assert( pOp->p5>=1 && pOp->p5<=4 );
965 testcase( pOp->p5==1 );
966 testcase( pOp->p5==2 );
967 testcase( pOp->p5==3 );
968 testcase( pOp->p5==4 );
969 zType = azType[pOp->p5-1];
970 }else{
971 zType = 0;
972 }
973 assert( zType!=0 || pOp->p4.z!=0 );
974 zLogFmt = "abort at %d in [%s]: %s";
975 if( zType && pOp->p4.z ){
976 sqlite3VdbeError(p, "%s constraint failed: %s", zType, pOp->p4.z);
977 }else if( pOp->p4.z ){
978 sqlite3VdbeError(p, "%s", pOp->p4.z);
979 }else{
980 sqlite3VdbeError(p, "%s constraint failed", zType);
981 }
982 sqlite3_log(pOp->p1, zLogFmt, pcx, p->zSql, p->zErrMsg);
983 }
984 rc = sqlite3VdbeHalt(p);
985 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
986 if( rc==SQLITE_BUSY ){
987 p->rc = rc = SQLITE_BUSY;
988 }else{
989 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
990 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
991 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
992 }
993 goto vdbe_return;
994 }
995
996 /* Opcode: Integer P1 P2 * * *
997 ** Synopsis: r[P2]=P1
998 **
999 ** The 32-bit integer value P1 is written into register P2.
1000 */
1001 case OP_Integer: { /* out2 */
1002 pOut = out2Prerelease(p, pOp);
1003 pOut->u.i = pOp->p1;
1004 break;
1005 }
1006
1007 /* Opcode: Int64 * P2 * P4 *
1008 ** Synopsis: r[P2]=P4
1009 **
1010 ** P4 is a pointer to a 64-bit integer value.
1011 ** Write that value into register P2.
1012 */
1013 case OP_Int64: { /* out2 */
1014 pOut = out2Prerelease(p, pOp);
1015 assert( pOp->p4.pI64!=0 );
1016 pOut->u.i = *pOp->p4.pI64;
1017 break;
1018 }
1019
1020 #ifndef SQLITE_OMIT_FLOATING_POINT
1021 /* Opcode: Real * P2 * P4 *
1022 ** Synopsis: r[P2]=P4
1023 **
1024 ** P4 is a pointer to a 64-bit floating point value.
1025 ** Write that value into register P2.
1026 */
1027 case OP_Real: { /* same as TK_FLOAT, out2 */
1028 pOut = out2Prerelease(p, pOp);
1029 pOut->flags = MEM_Real;
1030 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
1031 pOut->u.r = *pOp->p4.pReal;
1032 break;
1033 }
1034 #endif
1035
1036 /* Opcode: String8 * P2 * P4 *
1037 ** Synopsis: r[P2]='P4'
1038 **
1039 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1040 ** into a String opcode before it is executed for the first time. During
1041 ** this transformation, the length of string P4 is computed and stored
1042 ** as the P1 parameter.
1043 */
1044 case OP_String8: { /* same as TK_STRING, out2 */
1045 assert( pOp->p4.z!=0 );
1046 pOut = out2Prerelease(p, pOp);
1047 pOp->opcode = OP_String;
1048 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
1049
1050 #ifndef SQLITE_OMIT_UTF16
1051 if( encoding!=SQLITE_UTF8 ){
1052 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1053 if( rc==SQLITE_TOOBIG ) goto too_big;
1054 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
1055 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
1056 assert( VdbeMemDynamic(pOut)==0 );
1057 pOut->szMalloc = 0;
1058 pOut->flags |= MEM_Static;
1059 if( pOp->p4type==P4_DYNAMIC ){
1060 sqlite3DbFree(db, pOp->p4.z);
1061 }
1062 pOp->p4type = P4_DYNAMIC;
1063 pOp->p4.z = pOut->z;
1064 pOp->p1 = pOut->n;
1065 }
1066 #endif
1067 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1068 goto too_big;
1069 }
1070 /* Fall through to the next case, OP_String */
1071 }
1072
1073 /* Opcode: String P1 P2 P3 P4 P5
1074 ** Synopsis: r[P2]='P4' (len=P1)
1075 **
1076 ** The string value P4 of length P1 (bytes) is stored in register P2.
1077 **
1078 ** If P5!=0 and the content of register P3 is greater than zero, then
1079 ** the datatype of the register P2 is converted to BLOB. The content is
1080 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1081 ** of a string, as if it had been CAST.
1082 */
1083 case OP_String: { /* out2 */
1084 assert( pOp->p4.z!=0 );
1085 pOut = out2Prerelease(p, pOp);
1086 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1087 pOut->z = pOp->p4.z;
1088 pOut->n = pOp->p1;
1089 pOut->enc = encoding;
1090 UPDATE_MAX_BLOBSIZE(pOut);
1091 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1092 if( pOp->p5 ){
1093 assert( pOp->p3>0 );
1094 assert( pOp->p3<=(p->nMem-p->nCursor) );
1095 pIn3 = &aMem[pOp->p3];
1096 assert( pIn3->flags & MEM_Int );
1097 if( pIn3->u.i ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1098 }
1099 #endif
1100 break;
1101 }
1102
1103 /* Opcode: Null P1 P2 P3 * *
1104 ** Synopsis: r[P2..P3]=NULL
1105 **
1106 ** Write a NULL into registers P2. If P3 greater than P2, then also write
1107 ** NULL into register P3 and every register in between P2 and P3. If P3
1108 ** is less than P2 (typically P3 is zero) then only register P2 is
1109 ** set to NULL.
1110 **
1111 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1112 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1113 ** OP_Ne or OP_Eq.
1114 */
1115 case OP_Null: { /* out2 */
1116 int cnt;
1117 u16 nullFlag;
1118 pOut = out2Prerelease(p, pOp);
1119 cnt = pOp->p3-pOp->p2;
1120 assert( pOp->p3<=(p->nMem-p->nCursor) );
1121 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
1122 while( cnt>0 ){
1123 pOut++;
1124 memAboutToChange(p, pOut);
1125 sqlite3VdbeMemSetNull(pOut);
1126 pOut->flags = nullFlag;
1127 cnt--;
1128 }
1129 break;
1130 }
1131
1132 /* Opcode: SoftNull P1 * * * *
1133 ** Synopsis: r[P1]=NULL
1134 **
1135 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1136 ** instruction, but do not free any string or blob memory associated with
1137 ** the register, so that if the value was a string or blob that was
1138 ** previously copied using OP_SCopy, the copies will continue to be valid.
1139 */
1140 case OP_SoftNull: {
1141 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
1142 pOut = &aMem[pOp->p1];
1143 pOut->flags = (pOut->flags|MEM_Null)&~MEM_Undefined;
1144 break;
1145 }
1146
1147 /* Opcode: Blob P1 P2 * P4 *
1148 ** Synopsis: r[P2]=P4 (len=P1)
1149 **
1150 ** P4 points to a blob of data P1 bytes long. Store this
1151 ** blob in register P2.
1152 */
1153 case OP_Blob: { /* out2 */
1154 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
1155 pOut = out2Prerelease(p, pOp);
1156 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
1157 pOut->enc = encoding;
1158 UPDATE_MAX_BLOBSIZE(pOut);
1159 break;
1160 }
1161
1162 /* Opcode: Variable P1 P2 * P4 *
1163 ** Synopsis: r[P2]=parameter(P1,P4)
1164 **
1165 ** Transfer the values of bound parameter P1 into register P2
1166 **
1167 ** If the parameter is named, then its name appears in P4.
1168 ** The P4 value is used by sqlite3_bind_parameter_name().
1169 */
1170 case OP_Variable: { /* out2 */
1171 Mem *pVar; /* Value being transferred */
1172
1173 assert( pOp->p1>0 && pOp->p1<=p->nVar );
1174 assert( pOp->p4.z==0 || pOp->p4.z==p->azVar[pOp->p1-1] );
1175 pVar = &p->aVar[pOp->p1 - 1];
1176 if( sqlite3VdbeMemTooBig(pVar) ){
1177 goto too_big;
1178 }
1179 pOut = out2Prerelease(p, pOp);
1180 sqlite3VdbeMemShallowCopy(pOut, pVar, MEM_Static);
1181 UPDATE_MAX_BLOBSIZE(pOut);
1182 break;
1183 }
1184
1185 /* Opcode: Move P1 P2 P3 * *
1186 ** Synopsis: r[P2@P3]=r[P1@P3]
1187 **
1188 ** Move the P3 values in register P1..P1+P3-1 over into
1189 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
1190 ** left holding a NULL. It is an error for register ranges
1191 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
1192 ** for P3 to be less than 1.
1193 */
1194 case OP_Move: {
1195 int n; /* Number of registers left to copy */
1196 int p1; /* Register to copy from */
1197 int p2; /* Register to copy to */
1198
1199 n = pOp->p3;
1200 p1 = pOp->p1;
1201 p2 = pOp->p2;
1202 assert( n>0 && p1>0 && p2>0 );
1203 assert( p1+n<=p2 || p2+n<=p1 );
1204
1205 pIn1 = &aMem[p1];
1206 pOut = &aMem[p2];
1207 do{
1208 assert( pOut<=&aMem[(p->nMem-p->nCursor)] );
1209 assert( pIn1<=&aMem[(p->nMem-p->nCursor)] );
1210 assert( memIsValid(pIn1) );
1211 memAboutToChange(p, pOut);
1212 sqlite3VdbeMemMove(pOut, pIn1);
1213 #ifdef SQLITE_DEBUG
1214 if( pOut->pScopyFrom>=&aMem[p1] && pOut->pScopyFrom<pOut ){
1215 pOut->pScopyFrom += pOp->p2 - p1;
1216 }
1217 #endif
1218 Deephemeralize(pOut);
1219 REGISTER_TRACE(p2++, pOut);
1220 pIn1++;
1221 pOut++;
1222 }while( --n );
1223 break;
1224 }
1225
1226 /* Opcode: Copy P1 P2 P3 * *
1227 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1228 **
1229 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1230 **
1231 ** This instruction makes a deep copy of the value. A duplicate
1232 ** is made of any string or blob constant. See also OP_SCopy.
1233 */
1234 case OP_Copy: {
1235 int n;
1236
1237 n = pOp->p3;
1238 pIn1 = &aMem[pOp->p1];
1239 pOut = &aMem[pOp->p2];
1240 assert( pOut!=pIn1 );
1241 while( 1 ){
1242 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1243 Deephemeralize(pOut);
1244 #ifdef SQLITE_DEBUG
1245 pOut->pScopyFrom = 0;
1246 #endif
1247 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1248 if( (n--)==0 ) break;
1249 pOut++;
1250 pIn1++;
1251 }
1252 break;
1253 }
1254
1255 /* Opcode: SCopy P1 P2 * * *
1256 ** Synopsis: r[P2]=r[P1]
1257 **
1258 ** Make a shallow copy of register P1 into register P2.
1259 **
1260 ** This instruction makes a shallow copy of the value. If the value
1261 ** is a string or blob, then the copy is only a pointer to the
1262 ** original and hence if the original changes so will the copy.
1263 ** Worse, if the original is deallocated, the copy becomes invalid.
1264 ** Thus the program must guarantee that the original will not change
1265 ** during the lifetime of the copy. Use OP_Copy to make a complete
1266 ** copy.
1267 */
1268 case OP_SCopy: { /* out2 */
1269 pIn1 = &aMem[pOp->p1];
1270 pOut = &aMem[pOp->p2];
1271 assert( pOut!=pIn1 );
1272 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1273 #ifdef SQLITE_DEBUG
1274 if( pOut->pScopyFrom==0 ) pOut->pScopyFrom = pIn1;
1275 #endif
1276 break;
1277 }
1278
1279 /* Opcode: IntCopy P1 P2 * * *
1280 ** Synopsis: r[P2]=r[P1]
1281 **
1282 ** Transfer the integer value held in register P1 into register P2.
1283 **
1284 ** This is an optimized version of SCopy that works only for integer
1285 ** values.
1286 */
1287 case OP_IntCopy: { /* out2 */
1288 pIn1 = &aMem[pOp->p1];
1289 assert( (pIn1->flags & MEM_Int)!=0 );
1290 pOut = &aMem[pOp->p2];
1291 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1292 break;
1293 }
1294
1295 /* Opcode: ResultRow P1 P2 * * *
1296 ** Synopsis: output=r[P1@P2]
1297 **
1298 ** The registers P1 through P1+P2-1 contain a single row of
1299 ** results. This opcode causes the sqlite3_step() call to terminate
1300 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1301 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1302 ** the result row.
1303 */
1304 case OP_ResultRow: {
1305 Mem *pMem;
1306 int i;
1307 assert( p->nResColumn==pOp->p2 );
1308 assert( pOp->p1>0 );
1309 assert( pOp->p1+pOp->p2<=(p->nMem-p->nCursor)+1 );
1310
1311 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1312 /* Run the progress counter just before returning.
1313 */
1314 if( db->xProgress!=0
1315 && nVmStep>=nProgressLimit
1316 && db->xProgress(db->pProgressArg)!=0
1317 ){
1318 rc = SQLITE_INTERRUPT;
1319 goto vdbe_error_halt;
1320 }
1321 #endif
1322
1323 /* If this statement has violated immediate foreign key constraints, do
1324 ** not return the number of rows modified. And do not RELEASE the statement
1325 ** transaction. It needs to be rolled back. */
1326 if( SQLITE_OK!=(rc = sqlite3VdbeCheckFk(p, 0)) ){
1327 assert( db->flags&SQLITE_CountRows );
1328 assert( p->usesStmtJournal );
1329 break;
1330 }
1331
1332 /* If the SQLITE_CountRows flag is set in sqlite3.flags mask, then
1333 ** DML statements invoke this opcode to return the number of rows
1334 ** modified to the user. This is the only way that a VM that
1335 ** opens a statement transaction may invoke this opcode.
1336 **
1337 ** In case this is such a statement, close any statement transaction
1338 ** opened by this VM before returning control to the user. This is to
1339 ** ensure that statement-transactions are always nested, not overlapping.
1340 ** If the open statement-transaction is not closed here, then the user
1341 ** may step another VM that opens its own statement transaction. This
1342 ** may lead to overlapping statement transactions.
1343 **
1344 ** The statement transaction is never a top-level transaction. Hence
1345 ** the RELEASE call below can never fail.
1346 */
1347 assert( p->iStatement==0 || db->flags&SQLITE_CountRows );
1348 rc = sqlite3VdbeCloseStatement(p, SAVEPOINT_RELEASE);
1349 if( NEVER(rc!=SQLITE_OK) ){
1350 break;
1351 }
1352
1353 /* Invalidate all ephemeral cursor row caches */
1354 p->cacheCtr = (p->cacheCtr + 2)|1;
1355
1356 /* Make sure the results of the current row are \000 terminated
1357 ** and have an assigned type. The results are de-ephemeralized as
1358 ** a side effect.
1359 */
1360 pMem = p->pResultSet = &aMem[pOp->p1];
1361 for(i=0; i<pOp->p2; i++){
1362 assert( memIsValid(&pMem[i]) );
1363 Deephemeralize(&pMem[i]);
1364 assert( (pMem[i].flags & MEM_Ephem)==0
1365 || (pMem[i].flags & (MEM_Str|MEM_Blob))==0 );
1366 sqlite3VdbeMemNulTerminate(&pMem[i]);
1367 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1368 }
1369 if( db->mallocFailed ) goto no_mem;
1370
1371 /* Return SQLITE_ROW
1372 */
1373 p->pc = (int)(pOp - aOp) + 1;
1374 rc = SQLITE_ROW;
1375 goto vdbe_return;
1376 }
1377
1378 /* Opcode: Concat P1 P2 P3 * *
1379 ** Synopsis: r[P3]=r[P2]+r[P1]
1380 **
1381 ** Add the text in register P1 onto the end of the text in
1382 ** register P2 and store the result in register P3.
1383 ** If either the P1 or P2 text are NULL then store NULL in P3.
1384 **
1385 ** P3 = P2 || P1
1386 **
1387 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1388 ** if P3 is the same register as P2, the implementation is able
1389 ** to avoid a memcpy().
1390 */
1391 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
1392 i64 nByte;
1393
1394 pIn1 = &aMem[pOp->p1];
1395 pIn2 = &aMem[pOp->p2];
1396 pOut = &aMem[pOp->p3];
1397 assert( pIn1!=pOut );
1398 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1399 sqlite3VdbeMemSetNull(pOut);
1400 break;
1401 }
1402 if( ExpandBlob(pIn1) || ExpandBlob(pIn2) ) goto no_mem;
1403 Stringify(pIn1, encoding);
1404 Stringify(pIn2, encoding);
1405 nByte = pIn1->n + pIn2->n;
1406 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1407 goto too_big;
1408 }
1409 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
1410 goto no_mem;
1411 }
1412 MemSetTypeFlag(pOut, MEM_Str);
1413 if( pOut!=pIn2 ){
1414 memcpy(pOut->z, pIn2->z, pIn2->n);
1415 }
1416 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1417 pOut->z[nByte]=0;
1418 pOut->z[nByte+1] = 0;
1419 pOut->flags |= MEM_Term;
1420 pOut->n = (int)nByte;
1421 pOut->enc = encoding;
1422 UPDATE_MAX_BLOBSIZE(pOut);
1423 break;
1424 }
1425
1426 /* Opcode: Add P1 P2 P3 * *
1427 ** Synopsis: r[P3]=r[P1]+r[P2]
1428 **
1429 ** Add the value in register P1 to the value in register P2
1430 ** and store the result in register P3.
1431 ** If either input is NULL, the result is NULL.
1432 */
1433 /* Opcode: Multiply P1 P2 P3 * *
1434 ** Synopsis: r[P3]=r[P1]*r[P2]
1435 **
1436 **
1437 ** Multiply the value in register P1 by the value in register P2
1438 ** and store the result in register P3.
1439 ** If either input is NULL, the result is NULL.
1440 */
1441 /* Opcode: Subtract P1 P2 P3 * *
1442 ** Synopsis: r[P3]=r[P2]-r[P1]
1443 **
1444 ** Subtract the value in register P1 from the value in register P2
1445 ** and store the result in register P3.
1446 ** If either input is NULL, the result is NULL.
1447 */
1448 /* Opcode: Divide P1 P2 P3 * *
1449 ** Synopsis: r[P3]=r[P2]/r[P1]
1450 **
1451 ** Divide the value in register P1 by the value in register P2
1452 ** and store the result in register P3 (P3=P2/P1). If the value in
1453 ** register P1 is zero, then the result is NULL. If either input is
1454 ** NULL, the result is NULL.
1455 */
1456 /* Opcode: Remainder P1 P2 P3 * *
1457 ** Synopsis: r[P3]=r[P2]%r[P1]
1458 **
1459 ** Compute the remainder after integer register P2 is divided by
1460 ** register P1 and store the result in register P3.
1461 ** If the value in register P1 is zero the result is NULL.
1462 ** If either operand is NULL, the result is NULL.
1463 */
1464 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1465 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1466 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1467 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1468 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
1469 char bIntint; /* Started out as two integer operands */
1470 u16 flags; /* Combined MEM_* flags from both inputs */
1471 u16 type1; /* Numeric type of left operand */
1472 u16 type2; /* Numeric type of right operand */
1473 i64 iA; /* Integer value of left operand */
1474 i64 iB; /* Integer value of right operand */
1475 double rA; /* Real value of left operand */
1476 double rB; /* Real value of right operand */
1477
1478 pIn1 = &aMem[pOp->p1];
1479 type1 = numericType(pIn1);
1480 pIn2 = &aMem[pOp->p2];
1481 type2 = numericType(pIn2);
1482 pOut = &aMem[pOp->p3];
1483 flags = pIn1->flags | pIn2->flags;
1484 if( (flags & MEM_Null)!=0 ) goto arithmetic_result_is_null;
1485 if( (type1 & type2 & MEM_Int)!=0 ){
1486 iA = pIn1->u.i;
1487 iB = pIn2->u.i;
1488 bIntint = 1;
1489 switch( pOp->opcode ){
1490 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
1491 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
1492 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
1493 case OP_Divide: {
1494 if( iA==0 ) goto arithmetic_result_is_null;
1495 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1496 iB /= iA;
1497 break;
1498 }
1499 default: {
1500 if( iA==0 ) goto arithmetic_result_is_null;
1501 if( iA==-1 ) iA = 1;
1502 iB %= iA;
1503 break;
1504 }
1505 }
1506 pOut->u.i = iB;
1507 MemSetTypeFlag(pOut, MEM_Int);
1508 }else{
1509 bIntint = 0;
1510 fp_math:
1511 rA = sqlite3VdbeRealValue(pIn1);
1512 rB = sqlite3VdbeRealValue(pIn2);
1513 switch( pOp->opcode ){
1514 case OP_Add: rB += rA; break;
1515 case OP_Subtract: rB -= rA; break;
1516 case OP_Multiply: rB *= rA; break;
1517 case OP_Divide: {
1518 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1519 if( rA==(double)0 ) goto arithmetic_result_is_null;
1520 rB /= rA;
1521 break;
1522 }
1523 default: {
1524 iA = (i64)rA;
1525 iB = (i64)rB;
1526 if( iA==0 ) goto arithmetic_result_is_null;
1527 if( iA==-1 ) iA = 1;
1528 rB = (double)(iB % iA);
1529 break;
1530 }
1531 }
1532 #ifdef SQLITE_OMIT_FLOATING_POINT
1533 pOut->u.i = rB;
1534 MemSetTypeFlag(pOut, MEM_Int);
1535 #else
1536 if( sqlite3IsNaN(rB) ){
1537 goto arithmetic_result_is_null;
1538 }
1539 pOut->u.r = rB;
1540 MemSetTypeFlag(pOut, MEM_Real);
1541 if( ((type1|type2)&MEM_Real)==0 && !bIntint ){
1542 sqlite3VdbeIntegerAffinity(pOut);
1543 }
1544 #endif
1545 }
1546 break;
1547
1548 arithmetic_result_is_null:
1549 sqlite3VdbeMemSetNull(pOut);
1550 break;
1551 }
1552
1553 /* Opcode: CollSeq P1 * * P4
1554 **
1555 ** P4 is a pointer to a CollSeq struct. If the next call to a user function
1556 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1557 ** be returned. This is used by the built-in min(), max() and nullif()
1558 ** functions.
1559 **
1560 ** If P1 is not zero, then it is a register that a subsequent min() or
1561 ** max() aggregate will set to 1 if the current row is not the minimum or
1562 ** maximum. The P1 register is initialized to 0 by this instruction.
1563 **
1564 ** The interface used by the implementation of the aforementioned functions
1565 ** to retrieve the collation sequence set by this opcode is not available
1566 ** publicly. Only built-in functions have access to this feature.
1567 */
1568 case OP_CollSeq: {
1569 assert( pOp->p4type==P4_COLLSEQ );
1570 if( pOp->p1 ){
1571 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1572 }
1573 break;
1574 }
1575
1576 /* Opcode: Function0 P1 P2 P3 P4 P5
1577 ** Synopsis: r[P3]=func(r[P2@P5])
1578 **
1579 ** Invoke a user function (P4 is a pointer to a FuncDef object that
1580 ** defines the function) with P5 arguments taken from register P2 and
1581 ** successors. The result of the function is stored in register P3.
1582 ** Register P3 must not be one of the function inputs.
1583 **
1584 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
1585 ** function was determined to be constant at compile time. If the first
1586 ** argument was constant then bit 0 of P1 is set. This is used to determine
1587 ** whether meta data associated with a user function argument using the
1588 ** sqlite3_set_auxdata() API may be safely retained until the next
1589 ** invocation of this opcode.
1590 **
1591 ** See also: Function, AggStep, AggFinal
1592 */
1593 /* Opcode: Function P1 P2 P3 P4 P5
1594 ** Synopsis: r[P3]=func(r[P2@P5])
1595 **
1596 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
1597 ** contains a pointer to the function to be run) with P5 arguments taken
1598 ** from register P2 and successors. The result of the function is stored
1599 ** in register P3. Register P3 must not be one of the function inputs.
1600 **
1601 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
1602 ** function was determined to be constant at compile time. If the first
1603 ** argument was constant then bit 0 of P1 is set. This is used to determine
1604 ** whether meta data associated with a user function argument using the
1605 ** sqlite3_set_auxdata() API may be safely retained until the next
1606 ** invocation of this opcode.
1607 **
1608 ** SQL functions are initially coded as OP_Function0 with P4 pointing
1609 ** to a FuncDef object. But on first evaluation, the P4 operand is
1610 ** automatically converted into an sqlite3_context object and the operation
1611 ** changed to this OP_Function opcode. In this way, the initialization of
1612 ** the sqlite3_context object occurs only once, rather than once for each
1613 ** evaluation of the function.
1614 **
1615 ** See also: Function0, AggStep, AggFinal
1616 */
1617 case OP_Function0: {
1618 int n;
1619 sqlite3_context *pCtx;
1620
1621 assert( pOp->p4type==P4_FUNCDEF );
1622 n = pOp->p5;
1623 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
1624 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
1625 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
1626 pCtx = sqlite3DbMallocRaw(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
1627 if( pCtx==0 ) goto no_mem;
1628 pCtx->pOut = 0;
1629 pCtx->pFunc = pOp->p4.pFunc;
1630 pCtx->iOp = (int)(pOp - aOp);
1631 pCtx->pVdbe = p;
1632 pCtx->argc = n;
1633 pOp->p4type = P4_FUNCCTX;
1634 pOp->p4.pCtx = pCtx;
1635 pOp->opcode = OP_Function;
1636 /* Fall through into OP_Function */
1637 }
1638 case OP_Function: {
1639 int i;
1640 sqlite3_context *pCtx;
1641
1642 assert( pOp->p4type==P4_FUNCCTX );
1643 pCtx = pOp->p4.pCtx;
1644
1645 /* If this function is inside of a trigger, the register array in aMem[]
1646 ** might change from one evaluation to the next. The next block of code
1647 ** checks to see if the register array has changed, and if so it
1648 ** reinitializes the relavant parts of the sqlite3_context object */
1649 pOut = &aMem[pOp->p3];
1650 if( pCtx->pOut != pOut ){
1651 pCtx->pOut = pOut;
1652 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
1653 }
1654
1655 memAboutToChange(p, pCtx->pOut);
1656 #ifdef SQLITE_DEBUG
1657 for(i=0; i<pCtx->argc; i++){
1658 assert( memIsValid(pCtx->argv[i]) );
1659 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
1660 }
1661 #endif
1662 MemSetTypeFlag(pCtx->pOut, MEM_Null);
1663 pCtx->fErrorOrAux = 0;
1664 db->lastRowid = lastRowid;
1665 (*pCtx->pFunc->xFunc)(pCtx, pCtx->argc, pCtx->argv); /* IMP: R-24505-23230 */
1666 lastRowid = db->lastRowid; /* Remember rowid changes made by xFunc */
1667
1668 /* If the function returned an error, throw an exception */
1669 if( pCtx->fErrorOrAux ){
1670 if( pCtx->isError ){
1671 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
1672 rc = pCtx->isError;
1673 }
1674 sqlite3VdbeDeleteAuxData(p, pCtx->iOp, pOp->p1);
1675 }
1676
1677 /* Copy the result of the function into register P3 */
1678 if( pOut->flags & (MEM_Str|MEM_Blob) ){
1679 sqlite3VdbeChangeEncoding(pCtx->pOut, encoding);
1680 if( sqlite3VdbeMemTooBig(pCtx->pOut) ) goto too_big;
1681 }
1682
1683 REGISTER_TRACE(pOp->p3, pCtx->pOut);
1684 UPDATE_MAX_BLOBSIZE(pCtx->pOut);
1685 break;
1686 }
1687
1688 /* Opcode: BitAnd P1 P2 P3 * *
1689 ** Synopsis: r[P3]=r[P1]&r[P2]
1690 **
1691 ** Take the bit-wise AND of the values in register P1 and P2 and
1692 ** store the result in register P3.
1693 ** If either input is NULL, the result is NULL.
1694 */
1695 /* Opcode: BitOr P1 P2 P3 * *
1696 ** Synopsis: r[P3]=r[P1]|r[P2]
1697 **
1698 ** Take the bit-wise OR of the values in register P1 and P2 and
1699 ** store the result in register P3.
1700 ** If either input is NULL, the result is NULL.
1701 */
1702 /* Opcode: ShiftLeft P1 P2 P3 * *
1703 ** Synopsis: r[P3]=r[P2]<<r[P1]
1704 **
1705 ** Shift the integer value in register P2 to the left by the
1706 ** number of bits specified by the integer in register P1.
1707 ** Store the result in register P3.
1708 ** If either input is NULL, the result is NULL.
1709 */
1710 /* Opcode: ShiftRight P1 P2 P3 * *
1711 ** Synopsis: r[P3]=r[P2]>>r[P1]
1712 **
1713 ** Shift the integer value in register P2 to the right by the
1714 ** number of bits specified by the integer in register P1.
1715 ** Store the result in register P3.
1716 ** If either input is NULL, the result is NULL.
1717 */
1718 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1719 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1720 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1721 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
1722 i64 iA;
1723 u64 uA;
1724 i64 iB;
1725 u8 op;
1726
1727 pIn1 = &aMem[pOp->p1];
1728 pIn2 = &aMem[pOp->p2];
1729 pOut = &aMem[pOp->p3];
1730 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1731 sqlite3VdbeMemSetNull(pOut);
1732 break;
1733 }
1734 iA = sqlite3VdbeIntValue(pIn2);
1735 iB = sqlite3VdbeIntValue(pIn1);
1736 op = pOp->opcode;
1737 if( op==OP_BitAnd ){
1738 iA &= iB;
1739 }else if( op==OP_BitOr ){
1740 iA |= iB;
1741 }else if( iB!=0 ){
1742 assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1743
1744 /* If shifting by a negative amount, shift in the other direction */
1745 if( iB<0 ){
1746 assert( OP_ShiftRight==OP_ShiftLeft+1 );
1747 op = 2*OP_ShiftLeft + 1 - op;
1748 iB = iB>(-64) ? -iB : 64;
1749 }
1750
1751 if( iB>=64 ){
1752 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
1753 }else{
1754 memcpy(&uA, &iA, sizeof(uA));
1755 if( op==OP_ShiftLeft ){
1756 uA <<= iB;
1757 }else{
1758 uA >>= iB;
1759 /* Sign-extend on a right shift of a negative number */
1760 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
1761 }
1762 memcpy(&iA, &uA, sizeof(iA));
1763 }
1764 }
1765 pOut->u.i = iA;
1766 MemSetTypeFlag(pOut, MEM_Int);
1767 break;
1768 }
1769
1770 /* Opcode: AddImm P1 P2 * * *
1771 ** Synopsis: r[P1]=r[P1]+P2
1772 **
1773 ** Add the constant P2 to the value in register P1.
1774 ** The result is always an integer.
1775 **
1776 ** To force any register to be an integer, just add 0.
1777 */
1778 case OP_AddImm: { /* in1 */
1779 pIn1 = &aMem[pOp->p1];
1780 memAboutToChange(p, pIn1);
1781 sqlite3VdbeMemIntegerify(pIn1);
1782 pIn1->u.i += pOp->p2;
1783 break;
1784 }
1785
1786 /* Opcode: MustBeInt P1 P2 * * *
1787 **
1788 ** Force the value in register P1 to be an integer. If the value
1789 ** in P1 is not an integer and cannot be converted into an integer
1790 ** without data loss, then jump immediately to P2, or if P2==0
1791 ** raise an SQLITE_MISMATCH exception.
1792 */
1793 case OP_MustBeInt: { /* jump, in1 */
1794 pIn1 = &aMem[pOp->p1];
1795 if( (pIn1->flags & MEM_Int)==0 ){
1796 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
1797 VdbeBranchTaken((pIn1->flags&MEM_Int)==0, 2);
1798 if( (pIn1->flags & MEM_Int)==0 ){
1799 if( pOp->p2==0 ){
1800 rc = SQLITE_MISMATCH;
1801 goto abort_due_to_error;
1802 }else{
1803 goto jump_to_p2;
1804 }
1805 }
1806 }
1807 MemSetTypeFlag(pIn1, MEM_Int);
1808 break;
1809 }
1810
1811 #ifndef SQLITE_OMIT_FLOATING_POINT
1812 /* Opcode: RealAffinity P1 * * * *
1813 **
1814 ** If register P1 holds an integer convert it to a real value.
1815 **
1816 ** This opcode is used when extracting information from a column that
1817 ** has REAL affinity. Such column values may still be stored as
1818 ** integers, for space efficiency, but after extraction we want them
1819 ** to have only a real value.
1820 */
1821 case OP_RealAffinity: { /* in1 */
1822 pIn1 = &aMem[pOp->p1];
1823 if( pIn1->flags & MEM_Int ){
1824 sqlite3VdbeMemRealify(pIn1);
1825 }
1826 break;
1827 }
1828 #endif
1829
1830 #ifndef SQLITE_OMIT_CAST
1831 /* Opcode: Cast P1 P2 * * *
1832 ** Synopsis: affinity(r[P1])
1833 **
1834 ** Force the value in register P1 to be the type defined by P2.
1835 **
1836 ** <ul>
1837 ** <li value="97"> TEXT
1838 ** <li value="98"> BLOB
1839 ** <li value="99"> NUMERIC
1840 ** <li value="100"> INTEGER
1841 ** <li value="101"> REAL
1842 ** </ul>
1843 **
1844 ** A NULL value is not changed by this routine. It remains NULL.
1845 */
1846 case OP_Cast: { /* in1 */
1847 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
1848 testcase( pOp->p2==SQLITE_AFF_TEXT );
1849 testcase( pOp->p2==SQLITE_AFF_BLOB );
1850 testcase( pOp->p2==SQLITE_AFF_NUMERIC );
1851 testcase( pOp->p2==SQLITE_AFF_INTEGER );
1852 testcase( pOp->p2==SQLITE_AFF_REAL );
1853 pIn1 = &aMem[pOp->p1];
1854 memAboutToChange(p, pIn1);
1855 rc = ExpandBlob(pIn1);
1856 sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
1857 UPDATE_MAX_BLOBSIZE(pIn1);
1858 break;
1859 }
1860 #endif /* SQLITE_OMIT_CAST */
1861
1862 /* Opcode: Lt P1 P2 P3 P4 P5
1863 ** Synopsis: if r[P1]<r[P3] goto P2
1864 **
1865 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
1866 ** jump to address P2.
1867 **
1868 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
1869 ** reg(P3) is NULL then take the jump. If the SQLITE_JUMPIFNULL
1870 ** bit is clear then fall through if either operand is NULL.
1871 **
1872 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
1873 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
1874 ** to coerce both inputs according to this affinity before the
1875 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
1876 ** affinity is used. Note that the affinity conversions are stored
1877 ** back into the input registers P1 and P3. So this opcode can cause
1878 ** persistent changes to registers P1 and P3.
1879 **
1880 ** Once any conversions have taken place, and neither value is NULL,
1881 ** the values are compared. If both values are blobs then memcmp() is
1882 ** used to determine the results of the comparison. If both values
1883 ** are text, then the appropriate collating function specified in
1884 ** P4 is used to do the comparison. If P4 is not specified then
1885 ** memcmp() is used to compare text string. If both values are
1886 ** numeric, then a numeric comparison is used. If the two values
1887 ** are of different types, then numbers are considered less than
1888 ** strings and strings are considered less than blobs.
1889 **
1890 ** If the SQLITE_STOREP2 bit of P5 is set, then do not jump. Instead,
1891 ** store a boolean result (either 0, or 1, or NULL) in register P2.
1892 **
1893 ** If the SQLITE_NULLEQ bit is set in P5, then NULL values are considered
1894 ** equal to one another, provided that they do not have their MEM_Cleared
1895 ** bit set.
1896 */
1897 /* Opcode: Ne P1 P2 P3 P4 P5
1898 ** Synopsis: if r[P1]!=r[P3] goto P2
1899 **
1900 ** This works just like the Lt opcode except that the jump is taken if
1901 ** the operands in registers P1 and P3 are not equal. See the Lt opcode for
1902 ** additional information.
1903 **
1904 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1905 ** true or false and is never NULL. If both operands are NULL then the result
1906 ** of comparison is false. If either operand is NULL then the result is true.
1907 ** If neither operand is NULL the result is the same as it would be if
1908 ** the SQLITE_NULLEQ flag were omitted from P5.
1909 */
1910 /* Opcode: Eq P1 P2 P3 P4 P5
1911 ** Synopsis: if r[P1]==r[P3] goto P2
1912 **
1913 ** This works just like the Lt opcode except that the jump is taken if
1914 ** the operands in registers P1 and P3 are equal.
1915 ** See the Lt opcode for additional information.
1916 **
1917 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
1918 ** true or false and is never NULL. If both operands are NULL then the result
1919 ** of comparison is true. If either operand is NULL then the result is false.
1920 ** If neither operand is NULL the result is the same as it would be if
1921 ** the SQLITE_NULLEQ flag were omitted from P5.
1922 */
1923 /* Opcode: Le P1 P2 P3 P4 P5
1924 ** Synopsis: if r[P1]<=r[P3] goto P2
1925 **
1926 ** This works just like the Lt opcode except that the jump is taken if
1927 ** the content of register P3 is less than or equal to the content of
1928 ** register P1. See the Lt opcode for additional information.
1929 */
1930 /* Opcode: Gt P1 P2 P3 P4 P5
1931 ** Synopsis: if r[P1]>r[P3] goto P2
1932 **
1933 ** This works just like the Lt opcode except that the jump is taken if
1934 ** the content of register P3 is greater than the content of
1935 ** register P1. See the Lt opcode for additional information.
1936 */
1937 /* Opcode: Ge P1 P2 P3 P4 P5
1938 ** Synopsis: if r[P1]>=r[P3] goto P2
1939 **
1940 ** This works just like the Lt opcode except that the jump is taken if
1941 ** the content of register P3 is greater than or equal to the content of
1942 ** register P1. See the Lt opcode for additional information.
1943 */
1944 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
1945 case OP_Ne: /* same as TK_NE, jump, in1, in3 */
1946 case OP_Lt: /* same as TK_LT, jump, in1, in3 */
1947 case OP_Le: /* same as TK_LE, jump, in1, in3 */
1948 case OP_Gt: /* same as TK_GT, jump, in1, in3 */
1949 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
1950 int res; /* Result of the comparison of pIn1 against pIn3 */
1951 char affinity; /* Affinity to use for comparison */
1952 u16 flags1; /* Copy of initial value of pIn1->flags */
1953 u16 flags3; /* Copy of initial value of pIn3->flags */
1954
1955 pIn1 = &aMem[pOp->p1];
1956 pIn3 = &aMem[pOp->p3];
1957 flags1 = pIn1->flags;
1958 flags3 = pIn3->flags;
1959 if( (flags1 | flags3)&MEM_Null ){
1960 /* One or both operands are NULL */
1961 if( pOp->p5 & SQLITE_NULLEQ ){
1962 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
1963 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
1964 ** or not both operands are null.
1965 */
1966 assert( pOp->opcode==OP_Eq || pOp->opcode==OP_Ne );
1967 assert( (flags1 & MEM_Cleared)==0 );
1968 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 );
1969 if( (flags1&MEM_Null)!=0
1970 && (flags3&MEM_Null)!=0
1971 && (flags3&MEM_Cleared)==0
1972 ){
1973 res = 0; /* Results are equal */
1974 }else{
1975 res = 1; /* Results are not equal */
1976 }
1977 }else{
1978 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
1979 ** then the result is always NULL.
1980 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
1981 */
1982 if( pOp->p5 & SQLITE_STOREP2 ){
1983 pOut = &aMem[pOp->p2];
1984 memAboutToChange(p, pOut);
1985 MemSetTypeFlag(pOut, MEM_Null);
1986 REGISTER_TRACE(pOp->p2, pOut);
1987 }else{
1988 VdbeBranchTaken(2,3);
1989 if( pOp->p5 & SQLITE_JUMPIFNULL ){
1990 goto jump_to_p2;
1991 }
1992 }
1993 break;
1994 }
1995 }else{
1996 /* Neither operand is NULL. Do a comparison. */
1997 affinity = pOp->p5 & SQLITE_AFF_MASK;
1998 if( affinity>=SQLITE_AFF_NUMERIC ){
1999 if( (flags1 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
2000 applyNumericAffinity(pIn1,0);
2001 }
2002 if( (flags3 & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
2003 applyNumericAffinity(pIn3,0);
2004 }
2005 }else if( affinity==SQLITE_AFF_TEXT ){
2006 if( (flags1 & MEM_Str)==0 && (flags1 & (MEM_Int|MEM_Real))!=0 ){
2007 testcase( pIn1->flags & MEM_Int );
2008 testcase( pIn1->flags & MEM_Real );
2009 sqlite3VdbeMemStringify(pIn1, encoding, 1);
2010 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
2011 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
2012 }
2013 if( (flags3 & MEM_Str)==0 && (flags3 & (MEM_Int|MEM_Real))!=0 ){
2014 testcase( pIn3->flags & MEM_Int );
2015 testcase( pIn3->flags & MEM_Real );
2016 sqlite3VdbeMemStringify(pIn3, encoding, 1);
2017 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
2018 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
2019 }
2020 }
2021 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
2022 if( flags1 & MEM_Zero ){
2023 sqlite3VdbeMemExpandBlob(pIn1);
2024 flags1 &= ~MEM_Zero;
2025 }
2026 if( flags3 & MEM_Zero ){
2027 sqlite3VdbeMemExpandBlob(pIn3);
2028 flags3 &= ~MEM_Zero;
2029 }
2030 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
2031 }
2032 switch( pOp->opcode ){
2033 case OP_Eq: res = res==0; break;
2034 case OP_Ne: res = res!=0; break;
2035 case OP_Lt: res = res<0; break;
2036 case OP_Le: res = res<=0; break;
2037 case OP_Gt: res = res>0; break;
2038 default: res = res>=0; break;
2039 }
2040
2041 /* Undo any changes made by applyAffinity() to the input registers. */
2042 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
2043 pIn1->flags = flags1;
2044 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
2045 pIn3->flags = flags3;
2046
2047 if( pOp->p5 & SQLITE_STOREP2 ){
2048 pOut = &aMem[pOp->p2];
2049 memAboutToChange(p, pOut);
2050 MemSetTypeFlag(pOut, MEM_Int);
2051 pOut->u.i = res;
2052 REGISTER_TRACE(pOp->p2, pOut);
2053 }else{
2054 VdbeBranchTaken(res!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2055 if( res ){
2056 goto jump_to_p2;
2057 }
2058 }
2059 break;
2060 }
2061
2062 /* Opcode: Permutation * * * P4 *
2063 **
2064 ** Set the permutation used by the OP_Compare operator to be the array
2065 ** of integers in P4.
2066 **
2067 ** The permutation is only valid until the next OP_Compare that has
2068 ** the OPFLAG_PERMUTE bit set in P5. Typically the OP_Permutation should
2069 ** occur immediately prior to the OP_Compare.
2070 */
2071 case OP_Permutation: {
2072 assert( pOp->p4type==P4_INTARRAY );
2073 assert( pOp->p4.ai );
2074 aPermute = pOp->p4.ai;
2075 break;
2076 }
2077
2078 /* Opcode: Compare P1 P2 P3 P4 P5
2079 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2080 **
2081 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2082 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
2083 ** the comparison for use by the next OP_Jump instruct.
2084 **
2085 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2086 ** determined by the most recent OP_Permutation operator. If the
2087 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2088 ** order.
2089 **
2090 ** P4 is a KeyInfo structure that defines collating sequences and sort
2091 ** orders for the comparison. The permutation applies to registers
2092 ** only. The KeyInfo elements are used sequentially.
2093 **
2094 ** The comparison is a sort comparison, so NULLs compare equal,
2095 ** NULLs are less than numbers, numbers are less than strings,
2096 ** and strings are less than blobs.
2097 */
2098 case OP_Compare: {
2099 int n;
2100 int i;
2101 int p1;
2102 int p2;
2103 const KeyInfo *pKeyInfo;
2104 int idx;
2105 CollSeq *pColl; /* Collating sequence to use on this term */
2106 int bRev; /* True for DESCENDING sort order */
2107
2108 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ) aPermute = 0;
2109 n = pOp->p3;
2110 pKeyInfo = pOp->p4.pKeyInfo;
2111 assert( n>0 );
2112 assert( pKeyInfo!=0 );
2113 p1 = pOp->p1;
2114 p2 = pOp->p2;
2115 #if SQLITE_DEBUG
2116 if( aPermute ){
2117 int k, mx = 0;
2118 for(k=0; k<n; k++) if( aPermute[k]>mx ) mx = aPermute[k];
2119 assert( p1>0 && p1+mx<=(p->nMem-p->nCursor)+1 );
2120 assert( p2>0 && p2+mx<=(p->nMem-p->nCursor)+1 );
2121 }else{
2122 assert( p1>0 && p1+n<=(p->nMem-p->nCursor)+1 );
2123 assert( p2>0 && p2+n<=(p->nMem-p->nCursor)+1 );
2124 }
2125 #endif /* SQLITE_DEBUG */
2126 for(i=0; i<n; i++){
2127 idx = aPermute ? aPermute[i] : i;
2128 assert( memIsValid(&aMem[p1+idx]) );
2129 assert( memIsValid(&aMem[p2+idx]) );
2130 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2131 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
2132 assert( i<pKeyInfo->nField );
2133 pColl = pKeyInfo->aColl[i];
2134 bRev = pKeyInfo->aSortOrder[i];
2135 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
2136 if( iCompare ){
2137 if( bRev ) iCompare = -iCompare;
2138 break;
2139 }
2140 }
2141 aPermute = 0;
2142 break;
2143 }
2144
2145 /* Opcode: Jump P1 P2 P3 * *
2146 **
2147 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2148 ** in the most recent OP_Compare instruction the P1 vector was less than
2149 ** equal to, or greater than the P2 vector, respectively.
2150 */
2151 case OP_Jump: { /* jump */
2152 if( iCompare<0 ){
2153 VdbeBranchTaken(0,3); pOp = &aOp[pOp->p1 - 1];
2154 }else if( iCompare==0 ){
2155 VdbeBranchTaken(1,3); pOp = &aOp[pOp->p2 - 1];
2156 }else{
2157 VdbeBranchTaken(2,3); pOp = &aOp[pOp->p3 - 1];
2158 }
2159 break;
2160 }
2161
2162 /* Opcode: And P1 P2 P3 * *
2163 ** Synopsis: r[P3]=(r[P1] && r[P2])
2164 **
2165 ** Take the logical AND of the values in registers P1 and P2 and
2166 ** write the result into register P3.
2167 **
2168 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2169 ** the other input is NULL. A NULL and true or two NULLs give
2170 ** a NULL output.
2171 */
2172 /* Opcode: Or P1 P2 P3 * *
2173 ** Synopsis: r[P3]=(r[P1] || r[P2])
2174 **
2175 ** Take the logical OR of the values in register P1 and P2 and
2176 ** store the answer in register P3.
2177 **
2178 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2179 ** even if the other input is NULL. A NULL and false or two NULLs
2180 ** give a NULL output.
2181 */
2182 case OP_And: /* same as TK_AND, in1, in2, out3 */
2183 case OP_Or: { /* same as TK_OR, in1, in2, out3 */
2184 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2185 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2186
2187 pIn1 = &aMem[pOp->p1];
2188 if( pIn1->flags & MEM_Null ){
2189 v1 = 2;
2190 }else{
2191 v1 = sqlite3VdbeIntValue(pIn1)!=0;
2192 }
2193 pIn2 = &aMem[pOp->p2];
2194 if( pIn2->flags & MEM_Null ){
2195 v2 = 2;
2196 }else{
2197 v2 = sqlite3VdbeIntValue(pIn2)!=0;
2198 }
2199 if( pOp->opcode==OP_And ){
2200 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2201 v1 = and_logic[v1*3+v2];
2202 }else{
2203 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2204 v1 = or_logic[v1*3+v2];
2205 }
2206 pOut = &aMem[pOp->p3];
2207 if( v1==2 ){
2208 MemSetTypeFlag(pOut, MEM_Null);
2209 }else{
2210 pOut->u.i = v1;
2211 MemSetTypeFlag(pOut, MEM_Int);
2212 }
2213 break;
2214 }
2215
2216 /* Opcode: Not P1 P2 * * *
2217 ** Synopsis: r[P2]= !r[P1]
2218 **
2219 ** Interpret the value in register P1 as a boolean value. Store the
2220 ** boolean complement in register P2. If the value in register P1 is
2221 ** NULL, then a NULL is stored in P2.
2222 */
2223 case OP_Not: { /* same as TK_NOT, in1, out2 */
2224 pIn1 = &aMem[pOp->p1];
2225 pOut = &aMem[pOp->p2];
2226 sqlite3VdbeMemSetNull(pOut);
2227 if( (pIn1->flags & MEM_Null)==0 ){
2228 pOut->flags = MEM_Int;
2229 pOut->u.i = !sqlite3VdbeIntValue(pIn1);
2230 }
2231 break;
2232 }
2233
2234 /* Opcode: BitNot P1 P2 * * *
2235 ** Synopsis: r[P1]= ~r[P1]
2236 **
2237 ** Interpret the content of register P1 as an integer. Store the
2238 ** ones-complement of the P1 value into register P2. If P1 holds
2239 ** a NULL then store a NULL in P2.
2240 */
2241 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
2242 pIn1 = &aMem[pOp->p1];
2243 pOut = &aMem[pOp->p2];
2244 sqlite3VdbeMemSetNull(pOut);
2245 if( (pIn1->flags & MEM_Null)==0 ){
2246 pOut->flags = MEM_Int;
2247 pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
2248 }
2249 break;
2250 }
2251
2252 /* Opcode: Once P1 P2 * * *
2253 **
2254 ** Check the "once" flag number P1. If it is set, jump to instruction P2.
2255 ** Otherwise, set the flag and fall through to the next instruction.
2256 ** In other words, this opcode causes all following opcodes up through P2
2257 ** (but not including P2) to run just once and to be skipped on subsequent
2258 ** times through the loop.
2259 **
2260 ** All "once" flags are initially cleared whenever a prepared statement
2261 ** first begins to run.
2262 */
2263 case OP_Once: { /* jump */
2264 assert( pOp->p1<p->nOnceFlag );
2265 VdbeBranchTaken(p->aOnceFlag[pOp->p1]!=0, 2);
2266 if( p->aOnceFlag[pOp->p1] ){
2267 goto jump_to_p2;
2268 }else{
2269 p->aOnceFlag[pOp->p1] = 1;
2270 }
2271 break;
2272 }
2273
2274 /* Opcode: If P1 P2 P3 * *
2275 **
2276 ** Jump to P2 if the value in register P1 is true. The value
2277 ** is considered true if it is numeric and non-zero. If the value
2278 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2279 */
2280 /* Opcode: IfNot P1 P2 P3 * *
2281 **
2282 ** Jump to P2 if the value in register P1 is False. The value
2283 ** is considered false if it has a numeric value of zero. If the value
2284 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2285 */
2286 case OP_If: /* jump, in1 */
2287 case OP_IfNot: { /* jump, in1 */
2288 int c;
2289 pIn1 = &aMem[pOp->p1];
2290 if( pIn1->flags & MEM_Null ){
2291 c = pOp->p3;
2292 }else{
2293 #ifdef SQLITE_OMIT_FLOATING_POINT
2294 c = sqlite3VdbeIntValue(pIn1)!=0;
2295 #else
2296 c = sqlite3VdbeRealValue(pIn1)!=0.0;
2297 #endif
2298 if( pOp->opcode==OP_IfNot ) c = !c;
2299 }
2300 VdbeBranchTaken(c!=0, 2);
2301 if( c ){
2302 goto jump_to_p2;
2303 }
2304 break;
2305 }
2306
2307 /* Opcode: IsNull P1 P2 * * *
2308 ** Synopsis: if r[P1]==NULL goto P2
2309 **
2310 ** Jump to P2 if the value in register P1 is NULL.
2311 */
2312 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
2313 pIn1 = &aMem[pOp->p1];
2314 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
2315 if( (pIn1->flags & MEM_Null)!=0 ){
2316 goto jump_to_p2;
2317 }
2318 break;
2319 }
2320
2321 /* Opcode: NotNull P1 P2 * * *
2322 ** Synopsis: if r[P1]!=NULL goto P2
2323 **
2324 ** Jump to P2 if the value in register P1 is not NULL.
2325 */
2326 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
2327 pIn1 = &aMem[pOp->p1];
2328 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
2329 if( (pIn1->flags & MEM_Null)==0 ){
2330 goto jump_to_p2;
2331 }
2332 break;
2333 }
2334
2335 /* Opcode: Column P1 P2 P3 P4 P5
2336 ** Synopsis: r[P3]=PX
2337 **
2338 ** Interpret the data that cursor P1 points to as a structure built using
2339 ** the MakeRecord instruction. (See the MakeRecord opcode for additional
2340 ** information about the format of the data.) Extract the P2-th column
2341 ** from this record. If there are less that (P2+1)
2342 ** values in the record, extract a NULL.
2343 **
2344 ** The value extracted is stored in register P3.
2345 **
2346 ** If the column contains fewer than P2 fields, then extract a NULL. Or,
2347 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2348 ** the result.
2349 **
2350 ** If the OPFLAG_CLEARCACHE bit is set on P5 and P1 is a pseudo-table cursor,
2351 ** then the cache of the cursor is reset prior to extracting the column.
2352 ** The first OP_Column against a pseudo-table after the value of the content
2353 ** register has changed should have this bit set.
2354 **
2355 ** If the OPFLAG_LENGTHARG and OPFLAG_TYPEOFARG bits are set on P5 when
2356 ** the result is guaranteed to only be used as the argument of a length()
2357 ** or typeof() function, respectively. The loading of large blobs can be
2358 ** skipped for length() and all content loading can be skipped for typeof().
2359 */
2360 case OP_Column: {
2361 i64 payloadSize64; /* Number of bytes in the record */
2362 int p2; /* column number to retrieve */
2363 VdbeCursor *pC; /* The VDBE cursor */
2364 BtCursor *pCrsr; /* The BTree cursor */
2365 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
2366 int len; /* The length of the serialized data for the column */
2367 int i; /* Loop counter */
2368 Mem *pDest; /* Where to write the extracted value */
2369 Mem sMem; /* For storing the record being decoded */
2370 const u8 *zData; /* Part of the record being decoded */
2371 const u8 *zHdr; /* Next unparsed byte of the header */
2372 const u8 *zEndHdr; /* Pointer to first byte after the header */
2373 u32 offset; /* Offset into the data */
2374 u64 offset64; /* 64-bit offset */
2375 u32 avail; /* Number of bytes of available data */
2376 u32 t; /* A type code from the record header */
2377 u16 fx; /* pDest->flags value */
2378 Mem *pReg; /* PseudoTable input register */
2379
2380 p2 = pOp->p2;
2381 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
2382 pDest = &aMem[pOp->p3];
2383 memAboutToChange(p, pDest);
2384 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2385 pC = p->apCsr[pOp->p1];
2386 assert( pC!=0 );
2387 assert( p2<pC->nField );
2388 aOffset = pC->aOffset;
2389 assert( pC->eCurType!=CURTYPE_VTAB );
2390 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2391 assert( pC->eCurType!=CURTYPE_SORTER );
2392 pCrsr = pC->uc.pCursor;
2393
2394 /* If the cursor cache is stale, bring it up-to-date */
2395 rc = sqlite3VdbeCursorMoveto(pC);
2396 if( rc ) goto abort_due_to_error;
2397 if( pC->cacheStatus!=p->cacheCtr ){
2398 if( pC->nullRow ){
2399 if( pC->eCurType==CURTYPE_PSEUDO ){
2400 assert( pC->uc.pseudoTableReg>0 );
2401 pReg = &aMem[pC->uc.pseudoTableReg];
2402 assert( pReg->flags & MEM_Blob );
2403 assert( memIsValid(pReg) );
2404 pC->payloadSize = pC->szRow = avail = pReg->n;
2405 pC->aRow = (u8*)pReg->z;
2406 }else{
2407 sqlite3VdbeMemSetNull(pDest);
2408 goto op_column_out;
2409 }
2410 }else{
2411 assert( pC->eCurType==CURTYPE_BTREE );
2412 assert( pCrsr );
2413 if( pC->isTable==0 ){
2414 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2415 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &payloadSize64);
2416 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
2417 /* sqlite3BtreeParseCellPtr() uses getVarint32() to extract the
2418 ** payload size, so it is impossible for payloadSize64 to be
2419 ** larger than 32 bits. */
2420 assert( (payloadSize64 & SQLITE_MAX_U32)==(u64)payloadSize64 );
2421 pC->aRow = sqlite3BtreeKeyFetch(pCrsr, &avail);
2422 pC->payloadSize = (u32)payloadSize64;
2423 }else{
2424 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2425 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &pC->payloadSize);
2426 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
2427 pC->aRow = sqlite3BtreeDataFetch(pCrsr, &avail);
2428 }
2429 assert( avail<=65536 ); /* Maximum page size is 64KiB */
2430 if( pC->payloadSize <= (u32)avail ){
2431 pC->szRow = pC->payloadSize;
2432 }else if( pC->payloadSize > (u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
2433 goto too_big;
2434 }else{
2435 pC->szRow = avail;
2436 }
2437 }
2438 pC->cacheStatus = p->cacheCtr;
2439 pC->iHdrOffset = getVarint32(pC->aRow, offset);
2440 pC->nHdrParsed = 0;
2441 aOffset[0] = offset;
2442
2443
2444 if( avail<offset ){
2445 /* pC->aRow does not have to hold the entire row, but it does at least
2446 ** need to cover the header of the record. If pC->aRow does not contain
2447 ** the complete header, then set it to zero, forcing the header to be
2448 ** dynamically allocated. */
2449 pC->aRow = 0;
2450 pC->szRow = 0;
2451
2452 /* Make sure a corrupt database has not given us an oversize header.
2453 ** Do this now to avoid an oversize memory allocation.
2454 **
2455 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2456 ** types use so much data space that there can only be 4096 and 32 of
2457 ** them, respectively. So the maximum header length results from a
2458 ** 3-byte type for each of the maximum of 32768 columns plus three
2459 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2460 */
2461 if( offset > 98307 || offset > pC->payloadSize ){
2462 rc = SQLITE_CORRUPT_BKPT;
2463 goto op_column_error;
2464 }
2465 }
2466
2467 /* The following goto is an optimization. It can be omitted and
2468 ** everything will still work. But OP_Column is measurably faster
2469 ** by skipping the subsequent conditional, which is always true.
2470 */
2471 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */
2472 goto op_column_read_header;
2473 }
2474
2475 /* Make sure at least the first p2+1 entries of the header have been
2476 ** parsed and valid information is in aOffset[] and pC->aType[].
2477 */
2478 if( pC->nHdrParsed<=p2 ){
2479 /* If there is more header available for parsing in the record, try
2480 ** to extract additional fields up through the p2+1-th field
2481 */
2482 op_column_read_header:
2483 if( pC->iHdrOffset<aOffset[0] ){
2484 /* Make sure zData points to enough of the record to cover the header. */
2485 if( pC->aRow==0 ){
2486 memset(&sMem, 0, sizeof(sMem));
2487 rc = sqlite3VdbeMemFromBtree(pCrsr, 0, aOffset[0], !pC->isTable, &sMem);
2488 if( rc!=SQLITE_OK ) goto op_column_error;
2489 zData = (u8*)sMem.z;
2490 }else{
2491 zData = pC->aRow;
2492 }
2493
2494 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2495 i = pC->nHdrParsed;
2496 offset64 = aOffset[i];
2497 zHdr = zData + pC->iHdrOffset;
2498 zEndHdr = zData + aOffset[0];
2499 assert( i<=p2 && zHdr<zEndHdr );
2500 do{
2501 if( (t = zHdr[0])<0x80 ){
2502 zHdr++;
2503 offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
2504 }else{
2505 zHdr += sqlite3GetVarint32(zHdr, &t);
2506 offset64 += sqlite3VdbeSerialTypeLen(t);
2507 }
2508 pC->aType[i++] = t;
2509 aOffset[i] = (u32)(offset64 & 0xffffffff);
2510 }while( i<=p2 && zHdr<zEndHdr );
2511 pC->nHdrParsed = i;
2512 pC->iHdrOffset = (u32)(zHdr - zData);
2513 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
2514
2515 /* The record is corrupt if any of the following are true:
2516 ** (1) the bytes of the header extend past the declared header size
2517 ** (2) the entire header was used but not all data was used
2518 ** (3) the end of the data extends beyond the end of the record.
2519 */
2520 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
2521 || (offset64 > pC->payloadSize)
2522 ){
2523 rc = SQLITE_CORRUPT_BKPT;
2524 goto op_column_error;
2525 }
2526 }else{
2527 t = 0;
2528 }
2529
2530 /* If after trying to extract new entries from the header, nHdrParsed is
2531 ** still not up to p2, that means that the record has fewer than p2
2532 ** columns. So the result will be either the default value or a NULL.
2533 */
2534 if( pC->nHdrParsed<=p2 ){
2535 if( pOp->p4type==P4_MEM ){
2536 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
2537 }else{
2538 sqlite3VdbeMemSetNull(pDest);
2539 }
2540 goto op_column_out;
2541 }
2542 }else{
2543 t = pC->aType[p2];
2544 }
2545
2546 /* Extract the content for the p2+1-th column. Control can only
2547 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
2548 ** all valid.
2549 */
2550 assert( p2<pC->nHdrParsed );
2551 assert( rc==SQLITE_OK );
2552 assert( sqlite3VdbeCheckMemInvariants(pDest) );
2553 if( VdbeMemDynamic(pDest) ) sqlite3VdbeMemSetNull(pDest);
2554 assert( t==pC->aType[p2] );
2555 if( pC->szRow>=aOffset[p2+1] ){
2556 /* This is the common case where the desired content fits on the original
2557 ** page - where the content is not on an overflow page */
2558 sqlite3VdbeSerialGet(pC->aRow+aOffset[p2], t, pDest);
2559 }else{
2560 /* This branch happens only when content is on overflow pages */
2561 if( ((pOp->p5 & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG))!=0
2562 && ((t>=12 && (t&1)==0) || (pOp->p5 & OPFLAG_TYPEOFARG)!=0))
2563 || (len = sqlite3VdbeSerialTypeLen(t))==0
2564 ){
2565 /* Content is irrelevant for
2566 ** 1. the typeof() function,
2567 ** 2. the length(X) function if X is a blob, and
2568 ** 3. if the content length is zero.
2569 ** So we might as well use bogus content rather than reading
2570 ** content from disk. NULL will work for the value for strings
2571 ** and blobs and whatever is in the payloadSize64 variable
2572 ** will work for everything else. */
2573 sqlite3VdbeSerialGet(t<=13 ? (u8*)&payloadSize64 : 0, t, pDest);
2574 }else{
2575 rc = sqlite3VdbeMemFromBtree(pCrsr, aOffset[p2], len, !pC->isTable,
2576 pDest);
2577 if( rc!=SQLITE_OK ){
2578 goto op_column_error;
2579 }
2580 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
2581 pDest->flags &= ~MEM_Ephem;
2582 }
2583 }
2584 pDest->enc = encoding;
2585
2586 op_column_out:
2587 /* If the column value is an ephemeral string, go ahead and persist
2588 ** that string in case the cursor moves before the column value is
2589 ** used. The following code does the equivalent of Deephemeralize()
2590 ** but does it faster. */
2591 if( (pDest->flags & MEM_Ephem)!=0 && pDest->z ){
2592 fx = pDest->flags & (MEM_Str|MEM_Blob);
2593 assert( fx!=0 );
2594 zData = (const u8*)pDest->z;
2595 len = pDest->n;
2596 if( sqlite3VdbeMemClearAndResize(pDest, len+2) ) goto no_mem;
2597 memcpy(pDest->z, zData, len);
2598 pDest->z[len] = 0;
2599 pDest->z[len+1] = 0;
2600 pDest->flags = fx|MEM_Term;
2601 }
2602 op_column_error:
2603 UPDATE_MAX_BLOBSIZE(pDest);
2604 REGISTER_TRACE(pOp->p3, pDest);
2605 break;
2606 }
2607
2608 /* Opcode: Affinity P1 P2 * P4 *
2609 ** Synopsis: affinity(r[P1@P2])
2610 **
2611 ** Apply affinities to a range of P2 registers starting with P1.
2612 **
2613 ** P4 is a string that is P2 characters long. The nth character of the
2614 ** string indicates the column affinity that should be used for the nth
2615 ** memory cell in the range.
2616 */
2617 case OP_Affinity: {
2618 const char *zAffinity; /* The affinity to be applied */
2619 char cAff; /* A single character of affinity */
2620
2621 zAffinity = pOp->p4.z;
2622 assert( zAffinity!=0 );
2623 assert( zAffinity[pOp->p2]==0 );
2624 pIn1 = &aMem[pOp->p1];
2625 while( (cAff = *(zAffinity++))!=0 ){
2626 assert( pIn1 <= &p->aMem[(p->nMem-p->nCursor)] );
2627 assert( memIsValid(pIn1) );
2628 applyAffinity(pIn1, cAff, encoding);
2629 pIn1++;
2630 }
2631 break;
2632 }
2633
2634 /* Opcode: MakeRecord P1 P2 P3 P4 *
2635 ** Synopsis: r[P3]=mkrec(r[P1@P2])
2636 **
2637 ** Convert P2 registers beginning with P1 into the [record format]
2638 ** use as a data record in a database table or as a key
2639 ** in an index. The OP_Column opcode can decode the record later.
2640 **
2641 ** P4 may be a string that is P2 characters long. The nth character of the
2642 ** string indicates the column affinity that should be used for the nth
2643 ** field of the index key.
2644 **
2645 ** The mapping from character to affinity is given by the SQLITE_AFF_
2646 ** macros defined in sqliteInt.h.
2647 **
2648 ** If P4 is NULL then all index fields have the affinity BLOB.
2649 */
2650 case OP_MakeRecord: {
2651 u8 *zNewRecord; /* A buffer to hold the data for the new record */
2652 Mem *pRec; /* The new record */
2653 u64 nData; /* Number of bytes of data space */
2654 int nHdr; /* Number of bytes of header space */
2655 i64 nByte; /* Data space required for this record */
2656 i64 nZero; /* Number of zero bytes at the end of the record */
2657 int nVarint; /* Number of bytes in a varint */
2658 u32 serial_type; /* Type field */
2659 Mem *pData0; /* First field to be combined into the record */
2660 Mem *pLast; /* Last field of the record */
2661 int nField; /* Number of fields in the record */
2662 char *zAffinity; /* The affinity string for the record */
2663 int file_format; /* File format to use for encoding */
2664 int i; /* Space used in zNewRecord[] header */
2665 int j; /* Space used in zNewRecord[] content */
2666 u32 len; /* Length of a field */
2667
2668 /* Assuming the record contains N fields, the record format looks
2669 ** like this:
2670 **
2671 ** ------------------------------------------------------------------------
2672 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
2673 ** ------------------------------------------------------------------------
2674 **
2675 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
2676 ** and so forth.
2677 **
2678 ** Each type field is a varint representing the serial type of the
2679 ** corresponding data element (see sqlite3VdbeSerialType()). The
2680 ** hdr-size field is also a varint which is the offset from the beginning
2681 ** of the record to data0.
2682 */
2683 nData = 0; /* Number of bytes of data space */
2684 nHdr = 0; /* Number of bytes of header space */
2685 nZero = 0; /* Number of zero bytes at the end of the record */
2686 nField = pOp->p1;
2687 zAffinity = pOp->p4.z;
2688 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem-p->nCursor)+1 );
2689 pData0 = &aMem[nField];
2690 nField = pOp->p2;
2691 pLast = &pData0[nField-1];
2692 file_format = p->minWriteFileFormat;
2693
2694 /* Identify the output register */
2695 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
2696 pOut = &aMem[pOp->p3];
2697 memAboutToChange(p, pOut);
2698
2699 /* Apply the requested affinity to all inputs
2700 */
2701 assert( pData0<=pLast );
2702 if( zAffinity ){
2703 pRec = pData0;
2704 do{
2705 applyAffinity(pRec++, *(zAffinity++), encoding);
2706 assert( zAffinity[0]==0 || pRec<=pLast );
2707 }while( zAffinity[0] );
2708 }
2709
2710 /* Loop through the elements that will make up the record to figure
2711 ** out how much space is required for the new record.
2712 */
2713 pRec = pLast;
2714 do{
2715 assert( memIsValid(pRec) );
2716 pRec->uTemp = serial_type = sqlite3VdbeSerialType(pRec, file_format, &len);
2717 if( pRec->flags & MEM_Zero ){
2718 if( nData ){
2719 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
2720 }else{
2721 nZero += pRec->u.nZero;
2722 len -= pRec->u.nZero;
2723 }
2724 }
2725 nData += len;
2726 testcase( serial_type==127 );
2727 testcase( serial_type==128 );
2728 nHdr += serial_type<=127 ? 1 : sqlite3VarintLen(serial_type);
2729 }while( (--pRec)>=pData0 );
2730
2731 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
2732 ** which determines the total number of bytes in the header. The varint
2733 ** value is the size of the header in bytes including the size varint
2734 ** itself. */
2735 testcase( nHdr==126 );
2736 testcase( nHdr==127 );
2737 if( nHdr<=126 ){
2738 /* The common case */
2739 nHdr += 1;
2740 }else{
2741 /* Rare case of a really large header */
2742 nVarint = sqlite3VarintLen(nHdr);
2743 nHdr += nVarint;
2744 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
2745 }
2746 nByte = nHdr+nData;
2747 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
2748 goto too_big;
2749 }
2750
2751 /* Make sure the output register has a buffer large enough to store
2752 ** the new record. The output register (pOp->p3) is not allowed to
2753 ** be one of the input registers (because the following call to
2754 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
2755 */
2756 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
2757 goto no_mem;
2758 }
2759 zNewRecord = (u8 *)pOut->z;
2760
2761 /* Write the record */
2762 i = putVarint32(zNewRecord, nHdr);
2763 j = nHdr;
2764 assert( pData0<=pLast );
2765 pRec = pData0;
2766 do{
2767 serial_type = pRec->uTemp;
2768 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
2769 ** additional varints, one per column. */
2770 i += putVarint32(&zNewRecord[i], serial_type); /* serial type */
2771 /* EVIDENCE-OF: R-64536-51728 The values for each column in the record
2772 ** immediately follow the header. */
2773 j += sqlite3VdbeSerialPut(&zNewRecord[j], pRec, serial_type); /* content */
2774 }while( (++pRec)<=pLast );
2775 assert( i==nHdr );
2776 assert( j==nByte );
2777
2778 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
2779 pOut->n = (int)nByte;
2780 pOut->flags = MEM_Blob;
2781 if( nZero ){
2782 pOut->u.nZero = nZero;
2783 pOut->flags |= MEM_Zero;
2784 }
2785 pOut->enc = SQLITE_UTF8; /* In case the blob is ever converted to text */
2786 REGISTER_TRACE(pOp->p3, pOut);
2787 UPDATE_MAX_BLOBSIZE(pOut);
2788 break;
2789 }
2790
2791 /* Opcode: Count P1 P2 * * *
2792 ** Synopsis: r[P2]=count()
2793 **
2794 ** Store the number of entries (an integer value) in the table or index
2795 ** opened by cursor P1 in register P2
2796 */
2797 #ifndef SQLITE_OMIT_BTREECOUNT
2798 case OP_Count: { /* out2 */
2799 i64 nEntry;
2800 BtCursor *pCrsr;
2801
2802 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
2803 pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
2804 assert( pCrsr );
2805 nEntry = 0; /* Not needed. Only used to silence a warning. */
2806 rc = sqlite3BtreeCount(pCrsr, &nEntry);
2807 pOut = out2Prerelease(p, pOp);
2808 pOut->u.i = nEntry;
2809 break;
2810 }
2811 #endif
2812
2813 /* Opcode: Savepoint P1 * * P4 *
2814 **
2815 ** Open, release or rollback the savepoint named by parameter P4, depending
2816 ** on the value of P1. To open a new savepoint, P1==0. To release (commit) an
2817 ** existing savepoint, P1==1, or to rollback an existing savepoint P1==2.
2818 */
2819 case OP_Savepoint: {
2820 int p1; /* Value of P1 operand */
2821 char *zName; /* Name of savepoint */
2822 int nName;
2823 Savepoint *pNew;
2824 Savepoint *pSavepoint;
2825 Savepoint *pTmp;
2826 int iSavepoint;
2827 int ii;
2828
2829 p1 = pOp->p1;
2830 zName = pOp->p4.z;
2831
2832 /* Assert that the p1 parameter is valid. Also that if there is no open
2833 ** transaction, then there cannot be any savepoints.
2834 */
2835 assert( db->pSavepoint==0 || db->autoCommit==0 );
2836 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
2837 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
2838 assert( checkSavepointCount(db) );
2839 assert( p->bIsReader );
2840
2841 if( p1==SAVEPOINT_BEGIN ){
2842 if( db->nVdbeWrite>0 ){
2843 /* A new savepoint cannot be created if there are active write
2844 ** statements (i.e. open read/write incremental blob handles).
2845 */
2846 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
2847 rc = SQLITE_BUSY;
2848 }else{
2849 nName = sqlite3Strlen30(zName);
2850
2851 #ifndef SQLITE_OMIT_VIRTUALTABLE
2852 /* This call is Ok even if this savepoint is actually a transaction
2853 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
2854 ** If this is a transaction savepoint being opened, it is guaranteed
2855 ** that the db->aVTrans[] array is empty. */
2856 assert( db->autoCommit==0 || db->nVTrans==0 );
2857 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
2858 db->nStatement+db->nSavepoint);
2859 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2860 #endif
2861
2862 /* Create a new savepoint structure. */
2863 pNew = sqlite3DbMallocRaw(db, sizeof(Savepoint)+nName+1);
2864 if( pNew ){
2865 pNew->zName = (char *)&pNew[1];
2866 memcpy(pNew->zName, zName, nName+1);
2867
2868 /* If there is no open transaction, then mark this as a special
2869 ** "transaction savepoint". */
2870 if( db->autoCommit ){
2871 db->autoCommit = 0;
2872 db->isTransactionSavepoint = 1;
2873 }else{
2874 db->nSavepoint++;
2875 }
2876
2877 /* Link the new savepoint into the database handle's list. */
2878 pNew->pNext = db->pSavepoint;
2879 db->pSavepoint = pNew;
2880 pNew->nDeferredCons = db->nDeferredCons;
2881 pNew->nDeferredImmCons = db->nDeferredImmCons;
2882 }
2883 }
2884 }else{
2885 iSavepoint = 0;
2886
2887 /* Find the named savepoint. If there is no such savepoint, then an
2888 ** an error is returned to the user. */
2889 for(
2890 pSavepoint = db->pSavepoint;
2891 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
2892 pSavepoint = pSavepoint->pNext
2893 ){
2894 iSavepoint++;
2895 }
2896 if( !pSavepoint ){
2897 sqlite3VdbeError(p, "no such savepoint: %s", zName);
2898 rc = SQLITE_ERROR;
2899 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
2900 /* It is not possible to release (commit) a savepoint if there are
2901 ** active write statements.
2902 */
2903 sqlite3VdbeError(p, "cannot release savepoint - "
2904 "SQL statements in progress");
2905 rc = SQLITE_BUSY;
2906 }else{
2907
2908 /* Determine whether or not this is a transaction savepoint. If so,
2909 ** and this is a RELEASE command, then the current transaction
2910 ** is committed.
2911 */
2912 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
2913 if( isTransaction && p1==SAVEPOINT_RELEASE ){
2914 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
2915 goto vdbe_return;
2916 }
2917 db->autoCommit = 1;
2918 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
2919 p->pc = (int)(pOp - aOp);
2920 db->autoCommit = 0;
2921 p->rc = rc = SQLITE_BUSY;
2922 goto vdbe_return;
2923 }
2924 db->isTransactionSavepoint = 0;
2925 rc = p->rc;
2926 }else{
2927 int isSchemaChange;
2928 iSavepoint = db->nSavepoint - iSavepoint - 1;
2929 if( p1==SAVEPOINT_ROLLBACK ){
2930 isSchemaChange = (db->flags & SQLITE_InternChanges)!=0;
2931 for(ii=0; ii<db->nDb; ii++){
2932 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
2933 SQLITE_ABORT_ROLLBACK,
2934 isSchemaChange==0);
2935 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2936 }
2937 }else{
2938 isSchemaChange = 0;
2939 }
2940 for(ii=0; ii<db->nDb; ii++){
2941 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
2942 if( rc!=SQLITE_OK ){
2943 goto abort_due_to_error;
2944 }
2945 }
2946 if( isSchemaChange ){
2947 sqlite3ExpirePreparedStatements(db);
2948 sqlite3ResetAllSchemasOfConnection(db);
2949 db->flags = (db->flags | SQLITE_InternChanges);
2950 }
2951 }
2952
2953 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
2954 ** savepoints nested inside of the savepoint being operated on. */
2955 while( db->pSavepoint!=pSavepoint ){
2956 pTmp = db->pSavepoint;
2957 db->pSavepoint = pTmp->pNext;
2958 sqlite3DbFree(db, pTmp);
2959 db->nSavepoint--;
2960 }
2961
2962 /* If it is a RELEASE, then destroy the savepoint being operated on
2963 ** too. If it is a ROLLBACK TO, then set the number of deferred
2964 ** constraint violations present in the database to the value stored
2965 ** when the savepoint was created. */
2966 if( p1==SAVEPOINT_RELEASE ){
2967 assert( pSavepoint==db->pSavepoint );
2968 db->pSavepoint = pSavepoint->pNext;
2969 sqlite3DbFree(db, pSavepoint);
2970 if( !isTransaction ){
2971 db->nSavepoint--;
2972 }
2973 }else{
2974 db->nDeferredCons = pSavepoint->nDeferredCons;
2975 db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
2976 }
2977
2978 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
2979 rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
2980 if( rc!=SQLITE_OK ) goto abort_due_to_error;
2981 }
2982 }
2983 }
2984
2985 break;
2986 }
2987
2988 /* Opcode: AutoCommit P1 P2 * * *
2989 **
2990 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
2991 ** back any currently active btree transactions. If there are any active
2992 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
2993 ** there are active writing VMs or active VMs that use shared cache.
2994 **
2995 ** This instruction causes the VM to halt.
2996 */
2997 case OP_AutoCommit: {
2998 int desiredAutoCommit;
2999 int iRollback;
3000 int turnOnAC;
3001
3002 desiredAutoCommit = pOp->p1;
3003 iRollback = pOp->p2;
3004 turnOnAC = desiredAutoCommit && !db->autoCommit;
3005 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
3006 assert( desiredAutoCommit==1 || iRollback==0 );
3007 assert( db->nVdbeActive>0 ); /* At least this one VM is active */
3008 assert( p->bIsReader );
3009
3010 if( turnOnAC && !iRollback && db->nVdbeWrite>0 ){
3011 /* If this instruction implements a COMMIT and other VMs are writing
3012 ** return an error indicating that the other VMs must complete first.
3013 */
3014 sqlite3VdbeError(p, "cannot commit transaction - "
3015 "SQL statements in progress");
3016 rc = SQLITE_BUSY;
3017 }else if( desiredAutoCommit!=db->autoCommit ){
3018 if( iRollback ){
3019 assert( desiredAutoCommit==1 );
3020 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3021 db->autoCommit = 1;
3022 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3023 goto vdbe_return;
3024 }else{
3025 db->autoCommit = (u8)desiredAutoCommit;
3026 }
3027 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3028 p->pc = (int)(pOp - aOp);
3029 db->autoCommit = (u8)(1-desiredAutoCommit);
3030 p->rc = rc = SQLITE_BUSY;
3031 goto vdbe_return;
3032 }
3033 assert( db->nStatement==0 );
3034 sqlite3CloseSavepoints(db);
3035 if( p->rc==SQLITE_OK ){
3036 rc = SQLITE_DONE;
3037 }else{
3038 rc = SQLITE_ERROR;
3039 }
3040 goto vdbe_return;
3041 }else{
3042 sqlite3VdbeError(p,
3043 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
3044 (iRollback)?"cannot rollback - no transaction is active":
3045 "cannot commit - no transaction is active"));
3046
3047 rc = SQLITE_ERROR;
3048 }
3049 break;
3050 }
3051
3052 /* Opcode: Transaction P1 P2 P3 P4 P5
3053 **
3054 ** Begin a transaction on database P1 if a transaction is not already
3055 ** active.
3056 ** If P2 is non-zero, then a write-transaction is started, or if a
3057 ** read-transaction is already active, it is upgraded to a write-transaction.
3058 ** If P2 is zero, then a read-transaction is started.
3059 **
3060 ** P1 is the index of the database file on which the transaction is
3061 ** started. Index 0 is the main database file and index 1 is the
3062 ** file used for temporary tables. Indices of 2 or more are used for
3063 ** attached databases.
3064 **
3065 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3066 ** true (this flag is set if the Vdbe may modify more than one row and may
3067 ** throw an ABORT exception), a statement transaction may also be opened.
3068 ** More specifically, a statement transaction is opened iff the database
3069 ** connection is currently not in autocommit mode, or if there are other
3070 ** active statements. A statement transaction allows the changes made by this
3071 ** VDBE to be rolled back after an error without having to roll back the
3072 ** entire transaction. If no error is encountered, the statement transaction
3073 ** will automatically commit when the VDBE halts.
3074 **
3075 ** If P5!=0 then this opcode also checks the schema cookie against P3
3076 ** and the schema generation counter against P4.
3077 ** The cookie changes its value whenever the database schema changes.
3078 ** This operation is used to detect when that the cookie has changed
3079 ** and that the current process needs to reread the schema. If the schema
3080 ** cookie in P3 differs from the schema cookie in the database header or
3081 ** if the schema generation counter in P4 differs from the current
3082 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
3083 ** halts. The sqlite3_step() wrapper function might then reprepare the
3084 ** statement and rerun it from the beginning.
3085 */
3086 case OP_Transaction: {
3087 Btree *pBt;
3088 int iMeta;
3089 int iGen;
3090
3091 assert( p->bIsReader );
3092 assert( p->readOnly==0 || pOp->p2==0 );
3093 assert( pOp->p1>=0 && pOp->p1<db->nDb );
3094 assert( DbMaskTest(p->btreeMask, pOp->p1) );
3095 if( pOp->p2 && (db->flags & SQLITE_QueryOnly)!=0 ){
3096 rc = SQLITE_READONLY;
3097 goto abort_due_to_error;
3098 }
3099 pBt = db->aDb[pOp->p1].pBt;
3100
3101 if( pBt ){
3102 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2);
3103 testcase( rc==SQLITE_BUSY_SNAPSHOT );
3104 testcase( rc==SQLITE_BUSY_RECOVERY );
3105 if( (rc&0xff)==SQLITE_BUSY ){
3106 p->pc = (int)(pOp - aOp);
3107 p->rc = rc;
3108 goto vdbe_return;
3109 }
3110 if( rc!=SQLITE_OK ){
3111 goto abort_due_to_error;
3112 }
3113
3114 if( pOp->p2 && p->usesStmtJournal
3115 && (db->autoCommit==0 || db->nVdbeRead>1)
3116 ){
3117 assert( sqlite3BtreeIsInTrans(pBt) );
3118 if( p->iStatement==0 ){
3119 assert( db->nStatement>=0 && db->nSavepoint>=0 );
3120 db->nStatement++;
3121 p->iStatement = db->nSavepoint + db->nStatement;
3122 }
3123
3124 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
3125 if( rc==SQLITE_OK ){
3126 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
3127 }
3128
3129 /* Store the current value of the database handles deferred constraint
3130 ** counter. If the statement transaction needs to be rolled back,
3131 ** the value of this counter needs to be restored too. */
3132 p->nStmtDefCons = db->nDeferredCons;
3133 p->nStmtDefImmCons = db->nDeferredImmCons;
3134 }
3135
3136 /* Gather the schema version number for checking:
3137 ** IMPLEMENTATION-OF: R-32195-19465 The schema version is used by SQLite
3138 ** each time a query is executed to ensure that the internal cache of the
3139 ** schema used when compiling the SQL query matches the schema of the
3140 ** database against which the compiled query is actually executed.
3141 */
3142 sqlite3BtreeGetMeta(pBt, BTREE_SCHEMA_VERSION, (u32 *)&iMeta);
3143 iGen = db->aDb[pOp->p1].pSchema->iGeneration;
3144 }else{
3145 iGen = iMeta = 0;
3146 }
3147 assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
3148 if( pOp->p5 && (iMeta!=pOp->p3 || iGen!=pOp->p4.i) ){
3149 sqlite3DbFree(db, p->zErrMsg);
3150 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
3151 /* If the schema-cookie from the database file matches the cookie
3152 ** stored with the in-memory representation of the schema, do
3153 ** not reload the schema from the database file.
3154 **
3155 ** If virtual-tables are in use, this is not just an optimization.
3156 ** Often, v-tables store their data in other SQLite tables, which
3157 ** are queried from within xNext() and other v-table methods using
3158 ** prepared queries. If such a query is out-of-date, we do not want to
3159 ** discard the database schema, as the user code implementing the
3160 ** v-table would have to be ready for the sqlite3_vtab structure itself
3161 ** to be invalidated whenever sqlite3_step() is called from within
3162 ** a v-table method.
3163 */
3164 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
3165 sqlite3ResetOneSchema(db, pOp->p1);
3166 }
3167 p->expired = 1;
3168 rc = SQLITE_SCHEMA;
3169 }
3170 break;
3171 }
3172
3173 /* Opcode: ReadCookie P1 P2 P3 * *
3174 **
3175 ** Read cookie number P3 from database P1 and write it into register P2.
3176 ** P3==1 is the schema version. P3==2 is the database format.
3177 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is
3178 ** the main database file and P1==1 is the database file used to store
3179 ** temporary tables.
3180 **
3181 ** There must be a read-lock on the database (either a transaction
3182 ** must be started or there must be an open cursor) before
3183 ** executing this instruction.
3184 */
3185 case OP_ReadCookie: { /* out2 */
3186 int iMeta;
3187 int iDb;
3188 int iCookie;
3189
3190 assert( p->bIsReader );
3191 iDb = pOp->p1;
3192 iCookie = pOp->p3;
3193 assert( pOp->p3<SQLITE_N_BTREE_META );
3194 assert( iDb>=0 && iDb<db->nDb );
3195 assert( db->aDb[iDb].pBt!=0 );
3196 assert( DbMaskTest(p->btreeMask, iDb) );
3197
3198 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
3199 pOut = out2Prerelease(p, pOp);
3200 pOut->u.i = iMeta;
3201 break;
3202 }
3203
3204 /* Opcode: SetCookie P1 P2 P3 * *
3205 **
3206 ** Write the content of register P3 (interpreted as an integer)
3207 ** into cookie number P2 of database P1. P2==1 is the schema version.
3208 ** P2==2 is the database format. P2==3 is the recommended pager cache
3209 ** size, and so forth. P1==0 is the main database file and P1==1 is the
3210 ** database file used to store temporary tables.
3211 **
3212 ** A transaction must be started before executing this opcode.
3213 */
3214 case OP_SetCookie: { /* in3 */
3215 Db *pDb;
3216 assert( pOp->p2<SQLITE_N_BTREE_META );
3217 assert( pOp->p1>=0 && pOp->p1<db->nDb );
3218 assert( DbMaskTest(p->btreeMask, pOp->p1) );
3219 assert( p->readOnly==0 );
3220 pDb = &db->aDb[pOp->p1];
3221 assert( pDb->pBt!=0 );
3222 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
3223 pIn3 = &aMem[pOp->p3];
3224 sqlite3VdbeMemIntegerify(pIn3);
3225 /* See note about index shifting on OP_ReadCookie */
3226 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, (int)pIn3->u.i);
3227 if( pOp->p2==BTREE_SCHEMA_VERSION ){
3228 /* When the schema cookie changes, record the new cookie internally */
3229 pDb->pSchema->schema_cookie = (int)pIn3->u.i;
3230 db->flags |= SQLITE_InternChanges;
3231 }else if( pOp->p2==BTREE_FILE_FORMAT ){
3232 /* Record changes in the file format */
3233 pDb->pSchema->file_format = (u8)pIn3->u.i;
3234 }
3235 if( pOp->p1==1 ){
3236 /* Invalidate all prepared statements whenever the TEMP database
3237 ** schema is changed. Ticket #1644 */
3238 sqlite3ExpirePreparedStatements(db);
3239 p->expired = 0;
3240 }
3241 break;
3242 }
3243
3244 /* Opcode: OpenRead P1 P2 P3 P4 P5
3245 ** Synopsis: root=P2 iDb=P3
3246 **
3247 ** Open a read-only cursor for the database table whose root page is
3248 ** P2 in a database file. The database file is determined by P3.
3249 ** P3==0 means the main database, P3==1 means the database used for
3250 ** temporary tables, and P3>1 means used the corresponding attached
3251 ** database. Give the new cursor an identifier of P1. The P1
3252 ** values need not be contiguous but all P1 values should be small integers.
3253 ** It is an error for P1 to be negative.
3254 **
3255 ** If P5!=0 then use the content of register P2 as the root page, not
3256 ** the value of P2 itself.
3257 **
3258 ** There will be a read lock on the database whenever there is an
3259 ** open cursor. If the database was unlocked prior to this instruction
3260 ** then a read lock is acquired as part of this instruction. A read
3261 ** lock allows other processes to read the database but prohibits
3262 ** any other process from modifying the database. The read lock is
3263 ** released when all cursors are closed. If this instruction attempts
3264 ** to get a read lock but fails, the script terminates with an
3265 ** SQLITE_BUSY error code.
3266 **
3267 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3268 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3269 ** structure, then said structure defines the content and collating
3270 ** sequence of the index being opened. Otherwise, if P4 is an integer
3271 ** value, it is set to the number of columns in the table.
3272 **
3273 ** See also: OpenWrite, ReopenIdx
3274 */
3275 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
3276 ** Synopsis: root=P2 iDb=P3
3277 **
3278 ** The ReopenIdx opcode works exactly like ReadOpen except that it first
3279 ** checks to see if the cursor on P1 is already open with a root page
3280 ** number of P2 and if it is this opcode becomes a no-op. In other words,
3281 ** if the cursor is already open, do not reopen it.
3282 **
3283 ** The ReopenIdx opcode may only be used with P5==0 and with P4 being
3284 ** a P4_KEYINFO object. Furthermore, the P3 value must be the same as
3285 ** every other ReopenIdx or OpenRead for the same cursor number.
3286 **
3287 ** See the OpenRead opcode documentation for additional information.
3288 */
3289 /* Opcode: OpenWrite P1 P2 P3 P4 P5
3290 ** Synopsis: root=P2 iDb=P3
3291 **
3292 ** Open a read/write cursor named P1 on the table or index whose root
3293 ** page is P2. Or if P5!=0 use the content of register P2 to find the
3294 ** root page.
3295 **
3296 ** The P4 value may be either an integer (P4_INT32) or a pointer to
3297 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
3298 ** structure, then said structure defines the content and collating
3299 ** sequence of the index being opened. Otherwise, if P4 is an integer
3300 ** value, it is set to the number of columns in the table, or to the
3301 ** largest index of any column of the table that is actually used.
3302 **
3303 ** This instruction works just like OpenRead except that it opens the cursor
3304 ** in read/write mode. For a given table, there can be one or more read-only
3305 ** cursors or a single read/write cursor but not both.
3306 **
3307 ** See also OpenRead.
3308 */
3309 case OP_ReopenIdx: {
3310 int nField;
3311 KeyInfo *pKeyInfo;
3312 int p2;
3313 int iDb;
3314 int wrFlag;
3315 Btree *pX;
3316 VdbeCursor *pCur;
3317 Db *pDb;
3318
3319 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3320 assert( pOp->p4type==P4_KEYINFO );
3321 pCur = p->apCsr[pOp->p1];
3322 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
3323 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */
3324 goto open_cursor_set_hints;
3325 }
3326 /* If the cursor is not currently open or is open on a different
3327 ** index, then fall through into OP_OpenRead to force a reopen */
3328 case OP_OpenRead:
3329 case OP_OpenWrite:
3330
3331 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
3332 assert( p->bIsReader );
3333 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
3334 || p->readOnly==0 );
3335
3336 if( p->expired ){
3337 rc = SQLITE_ABORT_ROLLBACK;
3338 break;
3339 }
3340
3341 nField = 0;
3342 pKeyInfo = 0;
3343 p2 = pOp->p2;
3344 iDb = pOp->p3;
3345 assert( iDb>=0 && iDb<db->nDb );
3346 assert( DbMaskTest(p->btreeMask, iDb) );
3347 pDb = &db->aDb[iDb];
3348 pX = pDb->pBt;
3349 assert( pX!=0 );
3350 if( pOp->opcode==OP_OpenWrite ){
3351 assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
3352 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
3353 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3354 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
3355 p->minWriteFileFormat = pDb->pSchema->file_format;
3356 }
3357 }else{
3358 wrFlag = 0;
3359 }
3360 if( pOp->p5 & OPFLAG_P2ISREG ){
3361 assert( p2>0 );
3362 assert( p2<=(p->nMem-p->nCursor) );
3363 pIn2 = &aMem[p2];
3364 assert( memIsValid(pIn2) );
3365 assert( (pIn2->flags & MEM_Int)!=0 );
3366 sqlite3VdbeMemIntegerify(pIn2);
3367 p2 = (int)pIn2->u.i;
3368 /* The p2 value always comes from a prior OP_CreateTable opcode and
3369 ** that opcode will always set the p2 value to 2 or more or else fail.
3370 ** If there were a failure, the prepared statement would have halted
3371 ** before reaching this instruction. */
3372 if( NEVER(p2<2) ) {
3373 rc = SQLITE_CORRUPT_BKPT;
3374 goto abort_due_to_error;
3375 }
3376 }
3377 if( pOp->p4type==P4_KEYINFO ){
3378 pKeyInfo = pOp->p4.pKeyInfo;
3379 assert( pKeyInfo->enc==ENC(db) );
3380 assert( pKeyInfo->db==db );
3381 nField = pKeyInfo->nField+pKeyInfo->nXField;
3382 }else if( pOp->p4type==P4_INT32 ){
3383 nField = pOp->p4.i;
3384 }
3385 assert( pOp->p1>=0 );
3386 assert( nField>=0 );
3387 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
3388 pCur = allocateCursor(p, pOp->p1, nField, iDb, CURTYPE_BTREE);
3389 if( pCur==0 ) goto no_mem;
3390 pCur->nullRow = 1;
3391 pCur->isOrdered = 1;
3392 pCur->pgnoRoot = p2;
3393 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
3394 pCur->pKeyInfo = pKeyInfo;
3395 /* Set the VdbeCursor.isTable variable. Previous versions of
3396 ** SQLite used to check if the root-page flags were sane at this point
3397 ** and report database corruption if they were not, but this check has
3398 ** since moved into the btree layer. */
3399 pCur->isTable = pOp->p4type!=P4_KEYINFO;
3400
3401 open_cursor_set_hints:
3402 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
3403 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
3404 testcase( pOp->p5 & OPFLAG_BULKCSR );
3405 #ifdef SQLITE_ENABLE_CURSOR_HINTS
3406 testcase( pOp->p2 & OPFLAG_SEEKEQ );
3407 #endif
3408 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
3409 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
3410 break;
3411 }
3412
3413 /* Opcode: OpenEphemeral P1 P2 * P4 P5
3414 ** Synopsis: nColumn=P2
3415 **
3416 ** Open a new cursor P1 to a transient table.
3417 ** The cursor is always opened read/write even if
3418 ** the main database is read-only. The ephemeral
3419 ** table is deleted automatically when the cursor is closed.
3420 **
3421 ** P2 is the number of columns in the ephemeral table.
3422 ** The cursor points to a BTree table if P4==0 and to a BTree index
3423 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
3424 ** that defines the format of keys in the index.
3425 **
3426 ** The P5 parameter can be a mask of the BTREE_* flags defined
3427 ** in btree.h. These flags control aspects of the operation of
3428 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
3429 ** added automatically.
3430 */
3431 /* Opcode: OpenAutoindex P1 P2 * P4 *
3432 ** Synopsis: nColumn=P2
3433 **
3434 ** This opcode works the same as OP_OpenEphemeral. It has a
3435 ** different name to distinguish its use. Tables created using
3436 ** by this opcode will be used for automatically created transient
3437 ** indices in joins.
3438 */
3439 case OP_OpenAutoindex:
3440 case OP_OpenEphemeral: {
3441 VdbeCursor *pCx;
3442 KeyInfo *pKeyInfo;
3443
3444 static const int vfsFlags =
3445 SQLITE_OPEN_READWRITE |
3446 SQLITE_OPEN_CREATE |
3447 SQLITE_OPEN_EXCLUSIVE |
3448 SQLITE_OPEN_DELETEONCLOSE |
3449 SQLITE_OPEN_TRANSIENT_DB;
3450 assert( pOp->p1>=0 );
3451 assert( pOp->p2>=0 );
3452 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_BTREE);
3453 if( pCx==0 ) goto no_mem;
3454 pCx->nullRow = 1;
3455 pCx->isEphemeral = 1;
3456 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->pBt,
3457 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5, vfsFlags);
3458 if( rc==SQLITE_OK ){
3459 rc = sqlite3BtreeBeginTrans(pCx->pBt, 1);
3460 }
3461 if( rc==SQLITE_OK ){
3462 /* If a transient index is required, create it by calling
3463 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
3464 ** opening it. If a transient table is required, just use the
3465 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
3466 */
3467 if( (pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
3468 int pgno;
3469 assert( pOp->p4type==P4_KEYINFO );
3470 rc = sqlite3BtreeCreateTable(pCx->pBt, &pgno, BTREE_BLOBKEY | pOp->p5);
3471 if( rc==SQLITE_OK ){
3472 assert( pgno==MASTER_ROOT+1 );
3473 assert( pKeyInfo->db==db );
3474 assert( pKeyInfo->enc==ENC(db) );
3475 pCx->pKeyInfo = pKeyInfo;
3476 rc = sqlite3BtreeCursor(pCx->pBt, pgno, BTREE_WRCSR,
3477 pKeyInfo, pCx->uc.pCursor);
3478 }
3479 pCx->isTable = 0;
3480 }else{
3481 rc = sqlite3BtreeCursor(pCx->pBt, MASTER_ROOT, BTREE_WRCSR,
3482 0, pCx->uc.pCursor);
3483 pCx->isTable = 1;
3484 }
3485 }
3486 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
3487 break;
3488 }
3489
3490 /* Opcode: SorterOpen P1 P2 P3 P4 *
3491 **
3492 ** This opcode works like OP_OpenEphemeral except that it opens
3493 ** a transient index that is specifically designed to sort large
3494 ** tables using an external merge-sort algorithm.
3495 **
3496 ** If argument P3 is non-zero, then it indicates that the sorter may
3497 ** assume that a stable sort considering the first P3 fields of each
3498 ** key is sufficient to produce the required results.
3499 */
3500 case OP_SorterOpen: {
3501 VdbeCursor *pCx;
3502
3503 assert( pOp->p1>=0 );
3504 assert( pOp->p2>=0 );
3505 pCx = allocateCursor(p, pOp->p1, pOp->p2, -1, CURTYPE_SORTER);
3506 if( pCx==0 ) goto no_mem;
3507 pCx->pKeyInfo = pOp->p4.pKeyInfo;
3508 assert( pCx->pKeyInfo->db==db );
3509 assert( pCx->pKeyInfo->enc==ENC(db) );
3510 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
3511 break;
3512 }
3513
3514 /* Opcode: SequenceTest P1 P2 * * *
3515 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
3516 **
3517 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
3518 ** to P2. Regardless of whether or not the jump is taken, increment the
3519 ** the sequence value.
3520 */
3521 case OP_SequenceTest: {
3522 VdbeCursor *pC;
3523 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3524 pC = p->apCsr[pOp->p1];
3525 assert( isSorter(pC) );
3526 if( (pC->seqCount++)==0 ){
3527 goto jump_to_p2;
3528 }
3529 break;
3530 }
3531
3532 /* Opcode: OpenPseudo P1 P2 P3 * *
3533 ** Synopsis: P3 columns in r[P2]
3534 **
3535 ** Open a new cursor that points to a fake table that contains a single
3536 ** row of data. The content of that one row is the content of memory
3537 ** register P2. In other words, cursor P1 becomes an alias for the
3538 ** MEM_Blob content contained in register P2.
3539 **
3540 ** A pseudo-table created by this opcode is used to hold a single
3541 ** row output from the sorter so that the row can be decomposed into
3542 ** individual columns using the OP_Column opcode. The OP_Column opcode
3543 ** is the only cursor opcode that works with a pseudo-table.
3544 **
3545 ** P3 is the number of fields in the records that will be stored by
3546 ** the pseudo-table.
3547 */
3548 case OP_OpenPseudo: {
3549 VdbeCursor *pCx;
3550
3551 assert( pOp->p1>=0 );
3552 assert( pOp->p3>=0 );
3553 pCx = allocateCursor(p, pOp->p1, pOp->p3, -1, CURTYPE_PSEUDO);
3554 if( pCx==0 ) goto no_mem;
3555 pCx->nullRow = 1;
3556 pCx->uc.pseudoTableReg = pOp->p2;
3557 pCx->isTable = 1;
3558 assert( pOp->p5==0 );
3559 break;
3560 }
3561
3562 /* Opcode: Close P1 * * * *
3563 **
3564 ** Close a cursor previously opened as P1. If P1 is not
3565 ** currently open, this instruction is a no-op.
3566 */
3567 case OP_Close: {
3568 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3569 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
3570 p->apCsr[pOp->p1] = 0;
3571 break;
3572 }
3573
3574 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
3575 /* Opcode: ColumnsUsed P1 * * P4 *
3576 **
3577 ** This opcode (which only exists if SQLite was compiled with
3578 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
3579 ** table or index for cursor P1 are used. P4 is a 64-bit integer
3580 ** (P4_INT64) in which the first 63 bits are one for each of the
3581 ** first 63 columns of the table or index that are actually used
3582 ** by the cursor. The high-order bit is set if any column after
3583 ** the 64th is used.
3584 */
3585 case OP_ColumnsUsed: {
3586 VdbeCursor *pC;
3587 pC = p->apCsr[pOp->p1];
3588 assert( pC->eCurType==CURTYPE_BTREE );
3589 pC->maskUsed = *(u64*)pOp->p4.pI64;
3590 break;
3591 }
3592 #endif
3593
3594 /* Opcode: SeekGE P1 P2 P3 P4 *
3595 ** Synopsis: key=r[P3@P4]
3596 **
3597 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3598 ** use the value in register P3 as the key. If cursor P1 refers
3599 ** to an SQL index, then P3 is the first in an array of P4 registers
3600 ** that are used as an unpacked index key.
3601 **
3602 ** Reposition cursor P1 so that it points to the smallest entry that
3603 ** is greater than or equal to the key value. If there are no records
3604 ** greater than or equal to the key and P2 is not zero, then jump to P2.
3605 **
3606 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3607 ** opcode will always land on a record that equally equals the key, or
3608 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this
3609 ** opcode must be followed by an IdxLE opcode with the same arguments.
3610 ** The IdxLE opcode will be skipped if this opcode succeeds, but the
3611 ** IdxLE opcode will be used on subsequent loop iterations.
3612 **
3613 ** This opcode leaves the cursor configured to move in forward order,
3614 ** from the beginning toward the end. In other words, the cursor is
3615 ** configured to use Next, not Prev.
3616 **
3617 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
3618 */
3619 /* Opcode: SeekGT P1 P2 P3 P4 *
3620 ** Synopsis: key=r[P3@P4]
3621 **
3622 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3623 ** use the value in register P3 as a key. If cursor P1 refers
3624 ** to an SQL index, then P3 is the first in an array of P4 registers
3625 ** that are used as an unpacked index key.
3626 **
3627 ** Reposition cursor P1 so that it points to the smallest entry that
3628 ** is greater than the key value. If there are no records greater than
3629 ** the key and P2 is not zero, then jump to P2.
3630 **
3631 ** This opcode leaves the cursor configured to move in forward order,
3632 ** from the beginning toward the end. In other words, the cursor is
3633 ** configured to use Next, not Prev.
3634 **
3635 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
3636 */
3637 /* Opcode: SeekLT P1 P2 P3 P4 *
3638 ** Synopsis: key=r[P3@P4]
3639 **
3640 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3641 ** use the value in register P3 as a key. If cursor P1 refers
3642 ** to an SQL index, then P3 is the first in an array of P4 registers
3643 ** that are used as an unpacked index key.
3644 **
3645 ** Reposition cursor P1 so that it points to the largest entry that
3646 ** is less than the key value. If there are no records less than
3647 ** the key and P2 is not zero, then jump to P2.
3648 **
3649 ** This opcode leaves the cursor configured to move in reverse order,
3650 ** from the end toward the beginning. In other words, the cursor is
3651 ** configured to use Prev, not Next.
3652 **
3653 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
3654 */
3655 /* Opcode: SeekLE P1 P2 P3 P4 *
3656 ** Synopsis: key=r[P3@P4]
3657 **
3658 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
3659 ** use the value in register P3 as a key. If cursor P1 refers
3660 ** to an SQL index, then P3 is the first in an array of P4 registers
3661 ** that are used as an unpacked index key.
3662 **
3663 ** Reposition cursor P1 so that it points to the largest entry that
3664 ** is less than or equal to the key value. If there are no records
3665 ** less than or equal to the key and P2 is not zero, then jump to P2.
3666 **
3667 ** This opcode leaves the cursor configured to move in reverse order,
3668 ** from the end toward the beginning. In other words, the cursor is
3669 ** configured to use Prev, not Next.
3670 **
3671 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
3672 ** opcode will always land on a record that equally equals the key, or
3673 ** else jump immediately to P2. When the cursor is OPFLAG_SEEKEQ, this
3674 ** opcode must be followed by an IdxGE opcode with the same arguments.
3675 ** The IdxGE opcode will be skipped if this opcode succeeds, but the
3676 ** IdxGE opcode will be used on subsequent loop iterations.
3677 **
3678 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
3679 */
3680 case OP_SeekLT: /* jump, in3 */
3681 case OP_SeekLE: /* jump, in3 */
3682 case OP_SeekGE: /* jump, in3 */
3683 case OP_SeekGT: { /* jump, in3 */
3684 int res; /* Comparison result */
3685 int oc; /* Opcode */
3686 VdbeCursor *pC; /* The cursor to seek */
3687 UnpackedRecord r; /* The key to seek for */
3688 int nField; /* Number of columns or fields in the key */
3689 i64 iKey; /* The rowid we are to seek to */
3690 int eqOnly; /* Only interested in == results */
3691
3692 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3693 assert( pOp->p2!=0 );
3694 pC = p->apCsr[pOp->p1];
3695 assert( pC!=0 );
3696 assert( pC->eCurType==CURTYPE_BTREE );
3697 assert( OP_SeekLE == OP_SeekLT+1 );
3698 assert( OP_SeekGE == OP_SeekLT+2 );
3699 assert( OP_SeekGT == OP_SeekLT+3 );
3700 assert( pC->isOrdered );
3701 assert( pC->uc.pCursor!=0 );
3702 oc = pOp->opcode;
3703 eqOnly = 0;
3704 pC->nullRow = 0;
3705 #ifdef SQLITE_DEBUG
3706 pC->seekOp = pOp->opcode;
3707 #endif
3708
3709 if( pC->isTable ){
3710 /* The BTREE_SEEK_EQ flag is only set on index cursors */
3711 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0 );
3712
3713 /* The input value in P3 might be of any type: integer, real, string,
3714 ** blob, or NULL. But it needs to be an integer before we can do
3715 ** the seek, so convert it. */
3716 pIn3 = &aMem[pOp->p3];
3717 if( (pIn3->flags & (MEM_Int|MEM_Real|MEM_Str))==MEM_Str ){
3718 applyNumericAffinity(pIn3, 0);
3719 }
3720 iKey = sqlite3VdbeIntValue(pIn3);
3721
3722 /* If the P3 value could not be converted into an integer without
3723 ** loss of information, then special processing is required... */
3724 if( (pIn3->flags & MEM_Int)==0 ){
3725 if( (pIn3->flags & MEM_Real)==0 ){
3726 /* If the P3 value cannot be converted into any kind of a number,
3727 ** then the seek is not possible, so jump to P2 */
3728 VdbeBranchTaken(1,2); goto jump_to_p2;
3729 break;
3730 }
3731
3732 /* If the approximation iKey is larger than the actual real search
3733 ** term, substitute >= for > and < for <=. e.g. if the search term
3734 ** is 4.9 and the integer approximation 5:
3735 **
3736 ** (x > 4.9) -> (x >= 5)
3737 ** (x <= 4.9) -> (x < 5)
3738 */
3739 if( pIn3->u.r<(double)iKey ){
3740 assert( OP_SeekGE==(OP_SeekGT-1) );
3741 assert( OP_SeekLT==(OP_SeekLE-1) );
3742 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
3743 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
3744 }
3745
3746 /* If the approximation iKey is smaller than the actual real search
3747 ** term, substitute <= for < and > for >=. */
3748 else if( pIn3->u.r>(double)iKey ){
3749 assert( OP_SeekLE==(OP_SeekLT+1) );
3750 assert( OP_SeekGT==(OP_SeekGE+1) );
3751 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
3752 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
3753 }
3754 }
3755 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)iKey, 0, &res);
3756 pC->movetoTarget = iKey; /* Used by OP_Delete */
3757 if( rc!=SQLITE_OK ){
3758 goto abort_due_to_error;
3759 }
3760 }else{
3761 /* For a cursor with the BTREE_SEEK_EQ hint, only the OP_SeekGE and
3762 ** OP_SeekLE opcodes are allowed, and these must be immediately followed
3763 ** by an OP_IdxGT or OP_IdxLT opcode, respectively, with the same key.
3764 */
3765 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
3766 eqOnly = 1;
3767 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
3768 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3769 assert( pOp[1].p1==pOp[0].p1 );
3770 assert( pOp[1].p2==pOp[0].p2 );
3771 assert( pOp[1].p3==pOp[0].p3 );
3772 assert( pOp[1].p4.i==pOp[0].p4.i );
3773 }
3774
3775 nField = pOp->p4.i;
3776 assert( pOp->p4type==P4_INT32 );
3777 assert( nField>0 );
3778 r.pKeyInfo = pC->pKeyInfo;
3779 r.nField = (u16)nField;
3780
3781 /* The next line of code computes as follows, only faster:
3782 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
3783 ** r.default_rc = -1;
3784 ** }else{
3785 ** r.default_rc = +1;
3786 ** }
3787 */
3788 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
3789 assert( oc!=OP_SeekGT || r.default_rc==-1 );
3790 assert( oc!=OP_SeekLE || r.default_rc==-1 );
3791 assert( oc!=OP_SeekGE || r.default_rc==+1 );
3792 assert( oc!=OP_SeekLT || r.default_rc==+1 );
3793
3794 r.aMem = &aMem[pOp->p3];
3795 #ifdef SQLITE_DEBUG
3796 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
3797 #endif
3798 ExpandBlob(r.aMem);
3799 r.eqSeen = 0;
3800 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, &r, 0, 0, &res);
3801 if( rc!=SQLITE_OK ){
3802 goto abort_due_to_error;
3803 }
3804 if( eqOnly && r.eqSeen==0 ){
3805 assert( res!=0 );
3806 goto seek_not_found;
3807 }
3808 }
3809 pC->deferredMoveto = 0;
3810 pC->cacheStatus = CACHE_STALE;
3811 #ifdef SQLITE_TEST
3812 sqlite3_search_count++;
3813 #endif
3814 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT );
3815 if( res<0 || (res==0 && oc==OP_SeekGT) ){
3816 res = 0;
3817 rc = sqlite3BtreeNext(pC->uc.pCursor, &res);
3818 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3819 }else{
3820 res = 0;
3821 }
3822 }else{
3823 assert( oc==OP_SeekLT || oc==OP_SeekLE );
3824 if( res>0 || (res==0 && oc==OP_SeekLT) ){
3825 res = 0;
3826 rc = sqlite3BtreePrevious(pC->uc.pCursor, &res);
3827 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3828 }else{
3829 /* res might be negative because the table is empty. Check to
3830 ** see if this is the case.
3831 */
3832 res = sqlite3BtreeEof(pC->uc.pCursor);
3833 }
3834 }
3835 seek_not_found:
3836 assert( pOp->p2>0 );
3837 VdbeBranchTaken(res!=0,2);
3838 if( res ){
3839 goto jump_to_p2;
3840 }else if( eqOnly ){
3841 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
3842 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
3843 }
3844 break;
3845 }
3846
3847 /* Opcode: Seek P1 P2 * * *
3848 ** Synopsis: intkey=r[P2]
3849 **
3850 ** P1 is an open table cursor and P2 is a rowid integer. Arrange
3851 ** for P1 to move so that it points to the rowid given by P2.
3852 **
3853 ** This is actually a deferred seek. Nothing actually happens until
3854 ** the cursor is used to read a record. That way, if no reads
3855 ** occur, no unnecessary I/O happens.
3856 */
3857 case OP_Seek: { /* in2 */
3858 VdbeCursor *pC;
3859
3860 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3861 pC = p->apCsr[pOp->p1];
3862 assert( pC!=0 );
3863 assert( pC->eCurType==CURTYPE_BTREE );
3864 assert( pC->uc.pCursor!=0 );
3865 assert( pC->isTable );
3866 pC->nullRow = 0;
3867 pIn2 = &aMem[pOp->p2];
3868 pC->movetoTarget = sqlite3VdbeIntValue(pIn2);
3869 pC->deferredMoveto = 1;
3870 break;
3871 }
3872
3873
3874 /* Opcode: Found P1 P2 P3 P4 *
3875 ** Synopsis: key=r[P3@P4]
3876 **
3877 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3878 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3879 ** record.
3880 **
3881 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
3882 ** is a prefix of any entry in P1 then a jump is made to P2 and
3883 ** P1 is left pointing at the matching entry.
3884 **
3885 ** This operation leaves the cursor in a state where it can be
3886 ** advanced in the forward direction. The Next instruction will work,
3887 ** but not the Prev instruction.
3888 **
3889 ** See also: NotFound, NoConflict, NotExists. SeekGe
3890 */
3891 /* Opcode: NotFound P1 P2 P3 P4 *
3892 ** Synopsis: key=r[P3@P4]
3893 **
3894 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3895 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3896 ** record.
3897 **
3898 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
3899 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1
3900 ** does contain an entry whose prefix matches the P3/P4 record then control
3901 ** falls through to the next instruction and P1 is left pointing at the
3902 ** matching entry.
3903 **
3904 ** This operation leaves the cursor in a state where it cannot be
3905 ** advanced in either direction. In other words, the Next and Prev
3906 ** opcodes do not work after this operation.
3907 **
3908 ** See also: Found, NotExists, NoConflict
3909 */
3910 /* Opcode: NoConflict P1 P2 P3 P4 *
3911 ** Synopsis: key=r[P3@P4]
3912 **
3913 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
3914 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
3915 ** record.
3916 **
3917 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
3918 ** contains any NULL value, jump immediately to P2. If all terms of the
3919 ** record are not-NULL then a check is done to determine if any row in the
3920 ** P1 index btree has a matching key prefix. If there are no matches, jump
3921 ** immediately to P2. If there is a match, fall through and leave the P1
3922 ** cursor pointing to the matching row.
3923 **
3924 ** This opcode is similar to OP_NotFound with the exceptions that the
3925 ** branch is always taken if any part of the search key input is NULL.
3926 **
3927 ** This operation leaves the cursor in a state where it cannot be
3928 ** advanced in either direction. In other words, the Next and Prev
3929 ** opcodes do not work after this operation.
3930 **
3931 ** See also: NotFound, Found, NotExists
3932 */
3933 case OP_NoConflict: /* jump, in3 */
3934 case OP_NotFound: /* jump, in3 */
3935 case OP_Found: { /* jump, in3 */
3936 int alreadyExists;
3937 int takeJump;
3938 int ii;
3939 VdbeCursor *pC;
3940 int res;
3941 char *pFree;
3942 UnpackedRecord *pIdxKey;
3943 UnpackedRecord r;
3944 char aTempRec[ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*4 + 7];
3945
3946 #ifdef SQLITE_TEST
3947 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
3948 #endif
3949
3950 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
3951 assert( pOp->p4type==P4_INT32 );
3952 pC = p->apCsr[pOp->p1];
3953 assert( pC!=0 );
3954 #ifdef SQLITE_DEBUG
3955 pC->seekOp = pOp->opcode;
3956 #endif
3957 pIn3 = &aMem[pOp->p3];
3958 assert( pC->eCurType==CURTYPE_BTREE );
3959 assert( pC->uc.pCursor!=0 );
3960 assert( pC->isTable==0 );
3961 pFree = 0;
3962 if( pOp->p4.i>0 ){
3963 r.pKeyInfo = pC->pKeyInfo;
3964 r.nField = (u16)pOp->p4.i;
3965 r.aMem = pIn3;
3966 for(ii=0; ii<r.nField; ii++){
3967 assert( memIsValid(&r.aMem[ii]) );
3968 ExpandBlob(&r.aMem[ii]);
3969 #ifdef SQLITE_DEBUG
3970 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
3971 #endif
3972 }
3973 pIdxKey = &r;
3974 }else{
3975 pIdxKey = sqlite3VdbeAllocUnpackedRecord(
3976 pC->pKeyInfo, aTempRec, sizeof(aTempRec), &pFree
3977 );
3978 if( pIdxKey==0 ) goto no_mem;
3979 assert( pIn3->flags & MEM_Blob );
3980 ExpandBlob(pIn3);
3981 sqlite3VdbeRecordUnpack(pC->pKeyInfo, pIn3->n, pIn3->z, pIdxKey);
3982 }
3983 pIdxKey->default_rc = 0;
3984 takeJump = 0;
3985 if( pOp->opcode==OP_NoConflict ){
3986 /* For the OP_NoConflict opcode, take the jump if any of the
3987 ** input fields are NULL, since any key with a NULL will not
3988 ** conflict */
3989 for(ii=0; ii<pIdxKey->nField; ii++){
3990 if( pIdxKey->aMem[ii].flags & MEM_Null ){
3991 takeJump = 1;
3992 break;
3993 }
3994 }
3995 }
3996 rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, pIdxKey, 0, 0, &res);
3997 sqlite3DbFree(db, pFree);
3998 if( rc!=SQLITE_OK ){
3999 break;
4000 }
4001 pC->seekResult = res;
4002 alreadyExists = (res==0);
4003 pC->nullRow = 1-alreadyExists;
4004 pC->deferredMoveto = 0;
4005 pC->cacheStatus = CACHE_STALE;
4006 if( pOp->opcode==OP_Found ){
4007 VdbeBranchTaken(alreadyExists!=0,2);
4008 if( alreadyExists ) goto jump_to_p2;
4009 }else{
4010 VdbeBranchTaken(takeJump||alreadyExists==0,2);
4011 if( takeJump || !alreadyExists ) goto jump_to_p2;
4012 }
4013 break;
4014 }
4015
4016 /* Opcode: NotExists P1 P2 P3 * *
4017 ** Synopsis: intkey=r[P3]
4018 **
4019 ** P1 is the index of a cursor open on an SQL table btree (with integer
4020 ** keys). P3 is an integer rowid. If P1 does not contain a record with
4021 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an
4022 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
4023 ** leave the cursor pointing at that record and fall through to the next
4024 ** instruction.
4025 **
4026 ** The OP_NotFound opcode performs the same operation on index btrees
4027 ** (with arbitrary multi-value keys).
4028 **
4029 ** This opcode leaves the cursor in a state where it cannot be advanced
4030 ** in either direction. In other words, the Next and Prev opcodes will
4031 ** not work following this opcode.
4032 **
4033 ** See also: Found, NotFound, NoConflict
4034 */
4035 case OP_NotExists: { /* jump, in3 */
4036 VdbeCursor *pC;
4037 BtCursor *pCrsr;
4038 int res;
4039 u64 iKey;
4040
4041 pIn3 = &aMem[pOp->p3];
4042 assert( pIn3->flags & MEM_Int );
4043 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4044 pC = p->apCsr[pOp->p1];
4045 assert( pC!=0 );
4046 #ifdef SQLITE_DEBUG
4047 pC->seekOp = 0;
4048 #endif
4049 assert( pC->isTable );
4050 assert( pC->eCurType==CURTYPE_BTREE );
4051 pCrsr = pC->uc.pCursor;
4052 assert( pCrsr!=0 );
4053 res = 0;
4054 iKey = pIn3->u.i;
4055 rc = sqlite3BtreeMovetoUnpacked(pCrsr, 0, iKey, 0, &res);
4056 assert( rc==SQLITE_OK || res==0 );
4057 pC->movetoTarget = iKey; /* Used by OP_Delete */
4058 pC->nullRow = 0;
4059 pC->cacheStatus = CACHE_STALE;
4060 pC->deferredMoveto = 0;
4061 VdbeBranchTaken(res!=0,2);
4062 pC->seekResult = res;
4063 if( res!=0 ){
4064 assert( rc==SQLITE_OK );
4065 if( pOp->p2==0 ){
4066 rc = SQLITE_CORRUPT_BKPT;
4067 }else{
4068 goto jump_to_p2;
4069 }
4070 }
4071 break;
4072 }
4073
4074 /* Opcode: Sequence P1 P2 * * *
4075 ** Synopsis: r[P2]=cursor[P1].ctr++
4076 **
4077 ** Find the next available sequence number for cursor P1.
4078 ** Write the sequence number into register P2.
4079 ** The sequence number on the cursor is incremented after this
4080 ** instruction.
4081 */
4082 case OP_Sequence: { /* out2 */
4083 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4084 assert( p->apCsr[pOp->p1]!=0 );
4085 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
4086 pOut = out2Prerelease(p, pOp);
4087 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
4088 break;
4089 }
4090
4091
4092 /* Opcode: NewRowid P1 P2 P3 * *
4093 ** Synopsis: r[P2]=rowid
4094 **
4095 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
4096 ** The record number is not previously used as a key in the database
4097 ** table that cursor P1 points to. The new record number is written
4098 ** written to register P2.
4099 **
4100 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
4101 ** the largest previously generated record number. No new record numbers are
4102 ** allowed to be less than this value. When this value reaches its maximum,
4103 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
4104 ** generated record number. This P3 mechanism is used to help implement the
4105 ** AUTOINCREMENT feature.
4106 */
4107 case OP_NewRowid: { /* out2 */
4108 i64 v; /* The new rowid */
4109 VdbeCursor *pC; /* Cursor of table to get the new rowid */
4110 int res; /* Result of an sqlite3BtreeLast() */
4111 int cnt; /* Counter to limit the number of searches */
4112 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
4113 VdbeFrame *pFrame; /* Root frame of VDBE */
4114
4115 v = 0;
4116 res = 0;
4117 pOut = out2Prerelease(p, pOp);
4118 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4119 pC = p->apCsr[pOp->p1];
4120 assert( pC!=0 );
4121 assert( pC->eCurType==CURTYPE_BTREE );
4122 assert( pC->uc.pCursor!=0 );
4123 {
4124 /* The next rowid or record number (different terms for the same
4125 ** thing) is obtained in a two-step algorithm.
4126 **
4127 ** First we attempt to find the largest existing rowid and add one
4128 ** to that. But if the largest existing rowid is already the maximum
4129 ** positive integer, we have to fall through to the second
4130 ** probabilistic algorithm
4131 **
4132 ** The second algorithm is to select a rowid at random and see if
4133 ** it already exists in the table. If it does not exist, we have
4134 ** succeeded. If the random rowid does exist, we select a new one
4135 ** and try again, up to 100 times.
4136 */
4137 assert( pC->isTable );
4138
4139 #ifdef SQLITE_32BIT_ROWID
4140 # define MAX_ROWID 0x7fffffff
4141 #else
4142 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
4143 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
4144 ** to provide the constant while making all compilers happy.
4145 */
4146 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
4147 #endif
4148
4149 if( !pC->useRandomRowid ){
4150 rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
4151 if( rc!=SQLITE_OK ){
4152 goto abort_due_to_error;
4153 }
4154 if( res ){
4155 v = 1; /* IMP: R-61914-48074 */
4156 }else{
4157 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
4158 rc = sqlite3BtreeKeySize(pC->uc.pCursor, &v);
4159 assert( rc==SQLITE_OK ); /* Cannot fail following BtreeLast() */
4160 if( v>=MAX_ROWID ){
4161 pC->useRandomRowid = 1;
4162 }else{
4163 v++; /* IMP: R-29538-34987 */
4164 }
4165 }
4166 }
4167
4168 #ifndef SQLITE_OMIT_AUTOINCREMENT
4169 if( pOp->p3 ){
4170 /* Assert that P3 is a valid memory cell. */
4171 assert( pOp->p3>0 );
4172 if( p->pFrame ){
4173 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
4174 /* Assert that P3 is a valid memory cell. */
4175 assert( pOp->p3<=pFrame->nMem );
4176 pMem = &pFrame->aMem[pOp->p3];
4177 }else{
4178 /* Assert that P3 is a valid memory cell. */
4179 assert( pOp->p3<=(p->nMem-p->nCursor) );
4180 pMem = &aMem[pOp->p3];
4181 memAboutToChange(p, pMem);
4182 }
4183 assert( memIsValid(pMem) );
4184
4185 REGISTER_TRACE(pOp->p3, pMem);
4186 sqlite3VdbeMemIntegerify(pMem);
4187 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
4188 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
4189 rc = SQLITE_FULL; /* IMP: R-12275-61338 */
4190 goto abort_due_to_error;
4191 }
4192 if( v<pMem->u.i+1 ){
4193 v = pMem->u.i + 1;
4194 }
4195 pMem->u.i = v;
4196 }
4197 #endif
4198 if( pC->useRandomRowid ){
4199 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
4200 ** largest possible integer (9223372036854775807) then the database
4201 ** engine starts picking positive candidate ROWIDs at random until
4202 ** it finds one that is not previously used. */
4203 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
4204 ** an AUTOINCREMENT table. */
4205 cnt = 0;
4206 do{
4207 sqlite3_randomness(sizeof(v), &v);
4208 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */
4209 }while( ((rc = sqlite3BtreeMovetoUnpacked(pC->uc.pCursor, 0, (u64)v,
4210 0, &res))==SQLITE_OK)
4211 && (res==0)
4212 && (++cnt<100));
4213 if( rc==SQLITE_OK && res==0 ){
4214 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
4215 goto abort_due_to_error;
4216 }
4217 assert( v>0 ); /* EV: R-40812-03570 */
4218 }
4219 pC->deferredMoveto = 0;
4220 pC->cacheStatus = CACHE_STALE;
4221 }
4222 pOut->u.i = v;
4223 break;
4224 }
4225
4226 /* Opcode: Insert P1 P2 P3 P4 P5
4227 ** Synopsis: intkey=r[P3] data=r[P2]
4228 **
4229 ** Write an entry into the table of cursor P1. A new entry is
4230 ** created if it doesn't already exist or the data for an existing
4231 ** entry is overwritten. The data is the value MEM_Blob stored in register
4232 ** number P2. The key is stored in register P3. The key must
4233 ** be a MEM_Int.
4234 **
4235 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
4236 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
4237 ** then rowid is stored for subsequent return by the
4238 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
4239 **
4240 ** If the OPFLAG_USESEEKRESULT flag of P5 is set and if the result of
4241 ** the last seek operation (OP_NotExists) was a success, then this
4242 ** operation will not attempt to find the appropriate row before doing
4243 ** the insert but will instead overwrite the row that the cursor is
4244 ** currently pointing to. Presumably, the prior OP_NotExists opcode
4245 ** has already positioned the cursor correctly. This is an optimization
4246 ** that boosts performance by avoiding redundant seeks.
4247 **
4248 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
4249 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode
4250 ** is part of an INSERT operation. The difference is only important to
4251 ** the update hook.
4252 **
4253 ** Parameter P4 may point to a string containing the table-name, or
4254 ** may be NULL. If it is not NULL, then the update-hook
4255 ** (sqlite3.xUpdateCallback) is invoked following a successful insert.
4256 **
4257 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
4258 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
4259 ** and register P2 becomes ephemeral. If the cursor is changed, the
4260 ** value of register P2 will then change. Make sure this does not
4261 ** cause any problems.)
4262 **
4263 ** This instruction only works on tables. The equivalent instruction
4264 ** for indices is OP_IdxInsert.
4265 */
4266 /* Opcode: InsertInt P1 P2 P3 P4 P5
4267 ** Synopsis: intkey=P3 data=r[P2]
4268 **
4269 ** This works exactly like OP_Insert except that the key is the
4270 ** integer value P3, not the value of the integer stored in register P3.
4271 */
4272 case OP_Insert:
4273 case OP_InsertInt: {
4274 Mem *pData; /* MEM cell holding data for the record to be inserted */
4275 Mem *pKey; /* MEM cell holding key for the record */
4276 i64 iKey; /* The integer ROWID or key for the record to be inserted */
4277 VdbeCursor *pC; /* Cursor to table into which insert is written */
4278 int nZero; /* Number of zero-bytes to append */
4279 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
4280 const char *zDb; /* database name - used by the update hook */
4281 const char *zTbl; /* Table name - used by the opdate hook */
4282 int op; /* Opcode for update hook: SQLITE_UPDATE or SQLITE_INSERT */
4283
4284 pData = &aMem[pOp->p2];
4285 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4286 assert( memIsValid(pData) );
4287 pC = p->apCsr[pOp->p1];
4288 assert( pC!=0 );
4289 assert( pC->eCurType==CURTYPE_BTREE );
4290 assert( pC->uc.pCursor!=0 );
4291 assert( pC->isTable );
4292 REGISTER_TRACE(pOp->p2, pData);
4293
4294 if( pOp->opcode==OP_Insert ){
4295 pKey = &aMem[pOp->p3];
4296 assert( pKey->flags & MEM_Int );
4297 assert( memIsValid(pKey) );
4298 REGISTER_TRACE(pOp->p3, pKey);
4299 iKey = pKey->u.i;
4300 }else{
4301 assert( pOp->opcode==OP_InsertInt );
4302 iKey = pOp->p3;
4303 }
4304
4305 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
4306 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = lastRowid = iKey;
4307 if( pData->flags & MEM_Null ){
4308 pData->z = 0;
4309 pData->n = 0;
4310 }else{
4311 assert( pData->flags & (MEM_Blob|MEM_Str) );
4312 }
4313 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
4314 if( pData->flags & MEM_Zero ){
4315 nZero = pData->u.nZero;
4316 }else{
4317 nZero = 0;
4318 }
4319 rc = sqlite3BtreeInsert(pC->uc.pCursor, 0, iKey,
4320 pData->z, pData->n, nZero,
4321 (pOp->p5 & OPFLAG_APPEND)!=0, seekResult
4322 );
4323 pC->deferredMoveto = 0;
4324 pC->cacheStatus = CACHE_STALE;
4325
4326 /* Invoke the update-hook if required. */
4327 if( rc==SQLITE_OK && db->xUpdateCallback && pOp->p4.z ){
4328 zDb = db->aDb[pC->iDb].zName;
4329 zTbl = pOp->p4.z;
4330 op = ((pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT);
4331 assert( pC->isTable );
4332 db->xUpdateCallback(db->pUpdateArg, op, zDb, zTbl, iKey);
4333 assert( pC->iDb>=0 );
4334 }
4335 break;
4336 }
4337
4338 /* Opcode: Delete P1 P2 * P4 P5
4339 **
4340 ** Delete the record at which the P1 cursor is currently pointing.
4341 **
4342 ** If the P5 parameter is non-zero, the cursor will be left pointing at
4343 ** either the next or the previous record in the table. If it is left
4344 ** pointing at the next record, then the next Next instruction will be a
4345 ** no-op. As a result, in this case it is OK to delete a record from within a
4346 ** Next loop. If P5 is zero, then the cursor is left in an undefined state.
4347 **
4348 ** If the OPFLAG_NCHANGE flag of P2 is set, then the row change count is
4349 ** incremented (otherwise not).
4350 **
4351 ** P1 must not be pseudo-table. It has to be a real table with
4352 ** multiple rows.
4353 **
4354 ** If P4 is not NULL, then it is the name of the table that P1 is
4355 ** pointing to. The update hook will be invoked, if it exists.
4356 ** If P4 is not NULL then the P1 cursor must have been positioned
4357 ** using OP_NotFound prior to invoking this opcode.
4358 */
4359 case OP_Delete: {
4360 VdbeCursor *pC;
4361 u8 hasUpdateCallback;
4362
4363 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4364 pC = p->apCsr[pOp->p1];
4365 assert( pC!=0 );
4366 assert( pC->eCurType==CURTYPE_BTREE );
4367 assert( pC->uc.pCursor!=0 );
4368 assert( pC->deferredMoveto==0 );
4369
4370 hasUpdateCallback = db->xUpdateCallback && pOp->p4.z && pC->isTable;
4371 if( pOp->p5 && hasUpdateCallback ){
4372 sqlite3BtreeKeySize(pC->uc.pCursor, &pC->movetoTarget);
4373 }
4374
4375 #ifdef SQLITE_DEBUG
4376 /* The seek operation that positioned the cursor prior to OP_Delete will
4377 ** have also set the pC->movetoTarget field to the rowid of the row that
4378 ** is being deleted */
4379 if( pOp->p4.z && pC->isTable && pOp->p5==0 ){
4380 i64 iKey = 0;
4381 sqlite3BtreeKeySize(pC->uc.pCursor, &iKey);
4382 assert( pC->movetoTarget==iKey );
4383 }
4384 #endif
4385
4386 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
4387 pC->cacheStatus = CACHE_STALE;
4388
4389 /* Invoke the update-hook if required. */
4390 if( rc==SQLITE_OK && hasUpdateCallback ){
4391 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE,
4392 db->aDb[pC->iDb].zName, pOp->p4.z, pC->movetoTarget);
4393 assert( pC->iDb>=0 );
4394 }
4395 if( pOp->p2 & OPFLAG_NCHANGE ) p->nChange++;
4396 break;
4397 }
4398 /* Opcode: ResetCount * * * * *
4399 **
4400 ** The value of the change counter is copied to the database handle
4401 ** change counter (returned by subsequent calls to sqlite3_changes()).
4402 ** Then the VMs internal change counter resets to 0.
4403 ** This is used by trigger programs.
4404 */
4405 case OP_ResetCount: {
4406 sqlite3VdbeSetChanges(db, p->nChange);
4407 p->nChange = 0;
4408 break;
4409 }
4410
4411 /* Opcode: SorterCompare P1 P2 P3 P4
4412 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
4413 **
4414 ** P1 is a sorter cursor. This instruction compares a prefix of the
4415 ** record blob in register P3 against a prefix of the entry that
4416 ** the sorter cursor currently points to. Only the first P4 fields
4417 ** of r[P3] and the sorter record are compared.
4418 **
4419 ** If either P3 or the sorter contains a NULL in one of their significant
4420 ** fields (not counting the P4 fields at the end which are ignored) then
4421 ** the comparison is assumed to be equal.
4422 **
4423 ** Fall through to next instruction if the two records compare equal to
4424 ** each other. Jump to P2 if they are different.
4425 */
4426 case OP_SorterCompare: {
4427 VdbeCursor *pC;
4428 int res;
4429 int nKeyCol;
4430
4431 pC = p->apCsr[pOp->p1];
4432 assert( isSorter(pC) );
4433 assert( pOp->p4type==P4_INT32 );
4434 pIn3 = &aMem[pOp->p3];
4435 nKeyCol = pOp->p4.i;
4436 res = 0;
4437 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
4438 VdbeBranchTaken(res!=0,2);
4439 if( res ) goto jump_to_p2;
4440 break;
4441 };
4442
4443 /* Opcode: SorterData P1 P2 P3 * *
4444 ** Synopsis: r[P2]=data
4445 **
4446 ** Write into register P2 the current sorter data for sorter cursor P1.
4447 ** Then clear the column header cache on cursor P3.
4448 **
4449 ** This opcode is normally use to move a record out of the sorter and into
4450 ** a register that is the source for a pseudo-table cursor created using
4451 ** OpenPseudo. That pseudo-table cursor is the one that is identified by
4452 ** parameter P3. Clearing the P3 column cache as part of this opcode saves
4453 ** us from having to issue a separate NullRow instruction to clear that cache.
4454 */
4455 case OP_SorterData: {
4456 VdbeCursor *pC;
4457
4458 pOut = &aMem[pOp->p2];
4459 pC = p->apCsr[pOp->p1];
4460 assert( isSorter(pC) );
4461 rc = sqlite3VdbeSorterRowkey(pC, pOut);
4462 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
4463 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4464 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
4465 break;
4466 }
4467
4468 /* Opcode: RowData P1 P2 * * *
4469 ** Synopsis: r[P2]=data
4470 **
4471 ** Write into register P2 the complete row data for cursor P1.
4472 ** There is no interpretation of the data.
4473 ** It is just copied onto the P2 register exactly as
4474 ** it is found in the database file.
4475 **
4476 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4477 ** of a real table, not a pseudo-table.
4478 */
4479 /* Opcode: RowKey P1 P2 * * *
4480 ** Synopsis: r[P2]=key
4481 **
4482 ** Write into register P2 the complete row key for cursor P1.
4483 ** There is no interpretation of the data.
4484 ** The key is copied onto the P2 register exactly as
4485 ** it is found in the database file.
4486 **
4487 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
4488 ** of a real table, not a pseudo-table.
4489 */
4490 case OP_RowKey:
4491 case OP_RowData: {
4492 VdbeCursor *pC;
4493 BtCursor *pCrsr;
4494 u32 n;
4495 i64 n64;
4496
4497 pOut = &aMem[pOp->p2];
4498 memAboutToChange(p, pOut);
4499
4500 /* Note that RowKey and RowData are really exactly the same instruction */
4501 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4502 pC = p->apCsr[pOp->p1];
4503 assert( pC!=0 );
4504 assert( pC->eCurType==CURTYPE_BTREE );
4505 assert( isSorter(pC)==0 );
4506 assert( pC->isTable || pOp->opcode!=OP_RowData );
4507 assert( pC->isTable==0 || pOp->opcode==OP_RowData );
4508 assert( pC->nullRow==0 );
4509 assert( pC->uc.pCursor!=0 );
4510 pCrsr = pC->uc.pCursor;
4511
4512 /* The OP_RowKey and OP_RowData opcodes always follow OP_NotExists or
4513 ** OP_Rewind/Op_Next with no intervening instructions that might invalidate
4514 ** the cursor. If this where not the case, on of the following assert()s
4515 ** would fail. Should this ever change (because of changes in the code
4516 ** generator) then the fix would be to insert a call to
4517 ** sqlite3VdbeCursorMoveto().
4518 */
4519 assert( pC->deferredMoveto==0 );
4520 assert( sqlite3BtreeCursorIsValid(pCrsr) );
4521 #if 0 /* Not required due to the previous to assert() statements */
4522 rc = sqlite3VdbeCursorMoveto(pC);
4523 if( rc!=SQLITE_OK ) goto abort_due_to_error;
4524 #endif
4525
4526 if( pC->isTable==0 ){
4527 assert( !pC->isTable );
4528 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCrsr, &n64);
4529 assert( rc==SQLITE_OK ); /* True because of CursorMoveto() call above */
4530 if( n64>db->aLimit[SQLITE_LIMIT_LENGTH] ){
4531 goto too_big;
4532 }
4533 n = (u32)n64;
4534 }else{
4535 VVA_ONLY(rc =) sqlite3BtreeDataSize(pCrsr, &n);
4536 assert( rc==SQLITE_OK ); /* DataSize() cannot fail */
4537 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
4538 goto too_big;
4539 }
4540 }
4541 testcase( n==0 );
4542 if( sqlite3VdbeMemClearAndResize(pOut, MAX(n,32)) ){
4543 goto no_mem;
4544 }
4545 pOut->n = n;
4546 MemSetTypeFlag(pOut, MEM_Blob);
4547 if( pC->isTable==0 ){
4548 rc = sqlite3BtreeKey(pCrsr, 0, n, pOut->z);
4549 }else{
4550 rc = sqlite3BtreeData(pCrsr, 0, n, pOut->z);
4551 }
4552 pOut->enc = SQLITE_UTF8; /* In case the blob is ever cast to text */
4553 UPDATE_MAX_BLOBSIZE(pOut);
4554 REGISTER_TRACE(pOp->p2, pOut);
4555 break;
4556 }
4557
4558 /* Opcode: Rowid P1 P2 * * *
4559 ** Synopsis: r[P2]=rowid
4560 **
4561 ** Store in register P2 an integer which is the key of the table entry that
4562 ** P1 is currently point to.
4563 **
4564 ** P1 can be either an ordinary table or a virtual table. There used to
4565 ** be a separate OP_VRowid opcode for use with virtual tables, but this
4566 ** one opcode now works for both table types.
4567 */
4568 case OP_Rowid: { /* out2 */
4569 VdbeCursor *pC;
4570 i64 v;
4571 sqlite3_vtab *pVtab;
4572 const sqlite3_module *pModule;
4573
4574 pOut = out2Prerelease(p, pOp);
4575 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4576 pC = p->apCsr[pOp->p1];
4577 assert( pC!=0 );
4578 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
4579 if( pC->nullRow ){
4580 pOut->flags = MEM_Null;
4581 break;
4582 }else if( pC->deferredMoveto ){
4583 v = pC->movetoTarget;
4584 #ifndef SQLITE_OMIT_VIRTUALTABLE
4585 }else if( pC->eCurType==CURTYPE_VTAB ){
4586 assert( pC->uc.pVCur!=0 );
4587 pVtab = pC->uc.pVCur->pVtab;
4588 pModule = pVtab->pModule;
4589 assert( pModule->xRowid );
4590 rc = pModule->xRowid(pC->uc.pVCur, &v);
4591 sqlite3VtabImportErrmsg(p, pVtab);
4592 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4593 }else{
4594 assert( pC->eCurType==CURTYPE_BTREE );
4595 assert( pC->uc.pCursor!=0 );
4596 rc = sqlite3VdbeCursorRestore(pC);
4597 if( rc ) goto abort_due_to_error;
4598 if( pC->nullRow ){
4599 pOut->flags = MEM_Null;
4600 break;
4601 }
4602 rc = sqlite3BtreeKeySize(pC->uc.pCursor, &v);
4603 assert( rc==SQLITE_OK ); /* Always so because of CursorRestore() above */
4604 }
4605 pOut->u.i = v;
4606 break;
4607 }
4608
4609 /* Opcode: NullRow P1 * * * *
4610 **
4611 ** Move the cursor P1 to a null row. Any OP_Column operations
4612 ** that occur while the cursor is on the null row will always
4613 ** write a NULL.
4614 */
4615 case OP_NullRow: {
4616 VdbeCursor *pC;
4617
4618 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4619 pC = p->apCsr[pOp->p1];
4620 assert( pC!=0 );
4621 pC->nullRow = 1;
4622 pC->cacheStatus = CACHE_STALE;
4623 if( pC->eCurType==CURTYPE_BTREE ){
4624 assert( pC->uc.pCursor!=0 );
4625 sqlite3BtreeClearCursor(pC->uc.pCursor);
4626 }
4627 break;
4628 }
4629
4630 /* Opcode: Last P1 P2 P3 * *
4631 **
4632 ** The next use of the Rowid or Column or Prev instruction for P1
4633 ** will refer to the last entry in the database table or index.
4634 ** If the table or index is empty and P2>0, then jump immediately to P2.
4635 ** If P2 is 0 or if the table or index is not empty, fall through
4636 ** to the following instruction.
4637 **
4638 ** This opcode leaves the cursor configured to move in reverse order,
4639 ** from the end toward the beginning. In other words, the cursor is
4640 ** configured to use Prev, not Next.
4641 */
4642 case OP_Last: { /* jump */
4643 VdbeCursor *pC;
4644 BtCursor *pCrsr;
4645 int res;
4646
4647 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4648 pC = p->apCsr[pOp->p1];
4649 assert( pC!=0 );
4650 assert( pC->eCurType==CURTYPE_BTREE );
4651 pCrsr = pC->uc.pCursor;
4652 res = 0;
4653 assert( pCrsr!=0 );
4654 rc = sqlite3BtreeLast(pCrsr, &res);
4655 pC->nullRow = (u8)res;
4656 pC->deferredMoveto = 0;
4657 pC->cacheStatus = CACHE_STALE;
4658 pC->seekResult = pOp->p3;
4659 #ifdef SQLITE_DEBUG
4660 pC->seekOp = OP_Last;
4661 #endif
4662 if( pOp->p2>0 ){
4663 VdbeBranchTaken(res!=0,2);
4664 if( res ) goto jump_to_p2;
4665 }
4666 break;
4667 }
4668
4669
4670 /* Opcode: Sort P1 P2 * * *
4671 **
4672 ** This opcode does exactly the same thing as OP_Rewind except that
4673 ** it increments an undocumented global variable used for testing.
4674 **
4675 ** Sorting is accomplished by writing records into a sorting index,
4676 ** then rewinding that index and playing it back from beginning to
4677 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the
4678 ** rewinding so that the global variable will be incremented and
4679 ** regression tests can determine whether or not the optimizer is
4680 ** correctly optimizing out sorts.
4681 */
4682 case OP_SorterSort: /* jump */
4683 case OP_Sort: { /* jump */
4684 #ifdef SQLITE_TEST
4685 sqlite3_sort_count++;
4686 sqlite3_search_count--;
4687 #endif
4688 p->aCounter[SQLITE_STMTSTATUS_SORT]++;
4689 /* Fall through into OP_Rewind */
4690 }
4691 /* Opcode: Rewind P1 P2 * * *
4692 **
4693 ** The next use of the Rowid or Column or Next instruction for P1
4694 ** will refer to the first entry in the database table or index.
4695 ** If the table or index is empty, jump immediately to P2.
4696 ** If the table or index is not empty, fall through to the following
4697 ** instruction.
4698 **
4699 ** This opcode leaves the cursor configured to move in forward order,
4700 ** from the beginning toward the end. In other words, the cursor is
4701 ** configured to use Next, not Prev.
4702 */
4703 case OP_Rewind: { /* jump */
4704 VdbeCursor *pC;
4705 BtCursor *pCrsr;
4706 int res;
4707
4708 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4709 pC = p->apCsr[pOp->p1];
4710 assert( pC!=0 );
4711 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
4712 res = 1;
4713 #ifdef SQLITE_DEBUG
4714 pC->seekOp = OP_Rewind;
4715 #endif
4716 if( isSorter(pC) ){
4717 rc = sqlite3VdbeSorterRewind(pC, &res);
4718 }else{
4719 assert( pC->eCurType==CURTYPE_BTREE );
4720 pCrsr = pC->uc.pCursor;
4721 assert( pCrsr );
4722 rc = sqlite3BtreeFirst(pCrsr, &res);
4723 pC->deferredMoveto = 0;
4724 pC->cacheStatus = CACHE_STALE;
4725 }
4726 pC->nullRow = (u8)res;
4727 assert( pOp->p2>0 && pOp->p2<p->nOp );
4728 VdbeBranchTaken(res!=0,2);
4729 if( res ) goto jump_to_p2;
4730 break;
4731 }
4732
4733 /* Opcode: Next P1 P2 P3 P4 P5
4734 **
4735 ** Advance cursor P1 so that it points to the next key/data pair in its
4736 ** table or index. If there are no more key/value pairs then fall through
4737 ** to the following instruction. But if the cursor advance was successful,
4738 ** jump immediately to P2.
4739 **
4740 ** The Next opcode is only valid following an SeekGT, SeekGE, or
4741 ** OP_Rewind opcode used to position the cursor. Next is not allowed
4742 ** to follow SeekLT, SeekLE, or OP_Last.
4743 **
4744 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
4745 ** been opened prior to this opcode or the program will segfault.
4746 **
4747 ** The P3 value is a hint to the btree implementation. If P3==1, that
4748 ** means P1 is an SQL index and that this instruction could have been
4749 ** omitted if that index had been unique. P3 is usually 0. P3 is
4750 ** always either 0 or 1.
4751 **
4752 ** P4 is always of type P4_ADVANCE. The function pointer points to
4753 ** sqlite3BtreeNext().
4754 **
4755 ** If P5 is positive and the jump is taken, then event counter
4756 ** number P5-1 in the prepared statement is incremented.
4757 **
4758 ** See also: Prev, NextIfOpen
4759 */
4760 /* Opcode: NextIfOpen P1 P2 P3 P4 P5
4761 **
4762 ** This opcode works just like Next except that if cursor P1 is not
4763 ** open it behaves a no-op.
4764 */
4765 /* Opcode: Prev P1 P2 P3 P4 P5
4766 **
4767 ** Back up cursor P1 so that it points to the previous key/data pair in its
4768 ** table or index. If there is no previous key/value pairs then fall through
4769 ** to the following instruction. But if the cursor backup was successful,
4770 ** jump immediately to P2.
4771 **
4772 **
4773 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
4774 ** OP_Last opcode used to position the cursor. Prev is not allowed
4775 ** to follow SeekGT, SeekGE, or OP_Rewind.
4776 **
4777 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
4778 ** not open then the behavior is undefined.
4779 **
4780 ** The P3 value is a hint to the btree implementation. If P3==1, that
4781 ** means P1 is an SQL index and that this instruction could have been
4782 ** omitted if that index had been unique. P3 is usually 0. P3 is
4783 ** always either 0 or 1.
4784 **
4785 ** P4 is always of type P4_ADVANCE. The function pointer points to
4786 ** sqlite3BtreePrevious().
4787 **
4788 ** If P5 is positive and the jump is taken, then event counter
4789 ** number P5-1 in the prepared statement is incremented.
4790 */
4791 /* Opcode: PrevIfOpen P1 P2 P3 P4 P5
4792 **
4793 ** This opcode works just like Prev except that if cursor P1 is not
4794 ** open it behaves a no-op.
4795 */
4796 case OP_SorterNext: { /* jump */
4797 VdbeCursor *pC;
4798 int res;
4799
4800 pC = p->apCsr[pOp->p1];
4801 assert( isSorter(pC) );
4802 res = 0;
4803 rc = sqlite3VdbeSorterNext(db, pC, &res);
4804 goto next_tail;
4805 case OP_PrevIfOpen: /* jump */
4806 case OP_NextIfOpen: /* jump */
4807 if( p->apCsr[pOp->p1]==0 ) break;
4808 /* Fall through */
4809 case OP_Prev: /* jump */
4810 case OP_Next: /* jump */
4811 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4812 assert( pOp->p5<ArraySize(p->aCounter) );
4813 pC = p->apCsr[pOp->p1];
4814 res = pOp->p3;
4815 assert( pC!=0 );
4816 assert( pC->deferredMoveto==0 );
4817 assert( pC->eCurType==CURTYPE_BTREE );
4818 assert( res==0 || (res==1 && pC->isTable==0) );
4819 testcase( res==1 );
4820 assert( pOp->opcode!=OP_Next || pOp->p4.xAdvance==sqlite3BtreeNext );
4821 assert( pOp->opcode!=OP_Prev || pOp->p4.xAdvance==sqlite3BtreePrevious );
4822 assert( pOp->opcode!=OP_NextIfOpen || pOp->p4.xAdvance==sqlite3BtreeNext );
4823 assert( pOp->opcode!=OP_PrevIfOpen || pOp->p4.xAdvance==sqlite3BtreePrevious);
4824
4825 /* The Next opcode is only used after SeekGT, SeekGE, and Rewind.
4826 ** The Prev opcode is only used after SeekLT, SeekLE, and Last. */
4827 assert( pOp->opcode!=OP_Next || pOp->opcode!=OP_NextIfOpen
4828 || pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
4829 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found);
4830 assert( pOp->opcode!=OP_Prev || pOp->opcode!=OP_PrevIfOpen
4831 || pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
4832 || pC->seekOp==OP_Last );
4833
4834 rc = pOp->p4.xAdvance(pC->uc.pCursor, &res);
4835 next_tail:
4836 pC->cacheStatus = CACHE_STALE;
4837 VdbeBranchTaken(res==0,2);
4838 if( res==0 ){
4839 pC->nullRow = 0;
4840 p->aCounter[pOp->p5]++;
4841 #ifdef SQLITE_TEST
4842 sqlite3_search_count++;
4843 #endif
4844 goto jump_to_p2_and_check_for_interrupt;
4845 }else{
4846 pC->nullRow = 1;
4847 }
4848 goto check_for_interrupt;
4849 }
4850
4851 /* Opcode: IdxInsert P1 P2 P3 * P5
4852 ** Synopsis: key=r[P2]
4853 **
4854 ** Register P2 holds an SQL index key made using the
4855 ** MakeRecord instructions. This opcode writes that key
4856 ** into the index P1. Data for the entry is nil.
4857 **
4858 ** P3 is a flag that provides a hint to the b-tree layer that this
4859 ** insert is likely to be an append.
4860 **
4861 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
4862 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
4863 ** then the change counter is unchanged.
4864 **
4865 ** If P5 has the OPFLAG_USESEEKRESULT bit set, then the cursor must have
4866 ** just done a seek to the spot where the new entry is to be inserted.
4867 ** This flag avoids doing an extra seek.
4868 **
4869 ** This instruction only works for indices. The equivalent instruction
4870 ** for tables is OP_Insert.
4871 */
4872 case OP_SorterInsert: /* in2 */
4873 case OP_IdxInsert: { /* in2 */
4874 VdbeCursor *pC;
4875 int nKey;
4876 const char *zKey;
4877
4878 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4879 pC = p->apCsr[pOp->p1];
4880 assert( pC!=0 );
4881 assert( isSorter(pC)==(pOp->opcode==OP_SorterInsert) );
4882 pIn2 = &aMem[pOp->p2];
4883 assert( pIn2->flags & MEM_Blob );
4884 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
4885 assert( pC->eCurType==CURTYPE_BTREE || pOp->opcode==OP_SorterInsert );
4886 assert( pC->isTable==0 );
4887 rc = ExpandBlob(pIn2);
4888 if( rc==SQLITE_OK ){
4889 if( pOp->opcode==OP_SorterInsert ){
4890 rc = sqlite3VdbeSorterWrite(pC, pIn2);
4891 }else{
4892 nKey = pIn2->n;
4893 zKey = pIn2->z;
4894 rc = sqlite3BtreeInsert(pC->uc.pCursor, zKey, nKey, "", 0, 0, pOp->p3,
4895 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
4896 );
4897 assert( pC->deferredMoveto==0 );
4898 pC->cacheStatus = CACHE_STALE;
4899 }
4900 }
4901 break;
4902 }
4903
4904 /* Opcode: IdxDelete P1 P2 P3 * *
4905 ** Synopsis: key=r[P2@P3]
4906 **
4907 ** The content of P3 registers starting at register P2 form
4908 ** an unpacked index key. This opcode removes that entry from the
4909 ** index opened by cursor P1.
4910 */
4911 case OP_IdxDelete: {
4912 VdbeCursor *pC;
4913 BtCursor *pCrsr;
4914 int res;
4915 UnpackedRecord r;
4916
4917 assert( pOp->p3>0 );
4918 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem-p->nCursor)+1 );
4919 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4920 pC = p->apCsr[pOp->p1];
4921 assert( pC!=0 );
4922 assert( pC->eCurType==CURTYPE_BTREE );
4923 pCrsr = pC->uc.pCursor;
4924 assert( pCrsr!=0 );
4925 assert( pOp->p5==0 );
4926 r.pKeyInfo = pC->pKeyInfo;
4927 r.nField = (u16)pOp->p3;
4928 r.default_rc = 0;
4929 r.aMem = &aMem[pOp->p2];
4930 #ifdef SQLITE_DEBUG
4931 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
4932 #endif
4933 rc = sqlite3BtreeMovetoUnpacked(pCrsr, &r, 0, 0, &res);
4934 if( rc==SQLITE_OK && res==0 ){
4935 rc = sqlite3BtreeDelete(pCrsr, 0);
4936 }
4937 assert( pC->deferredMoveto==0 );
4938 pC->cacheStatus = CACHE_STALE;
4939 break;
4940 }
4941
4942 /* Opcode: IdxRowid P1 P2 * * *
4943 ** Synopsis: r[P2]=rowid
4944 **
4945 ** Write into register P2 an integer which is the last entry in the record at
4946 ** the end of the index key pointed to by cursor P1. This integer should be
4947 ** the rowid of the table entry to which this index entry points.
4948 **
4949 ** See also: Rowid, MakeRecord.
4950 */
4951 case OP_IdxRowid: { /* out2 */
4952 BtCursor *pCrsr;
4953 VdbeCursor *pC;
4954 i64 rowid;
4955
4956 pOut = out2Prerelease(p, pOp);
4957 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4958 pC = p->apCsr[pOp->p1];
4959 assert( pC!=0 );
4960 assert( pC->eCurType==CURTYPE_BTREE );
4961 pCrsr = pC->uc.pCursor;
4962 assert( pCrsr!=0 );
4963 pOut->flags = MEM_Null;
4964 assert( pC->isTable==0 );
4965 assert( pC->deferredMoveto==0 );
4966
4967 /* sqlite3VbeCursorRestore() can only fail if the record has been deleted
4968 ** out from under the cursor. That will never happend for an IdxRowid
4969 ** opcode, hence the NEVER() arround the check of the return value.
4970 */
4971 rc = sqlite3VdbeCursorRestore(pC);
4972 if( NEVER(rc!=SQLITE_OK) ) goto abort_due_to_error;
4973
4974 if( !pC->nullRow ){
4975 rowid = 0; /* Not needed. Only used to silence a warning. */
4976 rc = sqlite3VdbeIdxRowid(db, pCrsr, &rowid);
4977 if( rc!=SQLITE_OK ){
4978 goto abort_due_to_error;
4979 }
4980 pOut->u.i = rowid;
4981 pOut->flags = MEM_Int;
4982 }
4983 break;
4984 }
4985
4986 /* Opcode: IdxGE P1 P2 P3 P4 P5
4987 ** Synopsis: key=r[P3@P4]
4988 **
4989 ** The P4 register values beginning with P3 form an unpacked index
4990 ** key that omits the PRIMARY KEY. Compare this key value against the index
4991 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
4992 ** fields at the end.
4993 **
4994 ** If the P1 index entry is greater than or equal to the key value
4995 ** then jump to P2. Otherwise fall through to the next instruction.
4996 */
4997 /* Opcode: IdxGT P1 P2 P3 P4 P5
4998 ** Synopsis: key=r[P3@P4]
4999 **
5000 ** The P4 register values beginning with P3 form an unpacked index
5001 ** key that omits the PRIMARY KEY. Compare this key value against the index
5002 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
5003 ** fields at the end.
5004 **
5005 ** If the P1 index entry is greater than the key value
5006 ** then jump to P2. Otherwise fall through to the next instruction.
5007 */
5008 /* Opcode: IdxLT P1 P2 P3 P4 P5
5009 ** Synopsis: key=r[P3@P4]
5010 **
5011 ** The P4 register values beginning with P3 form an unpacked index
5012 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against
5013 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5014 ** ROWID on the P1 index.
5015 **
5016 ** If the P1 index entry is less than the key value then jump to P2.
5017 ** Otherwise fall through to the next instruction.
5018 */
5019 /* Opcode: IdxLE P1 P2 P3 P4 P5
5020 ** Synopsis: key=r[P3@P4]
5021 **
5022 ** The P4 register values beginning with P3 form an unpacked index
5023 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against
5024 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
5025 ** ROWID on the P1 index.
5026 **
5027 ** If the P1 index entry is less than or equal to the key value then jump
5028 ** to P2. Otherwise fall through to the next instruction.
5029 */
5030 case OP_IdxLE: /* jump */
5031 case OP_IdxGT: /* jump */
5032 case OP_IdxLT: /* jump */
5033 case OP_IdxGE: { /* jump */
5034 VdbeCursor *pC;
5035 int res;
5036 UnpackedRecord r;
5037
5038 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5039 pC = p->apCsr[pOp->p1];
5040 assert( pC!=0 );
5041 assert( pC->isOrdered );
5042 assert( pC->eCurType==CURTYPE_BTREE );
5043 assert( pC->uc.pCursor!=0);
5044 assert( pC->deferredMoveto==0 );
5045 assert( pOp->p5==0 || pOp->p5==1 );
5046 assert( pOp->p4type==P4_INT32 );
5047 r.pKeyInfo = pC->pKeyInfo;
5048 r.nField = (u16)pOp->p4.i;
5049 if( pOp->opcode<OP_IdxLT ){
5050 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
5051 r.default_rc = -1;
5052 }else{
5053 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
5054 r.default_rc = 0;
5055 }
5056 r.aMem = &aMem[pOp->p3];
5057 #ifdef SQLITE_DEBUG
5058 { int i; for(i=0; i<r.nField; i++) assert( memIsValid(&r.aMem[i]) ); }
5059 #endif
5060 res = 0; /* Not needed. Only used to silence a warning. */
5061 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
5062 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
5063 if( (pOp->opcode&1)==(OP_IdxLT&1) ){
5064 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
5065 res = -res;
5066 }else{
5067 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
5068 res++;
5069 }
5070 VdbeBranchTaken(res>0,2);
5071 if( res>0 ) goto jump_to_p2;
5072 break;
5073 }
5074
5075 /* Opcode: Destroy P1 P2 P3 * *
5076 **
5077 ** Delete an entire database table or index whose root page in the database
5078 ** file is given by P1.
5079 **
5080 ** The table being destroyed is in the main database file if P3==0. If
5081 ** P3==1 then the table to be clear is in the auxiliary database file
5082 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5083 **
5084 ** If AUTOVACUUM is enabled then it is possible that another root page
5085 ** might be moved into the newly deleted root page in order to keep all
5086 ** root pages contiguous at the beginning of the database. The former
5087 ** value of the root page that moved - its value before the move occurred -
5088 ** is stored in register P2. If no page
5089 ** movement was required (because the table being dropped was already
5090 ** the last one in the database) then a zero is stored in register P2.
5091 ** If AUTOVACUUM is disabled then a zero is stored in register P2.
5092 **
5093 ** See also: Clear
5094 */
5095 case OP_Destroy: { /* out2 */
5096 int iMoved;
5097 int iDb;
5098
5099 assert( p->readOnly==0 );
5100 pOut = out2Prerelease(p, pOp);
5101 pOut->flags = MEM_Null;
5102 if( db->nVdbeRead > db->nVDestroy+1 ){
5103 rc = SQLITE_LOCKED;
5104 p->errorAction = OE_Abort;
5105 }else{
5106 iDb = pOp->p3;
5107 assert( DbMaskTest(p->btreeMask, iDb) );
5108 iMoved = 0; /* Not needed. Only to silence a warning. */
5109 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
5110 pOut->flags = MEM_Int;
5111 pOut->u.i = iMoved;
5112 #ifndef SQLITE_OMIT_AUTOVACUUM
5113 if( rc==SQLITE_OK && iMoved!=0 ){
5114 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
5115 /* All OP_Destroy operations occur on the same btree */
5116 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
5117 resetSchemaOnFault = iDb+1;
5118 }
5119 #endif
5120 }
5121 break;
5122 }
5123
5124 /* Opcode: Clear P1 P2 P3
5125 **
5126 ** Delete all contents of the database table or index whose root page
5127 ** in the database file is given by P1. But, unlike Destroy, do not
5128 ** remove the table or index from the database file.
5129 **
5130 ** The table being clear is in the main database file if P2==0. If
5131 ** P2==1 then the table to be clear is in the auxiliary database file
5132 ** that is used to store tables create using CREATE TEMPORARY TABLE.
5133 **
5134 ** If the P3 value is non-zero, then the table referred to must be an
5135 ** intkey table (an SQL table, not an index). In this case the row change
5136 ** count is incremented by the number of rows in the table being cleared.
5137 ** If P3 is greater than zero, then the value stored in register P3 is
5138 ** also incremented by the number of rows in the table being cleared.
5139 **
5140 ** See also: Destroy
5141 */
5142 case OP_Clear: {
5143 int nChange;
5144
5145 nChange = 0;
5146 assert( p->readOnly==0 );
5147 assert( DbMaskTest(p->btreeMask, pOp->p2) );
5148 rc = sqlite3BtreeClearTable(
5149 db->aDb[pOp->p2].pBt, pOp->p1, (pOp->p3 ? &nChange : 0)
5150 );
5151 if( pOp->p3 ){
5152 p->nChange += nChange;
5153 if( pOp->p3>0 ){
5154 assert( memIsValid(&aMem[pOp->p3]) );
5155 memAboutToChange(p, &aMem[pOp->p3]);
5156 aMem[pOp->p3].u.i += nChange;
5157 }
5158 }
5159 break;
5160 }
5161
5162 /* Opcode: ResetSorter P1 * * * *
5163 **
5164 ** Delete all contents from the ephemeral table or sorter
5165 ** that is open on cursor P1.
5166 **
5167 ** This opcode only works for cursors used for sorting and
5168 ** opened with OP_OpenEphemeral or OP_SorterOpen.
5169 */
5170 case OP_ResetSorter: {
5171 VdbeCursor *pC;
5172
5173 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5174 pC = p->apCsr[pOp->p1];
5175 assert( pC!=0 );
5176 if( isSorter(pC) ){
5177 sqlite3VdbeSorterReset(db, pC->uc.pSorter);
5178 }else{
5179 assert( pC->eCurType==CURTYPE_BTREE );
5180 assert( pC->isEphemeral );
5181 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
5182 }
5183 break;
5184 }
5185
5186 /* Opcode: CreateTable P1 P2 * * *
5187 ** Synopsis: r[P2]=root iDb=P1
5188 **
5189 ** Allocate a new table in the main database file if P1==0 or in the
5190 ** auxiliary database file if P1==1 or in an attached database if
5191 ** P1>1. Write the root page number of the new table into
5192 ** register P2
5193 **
5194 ** The difference between a table and an index is this: A table must
5195 ** have a 4-byte integer key and can have arbitrary data. An index
5196 ** has an arbitrary key but no data.
5197 **
5198 ** See also: CreateIndex
5199 */
5200 /* Opcode: CreateIndex P1 P2 * * *
5201 ** Synopsis: r[P2]=root iDb=P1
5202 **
5203 ** Allocate a new index in the main database file if P1==0 or in the
5204 ** auxiliary database file if P1==1 or in an attached database if
5205 ** P1>1. Write the root page number of the new table into
5206 ** register P2.
5207 **
5208 ** See documentation on OP_CreateTable for additional information.
5209 */
5210 case OP_CreateIndex: /* out2 */
5211 case OP_CreateTable: { /* out2 */
5212 int pgno;
5213 int flags;
5214 Db *pDb;
5215
5216 pOut = out2Prerelease(p, pOp);
5217 pgno = 0;
5218 assert( pOp->p1>=0 && pOp->p1<db->nDb );
5219 assert( DbMaskTest(p->btreeMask, pOp->p1) );
5220 assert( p->readOnly==0 );
5221 pDb = &db->aDb[pOp->p1];
5222 assert( pDb->pBt!=0 );
5223 if( pOp->opcode==OP_CreateTable ){
5224 /* flags = BTREE_INTKEY; */
5225 flags = BTREE_INTKEY;
5226 }else{
5227 flags = BTREE_BLOBKEY;
5228 }
5229 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, flags);
5230 pOut->u.i = pgno;
5231 break;
5232 }
5233
5234 /* Opcode: ParseSchema P1 * * P4 *
5235 **
5236 ** Read and parse all entries from the SQLITE_MASTER table of database P1
5237 ** that match the WHERE clause P4.
5238 **
5239 ** This opcode invokes the parser to create a new virtual machine,
5240 ** then runs the new virtual machine. It is thus a re-entrant opcode.
5241 */
5242 case OP_ParseSchema: {
5243 int iDb;
5244 const char *zMaster;
5245 char *zSql;
5246 InitData initData;
5247
5248 /* Any prepared statement that invokes this opcode will hold mutexes
5249 ** on every btree. This is a prerequisite for invoking
5250 ** sqlite3InitCallback().
5251 */
5252 #ifdef SQLITE_DEBUG
5253 for(iDb=0; iDb<db->nDb; iDb++){
5254 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
5255 }
5256 #endif
5257
5258 iDb = pOp->p1;
5259 assert( iDb>=0 && iDb<db->nDb );
5260 assert( DbHasProperty(db, iDb, DB_SchemaLoaded) );
5261 /* Used to be a conditional */ {
5262 zMaster = SCHEMA_TABLE(iDb);
5263 initData.db = db;
5264 initData.iDb = pOp->p1;
5265 initData.pzErrMsg = &p->zErrMsg;
5266 zSql = sqlite3MPrintf(db,
5267 "SELECT name, rootpage, sql FROM '%q'.%s WHERE %s ORDER BY rowid",
5268 db->aDb[iDb].zName, zMaster, pOp->p4.z);
5269 if( zSql==0 ){
5270 rc = SQLITE_NOMEM;
5271 }else{
5272 assert( db->init.busy==0 );
5273 db->init.busy = 1;
5274 initData.rc = SQLITE_OK;
5275 assert( !db->mallocFailed );
5276 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
5277 if( rc==SQLITE_OK ) rc = initData.rc;
5278 sqlite3DbFree(db, zSql);
5279 db->init.busy = 0;
5280 }
5281 }
5282 if( rc ) sqlite3ResetAllSchemasOfConnection(db);
5283 if( rc==SQLITE_NOMEM ){
5284 goto no_mem;
5285 }
5286 break;
5287 }
5288
5289 #if !defined(SQLITE_OMIT_ANALYZE)
5290 /* Opcode: LoadAnalysis P1 * * * *
5291 **
5292 ** Read the sqlite_stat1 table for database P1 and load the content
5293 ** of that table into the internal index hash table. This will cause
5294 ** the analysis to be used when preparing all subsequent queries.
5295 */
5296 case OP_LoadAnalysis: {
5297 assert( pOp->p1>=0 && pOp->p1<db->nDb );
5298 rc = sqlite3AnalysisLoad(db, pOp->p1);
5299 break;
5300 }
5301 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
5302
5303 /* Opcode: DropTable P1 * * P4 *
5304 **
5305 ** Remove the internal (in-memory) data structures that describe
5306 ** the table named P4 in database P1. This is called after a table
5307 ** is dropped from disk (using the Destroy opcode) in order to keep
5308 ** the internal representation of the
5309 ** schema consistent with what is on disk.
5310 */
5311 case OP_DropTable: {
5312 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
5313 break;
5314 }
5315
5316 /* Opcode: DropIndex P1 * * P4 *
5317 **
5318 ** Remove the internal (in-memory) data structures that describe
5319 ** the index named P4 in database P1. This is called after an index
5320 ** is dropped from disk (using the Destroy opcode)
5321 ** in order to keep the internal representation of the
5322 ** schema consistent with what is on disk.
5323 */
5324 case OP_DropIndex: {
5325 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
5326 break;
5327 }
5328
5329 /* Opcode: DropTrigger P1 * * P4 *
5330 **
5331 ** Remove the internal (in-memory) data structures that describe
5332 ** the trigger named P4 in database P1. This is called after a trigger
5333 ** is dropped from disk (using the Destroy opcode) in order to keep
5334 ** the internal representation of the
5335 ** schema consistent with what is on disk.
5336 */
5337 case OP_DropTrigger: {
5338 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
5339 break;
5340 }
5341
5342
5343 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
5344 /* Opcode: IntegrityCk P1 P2 P3 * P5
5345 **
5346 ** Do an analysis of the currently open database. Store in
5347 ** register P1 the text of an error message describing any problems.
5348 ** If no problems are found, store a NULL in register P1.
5349 **
5350 ** The register P3 contains the maximum number of allowed errors.
5351 ** At most reg(P3) errors will be reported.
5352 ** In other words, the analysis stops as soon as reg(P1) errors are
5353 ** seen. Reg(P1) is updated with the number of errors remaining.
5354 **
5355 ** The root page numbers of all tables in the database are integer
5356 ** stored in reg(P1), reg(P1+1), reg(P1+2), .... There are P2 tables
5357 ** total.
5358 **
5359 ** If P5 is not zero, the check is done on the auxiliary database
5360 ** file, not the main database file.
5361 **
5362 ** This opcode is used to implement the integrity_check pragma.
5363 */
5364 case OP_IntegrityCk: {
5365 int nRoot; /* Number of tables to check. (Number of root pages.) */
5366 int *aRoot; /* Array of rootpage numbers for tables to be checked */
5367 int j; /* Loop counter */
5368 int nErr; /* Number of errors reported */
5369 char *z; /* Text of the error report */
5370 Mem *pnErr; /* Register keeping track of errors remaining */
5371
5372 assert( p->bIsReader );
5373 nRoot = pOp->p2;
5374 assert( nRoot>0 );
5375 aRoot = sqlite3DbMallocRaw(db, sizeof(int)*(nRoot+1) );
5376 if( aRoot==0 ) goto no_mem;
5377 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
5378 pnErr = &aMem[pOp->p3];
5379 assert( (pnErr->flags & MEM_Int)!=0 );
5380 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
5381 pIn1 = &aMem[pOp->p1];
5382 for(j=0; j<nRoot; j++){
5383 aRoot[j] = (int)sqlite3VdbeIntValue(&pIn1[j]);
5384 }
5385 aRoot[j] = 0;
5386 assert( pOp->p5<db->nDb );
5387 assert( DbMaskTest(p->btreeMask, pOp->p5) );
5388 z = sqlite3BtreeIntegrityCheck(db->aDb[pOp->p5].pBt, aRoot, nRoot,
5389 (int)pnErr->u.i, &nErr);
5390 sqlite3DbFree(db, aRoot);
5391 pnErr->u.i -= nErr;
5392 sqlite3VdbeMemSetNull(pIn1);
5393 if( nErr==0 ){
5394 assert( z==0 );
5395 }else if( z==0 ){
5396 goto no_mem;
5397 }else{
5398 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
5399 }
5400 UPDATE_MAX_BLOBSIZE(pIn1);
5401 sqlite3VdbeChangeEncoding(pIn1, encoding);
5402 break;
5403 }
5404 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
5405
5406 /* Opcode: RowSetAdd P1 P2 * * *
5407 ** Synopsis: rowset(P1)=r[P2]
5408 **
5409 ** Insert the integer value held by register P2 into a boolean index
5410 ** held in register P1.
5411 **
5412 ** An assertion fails if P2 is not an integer.
5413 */
5414 case OP_RowSetAdd: { /* in1, in2 */
5415 pIn1 = &aMem[pOp->p1];
5416 pIn2 = &aMem[pOp->p2];
5417 assert( (pIn2->flags & MEM_Int)!=0 );
5418 if( (pIn1->flags & MEM_RowSet)==0 ){
5419 sqlite3VdbeMemSetRowSet(pIn1);
5420 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5421 }
5422 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn2->u.i);
5423 break;
5424 }
5425
5426 /* Opcode: RowSetRead P1 P2 P3 * *
5427 ** Synopsis: r[P3]=rowset(P1)
5428 **
5429 ** Extract the smallest value from boolean index P1 and put that value into
5430 ** register P3. Or, if boolean index P1 is initially empty, leave P3
5431 ** unchanged and jump to instruction P2.
5432 */
5433 case OP_RowSetRead: { /* jump, in1, out3 */
5434 i64 val;
5435
5436 pIn1 = &aMem[pOp->p1];
5437 if( (pIn1->flags & MEM_RowSet)==0
5438 || sqlite3RowSetNext(pIn1->u.pRowSet, &val)==0
5439 ){
5440 /* The boolean index is empty */
5441 sqlite3VdbeMemSetNull(pIn1);
5442 VdbeBranchTaken(1,2);
5443 goto jump_to_p2_and_check_for_interrupt;
5444 }else{
5445 /* A value was pulled from the index */
5446 VdbeBranchTaken(0,2);
5447 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
5448 }
5449 goto check_for_interrupt;
5450 }
5451
5452 /* Opcode: RowSetTest P1 P2 P3 P4
5453 ** Synopsis: if r[P3] in rowset(P1) goto P2
5454 **
5455 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
5456 ** contains a RowSet object and that RowSet object contains
5457 ** the value held in P3, jump to register P2. Otherwise, insert the
5458 ** integer in P3 into the RowSet and continue on to the
5459 ** next opcode.
5460 **
5461 ** The RowSet object is optimized for the case where successive sets
5462 ** of integers, where each set contains no duplicates. Each set
5463 ** of values is identified by a unique P4 value. The first set
5464 ** must have P4==0, the final set P4=-1. P4 must be either -1 or
5465 ** non-negative. For non-negative values of P4 only the lower 4
5466 ** bits are significant.
5467 **
5468 ** This allows optimizations: (a) when P4==0 there is no need to test
5469 ** the rowset object for P3, as it is guaranteed not to contain it,
5470 ** (b) when P4==-1 there is no need to insert the value, as it will
5471 ** never be tested for, and (c) when a value that is part of set X is
5472 ** inserted, there is no need to search to see if the same value was
5473 ** previously inserted as part of set X (only if it was previously
5474 ** inserted as part of some other set).
5475 */
5476 case OP_RowSetTest: { /* jump, in1, in3 */
5477 int iSet;
5478 int exists;
5479
5480 pIn1 = &aMem[pOp->p1];
5481 pIn3 = &aMem[pOp->p3];
5482 iSet = pOp->p4.i;
5483 assert( pIn3->flags&MEM_Int );
5484
5485 /* If there is anything other than a rowset object in memory cell P1,
5486 ** delete it now and initialize P1 with an empty rowset
5487 */
5488 if( (pIn1->flags & MEM_RowSet)==0 ){
5489 sqlite3VdbeMemSetRowSet(pIn1);
5490 if( (pIn1->flags & MEM_RowSet)==0 ) goto no_mem;
5491 }
5492
5493 assert( pOp->p4type==P4_INT32 );
5494 assert( iSet==-1 || iSet>=0 );
5495 if( iSet ){
5496 exists = sqlite3RowSetTest(pIn1->u.pRowSet, iSet, pIn3->u.i);
5497 VdbeBranchTaken(exists!=0,2);
5498 if( exists ) goto jump_to_p2;
5499 }
5500 if( iSet>=0 ){
5501 sqlite3RowSetInsert(pIn1->u.pRowSet, pIn3->u.i);
5502 }
5503 break;
5504 }
5505
5506
5507 #ifndef SQLITE_OMIT_TRIGGER
5508
5509 /* Opcode: Program P1 P2 P3 P4 P5
5510 **
5511 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
5512 **
5513 ** P1 contains the address of the memory cell that contains the first memory
5514 ** cell in an array of values used as arguments to the sub-program. P2
5515 ** contains the address to jump to if the sub-program throws an IGNORE
5516 ** exception using the RAISE() function. Register P3 contains the address
5517 ** of a memory cell in this (the parent) VM that is used to allocate the
5518 ** memory required by the sub-vdbe at runtime.
5519 **
5520 ** P4 is a pointer to the VM containing the trigger program.
5521 **
5522 ** If P5 is non-zero, then recursive program invocation is enabled.
5523 */
5524 case OP_Program: { /* jump */
5525 int nMem; /* Number of memory registers for sub-program */
5526 int nByte; /* Bytes of runtime space required for sub-program */
5527 Mem *pRt; /* Register to allocate runtime space */
5528 Mem *pMem; /* Used to iterate through memory cells */
5529 Mem *pEnd; /* Last memory cell in new array */
5530 VdbeFrame *pFrame; /* New vdbe frame to execute in */
5531 SubProgram *pProgram; /* Sub-program to execute */
5532 void *t; /* Token identifying trigger */
5533
5534 pProgram = pOp->p4.pProgram;
5535 pRt = &aMem[pOp->p3];
5536 assert( pProgram->nOp>0 );
5537
5538 /* If the p5 flag is clear, then recursive invocation of triggers is
5539 ** disabled for backwards compatibility (p5 is set if this sub-program
5540 ** is really a trigger, not a foreign key action, and the flag set
5541 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
5542 **
5543 ** It is recursive invocation of triggers, at the SQL level, that is
5544 ** disabled. In some cases a single trigger may generate more than one
5545 ** SubProgram (if the trigger may be executed with more than one different
5546 ** ON CONFLICT algorithm). SubProgram structures associated with a
5547 ** single trigger all have the same value for the SubProgram.token
5548 ** variable. */
5549 if( pOp->p5 ){
5550 t = pProgram->token;
5551 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
5552 if( pFrame ) break;
5553 }
5554
5555 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
5556 rc = SQLITE_ERROR;
5557 sqlite3VdbeError(p, "too many levels of trigger recursion");
5558 break;
5559 }
5560
5561 /* Register pRt is used to store the memory required to save the state
5562 ** of the current program, and the memory required at runtime to execute
5563 ** the trigger program. If this trigger has been fired before, then pRt
5564 ** is already allocated. Otherwise, it must be initialized. */
5565 if( (pRt->flags&MEM_Frame)==0 ){
5566 /* SubProgram.nMem is set to the number of memory cells used by the
5567 ** program stored in SubProgram.aOp. As well as these, one memory
5568 ** cell is required for each cursor used by the program. Set local
5569 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
5570 */
5571 nMem = pProgram->nMem + pProgram->nCsr;
5572 nByte = ROUND8(sizeof(VdbeFrame))
5573 + nMem * sizeof(Mem)
5574 + pProgram->nCsr * sizeof(VdbeCursor *)
5575 + pProgram->nOnce * sizeof(u8);
5576 pFrame = sqlite3DbMallocZero(db, nByte);
5577 if( !pFrame ){
5578 goto no_mem;
5579 }
5580 sqlite3VdbeMemRelease(pRt);
5581 pRt->flags = MEM_Frame;
5582 pRt->u.pFrame = pFrame;
5583
5584 pFrame->v = p;
5585 pFrame->nChildMem = nMem;
5586 pFrame->nChildCsr = pProgram->nCsr;
5587 pFrame->pc = (int)(pOp - aOp);
5588 pFrame->aMem = p->aMem;
5589 pFrame->nMem = p->nMem;
5590 pFrame->apCsr = p->apCsr;
5591 pFrame->nCursor = p->nCursor;
5592 pFrame->aOp = p->aOp;
5593 pFrame->nOp = p->nOp;
5594 pFrame->token = pProgram->token;
5595 pFrame->aOnceFlag = p->aOnceFlag;
5596 pFrame->nOnceFlag = p->nOnceFlag;
5597 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
5598 pFrame->anExec = p->anExec;
5599 #endif
5600
5601 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
5602 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
5603 pMem->flags = MEM_Undefined;
5604 pMem->db = db;
5605 }
5606 }else{
5607 pFrame = pRt->u.pFrame;
5608 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem );
5609 assert( pProgram->nCsr==pFrame->nChildCsr );
5610 assert( (int)(pOp - aOp)==pFrame->pc );
5611 }
5612
5613 p->nFrame++;
5614 pFrame->pParent = p->pFrame;
5615 pFrame->lastRowid = lastRowid;
5616 pFrame->nChange = p->nChange;
5617 pFrame->nDbChange = p->db->nChange;
5618 p->nChange = 0;
5619 p->pFrame = pFrame;
5620 p->aMem = aMem = &VdbeFrameMem(pFrame)[-1];
5621 p->nMem = pFrame->nChildMem;
5622 p->nCursor = (u16)pFrame->nChildCsr;
5623 p->apCsr = (VdbeCursor **)&aMem[p->nMem+1];
5624 p->aOp = aOp = pProgram->aOp;
5625 p->nOp = pProgram->nOp;
5626 p->aOnceFlag = (u8 *)&p->apCsr[p->nCursor];
5627 p->nOnceFlag = pProgram->nOnce;
5628 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
5629 p->anExec = 0;
5630 #endif
5631 pOp = &aOp[-1];
5632 memset(p->aOnceFlag, 0, p->nOnceFlag);
5633
5634 break;
5635 }
5636
5637 /* Opcode: Param P1 P2 * * *
5638 **
5639 ** This opcode is only ever present in sub-programs called via the
5640 ** OP_Program instruction. Copy a value currently stored in a memory
5641 ** cell of the calling (parent) frame to cell P2 in the current frames
5642 ** address space. This is used by trigger programs to access the new.*
5643 ** and old.* values.
5644 **
5645 ** The address of the cell in the parent frame is determined by adding
5646 ** the value of the P1 argument to the value of the P1 argument to the
5647 ** calling OP_Program instruction.
5648 */
5649 case OP_Param: { /* out2 */
5650 VdbeFrame *pFrame;
5651 Mem *pIn;
5652 pOut = out2Prerelease(p, pOp);
5653 pFrame = p->pFrame;
5654 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
5655 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
5656 break;
5657 }
5658
5659 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
5660
5661 #ifndef SQLITE_OMIT_FOREIGN_KEY
5662 /* Opcode: FkCounter P1 P2 * * *
5663 ** Synopsis: fkctr[P1]+=P2
5664 **
5665 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
5666 ** If P1 is non-zero, the database constraint counter is incremented
5667 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
5668 ** statement counter is incremented (immediate foreign key constraints).
5669 */
5670 case OP_FkCounter: {
5671 if( db->flags & SQLITE_DeferFKs ){
5672 db->nDeferredImmCons += pOp->p2;
5673 }else if( pOp->p1 ){
5674 db->nDeferredCons += pOp->p2;
5675 }else{
5676 p->nFkConstraint += pOp->p2;
5677 }
5678 break;
5679 }
5680
5681 /* Opcode: FkIfZero P1 P2 * * *
5682 ** Synopsis: if fkctr[P1]==0 goto P2
5683 **
5684 ** This opcode tests if a foreign key constraint-counter is currently zero.
5685 ** If so, jump to instruction P2. Otherwise, fall through to the next
5686 ** instruction.
5687 **
5688 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
5689 ** is zero (the one that counts deferred constraint violations). If P1 is
5690 ** zero, the jump is taken if the statement constraint-counter is zero
5691 ** (immediate foreign key constraint violations).
5692 */
5693 case OP_FkIfZero: { /* jump */
5694 if( pOp->p1 ){
5695 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
5696 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
5697 }else{
5698 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
5699 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
5700 }
5701 break;
5702 }
5703 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
5704
5705 #ifndef SQLITE_OMIT_AUTOINCREMENT
5706 /* Opcode: MemMax P1 P2 * * *
5707 ** Synopsis: r[P1]=max(r[P1],r[P2])
5708 **
5709 ** P1 is a register in the root frame of this VM (the root frame is
5710 ** different from the current frame if this instruction is being executed
5711 ** within a sub-program). Set the value of register P1 to the maximum of
5712 ** its current value and the value in register P2.
5713 **
5714 ** This instruction throws an error if the memory cell is not initially
5715 ** an integer.
5716 */
5717 case OP_MemMax: { /* in2 */
5718 VdbeFrame *pFrame;
5719 if( p->pFrame ){
5720 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5721 pIn1 = &pFrame->aMem[pOp->p1];
5722 }else{
5723 pIn1 = &aMem[pOp->p1];
5724 }
5725 assert( memIsValid(pIn1) );
5726 sqlite3VdbeMemIntegerify(pIn1);
5727 pIn2 = &aMem[pOp->p2];
5728 sqlite3VdbeMemIntegerify(pIn2);
5729 if( pIn1->u.i<pIn2->u.i){
5730 pIn1->u.i = pIn2->u.i;
5731 }
5732 break;
5733 }
5734 #endif /* SQLITE_OMIT_AUTOINCREMENT */
5735
5736 /* Opcode: IfPos P1 P2 P3 * *
5737 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
5738 **
5739 ** Register P1 must contain an integer.
5740 ** If the value of register P1 is 1 or greater, subtract P3 from the
5741 ** value in P1 and jump to P2.
5742 **
5743 ** If the initial value of register P1 is less than 1, then the
5744 ** value is unchanged and control passes through to the next instruction.
5745 */
5746 case OP_IfPos: { /* jump, in1 */
5747 pIn1 = &aMem[pOp->p1];
5748 assert( pIn1->flags&MEM_Int );
5749 VdbeBranchTaken( pIn1->u.i>0, 2);
5750 if( pIn1->u.i>0 ){
5751 pIn1->u.i -= pOp->p3;
5752 goto jump_to_p2;
5753 }
5754 break;
5755 }
5756
5757 /* Opcode: SetIfNotPos P1 P2 P3 * *
5758 ** Synopsis: if r[P1]<=0 then r[P2]=P3
5759 **
5760 ** Register P1 must contain an integer.
5761 ** If the value of register P1 is not positive (if it is less than 1) then
5762 ** set the value of register P2 to be the integer P3.
5763 */
5764 case OP_SetIfNotPos: { /* in1, in2 */
5765 pIn1 = &aMem[pOp->p1];
5766 assert( pIn1->flags&MEM_Int );
5767 if( pIn1->u.i<=0 ){
5768 pOut = out2Prerelease(p, pOp);
5769 pOut->u.i = pOp->p3;
5770 }
5771 break;
5772 }
5773
5774 /* Opcode: IfNotZero P1 P2 P3 * *
5775 ** Synopsis: if r[P1]!=0 then r[P1]-=P3, goto P2
5776 **
5777 ** Register P1 must contain an integer. If the content of register P1 is
5778 ** initially nonzero, then subtract P3 from the value in register P1 and
5779 ** jump to P2. If register P1 is initially zero, leave it unchanged
5780 ** and fall through.
5781 */
5782 case OP_IfNotZero: { /* jump, in1 */
5783 pIn1 = &aMem[pOp->p1];
5784 assert( pIn1->flags&MEM_Int );
5785 VdbeBranchTaken(pIn1->u.i<0, 2);
5786 if( pIn1->u.i ){
5787 pIn1->u.i -= pOp->p3;
5788 goto jump_to_p2;
5789 }
5790 break;
5791 }
5792
5793 /* Opcode: DecrJumpZero P1 P2 * * *
5794 ** Synopsis: if (--r[P1])==0 goto P2
5795 **
5796 ** Register P1 must hold an integer. Decrement the value in register P1
5797 ** then jump to P2 if the new value is exactly zero.
5798 */
5799 case OP_DecrJumpZero: { /* jump, in1 */
5800 pIn1 = &aMem[pOp->p1];
5801 assert( pIn1->flags&MEM_Int );
5802 pIn1->u.i--;
5803 VdbeBranchTaken(pIn1->u.i==0, 2);
5804 if( pIn1->u.i==0 ) goto jump_to_p2;
5805 break;
5806 }
5807
5808
5809 /* Opcode: JumpZeroIncr P1 P2 * * *
5810 ** Synopsis: if (r[P1]++)==0 ) goto P2
5811 **
5812 ** The register P1 must contain an integer. If register P1 is initially
5813 ** zero, then jump to P2. Increment register P1 regardless of whether or
5814 ** not the jump is taken.
5815 */
5816 case OP_JumpZeroIncr: { /* jump, in1 */
5817 pIn1 = &aMem[pOp->p1];
5818 assert( pIn1->flags&MEM_Int );
5819 VdbeBranchTaken(pIn1->u.i==0, 2);
5820 if( (pIn1->u.i++)==0 ) goto jump_to_p2;
5821 break;
5822 }
5823
5824 /* Opcode: AggStep0 * P2 P3 P4 P5
5825 ** Synopsis: accum=r[P3] step(r[P2@P5])
5826 **
5827 ** Execute the step function for an aggregate. The
5828 ** function has P5 arguments. P4 is a pointer to the FuncDef
5829 ** structure that specifies the function. Register P3 is the
5830 ** accumulator.
5831 **
5832 ** The P5 arguments are taken from register P2 and its
5833 ** successors.
5834 */
5835 /* Opcode: AggStep * P2 P3 P4 P5
5836 ** Synopsis: accum=r[P3] step(r[P2@P5])
5837 **
5838 ** Execute the step function for an aggregate. The
5839 ** function has P5 arguments. P4 is a pointer to an sqlite3_context
5840 ** object that is used to run the function. Register P3 is
5841 ** as the accumulator.
5842 **
5843 ** The P5 arguments are taken from register P2 and its
5844 ** successors.
5845 **
5846 ** This opcode is initially coded as OP_AggStep0. On first evaluation,
5847 ** the FuncDef stored in P4 is converted into an sqlite3_context and
5848 ** the opcode is changed. In this way, the initialization of the
5849 ** sqlite3_context only happens once, instead of on each call to the
5850 ** step function.
5851 */
5852 case OP_AggStep0: {
5853 int n;
5854 sqlite3_context *pCtx;
5855
5856 assert( pOp->p4type==P4_FUNCDEF );
5857 n = pOp->p5;
5858 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
5859 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem-p->nCursor)+1) );
5860 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
5861 pCtx = sqlite3DbMallocRaw(db, sizeof(*pCtx) + (n-1)*sizeof(sqlite3_value*));
5862 if( pCtx==0 ) goto no_mem;
5863 pCtx->pMem = 0;
5864 pCtx->pFunc = pOp->p4.pFunc;
5865 pCtx->iOp = (int)(pOp - aOp);
5866 pCtx->pVdbe = p;
5867 pCtx->argc = n;
5868 pOp->p4type = P4_FUNCCTX;
5869 pOp->p4.pCtx = pCtx;
5870 pOp->opcode = OP_AggStep;
5871 /* Fall through into OP_AggStep */
5872 }
5873 case OP_AggStep: {
5874 int i;
5875 sqlite3_context *pCtx;
5876 Mem *pMem;
5877 Mem t;
5878
5879 assert( pOp->p4type==P4_FUNCCTX );
5880 pCtx = pOp->p4.pCtx;
5881 pMem = &aMem[pOp->p3];
5882
5883 /* If this function is inside of a trigger, the register array in aMem[]
5884 ** might change from one evaluation to the next. The next block of code
5885 ** checks to see if the register array has changed, and if so it
5886 ** reinitializes the relavant parts of the sqlite3_context object */
5887 if( pCtx->pMem != pMem ){
5888 pCtx->pMem = pMem;
5889 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
5890 }
5891
5892 #ifdef SQLITE_DEBUG
5893 for(i=0; i<pCtx->argc; i++){
5894 assert( memIsValid(pCtx->argv[i]) );
5895 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
5896 }
5897 #endif
5898
5899 pMem->n++;
5900 sqlite3VdbeMemInit(&t, db, MEM_Null);
5901 pCtx->pOut = &t;
5902 pCtx->fErrorOrAux = 0;
5903 pCtx->skipFlag = 0;
5904 (pCtx->pFunc->xStep)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
5905 if( pCtx->fErrorOrAux ){
5906 if( pCtx->isError ){
5907 sqlite3VdbeError(p, "%s", sqlite3_value_text(&t));
5908 rc = pCtx->isError;
5909 }
5910 sqlite3VdbeMemRelease(&t);
5911 }else{
5912 assert( t.flags==MEM_Null );
5913 }
5914 if( pCtx->skipFlag ){
5915 assert( pOp[-1].opcode==OP_CollSeq );
5916 i = pOp[-1].p1;
5917 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
5918 }
5919 break;
5920 }
5921
5922 /* Opcode: AggFinal P1 P2 * P4 *
5923 ** Synopsis: accum=r[P1] N=P2
5924 **
5925 ** Execute the finalizer function for an aggregate. P1 is
5926 ** the memory location that is the accumulator for the aggregate.
5927 **
5928 ** P2 is the number of arguments that the step function takes and
5929 ** P4 is a pointer to the FuncDef for this function. The P2
5930 ** argument is not used by this opcode. It is only there to disambiguate
5931 ** functions that can take varying numbers of arguments. The
5932 ** P4 argument is only needed for the degenerate case where
5933 ** the step function was not previously called.
5934 */
5935 case OP_AggFinal: {
5936 Mem *pMem;
5937 assert( pOp->p1>0 && pOp->p1<=(p->nMem-p->nCursor) );
5938 pMem = &aMem[pOp->p1];
5939 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
5940 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
5941 if( rc ){
5942 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
5943 }
5944 sqlite3VdbeChangeEncoding(pMem, encoding);
5945 UPDATE_MAX_BLOBSIZE(pMem);
5946 if( sqlite3VdbeMemTooBig(pMem) ){
5947 goto too_big;
5948 }
5949 break;
5950 }
5951
5952 #ifndef SQLITE_OMIT_WAL
5953 /* Opcode: Checkpoint P1 P2 P3 * *
5954 **
5955 ** Checkpoint database P1. This is a no-op if P1 is not currently in
5956 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
5957 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns
5958 ** SQLITE_BUSY or not, respectively. Write the number of pages in the
5959 ** WAL after the checkpoint into mem[P3+1] and the number of pages
5960 ** in the WAL that have been checkpointed after the checkpoint
5961 ** completes into mem[P3+2]. However on an error, mem[P3+1] and
5962 ** mem[P3+2] are initialized to -1.
5963 */
5964 case OP_Checkpoint: {
5965 int i; /* Loop counter */
5966 int aRes[3]; /* Results */
5967 Mem *pMem; /* Write results here */
5968
5969 assert( p->readOnly==0 );
5970 aRes[0] = 0;
5971 aRes[1] = aRes[2] = -1;
5972 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
5973 || pOp->p2==SQLITE_CHECKPOINT_FULL
5974 || pOp->p2==SQLITE_CHECKPOINT_RESTART
5975 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
5976 );
5977 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
5978 if( rc==SQLITE_BUSY ){
5979 rc = SQLITE_OK;
5980 aRes[0] = 1;
5981 }
5982 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
5983 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
5984 }
5985 break;
5986 };
5987 #endif
5988
5989 #ifndef SQLITE_OMIT_PRAGMA
5990 /* Opcode: JournalMode P1 P2 P3 * *
5991 **
5992 ** Change the journal mode of database P1 to P3. P3 must be one of the
5993 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
5994 ** modes (delete, truncate, persist, off and memory), this is a simple
5995 ** operation. No IO is required.
5996 **
5997 ** If changing into or out of WAL mode the procedure is more complicated.
5998 **
5999 ** Write a string containing the final journal-mode to register P2.
6000 */
6001 case OP_JournalMode: { /* out2 */
6002 Btree *pBt; /* Btree to change journal mode of */
6003 Pager *pPager; /* Pager associated with pBt */
6004 int eNew; /* New journal mode */
6005 int eOld; /* The old journal mode */
6006 #ifndef SQLITE_OMIT_WAL
6007 const char *zFilename; /* Name of database file for pPager */
6008 #endif
6009
6010 pOut = out2Prerelease(p, pOp);
6011 eNew = pOp->p3;
6012 assert( eNew==PAGER_JOURNALMODE_DELETE
6013 || eNew==PAGER_JOURNALMODE_TRUNCATE
6014 || eNew==PAGER_JOURNALMODE_PERSIST
6015 || eNew==PAGER_JOURNALMODE_OFF
6016 || eNew==PAGER_JOURNALMODE_MEMORY
6017 || eNew==PAGER_JOURNALMODE_WAL
6018 || eNew==PAGER_JOURNALMODE_QUERY
6019 );
6020 assert( pOp->p1>=0 && pOp->p1<db->nDb );
6021 assert( p->readOnly==0 );
6022
6023 pBt = db->aDb[pOp->p1].pBt;
6024 pPager = sqlite3BtreePager(pBt);
6025 eOld = sqlite3PagerGetJournalMode(pPager);
6026 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
6027 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
6028
6029 #ifndef SQLITE_OMIT_WAL
6030 zFilename = sqlite3PagerFilename(pPager, 1);
6031
6032 /* Do not allow a transition to journal_mode=WAL for a database
6033 ** in temporary storage or if the VFS does not support shared memory
6034 */
6035 if( eNew==PAGER_JOURNALMODE_WAL
6036 && (sqlite3Strlen30(zFilename)==0 /* Temp file */
6037 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
6038 ){
6039 eNew = eOld;
6040 }
6041
6042 if( (eNew!=eOld)
6043 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
6044 ){
6045 if( !db->autoCommit || db->nVdbeRead>1 ){
6046 rc = SQLITE_ERROR;
6047 sqlite3VdbeError(p,
6048 "cannot change %s wal mode from within a transaction",
6049 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
6050 );
6051 break;
6052 }else{
6053
6054 if( eOld==PAGER_JOURNALMODE_WAL ){
6055 /* If leaving WAL mode, close the log file. If successful, the call
6056 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
6057 ** file. An EXCLUSIVE lock may still be held on the database file
6058 ** after a successful return.
6059 */
6060 rc = sqlite3PagerCloseWal(pPager);
6061 if( rc==SQLITE_OK ){
6062 sqlite3PagerSetJournalMode(pPager, eNew);
6063 }
6064 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
6065 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
6066 ** as an intermediate */
6067 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
6068 }
6069
6070 /* Open a transaction on the database file. Regardless of the journal
6071 ** mode, this transaction always uses a rollback journal.
6072 */
6073 assert( sqlite3BtreeIsInTrans(pBt)==0 );
6074 if( rc==SQLITE_OK ){
6075 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
6076 }
6077 }
6078 }
6079 #endif /* ifndef SQLITE_OMIT_WAL */
6080
6081 if( rc ){
6082 eNew = eOld;
6083 }
6084 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
6085
6086 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
6087 pOut->z = (char *)sqlite3JournalModename(eNew);
6088 pOut->n = sqlite3Strlen30(pOut->z);
6089 pOut->enc = SQLITE_UTF8;
6090 sqlite3VdbeChangeEncoding(pOut, encoding);
6091 break;
6092 };
6093 #endif /* SQLITE_OMIT_PRAGMA */
6094
6095 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
6096 /* Opcode: Vacuum * * * * *
6097 **
6098 ** Vacuum the entire database. This opcode will cause other virtual
6099 ** machines to be created and run. It may not be called from within
6100 ** a transaction.
6101 */
6102 case OP_Vacuum: {
6103 assert( p->readOnly==0 );
6104 rc = sqlite3RunVacuum(&p->zErrMsg, db);
6105 break;
6106 }
6107 #endif
6108
6109 #if !defined(SQLITE_OMIT_AUTOVACUUM)
6110 /* Opcode: IncrVacuum P1 P2 * * *
6111 **
6112 ** Perform a single step of the incremental vacuum procedure on
6113 ** the P1 database. If the vacuum has finished, jump to instruction
6114 ** P2. Otherwise, fall through to the next instruction.
6115 */
6116 case OP_IncrVacuum: { /* jump */
6117 Btree *pBt;
6118
6119 assert( pOp->p1>=0 && pOp->p1<db->nDb );
6120 assert( DbMaskTest(p->btreeMask, pOp->p1) );
6121 assert( p->readOnly==0 );
6122 pBt = db->aDb[pOp->p1].pBt;
6123 rc = sqlite3BtreeIncrVacuum(pBt);
6124 VdbeBranchTaken(rc==SQLITE_DONE,2);
6125 if( rc==SQLITE_DONE ){
6126 rc = SQLITE_OK;
6127 goto jump_to_p2;
6128 }
6129 break;
6130 }
6131 #endif
6132
6133 /* Opcode: Expire P1 * * * *
6134 **
6135 ** Cause precompiled statements to expire. When an expired statement
6136 ** is executed using sqlite3_step() it will either automatically
6137 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
6138 ** or it will fail with SQLITE_SCHEMA.
6139 **
6140 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
6141 ** then only the currently executing statement is expired.
6142 */
6143 case OP_Expire: {
6144 if( !pOp->p1 ){
6145 sqlite3ExpirePreparedStatements(db);
6146 }else{
6147 p->expired = 1;
6148 }
6149 break;
6150 }
6151
6152 #ifndef SQLITE_OMIT_SHARED_CACHE
6153 /* Opcode: TableLock P1 P2 P3 P4 *
6154 ** Synopsis: iDb=P1 root=P2 write=P3
6155 **
6156 ** Obtain a lock on a particular table. This instruction is only used when
6157 ** the shared-cache feature is enabled.
6158 **
6159 ** P1 is the index of the database in sqlite3.aDb[] of the database
6160 ** on which the lock is acquired. A readlock is obtained if P3==0 or
6161 ** a write lock if P3==1.
6162 **
6163 ** P2 contains the root-page of the table to lock.
6164 **
6165 ** P4 contains a pointer to the name of the table being locked. This is only
6166 ** used to generate an error message if the lock cannot be obtained.
6167 */
6168 case OP_TableLock: {
6169 u8 isWriteLock = (u8)pOp->p3;
6170 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommitted) ){
6171 int p1 = pOp->p1;
6172 assert( p1>=0 && p1<db->nDb );
6173 assert( DbMaskTest(p->btreeMask, p1) );
6174 assert( isWriteLock==0 || isWriteLock==1 );
6175 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
6176 if( (rc&0xFF)==SQLITE_LOCKED ){
6177 const char *z = pOp->p4.z;
6178 sqlite3VdbeError(p, "database table is locked: %s", z);
6179 }
6180 }
6181 break;
6182 }
6183 #endif /* SQLITE_OMIT_SHARED_CACHE */
6184
6185 #ifndef SQLITE_OMIT_VIRTUALTABLE
6186 /* Opcode: VBegin * * * P4 *
6187 **
6188 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
6189 ** xBegin method for that table.
6190 **
6191 ** Also, whether or not P4 is set, check that this is not being called from
6192 ** within a callback to a virtual table xSync() method. If it is, the error
6193 ** code will be set to SQLITE_LOCKED.
6194 */
6195 case OP_VBegin: {
6196 VTable *pVTab;
6197 pVTab = pOp->p4.pVtab;
6198 rc = sqlite3VtabBegin(db, pVTab);
6199 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
6200 break;
6201 }
6202 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6203
6204 #ifndef SQLITE_OMIT_VIRTUALTABLE
6205 /* Opcode: VCreate P1 P2 * * *
6206 **
6207 ** P2 is a register that holds the name of a virtual table in database
6208 ** P1. Call the xCreate method for that table.
6209 */
6210 case OP_VCreate: {
6211 Mem sMem; /* For storing the record being decoded */
6212 const char *zTab; /* Name of the virtual table */
6213
6214 memset(&sMem, 0, sizeof(sMem));
6215 sMem.db = db;
6216 /* Because P2 is always a static string, it is impossible for the
6217 ** sqlite3VdbeMemCopy() to fail */
6218 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
6219 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
6220 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
6221 assert( rc==SQLITE_OK );
6222 zTab = (const char*)sqlite3_value_text(&sMem);
6223 assert( zTab || db->mallocFailed );
6224 if( zTab ){
6225 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
6226 }
6227 sqlite3VdbeMemRelease(&sMem);
6228 break;
6229 }
6230 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6231
6232 #ifndef SQLITE_OMIT_VIRTUALTABLE
6233 /* Opcode: VDestroy P1 * * P4 *
6234 **
6235 ** P4 is the name of a virtual table in database P1. Call the xDestroy method
6236 ** of that table.
6237 */
6238 case OP_VDestroy: {
6239 db->nVDestroy++;
6240 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
6241 db->nVDestroy--;
6242 break;
6243 }
6244 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6245
6246 #ifndef SQLITE_OMIT_VIRTUALTABLE
6247 /* Opcode: VOpen P1 * * P4 *
6248 **
6249 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6250 ** P1 is a cursor number. This opcode opens a cursor to the virtual
6251 ** table and stores that cursor in P1.
6252 */
6253 case OP_VOpen: {
6254 VdbeCursor *pCur;
6255 sqlite3_vtab_cursor *pVCur;
6256 sqlite3_vtab *pVtab;
6257 const sqlite3_module *pModule;
6258
6259 assert( p->bIsReader );
6260 pCur = 0;
6261 pVCur = 0;
6262 pVtab = pOp->p4.pVtab->pVtab;
6263 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6264 rc = SQLITE_LOCKED;
6265 break;
6266 }
6267 pModule = pVtab->pModule;
6268 rc = pModule->xOpen(pVtab, &pVCur);
6269 sqlite3VtabImportErrmsg(p, pVtab);
6270 if( SQLITE_OK==rc ){
6271 /* Initialize sqlite3_vtab_cursor base class */
6272 pVCur->pVtab = pVtab;
6273
6274 /* Initialize vdbe cursor object */
6275 pCur = allocateCursor(p, pOp->p1, 0, -1, CURTYPE_VTAB);
6276 if( pCur ){
6277 pCur->uc.pVCur = pVCur;
6278 pVtab->nRef++;
6279 }else{
6280 assert( db->mallocFailed );
6281 pModule->xClose(pVCur);
6282 goto no_mem;
6283 }
6284 }
6285 break;
6286 }
6287 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6288
6289 #ifndef SQLITE_OMIT_VIRTUALTABLE
6290 /* Opcode: VFilter P1 P2 P3 P4 *
6291 ** Synopsis: iplan=r[P3] zplan='P4'
6292 **
6293 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if
6294 ** the filtered result set is empty.
6295 **
6296 ** P4 is either NULL or a string that was generated by the xBestIndex
6297 ** method of the module. The interpretation of the P4 string is left
6298 ** to the module implementation.
6299 **
6300 ** This opcode invokes the xFilter method on the virtual table specified
6301 ** by P1. The integer query plan parameter to xFilter is stored in register
6302 ** P3. Register P3+1 stores the argc parameter to be passed to the
6303 ** xFilter method. Registers P3+2..P3+1+argc are the argc
6304 ** additional parameters which are passed to
6305 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
6306 **
6307 ** A jump is made to P2 if the result set after filtering would be empty.
6308 */
6309 case OP_VFilter: { /* jump */
6310 int nArg;
6311 int iQuery;
6312 const sqlite3_module *pModule;
6313 Mem *pQuery;
6314 Mem *pArgc;
6315 sqlite3_vtab_cursor *pVCur;
6316 sqlite3_vtab *pVtab;
6317 VdbeCursor *pCur;
6318 int res;
6319 int i;
6320 Mem **apArg;
6321
6322 pQuery = &aMem[pOp->p3];
6323 pArgc = &pQuery[1];
6324 pCur = p->apCsr[pOp->p1];
6325 assert( memIsValid(pQuery) );
6326 REGISTER_TRACE(pOp->p3, pQuery);
6327 assert( pCur->eCurType==CURTYPE_VTAB );
6328 pVCur = pCur->uc.pVCur;
6329 pVtab = pVCur->pVtab;
6330 pModule = pVtab->pModule;
6331
6332 /* Grab the index number and argc parameters */
6333 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
6334 nArg = (int)pArgc->u.i;
6335 iQuery = (int)pQuery->u.i;
6336
6337 /* Invoke the xFilter method */
6338 res = 0;
6339 apArg = p->apArg;
6340 for(i = 0; i<nArg; i++){
6341 apArg[i] = &pArgc[i+1];
6342 }
6343 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
6344 sqlite3VtabImportErrmsg(p, pVtab);
6345 if( rc==SQLITE_OK ){
6346 res = pModule->xEof(pVCur);
6347 }
6348 pCur->nullRow = 0;
6349 VdbeBranchTaken(res!=0,2);
6350 if( res ) goto jump_to_p2;
6351 break;
6352 }
6353 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6354
6355 #ifndef SQLITE_OMIT_VIRTUALTABLE
6356 /* Opcode: VColumn P1 P2 P3 * *
6357 ** Synopsis: r[P3]=vcolumn(P2)
6358 **
6359 ** Store the value of the P2-th column of
6360 ** the row of the virtual-table that the
6361 ** P1 cursor is pointing to into register P3.
6362 */
6363 case OP_VColumn: {
6364 sqlite3_vtab *pVtab;
6365 const sqlite3_module *pModule;
6366 Mem *pDest;
6367 sqlite3_context sContext;
6368
6369 VdbeCursor *pCur = p->apCsr[pOp->p1];
6370 assert( pCur->eCurType==CURTYPE_VTAB );
6371 assert( pOp->p3>0 && pOp->p3<=(p->nMem-p->nCursor) );
6372 pDest = &aMem[pOp->p3];
6373 memAboutToChange(p, pDest);
6374 if( pCur->nullRow ){
6375 sqlite3VdbeMemSetNull(pDest);
6376 break;
6377 }
6378 pVtab = pCur->uc.pVCur->pVtab;
6379 pModule = pVtab->pModule;
6380 assert( pModule->xColumn );
6381 memset(&sContext, 0, sizeof(sContext));
6382 sContext.pOut = pDest;
6383 MemSetTypeFlag(pDest, MEM_Null);
6384 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
6385 sqlite3VtabImportErrmsg(p, pVtab);
6386 if( sContext.isError ){
6387 rc = sContext.isError;
6388 }
6389 sqlite3VdbeChangeEncoding(pDest, encoding);
6390 REGISTER_TRACE(pOp->p3, pDest);
6391 UPDATE_MAX_BLOBSIZE(pDest);
6392
6393 if( sqlite3VdbeMemTooBig(pDest) ){
6394 goto too_big;
6395 }
6396 break;
6397 }
6398 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6399
6400 #ifndef SQLITE_OMIT_VIRTUALTABLE
6401 /* Opcode: VNext P1 P2 * * *
6402 **
6403 ** Advance virtual table P1 to the next row in its result set and
6404 ** jump to instruction P2. Or, if the virtual table has reached
6405 ** the end of its result set, then fall through to the next instruction.
6406 */
6407 case OP_VNext: { /* jump */
6408 sqlite3_vtab *pVtab;
6409 const sqlite3_module *pModule;
6410 int res;
6411 VdbeCursor *pCur;
6412
6413 res = 0;
6414 pCur = p->apCsr[pOp->p1];
6415 assert( pCur->eCurType==CURTYPE_VTAB );
6416 if( pCur->nullRow ){
6417 break;
6418 }
6419 pVtab = pCur->uc.pVCur->pVtab;
6420 pModule = pVtab->pModule;
6421 assert( pModule->xNext );
6422
6423 /* Invoke the xNext() method of the module. There is no way for the
6424 ** underlying implementation to return an error if one occurs during
6425 ** xNext(). Instead, if an error occurs, true is returned (indicating that
6426 ** data is available) and the error code returned when xColumn or
6427 ** some other method is next invoked on the save virtual table cursor.
6428 */
6429 rc = pModule->xNext(pCur->uc.pVCur);
6430 sqlite3VtabImportErrmsg(p, pVtab);
6431 if( rc==SQLITE_OK ){
6432 res = pModule->xEof(pCur->uc.pVCur);
6433 }
6434 VdbeBranchTaken(!res,2);
6435 if( !res ){
6436 /* If there is data, jump to P2 */
6437 goto jump_to_p2_and_check_for_interrupt;
6438 }
6439 goto check_for_interrupt;
6440 }
6441 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6442
6443 #ifndef SQLITE_OMIT_VIRTUALTABLE
6444 /* Opcode: VRename P1 * * P4 *
6445 **
6446 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6447 ** This opcode invokes the corresponding xRename method. The value
6448 ** in register P1 is passed as the zName argument to the xRename method.
6449 */
6450 case OP_VRename: {
6451 sqlite3_vtab *pVtab;
6452 Mem *pName;
6453
6454 pVtab = pOp->p4.pVtab->pVtab;
6455 pName = &aMem[pOp->p1];
6456 assert( pVtab->pModule->xRename );
6457 assert( memIsValid(pName) );
6458 assert( p->readOnly==0 );
6459 REGISTER_TRACE(pOp->p1, pName);
6460 assert( pName->flags & MEM_Str );
6461 testcase( pName->enc==SQLITE_UTF8 );
6462 testcase( pName->enc==SQLITE_UTF16BE );
6463 testcase( pName->enc==SQLITE_UTF16LE );
6464 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
6465 if( rc==SQLITE_OK ){
6466 rc = pVtab->pModule->xRename(pVtab, pName->z);
6467 sqlite3VtabImportErrmsg(p, pVtab);
6468 p->expired = 0;
6469 }
6470 break;
6471 }
6472 #endif
6473
6474 #ifndef SQLITE_OMIT_VIRTUALTABLE
6475 /* Opcode: VUpdate P1 P2 P3 P4 P5
6476 ** Synopsis: data=r[P3@P2]
6477 **
6478 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
6479 ** This opcode invokes the corresponding xUpdate method. P2 values
6480 ** are contiguous memory cells starting at P3 to pass to the xUpdate
6481 ** invocation. The value in register (P3+P2-1) corresponds to the
6482 ** p2th element of the argv array passed to xUpdate.
6483 **
6484 ** The xUpdate method will do a DELETE or an INSERT or both.
6485 ** The argv[0] element (which corresponds to memory cell P3)
6486 ** is the rowid of a row to delete. If argv[0] is NULL then no
6487 ** deletion occurs. The argv[1] element is the rowid of the new
6488 ** row. This can be NULL to have the virtual table select the new
6489 ** rowid for itself. The subsequent elements in the array are
6490 ** the values of columns in the new row.
6491 **
6492 ** If P2==1 then no insert is performed. argv[0] is the rowid of
6493 ** a row to delete.
6494 **
6495 ** P1 is a boolean flag. If it is set to true and the xUpdate call
6496 ** is successful, then the value returned by sqlite3_last_insert_rowid()
6497 ** is set to the value of the rowid for the row just inserted.
6498 **
6499 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
6500 ** apply in the case of a constraint failure on an insert or update.
6501 */
6502 case OP_VUpdate: {
6503 sqlite3_vtab *pVtab;
6504 const sqlite3_module *pModule;
6505 int nArg;
6506 int i;
6507 sqlite_int64 rowid;
6508 Mem **apArg;
6509 Mem *pX;
6510
6511 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
6512 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
6513 );
6514 assert( p->readOnly==0 );
6515 pVtab = pOp->p4.pVtab->pVtab;
6516 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
6517 rc = SQLITE_LOCKED;
6518 break;
6519 }
6520 pModule = pVtab->pModule;
6521 nArg = pOp->p2;
6522 assert( pOp->p4type==P4_VTAB );
6523 if( ALWAYS(pModule->xUpdate) ){
6524 u8 vtabOnConflict = db->vtabOnConflict;
6525 apArg = p->apArg;
6526 pX = &aMem[pOp->p3];
6527 for(i=0; i<nArg; i++){
6528 assert( memIsValid(pX) );
6529 memAboutToChange(p, pX);
6530 apArg[i] = pX;
6531 pX++;
6532 }
6533 db->vtabOnConflict = pOp->p5;
6534 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
6535 db->vtabOnConflict = vtabOnConflict;
6536 sqlite3VtabImportErrmsg(p, pVtab);
6537 if( rc==SQLITE_OK && pOp->p1 ){
6538 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
6539 db->lastRowid = lastRowid = rowid;
6540 }
6541 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
6542 if( pOp->p5==OE_Ignore ){
6543 rc = SQLITE_OK;
6544 }else{
6545 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
6546 }
6547 }else{
6548 p->nChange++;
6549 }
6550 }
6551 break;
6552 }
6553 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6554
6555 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
6556 /* Opcode: Pagecount P1 P2 * * *
6557 **
6558 ** Write the current number of pages in database P1 to memory cell P2.
6559 */
6560 case OP_Pagecount: { /* out2 */
6561 pOut = out2Prerelease(p, pOp);
6562 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
6563 break;
6564 }
6565 #endif
6566
6567
6568 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
6569 /* Opcode: MaxPgcnt P1 P2 P3 * *
6570 **
6571 ** Try to set the maximum page count for database P1 to the value in P3.
6572 ** Do not let the maximum page count fall below the current page count and
6573 ** do not change the maximum page count value if P3==0.
6574 **
6575 ** Store the maximum page count after the change in register P2.
6576 */
6577 case OP_MaxPgcnt: { /* out2 */
6578 unsigned int newMax;
6579 Btree *pBt;
6580
6581 pOut = out2Prerelease(p, pOp);
6582 pBt = db->aDb[pOp->p1].pBt;
6583 newMax = 0;
6584 if( pOp->p3 ){
6585 newMax = sqlite3BtreeLastPage(pBt);
6586 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
6587 }
6588 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
6589 break;
6590 }
6591 #endif
6592
6593
6594 /* Opcode: Init * P2 * P4 *
6595 ** Synopsis: Start at P2
6596 **
6597 ** Programs contain a single instance of this opcode as the very first
6598 ** opcode.
6599 **
6600 ** If tracing is enabled (by the sqlite3_trace()) interface, then
6601 ** the UTF-8 string contained in P4 is emitted on the trace callback.
6602 ** Or if P4 is blank, use the string returned by sqlite3_sql().
6603 **
6604 ** If P2 is not zero, jump to instruction P2.
6605 */
6606 case OP_Init: { /* jump */
6607 char *zTrace;
6608 char *z;
6609
6610 #ifndef SQLITE_OMIT_TRACE
6611 if( db->xTrace
6612 && !p->doingRerun
6613 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6614 ){
6615 z = sqlite3VdbeExpandSql(p, zTrace);
6616 db->xTrace(db->pTraceArg, z);
6617 sqlite3DbFree(db, z);
6618 }
6619 #ifdef SQLITE_USE_FCNTL_TRACE
6620 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
6621 if( zTrace ){
6622 int i;
6623 for(i=0; i<db->nDb; i++){
6624 if( DbMaskTest(p->btreeMask, i)==0 ) continue;
6625 sqlite3_file_control(db, db->aDb[i].zName, SQLITE_FCNTL_TRACE, zTrace);
6626 }
6627 }
6628 #endif /* SQLITE_USE_FCNTL_TRACE */
6629 #ifdef SQLITE_DEBUG
6630 if( (db->flags & SQLITE_SqlTrace)!=0
6631 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
6632 ){
6633 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
6634 }
6635 #endif /* SQLITE_DEBUG */
6636 #endif /* SQLITE_OMIT_TRACE */
6637 if( pOp->p2 ) goto jump_to_p2;
6638 break;
6639 }
6640
6641 #ifdef SQLITE_ENABLE_CURSOR_HINTS
6642 /* Opcode: CursorHint P1 * * P4 *
6643 **
6644 ** Provide a hint to cursor P1 that it only needs to return rows that
6645 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer
6646 ** to values currently held in registers. TK_COLUMN terms in the P4
6647 ** expression refer to columns in the b-tree to which cursor P1 is pointing.
6648 */
6649 case OP_CursorHint: {
6650 VdbeCursor *pC;
6651
6652 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6653 assert( pOp->p4type==P4_EXPR );
6654 pC = p->apCsr[pOp->p1];
6655 if( pC ){
6656 assert( pC->eCurType==CURTYPE_BTREE );
6657 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
6658 pOp->p4.pExpr, aMem);
6659 }
6660 break;
6661 }
6662 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
6663
6664 /* Opcode: Noop * * * * *
6665 **
6666 ** Do nothing. This instruction is often useful as a jump
6667 ** destination.
6668 */
6669 /*
6670 ** The magic Explain opcode are only inserted when explain==2 (which
6671 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
6672 ** This opcode records information from the optimizer. It is the
6673 ** the same as a no-op. This opcodesnever appears in a real VM program.
6674 */
6675 default: { /* This is really OP_Noop and OP_Explain */
6676 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
6677 break;
6678 }
6679
6680 /*****************************************************************************
6681 ** The cases of the switch statement above this line should all be indented
6682 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the
6683 ** readability. From this point on down, the normal indentation rules are
6684 ** restored.
6685 *****************************************************************************/
6686 }
6687
6688 #ifdef VDBE_PROFILE
6689 {
6690 u64 endTime = sqlite3Hwtime();
6691 if( endTime>start ) pOrigOp->cycles += endTime - start;
6692 pOrigOp->cnt++;
6693 }
6694 #endif
6695
6696 /* The following code adds nothing to the actual functionality
6697 ** of the program. It is only here for testing and debugging.
6698 ** On the other hand, it does burn CPU cycles every time through
6699 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
6700 */
6701 #ifndef NDEBUG
6702 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
6703
6704 #ifdef SQLITE_DEBUG
6705 if( db->flags & SQLITE_VdbeTrace ){
6706 if( rc!=0 ) printf("rc=%d\n",rc);
6707 if( pOrigOp->opflags & (OPFLG_OUT2) ){
6708 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
6709 }
6710 if( pOrigOp->opflags & OPFLG_OUT3 ){
6711 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
6712 }
6713 }
6714 #endif /* SQLITE_DEBUG */
6715 #endif /* NDEBUG */
6716 } /* The end of the for(;;) loop the loops through opcodes */
6717
6718 /* If we reach this point, it means that execution is finished with
6719 ** an error of some kind.
6720 */
6721 vdbe_error_halt:
6722 assert( rc );
6723 p->rc = rc;
6724 testcase( sqlite3GlobalConfig.xLog!=0 );
6725 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
6726 (int)(pOp - aOp), p->zSql, p->zErrMsg);
6727 sqlite3VdbeHalt(p);
6728 if( rc==SQLITE_IOERR_NOMEM ) db->mallocFailed = 1;
6729 rc = SQLITE_ERROR;
6730 if( resetSchemaOnFault>0 ){
6731 sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
6732 }
6733
6734 /* This is the only way out of this procedure. We have to
6735 ** release the mutexes on btrees that were acquired at the
6736 ** top. */
6737 vdbe_return:
6738 db->lastRowid = lastRowid;
6739 testcase( nVmStep>0 );
6740 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
6741 sqlite3VdbeLeave(p);
6742 return rc;
6743
6744 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
6745 ** is encountered.
6746 */
6747 too_big:
6748 sqlite3VdbeError(p, "string or blob too big");
6749 rc = SQLITE_TOOBIG;
6750 goto vdbe_error_halt;
6751
6752 /* Jump to here if a malloc() fails.
6753 */
6754 no_mem:
6755 db->mallocFailed = 1;
6756 sqlite3VdbeError(p, "out of memory");
6757 rc = SQLITE_NOMEM;
6758 goto vdbe_error_halt;
6759
6760 /* Jump to here for any other kind of fatal error. The "rc" variable
6761 ** should hold the error number.
6762 */
6763 abort_due_to_error:
6764 assert( p->zErrMsg==0 );
6765 if( db->mallocFailed ) rc = SQLITE_NOMEM;
6766 if( rc!=SQLITE_IOERR_NOMEM ){
6767 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
6768 }
6769 goto vdbe_error_halt;
6770
6771 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
6772 ** flag.
6773 */
6774 abort_due_to_interrupt:
6775 assert( db->u1.isInterrupted );
6776 rc = SQLITE_INTERRUPT;
6777 p->rc = rc;
6778 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
6779 goto vdbe_error_halt;
6780 }
OLDNEW
« no previous file with comments | « third_party/sqlite/sqlite-src-3100200/src/vdbe.h ('k') | third_party/sqlite/sqlite-src-3100200/src/vdbeInt.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698