| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 ** 2001 September 15 | |
| 3 ** | |
| 4 ** The author disclaims copyright to this source code. In place of | |
| 5 ** a legal notice, here is a blessing: | |
| 6 ** | |
| 7 ** May you do good and not evil. | |
| 8 ** May you find forgiveness for yourself and forgive others. | |
| 9 ** May you share freely, never taking more than you give. | |
| 10 ** | |
| 11 ************************************************************************* | |
| 12 ** This file contains C code routines that are called by the parser | |
| 13 ** to handle SELECT statements in SQLite. | |
| 14 */ | |
| 15 #include "sqliteInt.h" | |
| 16 | |
| 17 /* | |
| 18 ** Trace output macros | |
| 19 */ | |
| 20 #if SELECTTRACE_ENABLED | |
| 21 /***/ int sqlite3SelectTrace = 0; | |
| 22 # define SELECTTRACE(K,P,S,X) \ | |
| 23 if(sqlite3SelectTrace&(K)) \ | |
| 24 sqlite3DebugPrintf("%*s%s.%p: ",(P)->nSelectIndent*2-2,"",\ | |
| 25 (S)->zSelName,(S)),\ | |
| 26 sqlite3DebugPrintf X | |
| 27 #else | |
| 28 # define SELECTTRACE(K,P,S,X) | |
| 29 #endif | |
| 30 | |
| 31 | |
| 32 /* | |
| 33 ** An instance of the following object is used to record information about | |
| 34 ** how to process the DISTINCT keyword, to simplify passing that information | |
| 35 ** into the selectInnerLoop() routine. | |
| 36 */ | |
| 37 typedef struct DistinctCtx DistinctCtx; | |
| 38 struct DistinctCtx { | |
| 39 u8 isTnct; /* True if the DISTINCT keyword is present */ | |
| 40 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */ | |
| 41 int tabTnct; /* Ephemeral table used for DISTINCT processing */ | |
| 42 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */ | |
| 43 }; | |
| 44 | |
| 45 /* | |
| 46 ** An instance of the following object is used to record information about | |
| 47 ** the ORDER BY (or GROUP BY) clause of query is being coded. | |
| 48 */ | |
| 49 typedef struct SortCtx SortCtx; | |
| 50 struct SortCtx { | |
| 51 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */ | |
| 52 int nOBSat; /* Number of ORDER BY terms satisfied by indices */ | |
| 53 int iECursor; /* Cursor number for the sorter */ | |
| 54 int regReturn; /* Register holding block-output return address */ | |
| 55 int labelBkOut; /* Start label for the block-output subroutine */ | |
| 56 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */ | |
| 57 int labelDone; /* Jump here when done, ex: LIMIT reached */ | |
| 58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */ | |
| 59 }; | |
| 60 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */ | |
| 61 | |
| 62 /* | |
| 63 ** Delete all the content of a Select structure. Deallocate the structure | |
| 64 ** itself only if bFree is true. | |
| 65 */ | |
| 66 static void clearSelect(sqlite3 *db, Select *p, int bFree){ | |
| 67 while( p ){ | |
| 68 Select *pPrior = p->pPrior; | |
| 69 sqlite3ExprListDelete(db, p->pEList); | |
| 70 sqlite3SrcListDelete(db, p->pSrc); | |
| 71 sqlite3ExprDelete(db, p->pWhere); | |
| 72 sqlite3ExprListDelete(db, p->pGroupBy); | |
| 73 sqlite3ExprDelete(db, p->pHaving); | |
| 74 sqlite3ExprListDelete(db, p->pOrderBy); | |
| 75 sqlite3ExprDelete(db, p->pLimit); | |
| 76 sqlite3ExprDelete(db, p->pOffset); | |
| 77 sqlite3WithDelete(db, p->pWith); | |
| 78 if( bFree ) sqlite3DbFree(db, p); | |
| 79 p = pPrior; | |
| 80 bFree = 1; | |
| 81 } | |
| 82 } | |
| 83 | |
| 84 /* | |
| 85 ** Initialize a SelectDest structure. | |
| 86 */ | |
| 87 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){ | |
| 88 pDest->eDest = (u8)eDest; | |
| 89 pDest->iSDParm = iParm; | |
| 90 pDest->affSdst = 0; | |
| 91 pDest->iSdst = 0; | |
| 92 pDest->nSdst = 0; | |
| 93 } | |
| 94 | |
| 95 | |
| 96 /* | |
| 97 ** Allocate a new Select structure and return a pointer to that | |
| 98 ** structure. | |
| 99 */ | |
| 100 Select *sqlite3SelectNew( | |
| 101 Parse *pParse, /* Parsing context */ | |
| 102 ExprList *pEList, /* which columns to include in the result */ | |
| 103 SrcList *pSrc, /* the FROM clause -- which tables to scan */ | |
| 104 Expr *pWhere, /* the WHERE clause */ | |
| 105 ExprList *pGroupBy, /* the GROUP BY clause */ | |
| 106 Expr *pHaving, /* the HAVING clause */ | |
| 107 ExprList *pOrderBy, /* the ORDER BY clause */ | |
| 108 u16 selFlags, /* Flag parameters, such as SF_Distinct */ | |
| 109 Expr *pLimit, /* LIMIT value. NULL means not used */ | |
| 110 Expr *pOffset /* OFFSET value. NULL means no offset */ | |
| 111 ){ | |
| 112 Select *pNew; | |
| 113 Select standin; | |
| 114 sqlite3 *db = pParse->db; | |
| 115 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); | |
| 116 if( pNew==0 ){ | |
| 117 assert( db->mallocFailed ); | |
| 118 pNew = &standin; | |
| 119 memset(pNew, 0, sizeof(*pNew)); | |
| 120 } | |
| 121 if( pEList==0 ){ | |
| 122 pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db,TK_ASTERISK,0)); | |
| 123 } | |
| 124 pNew->pEList = pEList; | |
| 125 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(db, sizeof(*pSrc)); | |
| 126 pNew->pSrc = pSrc; | |
| 127 pNew->pWhere = pWhere; | |
| 128 pNew->pGroupBy = pGroupBy; | |
| 129 pNew->pHaving = pHaving; | |
| 130 pNew->pOrderBy = pOrderBy; | |
| 131 pNew->selFlags = selFlags; | |
| 132 pNew->op = TK_SELECT; | |
| 133 pNew->pLimit = pLimit; | |
| 134 pNew->pOffset = pOffset; | |
| 135 assert( pOffset==0 || pLimit!=0 || pParse->nErr>0 || db->mallocFailed!=0 ); | |
| 136 pNew->addrOpenEphm[0] = -1; | |
| 137 pNew->addrOpenEphm[1] = -1; | |
| 138 if( db->mallocFailed ) { | |
| 139 clearSelect(db, pNew, pNew!=&standin); | |
| 140 pNew = 0; | |
| 141 }else{ | |
| 142 assert( pNew->pSrc!=0 || pParse->nErr>0 ); | |
| 143 } | |
| 144 assert( pNew!=&standin ); | |
| 145 return pNew; | |
| 146 } | |
| 147 | |
| 148 #if SELECTTRACE_ENABLED | |
| 149 /* | |
| 150 ** Set the name of a Select object | |
| 151 */ | |
| 152 void sqlite3SelectSetName(Select *p, const char *zName){ | |
| 153 if( p && zName ){ | |
| 154 sqlite3_snprintf(sizeof(p->zSelName), p->zSelName, "%s", zName); | |
| 155 } | |
| 156 } | |
| 157 #endif | |
| 158 | |
| 159 | |
| 160 /* | |
| 161 ** Delete the given Select structure and all of its substructures. | |
| 162 */ | |
| 163 void sqlite3SelectDelete(sqlite3 *db, Select *p){ | |
| 164 clearSelect(db, p, 1); | |
| 165 } | |
| 166 | |
| 167 /* | |
| 168 ** Return a pointer to the right-most SELECT statement in a compound. | |
| 169 */ | |
| 170 static Select *findRightmost(Select *p){ | |
| 171 while( p->pNext ) p = p->pNext; | |
| 172 return p; | |
| 173 } | |
| 174 | |
| 175 /* | |
| 176 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the | |
| 177 ** type of join. Return an integer constant that expresses that type | |
| 178 ** in terms of the following bit values: | |
| 179 ** | |
| 180 ** JT_INNER | |
| 181 ** JT_CROSS | |
| 182 ** JT_OUTER | |
| 183 ** JT_NATURAL | |
| 184 ** JT_LEFT | |
| 185 ** JT_RIGHT | |
| 186 ** | |
| 187 ** A full outer join is the combination of JT_LEFT and JT_RIGHT. | |
| 188 ** | |
| 189 ** If an illegal or unsupported join type is seen, then still return | |
| 190 ** a join type, but put an error in the pParse structure. | |
| 191 */ | |
| 192 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){ | |
| 193 int jointype = 0; | |
| 194 Token *apAll[3]; | |
| 195 Token *p; | |
| 196 /* 0123456789 123456789 123456789 123 */ | |
| 197 static const char zKeyText[] = "naturaleftouterightfullinnercross"; | |
| 198 static const struct { | |
| 199 u8 i; /* Beginning of keyword text in zKeyText[] */ | |
| 200 u8 nChar; /* Length of the keyword in characters */ | |
| 201 u8 code; /* Join type mask */ | |
| 202 } aKeyword[] = { | |
| 203 /* natural */ { 0, 7, JT_NATURAL }, | |
| 204 /* left */ { 6, 4, JT_LEFT|JT_OUTER }, | |
| 205 /* outer */ { 10, 5, JT_OUTER }, | |
| 206 /* right */ { 14, 5, JT_RIGHT|JT_OUTER }, | |
| 207 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER }, | |
| 208 /* inner */ { 23, 5, JT_INNER }, | |
| 209 /* cross */ { 28, 5, JT_INNER|JT_CROSS }, | |
| 210 }; | |
| 211 int i, j; | |
| 212 apAll[0] = pA; | |
| 213 apAll[1] = pB; | |
| 214 apAll[2] = pC; | |
| 215 for(i=0; i<3 && apAll[i]; i++){ | |
| 216 p = apAll[i]; | |
| 217 for(j=0; j<ArraySize(aKeyword); j++){ | |
| 218 if( p->n==aKeyword[j].nChar | |
| 219 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){ | |
| 220 jointype |= aKeyword[j].code; | |
| 221 break; | |
| 222 } | |
| 223 } | |
| 224 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 ); | |
| 225 if( j>=ArraySize(aKeyword) ){ | |
| 226 jointype |= JT_ERROR; | |
| 227 break; | |
| 228 } | |
| 229 } | |
| 230 if( | |
| 231 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) || | |
| 232 (jointype & JT_ERROR)!=0 | |
| 233 ){ | |
| 234 const char *zSp = " "; | |
| 235 assert( pB!=0 ); | |
| 236 if( pC==0 ){ zSp++; } | |
| 237 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: " | |
| 238 "%T %T%s%T", pA, pB, zSp, pC); | |
| 239 jointype = JT_INNER; | |
| 240 }else if( (jointype & JT_OUTER)!=0 | |
| 241 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){ | |
| 242 sqlite3ErrorMsg(pParse, | |
| 243 "RIGHT and FULL OUTER JOINs are not currently supported"); | |
| 244 jointype = JT_INNER; | |
| 245 } | |
| 246 return jointype; | |
| 247 } | |
| 248 | |
| 249 /* | |
| 250 ** Return the index of a column in a table. Return -1 if the column | |
| 251 ** is not contained in the table. | |
| 252 */ | |
| 253 static int columnIndex(Table *pTab, const char *zCol){ | |
| 254 int i; | |
| 255 for(i=0; i<pTab->nCol; i++){ | |
| 256 if( sqlite3StrICmp(pTab->aCol[i].zName, zCol)==0 ) return i; | |
| 257 } | |
| 258 return -1; | |
| 259 } | |
| 260 | |
| 261 /* | |
| 262 ** Search the first N tables in pSrc, from left to right, looking for a | |
| 263 ** table that has a column named zCol. | |
| 264 ** | |
| 265 ** When found, set *piTab and *piCol to the table index and column index | |
| 266 ** of the matching column and return TRUE. | |
| 267 ** | |
| 268 ** If not found, return FALSE. | |
| 269 */ | |
| 270 static int tableAndColumnIndex( | |
| 271 SrcList *pSrc, /* Array of tables to search */ | |
| 272 int N, /* Number of tables in pSrc->a[] to search */ | |
| 273 const char *zCol, /* Name of the column we are looking for */ | |
| 274 int *piTab, /* Write index of pSrc->a[] here */ | |
| 275 int *piCol /* Write index of pSrc->a[*piTab].pTab->aCol[] here */ | |
| 276 ){ | |
| 277 int i; /* For looping over tables in pSrc */ | |
| 278 int iCol; /* Index of column matching zCol */ | |
| 279 | |
| 280 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */ | |
| 281 for(i=0; i<N; i++){ | |
| 282 iCol = columnIndex(pSrc->a[i].pTab, zCol); | |
| 283 if( iCol>=0 ){ | |
| 284 if( piTab ){ | |
| 285 *piTab = i; | |
| 286 *piCol = iCol; | |
| 287 } | |
| 288 return 1; | |
| 289 } | |
| 290 } | |
| 291 return 0; | |
| 292 } | |
| 293 | |
| 294 /* | |
| 295 ** This function is used to add terms implied by JOIN syntax to the | |
| 296 ** WHERE clause expression of a SELECT statement. The new term, which | |
| 297 ** is ANDed with the existing WHERE clause, is of the form: | |
| 298 ** | |
| 299 ** (tab1.col1 = tab2.col2) | |
| 300 ** | |
| 301 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the | |
| 302 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is | |
| 303 ** column iColRight of tab2. | |
| 304 */ | |
| 305 static void addWhereTerm( | |
| 306 Parse *pParse, /* Parsing context */ | |
| 307 SrcList *pSrc, /* List of tables in FROM clause */ | |
| 308 int iLeft, /* Index of first table to join in pSrc */ | |
| 309 int iColLeft, /* Index of column in first table */ | |
| 310 int iRight, /* Index of second table in pSrc */ | |
| 311 int iColRight, /* Index of column in second table */ | |
| 312 int isOuterJoin, /* True if this is an OUTER join */ | |
| 313 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */ | |
| 314 ){ | |
| 315 sqlite3 *db = pParse->db; | |
| 316 Expr *pE1; | |
| 317 Expr *pE2; | |
| 318 Expr *pEq; | |
| 319 | |
| 320 assert( iLeft<iRight ); | |
| 321 assert( pSrc->nSrc>iRight ); | |
| 322 assert( pSrc->a[iLeft].pTab ); | |
| 323 assert( pSrc->a[iRight].pTab ); | |
| 324 | |
| 325 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft); | |
| 326 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight); | |
| 327 | |
| 328 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2, 0); | |
| 329 if( pEq && isOuterJoin ){ | |
| 330 ExprSetProperty(pEq, EP_FromJoin); | |
| 331 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) ); | |
| 332 ExprSetVVAProperty(pEq, EP_NoReduce); | |
| 333 pEq->iRightJoinTable = (i16)pE2->iTable; | |
| 334 } | |
| 335 *ppWhere = sqlite3ExprAnd(db, *ppWhere, pEq); | |
| 336 } | |
| 337 | |
| 338 /* | |
| 339 ** Set the EP_FromJoin property on all terms of the given expression. | |
| 340 ** And set the Expr.iRightJoinTable to iTable for every term in the | |
| 341 ** expression. | |
| 342 ** | |
| 343 ** The EP_FromJoin property is used on terms of an expression to tell | |
| 344 ** the LEFT OUTER JOIN processing logic that this term is part of the | |
| 345 ** join restriction specified in the ON or USING clause and not a part | |
| 346 ** of the more general WHERE clause. These terms are moved over to the | |
| 347 ** WHERE clause during join processing but we need to remember that they | |
| 348 ** originated in the ON or USING clause. | |
| 349 ** | |
| 350 ** The Expr.iRightJoinTable tells the WHERE clause processing that the | |
| 351 ** expression depends on table iRightJoinTable even if that table is not | |
| 352 ** explicitly mentioned in the expression. That information is needed | |
| 353 ** for cases like this: | |
| 354 ** | |
| 355 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5 | |
| 356 ** | |
| 357 ** The where clause needs to defer the handling of the t1.x=5 | |
| 358 ** term until after the t2 loop of the join. In that way, a | |
| 359 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not | |
| 360 ** defer the handling of t1.x=5, it will be processed immediately | |
| 361 ** after the t1 loop and rows with t1.x!=5 will never appear in | |
| 362 ** the output, which is incorrect. | |
| 363 */ | |
| 364 static void setJoinExpr(Expr *p, int iTable){ | |
| 365 while( p ){ | |
| 366 ExprSetProperty(p, EP_FromJoin); | |
| 367 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); | |
| 368 ExprSetVVAProperty(p, EP_NoReduce); | |
| 369 p->iRightJoinTable = (i16)iTable; | |
| 370 if( p->op==TK_FUNCTION && p->x.pList ){ | |
| 371 int i; | |
| 372 for(i=0; i<p->x.pList->nExpr; i++){ | |
| 373 setJoinExpr(p->x.pList->a[i].pExpr, iTable); | |
| 374 } | |
| 375 } | |
| 376 setJoinExpr(p->pLeft, iTable); | |
| 377 p = p->pRight; | |
| 378 } | |
| 379 } | |
| 380 | |
| 381 /* | |
| 382 ** This routine processes the join information for a SELECT statement. | |
| 383 ** ON and USING clauses are converted into extra terms of the WHERE clause. | |
| 384 ** NATURAL joins also create extra WHERE clause terms. | |
| 385 ** | |
| 386 ** The terms of a FROM clause are contained in the Select.pSrc structure. | |
| 387 ** The left most table is the first entry in Select.pSrc. The right-most | |
| 388 ** table is the last entry. The join operator is held in the entry to | |
| 389 ** the left. Thus entry 0 contains the join operator for the join between | |
| 390 ** entries 0 and 1. Any ON or USING clauses associated with the join are | |
| 391 ** also attached to the left entry. | |
| 392 ** | |
| 393 ** This routine returns the number of errors encountered. | |
| 394 */ | |
| 395 static int sqliteProcessJoin(Parse *pParse, Select *p){ | |
| 396 SrcList *pSrc; /* All tables in the FROM clause */ | |
| 397 int i, j; /* Loop counters */ | |
| 398 struct SrcList_item *pLeft; /* Left table being joined */ | |
| 399 struct SrcList_item *pRight; /* Right table being joined */ | |
| 400 | |
| 401 pSrc = p->pSrc; | |
| 402 pLeft = &pSrc->a[0]; | |
| 403 pRight = &pLeft[1]; | |
| 404 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){ | |
| 405 Table *pLeftTab = pLeft->pTab; | |
| 406 Table *pRightTab = pRight->pTab; | |
| 407 int isOuter; | |
| 408 | |
| 409 if( NEVER(pLeftTab==0 || pRightTab==0) ) continue; | |
| 410 isOuter = (pRight->fg.jointype & JT_OUTER)!=0; | |
| 411 | |
| 412 /* When the NATURAL keyword is present, add WHERE clause terms for | |
| 413 ** every column that the two tables have in common. | |
| 414 */ | |
| 415 if( pRight->fg.jointype & JT_NATURAL ){ | |
| 416 if( pRight->pOn || pRight->pUsing ){ | |
| 417 sqlite3ErrorMsg(pParse, "a NATURAL join may not have " | |
| 418 "an ON or USING clause", 0); | |
| 419 return 1; | |
| 420 } | |
| 421 for(j=0; j<pRightTab->nCol; j++){ | |
| 422 char *zName; /* Name of column in the right table */ | |
| 423 int iLeft; /* Matching left table */ | |
| 424 int iLeftCol; /* Matching column in the left table */ | |
| 425 | |
| 426 zName = pRightTab->aCol[j].zName; | |
| 427 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) ){ | |
| 428 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j, | |
| 429 isOuter, &p->pWhere); | |
| 430 } | |
| 431 } | |
| 432 } | |
| 433 | |
| 434 /* Disallow both ON and USING clauses in the same join | |
| 435 */ | |
| 436 if( pRight->pOn && pRight->pUsing ){ | |
| 437 sqlite3ErrorMsg(pParse, "cannot have both ON and USING " | |
| 438 "clauses in the same join"); | |
| 439 return 1; | |
| 440 } | |
| 441 | |
| 442 /* Add the ON clause to the end of the WHERE clause, connected by | |
| 443 ** an AND operator. | |
| 444 */ | |
| 445 if( pRight->pOn ){ | |
| 446 if( isOuter ) setJoinExpr(pRight->pOn, pRight->iCursor); | |
| 447 p->pWhere = sqlite3ExprAnd(pParse->db, p->pWhere, pRight->pOn); | |
| 448 pRight->pOn = 0; | |
| 449 } | |
| 450 | |
| 451 /* Create extra terms on the WHERE clause for each column named | |
| 452 ** in the USING clause. Example: If the two tables to be joined are | |
| 453 ** A and B and the USING clause names X, Y, and Z, then add this | |
| 454 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z | |
| 455 ** Report an error if any column mentioned in the USING clause is | |
| 456 ** not contained in both tables to be joined. | |
| 457 */ | |
| 458 if( pRight->pUsing ){ | |
| 459 IdList *pList = pRight->pUsing; | |
| 460 for(j=0; j<pList->nId; j++){ | |
| 461 char *zName; /* Name of the term in the USING clause */ | |
| 462 int iLeft; /* Table on the left with matching column name */ | |
| 463 int iLeftCol; /* Column number of matching column on the left */ | |
| 464 int iRightCol; /* Column number of matching column on the right */ | |
| 465 | |
| 466 zName = pList->a[j].zName; | |
| 467 iRightCol = columnIndex(pRightTab, zName); | |
| 468 if( iRightCol<0 | |
| 469 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol) | |
| 470 ){ | |
| 471 sqlite3ErrorMsg(pParse, "cannot join using column %s - column " | |
| 472 "not present in both tables", zName); | |
| 473 return 1; | |
| 474 } | |
| 475 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol, | |
| 476 isOuter, &p->pWhere); | |
| 477 } | |
| 478 } | |
| 479 } | |
| 480 return 0; | |
| 481 } | |
| 482 | |
| 483 /* Forward reference */ | |
| 484 static KeyInfo *keyInfoFromExprList( | |
| 485 Parse *pParse, /* Parsing context */ | |
| 486 ExprList *pList, /* Form the KeyInfo object from this ExprList */ | |
| 487 int iStart, /* Begin with this column of pList */ | |
| 488 int nExtra /* Add this many extra columns to the end */ | |
| 489 ); | |
| 490 | |
| 491 /* | |
| 492 ** Generate code that will push the record in registers regData | |
| 493 ** through regData+nData-1 onto the sorter. | |
| 494 */ | |
| 495 static void pushOntoSorter( | |
| 496 Parse *pParse, /* Parser context */ | |
| 497 SortCtx *pSort, /* Information about the ORDER BY clause */ | |
| 498 Select *pSelect, /* The whole SELECT statement */ | |
| 499 int regData, /* First register holding data to be sorted */ | |
| 500 int regOrigData, /* First register holding data before packing */ | |
| 501 int nData, /* Number of elements in the data array */ | |
| 502 int nPrefixReg /* No. of reg prior to regData available for use */ | |
| 503 ){ | |
| 504 Vdbe *v = pParse->pVdbe; /* Stmt under construction */ | |
| 505 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0); | |
| 506 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */ | |
| 507 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */ | |
| 508 int regBase; /* Regs for sorter record */ | |
| 509 int regRecord = ++pParse->nMem; /* Assembled sorter record */ | |
| 510 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */ | |
| 511 int op; /* Opcode to add sorter record to sorter */ | |
| 512 int iLimit; /* LIMIT counter */ | |
| 513 | |
| 514 assert( bSeq==0 || bSeq==1 ); | |
| 515 assert( nData==1 || regData==regOrigData ); | |
| 516 if( nPrefixReg ){ | |
| 517 assert( nPrefixReg==nExpr+bSeq ); | |
| 518 regBase = regData - nExpr - bSeq; | |
| 519 }else{ | |
| 520 regBase = pParse->nMem + 1; | |
| 521 pParse->nMem += nBase; | |
| 522 } | |
| 523 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 ); | |
| 524 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit; | |
| 525 pSort->labelDone = sqlite3VdbeMakeLabel(v); | |
| 526 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData, | |
| 527 SQLITE_ECEL_DUP|SQLITE_ECEL_REF); | |
| 528 if( bSeq ){ | |
| 529 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr); | |
| 530 } | |
| 531 if( nPrefixReg==0 ){ | |
| 532 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData); | |
| 533 } | |
| 534 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regRecord); | |
| 535 if( nOBSat>0 ){ | |
| 536 int regPrevKey; /* The first nOBSat columns of the previous row */ | |
| 537 int addrFirst; /* Address of the OP_IfNot opcode */ | |
| 538 int addrJmp; /* Address of the OP_Jump opcode */ | |
| 539 VdbeOp *pOp; /* Opcode that opens the sorter */ | |
| 540 int nKey; /* Number of sorting key columns, including OP_Sequence */ | |
| 541 KeyInfo *pKI; /* Original KeyInfo on the sorter table */ | |
| 542 | |
| 543 regPrevKey = pParse->nMem+1; | |
| 544 pParse->nMem += pSort->nOBSat; | |
| 545 nKey = nExpr - pSort->nOBSat + bSeq; | |
| 546 if( bSeq ){ | |
| 547 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr); | |
| 548 }else{ | |
| 549 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor); | |
| 550 } | |
| 551 VdbeCoverage(v); | |
| 552 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat); | |
| 553 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex); | |
| 554 if( pParse->db->mallocFailed ) return; | |
| 555 pOp->p2 = nKey + nData; | |
| 556 pKI = pOp->p4.pKeyInfo; | |
| 557 memset(pKI->aSortOrder, 0, pKI->nField); /* Makes OP_Jump below testable */ | |
| 558 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO); | |
| 559 testcase( pKI->nXField>2 ); | |
| 560 pOp->p4.pKeyInfo = keyInfoFromExprList(pParse, pSort->pOrderBy, nOBSat, | |
| 561 pKI->nXField-1); | |
| 562 addrJmp = sqlite3VdbeCurrentAddr(v); | |
| 563 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v); | |
| 564 pSort->labelBkOut = sqlite3VdbeMakeLabel(v); | |
| 565 pSort->regReturn = ++pParse->nMem; | |
| 566 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); | |
| 567 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor); | |
| 568 if( iLimit ){ | |
| 569 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone); | |
| 570 VdbeCoverage(v); | |
| 571 } | |
| 572 sqlite3VdbeJumpHere(v, addrFirst); | |
| 573 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat); | |
| 574 sqlite3VdbeJumpHere(v, addrJmp); | |
| 575 } | |
| 576 if( pSort->sortFlags & SORTFLAG_UseSorter ){ | |
| 577 op = OP_SorterInsert; | |
| 578 }else{ | |
| 579 op = OP_IdxInsert; | |
| 580 } | |
| 581 sqlite3VdbeAddOp2(v, op, pSort->iECursor, regRecord); | |
| 582 if( iLimit ){ | |
| 583 int addr; | |
| 584 addr = sqlite3VdbeAddOp3(v, OP_IfNotZero, iLimit, 0, 1); VdbeCoverage(v); | |
| 585 sqlite3VdbeAddOp1(v, OP_Last, pSort->iECursor); | |
| 586 sqlite3VdbeAddOp1(v, OP_Delete, pSort->iECursor); | |
| 587 sqlite3VdbeJumpHere(v, addr); | |
| 588 } | |
| 589 } | |
| 590 | |
| 591 /* | |
| 592 ** Add code to implement the OFFSET | |
| 593 */ | |
| 594 static void codeOffset( | |
| 595 Vdbe *v, /* Generate code into this VM */ | |
| 596 int iOffset, /* Register holding the offset counter */ | |
| 597 int iContinue /* Jump here to skip the current record */ | |
| 598 ){ | |
| 599 if( iOffset>0 ){ | |
| 600 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v); | |
| 601 VdbeComment((v, "OFFSET")); | |
| 602 } | |
| 603 } | |
| 604 | |
| 605 /* | |
| 606 ** Add code that will check to make sure the N registers starting at iMem | |
| 607 ** form a distinct entry. iTab is a sorting index that holds previously | |
| 608 ** seen combinations of the N values. A new entry is made in iTab | |
| 609 ** if the current N values are new. | |
| 610 ** | |
| 611 ** A jump to addrRepeat is made and the N+1 values are popped from the | |
| 612 ** stack if the top N elements are not distinct. | |
| 613 */ | |
| 614 static void codeDistinct( | |
| 615 Parse *pParse, /* Parsing and code generating context */ | |
| 616 int iTab, /* A sorting index used to test for distinctness */ | |
| 617 int addrRepeat, /* Jump to here if not distinct */ | |
| 618 int N, /* Number of elements */ | |
| 619 int iMem /* First element */ | |
| 620 ){ | |
| 621 Vdbe *v; | |
| 622 int r1; | |
| 623 | |
| 624 v = pParse->pVdbe; | |
| 625 r1 = sqlite3GetTempReg(pParse); | |
| 626 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v); | |
| 627 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1); | |
| 628 sqlite3VdbeAddOp2(v, OP_IdxInsert, iTab, r1); | |
| 629 sqlite3ReleaseTempReg(pParse, r1); | |
| 630 } | |
| 631 | |
| 632 #ifndef SQLITE_OMIT_SUBQUERY | |
| 633 /* | |
| 634 ** Generate an error message when a SELECT is used within a subexpression | |
| 635 ** (example: "a IN (SELECT * FROM table)") but it has more than 1 result | |
| 636 ** column. We do this in a subroutine because the error used to occur | |
| 637 ** in multiple places. (The error only occurs in one place now, but we | |
| 638 ** retain the subroutine to minimize code disruption.) | |
| 639 */ | |
| 640 static int checkForMultiColumnSelectError( | |
| 641 Parse *pParse, /* Parse context. */ | |
| 642 SelectDest *pDest, /* Destination of SELECT results */ | |
| 643 int nExpr /* Number of result columns returned by SELECT */ | |
| 644 ){ | |
| 645 int eDest = pDest->eDest; | |
| 646 if( nExpr>1 && (eDest==SRT_Mem || eDest==SRT_Set) ){ | |
| 647 sqlite3ErrorMsg(pParse, "only a single result allowed for " | |
| 648 "a SELECT that is part of an expression"); | |
| 649 return 1; | |
| 650 }else{ | |
| 651 return 0; | |
| 652 } | |
| 653 } | |
| 654 #endif | |
| 655 | |
| 656 /* | |
| 657 ** This routine generates the code for the inside of the inner loop | |
| 658 ** of a SELECT. | |
| 659 ** | |
| 660 ** If srcTab is negative, then the pEList expressions | |
| 661 ** are evaluated in order to get the data for this row. If srcTab is | |
| 662 ** zero or more, then data is pulled from srcTab and pEList is used only | |
| 663 ** to get number columns and the datatype for each column. | |
| 664 */ | |
| 665 static void selectInnerLoop( | |
| 666 Parse *pParse, /* The parser context */ | |
| 667 Select *p, /* The complete select statement being coded */ | |
| 668 ExprList *pEList, /* List of values being extracted */ | |
| 669 int srcTab, /* Pull data from this table */ | |
| 670 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */ | |
| 671 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */ | |
| 672 SelectDest *pDest, /* How to dispose of the results */ | |
| 673 int iContinue, /* Jump here to continue with next row */ | |
| 674 int iBreak /* Jump here to break out of the inner loop */ | |
| 675 ){ | |
| 676 Vdbe *v = pParse->pVdbe; | |
| 677 int i; | |
| 678 int hasDistinct; /* True if the DISTINCT keyword is present */ | |
| 679 int regResult; /* Start of memory holding result set */ | |
| 680 int eDest = pDest->eDest; /* How to dispose of results */ | |
| 681 int iParm = pDest->iSDParm; /* First argument to disposal method */ | |
| 682 int nResultCol; /* Number of result columns */ | |
| 683 int nPrefixReg = 0; /* Number of extra registers before regResult */ | |
| 684 | |
| 685 assert( v ); | |
| 686 assert( pEList!=0 ); | |
| 687 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP; | |
| 688 if( pSort && pSort->pOrderBy==0 ) pSort = 0; | |
| 689 if( pSort==0 && !hasDistinct ){ | |
| 690 assert( iContinue!=0 ); | |
| 691 codeOffset(v, p->iOffset, iContinue); | |
| 692 } | |
| 693 | |
| 694 /* Pull the requested columns. | |
| 695 */ | |
| 696 nResultCol = pEList->nExpr; | |
| 697 | |
| 698 if( pDest->iSdst==0 ){ | |
| 699 if( pSort ){ | |
| 700 nPrefixReg = pSort->pOrderBy->nExpr; | |
| 701 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++; | |
| 702 pParse->nMem += nPrefixReg; | |
| 703 } | |
| 704 pDest->iSdst = pParse->nMem+1; | |
| 705 pParse->nMem += nResultCol; | |
| 706 }else if( pDest->iSdst+nResultCol > pParse->nMem ){ | |
| 707 /* This is an error condition that can result, for example, when a SELECT | |
| 708 ** on the right-hand side of an INSERT contains more result columns than | |
| 709 ** there are columns in the table on the left. The error will be caught | |
| 710 ** and reported later. But we need to make sure enough memory is allocated | |
| 711 ** to avoid other spurious errors in the meantime. */ | |
| 712 pParse->nMem += nResultCol; | |
| 713 } | |
| 714 pDest->nSdst = nResultCol; | |
| 715 regResult = pDest->iSdst; | |
| 716 if( srcTab>=0 ){ | |
| 717 for(i=0; i<nResultCol; i++){ | |
| 718 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i); | |
| 719 VdbeComment((v, "%s", pEList->a[i].zName)); | |
| 720 } | |
| 721 }else if( eDest!=SRT_Exists ){ | |
| 722 /* If the destination is an EXISTS(...) expression, the actual | |
| 723 ** values returned by the SELECT are not required. | |
| 724 */ | |
| 725 u8 ecelFlags; | |
| 726 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){ | |
| 727 ecelFlags = SQLITE_ECEL_DUP; | |
| 728 }else{ | |
| 729 ecelFlags = 0; | |
| 730 } | |
| 731 sqlite3ExprCodeExprList(pParse, pEList, regResult, 0, ecelFlags); | |
| 732 } | |
| 733 | |
| 734 /* If the DISTINCT keyword was present on the SELECT statement | |
| 735 ** and this row has been seen before, then do not make this row | |
| 736 ** part of the result. | |
| 737 */ | |
| 738 if( hasDistinct ){ | |
| 739 switch( pDistinct->eTnctType ){ | |
| 740 case WHERE_DISTINCT_ORDERED: { | |
| 741 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */ | |
| 742 int iJump; /* Jump destination */ | |
| 743 int regPrev; /* Previous row content */ | |
| 744 | |
| 745 /* Allocate space for the previous row */ | |
| 746 regPrev = pParse->nMem+1; | |
| 747 pParse->nMem += nResultCol; | |
| 748 | |
| 749 /* Change the OP_OpenEphemeral coded earlier to an OP_Null | |
| 750 ** sets the MEM_Cleared bit on the first register of the | |
| 751 ** previous value. This will cause the OP_Ne below to always | |
| 752 ** fail on the first iteration of the loop even if the first | |
| 753 ** row is all NULLs. | |
| 754 */ | |
| 755 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); | |
| 756 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct); | |
| 757 pOp->opcode = OP_Null; | |
| 758 pOp->p1 = 1; | |
| 759 pOp->p2 = regPrev; | |
| 760 | |
| 761 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol; | |
| 762 for(i=0; i<nResultCol; i++){ | |
| 763 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr); | |
| 764 if( i<nResultCol-1 ){ | |
| 765 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i); | |
| 766 VdbeCoverage(v); | |
| 767 }else{ | |
| 768 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i); | |
| 769 VdbeCoverage(v); | |
| 770 } | |
| 771 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ); | |
| 772 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ); | |
| 773 } | |
| 774 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed ); | |
| 775 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1); | |
| 776 break; | |
| 777 } | |
| 778 | |
| 779 case WHERE_DISTINCT_UNIQUE: { | |
| 780 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct); | |
| 781 break; | |
| 782 } | |
| 783 | |
| 784 default: { | |
| 785 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED ); | |
| 786 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol, | |
| 787 regResult); | |
| 788 break; | |
| 789 } | |
| 790 } | |
| 791 if( pSort==0 ){ | |
| 792 codeOffset(v, p->iOffset, iContinue); | |
| 793 } | |
| 794 } | |
| 795 | |
| 796 switch( eDest ){ | |
| 797 /* In this mode, write each query result to the key of the temporary | |
| 798 ** table iParm. | |
| 799 */ | |
| 800 #ifndef SQLITE_OMIT_COMPOUND_SELECT | |
| 801 case SRT_Union: { | |
| 802 int r1; | |
| 803 r1 = sqlite3GetTempReg(pParse); | |
| 804 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1); | |
| 805 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); | |
| 806 sqlite3ReleaseTempReg(pParse, r1); | |
| 807 break; | |
| 808 } | |
| 809 | |
| 810 /* Construct a record from the query result, but instead of | |
| 811 ** saving that record, use it as a key to delete elements from | |
| 812 ** the temporary table iParm. | |
| 813 */ | |
| 814 case SRT_Except: { | |
| 815 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol); | |
| 816 break; | |
| 817 } | |
| 818 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ | |
| 819 | |
| 820 /* Store the result as data using a unique key. | |
| 821 */ | |
| 822 case SRT_Fifo: | |
| 823 case SRT_DistFifo: | |
| 824 case SRT_Table: | |
| 825 case SRT_EphemTab: { | |
| 826 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1); | |
| 827 testcase( eDest==SRT_Table ); | |
| 828 testcase( eDest==SRT_EphemTab ); | |
| 829 testcase( eDest==SRT_Fifo ); | |
| 830 testcase( eDest==SRT_DistFifo ); | |
| 831 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg); | |
| 832 #ifndef SQLITE_OMIT_CTE | |
| 833 if( eDest==SRT_DistFifo ){ | |
| 834 /* If the destination is DistFifo, then cursor (iParm+1) is open | |
| 835 ** on an ephemeral index. If the current row is already present | |
| 836 ** in the index, do not write it to the output. If not, add the | |
| 837 ** current row to the index and proceed with writing it to the | |
| 838 ** output table as well. */ | |
| 839 int addr = sqlite3VdbeCurrentAddr(v) + 4; | |
| 840 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0); | |
| 841 VdbeCoverage(v); | |
| 842 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r1); | |
| 843 assert( pSort==0 ); | |
| 844 } | |
| 845 #endif | |
| 846 if( pSort ){ | |
| 847 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg,regResult,1,nPrefixReg); | |
| 848 }else{ | |
| 849 int r2 = sqlite3GetTempReg(pParse); | |
| 850 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2); | |
| 851 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2); | |
| 852 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); | |
| 853 sqlite3ReleaseTempReg(pParse, r2); | |
| 854 } | |
| 855 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1); | |
| 856 break; | |
| 857 } | |
| 858 | |
| 859 #ifndef SQLITE_OMIT_SUBQUERY | |
| 860 /* If we are creating a set for an "expr IN (SELECT ...)" construct, | |
| 861 ** then there should be a single item on the stack. Write this | |
| 862 ** item into the set table with bogus data. | |
| 863 */ | |
| 864 case SRT_Set: { | |
| 865 assert( nResultCol==1 ); | |
| 866 pDest->affSdst = | |
| 867 sqlite3CompareAffinity(pEList->a[0].pExpr, pDest->affSdst); | |
| 868 if( pSort ){ | |
| 869 /* At first glance you would think we could optimize out the | |
| 870 ** ORDER BY in this case since the order of entries in the set | |
| 871 ** does not matter. But there might be a LIMIT clause, in which | |
| 872 ** case the order does matter */ | |
| 873 pushOntoSorter(pParse, pSort, p, regResult, regResult, 1, nPrefixReg); | |
| 874 }else{ | |
| 875 int r1 = sqlite3GetTempReg(pParse); | |
| 876 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult,1,r1, &pDest->affSdst, 1); | |
| 877 sqlite3ExprCacheAffinityChange(pParse, regResult, 1); | |
| 878 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); | |
| 879 sqlite3ReleaseTempReg(pParse, r1); | |
| 880 } | |
| 881 break; | |
| 882 } | |
| 883 | |
| 884 /* If any row exist in the result set, record that fact and abort. | |
| 885 */ | |
| 886 case SRT_Exists: { | |
| 887 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm); | |
| 888 /* The LIMIT clause will terminate the loop for us */ | |
| 889 break; | |
| 890 } | |
| 891 | |
| 892 /* If this is a scalar select that is part of an expression, then | |
| 893 ** store the results in the appropriate memory cell and break out | |
| 894 ** of the scan loop. | |
| 895 */ | |
| 896 case SRT_Mem: { | |
| 897 assert( nResultCol==1 ); | |
| 898 if( pSort ){ | |
| 899 pushOntoSorter(pParse, pSort, p, regResult, regResult, 1, nPrefixReg); | |
| 900 }else{ | |
| 901 assert( regResult==iParm ); | |
| 902 /* The LIMIT clause will jump out of the loop for us */ | |
| 903 } | |
| 904 break; | |
| 905 } | |
| 906 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ | |
| 907 | |
| 908 case SRT_Coroutine: /* Send data to a co-routine */ | |
| 909 case SRT_Output: { /* Return the results */ | |
| 910 testcase( eDest==SRT_Coroutine ); | |
| 911 testcase( eDest==SRT_Output ); | |
| 912 if( pSort ){ | |
| 913 pushOntoSorter(pParse, pSort, p, regResult, regResult, nResultCol, | |
| 914 nPrefixReg); | |
| 915 }else if( eDest==SRT_Coroutine ){ | |
| 916 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); | |
| 917 }else{ | |
| 918 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol); | |
| 919 sqlite3ExprCacheAffinityChange(pParse, regResult, nResultCol); | |
| 920 } | |
| 921 break; | |
| 922 } | |
| 923 | |
| 924 #ifndef SQLITE_OMIT_CTE | |
| 925 /* Write the results into a priority queue that is order according to | |
| 926 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an | |
| 927 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first | |
| 928 ** pSO->nExpr columns, then make sure all keys are unique by adding a | |
| 929 ** final OP_Sequence column. The last column is the record as a blob. | |
| 930 */ | |
| 931 case SRT_DistQueue: | |
| 932 case SRT_Queue: { | |
| 933 int nKey; | |
| 934 int r1, r2, r3; | |
| 935 int addrTest = 0; | |
| 936 ExprList *pSO; | |
| 937 pSO = pDest->pOrderBy; | |
| 938 assert( pSO ); | |
| 939 nKey = pSO->nExpr; | |
| 940 r1 = sqlite3GetTempReg(pParse); | |
| 941 r2 = sqlite3GetTempRange(pParse, nKey+2); | |
| 942 r3 = r2+nKey+1; | |
| 943 if( eDest==SRT_DistQueue ){ | |
| 944 /* If the destination is DistQueue, then cursor (iParm+1) is open | |
| 945 ** on a second ephemeral index that holds all values every previously | |
| 946 ** added to the queue. */ | |
| 947 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0, | |
| 948 regResult, nResultCol); | |
| 949 VdbeCoverage(v); | |
| 950 } | |
| 951 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3); | |
| 952 if( eDest==SRT_DistQueue ){ | |
| 953 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3); | |
| 954 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT); | |
| 955 } | |
| 956 for(i=0; i<nKey; i++){ | |
| 957 sqlite3VdbeAddOp2(v, OP_SCopy, | |
| 958 regResult + pSO->a[i].u.x.iOrderByCol - 1, | |
| 959 r2+i); | |
| 960 } | |
| 961 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey); | |
| 962 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1); | |
| 963 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, r1); | |
| 964 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest); | |
| 965 sqlite3ReleaseTempReg(pParse, r1); | |
| 966 sqlite3ReleaseTempRange(pParse, r2, nKey+2); | |
| 967 break; | |
| 968 } | |
| 969 #endif /* SQLITE_OMIT_CTE */ | |
| 970 | |
| 971 | |
| 972 | |
| 973 #if !defined(SQLITE_OMIT_TRIGGER) | |
| 974 /* Discard the results. This is used for SELECT statements inside | |
| 975 ** the body of a TRIGGER. The purpose of such selects is to call | |
| 976 ** user-defined functions that have side effects. We do not care | |
| 977 ** about the actual results of the select. | |
| 978 */ | |
| 979 default: { | |
| 980 assert( eDest==SRT_Discard ); | |
| 981 break; | |
| 982 } | |
| 983 #endif | |
| 984 } | |
| 985 | |
| 986 /* Jump to the end of the loop if the LIMIT is reached. Except, if | |
| 987 ** there is a sorter, in which case the sorter has already limited | |
| 988 ** the output for us. | |
| 989 */ | |
| 990 if( pSort==0 && p->iLimit ){ | |
| 991 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); | |
| 992 } | |
| 993 } | |
| 994 | |
| 995 /* | |
| 996 ** Allocate a KeyInfo object sufficient for an index of N key columns and | |
| 997 ** X extra columns. | |
| 998 */ | |
| 999 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){ | |
| 1000 KeyInfo *p = sqlite3DbMallocZero(0, | |
| 1001 sizeof(KeyInfo) + (N+X)*(sizeof(CollSeq*)+1)); | |
| 1002 if( p ){ | |
| 1003 p->aSortOrder = (u8*)&p->aColl[N+X]; | |
| 1004 p->nField = (u16)N; | |
| 1005 p->nXField = (u16)X; | |
| 1006 p->enc = ENC(db); | |
| 1007 p->db = db; | |
| 1008 p->nRef = 1; | |
| 1009 }else{ | |
| 1010 db->mallocFailed = 1; | |
| 1011 } | |
| 1012 return p; | |
| 1013 } | |
| 1014 | |
| 1015 /* | |
| 1016 ** Deallocate a KeyInfo object | |
| 1017 */ | |
| 1018 void sqlite3KeyInfoUnref(KeyInfo *p){ | |
| 1019 if( p ){ | |
| 1020 assert( p->nRef>0 ); | |
| 1021 p->nRef--; | |
| 1022 if( p->nRef==0 ) sqlite3DbFree(0, p); | |
| 1023 } | |
| 1024 } | |
| 1025 | |
| 1026 /* | |
| 1027 ** Make a new pointer to a KeyInfo object | |
| 1028 */ | |
| 1029 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){ | |
| 1030 if( p ){ | |
| 1031 assert( p->nRef>0 ); | |
| 1032 p->nRef++; | |
| 1033 } | |
| 1034 return p; | |
| 1035 } | |
| 1036 | |
| 1037 #ifdef SQLITE_DEBUG | |
| 1038 /* | |
| 1039 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object | |
| 1040 ** can only be changed if this is just a single reference to the object. | |
| 1041 ** | |
| 1042 ** This routine is used only inside of assert() statements. | |
| 1043 */ | |
| 1044 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; } | |
| 1045 #endif /* SQLITE_DEBUG */ | |
| 1046 | |
| 1047 /* | |
| 1048 ** Given an expression list, generate a KeyInfo structure that records | |
| 1049 ** the collating sequence for each expression in that expression list. | |
| 1050 ** | |
| 1051 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting | |
| 1052 ** KeyInfo structure is appropriate for initializing a virtual index to | |
| 1053 ** implement that clause. If the ExprList is the result set of a SELECT | |
| 1054 ** then the KeyInfo structure is appropriate for initializing a virtual | |
| 1055 ** index to implement a DISTINCT test. | |
| 1056 ** | |
| 1057 ** Space to hold the KeyInfo structure is obtained from malloc. The calling | |
| 1058 ** function is responsible for seeing that this structure is eventually | |
| 1059 ** freed. | |
| 1060 */ | |
| 1061 static KeyInfo *keyInfoFromExprList( | |
| 1062 Parse *pParse, /* Parsing context */ | |
| 1063 ExprList *pList, /* Form the KeyInfo object from this ExprList */ | |
| 1064 int iStart, /* Begin with this column of pList */ | |
| 1065 int nExtra /* Add this many extra columns to the end */ | |
| 1066 ){ | |
| 1067 int nExpr; | |
| 1068 KeyInfo *pInfo; | |
| 1069 struct ExprList_item *pItem; | |
| 1070 sqlite3 *db = pParse->db; | |
| 1071 int i; | |
| 1072 | |
| 1073 nExpr = pList->nExpr; | |
| 1074 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1); | |
| 1075 if( pInfo ){ | |
| 1076 assert( sqlite3KeyInfoIsWriteable(pInfo) ); | |
| 1077 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){ | |
| 1078 CollSeq *pColl; | |
| 1079 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); | |
| 1080 if( !pColl ) pColl = db->pDfltColl; | |
| 1081 pInfo->aColl[i-iStart] = pColl; | |
| 1082 pInfo->aSortOrder[i-iStart] = pItem->sortOrder; | |
| 1083 } | |
| 1084 } | |
| 1085 return pInfo; | |
| 1086 } | |
| 1087 | |
| 1088 /* | |
| 1089 ** Name of the connection operator, used for error messages. | |
| 1090 */ | |
| 1091 static const char *selectOpName(int id){ | |
| 1092 char *z; | |
| 1093 switch( id ){ | |
| 1094 case TK_ALL: z = "UNION ALL"; break; | |
| 1095 case TK_INTERSECT: z = "INTERSECT"; break; | |
| 1096 case TK_EXCEPT: z = "EXCEPT"; break; | |
| 1097 default: z = "UNION"; break; | |
| 1098 } | |
| 1099 return z; | |
| 1100 } | |
| 1101 | |
| 1102 #ifndef SQLITE_OMIT_EXPLAIN | |
| 1103 /* | |
| 1104 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function | |
| 1105 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, | |
| 1106 ** where the caption is of the form: | |
| 1107 ** | |
| 1108 ** "USE TEMP B-TREE FOR xxx" | |
| 1109 ** | |
| 1110 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which | |
| 1111 ** is determined by the zUsage argument. | |
| 1112 */ | |
| 1113 static void explainTempTable(Parse *pParse, const char *zUsage){ | |
| 1114 if( pParse->explain==2 ){ | |
| 1115 Vdbe *v = pParse->pVdbe; | |
| 1116 char *zMsg = sqlite3MPrintf(pParse->db, "USE TEMP B-TREE FOR %s", zUsage); | |
| 1117 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); | |
| 1118 } | |
| 1119 } | |
| 1120 | |
| 1121 /* | |
| 1122 ** Assign expression b to lvalue a. A second, no-op, version of this macro | |
| 1123 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code | |
| 1124 ** in sqlite3Select() to assign values to structure member variables that | |
| 1125 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the | |
| 1126 ** code with #ifndef directives. | |
| 1127 */ | |
| 1128 # define explainSetInteger(a, b) a = b | |
| 1129 | |
| 1130 #else | |
| 1131 /* No-op versions of the explainXXX() functions and macros. */ | |
| 1132 # define explainTempTable(y,z) | |
| 1133 # define explainSetInteger(y,z) | |
| 1134 #endif | |
| 1135 | |
| 1136 #if !defined(SQLITE_OMIT_EXPLAIN) && !defined(SQLITE_OMIT_COMPOUND_SELECT) | |
| 1137 /* | |
| 1138 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function | |
| 1139 ** is a no-op. Otherwise, it adds a single row of output to the EQP result, | |
| 1140 ** where the caption is of one of the two forms: | |
| 1141 ** | |
| 1142 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 (op)" | |
| 1143 ** "COMPOSITE SUBQUERIES iSub1 and iSub2 USING TEMP B-TREE (op)" | |
| 1144 ** | |
| 1145 ** where iSub1 and iSub2 are the integers passed as the corresponding | |
| 1146 ** function parameters, and op is the text representation of the parameter | |
| 1147 ** of the same name. The parameter "op" must be one of TK_UNION, TK_EXCEPT, | |
| 1148 ** TK_INTERSECT or TK_ALL. The first form is used if argument bUseTmp is | |
| 1149 ** false, or the second form if it is true. | |
| 1150 */ | |
| 1151 static void explainComposite( | |
| 1152 Parse *pParse, /* Parse context */ | |
| 1153 int op, /* One of TK_UNION, TK_EXCEPT etc. */ | |
| 1154 int iSub1, /* Subquery id 1 */ | |
| 1155 int iSub2, /* Subquery id 2 */ | |
| 1156 int bUseTmp /* True if a temp table was used */ | |
| 1157 ){ | |
| 1158 assert( op==TK_UNION || op==TK_EXCEPT || op==TK_INTERSECT || op==TK_ALL ); | |
| 1159 if( pParse->explain==2 ){ | |
| 1160 Vdbe *v = pParse->pVdbe; | |
| 1161 char *zMsg = sqlite3MPrintf( | |
| 1162 pParse->db, "COMPOUND SUBQUERIES %d AND %d %s(%s)", iSub1, iSub2, | |
| 1163 bUseTmp?"USING TEMP B-TREE ":"", selectOpName(op) | |
| 1164 ); | |
| 1165 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); | |
| 1166 } | |
| 1167 } | |
| 1168 #else | |
| 1169 /* No-op versions of the explainXXX() functions and macros. */ | |
| 1170 # define explainComposite(v,w,x,y,z) | |
| 1171 #endif | |
| 1172 | |
| 1173 /* | |
| 1174 ** If the inner loop was generated using a non-null pOrderBy argument, | |
| 1175 ** then the results were placed in a sorter. After the loop is terminated | |
| 1176 ** we need to run the sorter and output the results. The following | |
| 1177 ** routine generates the code needed to do that. | |
| 1178 */ | |
| 1179 static void generateSortTail( | |
| 1180 Parse *pParse, /* Parsing context */ | |
| 1181 Select *p, /* The SELECT statement */ | |
| 1182 SortCtx *pSort, /* Information on the ORDER BY clause */ | |
| 1183 int nColumn, /* Number of columns of data */ | |
| 1184 SelectDest *pDest /* Write the sorted results here */ | |
| 1185 ){ | |
| 1186 Vdbe *v = pParse->pVdbe; /* The prepared statement */ | |
| 1187 int addrBreak = pSort->labelDone; /* Jump here to exit loop */ | |
| 1188 int addrContinue = sqlite3VdbeMakeLabel(v); /* Jump here for next cycle */ | |
| 1189 int addr; | |
| 1190 int addrOnce = 0; | |
| 1191 int iTab; | |
| 1192 ExprList *pOrderBy = pSort->pOrderBy; | |
| 1193 int eDest = pDest->eDest; | |
| 1194 int iParm = pDest->iSDParm; | |
| 1195 int regRow; | |
| 1196 int regRowid; | |
| 1197 int nKey; | |
| 1198 int iSortTab; /* Sorter cursor to read from */ | |
| 1199 int nSortData; /* Trailing values to read from sorter */ | |
| 1200 int i; | |
| 1201 int bSeq; /* True if sorter record includes seq. no. */ | |
| 1202 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS | |
| 1203 struct ExprList_item *aOutEx = p->pEList->a; | |
| 1204 #endif | |
| 1205 | |
| 1206 assert( addrBreak<0 ); | |
| 1207 if( pSort->labelBkOut ){ | |
| 1208 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut); | |
| 1209 sqlite3VdbeGoto(v, addrBreak); | |
| 1210 sqlite3VdbeResolveLabel(v, pSort->labelBkOut); | |
| 1211 } | |
| 1212 iTab = pSort->iECursor; | |
| 1213 if( eDest==SRT_Output || eDest==SRT_Coroutine ){ | |
| 1214 regRowid = 0; | |
| 1215 regRow = pDest->iSdst; | |
| 1216 nSortData = nColumn; | |
| 1217 }else{ | |
| 1218 regRowid = sqlite3GetTempReg(pParse); | |
| 1219 regRow = sqlite3GetTempReg(pParse); | |
| 1220 nSortData = 1; | |
| 1221 } | |
| 1222 nKey = pOrderBy->nExpr - pSort->nOBSat; | |
| 1223 if( pSort->sortFlags & SORTFLAG_UseSorter ){ | |
| 1224 int regSortOut = ++pParse->nMem; | |
| 1225 iSortTab = pParse->nTab++; | |
| 1226 if( pSort->labelBkOut ){ | |
| 1227 addrOnce = sqlite3CodeOnce(pParse); VdbeCoverage(v); | |
| 1228 } | |
| 1229 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut, nKey+1+nSortData); | |
| 1230 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce); | |
| 1231 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak); | |
| 1232 VdbeCoverage(v); | |
| 1233 codeOffset(v, p->iOffset, addrContinue); | |
| 1234 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab); | |
| 1235 bSeq = 0; | |
| 1236 }else{ | |
| 1237 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v); | |
| 1238 codeOffset(v, p->iOffset, addrContinue); | |
| 1239 iSortTab = iTab; | |
| 1240 bSeq = 1; | |
| 1241 } | |
| 1242 for(i=0; i<nSortData; i++){ | |
| 1243 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq+i, regRow+i); | |
| 1244 VdbeComment((v, "%s", aOutEx[i].zName ? aOutEx[i].zName : aOutEx[i].zSpan)); | |
| 1245 } | |
| 1246 switch( eDest ){ | |
| 1247 case SRT_EphemTab: { | |
| 1248 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid); | |
| 1249 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid); | |
| 1250 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); | |
| 1251 break; | |
| 1252 } | |
| 1253 #ifndef SQLITE_OMIT_SUBQUERY | |
| 1254 case SRT_Set: { | |
| 1255 assert( nColumn==1 ); | |
| 1256 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, 1, regRowid, | |
| 1257 &pDest->affSdst, 1); | |
| 1258 sqlite3ExprCacheAffinityChange(pParse, regRow, 1); | |
| 1259 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm, regRowid); | |
| 1260 break; | |
| 1261 } | |
| 1262 case SRT_Mem: { | |
| 1263 assert( nColumn==1 ); | |
| 1264 sqlite3ExprCodeMove(pParse, regRow, iParm, 1); | |
| 1265 /* The LIMIT clause will terminate the loop for us */ | |
| 1266 break; | |
| 1267 } | |
| 1268 #endif | |
| 1269 default: { | |
| 1270 assert( eDest==SRT_Output || eDest==SRT_Coroutine ); | |
| 1271 testcase( eDest==SRT_Output ); | |
| 1272 testcase( eDest==SRT_Coroutine ); | |
| 1273 if( eDest==SRT_Output ){ | |
| 1274 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn); | |
| 1275 sqlite3ExprCacheAffinityChange(pParse, pDest->iSdst, nColumn); | |
| 1276 }else{ | |
| 1277 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); | |
| 1278 } | |
| 1279 break; | |
| 1280 } | |
| 1281 } | |
| 1282 if( regRowid ){ | |
| 1283 sqlite3ReleaseTempReg(pParse, regRow); | |
| 1284 sqlite3ReleaseTempReg(pParse, regRowid); | |
| 1285 } | |
| 1286 /* The bottom of the loop | |
| 1287 */ | |
| 1288 sqlite3VdbeResolveLabel(v, addrContinue); | |
| 1289 if( pSort->sortFlags & SORTFLAG_UseSorter ){ | |
| 1290 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v); | |
| 1291 }else{ | |
| 1292 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v); | |
| 1293 } | |
| 1294 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn); | |
| 1295 sqlite3VdbeResolveLabel(v, addrBreak); | |
| 1296 } | |
| 1297 | |
| 1298 /* | |
| 1299 ** Return a pointer to a string containing the 'declaration type' of the | |
| 1300 ** expression pExpr. The string may be treated as static by the caller. | |
| 1301 ** | |
| 1302 ** Also try to estimate the size of the returned value and return that | |
| 1303 ** result in *pEstWidth. | |
| 1304 ** | |
| 1305 ** The declaration type is the exact datatype definition extracted from the | |
| 1306 ** original CREATE TABLE statement if the expression is a column. The | |
| 1307 ** declaration type for a ROWID field is INTEGER. Exactly when an expression | |
| 1308 ** is considered a column can be complex in the presence of subqueries. The | |
| 1309 ** result-set expression in all of the following SELECT statements is | |
| 1310 ** considered a column by this function. | |
| 1311 ** | |
| 1312 ** SELECT col FROM tbl; | |
| 1313 ** SELECT (SELECT col FROM tbl; | |
| 1314 ** SELECT (SELECT col FROM tbl); | |
| 1315 ** SELECT abc FROM (SELECT col AS abc FROM tbl); | |
| 1316 ** | |
| 1317 ** The declaration type for any expression other than a column is NULL. | |
| 1318 ** | |
| 1319 ** This routine has either 3 or 6 parameters depending on whether or not | |
| 1320 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used. | |
| 1321 */ | |
| 1322 #ifdef SQLITE_ENABLE_COLUMN_METADATA | |
| 1323 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,C,D,E,F) | |
| 1324 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */ | |
| 1325 # define columnType(A,B,C,D,E,F) columnTypeImpl(A,B,F) | |
| 1326 #endif | |
| 1327 static const char *columnTypeImpl( | |
| 1328 NameContext *pNC, | |
| 1329 Expr *pExpr, | |
| 1330 #ifdef SQLITE_ENABLE_COLUMN_METADATA | |
| 1331 const char **pzOrigDb, | |
| 1332 const char **pzOrigTab, | |
| 1333 const char **pzOrigCol, | |
| 1334 #endif | |
| 1335 u8 *pEstWidth | |
| 1336 ){ | |
| 1337 char const *zType = 0; | |
| 1338 int j; | |
| 1339 u8 estWidth = 1; | |
| 1340 #ifdef SQLITE_ENABLE_COLUMN_METADATA | |
| 1341 char const *zOrigDb = 0; | |
| 1342 char const *zOrigTab = 0; | |
| 1343 char const *zOrigCol = 0; | |
| 1344 #endif | |
| 1345 | |
| 1346 assert( pExpr!=0 ); | |
| 1347 assert( pNC->pSrcList!=0 ); | |
| 1348 switch( pExpr->op ){ | |
| 1349 case TK_AGG_COLUMN: | |
| 1350 case TK_COLUMN: { | |
| 1351 /* The expression is a column. Locate the table the column is being | |
| 1352 ** extracted from in NameContext.pSrcList. This table may be real | |
| 1353 ** database table or a subquery. | |
| 1354 */ | |
| 1355 Table *pTab = 0; /* Table structure column is extracted from */ | |
| 1356 Select *pS = 0; /* Select the column is extracted from */ | |
| 1357 int iCol = pExpr->iColumn; /* Index of column in pTab */ | |
| 1358 testcase( pExpr->op==TK_AGG_COLUMN ); | |
| 1359 testcase( pExpr->op==TK_COLUMN ); | |
| 1360 while( pNC && !pTab ){ | |
| 1361 SrcList *pTabList = pNC->pSrcList; | |
| 1362 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++); | |
| 1363 if( j<pTabList->nSrc ){ | |
| 1364 pTab = pTabList->a[j].pTab; | |
| 1365 pS = pTabList->a[j].pSelect; | |
| 1366 }else{ | |
| 1367 pNC = pNC->pNext; | |
| 1368 } | |
| 1369 } | |
| 1370 | |
| 1371 if( pTab==0 ){ | |
| 1372 /* At one time, code such as "SELECT new.x" within a trigger would | |
| 1373 ** cause this condition to run. Since then, we have restructured how | |
| 1374 ** trigger code is generated and so this condition is no longer | |
| 1375 ** possible. However, it can still be true for statements like | |
| 1376 ** the following: | |
| 1377 ** | |
| 1378 ** CREATE TABLE t1(col INTEGER); | |
| 1379 ** SELECT (SELECT t1.col) FROM FROM t1; | |
| 1380 ** | |
| 1381 ** when columnType() is called on the expression "t1.col" in the | |
| 1382 ** sub-select. In this case, set the column type to NULL, even | |
| 1383 ** though it should really be "INTEGER". | |
| 1384 ** | |
| 1385 ** This is not a problem, as the column type of "t1.col" is never | |
| 1386 ** used. When columnType() is called on the expression | |
| 1387 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT | |
| 1388 ** branch below. */ | |
| 1389 break; | |
| 1390 } | |
| 1391 | |
| 1392 assert( pTab && pExpr->pTab==pTab ); | |
| 1393 if( pS ){ | |
| 1394 /* The "table" is actually a sub-select or a view in the FROM clause | |
| 1395 ** of the SELECT statement. Return the declaration type and origin | |
| 1396 ** data for the result-set column of the sub-select. | |
| 1397 */ | |
| 1398 if( iCol>=0 && ALWAYS(iCol<pS->pEList->nExpr) ){ | |
| 1399 /* If iCol is less than zero, then the expression requests the | |
| 1400 ** rowid of the sub-select or view. This expression is legal (see | |
| 1401 ** test case misc2.2.2) - it always evaluates to NULL. | |
| 1402 ** | |
| 1403 ** The ALWAYS() is because iCol>=pS->pEList->nExpr will have been | |
| 1404 ** caught already by name resolution. | |
| 1405 */ | |
| 1406 NameContext sNC; | |
| 1407 Expr *p = pS->pEList->a[iCol].pExpr; | |
| 1408 sNC.pSrcList = pS->pSrc; | |
| 1409 sNC.pNext = pNC; | |
| 1410 sNC.pParse = pNC->pParse; | |
| 1411 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol, &estWidth); | |
| 1412 } | |
| 1413 }else if( pTab->pSchema ){ | |
| 1414 /* A real table */ | |
| 1415 assert( !pS ); | |
| 1416 if( iCol<0 ) iCol = pTab->iPKey; | |
| 1417 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); | |
| 1418 #ifdef SQLITE_ENABLE_COLUMN_METADATA | |
| 1419 if( iCol<0 ){ | |
| 1420 zType = "INTEGER"; | |
| 1421 zOrigCol = "rowid"; | |
| 1422 }else{ | |
| 1423 zType = pTab->aCol[iCol].zType; | |
| 1424 zOrigCol = pTab->aCol[iCol].zName; | |
| 1425 estWidth = pTab->aCol[iCol].szEst; | |
| 1426 } | |
| 1427 zOrigTab = pTab->zName; | |
| 1428 if( pNC->pParse ){ | |
| 1429 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema); | |
| 1430 zOrigDb = pNC->pParse->db->aDb[iDb].zName; | |
| 1431 } | |
| 1432 #else | |
| 1433 if( iCol<0 ){ | |
| 1434 zType = "INTEGER"; | |
| 1435 }else{ | |
| 1436 zType = pTab->aCol[iCol].zType; | |
| 1437 estWidth = pTab->aCol[iCol].szEst; | |
| 1438 } | |
| 1439 #endif | |
| 1440 } | |
| 1441 break; | |
| 1442 } | |
| 1443 #ifndef SQLITE_OMIT_SUBQUERY | |
| 1444 case TK_SELECT: { | |
| 1445 /* The expression is a sub-select. Return the declaration type and | |
| 1446 ** origin info for the single column in the result set of the SELECT | |
| 1447 ** statement. | |
| 1448 */ | |
| 1449 NameContext sNC; | |
| 1450 Select *pS = pExpr->x.pSelect; | |
| 1451 Expr *p = pS->pEList->a[0].pExpr; | |
| 1452 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); | |
| 1453 sNC.pSrcList = pS->pSrc; | |
| 1454 sNC.pNext = pNC; | |
| 1455 sNC.pParse = pNC->pParse; | |
| 1456 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, &estWidth); | |
| 1457 break; | |
| 1458 } | |
| 1459 #endif | |
| 1460 } | |
| 1461 | |
| 1462 #ifdef SQLITE_ENABLE_COLUMN_METADATA | |
| 1463 if( pzOrigDb ){ | |
| 1464 assert( pzOrigTab && pzOrigCol ); | |
| 1465 *pzOrigDb = zOrigDb; | |
| 1466 *pzOrigTab = zOrigTab; | |
| 1467 *pzOrigCol = zOrigCol; | |
| 1468 } | |
| 1469 #endif | |
| 1470 if( pEstWidth ) *pEstWidth = estWidth; | |
| 1471 return zType; | |
| 1472 } | |
| 1473 | |
| 1474 /* | |
| 1475 ** Generate code that will tell the VDBE the declaration types of columns | |
| 1476 ** in the result set. | |
| 1477 */ | |
| 1478 static void generateColumnTypes( | |
| 1479 Parse *pParse, /* Parser context */ | |
| 1480 SrcList *pTabList, /* List of tables */ | |
| 1481 ExprList *pEList /* Expressions defining the result set */ | |
| 1482 ){ | |
| 1483 #ifndef SQLITE_OMIT_DECLTYPE | |
| 1484 Vdbe *v = pParse->pVdbe; | |
| 1485 int i; | |
| 1486 NameContext sNC; | |
| 1487 sNC.pSrcList = pTabList; | |
| 1488 sNC.pParse = pParse; | |
| 1489 for(i=0; i<pEList->nExpr; i++){ | |
| 1490 Expr *p = pEList->a[i].pExpr; | |
| 1491 const char *zType; | |
| 1492 #ifdef SQLITE_ENABLE_COLUMN_METADATA | |
| 1493 const char *zOrigDb = 0; | |
| 1494 const char *zOrigTab = 0; | |
| 1495 const char *zOrigCol = 0; | |
| 1496 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol, 0); | |
| 1497 | |
| 1498 /* The vdbe must make its own copy of the column-type and other | |
| 1499 ** column specific strings, in case the schema is reset before this | |
| 1500 ** virtual machine is deleted. | |
| 1501 */ | |
| 1502 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT); | |
| 1503 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT); | |
| 1504 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT); | |
| 1505 #else | |
| 1506 zType = columnType(&sNC, p, 0, 0, 0, 0); | |
| 1507 #endif | |
| 1508 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT); | |
| 1509 } | |
| 1510 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */ | |
| 1511 } | |
| 1512 | |
| 1513 /* | |
| 1514 ** Generate code that will tell the VDBE the names of columns | |
| 1515 ** in the result set. This information is used to provide the | |
| 1516 ** azCol[] values in the callback. | |
| 1517 */ | |
| 1518 static void generateColumnNames( | |
| 1519 Parse *pParse, /* Parser context */ | |
| 1520 SrcList *pTabList, /* List of tables */ | |
| 1521 ExprList *pEList /* Expressions defining the result set */ | |
| 1522 ){ | |
| 1523 Vdbe *v = pParse->pVdbe; | |
| 1524 int i, j; | |
| 1525 sqlite3 *db = pParse->db; | |
| 1526 int fullNames, shortNames; | |
| 1527 | |
| 1528 #ifndef SQLITE_OMIT_EXPLAIN | |
| 1529 /* If this is an EXPLAIN, skip this step */ | |
| 1530 if( pParse->explain ){ | |
| 1531 return; | |
| 1532 } | |
| 1533 #endif | |
| 1534 | |
| 1535 if( pParse->colNamesSet || db->mallocFailed ) return; | |
| 1536 assert( v!=0 ); | |
| 1537 assert( pTabList!=0 ); | |
| 1538 pParse->colNamesSet = 1; | |
| 1539 fullNames = (db->flags & SQLITE_FullColNames)!=0; | |
| 1540 shortNames = (db->flags & SQLITE_ShortColNames)!=0; | |
| 1541 sqlite3VdbeSetNumCols(v, pEList->nExpr); | |
| 1542 for(i=0; i<pEList->nExpr; i++){ | |
| 1543 Expr *p; | |
| 1544 p = pEList->a[i].pExpr; | |
| 1545 if( NEVER(p==0) ) continue; | |
| 1546 if( pEList->a[i].zName ){ | |
| 1547 char *zName = pEList->a[i].zName; | |
| 1548 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT); | |
| 1549 }else if( p->op==TK_COLUMN || p->op==TK_AGG_COLUMN ){ | |
| 1550 Table *pTab; | |
| 1551 char *zCol; | |
| 1552 int iCol = p->iColumn; | |
| 1553 for(j=0; ALWAYS(j<pTabList->nSrc); j++){ | |
| 1554 if( pTabList->a[j].iCursor==p->iTable ) break; | |
| 1555 } | |
| 1556 assert( j<pTabList->nSrc ); | |
| 1557 pTab = pTabList->a[j].pTab; | |
| 1558 if( iCol<0 ) iCol = pTab->iPKey; | |
| 1559 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) ); | |
| 1560 if( iCol<0 ){ | |
| 1561 zCol = "rowid"; | |
| 1562 }else{ | |
| 1563 zCol = pTab->aCol[iCol].zName; | |
| 1564 } | |
| 1565 if( !shortNames && !fullNames ){ | |
| 1566 sqlite3VdbeSetColName(v, i, COLNAME_NAME, | |
| 1567 sqlite3DbStrDup(db, pEList->a[i].zSpan), SQLITE_DYNAMIC); | |
| 1568 }else if( fullNames ){ | |
| 1569 char *zName = 0; | |
| 1570 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol); | |
| 1571 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC); | |
| 1572 }else{ | |
| 1573 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT); | |
| 1574 } | |
| 1575 }else{ | |
| 1576 const char *z = pEList->a[i].zSpan; | |
| 1577 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z); | |
| 1578 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC); | |
| 1579 } | |
| 1580 } | |
| 1581 generateColumnTypes(pParse, pTabList, pEList); | |
| 1582 } | |
| 1583 | |
| 1584 /* | |
| 1585 ** Given an expression list (which is really the list of expressions | |
| 1586 ** that form the result set of a SELECT statement) compute appropriate | |
| 1587 ** column names for a table that would hold the expression list. | |
| 1588 ** | |
| 1589 ** All column names will be unique. | |
| 1590 ** | |
| 1591 ** Only the column names are computed. Column.zType, Column.zColl, | |
| 1592 ** and other fields of Column are zeroed. | |
| 1593 ** | |
| 1594 ** Return SQLITE_OK on success. If a memory allocation error occurs, | |
| 1595 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM. | |
| 1596 */ | |
| 1597 int sqlite3ColumnsFromExprList( | |
| 1598 Parse *pParse, /* Parsing context */ | |
| 1599 ExprList *pEList, /* Expr list from which to derive column names */ | |
| 1600 i16 *pnCol, /* Write the number of columns here */ | |
| 1601 Column **paCol /* Write the new column list here */ | |
| 1602 ){ | |
| 1603 sqlite3 *db = pParse->db; /* Database connection */ | |
| 1604 int i, j; /* Loop counters */ | |
| 1605 u32 cnt; /* Index added to make the name unique */ | |
| 1606 Column *aCol, *pCol; /* For looping over result columns */ | |
| 1607 int nCol; /* Number of columns in the result set */ | |
| 1608 Expr *p; /* Expression for a single result column */ | |
| 1609 char *zName; /* Column name */ | |
| 1610 int nName; /* Size of name in zName[] */ | |
| 1611 Hash ht; /* Hash table of column names */ | |
| 1612 | |
| 1613 sqlite3HashInit(&ht); | |
| 1614 if( pEList ){ | |
| 1615 nCol = pEList->nExpr; | |
| 1616 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol); | |
| 1617 testcase( aCol==0 ); | |
| 1618 }else{ | |
| 1619 nCol = 0; | |
| 1620 aCol = 0; | |
| 1621 } | |
| 1622 assert( nCol==(i16)nCol ); | |
| 1623 *pnCol = nCol; | |
| 1624 *paCol = aCol; | |
| 1625 | |
| 1626 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){ | |
| 1627 /* Get an appropriate name for the column | |
| 1628 */ | |
| 1629 p = sqlite3ExprSkipCollate(pEList->a[i].pExpr); | |
| 1630 if( (zName = pEList->a[i].zName)!=0 ){ | |
| 1631 /* If the column contains an "AS <name>" phrase, use <name> as the name */ | |
| 1632 }else{ | |
| 1633 Expr *pColExpr = p; /* The expression that is the result column name */ | |
| 1634 Table *pTab; /* Table associated with this expression */ | |
| 1635 while( pColExpr->op==TK_DOT ){ | |
| 1636 pColExpr = pColExpr->pRight; | |
| 1637 assert( pColExpr!=0 ); | |
| 1638 } | |
| 1639 if( pColExpr->op==TK_COLUMN && ALWAYS(pColExpr->pTab!=0) ){ | |
| 1640 /* For columns use the column name name */ | |
| 1641 int iCol = pColExpr->iColumn; | |
| 1642 pTab = pColExpr->pTab; | |
| 1643 if( iCol<0 ) iCol = pTab->iPKey; | |
| 1644 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid"; | |
| 1645 }else if( pColExpr->op==TK_ID ){ | |
| 1646 assert( !ExprHasProperty(pColExpr, EP_IntValue) ); | |
| 1647 zName = pColExpr->u.zToken; | |
| 1648 }else{ | |
| 1649 /* Use the original text of the column expression as its name */ | |
| 1650 zName = pEList->a[i].zSpan; | |
| 1651 } | |
| 1652 } | |
| 1653 zName = sqlite3MPrintf(db, "%s", zName); | |
| 1654 | |
| 1655 /* Make sure the column name is unique. If the name is not unique, | |
| 1656 ** append an integer to the name so that it becomes unique. | |
| 1657 */ | |
| 1658 cnt = 0; | |
| 1659 while( zName && sqlite3HashFind(&ht, zName)!=0 ){ | |
| 1660 nName = sqlite3Strlen30(zName); | |
| 1661 if( nName>0 ){ | |
| 1662 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){} | |
| 1663 if( zName[j]==':' ) nName = j; | |
| 1664 } | |
| 1665 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt); | |
| 1666 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt); | |
| 1667 } | |
| 1668 pCol->zName = zName; | |
| 1669 sqlite3ColumnPropertiesFromName(0, pCol); | |
| 1670 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){ | |
| 1671 db->mallocFailed = 1; | |
| 1672 } | |
| 1673 } | |
| 1674 sqlite3HashClear(&ht); | |
| 1675 if( db->mallocFailed ){ | |
| 1676 for(j=0; j<i; j++){ | |
| 1677 sqlite3DbFree(db, aCol[j].zName); | |
| 1678 } | |
| 1679 sqlite3DbFree(db, aCol); | |
| 1680 *paCol = 0; | |
| 1681 *pnCol = 0; | |
| 1682 return SQLITE_NOMEM; | |
| 1683 } | |
| 1684 return SQLITE_OK; | |
| 1685 } | |
| 1686 | |
| 1687 /* | |
| 1688 ** Add type and collation information to a column list based on | |
| 1689 ** a SELECT statement. | |
| 1690 ** | |
| 1691 ** The column list presumably came from selectColumnNamesFromExprList(). | |
| 1692 ** The column list has only names, not types or collations. This | |
| 1693 ** routine goes through and adds the types and collations. | |
| 1694 ** | |
| 1695 ** This routine requires that all identifiers in the SELECT | |
| 1696 ** statement be resolved. | |
| 1697 */ | |
| 1698 static void selectAddColumnTypeAndCollation( | |
| 1699 Parse *pParse, /* Parsing contexts */ | |
| 1700 Table *pTab, /* Add column type information to this table */ | |
| 1701 Select *pSelect /* SELECT used to determine types and collations */ | |
| 1702 ){ | |
| 1703 sqlite3 *db = pParse->db; | |
| 1704 NameContext sNC; | |
| 1705 Column *pCol; | |
| 1706 CollSeq *pColl; | |
| 1707 int i; | |
| 1708 Expr *p; | |
| 1709 struct ExprList_item *a; | |
| 1710 u64 szAll = 0; | |
| 1711 | |
| 1712 assert( pSelect!=0 ); | |
| 1713 assert( (pSelect->selFlags & SF_Resolved)!=0 ); | |
| 1714 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed ); | |
| 1715 if( db->mallocFailed ) return; | |
| 1716 memset(&sNC, 0, sizeof(sNC)); | |
| 1717 sNC.pSrcList = pSelect->pSrc; | |
| 1718 a = pSelect->pEList->a; | |
| 1719 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){ | |
| 1720 p = a[i].pExpr; | |
| 1721 if( pCol->zType==0 ){ | |
| 1722 pCol->zType = sqlite3DbStrDup(db, | |
| 1723 columnType(&sNC, p,0,0,0, &pCol->szEst)); | |
| 1724 } | |
| 1725 szAll += pCol->szEst; | |
| 1726 pCol->affinity = sqlite3ExprAffinity(p); | |
| 1727 if( pCol->affinity==0 ) pCol->affinity = SQLITE_AFF_BLOB; | |
| 1728 pColl = sqlite3ExprCollSeq(pParse, p); | |
| 1729 if( pColl && pCol->zColl==0 ){ | |
| 1730 pCol->zColl = sqlite3DbStrDup(db, pColl->zName); | |
| 1731 } | |
| 1732 } | |
| 1733 pTab->szTabRow = sqlite3LogEst(szAll*4); | |
| 1734 } | |
| 1735 | |
| 1736 /* | |
| 1737 ** Given a SELECT statement, generate a Table structure that describes | |
| 1738 ** the result set of that SELECT. | |
| 1739 */ | |
| 1740 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect){ | |
| 1741 Table *pTab; | |
| 1742 sqlite3 *db = pParse->db; | |
| 1743 int savedFlags; | |
| 1744 | |
| 1745 savedFlags = db->flags; | |
| 1746 db->flags &= ~SQLITE_FullColNames; | |
| 1747 db->flags |= SQLITE_ShortColNames; | |
| 1748 sqlite3SelectPrep(pParse, pSelect, 0); | |
| 1749 if( pParse->nErr ) return 0; | |
| 1750 while( pSelect->pPrior ) pSelect = pSelect->pPrior; | |
| 1751 db->flags = savedFlags; | |
| 1752 pTab = sqlite3DbMallocZero(db, sizeof(Table) ); | |
| 1753 if( pTab==0 ){ | |
| 1754 return 0; | |
| 1755 } | |
| 1756 /* The sqlite3ResultSetOfSelect() is only used n contexts where lookaside | |
| 1757 ** is disabled */ | |
| 1758 assert( db->lookaside.bEnabled==0 ); | |
| 1759 pTab->nRef = 1; | |
| 1760 pTab->zName = 0; | |
| 1761 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); | |
| 1762 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol); | |
| 1763 selectAddColumnTypeAndCollation(pParse, pTab, pSelect); | |
| 1764 pTab->iPKey = -1; | |
| 1765 if( db->mallocFailed ){ | |
| 1766 sqlite3DeleteTable(db, pTab); | |
| 1767 return 0; | |
| 1768 } | |
| 1769 return pTab; | |
| 1770 } | |
| 1771 | |
| 1772 /* | |
| 1773 ** Get a VDBE for the given parser context. Create a new one if necessary. | |
| 1774 ** If an error occurs, return NULL and leave a message in pParse. | |
| 1775 */ | |
| 1776 Vdbe *sqlite3GetVdbe(Parse *pParse){ | |
| 1777 Vdbe *v = pParse->pVdbe; | |
| 1778 if( v==0 ){ | |
| 1779 v = pParse->pVdbe = sqlite3VdbeCreate(pParse); | |
| 1780 if( v ) sqlite3VdbeAddOp0(v, OP_Init); | |
| 1781 if( pParse->pToplevel==0 | |
| 1782 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst) | |
| 1783 ){ | |
| 1784 pParse->okConstFactor = 1; | |
| 1785 } | |
| 1786 | |
| 1787 } | |
| 1788 return v; | |
| 1789 } | |
| 1790 | |
| 1791 | |
| 1792 /* | |
| 1793 ** Compute the iLimit and iOffset fields of the SELECT based on the | |
| 1794 ** pLimit and pOffset expressions. pLimit and pOffset hold the expressions | |
| 1795 ** that appear in the original SQL statement after the LIMIT and OFFSET | |
| 1796 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset | |
| 1797 ** are the integer memory register numbers for counters used to compute | |
| 1798 ** the limit and offset. If there is no limit and/or offset, then | |
| 1799 ** iLimit and iOffset are negative. | |
| 1800 ** | |
| 1801 ** This routine changes the values of iLimit and iOffset only if | |
| 1802 ** a limit or offset is defined by pLimit and pOffset. iLimit and | |
| 1803 ** iOffset should have been preset to appropriate default values (zero) | |
| 1804 ** prior to calling this routine. | |
| 1805 ** | |
| 1806 ** The iOffset register (if it exists) is initialized to the value | |
| 1807 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register | |
| 1808 ** iOffset+1 is initialized to LIMIT+OFFSET. | |
| 1809 ** | |
| 1810 ** Only if pLimit!=0 or pOffset!=0 do the limit registers get | |
| 1811 ** redefined. The UNION ALL operator uses this property to force | |
| 1812 ** the reuse of the same limit and offset registers across multiple | |
| 1813 ** SELECT statements. | |
| 1814 */ | |
| 1815 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){ | |
| 1816 Vdbe *v = 0; | |
| 1817 int iLimit = 0; | |
| 1818 int iOffset; | |
| 1819 int n; | |
| 1820 if( p->iLimit ) return; | |
| 1821 | |
| 1822 /* | |
| 1823 ** "LIMIT -1" always shows all rows. There is some | |
| 1824 ** controversy about what the correct behavior should be. | |
| 1825 ** The current implementation interprets "LIMIT 0" to mean | |
| 1826 ** no rows. | |
| 1827 */ | |
| 1828 sqlite3ExprCacheClear(pParse); | |
| 1829 assert( p->pOffset==0 || p->pLimit!=0 ); | |
| 1830 if( p->pLimit ){ | |
| 1831 p->iLimit = iLimit = ++pParse->nMem; | |
| 1832 v = sqlite3GetVdbe(pParse); | |
| 1833 assert( v!=0 ); | |
| 1834 if( sqlite3ExprIsInteger(p->pLimit, &n) ){ | |
| 1835 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit); | |
| 1836 VdbeComment((v, "LIMIT counter")); | |
| 1837 if( n==0 ){ | |
| 1838 sqlite3VdbeGoto(v, iBreak); | |
| 1839 }else if( n>=0 && p->nSelectRow>(u64)n ){ | |
| 1840 p->nSelectRow = n; | |
| 1841 } | |
| 1842 }else{ | |
| 1843 sqlite3ExprCode(pParse, p->pLimit, iLimit); | |
| 1844 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v); | |
| 1845 VdbeComment((v, "LIMIT counter")); | |
| 1846 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v); | |
| 1847 } | |
| 1848 if( p->pOffset ){ | |
| 1849 p->iOffset = iOffset = ++pParse->nMem; | |
| 1850 pParse->nMem++; /* Allocate an extra register for limit+offset */ | |
| 1851 sqlite3ExprCode(pParse, p->pOffset, iOffset); | |
| 1852 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v); | |
| 1853 VdbeComment((v, "OFFSET counter")); | |
| 1854 sqlite3VdbeAddOp3(v, OP_SetIfNotPos, iOffset, iOffset, 0); | |
| 1855 sqlite3VdbeAddOp3(v, OP_Add, iLimit, iOffset, iOffset+1); | |
| 1856 VdbeComment((v, "LIMIT+OFFSET")); | |
| 1857 sqlite3VdbeAddOp3(v, OP_SetIfNotPos, iLimit, iOffset+1, -1); | |
| 1858 } | |
| 1859 } | |
| 1860 } | |
| 1861 | |
| 1862 #ifndef SQLITE_OMIT_COMPOUND_SELECT | |
| 1863 /* | |
| 1864 ** Return the appropriate collating sequence for the iCol-th column of | |
| 1865 ** the result set for the compound-select statement "p". Return NULL if | |
| 1866 ** the column has no default collating sequence. | |
| 1867 ** | |
| 1868 ** The collating sequence for the compound select is taken from the | |
| 1869 ** left-most term of the select that has a collating sequence. | |
| 1870 */ | |
| 1871 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){ | |
| 1872 CollSeq *pRet; | |
| 1873 if( p->pPrior ){ | |
| 1874 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol); | |
| 1875 }else{ | |
| 1876 pRet = 0; | |
| 1877 } | |
| 1878 assert( iCol>=0 ); | |
| 1879 /* iCol must be less than p->pEList->nExpr. Otherwise an error would | |
| 1880 ** have been thrown during name resolution and we would not have gotten | |
| 1881 ** this far */ | |
| 1882 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){ | |
| 1883 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr); | |
| 1884 } | |
| 1885 return pRet; | |
| 1886 } | |
| 1887 | |
| 1888 /* | |
| 1889 ** The select statement passed as the second parameter is a compound SELECT | |
| 1890 ** with an ORDER BY clause. This function allocates and returns a KeyInfo | |
| 1891 ** structure suitable for implementing the ORDER BY. | |
| 1892 ** | |
| 1893 ** Space to hold the KeyInfo structure is obtained from malloc. The calling | |
| 1894 ** function is responsible for ensuring that this structure is eventually | |
| 1895 ** freed. | |
| 1896 */ | |
| 1897 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){ | |
| 1898 ExprList *pOrderBy = p->pOrderBy; | |
| 1899 int nOrderBy = p->pOrderBy->nExpr; | |
| 1900 sqlite3 *db = pParse->db; | |
| 1901 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1); | |
| 1902 if( pRet ){ | |
| 1903 int i; | |
| 1904 for(i=0; i<nOrderBy; i++){ | |
| 1905 struct ExprList_item *pItem = &pOrderBy->a[i]; | |
| 1906 Expr *pTerm = pItem->pExpr; | |
| 1907 CollSeq *pColl; | |
| 1908 | |
| 1909 if( pTerm->flags & EP_Collate ){ | |
| 1910 pColl = sqlite3ExprCollSeq(pParse, pTerm); | |
| 1911 }else{ | |
| 1912 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1); | |
| 1913 if( pColl==0 ) pColl = db->pDfltColl; | |
| 1914 pOrderBy->a[i].pExpr = | |
| 1915 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName); | |
| 1916 } | |
| 1917 assert( sqlite3KeyInfoIsWriteable(pRet) ); | |
| 1918 pRet->aColl[i] = pColl; | |
| 1919 pRet->aSortOrder[i] = pOrderBy->a[i].sortOrder; | |
| 1920 } | |
| 1921 } | |
| 1922 | |
| 1923 return pRet; | |
| 1924 } | |
| 1925 | |
| 1926 #ifndef SQLITE_OMIT_CTE | |
| 1927 /* | |
| 1928 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE | |
| 1929 ** query of the form: | |
| 1930 ** | |
| 1931 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>) | |
| 1932 ** \___________/ \_______________/ | |
| 1933 ** p->pPrior p | |
| 1934 ** | |
| 1935 ** | |
| 1936 ** There is exactly one reference to the recursive-table in the FROM clause | |
| 1937 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag. | |
| 1938 ** | |
| 1939 ** The setup-query runs once to generate an initial set of rows that go | |
| 1940 ** into a Queue table. Rows are extracted from the Queue table one by | |
| 1941 ** one. Each row extracted from Queue is output to pDest. Then the single | |
| 1942 ** extracted row (now in the iCurrent table) becomes the content of the | |
| 1943 ** recursive-table for a recursive-query run. The output of the recursive-query | |
| 1944 ** is added back into the Queue table. Then another row is extracted from Queue | |
| 1945 ** and the iteration continues until the Queue table is empty. | |
| 1946 ** | |
| 1947 ** If the compound query operator is UNION then no duplicate rows are ever | |
| 1948 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows | |
| 1949 ** that have ever been inserted into Queue and causes duplicates to be | |
| 1950 ** discarded. If the operator is UNION ALL, then duplicates are allowed. | |
| 1951 ** | |
| 1952 ** If the query has an ORDER BY, then entries in the Queue table are kept in | |
| 1953 ** ORDER BY order and the first entry is extracted for each cycle. Without | |
| 1954 ** an ORDER BY, the Queue table is just a FIFO. | |
| 1955 ** | |
| 1956 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows | |
| 1957 ** have been output to pDest. A LIMIT of zero means to output no rows and a | |
| 1958 ** negative LIMIT means to output all rows. If there is also an OFFSET clause | |
| 1959 ** with a positive value, then the first OFFSET outputs are discarded rather | |
| 1960 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET | |
| 1961 ** rows have been skipped. | |
| 1962 */ | |
| 1963 static void generateWithRecursiveQuery( | |
| 1964 Parse *pParse, /* Parsing context */ | |
| 1965 Select *p, /* The recursive SELECT to be coded */ | |
| 1966 SelectDest *pDest /* What to do with query results */ | |
| 1967 ){ | |
| 1968 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */ | |
| 1969 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */ | |
| 1970 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */ | |
| 1971 Select *pSetup = p->pPrior; /* The setup query */ | |
| 1972 int addrTop; /* Top of the loop */ | |
| 1973 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */ | |
| 1974 int iCurrent = 0; /* The Current table */ | |
| 1975 int regCurrent; /* Register holding Current table */ | |
| 1976 int iQueue; /* The Queue table */ | |
| 1977 int iDistinct = 0; /* To ensure unique results if UNION */ | |
| 1978 int eDest = SRT_Fifo; /* How to write to Queue */ | |
| 1979 SelectDest destQueue; /* SelectDest targetting the Queue table */ | |
| 1980 int i; /* Loop counter */ | |
| 1981 int rc; /* Result code */ | |
| 1982 ExprList *pOrderBy; /* The ORDER BY clause */ | |
| 1983 Expr *pLimit, *pOffset; /* Saved LIMIT and OFFSET */ | |
| 1984 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */ | |
| 1985 | |
| 1986 /* Obtain authorization to do a recursive query */ | |
| 1987 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return; | |
| 1988 | |
| 1989 /* Process the LIMIT and OFFSET clauses, if they exist */ | |
| 1990 addrBreak = sqlite3VdbeMakeLabel(v); | |
| 1991 computeLimitRegisters(pParse, p, addrBreak); | |
| 1992 pLimit = p->pLimit; | |
| 1993 pOffset = p->pOffset; | |
| 1994 regLimit = p->iLimit; | |
| 1995 regOffset = p->iOffset; | |
| 1996 p->pLimit = p->pOffset = 0; | |
| 1997 p->iLimit = p->iOffset = 0; | |
| 1998 pOrderBy = p->pOrderBy; | |
| 1999 | |
| 2000 /* Locate the cursor number of the Current table */ | |
| 2001 for(i=0; ALWAYS(i<pSrc->nSrc); i++){ | |
| 2002 if( pSrc->a[i].fg.isRecursive ){ | |
| 2003 iCurrent = pSrc->a[i].iCursor; | |
| 2004 break; | |
| 2005 } | |
| 2006 } | |
| 2007 | |
| 2008 /* Allocate cursors numbers for Queue and Distinct. The cursor number for | |
| 2009 ** the Distinct table must be exactly one greater than Queue in order | |
| 2010 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */ | |
| 2011 iQueue = pParse->nTab++; | |
| 2012 if( p->op==TK_UNION ){ | |
| 2013 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo; | |
| 2014 iDistinct = pParse->nTab++; | |
| 2015 }else{ | |
| 2016 eDest = pOrderBy ? SRT_Queue : SRT_Fifo; | |
| 2017 } | |
| 2018 sqlite3SelectDestInit(&destQueue, eDest, iQueue); | |
| 2019 | |
| 2020 /* Allocate cursors for Current, Queue, and Distinct. */ | |
| 2021 regCurrent = ++pParse->nMem; | |
| 2022 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol); | |
| 2023 if( pOrderBy ){ | |
| 2024 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1); | |
| 2025 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0, | |
| 2026 (char*)pKeyInfo, P4_KEYINFO); | |
| 2027 destQueue.pOrderBy = pOrderBy; | |
| 2028 }else{ | |
| 2029 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol); | |
| 2030 } | |
| 2031 VdbeComment((v, "Queue table")); | |
| 2032 if( iDistinct ){ | |
| 2033 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0); | |
| 2034 p->selFlags |= SF_UsesEphemeral; | |
| 2035 } | |
| 2036 | |
| 2037 /* Detach the ORDER BY clause from the compound SELECT */ | |
| 2038 p->pOrderBy = 0; | |
| 2039 | |
| 2040 /* Store the results of the setup-query in Queue. */ | |
| 2041 pSetup->pNext = 0; | |
| 2042 rc = sqlite3Select(pParse, pSetup, &destQueue); | |
| 2043 pSetup->pNext = p; | |
| 2044 if( rc ) goto end_of_recursive_query; | |
| 2045 | |
| 2046 /* Find the next row in the Queue and output that row */ | |
| 2047 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v); | |
| 2048 | |
| 2049 /* Transfer the next row in Queue over to Current */ | |
| 2050 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */ | |
| 2051 if( pOrderBy ){ | |
| 2052 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent); | |
| 2053 }else{ | |
| 2054 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent); | |
| 2055 } | |
| 2056 sqlite3VdbeAddOp1(v, OP_Delete, iQueue); | |
| 2057 | |
| 2058 /* Output the single row in Current */ | |
| 2059 addrCont = sqlite3VdbeMakeLabel(v); | |
| 2060 codeOffset(v, regOffset, addrCont); | |
| 2061 selectInnerLoop(pParse, p, p->pEList, iCurrent, | |
| 2062 0, 0, pDest, addrCont, addrBreak); | |
| 2063 if( regLimit ){ | |
| 2064 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak); | |
| 2065 VdbeCoverage(v); | |
| 2066 } | |
| 2067 sqlite3VdbeResolveLabel(v, addrCont); | |
| 2068 | |
| 2069 /* Execute the recursive SELECT taking the single row in Current as | |
| 2070 ** the value for the recursive-table. Store the results in the Queue. | |
| 2071 */ | |
| 2072 if( p->selFlags & SF_Aggregate ){ | |
| 2073 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported"); | |
| 2074 }else{ | |
| 2075 p->pPrior = 0; | |
| 2076 sqlite3Select(pParse, p, &destQueue); | |
| 2077 assert( p->pPrior==0 ); | |
| 2078 p->pPrior = pSetup; | |
| 2079 } | |
| 2080 | |
| 2081 /* Keep running the loop until the Queue is empty */ | |
| 2082 sqlite3VdbeGoto(v, addrTop); | |
| 2083 sqlite3VdbeResolveLabel(v, addrBreak); | |
| 2084 | |
| 2085 end_of_recursive_query: | |
| 2086 sqlite3ExprListDelete(pParse->db, p->pOrderBy); | |
| 2087 p->pOrderBy = pOrderBy; | |
| 2088 p->pLimit = pLimit; | |
| 2089 p->pOffset = pOffset; | |
| 2090 return; | |
| 2091 } | |
| 2092 #endif /* SQLITE_OMIT_CTE */ | |
| 2093 | |
| 2094 /* Forward references */ | |
| 2095 static int multiSelectOrderBy( | |
| 2096 Parse *pParse, /* Parsing context */ | |
| 2097 Select *p, /* The right-most of SELECTs to be coded */ | |
| 2098 SelectDest *pDest /* What to do with query results */ | |
| 2099 ); | |
| 2100 | |
| 2101 /* | |
| 2102 ** Handle the special case of a compound-select that originates from a | |
| 2103 ** VALUES clause. By handling this as a special case, we avoid deep | |
| 2104 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT | |
| 2105 ** on a VALUES clause. | |
| 2106 ** | |
| 2107 ** Because the Select object originates from a VALUES clause: | |
| 2108 ** (1) It has no LIMIT or OFFSET | |
| 2109 ** (2) All terms are UNION ALL | |
| 2110 ** (3) There is no ORDER BY clause | |
| 2111 */ | |
| 2112 static int multiSelectValues( | |
| 2113 Parse *pParse, /* Parsing context */ | |
| 2114 Select *p, /* The right-most of SELECTs to be coded */ | |
| 2115 SelectDest *pDest /* What to do with query results */ | |
| 2116 ){ | |
| 2117 Select *pPrior; | |
| 2118 int nRow = 1; | |
| 2119 int rc = 0; | |
| 2120 assert( p->selFlags & SF_MultiValue ); | |
| 2121 do{ | |
| 2122 assert( p->selFlags & SF_Values ); | |
| 2123 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) ); | |
| 2124 assert( p->pLimit==0 ); | |
| 2125 assert( p->pOffset==0 ); | |
| 2126 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr ); | |
| 2127 if( p->pPrior==0 ) break; | |
| 2128 assert( p->pPrior->pNext==p ); | |
| 2129 p = p->pPrior; | |
| 2130 nRow++; | |
| 2131 }while(1); | |
| 2132 while( p ){ | |
| 2133 pPrior = p->pPrior; | |
| 2134 p->pPrior = 0; | |
| 2135 rc = sqlite3Select(pParse, p, pDest); | |
| 2136 p->pPrior = pPrior; | |
| 2137 if( rc ) break; | |
| 2138 p->nSelectRow = nRow; | |
| 2139 p = p->pNext; | |
| 2140 } | |
| 2141 return rc; | |
| 2142 } | |
| 2143 | |
| 2144 /* | |
| 2145 ** This routine is called to process a compound query form from | |
| 2146 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or | |
| 2147 ** INTERSECT | |
| 2148 ** | |
| 2149 ** "p" points to the right-most of the two queries. the query on the | |
| 2150 ** left is p->pPrior. The left query could also be a compound query | |
| 2151 ** in which case this routine will be called recursively. | |
| 2152 ** | |
| 2153 ** The results of the total query are to be written into a destination | |
| 2154 ** of type eDest with parameter iParm. | |
| 2155 ** | |
| 2156 ** Example 1: Consider a three-way compound SQL statement. | |
| 2157 ** | |
| 2158 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3 | |
| 2159 ** | |
| 2160 ** This statement is parsed up as follows: | |
| 2161 ** | |
| 2162 ** SELECT c FROM t3 | |
| 2163 ** | | |
| 2164 ** `-----> SELECT b FROM t2 | |
| 2165 ** | | |
| 2166 ** `------> SELECT a FROM t1 | |
| 2167 ** | |
| 2168 ** The arrows in the diagram above represent the Select.pPrior pointer. | |
| 2169 ** So if this routine is called with p equal to the t3 query, then | |
| 2170 ** pPrior will be the t2 query. p->op will be TK_UNION in this case. | |
| 2171 ** | |
| 2172 ** Notice that because of the way SQLite parses compound SELECTs, the | |
| 2173 ** individual selects always group from left to right. | |
| 2174 */ | |
| 2175 static int multiSelect( | |
| 2176 Parse *pParse, /* Parsing context */ | |
| 2177 Select *p, /* The right-most of SELECTs to be coded */ | |
| 2178 SelectDest *pDest /* What to do with query results */ | |
| 2179 ){ | |
| 2180 int rc = SQLITE_OK; /* Success code from a subroutine */ | |
| 2181 Select *pPrior; /* Another SELECT immediately to our left */ | |
| 2182 Vdbe *v; /* Generate code to this VDBE */ | |
| 2183 SelectDest dest; /* Alternative data destination */ | |
| 2184 Select *pDelete = 0; /* Chain of simple selects to delete */ | |
| 2185 sqlite3 *db; /* Database connection */ | |
| 2186 #ifndef SQLITE_OMIT_EXPLAIN | |
| 2187 int iSub1 = 0; /* EQP id of left-hand query */ | |
| 2188 int iSub2 = 0; /* EQP id of right-hand query */ | |
| 2189 #endif | |
| 2190 | |
| 2191 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only | |
| 2192 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT. | |
| 2193 */ | |
| 2194 assert( p && p->pPrior ); /* Calling function guarantees this much */ | |
| 2195 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION ); | |
| 2196 db = pParse->db; | |
| 2197 pPrior = p->pPrior; | |
| 2198 dest = *pDest; | |
| 2199 if( pPrior->pOrderBy ){ | |
| 2200 sqlite3ErrorMsg(pParse,"ORDER BY clause should come after %s not before", | |
| 2201 selectOpName(p->op)); | |
| 2202 rc = 1; | |
| 2203 goto multi_select_end; | |
| 2204 } | |
| 2205 if( pPrior->pLimit ){ | |
| 2206 sqlite3ErrorMsg(pParse,"LIMIT clause should come after %s not before", | |
| 2207 selectOpName(p->op)); | |
| 2208 rc = 1; | |
| 2209 goto multi_select_end; | |
| 2210 } | |
| 2211 | |
| 2212 v = sqlite3GetVdbe(pParse); | |
| 2213 assert( v!=0 ); /* The VDBE already created by calling function */ | |
| 2214 | |
| 2215 /* Create the destination temporary table if necessary | |
| 2216 */ | |
| 2217 if( dest.eDest==SRT_EphemTab ){ | |
| 2218 assert( p->pEList ); | |
| 2219 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr); | |
| 2220 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); | |
| 2221 dest.eDest = SRT_Table; | |
| 2222 } | |
| 2223 | |
| 2224 /* Special handling for a compound-select that originates as a VALUES clause. | |
| 2225 */ | |
| 2226 if( p->selFlags & SF_MultiValue ){ | |
| 2227 rc = multiSelectValues(pParse, p, &dest); | |
| 2228 goto multi_select_end; | |
| 2229 } | |
| 2230 | |
| 2231 /* Make sure all SELECTs in the statement have the same number of elements | |
| 2232 ** in their result sets. | |
| 2233 */ | |
| 2234 assert( p->pEList && pPrior->pEList ); | |
| 2235 assert( p->pEList->nExpr==pPrior->pEList->nExpr ); | |
| 2236 | |
| 2237 #ifndef SQLITE_OMIT_CTE | |
| 2238 if( p->selFlags & SF_Recursive ){ | |
| 2239 generateWithRecursiveQuery(pParse, p, &dest); | |
| 2240 }else | |
| 2241 #endif | |
| 2242 | |
| 2243 /* Compound SELECTs that have an ORDER BY clause are handled separately. | |
| 2244 */ | |
| 2245 if( p->pOrderBy ){ | |
| 2246 return multiSelectOrderBy(pParse, p, pDest); | |
| 2247 }else | |
| 2248 | |
| 2249 /* Generate code for the left and right SELECT statements. | |
| 2250 */ | |
| 2251 switch( p->op ){ | |
| 2252 case TK_ALL: { | |
| 2253 int addr = 0; | |
| 2254 int nLimit; | |
| 2255 assert( !pPrior->pLimit ); | |
| 2256 pPrior->iLimit = p->iLimit; | |
| 2257 pPrior->iOffset = p->iOffset; | |
| 2258 pPrior->pLimit = p->pLimit; | |
| 2259 pPrior->pOffset = p->pOffset; | |
| 2260 explainSetInteger(iSub1, pParse->iNextSelectId); | |
| 2261 rc = sqlite3Select(pParse, pPrior, &dest); | |
| 2262 p->pLimit = 0; | |
| 2263 p->pOffset = 0; | |
| 2264 if( rc ){ | |
| 2265 goto multi_select_end; | |
| 2266 } | |
| 2267 p->pPrior = 0; | |
| 2268 p->iLimit = pPrior->iLimit; | |
| 2269 p->iOffset = pPrior->iOffset; | |
| 2270 if( p->iLimit ){ | |
| 2271 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v); | |
| 2272 VdbeComment((v, "Jump ahead if LIMIT reached")); | |
| 2273 if( p->iOffset ){ | |
| 2274 sqlite3VdbeAddOp3(v, OP_SetIfNotPos, p->iOffset, p->iOffset, 0); | |
| 2275 sqlite3VdbeAddOp3(v, OP_Add, p->iLimit, p->iOffset, p->iOffset+1); | |
| 2276 sqlite3VdbeAddOp3(v, OP_SetIfNotPos, p->iLimit, p->iOffset+1, -1); | |
| 2277 } | |
| 2278 } | |
| 2279 explainSetInteger(iSub2, pParse->iNextSelectId); | |
| 2280 rc = sqlite3Select(pParse, p, &dest); | |
| 2281 testcase( rc!=SQLITE_OK ); | |
| 2282 pDelete = p->pPrior; | |
| 2283 p->pPrior = pPrior; | |
| 2284 p->nSelectRow += pPrior->nSelectRow; | |
| 2285 if( pPrior->pLimit | |
| 2286 && sqlite3ExprIsInteger(pPrior->pLimit, &nLimit) | |
| 2287 && nLimit>0 && p->nSelectRow > (u64)nLimit | |
| 2288 ){ | |
| 2289 p->nSelectRow = nLimit; | |
| 2290 } | |
| 2291 if( addr ){ | |
| 2292 sqlite3VdbeJumpHere(v, addr); | |
| 2293 } | |
| 2294 break; | |
| 2295 } | |
| 2296 case TK_EXCEPT: | |
| 2297 case TK_UNION: { | |
| 2298 int unionTab; /* Cursor number of the temporary table holding result */ | |
| 2299 u8 op = 0; /* One of the SRT_ operations to apply to self */ | |
| 2300 int priorOp; /* The SRT_ operation to apply to prior selects */ | |
| 2301 Expr *pLimit, *pOffset; /* Saved values of p->nLimit and p->nOffset */ | |
| 2302 int addr; | |
| 2303 SelectDest uniondest; | |
| 2304 | |
| 2305 testcase( p->op==TK_EXCEPT ); | |
| 2306 testcase( p->op==TK_UNION ); | |
| 2307 priorOp = SRT_Union; | |
| 2308 if( dest.eDest==priorOp ){ | |
| 2309 /* We can reuse a temporary table generated by a SELECT to our | |
| 2310 ** right. | |
| 2311 */ | |
| 2312 assert( p->pLimit==0 ); /* Not allowed on leftward elements */ | |
| 2313 assert( p->pOffset==0 ); /* Not allowed on leftward elements */ | |
| 2314 unionTab = dest.iSDParm; | |
| 2315 }else{ | |
| 2316 /* We will need to create our own temporary table to hold the | |
| 2317 ** intermediate results. | |
| 2318 */ | |
| 2319 unionTab = pParse->nTab++; | |
| 2320 assert( p->pOrderBy==0 ); | |
| 2321 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0); | |
| 2322 assert( p->addrOpenEphm[0] == -1 ); | |
| 2323 p->addrOpenEphm[0] = addr; | |
| 2324 findRightmost(p)->selFlags |= SF_UsesEphemeral; | |
| 2325 assert( p->pEList ); | |
| 2326 } | |
| 2327 | |
| 2328 /* Code the SELECT statements to our left | |
| 2329 */ | |
| 2330 assert( !pPrior->pOrderBy ); | |
| 2331 sqlite3SelectDestInit(&uniondest, priorOp, unionTab); | |
| 2332 explainSetInteger(iSub1, pParse->iNextSelectId); | |
| 2333 rc = sqlite3Select(pParse, pPrior, &uniondest); | |
| 2334 if( rc ){ | |
| 2335 goto multi_select_end; | |
| 2336 } | |
| 2337 | |
| 2338 /* Code the current SELECT statement | |
| 2339 */ | |
| 2340 if( p->op==TK_EXCEPT ){ | |
| 2341 op = SRT_Except; | |
| 2342 }else{ | |
| 2343 assert( p->op==TK_UNION ); | |
| 2344 op = SRT_Union; | |
| 2345 } | |
| 2346 p->pPrior = 0; | |
| 2347 pLimit = p->pLimit; | |
| 2348 p->pLimit = 0; | |
| 2349 pOffset = p->pOffset; | |
| 2350 p->pOffset = 0; | |
| 2351 uniondest.eDest = op; | |
| 2352 explainSetInteger(iSub2, pParse->iNextSelectId); | |
| 2353 rc = sqlite3Select(pParse, p, &uniondest); | |
| 2354 testcase( rc!=SQLITE_OK ); | |
| 2355 /* Query flattening in sqlite3Select() might refill p->pOrderBy. | |
| 2356 ** Be sure to delete p->pOrderBy, therefore, to avoid a memory leak. */ | |
| 2357 sqlite3ExprListDelete(db, p->pOrderBy); | |
| 2358 pDelete = p->pPrior; | |
| 2359 p->pPrior = pPrior; | |
| 2360 p->pOrderBy = 0; | |
| 2361 if( p->op==TK_UNION ) p->nSelectRow += pPrior->nSelectRow; | |
| 2362 sqlite3ExprDelete(db, p->pLimit); | |
| 2363 p->pLimit = pLimit; | |
| 2364 p->pOffset = pOffset; | |
| 2365 p->iLimit = 0; | |
| 2366 p->iOffset = 0; | |
| 2367 | |
| 2368 /* Convert the data in the temporary table into whatever form | |
| 2369 ** it is that we currently need. | |
| 2370 */ | |
| 2371 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp ); | |
| 2372 if( dest.eDest!=priorOp ){ | |
| 2373 int iCont, iBreak, iStart; | |
| 2374 assert( p->pEList ); | |
| 2375 if( dest.eDest==SRT_Output ){ | |
| 2376 Select *pFirst = p; | |
| 2377 while( pFirst->pPrior ) pFirst = pFirst->pPrior; | |
| 2378 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList); | |
| 2379 } | |
| 2380 iBreak = sqlite3VdbeMakeLabel(v); | |
| 2381 iCont = sqlite3VdbeMakeLabel(v); | |
| 2382 computeLimitRegisters(pParse, p, iBreak); | |
| 2383 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v); | |
| 2384 iStart = sqlite3VdbeCurrentAddr(v); | |
| 2385 selectInnerLoop(pParse, p, p->pEList, unionTab, | |
| 2386 0, 0, &dest, iCont, iBreak); | |
| 2387 sqlite3VdbeResolveLabel(v, iCont); | |
| 2388 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v); | |
| 2389 sqlite3VdbeResolveLabel(v, iBreak); | |
| 2390 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0); | |
| 2391 } | |
| 2392 break; | |
| 2393 } | |
| 2394 default: assert( p->op==TK_INTERSECT ); { | |
| 2395 int tab1, tab2; | |
| 2396 int iCont, iBreak, iStart; | |
| 2397 Expr *pLimit, *pOffset; | |
| 2398 int addr; | |
| 2399 SelectDest intersectdest; | |
| 2400 int r1; | |
| 2401 | |
| 2402 /* INTERSECT is different from the others since it requires | |
| 2403 ** two temporary tables. Hence it has its own case. Begin | |
| 2404 ** by allocating the tables we will need. | |
| 2405 */ | |
| 2406 tab1 = pParse->nTab++; | |
| 2407 tab2 = pParse->nTab++; | |
| 2408 assert( p->pOrderBy==0 ); | |
| 2409 | |
| 2410 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0); | |
| 2411 assert( p->addrOpenEphm[0] == -1 ); | |
| 2412 p->addrOpenEphm[0] = addr; | |
| 2413 findRightmost(p)->selFlags |= SF_UsesEphemeral; | |
| 2414 assert( p->pEList ); | |
| 2415 | |
| 2416 /* Code the SELECTs to our left into temporary table "tab1". | |
| 2417 */ | |
| 2418 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1); | |
| 2419 explainSetInteger(iSub1, pParse->iNextSelectId); | |
| 2420 rc = sqlite3Select(pParse, pPrior, &intersectdest); | |
| 2421 if( rc ){ | |
| 2422 goto multi_select_end; | |
| 2423 } | |
| 2424 | |
| 2425 /* Code the current SELECT into temporary table "tab2" | |
| 2426 */ | |
| 2427 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0); | |
| 2428 assert( p->addrOpenEphm[1] == -1 ); | |
| 2429 p->addrOpenEphm[1] = addr; | |
| 2430 p->pPrior = 0; | |
| 2431 pLimit = p->pLimit; | |
| 2432 p->pLimit = 0; | |
| 2433 pOffset = p->pOffset; | |
| 2434 p->pOffset = 0; | |
| 2435 intersectdest.iSDParm = tab2; | |
| 2436 explainSetInteger(iSub2, pParse->iNextSelectId); | |
| 2437 rc = sqlite3Select(pParse, p, &intersectdest); | |
| 2438 testcase( rc!=SQLITE_OK ); | |
| 2439 pDelete = p->pPrior; | |
| 2440 p->pPrior = pPrior; | |
| 2441 if( p->nSelectRow>pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; | |
| 2442 sqlite3ExprDelete(db, p->pLimit); | |
| 2443 p->pLimit = pLimit; | |
| 2444 p->pOffset = pOffset; | |
| 2445 | |
| 2446 /* Generate code to take the intersection of the two temporary | |
| 2447 ** tables. | |
| 2448 */ | |
| 2449 assert( p->pEList ); | |
| 2450 if( dest.eDest==SRT_Output ){ | |
| 2451 Select *pFirst = p; | |
| 2452 while( pFirst->pPrior ) pFirst = pFirst->pPrior; | |
| 2453 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList); | |
| 2454 } | |
| 2455 iBreak = sqlite3VdbeMakeLabel(v); | |
| 2456 iCont = sqlite3VdbeMakeLabel(v); | |
| 2457 computeLimitRegisters(pParse, p, iBreak); | |
| 2458 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v); | |
| 2459 r1 = sqlite3GetTempReg(pParse); | |
| 2460 iStart = sqlite3VdbeAddOp2(v, OP_RowKey, tab1, r1); | |
| 2461 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0); VdbeCoverage(v); | |
| 2462 sqlite3ReleaseTempReg(pParse, r1); | |
| 2463 selectInnerLoop(pParse, p, p->pEList, tab1, | |
| 2464 0, 0, &dest, iCont, iBreak); | |
| 2465 sqlite3VdbeResolveLabel(v, iCont); | |
| 2466 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v); | |
| 2467 sqlite3VdbeResolveLabel(v, iBreak); | |
| 2468 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0); | |
| 2469 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0); | |
| 2470 break; | |
| 2471 } | |
| 2472 } | |
| 2473 | |
| 2474 explainComposite(pParse, p->op, iSub1, iSub2, p->op!=TK_ALL); | |
| 2475 | |
| 2476 /* Compute collating sequences used by | |
| 2477 ** temporary tables needed to implement the compound select. | |
| 2478 ** Attach the KeyInfo structure to all temporary tables. | |
| 2479 ** | |
| 2480 ** This section is run by the right-most SELECT statement only. | |
| 2481 ** SELECT statements to the left always skip this part. The right-most | |
| 2482 ** SELECT might also skip this part if it has no ORDER BY clause and | |
| 2483 ** no temp tables are required. | |
| 2484 */ | |
| 2485 if( p->selFlags & SF_UsesEphemeral ){ | |
| 2486 int i; /* Loop counter */ | |
| 2487 KeyInfo *pKeyInfo; /* Collating sequence for the result set */ | |
| 2488 Select *pLoop; /* For looping through SELECT statements */ | |
| 2489 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */ | |
| 2490 int nCol; /* Number of columns in result set */ | |
| 2491 | |
| 2492 assert( p->pNext==0 ); | |
| 2493 nCol = p->pEList->nExpr; | |
| 2494 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1); | |
| 2495 if( !pKeyInfo ){ | |
| 2496 rc = SQLITE_NOMEM; | |
| 2497 goto multi_select_end; | |
| 2498 } | |
| 2499 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){ | |
| 2500 *apColl = multiSelectCollSeq(pParse, p, i); | |
| 2501 if( 0==*apColl ){ | |
| 2502 *apColl = db->pDfltColl; | |
| 2503 } | |
| 2504 } | |
| 2505 | |
| 2506 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){ | |
| 2507 for(i=0; i<2; i++){ | |
| 2508 int addr = pLoop->addrOpenEphm[i]; | |
| 2509 if( addr<0 ){ | |
| 2510 /* If [0] is unused then [1] is also unused. So we can | |
| 2511 ** always safely abort as soon as the first unused slot is found */ | |
| 2512 assert( pLoop->addrOpenEphm[1]<0 ); | |
| 2513 break; | |
| 2514 } | |
| 2515 sqlite3VdbeChangeP2(v, addr, nCol); | |
| 2516 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo), | |
| 2517 P4_KEYINFO); | |
| 2518 pLoop->addrOpenEphm[i] = -1; | |
| 2519 } | |
| 2520 } | |
| 2521 sqlite3KeyInfoUnref(pKeyInfo); | |
| 2522 } | |
| 2523 | |
| 2524 multi_select_end: | |
| 2525 pDest->iSdst = dest.iSdst; | |
| 2526 pDest->nSdst = dest.nSdst; | |
| 2527 sqlite3SelectDelete(db, pDelete); | |
| 2528 return rc; | |
| 2529 } | |
| 2530 #endif /* SQLITE_OMIT_COMPOUND_SELECT */ | |
| 2531 | |
| 2532 /* | |
| 2533 ** Error message for when two or more terms of a compound select have different | |
| 2534 ** size result sets. | |
| 2535 */ | |
| 2536 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){ | |
| 2537 if( p->selFlags & SF_Values ){ | |
| 2538 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms"); | |
| 2539 }else{ | |
| 2540 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s" | |
| 2541 " do not have the same number of result columns", selectOpName(p->op)); | |
| 2542 } | |
| 2543 } | |
| 2544 | |
| 2545 /* | |
| 2546 ** Code an output subroutine for a coroutine implementation of a | |
| 2547 ** SELECT statment. | |
| 2548 ** | |
| 2549 ** The data to be output is contained in pIn->iSdst. There are | |
| 2550 ** pIn->nSdst columns to be output. pDest is where the output should | |
| 2551 ** be sent. | |
| 2552 ** | |
| 2553 ** regReturn is the number of the register holding the subroutine | |
| 2554 ** return address. | |
| 2555 ** | |
| 2556 ** If regPrev>0 then it is the first register in a vector that | |
| 2557 ** records the previous output. mem[regPrev] is a flag that is false | |
| 2558 ** if there has been no previous output. If regPrev>0 then code is | |
| 2559 ** generated to suppress duplicates. pKeyInfo is used for comparing | |
| 2560 ** keys. | |
| 2561 ** | |
| 2562 ** If the LIMIT found in p->iLimit is reached, jump immediately to | |
| 2563 ** iBreak. | |
| 2564 */ | |
| 2565 static int generateOutputSubroutine( | |
| 2566 Parse *pParse, /* Parsing context */ | |
| 2567 Select *p, /* The SELECT statement */ | |
| 2568 SelectDest *pIn, /* Coroutine supplying data */ | |
| 2569 SelectDest *pDest, /* Where to send the data */ | |
| 2570 int regReturn, /* The return address register */ | |
| 2571 int regPrev, /* Previous result register. No uniqueness if 0 */ | |
| 2572 KeyInfo *pKeyInfo, /* For comparing with previous entry */ | |
| 2573 int iBreak /* Jump here if we hit the LIMIT */ | |
| 2574 ){ | |
| 2575 Vdbe *v = pParse->pVdbe; | |
| 2576 int iContinue; | |
| 2577 int addr; | |
| 2578 | |
| 2579 addr = sqlite3VdbeCurrentAddr(v); | |
| 2580 iContinue = sqlite3VdbeMakeLabel(v); | |
| 2581 | |
| 2582 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT | |
| 2583 */ | |
| 2584 if( regPrev ){ | |
| 2585 int addr1, addr2; | |
| 2586 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v); | |
| 2587 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst, | |
| 2588 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); | |
| 2589 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v); | |
| 2590 sqlite3VdbeJumpHere(v, addr1); | |
| 2591 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1); | |
| 2592 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev); | |
| 2593 } | |
| 2594 if( pParse->db->mallocFailed ) return 0; | |
| 2595 | |
| 2596 /* Suppress the first OFFSET entries if there is an OFFSET clause | |
| 2597 */ | |
| 2598 codeOffset(v, p->iOffset, iContinue); | |
| 2599 | |
| 2600 assert( pDest->eDest!=SRT_Exists ); | |
| 2601 assert( pDest->eDest!=SRT_Table ); | |
| 2602 switch( pDest->eDest ){ | |
| 2603 /* Store the result as data using a unique key. | |
| 2604 */ | |
| 2605 case SRT_EphemTab: { | |
| 2606 int r1 = sqlite3GetTempReg(pParse); | |
| 2607 int r2 = sqlite3GetTempReg(pParse); | |
| 2608 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1); | |
| 2609 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2); | |
| 2610 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2); | |
| 2611 sqlite3VdbeChangeP5(v, OPFLAG_APPEND); | |
| 2612 sqlite3ReleaseTempReg(pParse, r2); | |
| 2613 sqlite3ReleaseTempReg(pParse, r1); | |
| 2614 break; | |
| 2615 } | |
| 2616 | |
| 2617 #ifndef SQLITE_OMIT_SUBQUERY | |
| 2618 /* If we are creating a set for an "expr IN (SELECT ...)" construct, | |
| 2619 ** then there should be a single item on the stack. Write this | |
| 2620 ** item into the set table with bogus data. | |
| 2621 */ | |
| 2622 case SRT_Set: { | |
| 2623 int r1; | |
| 2624 assert( pIn->nSdst==1 || pParse->nErr>0 ); | |
| 2625 pDest->affSdst = | |
| 2626 sqlite3CompareAffinity(p->pEList->a[0].pExpr, pDest->affSdst); | |
| 2627 r1 = sqlite3GetTempReg(pParse); | |
| 2628 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, 1, r1, &pDest->affSdst,1); | |
| 2629 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, 1); | |
| 2630 sqlite3VdbeAddOp2(v, OP_IdxInsert, pDest->iSDParm, r1); | |
| 2631 sqlite3ReleaseTempReg(pParse, r1); | |
| 2632 break; | |
| 2633 } | |
| 2634 | |
| 2635 /* If this is a scalar select that is part of an expression, then | |
| 2636 ** store the results in the appropriate memory cell and break out | |
| 2637 ** of the scan loop. | |
| 2638 */ | |
| 2639 case SRT_Mem: { | |
| 2640 assert( pIn->nSdst==1 || pParse->nErr>0 ); testcase( pIn->nSdst!=1 ); | |
| 2641 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, 1); | |
| 2642 /* The LIMIT clause will jump out of the loop for us */ | |
| 2643 break; | |
| 2644 } | |
| 2645 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */ | |
| 2646 | |
| 2647 /* The results are stored in a sequence of registers | |
| 2648 ** starting at pDest->iSdst. Then the co-routine yields. | |
| 2649 */ | |
| 2650 case SRT_Coroutine: { | |
| 2651 if( pDest->iSdst==0 ){ | |
| 2652 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst); | |
| 2653 pDest->nSdst = pIn->nSdst; | |
| 2654 } | |
| 2655 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst); | |
| 2656 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm); | |
| 2657 break; | |
| 2658 } | |
| 2659 | |
| 2660 /* If none of the above, then the result destination must be | |
| 2661 ** SRT_Output. This routine is never called with any other | |
| 2662 ** destination other than the ones handled above or SRT_Output. | |
| 2663 ** | |
| 2664 ** For SRT_Output, results are stored in a sequence of registers. | |
| 2665 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to | |
| 2666 ** return the next row of result. | |
| 2667 */ | |
| 2668 default: { | |
| 2669 assert( pDest->eDest==SRT_Output ); | |
| 2670 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst); | |
| 2671 sqlite3ExprCacheAffinityChange(pParse, pIn->iSdst, pIn->nSdst); | |
| 2672 break; | |
| 2673 } | |
| 2674 } | |
| 2675 | |
| 2676 /* Jump to the end of the loop if the LIMIT is reached. | |
| 2677 */ | |
| 2678 if( p->iLimit ){ | |
| 2679 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v); | |
| 2680 } | |
| 2681 | |
| 2682 /* Generate the subroutine return | |
| 2683 */ | |
| 2684 sqlite3VdbeResolveLabel(v, iContinue); | |
| 2685 sqlite3VdbeAddOp1(v, OP_Return, regReturn); | |
| 2686 | |
| 2687 return addr; | |
| 2688 } | |
| 2689 | |
| 2690 /* | |
| 2691 ** Alternative compound select code generator for cases when there | |
| 2692 ** is an ORDER BY clause. | |
| 2693 ** | |
| 2694 ** We assume a query of the following form: | |
| 2695 ** | |
| 2696 ** <selectA> <operator> <selectB> ORDER BY <orderbylist> | |
| 2697 ** | |
| 2698 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea | |
| 2699 ** is to code both <selectA> and <selectB> with the ORDER BY clause as | |
| 2700 ** co-routines. Then run the co-routines in parallel and merge the results | |
| 2701 ** into the output. In addition to the two coroutines (called selectA and | |
| 2702 ** selectB) there are 7 subroutines: | |
| 2703 ** | |
| 2704 ** outA: Move the output of the selectA coroutine into the output | |
| 2705 ** of the compound query. | |
| 2706 ** | |
| 2707 ** outB: Move the output of the selectB coroutine into the output | |
| 2708 ** of the compound query. (Only generated for UNION and | |
| 2709 ** UNION ALL. EXCEPT and INSERTSECT never output a row that | |
| 2710 ** appears only in B.) | |
| 2711 ** | |
| 2712 ** AltB: Called when there is data from both coroutines and A<B. | |
| 2713 ** | |
| 2714 ** AeqB: Called when there is data from both coroutines and A==B. | |
| 2715 ** | |
| 2716 ** AgtB: Called when there is data from both coroutines and A>B. | |
| 2717 ** | |
| 2718 ** EofA: Called when data is exhausted from selectA. | |
| 2719 ** | |
| 2720 ** EofB: Called when data is exhausted from selectB. | |
| 2721 ** | |
| 2722 ** The implementation of the latter five subroutines depend on which | |
| 2723 ** <operator> is used: | |
| 2724 ** | |
| 2725 ** | |
| 2726 ** UNION ALL UNION EXCEPT INTERSECT | |
| 2727 ** ------------- ----------------- -------------- ----------------- | |
| 2728 ** AltB: outA, nextA outA, nextA outA, nextA nextA | |
| 2729 ** | |
| 2730 ** AeqB: outA, nextA nextA nextA outA, nextA | |
| 2731 ** | |
| 2732 ** AgtB: outB, nextB outB, nextB nextB nextB | |
| 2733 ** | |
| 2734 ** EofA: outB, nextB outB, nextB halt halt | |
| 2735 ** | |
| 2736 ** EofB: outA, nextA outA, nextA outA, nextA halt | |
| 2737 ** | |
| 2738 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA | |
| 2739 ** causes an immediate jump to EofA and an EOF on B following nextB causes | |
| 2740 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or | |
| 2741 ** following nextX causes a jump to the end of the select processing. | |
| 2742 ** | |
| 2743 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled | |
| 2744 ** within the output subroutine. The regPrev register set holds the previously | |
| 2745 ** output value. A comparison is made against this value and the output | |
| 2746 ** is skipped if the next results would be the same as the previous. | |
| 2747 ** | |
| 2748 ** The implementation plan is to implement the two coroutines and seven | |
| 2749 ** subroutines first, then put the control logic at the bottom. Like this: | |
| 2750 ** | |
| 2751 ** goto Init | |
| 2752 ** coA: coroutine for left query (A) | |
| 2753 ** coB: coroutine for right query (B) | |
| 2754 ** outA: output one row of A | |
| 2755 ** outB: output one row of B (UNION and UNION ALL only) | |
| 2756 ** EofA: ... | |
| 2757 ** EofB: ... | |
| 2758 ** AltB: ... | |
| 2759 ** AeqB: ... | |
| 2760 ** AgtB: ... | |
| 2761 ** Init: initialize coroutine registers | |
| 2762 ** yield coA | |
| 2763 ** if eof(A) goto EofA | |
| 2764 ** yield coB | |
| 2765 ** if eof(B) goto EofB | |
| 2766 ** Cmpr: Compare A, B | |
| 2767 ** Jump AltB, AeqB, AgtB | |
| 2768 ** End: ... | |
| 2769 ** | |
| 2770 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not | |
| 2771 ** actually called using Gosub and they do not Return. EofA and EofB loop | |
| 2772 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB, | |
| 2773 ** and AgtB jump to either L2 or to one of EofA or EofB. | |
| 2774 */ | |
| 2775 #ifndef SQLITE_OMIT_COMPOUND_SELECT | |
| 2776 static int multiSelectOrderBy( | |
| 2777 Parse *pParse, /* Parsing context */ | |
| 2778 Select *p, /* The right-most of SELECTs to be coded */ | |
| 2779 SelectDest *pDest /* What to do with query results */ | |
| 2780 ){ | |
| 2781 int i, j; /* Loop counters */ | |
| 2782 Select *pPrior; /* Another SELECT immediately to our left */ | |
| 2783 Vdbe *v; /* Generate code to this VDBE */ | |
| 2784 SelectDest destA; /* Destination for coroutine A */ | |
| 2785 SelectDest destB; /* Destination for coroutine B */ | |
| 2786 int regAddrA; /* Address register for select-A coroutine */ | |
| 2787 int regAddrB; /* Address register for select-B coroutine */ | |
| 2788 int addrSelectA; /* Address of the select-A coroutine */ | |
| 2789 int addrSelectB; /* Address of the select-B coroutine */ | |
| 2790 int regOutA; /* Address register for the output-A subroutine */ | |
| 2791 int regOutB; /* Address register for the output-B subroutine */ | |
| 2792 int addrOutA; /* Address of the output-A subroutine */ | |
| 2793 int addrOutB = 0; /* Address of the output-B subroutine */ | |
| 2794 int addrEofA; /* Address of the select-A-exhausted subroutine */ | |
| 2795 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */ | |
| 2796 int addrEofB; /* Address of the select-B-exhausted subroutine */ | |
| 2797 int addrAltB; /* Address of the A<B subroutine */ | |
| 2798 int addrAeqB; /* Address of the A==B subroutine */ | |
| 2799 int addrAgtB; /* Address of the A>B subroutine */ | |
| 2800 int regLimitA; /* Limit register for select-A */ | |
| 2801 int regLimitB; /* Limit register for select-A */ | |
| 2802 int regPrev; /* A range of registers to hold previous output */ | |
| 2803 int savedLimit; /* Saved value of p->iLimit */ | |
| 2804 int savedOffset; /* Saved value of p->iOffset */ | |
| 2805 int labelCmpr; /* Label for the start of the merge algorithm */ | |
| 2806 int labelEnd; /* Label for the end of the overall SELECT stmt */ | |
| 2807 int addr1; /* Jump instructions that get retargetted */ | |
| 2808 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */ | |
| 2809 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */ | |
| 2810 KeyInfo *pKeyMerge; /* Comparison information for merging rows */ | |
| 2811 sqlite3 *db; /* Database connection */ | |
| 2812 ExprList *pOrderBy; /* The ORDER BY clause */ | |
| 2813 int nOrderBy; /* Number of terms in the ORDER BY clause */ | |
| 2814 int *aPermute; /* Mapping from ORDER BY terms to result set columns */ | |
| 2815 #ifndef SQLITE_OMIT_EXPLAIN | |
| 2816 int iSub1; /* EQP id of left-hand query */ | |
| 2817 int iSub2; /* EQP id of right-hand query */ | |
| 2818 #endif | |
| 2819 | |
| 2820 assert( p->pOrderBy!=0 ); | |
| 2821 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */ | |
| 2822 db = pParse->db; | |
| 2823 v = pParse->pVdbe; | |
| 2824 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */ | |
| 2825 labelEnd = sqlite3VdbeMakeLabel(v); | |
| 2826 labelCmpr = sqlite3VdbeMakeLabel(v); | |
| 2827 | |
| 2828 | |
| 2829 /* Patch up the ORDER BY clause | |
| 2830 */ | |
| 2831 op = p->op; | |
| 2832 pPrior = p->pPrior; | |
| 2833 assert( pPrior->pOrderBy==0 ); | |
| 2834 pOrderBy = p->pOrderBy; | |
| 2835 assert( pOrderBy ); | |
| 2836 nOrderBy = pOrderBy->nExpr; | |
| 2837 | |
| 2838 /* For operators other than UNION ALL we have to make sure that | |
| 2839 ** the ORDER BY clause covers every term of the result set. Add | |
| 2840 ** terms to the ORDER BY clause as necessary. | |
| 2841 */ | |
| 2842 if( op!=TK_ALL ){ | |
| 2843 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){ | |
| 2844 struct ExprList_item *pItem; | |
| 2845 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){ | |
| 2846 assert( pItem->u.x.iOrderByCol>0 ); | |
| 2847 if( pItem->u.x.iOrderByCol==i ) break; | |
| 2848 } | |
| 2849 if( j==nOrderBy ){ | |
| 2850 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); | |
| 2851 if( pNew==0 ) return SQLITE_NOMEM; | |
| 2852 pNew->flags |= EP_IntValue; | |
| 2853 pNew->u.iValue = i; | |
| 2854 pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew); | |
| 2855 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i; | |
| 2856 } | |
| 2857 } | |
| 2858 } | |
| 2859 | |
| 2860 /* Compute the comparison permutation and keyinfo that is used with | |
| 2861 ** the permutation used to determine if the next | |
| 2862 ** row of results comes from selectA or selectB. Also add explicit | |
| 2863 ** collations to the ORDER BY clause terms so that when the subqueries | |
| 2864 ** to the right and the left are evaluated, they use the correct | |
| 2865 ** collation. | |
| 2866 */ | |
| 2867 aPermute = sqlite3DbMallocRaw(db, sizeof(int)*nOrderBy); | |
| 2868 if( aPermute ){ | |
| 2869 struct ExprList_item *pItem; | |
| 2870 for(i=0, pItem=pOrderBy->a; i<nOrderBy; i++, pItem++){ | |
| 2871 assert( pItem->u.x.iOrderByCol>0 ); | |
| 2872 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr ); | |
| 2873 aPermute[i] = pItem->u.x.iOrderByCol - 1; | |
| 2874 } | |
| 2875 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1); | |
| 2876 }else{ | |
| 2877 pKeyMerge = 0; | |
| 2878 } | |
| 2879 | |
| 2880 /* Reattach the ORDER BY clause to the query. | |
| 2881 */ | |
| 2882 p->pOrderBy = pOrderBy; | |
| 2883 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0); | |
| 2884 | |
| 2885 /* Allocate a range of temporary registers and the KeyInfo needed | |
| 2886 ** for the logic that removes duplicate result rows when the | |
| 2887 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL). | |
| 2888 */ | |
| 2889 if( op==TK_ALL ){ | |
| 2890 regPrev = 0; | |
| 2891 }else{ | |
| 2892 int nExpr = p->pEList->nExpr; | |
| 2893 assert( nOrderBy>=nExpr || db->mallocFailed ); | |
| 2894 regPrev = pParse->nMem+1; | |
| 2895 pParse->nMem += nExpr+1; | |
| 2896 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev); | |
| 2897 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1); | |
| 2898 if( pKeyDup ){ | |
| 2899 assert( sqlite3KeyInfoIsWriteable(pKeyDup) ); | |
| 2900 for(i=0; i<nExpr; i++){ | |
| 2901 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i); | |
| 2902 pKeyDup->aSortOrder[i] = 0; | |
| 2903 } | |
| 2904 } | |
| 2905 } | |
| 2906 | |
| 2907 /* Separate the left and the right query from one another | |
| 2908 */ | |
| 2909 p->pPrior = 0; | |
| 2910 pPrior->pNext = 0; | |
| 2911 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER"); | |
| 2912 if( pPrior->pPrior==0 ){ | |
| 2913 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER"); | |
| 2914 } | |
| 2915 | |
| 2916 /* Compute the limit registers */ | |
| 2917 computeLimitRegisters(pParse, p, labelEnd); | |
| 2918 if( p->iLimit && op==TK_ALL ){ | |
| 2919 regLimitA = ++pParse->nMem; | |
| 2920 regLimitB = ++pParse->nMem; | |
| 2921 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit, | |
| 2922 regLimitA); | |
| 2923 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB); | |
| 2924 }else{ | |
| 2925 regLimitA = regLimitB = 0; | |
| 2926 } | |
| 2927 sqlite3ExprDelete(db, p->pLimit); | |
| 2928 p->pLimit = 0; | |
| 2929 sqlite3ExprDelete(db, p->pOffset); | |
| 2930 p->pOffset = 0; | |
| 2931 | |
| 2932 regAddrA = ++pParse->nMem; | |
| 2933 regAddrB = ++pParse->nMem; | |
| 2934 regOutA = ++pParse->nMem; | |
| 2935 regOutB = ++pParse->nMem; | |
| 2936 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA); | |
| 2937 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB); | |
| 2938 | |
| 2939 /* Generate a coroutine to evaluate the SELECT statement to the | |
| 2940 ** left of the compound operator - the "A" select. | |
| 2941 */ | |
| 2942 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1; | |
| 2943 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA); | |
| 2944 VdbeComment((v, "left SELECT")); | |
| 2945 pPrior->iLimit = regLimitA; | |
| 2946 explainSetInteger(iSub1, pParse->iNextSelectId); | |
| 2947 sqlite3Select(pParse, pPrior, &destA); | |
| 2948 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrA); | |
| 2949 sqlite3VdbeJumpHere(v, addr1); | |
| 2950 | |
| 2951 /* Generate a coroutine to evaluate the SELECT statement on | |
| 2952 ** the right - the "B" select | |
| 2953 */ | |
| 2954 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1; | |
| 2955 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB); | |
| 2956 VdbeComment((v, "right SELECT")); | |
| 2957 savedLimit = p->iLimit; | |
| 2958 savedOffset = p->iOffset; | |
| 2959 p->iLimit = regLimitB; | |
| 2960 p->iOffset = 0; | |
| 2961 explainSetInteger(iSub2, pParse->iNextSelectId); | |
| 2962 sqlite3Select(pParse, p, &destB); | |
| 2963 p->iLimit = savedLimit; | |
| 2964 p->iOffset = savedOffset; | |
| 2965 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regAddrB); | |
| 2966 | |
| 2967 /* Generate a subroutine that outputs the current row of the A | |
| 2968 ** select as the next output row of the compound select. | |
| 2969 */ | |
| 2970 VdbeNoopComment((v, "Output routine for A")); | |
| 2971 addrOutA = generateOutputSubroutine(pParse, | |
| 2972 p, &destA, pDest, regOutA, | |
| 2973 regPrev, pKeyDup, labelEnd); | |
| 2974 | |
| 2975 /* Generate a subroutine that outputs the current row of the B | |
| 2976 ** select as the next output row of the compound select. | |
| 2977 */ | |
| 2978 if( op==TK_ALL || op==TK_UNION ){ | |
| 2979 VdbeNoopComment((v, "Output routine for B")); | |
| 2980 addrOutB = generateOutputSubroutine(pParse, | |
| 2981 p, &destB, pDest, regOutB, | |
| 2982 regPrev, pKeyDup, labelEnd); | |
| 2983 } | |
| 2984 sqlite3KeyInfoUnref(pKeyDup); | |
| 2985 | |
| 2986 /* Generate a subroutine to run when the results from select A | |
| 2987 ** are exhausted and only data in select B remains. | |
| 2988 */ | |
| 2989 if( op==TK_EXCEPT || op==TK_INTERSECT ){ | |
| 2990 addrEofA_noB = addrEofA = labelEnd; | |
| 2991 }else{ | |
| 2992 VdbeNoopComment((v, "eof-A subroutine")); | |
| 2993 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); | |
| 2994 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd); | |
| 2995 VdbeCoverage(v); | |
| 2996 sqlite3VdbeGoto(v, addrEofA); | |
| 2997 p->nSelectRow += pPrior->nSelectRow; | |
| 2998 } | |
| 2999 | |
| 3000 /* Generate a subroutine to run when the results from select B | |
| 3001 ** are exhausted and only data in select A remains. | |
| 3002 */ | |
| 3003 if( op==TK_INTERSECT ){ | |
| 3004 addrEofB = addrEofA; | |
| 3005 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow; | |
| 3006 }else{ | |
| 3007 VdbeNoopComment((v, "eof-B subroutine")); | |
| 3008 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); | |
| 3009 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v); | |
| 3010 sqlite3VdbeGoto(v, addrEofB); | |
| 3011 } | |
| 3012 | |
| 3013 /* Generate code to handle the case of A<B | |
| 3014 */ | |
| 3015 VdbeNoopComment((v, "A-lt-B subroutine")); | |
| 3016 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA); | |
| 3017 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); | |
| 3018 sqlite3VdbeGoto(v, labelCmpr); | |
| 3019 | |
| 3020 /* Generate code to handle the case of A==B | |
| 3021 */ | |
| 3022 if( op==TK_ALL ){ | |
| 3023 addrAeqB = addrAltB; | |
| 3024 }else if( op==TK_INTERSECT ){ | |
| 3025 addrAeqB = addrAltB; | |
| 3026 addrAltB++; | |
| 3027 }else{ | |
| 3028 VdbeNoopComment((v, "A-eq-B subroutine")); | |
| 3029 addrAeqB = | |
| 3030 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v); | |
| 3031 sqlite3VdbeGoto(v, labelCmpr); | |
| 3032 } | |
| 3033 | |
| 3034 /* Generate code to handle the case of A>B | |
| 3035 */ | |
| 3036 VdbeNoopComment((v, "A-gt-B subroutine")); | |
| 3037 addrAgtB = sqlite3VdbeCurrentAddr(v); | |
| 3038 if( op==TK_ALL || op==TK_UNION ){ | |
| 3039 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB); | |
| 3040 } | |
| 3041 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); | |
| 3042 sqlite3VdbeGoto(v, labelCmpr); | |
| 3043 | |
| 3044 /* This code runs once to initialize everything. | |
| 3045 */ | |
| 3046 sqlite3VdbeJumpHere(v, addr1); | |
| 3047 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v); | |
| 3048 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v); | |
| 3049 | |
| 3050 /* Implement the main merge loop | |
| 3051 */ | |
| 3052 sqlite3VdbeResolveLabel(v, labelCmpr); | |
| 3053 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY); | |
| 3054 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy, | |
| 3055 (char*)pKeyMerge, P4_KEYINFO); | |
| 3056 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE); | |
| 3057 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v); | |
| 3058 | |
| 3059 /* Jump to the this point in order to terminate the query. | |
| 3060 */ | |
| 3061 sqlite3VdbeResolveLabel(v, labelEnd); | |
| 3062 | |
| 3063 /* Set the number of output columns | |
| 3064 */ | |
| 3065 if( pDest->eDest==SRT_Output ){ | |
| 3066 Select *pFirst = pPrior; | |
| 3067 while( pFirst->pPrior ) pFirst = pFirst->pPrior; | |
| 3068 generateColumnNames(pParse, pFirst->pSrc, pFirst->pEList); | |
| 3069 } | |
| 3070 | |
| 3071 /* Reassembly the compound query so that it will be freed correctly | |
| 3072 ** by the calling function */ | |
| 3073 if( p->pPrior ){ | |
| 3074 sqlite3SelectDelete(db, p->pPrior); | |
| 3075 } | |
| 3076 p->pPrior = pPrior; | |
| 3077 pPrior->pNext = p; | |
| 3078 | |
| 3079 /*** TBD: Insert subroutine calls to close cursors on incomplete | |
| 3080 **** subqueries ****/ | |
| 3081 explainComposite(pParse, p->op, iSub1, iSub2, 0); | |
| 3082 return pParse->nErr!=0; | |
| 3083 } | |
| 3084 #endif | |
| 3085 | |
| 3086 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) | |
| 3087 /* Forward Declarations */ | |
| 3088 static void substExprList(sqlite3*, ExprList*, int, ExprList*); | |
| 3089 static void substSelect(sqlite3*, Select *, int, ExprList*, int); | |
| 3090 | |
| 3091 /* | |
| 3092 ** Scan through the expression pExpr. Replace every reference to | |
| 3093 ** a column in table number iTable with a copy of the iColumn-th | |
| 3094 ** entry in pEList. (But leave references to the ROWID column | |
| 3095 ** unchanged.) | |
| 3096 ** | |
| 3097 ** This routine is part of the flattening procedure. A subquery | |
| 3098 ** whose result set is defined by pEList appears as entry in the | |
| 3099 ** FROM clause of a SELECT such that the VDBE cursor assigned to that | |
| 3100 ** FORM clause entry is iTable. This routine make the necessary | |
| 3101 ** changes to pExpr so that it refers directly to the source table | |
| 3102 ** of the subquery rather the result set of the subquery. | |
| 3103 */ | |
| 3104 static Expr *substExpr( | |
| 3105 sqlite3 *db, /* Report malloc errors to this connection */ | |
| 3106 Expr *pExpr, /* Expr in which substitution occurs */ | |
| 3107 int iTable, /* Table to be substituted */ | |
| 3108 ExprList *pEList /* Substitute expressions */ | |
| 3109 ){ | |
| 3110 if( pExpr==0 ) return 0; | |
| 3111 if( pExpr->op==TK_COLUMN && pExpr->iTable==iTable ){ | |
| 3112 if( pExpr->iColumn<0 ){ | |
| 3113 pExpr->op = TK_NULL; | |
| 3114 }else{ | |
| 3115 Expr *pNew; | |
| 3116 assert( pEList!=0 && pExpr->iColumn<pEList->nExpr ); | |
| 3117 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); | |
| 3118 pNew = sqlite3ExprDup(db, pEList->a[pExpr->iColumn].pExpr, 0); | |
| 3119 sqlite3ExprDelete(db, pExpr); | |
| 3120 pExpr = pNew; | |
| 3121 } | |
| 3122 }else{ | |
| 3123 pExpr->pLeft = substExpr(db, pExpr->pLeft, iTable, pEList); | |
| 3124 pExpr->pRight = substExpr(db, pExpr->pRight, iTable, pEList); | |
| 3125 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ | |
| 3126 substSelect(db, pExpr->x.pSelect, iTable, pEList, 1); | |
| 3127 }else{ | |
| 3128 substExprList(db, pExpr->x.pList, iTable, pEList); | |
| 3129 } | |
| 3130 } | |
| 3131 return pExpr; | |
| 3132 } | |
| 3133 static void substExprList( | |
| 3134 sqlite3 *db, /* Report malloc errors here */ | |
| 3135 ExprList *pList, /* List to scan and in which to make substitutes */ | |
| 3136 int iTable, /* Table to be substituted */ | |
| 3137 ExprList *pEList /* Substitute values */ | |
| 3138 ){ | |
| 3139 int i; | |
| 3140 if( pList==0 ) return; | |
| 3141 for(i=0; i<pList->nExpr; i++){ | |
| 3142 pList->a[i].pExpr = substExpr(db, pList->a[i].pExpr, iTable, pEList); | |
| 3143 } | |
| 3144 } | |
| 3145 static void substSelect( | |
| 3146 sqlite3 *db, /* Report malloc errors here */ | |
| 3147 Select *p, /* SELECT statement in which to make substitutions */ | |
| 3148 int iTable, /* Table to be replaced */ | |
| 3149 ExprList *pEList, /* Substitute values */ | |
| 3150 int doPrior /* Do substitutes on p->pPrior too */ | |
| 3151 ){ | |
| 3152 SrcList *pSrc; | |
| 3153 struct SrcList_item *pItem; | |
| 3154 int i; | |
| 3155 if( !p ) return; | |
| 3156 do{ | |
| 3157 substExprList(db, p->pEList, iTable, pEList); | |
| 3158 substExprList(db, p->pGroupBy, iTable, pEList); | |
| 3159 substExprList(db, p->pOrderBy, iTable, pEList); | |
| 3160 p->pHaving = substExpr(db, p->pHaving, iTable, pEList); | |
| 3161 p->pWhere = substExpr(db, p->pWhere, iTable, pEList); | |
| 3162 pSrc = p->pSrc; | |
| 3163 assert( pSrc!=0 ); | |
| 3164 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){ | |
| 3165 substSelect(db, pItem->pSelect, iTable, pEList, 1); | |
| 3166 if( pItem->fg.isTabFunc ){ | |
| 3167 substExprList(db, pItem->u1.pFuncArg, iTable, pEList); | |
| 3168 } | |
| 3169 } | |
| 3170 }while( doPrior && (p = p->pPrior)!=0 ); | |
| 3171 } | |
| 3172 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ | |
| 3173 | |
| 3174 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) | |
| 3175 /* | |
| 3176 ** This routine attempts to flatten subqueries as a performance optimization. | |
| 3177 ** This routine returns 1 if it makes changes and 0 if no flattening occurs. | |
| 3178 ** | |
| 3179 ** To understand the concept of flattening, consider the following | |
| 3180 ** query: | |
| 3181 ** | |
| 3182 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5 | |
| 3183 ** | |
| 3184 ** The default way of implementing this query is to execute the | |
| 3185 ** subquery first and store the results in a temporary table, then | |
| 3186 ** run the outer query on that temporary table. This requires two | |
| 3187 ** passes over the data. Furthermore, because the temporary table | |
| 3188 ** has no indices, the WHERE clause on the outer query cannot be | |
| 3189 ** optimized. | |
| 3190 ** | |
| 3191 ** This routine attempts to rewrite queries such as the above into | |
| 3192 ** a single flat select, like this: | |
| 3193 ** | |
| 3194 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5 | |
| 3195 ** | |
| 3196 ** The code generated for this simplification gives the same result | |
| 3197 ** but only has to scan the data once. And because indices might | |
| 3198 ** exist on the table t1, a complete scan of the data might be | |
| 3199 ** avoided. | |
| 3200 ** | |
| 3201 ** Flattening is only attempted if all of the following are true: | |
| 3202 ** | |
| 3203 ** (1) The subquery and the outer query do not both use aggregates. | |
| 3204 ** | |
| 3205 ** (2) The subquery is not an aggregate or (2a) the outer query is not a join | |
| 3206 ** and (2b) the outer query does not use subqueries other than the one | |
| 3207 ** FROM-clause subquery that is a candidate for flattening. (2b is | |
| 3208 ** due to ticket [2f7170d73bf9abf80] from 2015-02-09.) | |
| 3209 ** | |
| 3210 ** (3) The subquery is not the right operand of a left outer join | |
| 3211 ** (Originally ticket #306. Strengthened by ticket #3300) | |
| 3212 ** | |
| 3213 ** (4) The subquery is not DISTINCT. | |
| 3214 ** | |
| 3215 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT | |
| 3216 ** sub-queries that were excluded from this optimization. Restriction | |
| 3217 ** (4) has since been expanded to exclude all DISTINCT subqueries. | |
| 3218 ** | |
| 3219 ** (6) The subquery does not use aggregates or the outer query is not | |
| 3220 ** DISTINCT. | |
| 3221 ** | |
| 3222 ** (7) The subquery has a FROM clause. TODO: For subqueries without | |
| 3223 ** A FROM clause, consider adding a FROM close with the special | |
| 3224 ** table sqlite_once that consists of a single row containing a | |
| 3225 ** single NULL. | |
| 3226 ** | |
| 3227 ** (8) The subquery does not use LIMIT or the outer query is not a join. | |
| 3228 ** | |
| 3229 ** (9) The subquery does not use LIMIT or the outer query does not use | |
| 3230 ** aggregates. | |
| 3231 ** | |
| 3232 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we | |
| 3233 ** accidently carried the comment forward until 2014-09-15. Original | |
| 3234 ** text: "The subquery does not use aggregates or the outer query | |
| 3235 ** does not use LIMIT." | |
| 3236 ** | |
| 3237 ** (11) The subquery and the outer query do not both have ORDER BY clauses. | |
| 3238 ** | |
| 3239 ** (**) Not implemented. Subsumed into restriction (3). Was previously | |
| 3240 ** a separate restriction deriving from ticket #350. | |
| 3241 ** | |
| 3242 ** (13) The subquery and outer query do not both use LIMIT. | |
| 3243 ** | |
| 3244 ** (14) The subquery does not use OFFSET. | |
| 3245 ** | |
| 3246 ** (15) The outer query is not part of a compound select or the | |
| 3247 ** subquery does not have a LIMIT clause. | |
| 3248 ** (See ticket #2339 and ticket [02a8e81d44]). | |
| 3249 ** | |
| 3250 ** (16) The outer query is not an aggregate or the subquery does | |
| 3251 ** not contain ORDER BY. (Ticket #2942) This used to not matter | |
| 3252 ** until we introduced the group_concat() function. | |
| 3253 ** | |
| 3254 ** (17) The sub-query is not a compound select, or it is a UNION ALL | |
| 3255 ** compound clause made up entirely of non-aggregate queries, and | |
| 3256 ** the parent query: | |
| 3257 ** | |
| 3258 ** * is not itself part of a compound select, | |
| 3259 ** * is not an aggregate or DISTINCT query, and | |
| 3260 ** * is not a join | |
| 3261 ** | |
| 3262 ** The parent and sub-query may contain WHERE clauses. Subject to | |
| 3263 ** rules (11), (13) and (14), they may also contain ORDER BY, | |
| 3264 ** LIMIT and OFFSET clauses. The subquery cannot use any compound | |
| 3265 ** operator other than UNION ALL because all the other compound | |
| 3266 ** operators have an implied DISTINCT which is disallowed by | |
| 3267 ** restriction (4). | |
| 3268 ** | |
| 3269 ** Also, each component of the sub-query must return the same number | |
| 3270 ** of result columns. This is actually a requirement for any compound | |
| 3271 ** SELECT statement, but all the code here does is make sure that no | |
| 3272 ** such (illegal) sub-query is flattened. The caller will detect the | |
| 3273 ** syntax error and return a detailed message. | |
| 3274 ** | |
| 3275 ** (18) If the sub-query is a compound select, then all terms of the | |
| 3276 ** ORDER by clause of the parent must be simple references to | |
| 3277 ** columns of the sub-query. | |
| 3278 ** | |
| 3279 ** (19) The subquery does not use LIMIT or the outer query does not | |
| 3280 ** have a WHERE clause. | |
| 3281 ** | |
| 3282 ** (20) If the sub-query is a compound select, then it must not use | |
| 3283 ** an ORDER BY clause. Ticket #3773. We could relax this constraint | |
| 3284 ** somewhat by saying that the terms of the ORDER BY clause must | |
| 3285 ** appear as unmodified result columns in the outer query. But we | |
| 3286 ** have other optimizations in mind to deal with that case. | |
| 3287 ** | |
| 3288 ** (21) The subquery does not use LIMIT or the outer query is not | |
| 3289 ** DISTINCT. (See ticket [752e1646fc]). | |
| 3290 ** | |
| 3291 ** (22) The subquery is not a recursive CTE. | |
| 3292 ** | |
| 3293 ** (23) The parent is not a recursive CTE, or the sub-query is not a | |
| 3294 ** compound query. This restriction is because transforming the | |
| 3295 ** parent to a compound query confuses the code that handles | |
| 3296 ** recursive queries in multiSelect(). | |
| 3297 ** | |
| 3298 ** (24) The subquery is not an aggregate that uses the built-in min() or | |
| 3299 ** or max() functions. (Without this restriction, a query like: | |
| 3300 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily | |
| 3301 ** return the value X for which Y was maximal.) | |
| 3302 ** | |
| 3303 ** | |
| 3304 ** In this routine, the "p" parameter is a pointer to the outer query. | |
| 3305 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query | |
| 3306 ** uses aggregates and subqueryIsAgg is true if the subquery uses aggregates. | |
| 3307 ** | |
| 3308 ** If flattening is not attempted, this routine is a no-op and returns 0. | |
| 3309 ** If flattening is attempted this routine returns 1. | |
| 3310 ** | |
| 3311 ** All of the expression analysis must occur on both the outer query and | |
| 3312 ** the subquery before this routine runs. | |
| 3313 */ | |
| 3314 static int flattenSubquery( | |
| 3315 Parse *pParse, /* Parsing context */ | |
| 3316 Select *p, /* The parent or outer SELECT statement */ | |
| 3317 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */ | |
| 3318 int isAgg, /* True if outer SELECT uses aggregate functions */ | |
| 3319 int subqueryIsAgg /* True if the subquery uses aggregate functions */ | |
| 3320 ){ | |
| 3321 const char *zSavedAuthContext = pParse->zAuthContext; | |
| 3322 Select *pParent; /* Current UNION ALL term of the other query */ | |
| 3323 Select *pSub; /* The inner query or "subquery" */ | |
| 3324 Select *pSub1; /* Pointer to the rightmost select in sub-query */ | |
| 3325 SrcList *pSrc; /* The FROM clause of the outer query */ | |
| 3326 SrcList *pSubSrc; /* The FROM clause of the subquery */ | |
| 3327 ExprList *pList; /* The result set of the outer query */ | |
| 3328 int iParent; /* VDBE cursor number of the pSub result set temp table */ | |
| 3329 int i; /* Loop counter */ | |
| 3330 Expr *pWhere; /* The WHERE clause */ | |
| 3331 struct SrcList_item *pSubitem; /* The subquery */ | |
| 3332 sqlite3 *db = pParse->db; | |
| 3333 | |
| 3334 /* Check to see if flattening is permitted. Return 0 if not. | |
| 3335 */ | |
| 3336 assert( p!=0 ); | |
| 3337 assert( p->pPrior==0 ); /* Unable to flatten compound queries */ | |
| 3338 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0; | |
| 3339 pSrc = p->pSrc; | |
| 3340 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc ); | |
| 3341 pSubitem = &pSrc->a[iFrom]; | |
| 3342 iParent = pSubitem->iCursor; | |
| 3343 pSub = pSubitem->pSelect; | |
| 3344 assert( pSub!=0 ); | |
| 3345 if( subqueryIsAgg ){ | |
| 3346 if( isAgg ) return 0; /* Restriction (1) */ | |
| 3347 if( pSrc->nSrc>1 ) return 0; /* Restriction (2a) */ | |
| 3348 if( (p->pWhere && ExprHasProperty(p->pWhere,EP_Subquery)) | |
| 3349 || (sqlite3ExprListFlags(p->pEList) & EP_Subquery)!=0 | |
| 3350 || (sqlite3ExprListFlags(p->pOrderBy) & EP_Subquery)!=0 | |
| 3351 ){ | |
| 3352 return 0; /* Restriction (2b) */ | |
| 3353 } | |
| 3354 } | |
| 3355 | |
| 3356 pSubSrc = pSub->pSrc; | |
| 3357 assert( pSubSrc ); | |
| 3358 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants, | |
| 3359 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET | |
| 3360 ** because they could be computed at compile-time. But when LIMIT and OFFSET | |
| 3361 ** became arbitrary expressions, we were forced to add restrictions (13) | |
| 3362 ** and (14). */ | |
| 3363 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */ | |
| 3364 if( pSub->pOffset ) return 0; /* Restriction (14) */ | |
| 3365 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){ | |
| 3366 return 0; /* Restriction (15) */ | |
| 3367 } | |
| 3368 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */ | |
| 3369 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (5) */ | |
| 3370 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){ | |
| 3371 return 0; /* Restrictions (8)(9) */ | |
| 3372 } | |
| 3373 if( (p->selFlags & SF_Distinct)!=0 && subqueryIsAgg ){ | |
| 3374 return 0; /* Restriction (6) */ | |
| 3375 } | |
| 3376 if( p->pOrderBy && pSub->pOrderBy ){ | |
| 3377 return 0; /* Restriction (11) */ | |
| 3378 } | |
| 3379 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */ | |
| 3380 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */ | |
| 3381 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){ | |
| 3382 return 0; /* Restriction (21) */ | |
| 3383 } | |
| 3384 testcase( pSub->selFlags & SF_Recursive ); | |
| 3385 testcase( pSub->selFlags & SF_MinMaxAgg ); | |
| 3386 if( pSub->selFlags & (SF_Recursive|SF_MinMaxAgg) ){ | |
| 3387 return 0; /* Restrictions (22) and (24) */ | |
| 3388 } | |
| 3389 if( (p->selFlags & SF_Recursive) && pSub->pPrior ){ | |
| 3390 return 0; /* Restriction (23) */ | |
| 3391 } | |
| 3392 | |
| 3393 /* OBSOLETE COMMENT 1: | |
| 3394 ** Restriction 3: If the subquery is a join, make sure the subquery is | |
| 3395 ** not used as the right operand of an outer join. Examples of why this | |
| 3396 ** is not allowed: | |
| 3397 ** | |
| 3398 ** t1 LEFT OUTER JOIN (t2 JOIN t3) | |
| 3399 ** | |
| 3400 ** If we flatten the above, we would get | |
| 3401 ** | |
| 3402 ** (t1 LEFT OUTER JOIN t2) JOIN t3 | |
| 3403 ** | |
| 3404 ** which is not at all the same thing. | |
| 3405 ** | |
| 3406 ** OBSOLETE COMMENT 2: | |
| 3407 ** Restriction 12: If the subquery is the right operand of a left outer | |
| 3408 ** join, make sure the subquery has no WHERE clause. | |
| 3409 ** An examples of why this is not allowed: | |
| 3410 ** | |
| 3411 ** t1 LEFT OUTER JOIN (SELECT * FROM t2 WHERE t2.x>0) | |
| 3412 ** | |
| 3413 ** If we flatten the above, we would get | |
| 3414 ** | |
| 3415 ** (t1 LEFT OUTER JOIN t2) WHERE t2.x>0 | |
| 3416 ** | |
| 3417 ** But the t2.x>0 test will always fail on a NULL row of t2, which | |
| 3418 ** effectively converts the OUTER JOIN into an INNER JOIN. | |
| 3419 ** | |
| 3420 ** THIS OVERRIDES OBSOLETE COMMENTS 1 AND 2 ABOVE: | |
| 3421 ** Ticket #3300 shows that flattening the right term of a LEFT JOIN | |
| 3422 ** is fraught with danger. Best to avoid the whole thing. If the | |
| 3423 ** subquery is the right term of a LEFT JOIN, then do not flatten. | |
| 3424 */ | |
| 3425 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){ | |
| 3426 return 0; | |
| 3427 } | |
| 3428 | |
| 3429 /* Restriction 17: If the sub-query is a compound SELECT, then it must | |
| 3430 ** use only the UNION ALL operator. And none of the simple select queries | |
| 3431 ** that make up the compound SELECT are allowed to be aggregate or distinct | |
| 3432 ** queries. | |
| 3433 */ | |
| 3434 if( pSub->pPrior ){ | |
| 3435 if( pSub->pOrderBy ){ | |
| 3436 return 0; /* Restriction 20 */ | |
| 3437 } | |
| 3438 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){ | |
| 3439 return 0; | |
| 3440 } | |
| 3441 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){ | |
| 3442 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); | |
| 3443 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); | |
| 3444 assert( pSub->pSrc!=0 ); | |
| 3445 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr ); | |
| 3446 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 | |
| 3447 || (pSub1->pPrior && pSub1->op!=TK_ALL) | |
| 3448 || pSub1->pSrc->nSrc<1 | |
| 3449 ){ | |
| 3450 return 0; | |
| 3451 } | |
| 3452 testcase( pSub1->pSrc->nSrc>1 ); | |
| 3453 } | |
| 3454 | |
| 3455 /* Restriction 18. */ | |
| 3456 if( p->pOrderBy ){ | |
| 3457 int ii; | |
| 3458 for(ii=0; ii<p->pOrderBy->nExpr; ii++){ | |
| 3459 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0; | |
| 3460 } | |
| 3461 } | |
| 3462 } | |
| 3463 | |
| 3464 /***** If we reach this point, flattening is permitted. *****/ | |
| 3465 SELECTTRACE(1,pParse,p,("flatten %s.%p from term %d\n", | |
| 3466 pSub->zSelName, pSub, iFrom)); | |
| 3467 | |
| 3468 /* Authorize the subquery */ | |
| 3469 pParse->zAuthContext = pSubitem->zName; | |
| 3470 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0); | |
| 3471 testcase( i==SQLITE_DENY ); | |
| 3472 pParse->zAuthContext = zSavedAuthContext; | |
| 3473 | |
| 3474 /* If the sub-query is a compound SELECT statement, then (by restrictions | |
| 3475 ** 17 and 18 above) it must be a UNION ALL and the parent query must | |
| 3476 ** be of the form: | |
| 3477 ** | |
| 3478 ** SELECT <expr-list> FROM (<sub-query>) <where-clause> | |
| 3479 ** | |
| 3480 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block | |
| 3481 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or | |
| 3482 ** OFFSET clauses and joins them to the left-hand-side of the original | |
| 3483 ** using UNION ALL operators. In this case N is the number of simple | |
| 3484 ** select statements in the compound sub-query. | |
| 3485 ** | |
| 3486 ** Example: | |
| 3487 ** | |
| 3488 ** SELECT a+1 FROM ( | |
| 3489 ** SELECT x FROM tab | |
| 3490 ** UNION ALL | |
| 3491 ** SELECT y FROM tab | |
| 3492 ** UNION ALL | |
| 3493 ** SELECT abs(z*2) FROM tab2 | |
| 3494 ** ) WHERE a!=5 ORDER BY 1 | |
| 3495 ** | |
| 3496 ** Transformed into: | |
| 3497 ** | |
| 3498 ** SELECT x+1 FROM tab WHERE x+1!=5 | |
| 3499 ** UNION ALL | |
| 3500 ** SELECT y+1 FROM tab WHERE y+1!=5 | |
| 3501 ** UNION ALL | |
| 3502 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5 | |
| 3503 ** ORDER BY 1 | |
| 3504 ** | |
| 3505 ** We call this the "compound-subquery flattening". | |
| 3506 */ | |
| 3507 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){ | |
| 3508 Select *pNew; | |
| 3509 ExprList *pOrderBy = p->pOrderBy; | |
| 3510 Expr *pLimit = p->pLimit; | |
| 3511 Expr *pOffset = p->pOffset; | |
| 3512 Select *pPrior = p->pPrior; | |
| 3513 p->pOrderBy = 0; | |
| 3514 p->pSrc = 0; | |
| 3515 p->pPrior = 0; | |
| 3516 p->pLimit = 0; | |
| 3517 p->pOffset = 0; | |
| 3518 pNew = sqlite3SelectDup(db, p, 0); | |
| 3519 sqlite3SelectSetName(pNew, pSub->zSelName); | |
| 3520 p->pOffset = pOffset; | |
| 3521 p->pLimit = pLimit; | |
| 3522 p->pOrderBy = pOrderBy; | |
| 3523 p->pSrc = pSrc; | |
| 3524 p->op = TK_ALL; | |
| 3525 if( pNew==0 ){ | |
| 3526 p->pPrior = pPrior; | |
| 3527 }else{ | |
| 3528 pNew->pPrior = pPrior; | |
| 3529 if( pPrior ) pPrior->pNext = pNew; | |
| 3530 pNew->pNext = p; | |
| 3531 p->pPrior = pNew; | |
| 3532 SELECTTRACE(2,pParse,p, | |
| 3533 ("compound-subquery flattener creates %s.%p as peer\n", | |
| 3534 pNew->zSelName, pNew)); | |
| 3535 } | |
| 3536 if( db->mallocFailed ) return 1; | |
| 3537 } | |
| 3538 | |
| 3539 /* Begin flattening the iFrom-th entry of the FROM clause | |
| 3540 ** in the outer query. | |
| 3541 */ | |
| 3542 pSub = pSub1 = pSubitem->pSelect; | |
| 3543 | |
| 3544 /* Delete the transient table structure associated with the | |
| 3545 ** subquery | |
| 3546 */ | |
| 3547 sqlite3DbFree(db, pSubitem->zDatabase); | |
| 3548 sqlite3DbFree(db, pSubitem->zName); | |
| 3549 sqlite3DbFree(db, pSubitem->zAlias); | |
| 3550 pSubitem->zDatabase = 0; | |
| 3551 pSubitem->zName = 0; | |
| 3552 pSubitem->zAlias = 0; | |
| 3553 pSubitem->pSelect = 0; | |
| 3554 | |
| 3555 /* Defer deleting the Table object associated with the | |
| 3556 ** subquery until code generation is | |
| 3557 ** complete, since there may still exist Expr.pTab entries that | |
| 3558 ** refer to the subquery even after flattening. Ticket #3346. | |
| 3559 ** | |
| 3560 ** pSubitem->pTab is always non-NULL by test restrictions and tests above. | |
| 3561 */ | |
| 3562 if( ALWAYS(pSubitem->pTab!=0) ){ | |
| 3563 Table *pTabToDel = pSubitem->pTab; | |
| 3564 if( pTabToDel->nRef==1 ){ | |
| 3565 Parse *pToplevel = sqlite3ParseToplevel(pParse); | |
| 3566 pTabToDel->pNextZombie = pToplevel->pZombieTab; | |
| 3567 pToplevel->pZombieTab = pTabToDel; | |
| 3568 }else{ | |
| 3569 pTabToDel->nRef--; | |
| 3570 } | |
| 3571 pSubitem->pTab = 0; | |
| 3572 } | |
| 3573 | |
| 3574 /* The following loop runs once for each term in a compound-subquery | |
| 3575 ** flattening (as described above). If we are doing a different kind | |
| 3576 ** of flattening - a flattening other than a compound-subquery flattening - | |
| 3577 ** then this loop only runs once. | |
| 3578 ** | |
| 3579 ** This loop moves all of the FROM elements of the subquery into the | |
| 3580 ** the FROM clause of the outer query. Before doing this, remember | |
| 3581 ** the cursor number for the original outer query FROM element in | |
| 3582 ** iParent. The iParent cursor will never be used. Subsequent code | |
| 3583 ** will scan expressions looking for iParent references and replace | |
| 3584 ** those references with expressions that resolve to the subquery FROM | |
| 3585 ** elements we are now copying in. | |
| 3586 */ | |
| 3587 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){ | |
| 3588 int nSubSrc; | |
| 3589 u8 jointype = 0; | |
| 3590 pSubSrc = pSub->pSrc; /* FROM clause of subquery */ | |
| 3591 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */ | |
| 3592 pSrc = pParent->pSrc; /* FROM clause of the outer query */ | |
| 3593 | |
| 3594 if( pSrc ){ | |
| 3595 assert( pParent==p ); /* First time through the loop */ | |
| 3596 jointype = pSubitem->fg.jointype; | |
| 3597 }else{ | |
| 3598 assert( pParent!=p ); /* 2nd and subsequent times through the loop */ | |
| 3599 pSrc = pParent->pSrc = sqlite3SrcListAppend(db, 0, 0, 0); | |
| 3600 if( pSrc==0 ){ | |
| 3601 assert( db->mallocFailed ); | |
| 3602 break; | |
| 3603 } | |
| 3604 } | |
| 3605 | |
| 3606 /* The subquery uses a single slot of the FROM clause of the outer | |
| 3607 ** query. If the subquery has more than one element in its FROM clause, | |
| 3608 ** then expand the outer query to make space for it to hold all elements | |
| 3609 ** of the subquery. | |
| 3610 ** | |
| 3611 ** Example: | |
| 3612 ** | |
| 3613 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB; | |
| 3614 ** | |
| 3615 ** The outer query has 3 slots in its FROM clause. One slot of the | |
| 3616 ** outer query (the middle slot) is used by the subquery. The next | |
| 3617 ** block of code will expand the outer query FROM clause to 4 slots. | |
| 3618 ** The middle slot is expanded to two slots in order to make space | |
| 3619 ** for the two elements in the FROM clause of the subquery. | |
| 3620 */ | |
| 3621 if( nSubSrc>1 ){ | |
| 3622 pParent->pSrc = pSrc = sqlite3SrcListEnlarge(db, pSrc, nSubSrc-1,iFrom+1); | |
| 3623 if( db->mallocFailed ){ | |
| 3624 break; | |
| 3625 } | |
| 3626 } | |
| 3627 | |
| 3628 /* Transfer the FROM clause terms from the subquery into the | |
| 3629 ** outer query. | |
| 3630 */ | |
| 3631 for(i=0; i<nSubSrc; i++){ | |
| 3632 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing); | |
| 3633 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 ); | |
| 3634 pSrc->a[i+iFrom] = pSubSrc->a[i]; | |
| 3635 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i])); | |
| 3636 } | |
| 3637 pSrc->a[iFrom].fg.jointype = jointype; | |
| 3638 | |
| 3639 /* Now begin substituting subquery result set expressions for | |
| 3640 ** references to the iParent in the outer query. | |
| 3641 ** | |
| 3642 ** Example: | |
| 3643 ** | |
| 3644 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b; | |
| 3645 ** \ \_____________ subquery __________/ / | |
| 3646 ** \_____________________ outer query ______________________________/ | |
| 3647 ** | |
| 3648 ** We look at every expression in the outer query and every place we see | |
| 3649 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10". | |
| 3650 */ | |
| 3651 pList = pParent->pEList; | |
| 3652 for(i=0; i<pList->nExpr; i++){ | |
| 3653 if( pList->a[i].zName==0 ){ | |
| 3654 char *zName = sqlite3DbStrDup(db, pList->a[i].zSpan); | |
| 3655 sqlite3Dequote(zName); | |
| 3656 pList->a[i].zName = zName; | |
| 3657 } | |
| 3658 } | |
| 3659 if( pSub->pOrderBy ){ | |
| 3660 /* At this point, any non-zero iOrderByCol values indicate that the | |
| 3661 ** ORDER BY column expression is identical to the iOrderByCol'th | |
| 3662 ** expression returned by SELECT statement pSub. Since these values | |
| 3663 ** do not necessarily correspond to columns in SELECT statement pParent, | |
| 3664 ** zero them before transfering the ORDER BY clause. | |
| 3665 ** | |
| 3666 ** Not doing this may cause an error if a subsequent call to this | |
| 3667 ** function attempts to flatten a compound sub-query into pParent | |
| 3668 ** (the only way this can happen is if the compound sub-query is | |
| 3669 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */ | |
| 3670 ExprList *pOrderBy = pSub->pOrderBy; | |
| 3671 for(i=0; i<pOrderBy->nExpr; i++){ | |
| 3672 pOrderBy->a[i].u.x.iOrderByCol = 0; | |
| 3673 } | |
| 3674 assert( pParent->pOrderBy==0 ); | |
| 3675 assert( pSub->pPrior==0 ); | |
| 3676 pParent->pOrderBy = pOrderBy; | |
| 3677 pSub->pOrderBy = 0; | |
| 3678 } | |
| 3679 pWhere = sqlite3ExprDup(db, pSub->pWhere, 0); | |
| 3680 if( subqueryIsAgg ){ | |
| 3681 assert( pParent->pHaving==0 ); | |
| 3682 pParent->pHaving = pParent->pWhere; | |
| 3683 pParent->pWhere = pWhere; | |
| 3684 pParent->pHaving = sqlite3ExprAnd(db, pParent->pHaving, | |
| 3685 sqlite3ExprDup(db, pSub->pHaving, 0)); | |
| 3686 assert( pParent->pGroupBy==0 ); | |
| 3687 pParent->pGroupBy = sqlite3ExprListDup(db, pSub->pGroupBy, 0); | |
| 3688 }else{ | |
| 3689 pParent->pWhere = sqlite3ExprAnd(db, pParent->pWhere, pWhere); | |
| 3690 } | |
| 3691 substSelect(db, pParent, iParent, pSub->pEList, 0); | |
| 3692 | |
| 3693 /* The flattened query is distinct if either the inner or the | |
| 3694 ** outer query is distinct. | |
| 3695 */ | |
| 3696 pParent->selFlags |= pSub->selFlags & SF_Distinct; | |
| 3697 | |
| 3698 /* | |
| 3699 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y; | |
| 3700 ** | |
| 3701 ** One is tempted to try to add a and b to combine the limits. But this | |
| 3702 ** does not work if either limit is negative. | |
| 3703 */ | |
| 3704 if( pSub->pLimit ){ | |
| 3705 pParent->pLimit = pSub->pLimit; | |
| 3706 pSub->pLimit = 0; | |
| 3707 } | |
| 3708 } | |
| 3709 | |
| 3710 /* Finially, delete what is left of the subquery and return | |
| 3711 ** success. | |
| 3712 */ | |
| 3713 sqlite3SelectDelete(db, pSub1); | |
| 3714 | |
| 3715 #if SELECTTRACE_ENABLED | |
| 3716 if( sqlite3SelectTrace & 0x100 ){ | |
| 3717 SELECTTRACE(0x100,pParse,p,("After flattening:\n")); | |
| 3718 sqlite3TreeViewSelect(0, p, 0); | |
| 3719 } | |
| 3720 #endif | |
| 3721 | |
| 3722 return 1; | |
| 3723 } | |
| 3724 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ | |
| 3725 | |
| 3726 | |
| 3727 | |
| 3728 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) | |
| 3729 /* | |
| 3730 ** Make copies of relevant WHERE clause terms of the outer query into | |
| 3731 ** the WHERE clause of subquery. Example: | |
| 3732 ** | |
| 3733 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10; | |
| 3734 ** | |
| 3735 ** Transformed into: | |
| 3736 ** | |
| 3737 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10) | |
| 3738 ** WHERE x=5 AND y=10; | |
| 3739 ** | |
| 3740 ** The hope is that the terms added to the inner query will make it more | |
| 3741 ** efficient. | |
| 3742 ** | |
| 3743 ** Do not attempt this optimization if: | |
| 3744 ** | |
| 3745 ** (1) The inner query is an aggregate. (In that case, we'd really want | |
| 3746 ** to copy the outer WHERE-clause terms onto the HAVING clause of the | |
| 3747 ** inner query. But they probably won't help there so do not bother.) | |
| 3748 ** | |
| 3749 ** (2) The inner query is the recursive part of a common table expression. | |
| 3750 ** | |
| 3751 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE | |
| 3752 ** close would change the meaning of the LIMIT). | |
| 3753 ** | |
| 3754 ** (4) The inner query is the right operand of a LEFT JOIN. (The caller | |
| 3755 ** enforces this restriction since this routine does not have enough | |
| 3756 ** information to know.) | |
| 3757 ** | |
| 3758 ** (5) The WHERE clause expression originates in the ON or USING clause | |
| 3759 ** of a LEFT JOIN. | |
| 3760 ** | |
| 3761 ** Return 0 if no changes are made and non-zero if one or more WHERE clause | |
| 3762 ** terms are duplicated into the subquery. | |
| 3763 */ | |
| 3764 static int pushDownWhereTerms( | |
| 3765 sqlite3 *db, /* The database connection (for malloc()) */ | |
| 3766 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */ | |
| 3767 Expr *pWhere, /* The WHERE clause of the outer query */ | |
| 3768 int iCursor /* Cursor number of the subquery */ | |
| 3769 ){ | |
| 3770 Expr *pNew; | |
| 3771 int nChng = 0; | |
| 3772 if( pWhere==0 ) return 0; | |
| 3773 if( (pSubq->selFlags & (SF_Aggregate|SF_Recursive))!=0 ){ | |
| 3774 return 0; /* restrictions (1) and (2) */ | |
| 3775 } | |
| 3776 if( pSubq->pLimit!=0 ){ | |
| 3777 return 0; /* restriction (3) */ | |
| 3778 } | |
| 3779 while( pWhere->op==TK_AND ){ | |
| 3780 nChng += pushDownWhereTerms(db, pSubq, pWhere->pRight, iCursor); | |
| 3781 pWhere = pWhere->pLeft; | |
| 3782 } | |
| 3783 if( ExprHasProperty(pWhere,EP_FromJoin) ) return 0; /* restriction 5 */ | |
| 3784 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){ | |
| 3785 nChng++; | |
| 3786 while( pSubq ){ | |
| 3787 pNew = sqlite3ExprDup(db, pWhere, 0); | |
| 3788 pNew = substExpr(db, pNew, iCursor, pSubq->pEList); | |
| 3789 pSubq->pWhere = sqlite3ExprAnd(db, pSubq->pWhere, pNew); | |
| 3790 pSubq = pSubq->pPrior; | |
| 3791 } | |
| 3792 } | |
| 3793 return nChng; | |
| 3794 } | |
| 3795 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */ | |
| 3796 | |
| 3797 /* | |
| 3798 ** Based on the contents of the AggInfo structure indicated by the first | |
| 3799 ** argument, this function checks if the following are true: | |
| 3800 ** | |
| 3801 ** * the query contains just a single aggregate function, | |
| 3802 ** * the aggregate function is either min() or max(), and | |
| 3803 ** * the argument to the aggregate function is a column value. | |
| 3804 ** | |
| 3805 ** If all of the above are true, then WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX | |
| 3806 ** is returned as appropriate. Also, *ppMinMax is set to point to the | |
| 3807 ** list of arguments passed to the aggregate before returning. | |
| 3808 ** | |
| 3809 ** Or, if the conditions above are not met, *ppMinMax is set to 0 and | |
| 3810 ** WHERE_ORDERBY_NORMAL is returned. | |
| 3811 */ | |
| 3812 static u8 minMaxQuery(AggInfo *pAggInfo, ExprList **ppMinMax){ | |
| 3813 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */ | |
| 3814 | |
| 3815 *ppMinMax = 0; | |
| 3816 if( pAggInfo->nFunc==1 ){ | |
| 3817 Expr *pExpr = pAggInfo->aFunc[0].pExpr; /* Aggregate function */ | |
| 3818 ExprList *pEList = pExpr->x.pList; /* Arguments to agg function */ | |
| 3819 | |
| 3820 assert( pExpr->op==TK_AGG_FUNCTION ); | |
| 3821 if( pEList && pEList->nExpr==1 && pEList->a[0].pExpr->op==TK_AGG_COLUMN ){ | |
| 3822 const char *zFunc = pExpr->u.zToken; | |
| 3823 if( sqlite3StrICmp(zFunc, "min")==0 ){ | |
| 3824 eRet = WHERE_ORDERBY_MIN; | |
| 3825 *ppMinMax = pEList; | |
| 3826 }else if( sqlite3StrICmp(zFunc, "max")==0 ){ | |
| 3827 eRet = WHERE_ORDERBY_MAX; | |
| 3828 *ppMinMax = pEList; | |
| 3829 } | |
| 3830 } | |
| 3831 } | |
| 3832 | |
| 3833 assert( *ppMinMax==0 || (*ppMinMax)->nExpr==1 ); | |
| 3834 return eRet; | |
| 3835 } | |
| 3836 | |
| 3837 /* | |
| 3838 ** The select statement passed as the first argument is an aggregate query. | |
| 3839 ** The second argument is the associated aggregate-info object. This | |
| 3840 ** function tests if the SELECT is of the form: | |
| 3841 ** | |
| 3842 ** SELECT count(*) FROM <tbl> | |
| 3843 ** | |
| 3844 ** where table is a database table, not a sub-select or view. If the query | |
| 3845 ** does match this pattern, then a pointer to the Table object representing | |
| 3846 ** <tbl> is returned. Otherwise, 0 is returned. | |
| 3847 */ | |
| 3848 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){ | |
| 3849 Table *pTab; | |
| 3850 Expr *pExpr; | |
| 3851 | |
| 3852 assert( !p->pGroupBy ); | |
| 3853 | |
| 3854 if( p->pWhere || p->pEList->nExpr!=1 | |
| 3855 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect | |
| 3856 ){ | |
| 3857 return 0; | |
| 3858 } | |
| 3859 pTab = p->pSrc->a[0].pTab; | |
| 3860 pExpr = p->pEList->a[0].pExpr; | |
| 3861 assert( pTab && !pTab->pSelect && pExpr ); | |
| 3862 | |
| 3863 if( IsVirtual(pTab) ) return 0; | |
| 3864 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; | |
| 3865 if( NEVER(pAggInfo->nFunc==0) ) return 0; | |
| 3866 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0; | |
| 3867 if( pExpr->flags&EP_Distinct ) return 0; | |
| 3868 | |
| 3869 return pTab; | |
| 3870 } | |
| 3871 | |
| 3872 /* | |
| 3873 ** If the source-list item passed as an argument was augmented with an | |
| 3874 ** INDEXED BY clause, then try to locate the specified index. If there | |
| 3875 ** was such a clause and the named index cannot be found, return | |
| 3876 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate | |
| 3877 ** pFrom->pIndex and return SQLITE_OK. | |
| 3878 */ | |
| 3879 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){ | |
| 3880 if( pFrom->pTab && pFrom->fg.isIndexedBy ){ | |
| 3881 Table *pTab = pFrom->pTab; | |
| 3882 char *zIndexedBy = pFrom->u1.zIndexedBy; | |
| 3883 Index *pIdx; | |
| 3884 for(pIdx=pTab->pIndex; | |
| 3885 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy); | |
| 3886 pIdx=pIdx->pNext | |
| 3887 ); | |
| 3888 if( !pIdx ){ | |
| 3889 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0); | |
| 3890 pParse->checkSchema = 1; | |
| 3891 return SQLITE_ERROR; | |
| 3892 } | |
| 3893 pFrom->pIBIndex = pIdx; | |
| 3894 } | |
| 3895 return SQLITE_OK; | |
| 3896 } | |
| 3897 /* | |
| 3898 ** Detect compound SELECT statements that use an ORDER BY clause with | |
| 3899 ** an alternative collating sequence. | |
| 3900 ** | |
| 3901 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ... | |
| 3902 ** | |
| 3903 ** These are rewritten as a subquery: | |
| 3904 ** | |
| 3905 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2) | |
| 3906 ** ORDER BY ... COLLATE ... | |
| 3907 ** | |
| 3908 ** This transformation is necessary because the multiSelectOrderBy() routine | |
| 3909 ** above that generates the code for a compound SELECT with an ORDER BY clause | |
| 3910 ** uses a merge algorithm that requires the same collating sequence on the | |
| 3911 ** result columns as on the ORDER BY clause. See ticket | |
| 3912 ** http://www.sqlite.org/src/info/6709574d2a | |
| 3913 ** | |
| 3914 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION. | |
| 3915 ** The UNION ALL operator works fine with multiSelectOrderBy() even when | |
| 3916 ** there are COLLATE terms in the ORDER BY. | |
| 3917 */ | |
| 3918 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){ | |
| 3919 int i; | |
| 3920 Select *pNew; | |
| 3921 Select *pX; | |
| 3922 sqlite3 *db; | |
| 3923 struct ExprList_item *a; | |
| 3924 SrcList *pNewSrc; | |
| 3925 Parse *pParse; | |
| 3926 Token dummy; | |
| 3927 | |
| 3928 if( p->pPrior==0 ) return WRC_Continue; | |
| 3929 if( p->pOrderBy==0 ) return WRC_Continue; | |
| 3930 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){} | |
| 3931 if( pX==0 ) return WRC_Continue; | |
| 3932 a = p->pOrderBy->a; | |
| 3933 for(i=p->pOrderBy->nExpr-1; i>=0; i--){ | |
| 3934 if( a[i].pExpr->flags & EP_Collate ) break; | |
| 3935 } | |
| 3936 if( i<0 ) return WRC_Continue; | |
| 3937 | |
| 3938 /* If we reach this point, that means the transformation is required. */ | |
| 3939 | |
| 3940 pParse = pWalker->pParse; | |
| 3941 db = pParse->db; | |
| 3942 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) ); | |
| 3943 if( pNew==0 ) return WRC_Abort; | |
| 3944 memset(&dummy, 0, sizeof(dummy)); | |
| 3945 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0); | |
| 3946 if( pNewSrc==0 ) return WRC_Abort; | |
| 3947 *pNew = *p; | |
| 3948 p->pSrc = pNewSrc; | |
| 3949 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0)); | |
| 3950 p->op = TK_SELECT; | |
| 3951 p->pWhere = 0; | |
| 3952 pNew->pGroupBy = 0; | |
| 3953 pNew->pHaving = 0; | |
| 3954 pNew->pOrderBy = 0; | |
| 3955 p->pPrior = 0; | |
| 3956 p->pNext = 0; | |
| 3957 p->pWith = 0; | |
| 3958 p->selFlags &= ~SF_Compound; | |
| 3959 assert( (p->selFlags & SF_Converted)==0 ); | |
| 3960 p->selFlags |= SF_Converted; | |
| 3961 assert( pNew->pPrior!=0 ); | |
| 3962 pNew->pPrior->pNext = pNew; | |
| 3963 pNew->pLimit = 0; | |
| 3964 pNew->pOffset = 0; | |
| 3965 return WRC_Continue; | |
| 3966 } | |
| 3967 | |
| 3968 /* | |
| 3969 ** Check to see if the FROM clause term pFrom has table-valued function | |
| 3970 ** arguments. If it does, leave an error message in pParse and return | |
| 3971 ** non-zero, since pFrom is not allowed to be a table-valued function. | |
| 3972 */ | |
| 3973 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){ | |
| 3974 if( pFrom->fg.isTabFunc ){ | |
| 3975 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName); | |
| 3976 return 1; | |
| 3977 } | |
| 3978 return 0; | |
| 3979 } | |
| 3980 | |
| 3981 #ifndef SQLITE_OMIT_CTE | |
| 3982 /* | |
| 3983 ** Argument pWith (which may be NULL) points to a linked list of nested | |
| 3984 ** WITH contexts, from inner to outermost. If the table identified by | |
| 3985 ** FROM clause element pItem is really a common-table-expression (CTE) | |
| 3986 ** then return a pointer to the CTE definition for that table. Otherwise | |
| 3987 ** return NULL. | |
| 3988 ** | |
| 3989 ** If a non-NULL value is returned, set *ppContext to point to the With | |
| 3990 ** object that the returned CTE belongs to. | |
| 3991 */ | |
| 3992 static struct Cte *searchWith( | |
| 3993 With *pWith, /* Current innermost WITH clause */ | |
| 3994 struct SrcList_item *pItem, /* FROM clause element to resolve */ | |
| 3995 With **ppContext /* OUT: WITH clause return value belongs to */ | |
| 3996 ){ | |
| 3997 const char *zName; | |
| 3998 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){ | |
| 3999 With *p; | |
| 4000 for(p=pWith; p; p=p->pOuter){ | |
| 4001 int i; | |
| 4002 for(i=0; i<p->nCte; i++){ | |
| 4003 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){ | |
| 4004 *ppContext = p; | |
| 4005 return &p->a[i]; | |
| 4006 } | |
| 4007 } | |
| 4008 } | |
| 4009 } | |
| 4010 return 0; | |
| 4011 } | |
| 4012 | |
| 4013 /* The code generator maintains a stack of active WITH clauses | |
| 4014 ** with the inner-most WITH clause being at the top of the stack. | |
| 4015 ** | |
| 4016 ** This routine pushes the WITH clause passed as the second argument | |
| 4017 ** onto the top of the stack. If argument bFree is true, then this | |
| 4018 ** WITH clause will never be popped from the stack. In this case it | |
| 4019 ** should be freed along with the Parse object. In other cases, when | |
| 4020 ** bFree==0, the With object will be freed along with the SELECT | |
| 4021 ** statement with which it is associated. | |
| 4022 */ | |
| 4023 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){ | |
| 4024 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) ); | |
| 4025 if( pWith ){ | |
| 4026 assert( pParse->pWith!=pWith ); | |
| 4027 pWith->pOuter = pParse->pWith; | |
| 4028 pParse->pWith = pWith; | |
| 4029 if( bFree ) pParse->pWithToFree = pWith; | |
| 4030 } | |
| 4031 } | |
| 4032 | |
| 4033 /* | |
| 4034 ** This function checks if argument pFrom refers to a CTE declared by | |
| 4035 ** a WITH clause on the stack currently maintained by the parser. And, | |
| 4036 ** if currently processing a CTE expression, if it is a recursive | |
| 4037 ** reference to the current CTE. | |
| 4038 ** | |
| 4039 ** If pFrom falls into either of the two categories above, pFrom->pTab | |
| 4040 ** and other fields are populated accordingly. The caller should check | |
| 4041 ** (pFrom->pTab!=0) to determine whether or not a successful match | |
| 4042 ** was found. | |
| 4043 ** | |
| 4044 ** Whether or not a match is found, SQLITE_OK is returned if no error | |
| 4045 ** occurs. If an error does occur, an error message is stored in the | |
| 4046 ** parser and some error code other than SQLITE_OK returned. | |
| 4047 */ | |
| 4048 static int withExpand( | |
| 4049 Walker *pWalker, | |
| 4050 struct SrcList_item *pFrom | |
| 4051 ){ | |
| 4052 Parse *pParse = pWalker->pParse; | |
| 4053 sqlite3 *db = pParse->db; | |
| 4054 struct Cte *pCte; /* Matched CTE (or NULL if no match) */ | |
| 4055 With *pWith; /* WITH clause that pCte belongs to */ | |
| 4056 | |
| 4057 assert( pFrom->pTab==0 ); | |
| 4058 | |
| 4059 pCte = searchWith(pParse->pWith, pFrom, &pWith); | |
| 4060 if( pCte ){ | |
| 4061 Table *pTab; | |
| 4062 ExprList *pEList; | |
| 4063 Select *pSel; | |
| 4064 Select *pLeft; /* Left-most SELECT statement */ | |
| 4065 int bMayRecursive; /* True if compound joined by UNION [ALL] */ | |
| 4066 With *pSavedWith; /* Initial value of pParse->pWith */ | |
| 4067 | |
| 4068 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal | |
| 4069 ** recursive reference to CTE pCte. Leave an error in pParse and return | |
| 4070 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference. | |
| 4071 ** In this case, proceed. */ | |
| 4072 if( pCte->zCteErr ){ | |
| 4073 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName); | |
| 4074 return SQLITE_ERROR; | |
| 4075 } | |
| 4076 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR; | |
| 4077 | |
| 4078 assert( pFrom->pTab==0 ); | |
| 4079 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); | |
| 4080 if( pTab==0 ) return WRC_Abort; | |
| 4081 pTab->nRef = 1; | |
| 4082 pTab->zName = sqlite3DbStrDup(db, pCte->zName); | |
| 4083 pTab->iPKey = -1; | |
| 4084 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); | |
| 4085 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid; | |
| 4086 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0); | |
| 4087 if( db->mallocFailed ) return SQLITE_NOMEM; | |
| 4088 assert( pFrom->pSelect ); | |
| 4089 | |
| 4090 /* Check if this is a recursive CTE. */ | |
| 4091 pSel = pFrom->pSelect; | |
| 4092 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION ); | |
| 4093 if( bMayRecursive ){ | |
| 4094 int i; | |
| 4095 SrcList *pSrc = pFrom->pSelect->pSrc; | |
| 4096 for(i=0; i<pSrc->nSrc; i++){ | |
| 4097 struct SrcList_item *pItem = &pSrc->a[i]; | |
| 4098 if( pItem->zDatabase==0 | |
| 4099 && pItem->zName!=0 | |
| 4100 && 0==sqlite3StrICmp(pItem->zName, pCte->zName) | |
| 4101 ){ | |
| 4102 pItem->pTab = pTab; | |
| 4103 pItem->fg.isRecursive = 1; | |
| 4104 pTab->nRef++; | |
| 4105 pSel->selFlags |= SF_Recursive; | |
| 4106 } | |
| 4107 } | |
| 4108 } | |
| 4109 | |
| 4110 /* Only one recursive reference is permitted. */ | |
| 4111 if( pTab->nRef>2 ){ | |
| 4112 sqlite3ErrorMsg( | |
| 4113 pParse, "multiple references to recursive table: %s", pCte->zName | |
| 4114 ); | |
| 4115 return SQLITE_ERROR; | |
| 4116 } | |
| 4117 assert( pTab->nRef==1 || ((pSel->selFlags&SF_Recursive) && pTab->nRef==2 )); | |
| 4118 | |
| 4119 pCte->zCteErr = "circular reference: %s"; | |
| 4120 pSavedWith = pParse->pWith; | |
| 4121 pParse->pWith = pWith; | |
| 4122 sqlite3WalkSelect(pWalker, bMayRecursive ? pSel->pPrior : pSel); | |
| 4123 pParse->pWith = pWith; | |
| 4124 | |
| 4125 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior); | |
| 4126 pEList = pLeft->pEList; | |
| 4127 if( pCte->pCols ){ | |
| 4128 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){ | |
| 4129 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns", | |
| 4130 pCte->zName, pEList->nExpr, pCte->pCols->nExpr | |
| 4131 ); | |
| 4132 pParse->pWith = pSavedWith; | |
| 4133 return SQLITE_ERROR; | |
| 4134 } | |
| 4135 pEList = pCte->pCols; | |
| 4136 } | |
| 4137 | |
| 4138 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol); | |
| 4139 if( bMayRecursive ){ | |
| 4140 if( pSel->selFlags & SF_Recursive ){ | |
| 4141 pCte->zCteErr = "multiple recursive references: %s"; | |
| 4142 }else{ | |
| 4143 pCte->zCteErr = "recursive reference in a subquery: %s"; | |
| 4144 } | |
| 4145 sqlite3WalkSelect(pWalker, pSel); | |
| 4146 } | |
| 4147 pCte->zCteErr = 0; | |
| 4148 pParse->pWith = pSavedWith; | |
| 4149 } | |
| 4150 | |
| 4151 return SQLITE_OK; | |
| 4152 } | |
| 4153 #endif | |
| 4154 | |
| 4155 #ifndef SQLITE_OMIT_CTE | |
| 4156 /* | |
| 4157 ** If the SELECT passed as the second argument has an associated WITH | |
| 4158 ** clause, pop it from the stack stored as part of the Parse object. | |
| 4159 ** | |
| 4160 ** This function is used as the xSelectCallback2() callback by | |
| 4161 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table | |
| 4162 ** names and other FROM clause elements. | |
| 4163 */ | |
| 4164 static void selectPopWith(Walker *pWalker, Select *p){ | |
| 4165 Parse *pParse = pWalker->pParse; | |
| 4166 With *pWith = findRightmost(p)->pWith; | |
| 4167 if( pWith!=0 ){ | |
| 4168 assert( pParse->pWith==pWith ); | |
| 4169 pParse->pWith = pWith->pOuter; | |
| 4170 } | |
| 4171 } | |
| 4172 #else | |
| 4173 #define selectPopWith 0 | |
| 4174 #endif | |
| 4175 | |
| 4176 /* | |
| 4177 ** This routine is a Walker callback for "expanding" a SELECT statement. | |
| 4178 ** "Expanding" means to do the following: | |
| 4179 ** | |
| 4180 ** (1) Make sure VDBE cursor numbers have been assigned to every | |
| 4181 ** element of the FROM clause. | |
| 4182 ** | |
| 4183 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that | |
| 4184 ** defines FROM clause. When views appear in the FROM clause, | |
| 4185 ** fill pTabList->a[].pSelect with a copy of the SELECT statement | |
| 4186 ** that implements the view. A copy is made of the view's SELECT | |
| 4187 ** statement so that we can freely modify or delete that statement | |
| 4188 ** without worrying about messing up the persistent representation | |
| 4189 ** of the view. | |
| 4190 ** | |
| 4191 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword | |
| 4192 ** on joins and the ON and USING clause of joins. | |
| 4193 ** | |
| 4194 ** (4) Scan the list of columns in the result set (pEList) looking | |
| 4195 ** for instances of the "*" operator or the TABLE.* operator. | |
| 4196 ** If found, expand each "*" to be every column in every table | |
| 4197 ** and TABLE.* to be every column in TABLE. | |
| 4198 ** | |
| 4199 */ | |
| 4200 static int selectExpander(Walker *pWalker, Select *p){ | |
| 4201 Parse *pParse = pWalker->pParse; | |
| 4202 int i, j, k; | |
| 4203 SrcList *pTabList; | |
| 4204 ExprList *pEList; | |
| 4205 struct SrcList_item *pFrom; | |
| 4206 sqlite3 *db = pParse->db; | |
| 4207 Expr *pE, *pRight, *pExpr; | |
| 4208 u16 selFlags = p->selFlags; | |
| 4209 | |
| 4210 p->selFlags |= SF_Expanded; | |
| 4211 if( db->mallocFailed ){ | |
| 4212 return WRC_Abort; | |
| 4213 } | |
| 4214 if( NEVER(p->pSrc==0) || (selFlags & SF_Expanded)!=0 ){ | |
| 4215 return WRC_Prune; | |
| 4216 } | |
| 4217 pTabList = p->pSrc; | |
| 4218 pEList = p->pEList; | |
| 4219 if( pWalker->xSelectCallback2==selectPopWith ){ | |
| 4220 sqlite3WithPush(pParse, findRightmost(p)->pWith, 0); | |
| 4221 } | |
| 4222 | |
| 4223 /* Make sure cursor numbers have been assigned to all entries in | |
| 4224 ** the FROM clause of the SELECT statement. | |
| 4225 */ | |
| 4226 sqlite3SrcListAssignCursors(pParse, pTabList); | |
| 4227 | |
| 4228 /* Look up every table named in the FROM clause of the select. If | |
| 4229 ** an entry of the FROM clause is a subquery instead of a table or view, | |
| 4230 ** then create a transient table structure to describe the subquery. | |
| 4231 */ | |
| 4232 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ | |
| 4233 Table *pTab; | |
| 4234 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 ); | |
| 4235 if( pFrom->fg.isRecursive ) continue; | |
| 4236 assert( pFrom->pTab==0 ); | |
| 4237 #ifndef SQLITE_OMIT_CTE | |
| 4238 if( withExpand(pWalker, pFrom) ) return WRC_Abort; | |
| 4239 if( pFrom->pTab ) {} else | |
| 4240 #endif | |
| 4241 if( pFrom->zName==0 ){ | |
| 4242 #ifndef SQLITE_OMIT_SUBQUERY | |
| 4243 Select *pSel = pFrom->pSelect; | |
| 4244 /* A sub-query in the FROM clause of a SELECT */ | |
| 4245 assert( pSel!=0 ); | |
| 4246 assert( pFrom->pTab==0 ); | |
| 4247 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort; | |
| 4248 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table)); | |
| 4249 if( pTab==0 ) return WRC_Abort; | |
| 4250 pTab->nRef = 1; | |
| 4251 pTab->zName = sqlite3MPrintf(db, "sqlite_sq_%p", (void*)pTab); | |
| 4252 while( pSel->pPrior ){ pSel = pSel->pPrior; } | |
| 4253 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol); | |
| 4254 pTab->iPKey = -1; | |
| 4255 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) ); | |
| 4256 pTab->tabFlags |= TF_Ephemeral; | |
| 4257 #endif | |
| 4258 }else{ | |
| 4259 /* An ordinary table or view name in the FROM clause */ | |
| 4260 assert( pFrom->pTab==0 ); | |
| 4261 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom); | |
| 4262 if( pTab==0 ) return WRC_Abort; | |
| 4263 if( pTab->nRef==0xffff ){ | |
| 4264 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535", | |
| 4265 pTab->zName); | |
| 4266 pFrom->pTab = 0; | |
| 4267 return WRC_Abort; | |
| 4268 } | |
| 4269 pTab->nRef++; | |
| 4270 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){ | |
| 4271 return WRC_Abort; | |
| 4272 } | |
| 4273 #if !defined(SQLITE_OMIT_VIEW) || !defined (SQLITE_OMIT_VIRTUALTABLE) | |
| 4274 if( IsVirtual(pTab) || pTab->pSelect ){ | |
| 4275 i16 nCol; | |
| 4276 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort; | |
| 4277 assert( pFrom->pSelect==0 ); | |
| 4278 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0); | |
| 4279 sqlite3SelectSetName(pFrom->pSelect, pTab->zName); | |
| 4280 nCol = pTab->nCol; | |
| 4281 pTab->nCol = -1; | |
| 4282 sqlite3WalkSelect(pWalker, pFrom->pSelect); | |
| 4283 pTab->nCol = nCol; | |
| 4284 } | |
| 4285 #endif | |
| 4286 } | |
| 4287 | |
| 4288 /* Locate the index named by the INDEXED BY clause, if any. */ | |
| 4289 if( sqlite3IndexedByLookup(pParse, pFrom) ){ | |
| 4290 return WRC_Abort; | |
| 4291 } | |
| 4292 } | |
| 4293 | |
| 4294 /* Process NATURAL keywords, and ON and USING clauses of joins. | |
| 4295 */ | |
| 4296 if( db->mallocFailed || sqliteProcessJoin(pParse, p) ){ | |
| 4297 return WRC_Abort; | |
| 4298 } | |
| 4299 | |
| 4300 /* For every "*" that occurs in the column list, insert the names of | |
| 4301 ** all columns in all tables. And for every TABLE.* insert the names | |
| 4302 ** of all columns in TABLE. The parser inserted a special expression | |
| 4303 ** with the TK_ASTERISK operator for each "*" that it found in the column | |
| 4304 ** list. The following code just has to locate the TK_ASTERISK | |
| 4305 ** expressions and expand each one to the list of all columns in | |
| 4306 ** all tables. | |
| 4307 ** | |
| 4308 ** The first loop just checks to see if there are any "*" operators | |
| 4309 ** that need expanding. | |
| 4310 */ | |
| 4311 for(k=0; k<pEList->nExpr; k++){ | |
| 4312 pE = pEList->a[k].pExpr; | |
| 4313 if( pE->op==TK_ASTERISK ) break; | |
| 4314 assert( pE->op!=TK_DOT || pE->pRight!=0 ); | |
| 4315 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) ); | |
| 4316 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break; | |
| 4317 } | |
| 4318 if( k<pEList->nExpr ){ | |
| 4319 /* | |
| 4320 ** If we get here it means the result set contains one or more "*" | |
| 4321 ** operators that need to be expanded. Loop through each expression | |
| 4322 ** in the result set and expand them one by one. | |
| 4323 */ | |
| 4324 struct ExprList_item *a = pEList->a; | |
| 4325 ExprList *pNew = 0; | |
| 4326 int flags = pParse->db->flags; | |
| 4327 int longNames = (flags & SQLITE_FullColNames)!=0 | |
| 4328 && (flags & SQLITE_ShortColNames)==0; | |
| 4329 | |
| 4330 for(k=0; k<pEList->nExpr; k++){ | |
| 4331 pE = a[k].pExpr; | |
| 4332 pRight = pE->pRight; | |
| 4333 assert( pE->op!=TK_DOT || pRight!=0 ); | |
| 4334 if( pE->op!=TK_ASTERISK | |
| 4335 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK) | |
| 4336 ){ | |
| 4337 /* This particular expression does not need to be expanded. | |
| 4338 */ | |
| 4339 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr); | |
| 4340 if( pNew ){ | |
| 4341 pNew->a[pNew->nExpr-1].zName = a[k].zName; | |
| 4342 pNew->a[pNew->nExpr-1].zSpan = a[k].zSpan; | |
| 4343 a[k].zName = 0; | |
| 4344 a[k].zSpan = 0; | |
| 4345 } | |
| 4346 a[k].pExpr = 0; | |
| 4347 }else{ | |
| 4348 /* This expression is a "*" or a "TABLE.*" and needs to be | |
| 4349 ** expanded. */ | |
| 4350 int tableSeen = 0; /* Set to 1 when TABLE matches */ | |
| 4351 char *zTName = 0; /* text of name of TABLE */ | |
| 4352 if( pE->op==TK_DOT ){ | |
| 4353 assert( pE->pLeft!=0 ); | |
| 4354 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) ); | |
| 4355 zTName = pE->pLeft->u.zToken; | |
| 4356 } | |
| 4357 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ | |
| 4358 Table *pTab = pFrom->pTab; | |
| 4359 Select *pSub = pFrom->pSelect; | |
| 4360 char *zTabName = pFrom->zAlias; | |
| 4361 const char *zSchemaName = 0; | |
| 4362 int iDb; | |
| 4363 if( zTabName==0 ){ | |
| 4364 zTabName = pTab->zName; | |
| 4365 } | |
| 4366 if( db->mallocFailed ) break; | |
| 4367 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){ | |
| 4368 pSub = 0; | |
| 4369 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){ | |
| 4370 continue; | |
| 4371 } | |
| 4372 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); | |
| 4373 zSchemaName = iDb>=0 ? db->aDb[iDb].zName : "*"; | |
| 4374 } | |
| 4375 for(j=0; j<pTab->nCol; j++){ | |
| 4376 char *zName = pTab->aCol[j].zName; | |
| 4377 char *zColname; /* The computed column name */ | |
| 4378 char *zToFree; /* Malloced string that needs to be freed */ | |
| 4379 Token sColname; /* Computed column name as a token */ | |
| 4380 | |
| 4381 assert( zName ); | |
| 4382 if( zTName && pSub | |
| 4383 && sqlite3MatchSpanName(pSub->pEList->a[j].zSpan, 0, zTName, 0)==0 | |
| 4384 ){ | |
| 4385 continue; | |
| 4386 } | |
| 4387 | |
| 4388 /* If a column is marked as 'hidden', omit it from the expanded | |
| 4389 ** result-set list unless the SELECT has the SF_IncludeHidden | |
| 4390 ** bit set. | |
| 4391 */ | |
| 4392 if( (p->selFlags & SF_IncludeHidden)==0 | |
| 4393 && IsHiddenColumn(&pTab->aCol[j]) | |
| 4394 ){ | |
| 4395 continue; | |
| 4396 } | |
| 4397 tableSeen = 1; | |
| 4398 | |
| 4399 if( i>0 && zTName==0 ){ | |
| 4400 if( (pFrom->fg.jointype & JT_NATURAL)!=0 | |
| 4401 && tableAndColumnIndex(pTabList, i, zName, 0, 0) | |
| 4402 ){ | |
| 4403 /* In a NATURAL join, omit the join columns from the | |
| 4404 ** table to the right of the join */ | |
| 4405 continue; | |
| 4406 } | |
| 4407 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){ | |
| 4408 /* In a join with a USING clause, omit columns in the | |
| 4409 ** using clause from the table on the right. */ | |
| 4410 continue; | |
| 4411 } | |
| 4412 } | |
| 4413 pRight = sqlite3Expr(db, TK_ID, zName); | |
| 4414 zColname = zName; | |
| 4415 zToFree = 0; | |
| 4416 if( longNames || pTabList->nSrc>1 ){ | |
| 4417 Expr *pLeft; | |
| 4418 pLeft = sqlite3Expr(db, TK_ID, zTabName); | |
| 4419 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); | |
| 4420 if( zSchemaName ){ | |
| 4421 pLeft = sqlite3Expr(db, TK_ID, zSchemaName); | |
| 4422 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr, 0); | |
| 4423 } | |
| 4424 if( longNames ){ | |
| 4425 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName); | |
| 4426 zToFree = zColname; | |
| 4427 } | |
| 4428 }else{ | |
| 4429 pExpr = pRight; | |
| 4430 } | |
| 4431 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr); | |
| 4432 sColname.z = zColname; | |
| 4433 sColname.n = sqlite3Strlen30(zColname); | |
| 4434 sqlite3ExprListSetName(pParse, pNew, &sColname, 0); | |
| 4435 if( pNew && (p->selFlags & SF_NestedFrom)!=0 ){ | |
| 4436 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1]; | |
| 4437 if( pSub ){ | |
| 4438 pX->zSpan = sqlite3DbStrDup(db, pSub->pEList->a[j].zSpan); | |
| 4439 testcase( pX->zSpan==0 ); | |
| 4440 }else{ | |
| 4441 pX->zSpan = sqlite3MPrintf(db, "%s.%s.%s", | |
| 4442 zSchemaName, zTabName, zColname); | |
| 4443 testcase( pX->zSpan==0 ); | |
| 4444 } | |
| 4445 pX->bSpanIsTab = 1; | |
| 4446 } | |
| 4447 sqlite3DbFree(db, zToFree); | |
| 4448 } | |
| 4449 } | |
| 4450 if( !tableSeen ){ | |
| 4451 if( zTName ){ | |
| 4452 sqlite3ErrorMsg(pParse, "no such table: %s", zTName); | |
| 4453 }else{ | |
| 4454 sqlite3ErrorMsg(pParse, "no tables specified"); | |
| 4455 } | |
| 4456 } | |
| 4457 } | |
| 4458 } | |
| 4459 sqlite3ExprListDelete(db, pEList); | |
| 4460 p->pEList = pNew; | |
| 4461 } | |
| 4462 #if SQLITE_MAX_COLUMN | |
| 4463 if( p->pEList && p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ | |
| 4464 sqlite3ErrorMsg(pParse, "too many columns in result set"); | |
| 4465 return WRC_Abort; | |
| 4466 } | |
| 4467 #endif | |
| 4468 return WRC_Continue; | |
| 4469 } | |
| 4470 | |
| 4471 /* | |
| 4472 ** No-op routine for the parse-tree walker. | |
| 4473 ** | |
| 4474 ** When this routine is the Walker.xExprCallback then expression trees | |
| 4475 ** are walked without any actions being taken at each node. Presumably, | |
| 4476 ** when this routine is used for Walker.xExprCallback then | |
| 4477 ** Walker.xSelectCallback is set to do something useful for every | |
| 4478 ** subquery in the parser tree. | |
| 4479 */ | |
| 4480 int sqlite3ExprWalkNoop(Walker *NotUsed, Expr *NotUsed2){ | |
| 4481 UNUSED_PARAMETER2(NotUsed, NotUsed2); | |
| 4482 return WRC_Continue; | |
| 4483 } | |
| 4484 | |
| 4485 /* | |
| 4486 ** This routine "expands" a SELECT statement and all of its subqueries. | |
| 4487 ** For additional information on what it means to "expand" a SELECT | |
| 4488 ** statement, see the comment on the selectExpand worker callback above. | |
| 4489 ** | |
| 4490 ** Expanding a SELECT statement is the first step in processing a | |
| 4491 ** SELECT statement. The SELECT statement must be expanded before | |
| 4492 ** name resolution is performed. | |
| 4493 ** | |
| 4494 ** If anything goes wrong, an error message is written into pParse. | |
| 4495 ** The calling function can detect the problem by looking at pParse->nErr | |
| 4496 ** and/or pParse->db->mallocFailed. | |
| 4497 */ | |
| 4498 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){ | |
| 4499 Walker w; | |
| 4500 memset(&w, 0, sizeof(w)); | |
| 4501 w.xExprCallback = sqlite3ExprWalkNoop; | |
| 4502 w.pParse = pParse; | |
| 4503 if( pParse->hasCompound ){ | |
| 4504 w.xSelectCallback = convertCompoundSelectToSubquery; | |
| 4505 sqlite3WalkSelect(&w, pSelect); | |
| 4506 } | |
| 4507 w.xSelectCallback = selectExpander; | |
| 4508 if( (pSelect->selFlags & SF_MultiValue)==0 ){ | |
| 4509 w.xSelectCallback2 = selectPopWith; | |
| 4510 } | |
| 4511 sqlite3WalkSelect(&w, pSelect); | |
| 4512 } | |
| 4513 | |
| 4514 | |
| 4515 #ifndef SQLITE_OMIT_SUBQUERY | |
| 4516 /* | |
| 4517 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo() | |
| 4518 ** interface. | |
| 4519 ** | |
| 4520 ** For each FROM-clause subquery, add Column.zType and Column.zColl | |
| 4521 ** information to the Table structure that represents the result set | |
| 4522 ** of that subquery. | |
| 4523 ** | |
| 4524 ** The Table structure that represents the result set was constructed | |
| 4525 ** by selectExpander() but the type and collation information was omitted | |
| 4526 ** at that point because identifiers had not yet been resolved. This | |
| 4527 ** routine is called after identifier resolution. | |
| 4528 */ | |
| 4529 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){ | |
| 4530 Parse *pParse; | |
| 4531 int i; | |
| 4532 SrcList *pTabList; | |
| 4533 struct SrcList_item *pFrom; | |
| 4534 | |
| 4535 assert( p->selFlags & SF_Resolved ); | |
| 4536 assert( (p->selFlags & SF_HasTypeInfo)==0 ); | |
| 4537 p->selFlags |= SF_HasTypeInfo; | |
| 4538 pParse = pWalker->pParse; | |
| 4539 pTabList = p->pSrc; | |
| 4540 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){ | |
| 4541 Table *pTab = pFrom->pTab; | |
| 4542 assert( pTab!=0 ); | |
| 4543 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){ | |
| 4544 /* A sub-query in the FROM clause of a SELECT */ | |
| 4545 Select *pSel = pFrom->pSelect; | |
| 4546 if( pSel ){ | |
| 4547 while( pSel->pPrior ) pSel = pSel->pPrior; | |
| 4548 selectAddColumnTypeAndCollation(pParse, pTab, pSel); | |
| 4549 } | |
| 4550 } | |
| 4551 } | |
| 4552 } | |
| 4553 #endif | |
| 4554 | |
| 4555 | |
| 4556 /* | |
| 4557 ** This routine adds datatype and collating sequence information to | |
| 4558 ** the Table structures of all FROM-clause subqueries in a | |
| 4559 ** SELECT statement. | |
| 4560 ** | |
| 4561 ** Use this routine after name resolution. | |
| 4562 */ | |
| 4563 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){ | |
| 4564 #ifndef SQLITE_OMIT_SUBQUERY | |
| 4565 Walker w; | |
| 4566 memset(&w, 0, sizeof(w)); | |
| 4567 w.xSelectCallback2 = selectAddSubqueryTypeInfo; | |
| 4568 w.xExprCallback = sqlite3ExprWalkNoop; | |
| 4569 w.pParse = pParse; | |
| 4570 sqlite3WalkSelect(&w, pSelect); | |
| 4571 #endif | |
| 4572 } | |
| 4573 | |
| 4574 | |
| 4575 /* | |
| 4576 ** This routine sets up a SELECT statement for processing. The | |
| 4577 ** following is accomplished: | |
| 4578 ** | |
| 4579 ** * VDBE Cursor numbers are assigned to all FROM-clause terms. | |
| 4580 ** * Ephemeral Table objects are created for all FROM-clause subqueries. | |
| 4581 ** * ON and USING clauses are shifted into WHERE statements | |
| 4582 ** * Wildcards "*" and "TABLE.*" in result sets are expanded. | |
| 4583 ** * Identifiers in expression are matched to tables. | |
| 4584 ** | |
| 4585 ** This routine acts recursively on all subqueries within the SELECT. | |
| 4586 */ | |
| 4587 void sqlite3SelectPrep( | |
| 4588 Parse *pParse, /* The parser context */ | |
| 4589 Select *p, /* The SELECT statement being coded. */ | |
| 4590 NameContext *pOuterNC /* Name context for container */ | |
| 4591 ){ | |
| 4592 sqlite3 *db; | |
| 4593 if( NEVER(p==0) ) return; | |
| 4594 db = pParse->db; | |
| 4595 if( db->mallocFailed ) return; | |
| 4596 if( p->selFlags & SF_HasTypeInfo ) return; | |
| 4597 sqlite3SelectExpand(pParse, p); | |
| 4598 if( pParse->nErr || db->mallocFailed ) return; | |
| 4599 sqlite3ResolveSelectNames(pParse, p, pOuterNC); | |
| 4600 if( pParse->nErr || db->mallocFailed ) return; | |
| 4601 sqlite3SelectAddTypeInfo(pParse, p); | |
| 4602 } | |
| 4603 | |
| 4604 /* | |
| 4605 ** Reset the aggregate accumulator. | |
| 4606 ** | |
| 4607 ** The aggregate accumulator is a set of memory cells that hold | |
| 4608 ** intermediate results while calculating an aggregate. This | |
| 4609 ** routine generates code that stores NULLs in all of those memory | |
| 4610 ** cells. | |
| 4611 */ | |
| 4612 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){ | |
| 4613 Vdbe *v = pParse->pVdbe; | |
| 4614 int i; | |
| 4615 struct AggInfo_func *pFunc; | |
| 4616 int nReg = pAggInfo->nFunc + pAggInfo->nColumn; | |
| 4617 if( nReg==0 ) return; | |
| 4618 #ifdef SQLITE_DEBUG | |
| 4619 /* Verify that all AggInfo registers are within the range specified by | |
| 4620 ** AggInfo.mnReg..AggInfo.mxReg */ | |
| 4621 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 ); | |
| 4622 for(i=0; i<pAggInfo->nColumn; i++){ | |
| 4623 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg | |
| 4624 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg ); | |
| 4625 } | |
| 4626 for(i=0; i<pAggInfo->nFunc; i++){ | |
| 4627 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg | |
| 4628 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg ); | |
| 4629 } | |
| 4630 #endif | |
| 4631 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg); | |
| 4632 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){ | |
| 4633 if( pFunc->iDistinct>=0 ){ | |
| 4634 Expr *pE = pFunc->pExpr; | |
| 4635 assert( !ExprHasProperty(pE, EP_xIsSelect) ); | |
| 4636 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){ | |
| 4637 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one " | |
| 4638 "argument"); | |
| 4639 pFunc->iDistinct = -1; | |
| 4640 }else{ | |
| 4641 KeyInfo *pKeyInfo = keyInfoFromExprList(pParse, pE->x.pList, 0, 0); | |
| 4642 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0, | |
| 4643 (char*)pKeyInfo, P4_KEYINFO); | |
| 4644 } | |
| 4645 } | |
| 4646 } | |
| 4647 } | |
| 4648 | |
| 4649 /* | |
| 4650 ** Invoke the OP_AggFinalize opcode for every aggregate function | |
| 4651 ** in the AggInfo structure. | |
| 4652 */ | |
| 4653 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){ | |
| 4654 Vdbe *v = pParse->pVdbe; | |
| 4655 int i; | |
| 4656 struct AggInfo_func *pF; | |
| 4657 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ | |
| 4658 ExprList *pList = pF->pExpr->x.pList; | |
| 4659 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); | |
| 4660 sqlite3VdbeAddOp4(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0, 0, | |
| 4661 (void*)pF->pFunc, P4_FUNCDEF); | |
| 4662 } | |
| 4663 } | |
| 4664 | |
| 4665 /* | |
| 4666 ** Update the accumulator memory cells for an aggregate based on | |
| 4667 ** the current cursor position. | |
| 4668 */ | |
| 4669 static void updateAccumulator(Parse *pParse, AggInfo *pAggInfo){ | |
| 4670 Vdbe *v = pParse->pVdbe; | |
| 4671 int i; | |
| 4672 int regHit = 0; | |
| 4673 int addrHitTest = 0; | |
| 4674 struct AggInfo_func *pF; | |
| 4675 struct AggInfo_col *pC; | |
| 4676 | |
| 4677 pAggInfo->directMode = 1; | |
| 4678 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){ | |
| 4679 int nArg; | |
| 4680 int addrNext = 0; | |
| 4681 int regAgg; | |
| 4682 ExprList *pList = pF->pExpr->x.pList; | |
| 4683 assert( !ExprHasProperty(pF->pExpr, EP_xIsSelect) ); | |
| 4684 if( pList ){ | |
| 4685 nArg = pList->nExpr; | |
| 4686 regAgg = sqlite3GetTempRange(pParse, nArg); | |
| 4687 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP); | |
| 4688 }else{ | |
| 4689 nArg = 0; | |
| 4690 regAgg = 0; | |
| 4691 } | |
| 4692 if( pF->iDistinct>=0 ){ | |
| 4693 addrNext = sqlite3VdbeMakeLabel(v); | |
| 4694 testcase( nArg==0 ); /* Error condition */ | |
| 4695 testcase( nArg>1 ); /* Also an error */ | |
| 4696 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg); | |
| 4697 } | |
| 4698 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){ | |
| 4699 CollSeq *pColl = 0; | |
| 4700 struct ExprList_item *pItem; | |
| 4701 int j; | |
| 4702 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */ | |
| 4703 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){ | |
| 4704 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr); | |
| 4705 } | |
| 4706 if( !pColl ){ | |
| 4707 pColl = pParse->db->pDfltColl; | |
| 4708 } | |
| 4709 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem; | |
| 4710 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ); | |
| 4711 } | |
| 4712 sqlite3VdbeAddOp4(v, OP_AggStep0, 0, regAgg, pF->iMem, | |
| 4713 (void*)pF->pFunc, P4_FUNCDEF); | |
| 4714 sqlite3VdbeChangeP5(v, (u8)nArg); | |
| 4715 sqlite3ExprCacheAffinityChange(pParse, regAgg, nArg); | |
| 4716 sqlite3ReleaseTempRange(pParse, regAgg, nArg); | |
| 4717 if( addrNext ){ | |
| 4718 sqlite3VdbeResolveLabel(v, addrNext); | |
| 4719 sqlite3ExprCacheClear(pParse); | |
| 4720 } | |
| 4721 } | |
| 4722 | |
| 4723 /* Before populating the accumulator registers, clear the column cache. | |
| 4724 ** Otherwise, if any of the required column values are already present | |
| 4725 ** in registers, sqlite3ExprCode() may use OP_SCopy to copy the value | |
| 4726 ** to pC->iMem. But by the time the value is used, the original register | |
| 4727 ** may have been used, invalidating the underlying buffer holding the | |
| 4728 ** text or blob value. See ticket [883034dcb5]. | |
| 4729 ** | |
| 4730 ** Another solution would be to change the OP_SCopy used to copy cached | |
| 4731 ** values to an OP_Copy. | |
| 4732 */ | |
| 4733 if( regHit ){ | |
| 4734 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v); | |
| 4735 } | |
| 4736 sqlite3ExprCacheClear(pParse); | |
| 4737 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){ | |
| 4738 sqlite3ExprCode(pParse, pC->pExpr, pC->iMem); | |
| 4739 } | |
| 4740 pAggInfo->directMode = 0; | |
| 4741 sqlite3ExprCacheClear(pParse); | |
| 4742 if( addrHitTest ){ | |
| 4743 sqlite3VdbeJumpHere(v, addrHitTest); | |
| 4744 } | |
| 4745 } | |
| 4746 | |
| 4747 /* | |
| 4748 ** Add a single OP_Explain instruction to the VDBE to explain a simple | |
| 4749 ** count(*) query ("SELECT count(*) FROM pTab"). | |
| 4750 */ | |
| 4751 #ifndef SQLITE_OMIT_EXPLAIN | |
| 4752 static void explainSimpleCount( | |
| 4753 Parse *pParse, /* Parse context */ | |
| 4754 Table *pTab, /* Table being queried */ | |
| 4755 Index *pIdx /* Index used to optimize scan, or NULL */ | |
| 4756 ){ | |
| 4757 if( pParse->explain==2 ){ | |
| 4758 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx))); | |
| 4759 char *zEqp = sqlite3MPrintf(pParse->db, "SCAN TABLE %s%s%s", | |
| 4760 pTab->zName, | |
| 4761 bCover ? " USING COVERING INDEX " : "", | |
| 4762 bCover ? pIdx->zName : "" | |
| 4763 ); | |
| 4764 sqlite3VdbeAddOp4( | |
| 4765 pParse->pVdbe, OP_Explain, pParse->iSelectId, 0, 0, zEqp, P4_DYNAMIC | |
| 4766 ); | |
| 4767 } | |
| 4768 } | |
| 4769 #else | |
| 4770 # define explainSimpleCount(a,b,c) | |
| 4771 #endif | |
| 4772 | |
| 4773 /* | |
| 4774 ** Generate code for the SELECT statement given in the p argument. | |
| 4775 ** | |
| 4776 ** The results are returned according to the SelectDest structure. | |
| 4777 ** See comments in sqliteInt.h for further information. | |
| 4778 ** | |
| 4779 ** This routine returns the number of errors. If any errors are | |
| 4780 ** encountered, then an appropriate error message is left in | |
| 4781 ** pParse->zErrMsg. | |
| 4782 ** | |
| 4783 ** This routine does NOT free the Select structure passed in. The | |
| 4784 ** calling function needs to do that. | |
| 4785 */ | |
| 4786 int sqlite3Select( | |
| 4787 Parse *pParse, /* The parser context */ | |
| 4788 Select *p, /* The SELECT statement being coded. */ | |
| 4789 SelectDest *pDest /* What to do with the query results */ | |
| 4790 ){ | |
| 4791 int i, j; /* Loop counters */ | |
| 4792 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */ | |
| 4793 Vdbe *v; /* The virtual machine under construction */ | |
| 4794 int isAgg; /* True for select lists like "count(*)" */ | |
| 4795 ExprList *pEList = 0; /* List of columns to extract. */ | |
| 4796 SrcList *pTabList; /* List of tables to select from */ | |
| 4797 Expr *pWhere; /* The WHERE clause. May be NULL */ | |
| 4798 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */ | |
| 4799 Expr *pHaving; /* The HAVING clause. May be NULL */ | |
| 4800 int rc = 1; /* Value to return from this function */ | |
| 4801 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */ | |
| 4802 SortCtx sSort; /* Info on how to code the ORDER BY clause */ | |
| 4803 AggInfo sAggInfo; /* Information used by aggregate queries */ | |
| 4804 int iEnd; /* Address of the end of the query */ | |
| 4805 sqlite3 *db; /* The database connection */ | |
| 4806 | |
| 4807 #ifndef SQLITE_OMIT_EXPLAIN | |
| 4808 int iRestoreSelectId = pParse->iSelectId; | |
| 4809 pParse->iSelectId = pParse->iNextSelectId++; | |
| 4810 #endif | |
| 4811 | |
| 4812 db = pParse->db; | |
| 4813 if( p==0 || db->mallocFailed || pParse->nErr ){ | |
| 4814 return 1; | |
| 4815 } | |
| 4816 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1; | |
| 4817 memset(&sAggInfo, 0, sizeof(sAggInfo)); | |
| 4818 #if SELECTTRACE_ENABLED | |
| 4819 pParse->nSelectIndent++; | |
| 4820 SELECTTRACE(1,pParse,p, ("begin processing:\n")); | |
| 4821 if( sqlite3SelectTrace & 0x100 ){ | |
| 4822 sqlite3TreeViewSelect(0, p, 0); | |
| 4823 } | |
| 4824 #endif | |
| 4825 | |
| 4826 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo ); | |
| 4827 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo ); | |
| 4828 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue ); | |
| 4829 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue ); | |
| 4830 if( IgnorableOrderby(pDest) ){ | |
| 4831 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union || | |
| 4832 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard || | |
| 4833 pDest->eDest==SRT_Queue || pDest->eDest==SRT_DistFifo || | |
| 4834 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_Fifo); | |
| 4835 /* If ORDER BY makes no difference in the output then neither does | |
| 4836 ** DISTINCT so it can be removed too. */ | |
| 4837 sqlite3ExprListDelete(db, p->pOrderBy); | |
| 4838 p->pOrderBy = 0; | |
| 4839 p->selFlags &= ~SF_Distinct; | |
| 4840 } | |
| 4841 sqlite3SelectPrep(pParse, p, 0); | |
| 4842 memset(&sSort, 0, sizeof(sSort)); | |
| 4843 sSort.pOrderBy = p->pOrderBy; | |
| 4844 pTabList = p->pSrc; | |
| 4845 if( pParse->nErr || db->mallocFailed ){ | |
| 4846 goto select_end; | |
| 4847 } | |
| 4848 assert( p->pEList!=0 ); | |
| 4849 isAgg = (p->selFlags & SF_Aggregate)!=0; | |
| 4850 #if SELECTTRACE_ENABLED | |
| 4851 if( sqlite3SelectTrace & 0x100 ){ | |
| 4852 SELECTTRACE(0x100,pParse,p, ("after name resolution:\n")); | |
| 4853 sqlite3TreeViewSelect(0, p, 0); | |
| 4854 } | |
| 4855 #endif | |
| 4856 | |
| 4857 | |
| 4858 /* If writing to memory or generating a set | |
| 4859 ** only a single column may be output. | |
| 4860 */ | |
| 4861 #ifndef SQLITE_OMIT_SUBQUERY | |
| 4862 if( checkForMultiColumnSelectError(pParse, pDest, p->pEList->nExpr) ){ | |
| 4863 goto select_end; | |
| 4864 } | |
| 4865 #endif | |
| 4866 | |
| 4867 /* Try to flatten subqueries in the FROM clause up into the main query | |
| 4868 */ | |
| 4869 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) | |
| 4870 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){ | |
| 4871 struct SrcList_item *pItem = &pTabList->a[i]; | |
| 4872 Select *pSub = pItem->pSelect; | |
| 4873 int isAggSub; | |
| 4874 Table *pTab = pItem->pTab; | |
| 4875 if( pSub==0 ) continue; | |
| 4876 | |
| 4877 /* Catch mismatch in the declared columns of a view and the number of | |
| 4878 ** columns in the SELECT on the RHS */ | |
| 4879 if( pTab->nCol!=pSub->pEList->nExpr ){ | |
| 4880 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d", | |
| 4881 pTab->nCol, pTab->zName, pSub->pEList->nExpr); | |
| 4882 goto select_end; | |
| 4883 } | |
| 4884 | |
| 4885 isAggSub = (pSub->selFlags & SF_Aggregate)!=0; | |
| 4886 if( flattenSubquery(pParse, p, i, isAgg, isAggSub) ){ | |
| 4887 /* This subquery can be absorbed into its parent. */ | |
| 4888 if( isAggSub ){ | |
| 4889 isAgg = 1; | |
| 4890 p->selFlags |= SF_Aggregate; | |
| 4891 } | |
| 4892 i = -1; | |
| 4893 } | |
| 4894 pTabList = p->pSrc; | |
| 4895 if( db->mallocFailed ) goto select_end; | |
| 4896 if( !IgnorableOrderby(pDest) ){ | |
| 4897 sSort.pOrderBy = p->pOrderBy; | |
| 4898 } | |
| 4899 } | |
| 4900 #endif | |
| 4901 | |
| 4902 /* Get a pointer the VDBE under construction, allocating a new VDBE if one | |
| 4903 ** does not already exist */ | |
| 4904 v = sqlite3GetVdbe(pParse); | |
| 4905 if( v==0 ) goto select_end; | |
| 4906 | |
| 4907 #ifndef SQLITE_OMIT_COMPOUND_SELECT | |
| 4908 /* Handle compound SELECT statements using the separate multiSelect() | |
| 4909 ** procedure. | |
| 4910 */ | |
| 4911 if( p->pPrior ){ | |
| 4912 rc = multiSelect(pParse, p, pDest); | |
| 4913 explainSetInteger(pParse->iSelectId, iRestoreSelectId); | |
| 4914 #if SELECTTRACE_ENABLED | |
| 4915 SELECTTRACE(1,pParse,p,("end compound-select processing\n")); | |
| 4916 pParse->nSelectIndent--; | |
| 4917 #endif | |
| 4918 return rc; | |
| 4919 } | |
| 4920 #endif | |
| 4921 | |
| 4922 /* Generate code for all sub-queries in the FROM clause | |
| 4923 */ | |
| 4924 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) | |
| 4925 for(i=0; i<pTabList->nSrc; i++){ | |
| 4926 struct SrcList_item *pItem = &pTabList->a[i]; | |
| 4927 SelectDest dest; | |
| 4928 Select *pSub = pItem->pSelect; | |
| 4929 if( pSub==0 ) continue; | |
| 4930 | |
| 4931 /* Sometimes the code for a subquery will be generated more than | |
| 4932 ** once, if the subquery is part of the WHERE clause in a LEFT JOIN, | |
| 4933 ** for example. In that case, do not regenerate the code to manifest | |
| 4934 ** a view or the co-routine to implement a view. The first instance | |
| 4935 ** is sufficient, though the subroutine to manifest the view does need | |
| 4936 ** to be invoked again. */ | |
| 4937 if( pItem->addrFillSub ){ | |
| 4938 if( pItem->fg.viaCoroutine==0 ){ | |
| 4939 sqlite3VdbeAddOp2(v, OP_Gosub, pItem->regReturn, pItem->addrFillSub); | |
| 4940 } | |
| 4941 continue; | |
| 4942 } | |
| 4943 | |
| 4944 /* Increment Parse.nHeight by the height of the largest expression | |
| 4945 ** tree referred to by this, the parent select. The child select | |
| 4946 ** may contain expression trees of at most | |
| 4947 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit | |
| 4948 ** more conservative than necessary, but much easier than enforcing | |
| 4949 ** an exact limit. | |
| 4950 */ | |
| 4951 pParse->nHeight += sqlite3SelectExprHeight(p); | |
| 4952 | |
| 4953 /* Make copies of constant WHERE-clause terms in the outer query down | |
| 4954 ** inside the subquery. This can help the subquery to run more efficiently. | |
| 4955 */ | |
| 4956 if( (pItem->fg.jointype & JT_OUTER)==0 | |
| 4957 && pushDownWhereTerms(db, pSub, p->pWhere, pItem->iCursor) | |
| 4958 ){ | |
| 4959 #if SELECTTRACE_ENABLED | |
| 4960 if( sqlite3SelectTrace & 0x100 ){ | |
| 4961 SELECTTRACE(0x100,pParse,p,("After WHERE-clause push-down:\n")); | |
| 4962 sqlite3TreeViewSelect(0, p, 0); | |
| 4963 } | |
| 4964 #endif | |
| 4965 } | |
| 4966 | |
| 4967 /* Generate code to implement the subquery | |
| 4968 */ | |
| 4969 if( pTabList->nSrc==1 | |
| 4970 && (p->selFlags & SF_All)==0 | |
| 4971 && OptimizationEnabled(db, SQLITE_SubqCoroutine) | |
| 4972 ){ | |
| 4973 /* Implement a co-routine that will return a single row of the result | |
| 4974 ** set on each invocation. | |
| 4975 */ | |
| 4976 int addrTop = sqlite3VdbeCurrentAddr(v)+1; | |
| 4977 pItem->regReturn = ++pParse->nMem; | |
| 4978 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop); | |
| 4979 VdbeComment((v, "%s", pItem->pTab->zName)); | |
| 4980 pItem->addrFillSub = addrTop; | |
| 4981 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn); | |
| 4982 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); | |
| 4983 sqlite3Select(pParse, pSub, &dest); | |
| 4984 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); | |
| 4985 pItem->fg.viaCoroutine = 1; | |
| 4986 pItem->regResult = dest.iSdst; | |
| 4987 sqlite3VdbeAddOp1(v, OP_EndCoroutine, pItem->regReturn); | |
| 4988 sqlite3VdbeJumpHere(v, addrTop-1); | |
| 4989 sqlite3ClearTempRegCache(pParse); | |
| 4990 }else{ | |
| 4991 /* Generate a subroutine that will fill an ephemeral table with | |
| 4992 ** the content of this subquery. pItem->addrFillSub will point | |
| 4993 ** to the address of the generated subroutine. pItem->regReturn | |
| 4994 ** is a register allocated to hold the subroutine return address | |
| 4995 */ | |
| 4996 int topAddr; | |
| 4997 int onceAddr = 0; | |
| 4998 int retAddr; | |
| 4999 assert( pItem->addrFillSub==0 ); | |
| 5000 pItem->regReturn = ++pParse->nMem; | |
| 5001 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn); | |
| 5002 pItem->addrFillSub = topAddr+1; | |
| 5003 if( pItem->fg.isCorrelated==0 ){ | |
| 5004 /* If the subquery is not correlated and if we are not inside of | |
| 5005 ** a trigger, then we only need to compute the value of the subquery | |
| 5006 ** once. */ | |
| 5007 onceAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); | |
| 5008 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName)); | |
| 5009 }else{ | |
| 5010 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName)); | |
| 5011 } | |
| 5012 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor); | |
| 5013 explainSetInteger(pItem->iSelectId, (u8)pParse->iNextSelectId); | |
| 5014 sqlite3Select(pParse, pSub, &dest); | |
| 5015 pItem->pTab->nRowLogEst = sqlite3LogEst(pSub->nSelectRow); | |
| 5016 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr); | |
| 5017 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn); | |
| 5018 VdbeComment((v, "end %s", pItem->pTab->zName)); | |
| 5019 sqlite3VdbeChangeP1(v, topAddr, retAddr); | |
| 5020 sqlite3ClearTempRegCache(pParse); | |
| 5021 } | |
| 5022 if( db->mallocFailed ) goto select_end; | |
| 5023 pParse->nHeight -= sqlite3SelectExprHeight(p); | |
| 5024 } | |
| 5025 #endif | |
| 5026 | |
| 5027 /* Various elements of the SELECT copied into local variables for | |
| 5028 ** convenience */ | |
| 5029 pEList = p->pEList; | |
| 5030 pWhere = p->pWhere; | |
| 5031 pGroupBy = p->pGroupBy; | |
| 5032 pHaving = p->pHaving; | |
| 5033 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0; | |
| 5034 | |
| 5035 #if SELECTTRACE_ENABLED | |
| 5036 if( sqlite3SelectTrace & 0x400 ){ | |
| 5037 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n")); | |
| 5038 sqlite3TreeViewSelect(0, p, 0); | |
| 5039 } | |
| 5040 #endif | |
| 5041 | |
| 5042 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and | |
| 5043 ** if the select-list is the same as the ORDER BY list, then this query | |
| 5044 ** can be rewritten as a GROUP BY. In other words, this: | |
| 5045 ** | |
| 5046 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz | |
| 5047 ** | |
| 5048 ** is transformed to: | |
| 5049 ** | |
| 5050 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz | |
| 5051 ** | |
| 5052 ** The second form is preferred as a single index (or temp-table) may be | |
| 5053 ** used for both the ORDER BY and DISTINCT processing. As originally | |
| 5054 ** written the query must use a temp-table for at least one of the ORDER | |
| 5055 ** BY and DISTINCT, and an index or separate temp-table for the other. | |
| 5056 */ | |
| 5057 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct | |
| 5058 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0 | |
| 5059 ){ | |
| 5060 p->selFlags &= ~SF_Distinct; | |
| 5061 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0); | |
| 5062 /* Notice that even thought SF_Distinct has been cleared from p->selFlags, | |
| 5063 ** the sDistinct.isTnct is still set. Hence, isTnct represents the | |
| 5064 ** original setting of the SF_Distinct flag, not the current setting */ | |
| 5065 assert( sDistinct.isTnct ); | |
| 5066 } | |
| 5067 | |
| 5068 /* If there is an ORDER BY clause, then create an ephemeral index to | |
| 5069 ** do the sorting. But this sorting ephemeral index might end up | |
| 5070 ** being unused if the data can be extracted in pre-sorted order. | |
| 5071 ** If that is the case, then the OP_OpenEphemeral instruction will be | |
| 5072 ** changed to an OP_Noop once we figure out that the sorting index is | |
| 5073 ** not needed. The sSort.addrSortIndex variable is used to facilitate | |
| 5074 ** that change. | |
| 5075 */ | |
| 5076 if( sSort.pOrderBy ){ | |
| 5077 KeyInfo *pKeyInfo; | |
| 5078 pKeyInfo = keyInfoFromExprList(pParse, sSort.pOrderBy, 0, pEList->nExpr); | |
| 5079 sSort.iECursor = pParse->nTab++; | |
| 5080 sSort.addrSortIndex = | |
| 5081 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, | |
| 5082 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0, | |
| 5083 (char*)pKeyInfo, P4_KEYINFO | |
| 5084 ); | |
| 5085 }else{ | |
| 5086 sSort.addrSortIndex = -1; | |
| 5087 } | |
| 5088 | |
| 5089 /* If the output is destined for a temporary table, open that table. | |
| 5090 */ | |
| 5091 if( pDest->eDest==SRT_EphemTab ){ | |
| 5092 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr); | |
| 5093 } | |
| 5094 | |
| 5095 /* Set the limiter. | |
| 5096 */ | |
| 5097 iEnd = sqlite3VdbeMakeLabel(v); | |
| 5098 p->nSelectRow = LARGEST_INT64; | |
| 5099 computeLimitRegisters(pParse, p, iEnd); | |
| 5100 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){ | |
| 5101 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen); | |
| 5102 sSort.sortFlags |= SORTFLAG_UseSorter; | |
| 5103 } | |
| 5104 | |
| 5105 /* Open an ephemeral index to use for the distinct set. | |
| 5106 */ | |
| 5107 if( p->selFlags & SF_Distinct ){ | |
| 5108 sDistinct.tabTnct = pParse->nTab++; | |
| 5109 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral, | |
| 5110 sDistinct.tabTnct, 0, 0, | |
| 5111 (char*)keyInfoFromExprList(pParse, p->pEList,0,0), | |
| 5112 P4_KEYINFO); | |
| 5113 sqlite3VdbeChangeP5(v, BTREE_UNORDERED); | |
| 5114 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED; | |
| 5115 }else{ | |
| 5116 sDistinct.eTnctType = WHERE_DISTINCT_NOOP; | |
| 5117 } | |
| 5118 | |
| 5119 if( !isAgg && pGroupBy==0 ){ | |
| 5120 /* No aggregate functions and no GROUP BY clause */ | |
| 5121 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0); | |
| 5122 | |
| 5123 /* Begin the database scan. */ | |
| 5124 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy, | |
| 5125 p->pEList, wctrlFlags, 0); | |
| 5126 if( pWInfo==0 ) goto select_end; | |
| 5127 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){ | |
| 5128 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo); | |
| 5129 } | |
| 5130 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){ | |
| 5131 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo); | |
| 5132 } | |
| 5133 if( sSort.pOrderBy ){ | |
| 5134 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo); | |
| 5135 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){ | |
| 5136 sSort.pOrderBy = 0; | |
| 5137 } | |
| 5138 } | |
| 5139 | |
| 5140 /* If sorting index that was created by a prior OP_OpenEphemeral | |
| 5141 ** instruction ended up not being needed, then change the OP_OpenEphemeral | |
| 5142 ** into an OP_Noop. | |
| 5143 */ | |
| 5144 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){ | |
| 5145 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); | |
| 5146 } | |
| 5147 | |
| 5148 /* Use the standard inner loop. */ | |
| 5149 selectInnerLoop(pParse, p, pEList, -1, &sSort, &sDistinct, pDest, | |
| 5150 sqlite3WhereContinueLabel(pWInfo), | |
| 5151 sqlite3WhereBreakLabel(pWInfo)); | |
| 5152 | |
| 5153 /* End the database scan loop. | |
| 5154 */ | |
| 5155 sqlite3WhereEnd(pWInfo); | |
| 5156 }else{ | |
| 5157 /* This case when there exist aggregate functions or a GROUP BY clause | |
| 5158 ** or both */ | |
| 5159 NameContext sNC; /* Name context for processing aggregate information */ | |
| 5160 int iAMem; /* First Mem address for storing current GROUP BY */ | |
| 5161 int iBMem; /* First Mem address for previous GROUP BY */ | |
| 5162 int iUseFlag; /* Mem address holding flag indicating that at least | |
| 5163 ** one row of the input to the aggregator has been | |
| 5164 ** processed */ | |
| 5165 int iAbortFlag; /* Mem address which causes query abort if positive */ | |
| 5166 int groupBySort; /* Rows come from source in GROUP BY order */ | |
| 5167 int addrEnd; /* End of processing for this SELECT */ | |
| 5168 int sortPTab = 0; /* Pseudotable used to decode sorting results */ | |
| 5169 int sortOut = 0; /* Output register from the sorter */ | |
| 5170 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */ | |
| 5171 | |
| 5172 /* Remove any and all aliases between the result set and the | |
| 5173 ** GROUP BY clause. | |
| 5174 */ | |
| 5175 if( pGroupBy ){ | |
| 5176 int k; /* Loop counter */ | |
| 5177 struct ExprList_item *pItem; /* For looping over expression in a list */ | |
| 5178 | |
| 5179 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){ | |
| 5180 pItem->u.x.iAlias = 0; | |
| 5181 } | |
| 5182 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){ | |
| 5183 pItem->u.x.iAlias = 0; | |
| 5184 } | |
| 5185 if( p->nSelectRow>100 ) p->nSelectRow = 100; | |
| 5186 }else{ | |
| 5187 p->nSelectRow = 1; | |
| 5188 } | |
| 5189 | |
| 5190 /* If there is both a GROUP BY and an ORDER BY clause and they are | |
| 5191 ** identical, then it may be possible to disable the ORDER BY clause | |
| 5192 ** on the grounds that the GROUP BY will cause elements to come out | |
| 5193 ** in the correct order. It also may not - the GROUP BY might use a | |
| 5194 ** database index that causes rows to be grouped together as required | |
| 5195 ** but not actually sorted. Either way, record the fact that the | |
| 5196 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp | |
| 5197 ** variable. */ | |
| 5198 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){ | |
| 5199 orderByGrp = 1; | |
| 5200 } | |
| 5201 | |
| 5202 /* Create a label to jump to when we want to abort the query */ | |
| 5203 addrEnd = sqlite3VdbeMakeLabel(v); | |
| 5204 | |
| 5205 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in | |
| 5206 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the | |
| 5207 ** SELECT statement. | |
| 5208 */ | |
| 5209 memset(&sNC, 0, sizeof(sNC)); | |
| 5210 sNC.pParse = pParse; | |
| 5211 sNC.pSrcList = pTabList; | |
| 5212 sNC.pAggInfo = &sAggInfo; | |
| 5213 sAggInfo.mnReg = pParse->nMem+1; | |
| 5214 sAggInfo.nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0; | |
| 5215 sAggInfo.pGroupBy = pGroupBy; | |
| 5216 sqlite3ExprAnalyzeAggList(&sNC, pEList); | |
| 5217 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy); | |
| 5218 if( pHaving ){ | |
| 5219 sqlite3ExprAnalyzeAggregates(&sNC, pHaving); | |
| 5220 } | |
| 5221 sAggInfo.nAccumulator = sAggInfo.nColumn; | |
| 5222 for(i=0; i<sAggInfo.nFunc; i++){ | |
| 5223 assert( !ExprHasProperty(sAggInfo.aFunc[i].pExpr, EP_xIsSelect) ); | |
| 5224 sNC.ncFlags |= NC_InAggFunc; | |
| 5225 sqlite3ExprAnalyzeAggList(&sNC, sAggInfo.aFunc[i].pExpr->x.pList); | |
| 5226 sNC.ncFlags &= ~NC_InAggFunc; | |
| 5227 } | |
| 5228 sAggInfo.mxReg = pParse->nMem; | |
| 5229 if( db->mallocFailed ) goto select_end; | |
| 5230 | |
| 5231 /* Processing for aggregates with GROUP BY is very different and | |
| 5232 ** much more complex than aggregates without a GROUP BY. | |
| 5233 */ | |
| 5234 if( pGroupBy ){ | |
| 5235 KeyInfo *pKeyInfo; /* Keying information for the group by clause */ | |
| 5236 int addr1; /* A-vs-B comparision jump */ | |
| 5237 int addrOutputRow; /* Start of subroutine that outputs a result row */ | |
| 5238 int regOutputRow; /* Return address register for output subroutine */ | |
| 5239 int addrSetAbort; /* Set the abort flag and return */ | |
| 5240 int addrTopOfLoop; /* Top of the input loop */ | |
| 5241 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */ | |
| 5242 int addrReset; /* Subroutine for resetting the accumulator */ | |
| 5243 int regReset; /* Return address register for reset subroutine */ | |
| 5244 | |
| 5245 /* If there is a GROUP BY clause we might need a sorting index to | |
| 5246 ** implement it. Allocate that sorting index now. If it turns out | |
| 5247 ** that we do not need it after all, the OP_SorterOpen instruction | |
| 5248 ** will be converted into a Noop. | |
| 5249 */ | |
| 5250 sAggInfo.sortingIdx = pParse->nTab++; | |
| 5251 pKeyInfo = keyInfoFromExprList(pParse, pGroupBy, 0, sAggInfo.nColumn); | |
| 5252 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen, | |
| 5253 sAggInfo.sortingIdx, sAggInfo.nSortingColumn, | |
| 5254 0, (char*)pKeyInfo, P4_KEYINFO); | |
| 5255 | |
| 5256 /* Initialize memory locations used by GROUP BY aggregate processing | |
| 5257 */ | |
| 5258 iUseFlag = ++pParse->nMem; | |
| 5259 iAbortFlag = ++pParse->nMem; | |
| 5260 regOutputRow = ++pParse->nMem; | |
| 5261 addrOutputRow = sqlite3VdbeMakeLabel(v); | |
| 5262 regReset = ++pParse->nMem; | |
| 5263 addrReset = sqlite3VdbeMakeLabel(v); | |
| 5264 iAMem = pParse->nMem + 1; | |
| 5265 pParse->nMem += pGroupBy->nExpr; | |
| 5266 iBMem = pParse->nMem + 1; | |
| 5267 pParse->nMem += pGroupBy->nExpr; | |
| 5268 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag); | |
| 5269 VdbeComment((v, "clear abort flag")); | |
| 5270 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag); | |
| 5271 VdbeComment((v, "indicate accumulator empty")); | |
| 5272 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1); | |
| 5273 | |
| 5274 /* Begin a loop that will extract all source rows in GROUP BY order. | |
| 5275 ** This might involve two separate loops with an OP_Sort in between, or | |
| 5276 ** it might be a single loop that uses an index to extract information | |
| 5277 ** in the right order to begin with. | |
| 5278 */ | |
| 5279 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); | |
| 5280 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0, | |
| 5281 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0 | |
| 5282 ); | |
| 5283 if( pWInfo==0 ) goto select_end; | |
| 5284 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){ | |
| 5285 /* The optimizer is able to deliver rows in group by order so | |
| 5286 ** we do not have to sort. The OP_OpenEphemeral table will be | |
| 5287 ** cancelled later because we still need to use the pKeyInfo | |
| 5288 */ | |
| 5289 groupBySort = 0; | |
| 5290 }else{ | |
| 5291 /* Rows are coming out in undetermined order. We have to push | |
| 5292 ** each row into a sorting index, terminate the first loop, | |
| 5293 ** then loop over the sorting index in order to get the output | |
| 5294 ** in sorted order | |
| 5295 */ | |
| 5296 int regBase; | |
| 5297 int regRecord; | |
| 5298 int nCol; | |
| 5299 int nGroupBy; | |
| 5300 | |
| 5301 explainTempTable(pParse, | |
| 5302 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ? | |
| 5303 "DISTINCT" : "GROUP BY"); | |
| 5304 | |
| 5305 groupBySort = 1; | |
| 5306 nGroupBy = pGroupBy->nExpr; | |
| 5307 nCol = nGroupBy; | |
| 5308 j = nGroupBy; | |
| 5309 for(i=0; i<sAggInfo.nColumn; i++){ | |
| 5310 if( sAggInfo.aCol[i].iSorterColumn>=j ){ | |
| 5311 nCol++; | |
| 5312 j++; | |
| 5313 } | |
| 5314 } | |
| 5315 regBase = sqlite3GetTempRange(pParse, nCol); | |
| 5316 sqlite3ExprCacheClear(pParse); | |
| 5317 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0); | |
| 5318 j = nGroupBy; | |
| 5319 for(i=0; i<sAggInfo.nColumn; i++){ | |
| 5320 struct AggInfo_col *pCol = &sAggInfo.aCol[i]; | |
| 5321 if( pCol->iSorterColumn>=j ){ | |
| 5322 int r1 = j + regBase; | |
| 5323 sqlite3ExprCodeGetColumnToReg(pParse, | |
| 5324 pCol->pTab, pCol->iColumn, pCol->iTable, r1); | |
| 5325 j++; | |
| 5326 } | |
| 5327 } | |
| 5328 regRecord = sqlite3GetTempReg(pParse); | |
| 5329 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord); | |
| 5330 sqlite3VdbeAddOp2(v, OP_SorterInsert, sAggInfo.sortingIdx, regRecord); | |
| 5331 sqlite3ReleaseTempReg(pParse, regRecord); | |
| 5332 sqlite3ReleaseTempRange(pParse, regBase, nCol); | |
| 5333 sqlite3WhereEnd(pWInfo); | |
| 5334 sAggInfo.sortingIdxPTab = sortPTab = pParse->nTab++; | |
| 5335 sortOut = sqlite3GetTempReg(pParse); | |
| 5336 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol); | |
| 5337 sqlite3VdbeAddOp2(v, OP_SorterSort, sAggInfo.sortingIdx, addrEnd); | |
| 5338 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v); | |
| 5339 sAggInfo.useSortingIdx = 1; | |
| 5340 sqlite3ExprCacheClear(pParse); | |
| 5341 | |
| 5342 } | |
| 5343 | |
| 5344 /* If the index or temporary table used by the GROUP BY sort | |
| 5345 ** will naturally deliver rows in the order required by the ORDER BY | |
| 5346 ** clause, cancel the ephemeral table open coded earlier. | |
| 5347 ** | |
| 5348 ** This is an optimization - the correct answer should result regardless. | |
| 5349 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to | |
| 5350 ** disable this optimization for testing purposes. */ | |
| 5351 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder) | |
| 5352 && (groupBySort || sqlite3WhereIsSorted(pWInfo)) | |
| 5353 ){ | |
| 5354 sSort.pOrderBy = 0; | |
| 5355 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex); | |
| 5356 } | |
| 5357 | |
| 5358 /* Evaluate the current GROUP BY terms and store in b0, b1, b2... | |
| 5359 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth) | |
| 5360 ** Then compare the current GROUP BY terms against the GROUP BY terms | |
| 5361 ** from the previous row currently stored in a0, a1, a2... | |
| 5362 */ | |
| 5363 addrTopOfLoop = sqlite3VdbeCurrentAddr(v); | |
| 5364 sqlite3ExprCacheClear(pParse); | |
| 5365 if( groupBySort ){ | |
| 5366 sqlite3VdbeAddOp3(v, OP_SorterData, sAggInfo.sortingIdx, | |
| 5367 sortOut, sortPTab); | |
| 5368 } | |
| 5369 for(j=0; j<pGroupBy->nExpr; j++){ | |
| 5370 if( groupBySort ){ | |
| 5371 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j); | |
| 5372 }else{ | |
| 5373 sAggInfo.directMode = 1; | |
| 5374 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j); | |
| 5375 } | |
| 5376 } | |
| 5377 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr, | |
| 5378 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO); | |
| 5379 addr1 = sqlite3VdbeCurrentAddr(v); | |
| 5380 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v); | |
| 5381 | |
| 5382 /* Generate code that runs whenever the GROUP BY changes. | |
| 5383 ** Changes in the GROUP BY are detected by the previous code | |
| 5384 ** block. If there were no changes, this block is skipped. | |
| 5385 ** | |
| 5386 ** This code copies current group by terms in b0,b1,b2,... | |
| 5387 ** over to a0,a1,a2. It then calls the output subroutine | |
| 5388 ** and resets the aggregate accumulator registers in preparation | |
| 5389 ** for the next GROUP BY batch. | |
| 5390 */ | |
| 5391 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr); | |
| 5392 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); | |
| 5393 VdbeComment((v, "output one row")); | |
| 5394 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v); | |
| 5395 VdbeComment((v, "check abort flag")); | |
| 5396 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset); | |
| 5397 VdbeComment((v, "reset accumulator")); | |
| 5398 | |
| 5399 /* Update the aggregate accumulators based on the content of | |
| 5400 ** the current row | |
| 5401 */ | |
| 5402 sqlite3VdbeJumpHere(v, addr1); | |
| 5403 updateAccumulator(pParse, &sAggInfo); | |
| 5404 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag); | |
| 5405 VdbeComment((v, "indicate data in accumulator")); | |
| 5406 | |
| 5407 /* End of the loop | |
| 5408 */ | |
| 5409 if( groupBySort ){ | |
| 5410 sqlite3VdbeAddOp2(v, OP_SorterNext, sAggInfo.sortingIdx, addrTopOfLoop); | |
| 5411 VdbeCoverage(v); | |
| 5412 }else{ | |
| 5413 sqlite3WhereEnd(pWInfo); | |
| 5414 sqlite3VdbeChangeToNoop(v, addrSortingIdx); | |
| 5415 } | |
| 5416 | |
| 5417 /* Output the final row of result | |
| 5418 */ | |
| 5419 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow); | |
| 5420 VdbeComment((v, "output final row")); | |
| 5421 | |
| 5422 /* Jump over the subroutines | |
| 5423 */ | |
| 5424 sqlite3VdbeGoto(v, addrEnd); | |
| 5425 | |
| 5426 /* Generate a subroutine that outputs a single row of the result | |
| 5427 ** set. This subroutine first looks at the iUseFlag. If iUseFlag | |
| 5428 ** is less than or equal to zero, the subroutine is a no-op. If | |
| 5429 ** the processing calls for the query to abort, this subroutine | |
| 5430 ** increments the iAbortFlag memory location before returning in | |
| 5431 ** order to signal the caller to abort. | |
| 5432 */ | |
| 5433 addrSetAbort = sqlite3VdbeCurrentAddr(v); | |
| 5434 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag); | |
| 5435 VdbeComment((v, "set abort flag")); | |
| 5436 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); | |
| 5437 sqlite3VdbeResolveLabel(v, addrOutputRow); | |
| 5438 addrOutputRow = sqlite3VdbeCurrentAddr(v); | |
| 5439 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2); | |
| 5440 VdbeCoverage(v); | |
| 5441 VdbeComment((v, "Groupby result generator entry point")); | |
| 5442 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); | |
| 5443 finalizeAggFunctions(pParse, &sAggInfo); | |
| 5444 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL); | |
| 5445 selectInnerLoop(pParse, p, p->pEList, -1, &sSort, | |
| 5446 &sDistinct, pDest, | |
| 5447 addrOutputRow+1, addrSetAbort); | |
| 5448 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow); | |
| 5449 VdbeComment((v, "end groupby result generator")); | |
| 5450 | |
| 5451 /* Generate a subroutine that will reset the group-by accumulator | |
| 5452 */ | |
| 5453 sqlite3VdbeResolveLabel(v, addrReset); | |
| 5454 resetAccumulator(pParse, &sAggInfo); | |
| 5455 sqlite3VdbeAddOp1(v, OP_Return, regReset); | |
| 5456 | |
| 5457 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */ | |
| 5458 else { | |
| 5459 ExprList *pDel = 0; | |
| 5460 #ifndef SQLITE_OMIT_BTREECOUNT | |
| 5461 Table *pTab; | |
| 5462 if( (pTab = isSimpleCount(p, &sAggInfo))!=0 ){ | |
| 5463 /* If isSimpleCount() returns a pointer to a Table structure, then | |
| 5464 ** the SQL statement is of the form: | |
| 5465 ** | |
| 5466 ** SELECT count(*) FROM <tbl> | |
| 5467 ** | |
| 5468 ** where the Table structure returned represents table <tbl>. | |
| 5469 ** | |
| 5470 ** This statement is so common that it is optimized specially. The | |
| 5471 ** OP_Count instruction is executed either on the intkey table that | |
| 5472 ** contains the data for table <tbl> or on one of its indexes. It | |
| 5473 ** is better to execute the op on an index, as indexes are almost | |
| 5474 ** always spread across less pages than their corresponding tables. | |
| 5475 */ | |
| 5476 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema); | |
| 5477 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */ | |
| 5478 Index *pIdx; /* Iterator variable */ | |
| 5479 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */ | |
| 5480 Index *pBest = 0; /* Best index found so far */ | |
| 5481 int iRoot = pTab->tnum; /* Root page of scanned b-tree */ | |
| 5482 | |
| 5483 sqlite3CodeVerifySchema(pParse, iDb); | |
| 5484 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); | |
| 5485 | |
| 5486 /* Search for the index that has the lowest scan cost. | |
| 5487 ** | |
| 5488 ** (2011-04-15) Do not do a full scan of an unordered index. | |
| 5489 ** | |
| 5490 ** (2013-10-03) Do not count the entries in a partial index. | |
| 5491 ** | |
| 5492 ** In practice the KeyInfo structure will not be used. It is only | |
| 5493 ** passed to keep OP_OpenRead happy. | |
| 5494 */ | |
| 5495 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab); | |
| 5496 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){ | |
| 5497 if( pIdx->bUnordered==0 | |
| 5498 && pIdx->szIdxRow<pTab->szTabRow | |
| 5499 && pIdx->pPartIdxWhere==0 | |
| 5500 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow) | |
| 5501 ){ | |
| 5502 pBest = pIdx; | |
| 5503 } | |
| 5504 } | |
| 5505 if( pBest ){ | |
| 5506 iRoot = pBest->tnum; | |
| 5507 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest); | |
| 5508 } | |
| 5509 | |
| 5510 /* Open a read-only cursor, execute the OP_Count, close the cursor. */ | |
| 5511 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, iRoot, iDb, 1); | |
| 5512 if( pKeyInfo ){ | |
| 5513 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO); | |
| 5514 } | |
| 5515 sqlite3VdbeAddOp2(v, OP_Count, iCsr, sAggInfo.aFunc[0].iMem); | |
| 5516 sqlite3VdbeAddOp1(v, OP_Close, iCsr); | |
| 5517 explainSimpleCount(pParse, pTab, pBest); | |
| 5518 }else | |
| 5519 #endif /* SQLITE_OMIT_BTREECOUNT */ | |
| 5520 { | |
| 5521 /* Check if the query is of one of the following forms: | |
| 5522 ** | |
| 5523 ** SELECT min(x) FROM ... | |
| 5524 ** SELECT max(x) FROM ... | |
| 5525 ** | |
| 5526 ** If it is, then ask the code in where.c to attempt to sort results | |
| 5527 ** as if there was an "ORDER ON x" or "ORDER ON x DESC" clause. | |
| 5528 ** If where.c is able to produce results sorted in this order, then | |
| 5529 ** add vdbe code to break out of the processing loop after the | |
| 5530 ** first iteration (since the first iteration of the loop is | |
| 5531 ** guaranteed to operate on the row with the minimum or maximum | |
| 5532 ** value of x, the only row required). | |
| 5533 ** | |
| 5534 ** A special flag must be passed to sqlite3WhereBegin() to slightly | |
| 5535 ** modify behavior as follows: | |
| 5536 ** | |
| 5537 ** + If the query is a "SELECT min(x)", then the loop coded by | |
| 5538 ** where.c should not iterate over any values with a NULL value | |
| 5539 ** for x. | |
| 5540 ** | |
| 5541 ** + The optimizer code in where.c (the thing that decides which | |
| 5542 ** index or indices to use) should place a different priority on | |
| 5543 ** satisfying the 'ORDER BY' clause than it does in other cases. | |
| 5544 ** Refer to code and comments in where.c for details. | |
| 5545 */ | |
| 5546 ExprList *pMinMax = 0; | |
| 5547 u8 flag = WHERE_ORDERBY_NORMAL; | |
| 5548 | |
| 5549 assert( p->pGroupBy==0 ); | |
| 5550 assert( flag==0 ); | |
| 5551 if( p->pHaving==0 ){ | |
| 5552 flag = minMaxQuery(&sAggInfo, &pMinMax); | |
| 5553 } | |
| 5554 assert( flag==0 || (pMinMax!=0 && pMinMax->nExpr==1) ); | |
| 5555 | |
| 5556 if( flag ){ | |
| 5557 pMinMax = sqlite3ExprListDup(db, pMinMax, 0); | |
| 5558 pDel = pMinMax; | |
| 5559 if( pMinMax && !db->mallocFailed ){ | |
| 5560 pMinMax->a[0].sortOrder = flag!=WHERE_ORDERBY_MIN ?1:0; | |
| 5561 pMinMax->a[0].pExpr->op = TK_COLUMN; | |
| 5562 } | |
| 5563 } | |
| 5564 | |
| 5565 /* This case runs if the aggregate has no GROUP BY clause. The | |
| 5566 ** processing is much simpler since there is only a single row | |
| 5567 ** of output. | |
| 5568 */ | |
| 5569 resetAccumulator(pParse, &sAggInfo); | |
| 5570 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMax,0,flag,0); | |
| 5571 if( pWInfo==0 ){ | |
| 5572 sqlite3ExprListDelete(db, pDel); | |
| 5573 goto select_end; | |
| 5574 } | |
| 5575 updateAccumulator(pParse, &sAggInfo); | |
| 5576 assert( pMinMax==0 || pMinMax->nExpr==1 ); | |
| 5577 if( sqlite3WhereIsOrdered(pWInfo)>0 ){ | |
| 5578 sqlite3VdbeGoto(v, sqlite3WhereBreakLabel(pWInfo)); | |
| 5579 VdbeComment((v, "%s() by index", | |
| 5580 (flag==WHERE_ORDERBY_MIN?"min":"max"))); | |
| 5581 } | |
| 5582 sqlite3WhereEnd(pWInfo); | |
| 5583 finalizeAggFunctions(pParse, &sAggInfo); | |
| 5584 } | |
| 5585 | |
| 5586 sSort.pOrderBy = 0; | |
| 5587 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL); | |
| 5588 selectInnerLoop(pParse, p, p->pEList, -1, 0, 0, | |
| 5589 pDest, addrEnd, addrEnd); | |
| 5590 sqlite3ExprListDelete(db, pDel); | |
| 5591 } | |
| 5592 sqlite3VdbeResolveLabel(v, addrEnd); | |
| 5593 | |
| 5594 } /* endif aggregate query */ | |
| 5595 | |
| 5596 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){ | |
| 5597 explainTempTable(pParse, "DISTINCT"); | |
| 5598 } | |
| 5599 | |
| 5600 /* If there is an ORDER BY clause, then we need to sort the results | |
| 5601 ** and send them to the callback one by one. | |
| 5602 */ | |
| 5603 if( sSort.pOrderBy ){ | |
| 5604 explainTempTable(pParse, | |
| 5605 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY"); | |
| 5606 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest); | |
| 5607 } | |
| 5608 | |
| 5609 /* Jump here to skip this query | |
| 5610 */ | |
| 5611 sqlite3VdbeResolveLabel(v, iEnd); | |
| 5612 | |
| 5613 /* The SELECT has been coded. If there is an error in the Parse structure, | |
| 5614 ** set the return code to 1. Otherwise 0. */ | |
| 5615 rc = (pParse->nErr>0); | |
| 5616 | |
| 5617 /* Control jumps to here if an error is encountered above, or upon | |
| 5618 ** successful coding of the SELECT. | |
| 5619 */ | |
| 5620 select_end: | |
| 5621 explainSetInteger(pParse->iSelectId, iRestoreSelectId); | |
| 5622 | |
| 5623 /* Identify column names if results of the SELECT are to be output. | |
| 5624 */ | |
| 5625 if( rc==SQLITE_OK && pDest->eDest==SRT_Output ){ | |
| 5626 generateColumnNames(pParse, pTabList, pEList); | |
| 5627 } | |
| 5628 | |
| 5629 sqlite3DbFree(db, sAggInfo.aCol); | |
| 5630 sqlite3DbFree(db, sAggInfo.aFunc); | |
| 5631 #if SELECTTRACE_ENABLED | |
| 5632 SELECTTRACE(1,pParse,p,("end processing\n")); | |
| 5633 pParse->nSelectIndent--; | |
| 5634 #endif | |
| 5635 return rc; | |
| 5636 } | |
| OLD | NEW |