| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 ** 2010 August 28 | |
| 3 ** | |
| 4 ** The author disclaims copyright to this source code. In place of | |
| 5 ** a legal notice, here is a blessing: | |
| 6 ** | |
| 7 ** May you do good and not evil. | |
| 8 ** May you find forgiveness for yourself and forgive others. | |
| 9 ** May you share freely, never taking more than you give. | |
| 10 ** | |
| 11 ************************************************************************* | |
| 12 ** Code for testing all sorts of SQLite interfaces. This code | |
| 13 ** is not included in the SQLite library. | |
| 14 */ | |
| 15 | |
| 16 #include "sqlite3.h" | |
| 17 #include <tcl.h> | |
| 18 | |
| 19 /* Solely for the UNUSED_PARAMETER() macro. */ | |
| 20 #include "sqliteInt.h" | |
| 21 | |
| 22 #ifdef SQLITE_ENABLE_RTREE | |
| 23 /* | |
| 24 ** Type used to cache parameter information for the "circle" r-tree geometry | |
| 25 ** callback. | |
| 26 */ | |
| 27 typedef struct Circle Circle; | |
| 28 struct Circle { | |
| 29 struct Box { | |
| 30 double xmin; | |
| 31 double xmax; | |
| 32 double ymin; | |
| 33 double ymax; | |
| 34 } aBox[2]; | |
| 35 double centerx; | |
| 36 double centery; | |
| 37 double radius; | |
| 38 double mxArea; | |
| 39 int eScoreType; | |
| 40 }; | |
| 41 | |
| 42 /* | |
| 43 ** Destructor function for Circle objects allocated by circle_geom(). | |
| 44 */ | |
| 45 static void circle_del(void *p){ | |
| 46 sqlite3_free(p); | |
| 47 } | |
| 48 | |
| 49 /* | |
| 50 ** Implementation of "circle" r-tree geometry callback. | |
| 51 */ | |
| 52 static int circle_geom( | |
| 53 sqlite3_rtree_geometry *p, | |
| 54 int nCoord, | |
| 55 sqlite3_rtree_dbl *aCoord, | |
| 56 int *pRes | |
| 57 ){ | |
| 58 int i; /* Iterator variable */ | |
| 59 Circle *pCircle; /* Structure defining circular region */ | |
| 60 double xmin, xmax; /* X dimensions of box being tested */ | |
| 61 double ymin, ymax; /* X dimensions of box being tested */ | |
| 62 | |
| 63 xmin = aCoord[0]; | |
| 64 xmax = aCoord[1]; | |
| 65 ymin = aCoord[2]; | |
| 66 ymax = aCoord[3]; | |
| 67 pCircle = (Circle *)p->pUser; | |
| 68 if( pCircle==0 ){ | |
| 69 /* If pUser is still 0, then the parameter values have not been tested | |
| 70 ** for correctness or stored into a Circle structure yet. Do this now. */ | |
| 71 | |
| 72 /* This geometry callback is for use with a 2-dimensional r-tree table. | |
| 73 ** Return an error if the table does not have exactly 2 dimensions. */ | |
| 74 if( nCoord!=4 ) return SQLITE_ERROR; | |
| 75 | |
| 76 /* Test that the correct number of parameters (3) have been supplied, | |
| 77 ** and that the parameters are in range (that the radius of the circle | |
| 78 ** radius is greater than zero). */ | |
| 79 if( p->nParam!=3 || p->aParam[2]<0.0 ) return SQLITE_ERROR; | |
| 80 | |
| 81 /* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM | |
| 82 ** if the allocation fails. */ | |
| 83 pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle))); | |
| 84 if( !pCircle ) return SQLITE_NOMEM; | |
| 85 p->xDelUser = circle_del; | |
| 86 | |
| 87 /* Record the center and radius of the circular region. One way that | |
| 88 ** tested bounding boxes that intersect the circular region are detected | |
| 89 ** is by testing if each corner of the bounding box lies within radius | |
| 90 ** units of the center of the circle. */ | |
| 91 pCircle->centerx = p->aParam[0]; | |
| 92 pCircle->centery = p->aParam[1]; | |
| 93 pCircle->radius = p->aParam[2]; | |
| 94 | |
| 95 /* Define two bounding box regions. The first, aBox[0], extends to | |
| 96 ** infinity in the X dimension. It covers the same range of the Y dimension | |
| 97 ** as the circular region. The second, aBox[1], extends to infinity in | |
| 98 ** the Y dimension and is constrained to the range of the circle in the | |
| 99 ** X dimension. | |
| 100 ** | |
| 101 ** Then imagine each box is split in half along its short axis by a line | |
| 102 ** that intersects the center of the circular region. A bounding box | |
| 103 ** being tested can be said to intersect the circular region if it contains | |
| 104 ** points from each half of either of the two infinite bounding boxes. | |
| 105 */ | |
| 106 pCircle->aBox[0].xmin = pCircle->centerx; | |
| 107 pCircle->aBox[0].xmax = pCircle->centerx; | |
| 108 pCircle->aBox[0].ymin = pCircle->centery + pCircle->radius; | |
| 109 pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius; | |
| 110 pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius; | |
| 111 pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius; | |
| 112 pCircle->aBox[1].ymin = pCircle->centery; | |
| 113 pCircle->aBox[1].ymax = pCircle->centery; | |
| 114 pCircle->mxArea = (xmax - xmin)*(ymax - ymin) + 1.0; | |
| 115 } | |
| 116 | |
| 117 /* Check if any of the 4 corners of the bounding-box being tested lie | |
| 118 ** inside the circular region. If they do, then the bounding-box does | |
| 119 ** intersect the region of interest. Set the output variable to true and | |
| 120 ** return SQLITE_OK in this case. */ | |
| 121 for(i=0; i<4; i++){ | |
| 122 double x = (i&0x01) ? xmax : xmin; | |
| 123 double y = (i&0x02) ? ymax : ymin; | |
| 124 double d2; | |
| 125 | |
| 126 d2 = (x-pCircle->centerx)*(x-pCircle->centerx); | |
| 127 d2 += (y-pCircle->centery)*(y-pCircle->centery); | |
| 128 if( d2<(pCircle->radius*pCircle->radius) ){ | |
| 129 *pRes = 1; | |
| 130 return SQLITE_OK; | |
| 131 } | |
| 132 } | |
| 133 | |
| 134 /* Check if the bounding box covers any other part of the circular region. | |
| 135 ** See comments above for a description of how this test works. If it does | |
| 136 ** cover part of the circular region, set the output variable to true | |
| 137 ** and return SQLITE_OK. */ | |
| 138 for(i=0; i<2; i++){ | |
| 139 if( xmin<=pCircle->aBox[i].xmin | |
| 140 && xmax>=pCircle->aBox[i].xmax | |
| 141 && ymin<=pCircle->aBox[i].ymin | |
| 142 && ymax>=pCircle->aBox[i].ymax | |
| 143 ){ | |
| 144 *pRes = 1; | |
| 145 return SQLITE_OK; | |
| 146 } | |
| 147 } | |
| 148 | |
| 149 /* The specified bounding box does not intersect the circular region. Set | |
| 150 ** the output variable to zero and return SQLITE_OK. */ | |
| 151 *pRes = 0; | |
| 152 return SQLITE_OK; | |
| 153 } | |
| 154 | |
| 155 /* | |
| 156 ** Implementation of "circle" r-tree geometry callback using the | |
| 157 ** 2nd-generation interface that allows scoring. | |
| 158 ** | |
| 159 ** Two calling forms: | |
| 160 ** | |
| 161 ** Qcircle(X,Y,Radius,eType) -- All values are doubles | |
| 162 ** Qcircle('x:X y:Y r:R e:ETYPE') -- Single string parameter | |
| 163 */ | |
| 164 static int circle_query_func(sqlite3_rtree_query_info *p){ | |
| 165 int i; /* Iterator variable */ | |
| 166 Circle *pCircle; /* Structure defining circular region */ | |
| 167 double xmin, xmax; /* X dimensions of box being tested */ | |
| 168 double ymin, ymax; /* X dimensions of box being tested */ | |
| 169 int nWithin = 0; /* Number of corners inside the circle */ | |
| 170 | |
| 171 xmin = p->aCoord[0]; | |
| 172 xmax = p->aCoord[1]; | |
| 173 ymin = p->aCoord[2]; | |
| 174 ymax = p->aCoord[3]; | |
| 175 pCircle = (Circle *)p->pUser; | |
| 176 if( pCircle==0 ){ | |
| 177 /* If pUser is still 0, then the parameter values have not been tested | |
| 178 ** for correctness or stored into a Circle structure yet. Do this now. */ | |
| 179 | |
| 180 /* This geometry callback is for use with a 2-dimensional r-tree table. | |
| 181 ** Return an error if the table does not have exactly 2 dimensions. */ | |
| 182 if( p->nCoord!=4 ) return SQLITE_ERROR; | |
| 183 | |
| 184 /* Test that the correct number of parameters (1 or 4) have been supplied. | |
| 185 */ | |
| 186 if( p->nParam!=4 && p->nParam!=1 ) return SQLITE_ERROR; | |
| 187 | |
| 188 /* Allocate a structure to cache parameter data in. Return SQLITE_NOMEM | |
| 189 ** if the allocation fails. */ | |
| 190 pCircle = (Circle *)(p->pUser = sqlite3_malloc(sizeof(Circle))); | |
| 191 if( !pCircle ) return SQLITE_NOMEM; | |
| 192 p->xDelUser = circle_del; | |
| 193 | |
| 194 /* Record the center and radius of the circular region. One way that | |
| 195 ** tested bounding boxes that intersect the circular region are detected | |
| 196 ** is by testing if each corner of the bounding box lies within radius | |
| 197 ** units of the center of the circle. */ | |
| 198 if( p->nParam==4 ){ | |
| 199 pCircle->centerx = p->aParam[0]; | |
| 200 pCircle->centery = p->aParam[1]; | |
| 201 pCircle->radius = p->aParam[2]; | |
| 202 pCircle->eScoreType = (int)p->aParam[3]; | |
| 203 }else{ | |
| 204 const char *z = (const char*)sqlite3_value_text(p->apSqlParam[0]); | |
| 205 pCircle->centerx = 0.0; | |
| 206 pCircle->centery = 0.0; | |
| 207 pCircle->radius = 0.0; | |
| 208 pCircle->eScoreType = 0; | |
| 209 while( z && z[0] ){ | |
| 210 if( z[0]=='r' && z[1]==':' ){ | |
| 211 pCircle->radius = atof(&z[2]); | |
| 212 }else if( z[0]=='x' && z[1]==':' ){ | |
| 213 pCircle->centerx = atof(&z[2]); | |
| 214 }else if( z[0]=='y' && z[1]==':' ){ | |
| 215 pCircle->centery = atof(&z[2]); | |
| 216 }else if( z[0]=='e' && z[1]==':' ){ | |
| 217 pCircle->eScoreType = (int)atof(&z[2]); | |
| 218 }else if( z[0]==' ' ){ | |
| 219 z++; | |
| 220 continue; | |
| 221 } | |
| 222 while( z[0]!=0 && z[0]!=' ' ) z++; | |
| 223 while( z[0]==' ' ) z++; | |
| 224 } | |
| 225 } | |
| 226 if( pCircle->radius<0.0 ){ | |
| 227 sqlite3_free(pCircle); | |
| 228 return SQLITE_NOMEM; | |
| 229 } | |
| 230 | |
| 231 /* Define two bounding box regions. The first, aBox[0], extends to | |
| 232 ** infinity in the X dimension. It covers the same range of the Y dimension | |
| 233 ** as the circular region. The second, aBox[1], extends to infinity in | |
| 234 ** the Y dimension and is constrained to the range of the circle in the | |
| 235 ** X dimension. | |
| 236 ** | |
| 237 ** Then imagine each box is split in half along its short axis by a line | |
| 238 ** that intersects the center of the circular region. A bounding box | |
| 239 ** being tested can be said to intersect the circular region if it contains | |
| 240 ** points from each half of either of the two infinite bounding boxes. | |
| 241 */ | |
| 242 pCircle->aBox[0].xmin = pCircle->centerx; | |
| 243 pCircle->aBox[0].xmax = pCircle->centerx; | |
| 244 pCircle->aBox[0].ymin = pCircle->centery + pCircle->radius; | |
| 245 pCircle->aBox[0].ymax = pCircle->centery - pCircle->radius; | |
| 246 pCircle->aBox[1].xmin = pCircle->centerx + pCircle->radius; | |
| 247 pCircle->aBox[1].xmax = pCircle->centerx - pCircle->radius; | |
| 248 pCircle->aBox[1].ymin = pCircle->centery; | |
| 249 pCircle->aBox[1].ymax = pCircle->centery; | |
| 250 pCircle->mxArea = 200.0*200.0; | |
| 251 } | |
| 252 | |
| 253 /* Check if any of the 4 corners of the bounding-box being tested lie | |
| 254 ** inside the circular region. If they do, then the bounding-box does | |
| 255 ** intersect the region of interest. Set the output variable to true and | |
| 256 ** return SQLITE_OK in this case. */ | |
| 257 for(i=0; i<4; i++){ | |
| 258 double x = (i&0x01) ? xmax : xmin; | |
| 259 double y = (i&0x02) ? ymax : ymin; | |
| 260 double d2; | |
| 261 | |
| 262 d2 = (x-pCircle->centerx)*(x-pCircle->centerx); | |
| 263 d2 += (y-pCircle->centery)*(y-pCircle->centery); | |
| 264 if( d2<(pCircle->radius*pCircle->radius) ) nWithin++; | |
| 265 } | |
| 266 | |
| 267 /* Check if the bounding box covers any other part of the circular region. | |
| 268 ** See comments above for a description of how this test works. If it does | |
| 269 ** cover part of the circular region, set the output variable to true | |
| 270 ** and return SQLITE_OK. */ | |
| 271 if( nWithin==0 ){ | |
| 272 for(i=0; i<2; i++){ | |
| 273 if( xmin<=pCircle->aBox[i].xmin | |
| 274 && xmax>=pCircle->aBox[i].xmax | |
| 275 && ymin<=pCircle->aBox[i].ymin | |
| 276 && ymax>=pCircle->aBox[i].ymax | |
| 277 ){ | |
| 278 nWithin = 1; | |
| 279 break; | |
| 280 } | |
| 281 } | |
| 282 } | |
| 283 | |
| 284 if( pCircle->eScoreType==1 ){ | |
| 285 /* Depth first search */ | |
| 286 p->rScore = p->iLevel; | |
| 287 }else if( pCircle->eScoreType==2 ){ | |
| 288 /* Breadth first search */ | |
| 289 p->rScore = 100 - p->iLevel; | |
| 290 }else if( pCircle->eScoreType==3 ){ | |
| 291 /* Depth-first search, except sort the leaf nodes by area with | |
| 292 ** the largest area first */ | |
| 293 if( p->iLevel==1 ){ | |
| 294 p->rScore = 1.0 - (xmax-xmin)*(ymax-ymin)/pCircle->mxArea; | |
| 295 if( p->rScore<0.01 ) p->rScore = 0.01; | |
| 296 }else{ | |
| 297 p->rScore = 0.0; | |
| 298 } | |
| 299 }else if( pCircle->eScoreType==4 ){ | |
| 300 /* Depth-first search, except exclude odd rowids */ | |
| 301 p->rScore = p->iLevel; | |
| 302 if( p->iRowid&1 ) nWithin = 0; | |
| 303 }else{ | |
| 304 /* Breadth-first search, except exclude odd rowids */ | |
| 305 p->rScore = 100 - p->iLevel; | |
| 306 if( p->iRowid&1 ) nWithin = 0; | |
| 307 } | |
| 308 if( nWithin==0 ){ | |
| 309 p->eWithin = NOT_WITHIN; | |
| 310 }else if( nWithin>=4 ){ | |
| 311 p->eWithin = FULLY_WITHIN; | |
| 312 }else{ | |
| 313 p->eWithin = PARTLY_WITHIN; | |
| 314 } | |
| 315 return SQLITE_OK; | |
| 316 } | |
| 317 /* | |
| 318 ** Implementation of "breadthfirstsearch" r-tree geometry callback using the | |
| 319 ** 2nd-generation interface that allows scoring. | |
| 320 ** | |
| 321 ** ... WHERE id MATCH breadthfirstsearch($x0,$x1,$y0,$y1) ... | |
| 322 ** | |
| 323 ** It returns all entries whose bounding boxes overlap with $x0,$x1,$y0,$y1. | |
| 324 */ | |
| 325 static int bfs_query_func(sqlite3_rtree_query_info *p){ | |
| 326 double x0,x1,y0,y1; /* Dimensions of box being tested */ | |
| 327 double bx0,bx1,by0,by1; /* Boundary of the query function */ | |
| 328 | |
| 329 if( p->nParam!=4 ) return SQLITE_ERROR; | |
| 330 x0 = p->aCoord[0]; | |
| 331 x1 = p->aCoord[1]; | |
| 332 y0 = p->aCoord[2]; | |
| 333 y1 = p->aCoord[3]; | |
| 334 bx0 = p->aParam[0]; | |
| 335 bx1 = p->aParam[1]; | |
| 336 by0 = p->aParam[2]; | |
| 337 by1 = p->aParam[3]; | |
| 338 p->rScore = 100 - p->iLevel; | |
| 339 if( p->eParentWithin==FULLY_WITHIN ){ | |
| 340 p->eWithin = FULLY_WITHIN; | |
| 341 }else if( x0>=bx0 && x1<=bx1 && y0>=by0 && y1<=by1 ){ | |
| 342 p->eWithin = FULLY_WITHIN; | |
| 343 }else if( x1>=bx0 && x0<=bx1 && y1>=by0 && y0<=by1 ){ | |
| 344 p->eWithin = PARTLY_WITHIN; | |
| 345 }else{ | |
| 346 p->eWithin = NOT_WITHIN; | |
| 347 } | |
| 348 return SQLITE_OK; | |
| 349 } | |
| 350 | |
| 351 /* END of implementation of "circle" geometry callback. | |
| 352 ************************************************************************** | |
| 353 *************************************************************************/ | |
| 354 | |
| 355 #include <assert.h> | |
| 356 #include "tcl.h" | |
| 357 | |
| 358 typedef struct Cube Cube; | |
| 359 struct Cube { | |
| 360 double x; | |
| 361 double y; | |
| 362 double z; | |
| 363 double width; | |
| 364 double height; | |
| 365 double depth; | |
| 366 }; | |
| 367 | |
| 368 static void cube_context_free(void *p){ | |
| 369 sqlite3_free(p); | |
| 370 } | |
| 371 | |
| 372 /* | |
| 373 ** The context pointer registered along with the 'cube' callback is | |
| 374 ** always ((void *)&gHere). This is just to facilitate testing, it is not | |
| 375 ** actually used for anything. | |
| 376 */ | |
| 377 static int gHere = 42; | |
| 378 | |
| 379 /* | |
| 380 ** Implementation of a simple r-tree geom callback to test for intersection | |
| 381 ** of r-tree rows with a "cube" shape. Cubes are defined by six scalar | |
| 382 ** coordinates as follows: | |
| 383 ** | |
| 384 ** cube(x, y, z, width, height, depth) | |
| 385 ** | |
| 386 ** The width, height and depth parameters must all be greater than zero. | |
| 387 */ | |
| 388 static int cube_geom( | |
| 389 sqlite3_rtree_geometry *p, | |
| 390 int nCoord, | |
| 391 sqlite3_rtree_dbl *aCoord, | |
| 392 int *piRes | |
| 393 ){ | |
| 394 Cube *pCube = (Cube *)p->pUser; | |
| 395 | |
| 396 assert( p->pContext==(void *)&gHere ); | |
| 397 | |
| 398 if( pCube==0 ){ | |
| 399 if( p->nParam!=6 || nCoord!=6 | |
| 400 || p->aParam[3]<=0.0 || p->aParam[4]<=0.0 || p->aParam[5]<=0.0 | |
| 401 ){ | |
| 402 return SQLITE_ERROR; | |
| 403 } | |
| 404 pCube = (Cube *)sqlite3_malloc(sizeof(Cube)); | |
| 405 if( !pCube ){ | |
| 406 return SQLITE_NOMEM; | |
| 407 } | |
| 408 pCube->x = p->aParam[0]; | |
| 409 pCube->y = p->aParam[1]; | |
| 410 pCube->z = p->aParam[2]; | |
| 411 pCube->width = p->aParam[3]; | |
| 412 pCube->height = p->aParam[4]; | |
| 413 pCube->depth = p->aParam[5]; | |
| 414 | |
| 415 p->pUser = (void *)pCube; | |
| 416 p->xDelUser = cube_context_free; | |
| 417 } | |
| 418 | |
| 419 assert( nCoord==6 ); | |
| 420 *piRes = 0; | |
| 421 if( aCoord[0]<=(pCube->x+pCube->width) | |
| 422 && aCoord[1]>=pCube->x | |
| 423 && aCoord[2]<=(pCube->y+pCube->height) | |
| 424 && aCoord[3]>=pCube->y | |
| 425 && aCoord[4]<=(pCube->z+pCube->depth) | |
| 426 && aCoord[5]>=pCube->z | |
| 427 ){ | |
| 428 *piRes = 1; | |
| 429 } | |
| 430 | |
| 431 return SQLITE_OK; | |
| 432 } | |
| 433 #endif /* SQLITE_ENABLE_RTREE */ | |
| 434 | |
| 435 static int register_cube_geom( | |
| 436 void * clientData, | |
| 437 Tcl_Interp *interp, | |
| 438 int objc, | |
| 439 Tcl_Obj *CONST objv[] | |
| 440 ){ | |
| 441 #ifndef SQLITE_ENABLE_RTREE | |
| 442 UNUSED_PARAMETER(clientData); | |
| 443 UNUSED_PARAMETER(interp); | |
| 444 UNUSED_PARAMETER(objc); | |
| 445 UNUSED_PARAMETER(objv); | |
| 446 #else | |
| 447 extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**); | |
| 448 extern const char *sqlite3ErrName(int); | |
| 449 sqlite3 *db; | |
| 450 int rc; | |
| 451 | |
| 452 if( objc!=2 ){ | |
| 453 Tcl_WrongNumArgs(interp, 1, objv, "DB"); | |
| 454 return TCL_ERROR; | |
| 455 } | |
| 456 if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; | |
| 457 rc = sqlite3_rtree_geometry_callback(db, "cube", cube_geom, (void *)&gHere); | |
| 458 Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC); | |
| 459 #endif | |
| 460 return TCL_OK; | |
| 461 } | |
| 462 | |
| 463 static int register_circle_geom( | |
| 464 void * clientData, | |
| 465 Tcl_Interp *interp, | |
| 466 int objc, | |
| 467 Tcl_Obj *CONST objv[] | |
| 468 ){ | |
| 469 #ifndef SQLITE_ENABLE_RTREE | |
| 470 UNUSED_PARAMETER(clientData); | |
| 471 UNUSED_PARAMETER(interp); | |
| 472 UNUSED_PARAMETER(objc); | |
| 473 UNUSED_PARAMETER(objv); | |
| 474 #else | |
| 475 extern int getDbPointer(Tcl_Interp*, const char*, sqlite3**); | |
| 476 extern const char *sqlite3ErrName(int); | |
| 477 sqlite3 *db; | |
| 478 int rc; | |
| 479 | |
| 480 if( objc!=2 ){ | |
| 481 Tcl_WrongNumArgs(interp, 1, objv, "DB"); | |
| 482 return TCL_ERROR; | |
| 483 } | |
| 484 if( getDbPointer(interp, Tcl_GetString(objv[1]), &db) ) return TCL_ERROR; | |
| 485 rc = sqlite3_rtree_geometry_callback(db, "circle", circle_geom, 0); | |
| 486 if( rc==SQLITE_OK ){ | |
| 487 rc = sqlite3_rtree_query_callback(db, "Qcircle", | |
| 488 circle_query_func, 0, 0); | |
| 489 } | |
| 490 if( rc==SQLITE_OK ){ | |
| 491 rc = sqlite3_rtree_query_callback(db, "breadthfirstsearch", | |
| 492 bfs_query_func, 0, 0); | |
| 493 } | |
| 494 Tcl_SetResult(interp, (char *)sqlite3ErrName(rc), TCL_STATIC); | |
| 495 #endif | |
| 496 return TCL_OK; | |
| 497 } | |
| 498 | |
| 499 int Sqlitetestrtree_Init(Tcl_Interp *interp){ | |
| 500 Tcl_CreateObjCommand(interp, "register_cube_geom", register_cube_geom, 0, 0); | |
| 501 Tcl_CreateObjCommand(interp, "register_circle_geom",register_circle_geom,0,0); | |
| 502 return TCL_OK; | |
| 503 } | |
| OLD | NEW |