OLD | NEW |
| (Empty) |
1 /* | |
2 ** 2008 August 18 | |
3 ** | |
4 ** The author disclaims copyright to this source code. In place of | |
5 ** a legal notice, here is a blessing: | |
6 ** | |
7 ** May you do good and not evil. | |
8 ** May you find forgiveness for yourself and forgive others. | |
9 ** May you share freely, never taking more than you give. | |
10 ** | |
11 ************************************************************************* | |
12 ** | |
13 ** This file contains routines used for walking the parser tree and | |
14 ** resolve all identifiers by associating them with a particular | |
15 ** table and column. | |
16 */ | |
17 #include "sqliteInt.h" | |
18 #include <stdlib.h> | |
19 #include <string.h> | |
20 | |
21 /* | |
22 ** Walk the expression tree pExpr and increase the aggregate function | |
23 ** depth (the Expr.op2 field) by N on every TK_AGG_FUNCTION node. | |
24 ** This needs to occur when copying a TK_AGG_FUNCTION node from an | |
25 ** outer query into an inner subquery. | |
26 ** | |
27 ** incrAggFunctionDepth(pExpr,n) is the main routine. incrAggDepth(..) | |
28 ** is a helper function - a callback for the tree walker. | |
29 */ | |
30 static int incrAggDepth(Walker *pWalker, Expr *pExpr){ | |
31 if( pExpr->op==TK_AGG_FUNCTION ) pExpr->op2 += pWalker->u.n; | |
32 return WRC_Continue; | |
33 } | |
34 static void incrAggFunctionDepth(Expr *pExpr, int N){ | |
35 if( N>0 ){ | |
36 Walker w; | |
37 memset(&w, 0, sizeof(w)); | |
38 w.xExprCallback = incrAggDepth; | |
39 w.u.n = N; | |
40 sqlite3WalkExpr(&w, pExpr); | |
41 } | |
42 } | |
43 | |
44 /* | |
45 ** Turn the pExpr expression into an alias for the iCol-th column of the | |
46 ** result set in pEList. | |
47 ** | |
48 ** If the reference is followed by a COLLATE operator, then make sure | |
49 ** the COLLATE operator is preserved. For example: | |
50 ** | |
51 ** SELECT a+b, c+d FROM t1 ORDER BY 1 COLLATE nocase; | |
52 ** | |
53 ** Should be transformed into: | |
54 ** | |
55 ** SELECT a+b, c+d FROM t1 ORDER BY (a+b) COLLATE nocase; | |
56 ** | |
57 ** The nSubquery parameter specifies how many levels of subquery the | |
58 ** alias is removed from the original expression. The usual value is | |
59 ** zero but it might be more if the alias is contained within a subquery | |
60 ** of the original expression. The Expr.op2 field of TK_AGG_FUNCTION | |
61 ** structures must be increased by the nSubquery amount. | |
62 */ | |
63 static void resolveAlias( | |
64 Parse *pParse, /* Parsing context */ | |
65 ExprList *pEList, /* A result set */ | |
66 int iCol, /* A column in the result set. 0..pEList->nExpr-1 */ | |
67 Expr *pExpr, /* Transform this into an alias to the result set */ | |
68 const char *zType, /* "GROUP" or "ORDER" or "" */ | |
69 int nSubquery /* Number of subqueries that the label is moving */ | |
70 ){ | |
71 Expr *pOrig; /* The iCol-th column of the result set */ | |
72 Expr *pDup; /* Copy of pOrig */ | |
73 sqlite3 *db; /* The database connection */ | |
74 | |
75 assert( iCol>=0 && iCol<pEList->nExpr ); | |
76 pOrig = pEList->a[iCol].pExpr; | |
77 assert( pOrig!=0 ); | |
78 db = pParse->db; | |
79 pDup = sqlite3ExprDup(db, pOrig, 0); | |
80 if( pDup==0 ) return; | |
81 if( zType[0]!='G' ) incrAggFunctionDepth(pDup, nSubquery); | |
82 if( pExpr->op==TK_COLLATE ){ | |
83 pDup = sqlite3ExprAddCollateString(pParse, pDup, pExpr->u.zToken); | |
84 } | |
85 ExprSetProperty(pDup, EP_Alias); | |
86 | |
87 /* Before calling sqlite3ExprDelete(), set the EP_Static flag. This | |
88 ** prevents ExprDelete() from deleting the Expr structure itself, | |
89 ** allowing it to be repopulated by the memcpy() on the following line. | |
90 ** The pExpr->u.zToken might point into memory that will be freed by the | |
91 ** sqlite3DbFree(db, pDup) on the last line of this block, so be sure to | |
92 ** make a copy of the token before doing the sqlite3DbFree(). | |
93 */ | |
94 ExprSetProperty(pExpr, EP_Static); | |
95 sqlite3ExprDelete(db, pExpr); | |
96 memcpy(pExpr, pDup, sizeof(*pExpr)); | |
97 if( !ExprHasProperty(pExpr, EP_IntValue) && pExpr->u.zToken!=0 ){ | |
98 assert( (pExpr->flags & (EP_Reduced|EP_TokenOnly))==0 ); | |
99 pExpr->u.zToken = sqlite3DbStrDup(db, pExpr->u.zToken); | |
100 pExpr->flags |= EP_MemToken; | |
101 } | |
102 sqlite3DbFree(db, pDup); | |
103 } | |
104 | |
105 | |
106 /* | |
107 ** Return TRUE if the name zCol occurs anywhere in the USING clause. | |
108 ** | |
109 ** Return FALSE if the USING clause is NULL or if it does not contain | |
110 ** zCol. | |
111 */ | |
112 static int nameInUsingClause(IdList *pUsing, const char *zCol){ | |
113 if( pUsing ){ | |
114 int k; | |
115 for(k=0; k<pUsing->nId; k++){ | |
116 if( sqlite3StrICmp(pUsing->a[k].zName, zCol)==0 ) return 1; | |
117 } | |
118 } | |
119 return 0; | |
120 } | |
121 | |
122 /* | |
123 ** Subqueries stores the original database, table and column names for their | |
124 ** result sets in ExprList.a[].zSpan, in the form "DATABASE.TABLE.COLUMN". | |
125 ** Check to see if the zSpan given to this routine matches the zDb, zTab, | |
126 ** and zCol. If any of zDb, zTab, and zCol are NULL then those fields will | |
127 ** match anything. | |
128 */ | |
129 int sqlite3MatchSpanName( | |
130 const char *zSpan, | |
131 const char *zCol, | |
132 const char *zTab, | |
133 const char *zDb | |
134 ){ | |
135 int n; | |
136 for(n=0; ALWAYS(zSpan[n]) && zSpan[n]!='.'; n++){} | |
137 if( zDb && (sqlite3StrNICmp(zSpan, zDb, n)!=0 || zDb[n]!=0) ){ | |
138 return 0; | |
139 } | |
140 zSpan += n+1; | |
141 for(n=0; ALWAYS(zSpan[n]) && zSpan[n]!='.'; n++){} | |
142 if( zTab && (sqlite3StrNICmp(zSpan, zTab, n)!=0 || zTab[n]!=0) ){ | |
143 return 0; | |
144 } | |
145 zSpan += n+1; | |
146 if( zCol && sqlite3StrICmp(zSpan, zCol)!=0 ){ | |
147 return 0; | |
148 } | |
149 return 1; | |
150 } | |
151 | |
152 /* | |
153 ** Given the name of a column of the form X.Y.Z or Y.Z or just Z, look up | |
154 ** that name in the set of source tables in pSrcList and make the pExpr | |
155 ** expression node refer back to that source column. The following changes | |
156 ** are made to pExpr: | |
157 ** | |
158 ** pExpr->iDb Set the index in db->aDb[] of the database X | |
159 ** (even if X is implied). | |
160 ** pExpr->iTable Set to the cursor number for the table obtained | |
161 ** from pSrcList. | |
162 ** pExpr->pTab Points to the Table structure of X.Y (even if | |
163 ** X and/or Y are implied.) | |
164 ** pExpr->iColumn Set to the column number within the table. | |
165 ** pExpr->op Set to TK_COLUMN. | |
166 ** pExpr->pLeft Any expression this points to is deleted | |
167 ** pExpr->pRight Any expression this points to is deleted. | |
168 ** | |
169 ** The zDb variable is the name of the database (the "X"). This value may be | |
170 ** NULL meaning that name is of the form Y.Z or Z. Any available database | |
171 ** can be used. The zTable variable is the name of the table (the "Y"). This | |
172 ** value can be NULL if zDb is also NULL. If zTable is NULL it | |
173 ** means that the form of the name is Z and that columns from any table | |
174 ** can be used. | |
175 ** | |
176 ** If the name cannot be resolved unambiguously, leave an error message | |
177 ** in pParse and return WRC_Abort. Return WRC_Prune on success. | |
178 */ | |
179 static int lookupName( | |
180 Parse *pParse, /* The parsing context */ | |
181 const char *zDb, /* Name of the database containing table, or NULL */ | |
182 const char *zTab, /* Name of table containing column, or NULL */ | |
183 const char *zCol, /* Name of the column. */ | |
184 NameContext *pNC, /* The name context used to resolve the name */ | |
185 Expr *pExpr /* Make this EXPR node point to the selected column */ | |
186 ){ | |
187 int i, j; /* Loop counters */ | |
188 int cnt = 0; /* Number of matching column names */ | |
189 int cntTab = 0; /* Number of matching table names */ | |
190 int nSubquery = 0; /* How many levels of subquery */ | |
191 sqlite3 *db = pParse->db; /* The database connection */ | |
192 struct SrcList_item *pItem; /* Use for looping over pSrcList items */ | |
193 struct SrcList_item *pMatch = 0; /* The matching pSrcList item */ | |
194 NameContext *pTopNC = pNC; /* First namecontext in the list */ | |
195 Schema *pSchema = 0; /* Schema of the expression */ | |
196 int isTrigger = 0; /* True if resolved to a trigger column */ | |
197 Table *pTab = 0; /* Table hold the row */ | |
198 Column *pCol; /* A column of pTab */ | |
199 | |
200 assert( pNC ); /* the name context cannot be NULL. */ | |
201 assert( zCol ); /* The Z in X.Y.Z cannot be NULL */ | |
202 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); | |
203 | |
204 /* Initialize the node to no-match */ | |
205 pExpr->iTable = -1; | |
206 pExpr->pTab = 0; | |
207 ExprSetVVAProperty(pExpr, EP_NoReduce); | |
208 | |
209 /* Translate the schema name in zDb into a pointer to the corresponding | |
210 ** schema. If not found, pSchema will remain NULL and nothing will match | |
211 ** resulting in an appropriate error message toward the end of this routine | |
212 */ | |
213 if( zDb ){ | |
214 testcase( pNC->ncFlags & NC_PartIdx ); | |
215 testcase( pNC->ncFlags & NC_IsCheck ); | |
216 if( (pNC->ncFlags & (NC_PartIdx|NC_IsCheck))!=0 ){ | |
217 /* Silently ignore database qualifiers inside CHECK constraints and | |
218 ** partial indices. Do not raise errors because that might break | |
219 ** legacy and because it does not hurt anything to just ignore the | |
220 ** database name. */ | |
221 zDb = 0; | |
222 }else{ | |
223 for(i=0; i<db->nDb; i++){ | |
224 assert( db->aDb[i].zName ); | |
225 if( sqlite3StrICmp(db->aDb[i].zName,zDb)==0 ){ | |
226 pSchema = db->aDb[i].pSchema; | |
227 break; | |
228 } | |
229 } | |
230 } | |
231 } | |
232 | |
233 /* Start at the inner-most context and move outward until a match is found */ | |
234 while( pNC && cnt==0 ){ | |
235 ExprList *pEList; | |
236 SrcList *pSrcList = pNC->pSrcList; | |
237 | |
238 if( pSrcList ){ | |
239 for(i=0, pItem=pSrcList->a; i<pSrcList->nSrc; i++, pItem++){ | |
240 pTab = pItem->pTab; | |
241 assert( pTab!=0 && pTab->zName!=0 ); | |
242 assert( pTab->nCol>0 ); | |
243 if( pItem->pSelect && (pItem->pSelect->selFlags & SF_NestedFrom)!=0 ){ | |
244 int hit = 0; | |
245 pEList = pItem->pSelect->pEList; | |
246 for(j=0; j<pEList->nExpr; j++){ | |
247 if( sqlite3MatchSpanName(pEList->a[j].zSpan, zCol, zTab, zDb) ){ | |
248 cnt++; | |
249 cntTab = 2; | |
250 pMatch = pItem; | |
251 pExpr->iColumn = j; | |
252 hit = 1; | |
253 } | |
254 } | |
255 if( hit || zTab==0 ) continue; | |
256 } | |
257 if( zDb && pTab->pSchema!=pSchema ){ | |
258 continue; | |
259 } | |
260 if( zTab ){ | |
261 const char *zTabName = pItem->zAlias ? pItem->zAlias : pTab->zName; | |
262 assert( zTabName!=0 ); | |
263 if( sqlite3StrICmp(zTabName, zTab)!=0 ){ | |
264 continue; | |
265 } | |
266 } | |
267 if( 0==(cntTab++) ){ | |
268 pMatch = pItem; | |
269 } | |
270 for(j=0, pCol=pTab->aCol; j<pTab->nCol; j++, pCol++){ | |
271 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ | |
272 /* If there has been exactly one prior match and this match | |
273 ** is for the right-hand table of a NATURAL JOIN or is in a | |
274 ** USING clause, then skip this match. | |
275 */ | |
276 if( cnt==1 ){ | |
277 if( pItem->fg.jointype & JT_NATURAL ) continue; | |
278 if( nameInUsingClause(pItem->pUsing, zCol) ) continue; | |
279 } | |
280 cnt++; | |
281 pMatch = pItem; | |
282 /* Substitute the rowid (column -1) for the INTEGER PRIMARY KEY */ | |
283 pExpr->iColumn = j==pTab->iPKey ? -1 : (i16)j; | |
284 break; | |
285 } | |
286 } | |
287 } | |
288 if( pMatch ){ | |
289 pExpr->iTable = pMatch->iCursor; | |
290 pExpr->pTab = pMatch->pTab; | |
291 /* RIGHT JOIN not (yet) supported */ | |
292 assert( (pMatch->fg.jointype & JT_RIGHT)==0 ); | |
293 if( (pMatch->fg.jointype & JT_LEFT)!=0 ){ | |
294 ExprSetProperty(pExpr, EP_CanBeNull); | |
295 } | |
296 pSchema = pExpr->pTab->pSchema; | |
297 } | |
298 } /* if( pSrcList ) */ | |
299 | |
300 #ifndef SQLITE_OMIT_TRIGGER | |
301 /* If we have not already resolved the name, then maybe | |
302 ** it is a new.* or old.* trigger argument reference | |
303 */ | |
304 if( zDb==0 && zTab!=0 && cntTab==0 && pParse->pTriggerTab!=0 ){ | |
305 int op = pParse->eTriggerOp; | |
306 assert( op==TK_DELETE || op==TK_UPDATE || op==TK_INSERT ); | |
307 if( op!=TK_DELETE && sqlite3StrICmp("new",zTab) == 0 ){ | |
308 pExpr->iTable = 1; | |
309 pTab = pParse->pTriggerTab; | |
310 }else if( op!=TK_INSERT && sqlite3StrICmp("old",zTab)==0 ){ | |
311 pExpr->iTable = 0; | |
312 pTab = pParse->pTriggerTab; | |
313 }else{ | |
314 pTab = 0; | |
315 } | |
316 | |
317 if( pTab ){ | |
318 int iCol; | |
319 pSchema = pTab->pSchema; | |
320 cntTab++; | |
321 for(iCol=0, pCol=pTab->aCol; iCol<pTab->nCol; iCol++, pCol++){ | |
322 if( sqlite3StrICmp(pCol->zName, zCol)==0 ){ | |
323 if( iCol==pTab->iPKey ){ | |
324 iCol = -1; | |
325 } | |
326 break; | |
327 } | |
328 } | |
329 if( iCol>=pTab->nCol && sqlite3IsRowid(zCol) && VisibleRowid(pTab) ){ | |
330 /* IMP: R-51414-32910 */ | |
331 iCol = -1; | |
332 } | |
333 if( iCol<pTab->nCol ){ | |
334 cnt++; | |
335 if( iCol<0 ){ | |
336 pExpr->affinity = SQLITE_AFF_INTEGER; | |
337 }else if( pExpr->iTable==0 ){ | |
338 testcase( iCol==31 ); | |
339 testcase( iCol==32 ); | |
340 pParse->oldmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol)); | |
341 }else{ | |
342 testcase( iCol==31 ); | |
343 testcase( iCol==32 ); | |
344 pParse->newmask |= (iCol>=32 ? 0xffffffff : (((u32)1)<<iCol)); | |
345 } | |
346 pExpr->iColumn = (i16)iCol; | |
347 pExpr->pTab = pTab; | |
348 isTrigger = 1; | |
349 } | |
350 } | |
351 } | |
352 #endif /* !defined(SQLITE_OMIT_TRIGGER) */ | |
353 | |
354 /* | |
355 ** Perhaps the name is a reference to the ROWID | |
356 */ | |
357 if( cnt==0 | |
358 && cntTab==1 | |
359 && pMatch | |
360 && (pNC->ncFlags & NC_IdxExpr)==0 | |
361 && sqlite3IsRowid(zCol) | |
362 && VisibleRowid(pMatch->pTab) | |
363 ){ | |
364 cnt = 1; | |
365 pExpr->iColumn = -1; | |
366 pExpr->affinity = SQLITE_AFF_INTEGER; | |
367 } | |
368 | |
369 /* | |
370 ** If the input is of the form Z (not Y.Z or X.Y.Z) then the name Z | |
371 ** might refer to an result-set alias. This happens, for example, when | |
372 ** we are resolving names in the WHERE clause of the following command: | |
373 ** | |
374 ** SELECT a+b AS x FROM table WHERE x<10; | |
375 ** | |
376 ** In cases like this, replace pExpr with a copy of the expression that | |
377 ** forms the result set entry ("a+b" in the example) and return immediately. | |
378 ** Note that the expression in the result set should have already been | |
379 ** resolved by the time the WHERE clause is resolved. | |
380 ** | |
381 ** The ability to use an output result-set column in the WHERE, GROUP BY, | |
382 ** or HAVING clauses, or as part of a larger expression in the ORDER BY | |
383 ** clause is not standard SQL. This is a (goofy) SQLite extension, that | |
384 ** is supported for backwards compatibility only. Hence, we issue a warning | |
385 ** on sqlite3_log() whenever the capability is used. | |
386 */ | |
387 if( (pEList = pNC->pEList)!=0 | |
388 && zTab==0 | |
389 && cnt==0 | |
390 ){ | |
391 for(j=0; j<pEList->nExpr; j++){ | |
392 char *zAs = pEList->a[j].zName; | |
393 if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ | |
394 Expr *pOrig; | |
395 assert( pExpr->pLeft==0 && pExpr->pRight==0 ); | |
396 assert( pExpr->x.pList==0 ); | |
397 assert( pExpr->x.pSelect==0 ); | |
398 pOrig = pEList->a[j].pExpr; | |
399 if( (pNC->ncFlags&NC_AllowAgg)==0 && ExprHasProperty(pOrig, EP_Agg) ){ | |
400 sqlite3ErrorMsg(pParse, "misuse of aliased aggregate %s", zAs); | |
401 return WRC_Abort; | |
402 } | |
403 resolveAlias(pParse, pEList, j, pExpr, "", nSubquery); | |
404 cnt = 1; | |
405 pMatch = 0; | |
406 assert( zTab==0 && zDb==0 ); | |
407 goto lookupname_end; | |
408 } | |
409 } | |
410 } | |
411 | |
412 /* Advance to the next name context. The loop will exit when either | |
413 ** we have a match (cnt>0) or when we run out of name contexts. | |
414 */ | |
415 if( cnt==0 ){ | |
416 pNC = pNC->pNext; | |
417 nSubquery++; | |
418 } | |
419 } | |
420 | |
421 /* | |
422 ** If X and Y are NULL (in other words if only the column name Z is | |
423 ** supplied) and the value of Z is enclosed in double-quotes, then | |
424 ** Z is a string literal if it doesn't match any column names. In that | |
425 ** case, we need to return right away and not make any changes to | |
426 ** pExpr. | |
427 ** | |
428 ** Because no reference was made to outer contexts, the pNC->nRef | |
429 ** fields are not changed in any context. | |
430 */ | |
431 if( cnt==0 && zTab==0 && ExprHasProperty(pExpr,EP_DblQuoted) ){ | |
432 pExpr->op = TK_STRING; | |
433 pExpr->pTab = 0; | |
434 return WRC_Prune; | |
435 } | |
436 | |
437 /* | |
438 ** cnt==0 means there was not match. cnt>1 means there were two or | |
439 ** more matches. Either way, we have an error. | |
440 */ | |
441 if( cnt!=1 ){ | |
442 const char *zErr; | |
443 zErr = cnt==0 ? "no such column" : "ambiguous column name"; | |
444 if( zDb ){ | |
445 sqlite3ErrorMsg(pParse, "%s: %s.%s.%s", zErr, zDb, zTab, zCol); | |
446 }else if( zTab ){ | |
447 sqlite3ErrorMsg(pParse, "%s: %s.%s", zErr, zTab, zCol); | |
448 }else{ | |
449 sqlite3ErrorMsg(pParse, "%s: %s", zErr, zCol); | |
450 } | |
451 pParse->checkSchema = 1; | |
452 pTopNC->nErr++; | |
453 } | |
454 | |
455 /* If a column from a table in pSrcList is referenced, then record | |
456 ** this fact in the pSrcList.a[].colUsed bitmask. Column 0 causes | |
457 ** bit 0 to be set. Column 1 sets bit 1. And so forth. If the | |
458 ** column number is greater than the number of bits in the bitmask | |
459 ** then set the high-order bit of the bitmask. | |
460 */ | |
461 if( pExpr->iColumn>=0 && pMatch!=0 ){ | |
462 int n = pExpr->iColumn; | |
463 testcase( n==BMS-1 ); | |
464 if( n>=BMS ){ | |
465 n = BMS-1; | |
466 } | |
467 assert( pMatch->iCursor==pExpr->iTable ); | |
468 pMatch->colUsed |= ((Bitmask)1)<<n; | |
469 } | |
470 | |
471 /* Clean up and return | |
472 */ | |
473 sqlite3ExprDelete(db, pExpr->pLeft); | |
474 pExpr->pLeft = 0; | |
475 sqlite3ExprDelete(db, pExpr->pRight); | |
476 pExpr->pRight = 0; | |
477 pExpr->op = (isTrigger ? TK_TRIGGER : TK_COLUMN); | |
478 lookupname_end: | |
479 if( cnt==1 ){ | |
480 assert( pNC!=0 ); | |
481 if( !ExprHasProperty(pExpr, EP_Alias) ){ | |
482 sqlite3AuthRead(pParse, pExpr, pSchema, pNC->pSrcList); | |
483 } | |
484 /* Increment the nRef value on all name contexts from TopNC up to | |
485 ** the point where the name matched. */ | |
486 for(;;){ | |
487 assert( pTopNC!=0 ); | |
488 pTopNC->nRef++; | |
489 if( pTopNC==pNC ) break; | |
490 pTopNC = pTopNC->pNext; | |
491 } | |
492 return WRC_Prune; | |
493 } else { | |
494 return WRC_Abort; | |
495 } | |
496 } | |
497 | |
498 /* | |
499 ** Allocate and return a pointer to an expression to load the column iCol | |
500 ** from datasource iSrc in SrcList pSrc. | |
501 */ | |
502 Expr *sqlite3CreateColumnExpr(sqlite3 *db, SrcList *pSrc, int iSrc, int iCol){ | |
503 Expr *p = sqlite3ExprAlloc(db, TK_COLUMN, 0, 0); | |
504 if( p ){ | |
505 struct SrcList_item *pItem = &pSrc->a[iSrc]; | |
506 p->pTab = pItem->pTab; | |
507 p->iTable = pItem->iCursor; | |
508 if( p->pTab->iPKey==iCol ){ | |
509 p->iColumn = -1; | |
510 }else{ | |
511 p->iColumn = (ynVar)iCol; | |
512 testcase( iCol==BMS ); | |
513 testcase( iCol==BMS-1 ); | |
514 pItem->colUsed |= ((Bitmask)1)<<(iCol>=BMS ? BMS-1 : iCol); | |
515 } | |
516 ExprSetProperty(p, EP_Resolved); | |
517 } | |
518 return p; | |
519 } | |
520 | |
521 /* | |
522 ** Report an error that an expression is not valid for some set of | |
523 ** pNC->ncFlags values determined by validMask. | |
524 */ | |
525 static void notValid( | |
526 Parse *pParse, /* Leave error message here */ | |
527 NameContext *pNC, /* The name context */ | |
528 const char *zMsg, /* Type of error */ | |
529 int validMask /* Set of contexts for which prohibited */ | |
530 ){ | |
531 assert( (validMask&~(NC_IsCheck|NC_PartIdx|NC_IdxExpr))==0 ); | |
532 if( (pNC->ncFlags & validMask)!=0 ){ | |
533 const char *zIn = "partial index WHERE clauses"; | |
534 if( pNC->ncFlags & NC_IdxExpr ) zIn = "index expressions"; | |
535 #ifndef SQLITE_OMIT_CHECK | |
536 else if( pNC->ncFlags & NC_IsCheck ) zIn = "CHECK constraints"; | |
537 #endif | |
538 sqlite3ErrorMsg(pParse, "%s prohibited in %s", zMsg, zIn); | |
539 } | |
540 } | |
541 | |
542 /* | |
543 ** Expression p should encode a floating point value between 1.0 and 0.0. | |
544 ** Return 1024 times this value. Or return -1 if p is not a floating point | |
545 ** value between 1.0 and 0.0. | |
546 */ | |
547 static int exprProbability(Expr *p){ | |
548 double r = -1.0; | |
549 if( p->op!=TK_FLOAT ) return -1; | |
550 sqlite3AtoF(p->u.zToken, &r, sqlite3Strlen30(p->u.zToken), SQLITE_UTF8); | |
551 assert( r>=0.0 ); | |
552 if( r>1.0 ) return -1; | |
553 return (int)(r*134217728.0); | |
554 } | |
555 | |
556 /* | |
557 ** This routine is callback for sqlite3WalkExpr(). | |
558 ** | |
559 ** Resolve symbolic names into TK_COLUMN operators for the current | |
560 ** node in the expression tree. Return 0 to continue the search down | |
561 ** the tree or 2 to abort the tree walk. | |
562 ** | |
563 ** This routine also does error checking and name resolution for | |
564 ** function names. The operator for aggregate functions is changed | |
565 ** to TK_AGG_FUNCTION. | |
566 */ | |
567 static int resolveExprStep(Walker *pWalker, Expr *pExpr){ | |
568 NameContext *pNC; | |
569 Parse *pParse; | |
570 | |
571 pNC = pWalker->u.pNC; | |
572 assert( pNC!=0 ); | |
573 pParse = pNC->pParse; | |
574 assert( pParse==pWalker->pParse ); | |
575 | |
576 if( ExprHasProperty(pExpr, EP_Resolved) ) return WRC_Prune; | |
577 ExprSetProperty(pExpr, EP_Resolved); | |
578 #ifndef NDEBUG | |
579 if( pNC->pSrcList && pNC->pSrcList->nAlloc>0 ){ | |
580 SrcList *pSrcList = pNC->pSrcList; | |
581 int i; | |
582 for(i=0; i<pNC->pSrcList->nSrc; i++){ | |
583 assert( pSrcList->a[i].iCursor>=0 && pSrcList->a[i].iCursor<pParse->nTab); | |
584 } | |
585 } | |
586 #endif | |
587 switch( pExpr->op ){ | |
588 | |
589 #if defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) && !defined(SQLITE_OMIT_SUBQUERY) | |
590 /* The special operator TK_ROW means use the rowid for the first | |
591 ** column in the FROM clause. This is used by the LIMIT and ORDER BY | |
592 ** clause processing on UPDATE and DELETE statements. | |
593 */ | |
594 case TK_ROW: { | |
595 SrcList *pSrcList = pNC->pSrcList; | |
596 struct SrcList_item *pItem; | |
597 assert( pSrcList && pSrcList->nSrc==1 ); | |
598 pItem = pSrcList->a; | |
599 pExpr->op = TK_COLUMN; | |
600 pExpr->pTab = pItem->pTab; | |
601 pExpr->iTable = pItem->iCursor; | |
602 pExpr->iColumn = -1; | |
603 pExpr->affinity = SQLITE_AFF_INTEGER; | |
604 break; | |
605 } | |
606 #endif /* defined(SQLITE_ENABLE_UPDATE_DELETE_LIMIT) | |
607 && !defined(SQLITE_OMIT_SUBQUERY) */ | |
608 | |
609 /* A lone identifier is the name of a column. | |
610 */ | |
611 case TK_ID: { | |
612 return lookupName(pParse, 0, 0, pExpr->u.zToken, pNC, pExpr); | |
613 } | |
614 | |
615 /* A table name and column name: ID.ID | |
616 ** Or a database, table and column: ID.ID.ID | |
617 */ | |
618 case TK_DOT: { | |
619 const char *zColumn; | |
620 const char *zTable; | |
621 const char *zDb; | |
622 Expr *pRight; | |
623 | |
624 /* if( pSrcList==0 ) break; */ | |
625 notValid(pParse, pNC, "the \".\" operator", NC_IdxExpr); | |
626 /*notValid(pParse, pNC, "the \".\" operator", NC_PartIdx|NC_IsCheck, 1);*/ | |
627 pRight = pExpr->pRight; | |
628 if( pRight->op==TK_ID ){ | |
629 zDb = 0; | |
630 zTable = pExpr->pLeft->u.zToken; | |
631 zColumn = pRight->u.zToken; | |
632 }else{ | |
633 assert( pRight->op==TK_DOT ); | |
634 zDb = pExpr->pLeft->u.zToken; | |
635 zTable = pRight->pLeft->u.zToken; | |
636 zColumn = pRight->pRight->u.zToken; | |
637 } | |
638 return lookupName(pParse, zDb, zTable, zColumn, pNC, pExpr); | |
639 } | |
640 | |
641 /* Resolve function names | |
642 */ | |
643 case TK_FUNCTION: { | |
644 ExprList *pList = pExpr->x.pList; /* The argument list */ | |
645 int n = pList ? pList->nExpr : 0; /* Number of arguments */ | |
646 int no_such_func = 0; /* True if no such function exists */ | |
647 int wrong_num_args = 0; /* True if wrong number of arguments */ | |
648 int is_agg = 0; /* True if is an aggregate function */ | |
649 int auth; /* Authorization to use the function */ | |
650 int nId; /* Number of characters in function name */ | |
651 const char *zId; /* The function name. */ | |
652 FuncDef *pDef; /* Information about the function */ | |
653 u8 enc = ENC(pParse->db); /* The database encoding */ | |
654 | |
655 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); | |
656 notValid(pParse, pNC, "functions", NC_PartIdx); | |
657 zId = pExpr->u.zToken; | |
658 nId = sqlite3Strlen30(zId); | |
659 pDef = sqlite3FindFunction(pParse->db, zId, nId, n, enc, 0); | |
660 if( pDef==0 ){ | |
661 pDef = sqlite3FindFunction(pParse->db, zId, nId, -2, enc, 0); | |
662 if( pDef==0 ){ | |
663 no_such_func = 1; | |
664 }else{ | |
665 wrong_num_args = 1; | |
666 } | |
667 }else{ | |
668 is_agg = pDef->xFunc==0; | |
669 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ | |
670 ExprSetProperty(pExpr, EP_Unlikely|EP_Skip); | |
671 if( n==2 ){ | |
672 pExpr->iTable = exprProbability(pList->a[1].pExpr); | |
673 if( pExpr->iTable<0 ){ | |
674 sqlite3ErrorMsg(pParse, | |
675 "second argument to likelihood() must be a " | |
676 "constant between 0.0 and 1.0"); | |
677 pNC->nErr++; | |
678 } | |
679 }else{ | |
680 /* EVIDENCE-OF: R-61304-29449 The unlikely(X) function is | |
681 ** equivalent to likelihood(X, 0.0625). | |
682 ** EVIDENCE-OF: R-01283-11636 The unlikely(X) function is | |
683 ** short-hand for likelihood(X,0.0625). | |
684 ** EVIDENCE-OF: R-36850-34127 The likely(X) function is short-hand | |
685 ** for likelihood(X,0.9375). | |
686 ** EVIDENCE-OF: R-53436-40973 The likely(X) function is equivalent | |
687 ** to likelihood(X,0.9375). */ | |
688 /* TUNING: unlikely() probability is 0.0625. likely() is 0.9375 */ | |
689 pExpr->iTable = pDef->zName[0]=='u' ? 8388608 : 125829120; | |
690 } | |
691 } | |
692 #ifndef SQLITE_OMIT_AUTHORIZATION | |
693 auth = sqlite3AuthCheck(pParse, SQLITE_FUNCTION, 0, pDef->zName, 0); | |
694 if( auth!=SQLITE_OK ){ | |
695 if( auth==SQLITE_DENY ){ | |
696 sqlite3ErrorMsg(pParse, "not authorized to use function: %s", | |
697 pDef->zName); | |
698 pNC->nErr++; | |
699 } | |
700 pExpr->op = TK_NULL; | |
701 return WRC_Prune; | |
702 } | |
703 #endif | |
704 if( pDef->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG) ){ | |
705 /* For the purposes of the EP_ConstFunc flag, date and time | |
706 ** functions and other functions that change slowly are considered | |
707 ** constant because they are constant for the duration of one query */ | |
708 ExprSetProperty(pExpr,EP_ConstFunc); | |
709 } | |
710 if( (pDef->funcFlags & SQLITE_FUNC_CONSTANT)==0 ){ | |
711 /* Date/time functions that use 'now', and other functions like | |
712 ** sqlite_version() that might change over time cannot be used | |
713 ** in an index. */ | |
714 notValid(pParse, pNC, "non-deterministic functions", NC_IdxExpr); | |
715 } | |
716 } | |
717 if( is_agg && (pNC->ncFlags & NC_AllowAgg)==0 ){ | |
718 sqlite3ErrorMsg(pParse, "misuse of aggregate function %.*s()", nId,zId); | |
719 pNC->nErr++; | |
720 is_agg = 0; | |
721 }else if( no_such_func && pParse->db->init.busy==0 ){ | |
722 sqlite3ErrorMsg(pParse, "no such function: %.*s", nId, zId); | |
723 pNC->nErr++; | |
724 }else if( wrong_num_args ){ | |
725 sqlite3ErrorMsg(pParse,"wrong number of arguments to function %.*s()", | |
726 nId, zId); | |
727 pNC->nErr++; | |
728 } | |
729 if( is_agg ) pNC->ncFlags &= ~NC_AllowAgg; | |
730 sqlite3WalkExprList(pWalker, pList); | |
731 if( is_agg ){ | |
732 NameContext *pNC2 = pNC; | |
733 pExpr->op = TK_AGG_FUNCTION; | |
734 pExpr->op2 = 0; | |
735 while( pNC2 && !sqlite3FunctionUsesThisSrc(pExpr, pNC2->pSrcList) ){ | |
736 pExpr->op2++; | |
737 pNC2 = pNC2->pNext; | |
738 } | |
739 assert( pDef!=0 ); | |
740 if( pNC2 ){ | |
741 assert( SQLITE_FUNC_MINMAX==NC_MinMaxAgg ); | |
742 testcase( (pDef->funcFlags & SQLITE_FUNC_MINMAX)!=0 ); | |
743 pNC2->ncFlags |= NC_HasAgg | (pDef->funcFlags & SQLITE_FUNC_MINMAX); | |
744 | |
745 } | |
746 pNC->ncFlags |= NC_AllowAgg; | |
747 } | |
748 /* FIX ME: Compute pExpr->affinity based on the expected return | |
749 ** type of the function | |
750 */ | |
751 return WRC_Prune; | |
752 } | |
753 #ifndef SQLITE_OMIT_SUBQUERY | |
754 case TK_SELECT: | |
755 case TK_EXISTS: testcase( pExpr->op==TK_EXISTS ); | |
756 #endif | |
757 case TK_IN: { | |
758 testcase( pExpr->op==TK_IN ); | |
759 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ | |
760 int nRef = pNC->nRef; | |
761 notValid(pParse, pNC, "subqueries", NC_IsCheck|NC_PartIdx|NC_IdxExpr); | |
762 sqlite3WalkSelect(pWalker, pExpr->x.pSelect); | |
763 assert( pNC->nRef>=nRef ); | |
764 if( nRef!=pNC->nRef ){ | |
765 ExprSetProperty(pExpr, EP_VarSelect); | |
766 } | |
767 } | |
768 break; | |
769 } | |
770 case TK_VARIABLE: { | |
771 notValid(pParse, pNC, "parameters", NC_IsCheck|NC_PartIdx|NC_IdxExpr); | |
772 break; | |
773 } | |
774 } | |
775 return (pParse->nErr || pParse->db->mallocFailed) ? WRC_Abort : WRC_Continue; | |
776 } | |
777 | |
778 /* | |
779 ** pEList is a list of expressions which are really the result set of the | |
780 ** a SELECT statement. pE is a term in an ORDER BY or GROUP BY clause. | |
781 ** This routine checks to see if pE is a simple identifier which corresponds | |
782 ** to the AS-name of one of the terms of the expression list. If it is, | |
783 ** this routine return an integer between 1 and N where N is the number of | |
784 ** elements in pEList, corresponding to the matching entry. If there is | |
785 ** no match, or if pE is not a simple identifier, then this routine | |
786 ** return 0. | |
787 ** | |
788 ** pEList has been resolved. pE has not. | |
789 */ | |
790 static int resolveAsName( | |
791 Parse *pParse, /* Parsing context for error messages */ | |
792 ExprList *pEList, /* List of expressions to scan */ | |
793 Expr *pE /* Expression we are trying to match */ | |
794 ){ | |
795 int i; /* Loop counter */ | |
796 | |
797 UNUSED_PARAMETER(pParse); | |
798 | |
799 if( pE->op==TK_ID ){ | |
800 char *zCol = pE->u.zToken; | |
801 for(i=0; i<pEList->nExpr; i++){ | |
802 char *zAs = pEList->a[i].zName; | |
803 if( zAs!=0 && sqlite3StrICmp(zAs, zCol)==0 ){ | |
804 return i+1; | |
805 } | |
806 } | |
807 } | |
808 return 0; | |
809 } | |
810 | |
811 /* | |
812 ** pE is a pointer to an expression which is a single term in the | |
813 ** ORDER BY of a compound SELECT. The expression has not been | |
814 ** name resolved. | |
815 ** | |
816 ** At the point this routine is called, we already know that the | |
817 ** ORDER BY term is not an integer index into the result set. That | |
818 ** case is handled by the calling routine. | |
819 ** | |
820 ** Attempt to match pE against result set columns in the left-most | |
821 ** SELECT statement. Return the index i of the matching column, | |
822 ** as an indication to the caller that it should sort by the i-th column. | |
823 ** The left-most column is 1. In other words, the value returned is the | |
824 ** same integer value that would be used in the SQL statement to indicate | |
825 ** the column. | |
826 ** | |
827 ** If there is no match, return 0. Return -1 if an error occurs. | |
828 */ | |
829 static int resolveOrderByTermToExprList( | |
830 Parse *pParse, /* Parsing context for error messages */ | |
831 Select *pSelect, /* The SELECT statement with the ORDER BY clause */ | |
832 Expr *pE /* The specific ORDER BY term */ | |
833 ){ | |
834 int i; /* Loop counter */ | |
835 ExprList *pEList; /* The columns of the result set */ | |
836 NameContext nc; /* Name context for resolving pE */ | |
837 sqlite3 *db; /* Database connection */ | |
838 int rc; /* Return code from subprocedures */ | |
839 u8 savedSuppErr; /* Saved value of db->suppressErr */ | |
840 | |
841 assert( sqlite3ExprIsInteger(pE, &i)==0 ); | |
842 pEList = pSelect->pEList; | |
843 | |
844 /* Resolve all names in the ORDER BY term expression | |
845 */ | |
846 memset(&nc, 0, sizeof(nc)); | |
847 nc.pParse = pParse; | |
848 nc.pSrcList = pSelect->pSrc; | |
849 nc.pEList = pEList; | |
850 nc.ncFlags = NC_AllowAgg; | |
851 nc.nErr = 0; | |
852 db = pParse->db; | |
853 savedSuppErr = db->suppressErr; | |
854 db->suppressErr = 1; | |
855 rc = sqlite3ResolveExprNames(&nc, pE); | |
856 db->suppressErr = savedSuppErr; | |
857 if( rc ) return 0; | |
858 | |
859 /* Try to match the ORDER BY expression against an expression | |
860 ** in the result set. Return an 1-based index of the matching | |
861 ** result-set entry. | |
862 */ | |
863 for(i=0; i<pEList->nExpr; i++){ | |
864 if( sqlite3ExprCompare(pEList->a[i].pExpr, pE, -1)<2 ){ | |
865 return i+1; | |
866 } | |
867 } | |
868 | |
869 /* If no match, return 0. */ | |
870 return 0; | |
871 } | |
872 | |
873 /* | |
874 ** Generate an ORDER BY or GROUP BY term out-of-range error. | |
875 */ | |
876 static void resolveOutOfRangeError( | |
877 Parse *pParse, /* The error context into which to write the error */ | |
878 const char *zType, /* "ORDER" or "GROUP" */ | |
879 int i, /* The index (1-based) of the term out of range */ | |
880 int mx /* Largest permissible value of i */ | |
881 ){ | |
882 sqlite3ErrorMsg(pParse, | |
883 "%r %s BY term out of range - should be " | |
884 "between 1 and %d", i, zType, mx); | |
885 } | |
886 | |
887 /* | |
888 ** Analyze the ORDER BY clause in a compound SELECT statement. Modify | |
889 ** each term of the ORDER BY clause is a constant integer between 1 | |
890 ** and N where N is the number of columns in the compound SELECT. | |
891 ** | |
892 ** ORDER BY terms that are already an integer between 1 and N are | |
893 ** unmodified. ORDER BY terms that are integers outside the range of | |
894 ** 1 through N generate an error. ORDER BY terms that are expressions | |
895 ** are matched against result set expressions of compound SELECT | |
896 ** beginning with the left-most SELECT and working toward the right. | |
897 ** At the first match, the ORDER BY expression is transformed into | |
898 ** the integer column number. | |
899 ** | |
900 ** Return the number of errors seen. | |
901 */ | |
902 static int resolveCompoundOrderBy( | |
903 Parse *pParse, /* Parsing context. Leave error messages here */ | |
904 Select *pSelect /* The SELECT statement containing the ORDER BY */ | |
905 ){ | |
906 int i; | |
907 ExprList *pOrderBy; | |
908 ExprList *pEList; | |
909 sqlite3 *db; | |
910 int moreToDo = 1; | |
911 | |
912 pOrderBy = pSelect->pOrderBy; | |
913 if( pOrderBy==0 ) return 0; | |
914 db = pParse->db; | |
915 #if SQLITE_MAX_COLUMN | |
916 if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ | |
917 sqlite3ErrorMsg(pParse, "too many terms in ORDER BY clause"); | |
918 return 1; | |
919 } | |
920 #endif | |
921 for(i=0; i<pOrderBy->nExpr; i++){ | |
922 pOrderBy->a[i].done = 0; | |
923 } | |
924 pSelect->pNext = 0; | |
925 while( pSelect->pPrior ){ | |
926 pSelect->pPrior->pNext = pSelect; | |
927 pSelect = pSelect->pPrior; | |
928 } | |
929 while( pSelect && moreToDo ){ | |
930 struct ExprList_item *pItem; | |
931 moreToDo = 0; | |
932 pEList = pSelect->pEList; | |
933 assert( pEList!=0 ); | |
934 for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){ | |
935 int iCol = -1; | |
936 Expr *pE, *pDup; | |
937 if( pItem->done ) continue; | |
938 pE = sqlite3ExprSkipCollate(pItem->pExpr); | |
939 if( sqlite3ExprIsInteger(pE, &iCol) ){ | |
940 if( iCol<=0 || iCol>pEList->nExpr ){ | |
941 resolveOutOfRangeError(pParse, "ORDER", i+1, pEList->nExpr); | |
942 return 1; | |
943 } | |
944 }else{ | |
945 iCol = resolveAsName(pParse, pEList, pE); | |
946 if( iCol==0 ){ | |
947 pDup = sqlite3ExprDup(db, pE, 0); | |
948 if( !db->mallocFailed ){ | |
949 assert(pDup); | |
950 iCol = resolveOrderByTermToExprList(pParse, pSelect, pDup); | |
951 } | |
952 sqlite3ExprDelete(db, pDup); | |
953 } | |
954 } | |
955 if( iCol>0 ){ | |
956 /* Convert the ORDER BY term into an integer column number iCol, | |
957 ** taking care to preserve the COLLATE clause if it exists */ | |
958 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0); | |
959 if( pNew==0 ) return 1; | |
960 pNew->flags |= EP_IntValue; | |
961 pNew->u.iValue = iCol; | |
962 if( pItem->pExpr==pE ){ | |
963 pItem->pExpr = pNew; | |
964 }else{ | |
965 Expr *pParent = pItem->pExpr; | |
966 assert( pParent->op==TK_COLLATE ); | |
967 while( pParent->pLeft->op==TK_COLLATE ) pParent = pParent->pLeft; | |
968 assert( pParent->pLeft==pE ); | |
969 pParent->pLeft = pNew; | |
970 } | |
971 sqlite3ExprDelete(db, pE); | |
972 pItem->u.x.iOrderByCol = (u16)iCol; | |
973 pItem->done = 1; | |
974 }else{ | |
975 moreToDo = 1; | |
976 } | |
977 } | |
978 pSelect = pSelect->pNext; | |
979 } | |
980 for(i=0; i<pOrderBy->nExpr; i++){ | |
981 if( pOrderBy->a[i].done==0 ){ | |
982 sqlite3ErrorMsg(pParse, "%r ORDER BY term does not match any " | |
983 "column in the result set", i+1); | |
984 return 1; | |
985 } | |
986 } | |
987 return 0; | |
988 } | |
989 | |
990 /* | |
991 ** Check every term in the ORDER BY or GROUP BY clause pOrderBy of | |
992 ** the SELECT statement pSelect. If any term is reference to a | |
993 ** result set expression (as determined by the ExprList.a.u.x.iOrderByCol | |
994 ** field) then convert that term into a copy of the corresponding result set | |
995 ** column. | |
996 ** | |
997 ** If any errors are detected, add an error message to pParse and | |
998 ** return non-zero. Return zero if no errors are seen. | |
999 */ | |
1000 int sqlite3ResolveOrderGroupBy( | |
1001 Parse *pParse, /* Parsing context. Leave error messages here */ | |
1002 Select *pSelect, /* The SELECT statement containing the clause */ | |
1003 ExprList *pOrderBy, /* The ORDER BY or GROUP BY clause to be processed */ | |
1004 const char *zType /* "ORDER" or "GROUP" */ | |
1005 ){ | |
1006 int i; | |
1007 sqlite3 *db = pParse->db; | |
1008 ExprList *pEList; | |
1009 struct ExprList_item *pItem; | |
1010 | |
1011 if( pOrderBy==0 || pParse->db->mallocFailed ) return 0; | |
1012 #if SQLITE_MAX_COLUMN | |
1013 if( pOrderBy->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){ | |
1014 sqlite3ErrorMsg(pParse, "too many terms in %s BY clause", zType); | |
1015 return 1; | |
1016 } | |
1017 #endif | |
1018 pEList = pSelect->pEList; | |
1019 assert( pEList!=0 ); /* sqlite3SelectNew() guarantees this */ | |
1020 for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){ | |
1021 if( pItem->u.x.iOrderByCol ){ | |
1022 if( pItem->u.x.iOrderByCol>pEList->nExpr ){ | |
1023 resolveOutOfRangeError(pParse, zType, i+1, pEList->nExpr); | |
1024 return 1; | |
1025 } | |
1026 resolveAlias(pParse, pEList, pItem->u.x.iOrderByCol-1, pItem->pExpr, | |
1027 zType,0); | |
1028 } | |
1029 } | |
1030 return 0; | |
1031 } | |
1032 | |
1033 /* | |
1034 ** pOrderBy is an ORDER BY or GROUP BY clause in SELECT statement pSelect. | |
1035 ** The Name context of the SELECT statement is pNC. zType is either | |
1036 ** "ORDER" or "GROUP" depending on which type of clause pOrderBy is. | |
1037 ** | |
1038 ** This routine resolves each term of the clause into an expression. | |
1039 ** If the order-by term is an integer I between 1 and N (where N is the | |
1040 ** number of columns in the result set of the SELECT) then the expression | |
1041 ** in the resolution is a copy of the I-th result-set expression. If | |
1042 ** the order-by term is an identifier that corresponds to the AS-name of | |
1043 ** a result-set expression, then the term resolves to a copy of the | |
1044 ** result-set expression. Otherwise, the expression is resolved in | |
1045 ** the usual way - using sqlite3ResolveExprNames(). | |
1046 ** | |
1047 ** This routine returns the number of errors. If errors occur, then | |
1048 ** an appropriate error message might be left in pParse. (OOM errors | |
1049 ** excepted.) | |
1050 */ | |
1051 static int resolveOrderGroupBy( | |
1052 NameContext *pNC, /* The name context of the SELECT statement */ | |
1053 Select *pSelect, /* The SELECT statement holding pOrderBy */ | |
1054 ExprList *pOrderBy, /* An ORDER BY or GROUP BY clause to resolve */ | |
1055 const char *zType /* Either "ORDER" or "GROUP", as appropriate */ | |
1056 ){ | |
1057 int i, j; /* Loop counters */ | |
1058 int iCol; /* Column number */ | |
1059 struct ExprList_item *pItem; /* A term of the ORDER BY clause */ | |
1060 Parse *pParse; /* Parsing context */ | |
1061 int nResult; /* Number of terms in the result set */ | |
1062 | |
1063 if( pOrderBy==0 ) return 0; | |
1064 nResult = pSelect->pEList->nExpr; | |
1065 pParse = pNC->pParse; | |
1066 for(i=0, pItem=pOrderBy->a; i<pOrderBy->nExpr; i++, pItem++){ | |
1067 Expr *pE = pItem->pExpr; | |
1068 Expr *pE2 = sqlite3ExprSkipCollate(pE); | |
1069 if( zType[0]!='G' ){ | |
1070 iCol = resolveAsName(pParse, pSelect->pEList, pE2); | |
1071 if( iCol>0 ){ | |
1072 /* If an AS-name match is found, mark this ORDER BY column as being | |
1073 ** a copy of the iCol-th result-set column. The subsequent call to | |
1074 ** sqlite3ResolveOrderGroupBy() will convert the expression to a | |
1075 ** copy of the iCol-th result-set expression. */ | |
1076 pItem->u.x.iOrderByCol = (u16)iCol; | |
1077 continue; | |
1078 } | |
1079 } | |
1080 if( sqlite3ExprIsInteger(pE2, &iCol) ){ | |
1081 /* The ORDER BY term is an integer constant. Again, set the column | |
1082 ** number so that sqlite3ResolveOrderGroupBy() will convert the | |
1083 ** order-by term to a copy of the result-set expression */ | |
1084 if( iCol<1 || iCol>0xffff ){ | |
1085 resolveOutOfRangeError(pParse, zType, i+1, nResult); | |
1086 return 1; | |
1087 } | |
1088 pItem->u.x.iOrderByCol = (u16)iCol; | |
1089 continue; | |
1090 } | |
1091 | |
1092 /* Otherwise, treat the ORDER BY term as an ordinary expression */ | |
1093 pItem->u.x.iOrderByCol = 0; | |
1094 if( sqlite3ResolveExprNames(pNC, pE) ){ | |
1095 return 1; | |
1096 } | |
1097 for(j=0; j<pSelect->pEList->nExpr; j++){ | |
1098 if( sqlite3ExprCompare(pE, pSelect->pEList->a[j].pExpr, -1)==0 ){ | |
1099 pItem->u.x.iOrderByCol = j+1; | |
1100 } | |
1101 } | |
1102 } | |
1103 return sqlite3ResolveOrderGroupBy(pParse, pSelect, pOrderBy, zType); | |
1104 } | |
1105 | |
1106 /* | |
1107 ** Resolve names in the SELECT statement p and all of its descendants. | |
1108 */ | |
1109 static int resolveSelectStep(Walker *pWalker, Select *p){ | |
1110 NameContext *pOuterNC; /* Context that contains this SELECT */ | |
1111 NameContext sNC; /* Name context of this SELECT */ | |
1112 int isCompound; /* True if p is a compound select */ | |
1113 int nCompound; /* Number of compound terms processed so far */ | |
1114 Parse *pParse; /* Parsing context */ | |
1115 int i; /* Loop counter */ | |
1116 ExprList *pGroupBy; /* The GROUP BY clause */ | |
1117 Select *pLeftmost; /* Left-most of SELECT of a compound */ | |
1118 sqlite3 *db; /* Database connection */ | |
1119 | |
1120 | |
1121 assert( p!=0 ); | |
1122 if( p->selFlags & SF_Resolved ){ | |
1123 return WRC_Prune; | |
1124 } | |
1125 pOuterNC = pWalker->u.pNC; | |
1126 pParse = pWalker->pParse; | |
1127 db = pParse->db; | |
1128 | |
1129 /* Normally sqlite3SelectExpand() will be called first and will have | |
1130 ** already expanded this SELECT. However, if this is a subquery within | |
1131 ** an expression, sqlite3ResolveExprNames() will be called without a | |
1132 ** prior call to sqlite3SelectExpand(). When that happens, let | |
1133 ** sqlite3SelectPrep() do all of the processing for this SELECT. | |
1134 ** sqlite3SelectPrep() will invoke both sqlite3SelectExpand() and | |
1135 ** this routine in the correct order. | |
1136 */ | |
1137 if( (p->selFlags & SF_Expanded)==0 ){ | |
1138 sqlite3SelectPrep(pParse, p, pOuterNC); | |
1139 return (pParse->nErr || db->mallocFailed) ? WRC_Abort : WRC_Prune; | |
1140 } | |
1141 | |
1142 isCompound = p->pPrior!=0; | |
1143 nCompound = 0; | |
1144 pLeftmost = p; | |
1145 while( p ){ | |
1146 assert( (p->selFlags & SF_Expanded)!=0 ); | |
1147 assert( (p->selFlags & SF_Resolved)==0 ); | |
1148 p->selFlags |= SF_Resolved; | |
1149 | |
1150 /* Resolve the expressions in the LIMIT and OFFSET clauses. These | |
1151 ** are not allowed to refer to any names, so pass an empty NameContext. | |
1152 */ | |
1153 memset(&sNC, 0, sizeof(sNC)); | |
1154 sNC.pParse = pParse; | |
1155 if( sqlite3ResolveExprNames(&sNC, p->pLimit) || | |
1156 sqlite3ResolveExprNames(&sNC, p->pOffset) ){ | |
1157 return WRC_Abort; | |
1158 } | |
1159 | |
1160 /* If the SF_Converted flags is set, then this Select object was | |
1161 ** was created by the convertCompoundSelectToSubquery() function. | |
1162 ** In this case the ORDER BY clause (p->pOrderBy) should be resolved | |
1163 ** as if it were part of the sub-query, not the parent. This block | |
1164 ** moves the pOrderBy down to the sub-query. It will be moved back | |
1165 ** after the names have been resolved. */ | |
1166 if( p->selFlags & SF_Converted ){ | |
1167 Select *pSub = p->pSrc->a[0].pSelect; | |
1168 assert( p->pSrc->nSrc==1 && p->pOrderBy ); | |
1169 assert( pSub->pPrior && pSub->pOrderBy==0 ); | |
1170 pSub->pOrderBy = p->pOrderBy; | |
1171 p->pOrderBy = 0; | |
1172 } | |
1173 | |
1174 /* Recursively resolve names in all subqueries | |
1175 */ | |
1176 for(i=0; i<p->pSrc->nSrc; i++){ | |
1177 struct SrcList_item *pItem = &p->pSrc->a[i]; | |
1178 if( pItem->pSelect ){ | |
1179 NameContext *pNC; /* Used to iterate name contexts */ | |
1180 int nRef = 0; /* Refcount for pOuterNC and outer contexts */ | |
1181 const char *zSavedContext = pParse->zAuthContext; | |
1182 | |
1183 /* Count the total number of references to pOuterNC and all of its | |
1184 ** parent contexts. After resolving references to expressions in | |
1185 ** pItem->pSelect, check if this value has changed. If so, then | |
1186 ** SELECT statement pItem->pSelect must be correlated. Set the | |
1187 ** pItem->fg.isCorrelated flag if this is the case. */ | |
1188 for(pNC=pOuterNC; pNC; pNC=pNC->pNext) nRef += pNC->nRef; | |
1189 | |
1190 if( pItem->zName ) pParse->zAuthContext = pItem->zName; | |
1191 sqlite3ResolveSelectNames(pParse, pItem->pSelect, pOuterNC); | |
1192 pParse->zAuthContext = zSavedContext; | |
1193 if( pParse->nErr || db->mallocFailed ) return WRC_Abort; | |
1194 | |
1195 for(pNC=pOuterNC; pNC; pNC=pNC->pNext) nRef -= pNC->nRef; | |
1196 assert( pItem->fg.isCorrelated==0 && nRef<=0 ); | |
1197 pItem->fg.isCorrelated = (nRef!=0); | |
1198 } | |
1199 } | |
1200 | |
1201 /* Set up the local name-context to pass to sqlite3ResolveExprNames() to | |
1202 ** resolve the result-set expression list. | |
1203 */ | |
1204 sNC.ncFlags = NC_AllowAgg; | |
1205 sNC.pSrcList = p->pSrc; | |
1206 sNC.pNext = pOuterNC; | |
1207 | |
1208 /* Resolve names in the result set. */ | |
1209 if( sqlite3ResolveExprListNames(&sNC, p->pEList) ) return WRC_Abort; | |
1210 | |
1211 /* If there are no aggregate functions in the result-set, and no GROUP BY | |
1212 ** expression, do not allow aggregates in any of the other expressions. | |
1213 */ | |
1214 assert( (p->selFlags & SF_Aggregate)==0 ); | |
1215 pGroupBy = p->pGroupBy; | |
1216 if( pGroupBy || (sNC.ncFlags & NC_HasAgg)!=0 ){ | |
1217 assert( NC_MinMaxAgg==SF_MinMaxAgg ); | |
1218 p->selFlags |= SF_Aggregate | (sNC.ncFlags&NC_MinMaxAgg); | |
1219 }else{ | |
1220 sNC.ncFlags &= ~NC_AllowAgg; | |
1221 } | |
1222 | |
1223 /* If a HAVING clause is present, then there must be a GROUP BY clause. | |
1224 */ | |
1225 if( p->pHaving && !pGroupBy ){ | |
1226 sqlite3ErrorMsg(pParse, "a GROUP BY clause is required before HAVING"); | |
1227 return WRC_Abort; | |
1228 } | |
1229 | |
1230 /* Add the output column list to the name-context before parsing the | |
1231 ** other expressions in the SELECT statement. This is so that | |
1232 ** expressions in the WHERE clause (etc.) can refer to expressions by | |
1233 ** aliases in the result set. | |
1234 ** | |
1235 ** Minor point: If this is the case, then the expression will be | |
1236 ** re-evaluated for each reference to it. | |
1237 */ | |
1238 sNC.pEList = p->pEList; | |
1239 if( sqlite3ResolveExprNames(&sNC, p->pHaving) ) return WRC_Abort; | |
1240 if( sqlite3ResolveExprNames(&sNC, p->pWhere) ) return WRC_Abort; | |
1241 | |
1242 /* Resolve names in table-valued-function arguments */ | |
1243 for(i=0; i<p->pSrc->nSrc; i++){ | |
1244 struct SrcList_item *pItem = &p->pSrc->a[i]; | |
1245 if( pItem->fg.isTabFunc | |
1246 && sqlite3ResolveExprListNames(&sNC, pItem->u1.pFuncArg) | |
1247 ){ | |
1248 return WRC_Abort; | |
1249 } | |
1250 } | |
1251 | |
1252 /* The ORDER BY and GROUP BY clauses may not refer to terms in | |
1253 ** outer queries | |
1254 */ | |
1255 sNC.pNext = 0; | |
1256 sNC.ncFlags |= NC_AllowAgg; | |
1257 | |
1258 /* If this is a converted compound query, move the ORDER BY clause from | |
1259 ** the sub-query back to the parent query. At this point each term | |
1260 ** within the ORDER BY clause has been transformed to an integer value. | |
1261 ** These integers will be replaced by copies of the corresponding result | |
1262 ** set expressions by the call to resolveOrderGroupBy() below. */ | |
1263 if( p->selFlags & SF_Converted ){ | |
1264 Select *pSub = p->pSrc->a[0].pSelect; | |
1265 p->pOrderBy = pSub->pOrderBy; | |
1266 pSub->pOrderBy = 0; | |
1267 } | |
1268 | |
1269 /* Process the ORDER BY clause for singleton SELECT statements. | |
1270 ** The ORDER BY clause for compounds SELECT statements is handled | |
1271 ** below, after all of the result-sets for all of the elements of | |
1272 ** the compound have been resolved. | |
1273 ** | |
1274 ** If there is an ORDER BY clause on a term of a compound-select other | |
1275 ** than the right-most term, then that is a syntax error. But the error | |
1276 ** is not detected until much later, and so we need to go ahead and | |
1277 ** resolve those symbols on the incorrect ORDER BY for consistency. | |
1278 */ | |
1279 if( isCompound<=nCompound /* Defer right-most ORDER BY of a compound */ | |
1280 && resolveOrderGroupBy(&sNC, p, p->pOrderBy, "ORDER") | |
1281 ){ | |
1282 return WRC_Abort; | |
1283 } | |
1284 if( db->mallocFailed ){ | |
1285 return WRC_Abort; | |
1286 } | |
1287 | |
1288 /* Resolve the GROUP BY clause. At the same time, make sure | |
1289 ** the GROUP BY clause does not contain aggregate functions. | |
1290 */ | |
1291 if( pGroupBy ){ | |
1292 struct ExprList_item *pItem; | |
1293 | |
1294 if( resolveOrderGroupBy(&sNC, p, pGroupBy, "GROUP") || db->mallocFailed ){ | |
1295 return WRC_Abort; | |
1296 } | |
1297 for(i=0, pItem=pGroupBy->a; i<pGroupBy->nExpr; i++, pItem++){ | |
1298 if( ExprHasProperty(pItem->pExpr, EP_Agg) ){ | |
1299 sqlite3ErrorMsg(pParse, "aggregate functions are not allowed in " | |
1300 "the GROUP BY clause"); | |
1301 return WRC_Abort; | |
1302 } | |
1303 } | |
1304 } | |
1305 | |
1306 /* If this is part of a compound SELECT, check that it has the right | |
1307 ** number of expressions in the select list. */ | |
1308 if( p->pNext && p->pEList->nExpr!=p->pNext->pEList->nExpr ){ | |
1309 sqlite3SelectWrongNumTermsError(pParse, p->pNext); | |
1310 return WRC_Abort; | |
1311 } | |
1312 | |
1313 /* Advance to the next term of the compound | |
1314 */ | |
1315 p = p->pPrior; | |
1316 nCompound++; | |
1317 } | |
1318 | |
1319 /* Resolve the ORDER BY on a compound SELECT after all terms of | |
1320 ** the compound have been resolved. | |
1321 */ | |
1322 if( isCompound && resolveCompoundOrderBy(pParse, pLeftmost) ){ | |
1323 return WRC_Abort; | |
1324 } | |
1325 | |
1326 return WRC_Prune; | |
1327 } | |
1328 | |
1329 /* | |
1330 ** This routine walks an expression tree and resolves references to | |
1331 ** table columns and result-set columns. At the same time, do error | |
1332 ** checking on function usage and set a flag if any aggregate functions | |
1333 ** are seen. | |
1334 ** | |
1335 ** To resolve table columns references we look for nodes (or subtrees) of the | |
1336 ** form X.Y.Z or Y.Z or just Z where | |
1337 ** | |
1338 ** X: The name of a database. Ex: "main" or "temp" or | |
1339 ** the symbolic name assigned to an ATTACH-ed database. | |
1340 ** | |
1341 ** Y: The name of a table in a FROM clause. Or in a trigger | |
1342 ** one of the special names "old" or "new". | |
1343 ** | |
1344 ** Z: The name of a column in table Y. | |
1345 ** | |
1346 ** The node at the root of the subtree is modified as follows: | |
1347 ** | |
1348 ** Expr.op Changed to TK_COLUMN | |
1349 ** Expr.pTab Points to the Table object for X.Y | |
1350 ** Expr.iColumn The column index in X.Y. -1 for the rowid. | |
1351 ** Expr.iTable The VDBE cursor number for X.Y | |
1352 ** | |
1353 ** | |
1354 ** To resolve result-set references, look for expression nodes of the | |
1355 ** form Z (with no X and Y prefix) where the Z matches the right-hand | |
1356 ** size of an AS clause in the result-set of a SELECT. The Z expression | |
1357 ** is replaced by a copy of the left-hand side of the result-set expression. | |
1358 ** Table-name and function resolution occurs on the substituted expression | |
1359 ** tree. For example, in: | |
1360 ** | |
1361 ** SELECT a+b AS x, c+d AS y FROM t1 ORDER BY x; | |
1362 ** | |
1363 ** The "x" term of the order by is replaced by "a+b" to render: | |
1364 ** | |
1365 ** SELECT a+b AS x, c+d AS y FROM t1 ORDER BY a+b; | |
1366 ** | |
1367 ** Function calls are checked to make sure that the function is | |
1368 ** defined and that the correct number of arguments are specified. | |
1369 ** If the function is an aggregate function, then the NC_HasAgg flag is | |
1370 ** set and the opcode is changed from TK_FUNCTION to TK_AGG_FUNCTION. | |
1371 ** If an expression contains aggregate functions then the EP_Agg | |
1372 ** property on the expression is set. | |
1373 ** | |
1374 ** An error message is left in pParse if anything is amiss. The number | |
1375 ** if errors is returned. | |
1376 */ | |
1377 int sqlite3ResolveExprNames( | |
1378 NameContext *pNC, /* Namespace to resolve expressions in. */ | |
1379 Expr *pExpr /* The expression to be analyzed. */ | |
1380 ){ | |
1381 u16 savedHasAgg; | |
1382 Walker w; | |
1383 | |
1384 if( pExpr==0 ) return 0; | |
1385 #if SQLITE_MAX_EXPR_DEPTH>0 | |
1386 { | |
1387 Parse *pParse = pNC->pParse; | |
1388 if( sqlite3ExprCheckHeight(pParse, pExpr->nHeight+pNC->pParse->nHeight) ){ | |
1389 return 1; | |
1390 } | |
1391 pParse->nHeight += pExpr->nHeight; | |
1392 } | |
1393 #endif | |
1394 savedHasAgg = pNC->ncFlags & (NC_HasAgg|NC_MinMaxAgg); | |
1395 pNC->ncFlags &= ~(NC_HasAgg|NC_MinMaxAgg); | |
1396 memset(&w, 0, sizeof(w)); | |
1397 w.xExprCallback = resolveExprStep; | |
1398 w.xSelectCallback = resolveSelectStep; | |
1399 w.pParse = pNC->pParse; | |
1400 w.u.pNC = pNC; | |
1401 sqlite3WalkExpr(&w, pExpr); | |
1402 #if SQLITE_MAX_EXPR_DEPTH>0 | |
1403 pNC->pParse->nHeight -= pExpr->nHeight; | |
1404 #endif | |
1405 if( pNC->nErr>0 || w.pParse->nErr>0 ){ | |
1406 ExprSetProperty(pExpr, EP_Error); | |
1407 } | |
1408 if( pNC->ncFlags & NC_HasAgg ){ | |
1409 ExprSetProperty(pExpr, EP_Agg); | |
1410 } | |
1411 pNC->ncFlags |= savedHasAgg; | |
1412 return ExprHasProperty(pExpr, EP_Error); | |
1413 } | |
1414 | |
1415 /* | |
1416 ** Resolve all names for all expression in an expression list. This is | |
1417 ** just like sqlite3ResolveExprNames() except that it works for an expression | |
1418 ** list rather than a single expression. | |
1419 */ | |
1420 int sqlite3ResolveExprListNames( | |
1421 NameContext *pNC, /* Namespace to resolve expressions in. */ | |
1422 ExprList *pList /* The expression list to be analyzed. */ | |
1423 ){ | |
1424 int i; | |
1425 if( pList ){ | |
1426 for(i=0; i<pList->nExpr; i++){ | |
1427 if( sqlite3ResolveExprNames(pNC, pList->a[i].pExpr) ) return WRC_Abort; | |
1428 } | |
1429 } | |
1430 return WRC_Continue; | |
1431 } | |
1432 | |
1433 /* | |
1434 ** Resolve all names in all expressions of a SELECT and in all | |
1435 ** decendents of the SELECT, including compounds off of p->pPrior, | |
1436 ** subqueries in expressions, and subqueries used as FROM clause | |
1437 ** terms. | |
1438 ** | |
1439 ** See sqlite3ResolveExprNames() for a description of the kinds of | |
1440 ** transformations that occur. | |
1441 ** | |
1442 ** All SELECT statements should have been expanded using | |
1443 ** sqlite3SelectExpand() prior to invoking this routine. | |
1444 */ | |
1445 void sqlite3ResolveSelectNames( | |
1446 Parse *pParse, /* The parser context */ | |
1447 Select *p, /* The SELECT statement being coded. */ | |
1448 NameContext *pOuterNC /* Name context for parent SELECT statement */ | |
1449 ){ | |
1450 Walker w; | |
1451 | |
1452 assert( p!=0 ); | |
1453 memset(&w, 0, sizeof(w)); | |
1454 w.xExprCallback = resolveExprStep; | |
1455 w.xSelectCallback = resolveSelectStep; | |
1456 w.pParse = pParse; | |
1457 w.u.pNC = pOuterNC; | |
1458 sqlite3WalkSelect(&w, p); | |
1459 } | |
1460 | |
1461 /* | |
1462 ** Resolve names in expressions that can only reference a single table: | |
1463 ** | |
1464 ** * CHECK constraints | |
1465 ** * WHERE clauses on partial indices | |
1466 ** | |
1467 ** The Expr.iTable value for Expr.op==TK_COLUMN nodes of the expression | |
1468 ** is set to -1 and the Expr.iColumn value is set to the column number. | |
1469 ** | |
1470 ** Any errors cause an error message to be set in pParse. | |
1471 */ | |
1472 void sqlite3ResolveSelfReference( | |
1473 Parse *pParse, /* Parsing context */ | |
1474 Table *pTab, /* The table being referenced */ | |
1475 int type, /* NC_IsCheck or NC_PartIdx or NC_IdxExpr */ | |
1476 Expr *pExpr, /* Expression to resolve. May be NULL. */ | |
1477 ExprList *pList /* Expression list to resolve. May be NUL. */ | |
1478 ){ | |
1479 SrcList sSrc; /* Fake SrcList for pParse->pNewTable */ | |
1480 NameContext sNC; /* Name context for pParse->pNewTable */ | |
1481 | |
1482 assert( type==NC_IsCheck || type==NC_PartIdx || type==NC_IdxExpr ); | |
1483 memset(&sNC, 0, sizeof(sNC)); | |
1484 memset(&sSrc, 0, sizeof(sSrc)); | |
1485 sSrc.nSrc = 1; | |
1486 sSrc.a[0].zName = pTab->zName; | |
1487 sSrc.a[0].pTab = pTab; | |
1488 sSrc.a[0].iCursor = -1; | |
1489 sNC.pParse = pParse; | |
1490 sNC.pSrcList = &sSrc; | |
1491 sNC.ncFlags = type; | |
1492 if( sqlite3ResolveExprNames(&sNC, pExpr) ) return; | |
1493 if( pList ) sqlite3ResolveExprListNames(&sNC, pList); | |
1494 } | |
OLD | NEW |