OLD | NEW |
| (Empty) |
1 /* | |
2 ** 2008 November 05 | |
3 ** | |
4 ** The author disclaims copyright to this source code. In place of | |
5 ** a legal notice, here is a blessing: | |
6 ** | |
7 ** May you do good and not evil. | |
8 ** May you find forgiveness for yourself and forgive others. | |
9 ** May you share freely, never taking more than you give. | |
10 ** | |
11 ************************************************************************* | |
12 ** | |
13 ** This file implements the default page cache implementation (the | |
14 ** sqlite3_pcache interface). It also contains part of the implementation | |
15 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features. | |
16 ** If the default page cache implementation is overridden, then neither of | |
17 ** these two features are available. | |
18 ** | |
19 ** A Page cache line looks like this: | |
20 ** | |
21 ** ------------------------------------------------------------- | |
22 ** | database page content | PgHdr1 | MemPage | PgHdr | | |
23 ** ------------------------------------------------------------- | |
24 ** | |
25 ** The database page content is up front (so that buffer overreads tend to | |
26 ** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions). MemPage | |
27 ** is the extension added by the btree.c module containing information such | |
28 ** as the database page number and how that database page is used. PgHdr | |
29 ** is added by the pcache.c layer and contains information used to keep track | |
30 ** of which pages are "dirty". PgHdr1 is an extension added by this | |
31 ** module (pcache1.c). The PgHdr1 header is a subclass of sqlite3_pcache_page. | |
32 ** PgHdr1 contains information needed to look up a page by its page number. | |
33 ** The superclass sqlite3_pcache_page.pBuf points to the start of the | |
34 ** database page content and sqlite3_pcache_page.pExtra points to PgHdr. | |
35 ** | |
36 ** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at | |
37 ** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size). The | |
38 ** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this | |
39 ** size can vary according to architecture, compile-time options, and | |
40 ** SQLite library version number. | |
41 ** | |
42 ** If SQLITE_PCACHE_SEPARATE_HEADER is defined, then the extension is obtained | |
43 ** using a separate memory allocation from the database page content. This | |
44 ** seeks to overcome the "clownshoe" problem (also called "internal | |
45 ** fragmentation" in academic literature) of allocating a few bytes more | |
46 ** than a power of two with the memory allocator rounding up to the next | |
47 ** power of two, and leaving the rounded-up space unused. | |
48 ** | |
49 ** This module tracks pointers to PgHdr1 objects. Only pcache.c communicates | |
50 ** with this module. Information is passed back and forth as PgHdr1 pointers. | |
51 ** | |
52 ** The pcache.c and pager.c modules deal pointers to PgHdr objects. | |
53 ** The btree.c module deals with pointers to MemPage objects. | |
54 ** | |
55 ** SOURCE OF PAGE CACHE MEMORY: | |
56 ** | |
57 ** Memory for a page might come from any of three sources: | |
58 ** | |
59 ** (1) The general-purpose memory allocator - sqlite3Malloc() | |
60 ** (2) Global page-cache memory provided using sqlite3_config() with | |
61 ** SQLITE_CONFIG_PAGECACHE. | |
62 ** (3) PCache-local bulk allocation. | |
63 ** | |
64 ** The third case is a chunk of heap memory (defaulting to 100 pages worth) | |
65 ** that is allocated when the page cache is created. The size of the local | |
66 ** bulk allocation can be adjusted using | |
67 ** | |
68 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N). | |
69 ** | |
70 ** If N is positive, then N pages worth of memory are allocated using a single | |
71 ** sqlite3Malloc() call and that memory is used for the first N pages allocated. | |
72 ** Or if N is negative, then -1024*N bytes of memory are allocated and used | |
73 ** for as many pages as can be accomodated. | |
74 ** | |
75 ** Only one of (2) or (3) can be used. Once the memory available to (2) or | |
76 ** (3) is exhausted, subsequent allocations fail over to the general-purpose | |
77 ** memory allocator (1). | |
78 ** | |
79 ** Earlier versions of SQLite used only methods (1) and (2). But experiments | |
80 ** show that method (3) with N==100 provides about a 5% performance boost for | |
81 ** common workloads. | |
82 */ | |
83 #include "sqliteInt.h" | |
84 | |
85 typedef struct PCache1 PCache1; | |
86 typedef struct PgHdr1 PgHdr1; | |
87 typedef struct PgFreeslot PgFreeslot; | |
88 typedef struct PGroup PGroup; | |
89 | |
90 /* | |
91 ** Each cache entry is represented by an instance of the following | |
92 ** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of | |
93 ** PgHdr1.pCache->szPage bytes is allocated directly before this structure | |
94 ** in memory. | |
95 */ | |
96 struct PgHdr1 { | |
97 sqlite3_pcache_page page; /* Base class. Must be first. pBuf & pExtra */ | |
98 unsigned int iKey; /* Key value (page number) */ | |
99 u8 isPinned; /* Page in use, not on the LRU list */ | |
100 u8 isBulkLocal; /* This page from bulk local storage */ | |
101 u8 isAnchor; /* This is the PGroup.lru element */ | |
102 PgHdr1 *pNext; /* Next in hash table chain */ | |
103 PCache1 *pCache; /* Cache that currently owns this page */ | |
104 PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */ | |
105 PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */ | |
106 }; | |
107 | |
108 /* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set | |
109 ** of one or more PCaches that are able to recycle each other's unpinned | |
110 ** pages when they are under memory pressure. A PGroup is an instance of | |
111 ** the following object. | |
112 ** | |
113 ** This page cache implementation works in one of two modes: | |
114 ** | |
115 ** (1) Every PCache is the sole member of its own PGroup. There is | |
116 ** one PGroup per PCache. | |
117 ** | |
118 ** (2) There is a single global PGroup that all PCaches are a member | |
119 ** of. | |
120 ** | |
121 ** Mode 1 uses more memory (since PCache instances are not able to rob | |
122 ** unused pages from other PCaches) but it also operates without a mutex, | |
123 ** and is therefore often faster. Mode 2 requires a mutex in order to be | |
124 ** threadsafe, but recycles pages more efficiently. | |
125 ** | |
126 ** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single | |
127 ** PGroup which is the pcache1.grp global variable and its mutex is | |
128 ** SQLITE_MUTEX_STATIC_LRU. | |
129 */ | |
130 struct PGroup { | |
131 sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */ | |
132 unsigned int nMaxPage; /* Sum of nMax for purgeable caches */ | |
133 unsigned int nMinPage; /* Sum of nMin for purgeable caches */ | |
134 unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */ | |
135 unsigned int nCurrentPage; /* Number of purgeable pages allocated */ | |
136 PgHdr1 lru; /* The beginning and end of the LRU list */ | |
137 }; | |
138 | |
139 /* Each page cache is an instance of the following object. Every | |
140 ** open database file (including each in-memory database and each | |
141 ** temporary or transient database) has a single page cache which | |
142 ** is an instance of this object. | |
143 ** | |
144 ** Pointers to structures of this type are cast and returned as | |
145 ** opaque sqlite3_pcache* handles. | |
146 */ | |
147 struct PCache1 { | |
148 /* Cache configuration parameters. Page size (szPage) and the purgeable | |
149 ** flag (bPurgeable) are set when the cache is created. nMax may be | |
150 ** modified at any time by a call to the pcache1Cachesize() method. | |
151 ** The PGroup mutex must be held when accessing nMax. | |
152 */ | |
153 PGroup *pGroup; /* PGroup this cache belongs to */ | |
154 int szPage; /* Size of database content section */ | |
155 int szExtra; /* sizeof(MemPage)+sizeof(PgHdr) */ | |
156 int szAlloc; /* Total size of one pcache line */ | |
157 int bPurgeable; /* True if cache is purgeable */ | |
158 unsigned int nMin; /* Minimum number of pages reserved */ | |
159 unsigned int nMax; /* Configured "cache_size" value */ | |
160 unsigned int n90pct; /* nMax*9/10 */ | |
161 unsigned int iMaxKey; /* Largest key seen since xTruncate() */ | |
162 | |
163 /* Hash table of all pages. The following variables may only be accessed | |
164 ** when the accessor is holding the PGroup mutex. | |
165 */ | |
166 unsigned int nRecyclable; /* Number of pages in the LRU list */ | |
167 unsigned int nPage; /* Total number of pages in apHash */ | |
168 unsigned int nHash; /* Number of slots in apHash[] */ | |
169 PgHdr1 **apHash; /* Hash table for fast lookup by key */ | |
170 PgHdr1 *pFree; /* List of unused pcache-local pages */ | |
171 void *pBulk; /* Bulk memory used by pcache-local */ | |
172 }; | |
173 | |
174 /* | |
175 ** Free slots in the allocator used to divide up the global page cache | |
176 ** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism. | |
177 */ | |
178 struct PgFreeslot { | |
179 PgFreeslot *pNext; /* Next free slot */ | |
180 }; | |
181 | |
182 /* | |
183 ** Global data used by this cache. | |
184 */ | |
185 static SQLITE_WSD struct PCacheGlobal { | |
186 PGroup grp; /* The global PGroup for mode (2) */ | |
187 | |
188 /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The | |
189 ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all | |
190 ** fixed at sqlite3_initialize() time and do not require mutex protection. | |
191 ** The nFreeSlot and pFree values do require mutex protection. | |
192 */ | |
193 int isInit; /* True if initialized */ | |
194 int separateCache; /* Use a new PGroup for each PCache */ | |
195 int nInitPage; /* Initial bulk allocation size */ | |
196 int szSlot; /* Size of each free slot */ | |
197 int nSlot; /* The number of pcache slots */ | |
198 int nReserve; /* Try to keep nFreeSlot above this */ | |
199 void *pStart, *pEnd; /* Bounds of global page cache memory */ | |
200 /* Above requires no mutex. Use mutex below for variable that follow. */ | |
201 sqlite3_mutex *mutex; /* Mutex for accessing the following: */ | |
202 PgFreeslot *pFree; /* Free page blocks */ | |
203 int nFreeSlot; /* Number of unused pcache slots */ | |
204 /* The following value requires a mutex to change. We skip the mutex on | |
205 ** reading because (1) most platforms read a 32-bit integer atomically and | |
206 ** (2) even if an incorrect value is read, no great harm is done since this | |
207 ** is really just an optimization. */ | |
208 int bUnderPressure; /* True if low on PAGECACHE memory */ | |
209 } pcache1_g; | |
210 | |
211 /* | |
212 ** All code in this file should access the global structure above via the | |
213 ** alias "pcache1". This ensures that the WSD emulation is used when | |
214 ** compiling for systems that do not support real WSD. | |
215 */ | |
216 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g)) | |
217 | |
218 /* | |
219 ** Macros to enter and leave the PCache LRU mutex. | |
220 */ | |
221 #if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0 | |
222 # define pcache1EnterMutex(X) assert((X)->mutex==0) | |
223 # define pcache1LeaveMutex(X) assert((X)->mutex==0) | |
224 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 0 | |
225 #else | |
226 # define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex) | |
227 # define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex) | |
228 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 1 | |
229 #endif | |
230 | |
231 /******************************************************************************/ | |
232 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/ | |
233 | |
234 | |
235 /* | |
236 ** This function is called during initialization if a static buffer is | |
237 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE | |
238 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large | |
239 ** enough to contain 'n' buffers of 'sz' bytes each. | |
240 ** | |
241 ** This routine is called from sqlite3_initialize() and so it is guaranteed | |
242 ** to be serialized already. There is no need for further mutexing. | |
243 */ | |
244 void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){ | |
245 if( pcache1.isInit ){ | |
246 PgFreeslot *p; | |
247 if( pBuf==0 ) sz = n = 0; | |
248 sz = ROUNDDOWN8(sz); | |
249 pcache1.szSlot = sz; | |
250 pcache1.nSlot = pcache1.nFreeSlot = n; | |
251 pcache1.nReserve = n>90 ? 10 : (n/10 + 1); | |
252 pcache1.pStart = pBuf; | |
253 pcache1.pFree = 0; | |
254 pcache1.bUnderPressure = 0; | |
255 while( n-- ){ | |
256 p = (PgFreeslot*)pBuf; | |
257 p->pNext = pcache1.pFree; | |
258 pcache1.pFree = p; | |
259 pBuf = (void*)&((char*)pBuf)[sz]; | |
260 } | |
261 pcache1.pEnd = pBuf; | |
262 } | |
263 } | |
264 | |
265 /* | |
266 ** Try to initialize the pCache->pFree and pCache->pBulk fields. Return | |
267 ** true if pCache->pFree ends up containing one or more free pages. | |
268 */ | |
269 static int pcache1InitBulk(PCache1 *pCache){ | |
270 i64 szBulk; | |
271 char *zBulk; | |
272 if( pcache1.nInitPage==0 ) return 0; | |
273 /* Do not bother with a bulk allocation if the cache size very small */ | |
274 if( pCache->nMax<3 ) return 0; | |
275 sqlite3BeginBenignMalloc(); | |
276 if( pcache1.nInitPage>0 ){ | |
277 szBulk = pCache->szAlloc * (i64)pcache1.nInitPage; | |
278 }else{ | |
279 szBulk = -1024 * (i64)pcache1.nInitPage; | |
280 } | |
281 if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){ | |
282 szBulk = pCache->szAlloc*pCache->nMax; | |
283 } | |
284 zBulk = pCache->pBulk = sqlite3Malloc( szBulk ); | |
285 sqlite3EndBenignMalloc(); | |
286 if( zBulk ){ | |
287 int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc; | |
288 int i; | |
289 for(i=0; i<nBulk; i++){ | |
290 PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage]; | |
291 pX->page.pBuf = zBulk; | |
292 pX->page.pExtra = &pX[1]; | |
293 pX->isBulkLocal = 1; | |
294 pX->isAnchor = 0; | |
295 pX->pNext = pCache->pFree; | |
296 pCache->pFree = pX; | |
297 zBulk += pCache->szAlloc; | |
298 } | |
299 } | |
300 return pCache->pFree!=0; | |
301 } | |
302 | |
303 /* | |
304 ** Malloc function used within this file to allocate space from the buffer | |
305 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no | |
306 ** such buffer exists or there is no space left in it, this function falls | |
307 ** back to sqlite3Malloc(). | |
308 ** | |
309 ** Multiple threads can run this routine at the same time. Global variables | |
310 ** in pcache1 need to be protected via mutex. | |
311 */ | |
312 static void *pcache1Alloc(int nByte){ | |
313 void *p = 0; | |
314 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); | |
315 if( nByte<=pcache1.szSlot ){ | |
316 sqlite3_mutex_enter(pcache1.mutex); | |
317 p = (PgHdr1 *)pcache1.pFree; | |
318 if( p ){ | |
319 pcache1.pFree = pcache1.pFree->pNext; | |
320 pcache1.nFreeSlot--; | |
321 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; | |
322 assert( pcache1.nFreeSlot>=0 ); | |
323 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte); | |
324 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1); | |
325 } | |
326 sqlite3_mutex_leave(pcache1.mutex); | |
327 } | |
328 if( p==0 ){ | |
329 /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get | |
330 ** it from sqlite3Malloc instead. | |
331 */ | |
332 p = sqlite3Malloc(nByte); | |
333 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS | |
334 if( p ){ | |
335 int sz = sqlite3MallocSize(p); | |
336 sqlite3_mutex_enter(pcache1.mutex); | |
337 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte); | |
338 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz); | |
339 sqlite3_mutex_leave(pcache1.mutex); | |
340 } | |
341 #endif | |
342 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); | |
343 } | |
344 return p; | |
345 } | |
346 | |
347 /* | |
348 ** Free an allocated buffer obtained from pcache1Alloc(). | |
349 */ | |
350 static void pcache1Free(void *p){ | |
351 int nFreed = 0; | |
352 if( p==0 ) return; | |
353 if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){ | |
354 PgFreeslot *pSlot; | |
355 sqlite3_mutex_enter(pcache1.mutex); | |
356 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1); | |
357 pSlot = (PgFreeslot*)p; | |
358 pSlot->pNext = pcache1.pFree; | |
359 pcache1.pFree = pSlot; | |
360 pcache1.nFreeSlot++; | |
361 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve; | |
362 assert( pcache1.nFreeSlot<=pcache1.nSlot ); | |
363 sqlite3_mutex_leave(pcache1.mutex); | |
364 }else{ | |
365 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); | |
366 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); | |
367 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS | |
368 nFreed = sqlite3MallocSize(p); | |
369 sqlite3_mutex_enter(pcache1.mutex); | |
370 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed); | |
371 sqlite3_mutex_leave(pcache1.mutex); | |
372 #endif | |
373 sqlite3_free(p); | |
374 } | |
375 } | |
376 | |
377 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT | |
378 /* | |
379 ** Return the size of a pcache allocation | |
380 */ | |
381 static int pcache1MemSize(void *p){ | |
382 if( p>=pcache1.pStart && p<pcache1.pEnd ){ | |
383 return pcache1.szSlot; | |
384 }else{ | |
385 int iSize; | |
386 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) ); | |
387 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); | |
388 iSize = sqlite3MallocSize(p); | |
389 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE); | |
390 return iSize; | |
391 } | |
392 } | |
393 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ | |
394 | |
395 /* | |
396 ** Allocate a new page object initially associated with cache pCache. | |
397 */ | |
398 static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){ | |
399 PgHdr1 *p = 0; | |
400 void *pPg; | |
401 | |
402 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); | |
403 if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){ | |
404 p = pCache->pFree; | |
405 pCache->pFree = p->pNext; | |
406 p->pNext = 0; | |
407 }else{ | |
408 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT | |
409 /* The group mutex must be released before pcache1Alloc() is called. This | |
410 ** is because it might call sqlite3_release_memory(), which assumes that | |
411 ** this mutex is not held. */ | |
412 assert( pcache1.separateCache==0 ); | |
413 assert( pCache->pGroup==&pcache1.grp ); | |
414 pcache1LeaveMutex(pCache->pGroup); | |
415 #endif | |
416 if( benignMalloc ){ sqlite3BeginBenignMalloc(); } | |
417 #ifdef SQLITE_PCACHE_SEPARATE_HEADER | |
418 pPg = pcache1Alloc(pCache->szPage); | |
419 p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra); | |
420 if( !pPg || !p ){ | |
421 pcache1Free(pPg); | |
422 sqlite3_free(p); | |
423 pPg = 0; | |
424 } | |
425 #else | |
426 pPg = pcache1Alloc(pCache->szAlloc); | |
427 p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage]; | |
428 #endif | |
429 if( benignMalloc ){ sqlite3EndBenignMalloc(); } | |
430 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT | |
431 pcache1EnterMutex(pCache->pGroup); | |
432 #endif | |
433 if( pPg==0 ) return 0; | |
434 p->page.pBuf = pPg; | |
435 p->page.pExtra = &p[1]; | |
436 p->isBulkLocal = 0; | |
437 p->isAnchor = 0; | |
438 } | |
439 if( pCache->bPurgeable ){ | |
440 pCache->pGroup->nCurrentPage++; | |
441 } | |
442 return p; | |
443 } | |
444 | |
445 /* | |
446 ** Free a page object allocated by pcache1AllocPage(). | |
447 */ | |
448 static void pcache1FreePage(PgHdr1 *p){ | |
449 PCache1 *pCache; | |
450 assert( p!=0 ); | |
451 pCache = p->pCache; | |
452 assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) ); | |
453 if( p->isBulkLocal ){ | |
454 p->pNext = pCache->pFree; | |
455 pCache->pFree = p; | |
456 }else{ | |
457 pcache1Free(p->page.pBuf); | |
458 #ifdef SQLITE_PCACHE_SEPARATE_HEADER | |
459 sqlite3_free(p); | |
460 #endif | |
461 } | |
462 if( pCache->bPurgeable ){ | |
463 pCache->pGroup->nCurrentPage--; | |
464 } | |
465 } | |
466 | |
467 /* | |
468 ** Malloc function used by SQLite to obtain space from the buffer configured | |
469 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer | |
470 ** exists, this function falls back to sqlite3Malloc(). | |
471 */ | |
472 void *sqlite3PageMalloc(int sz){ | |
473 return pcache1Alloc(sz); | |
474 } | |
475 | |
476 /* | |
477 ** Free an allocated buffer obtained from sqlite3PageMalloc(). | |
478 */ | |
479 void sqlite3PageFree(void *p){ | |
480 pcache1Free(p); | |
481 } | |
482 | |
483 | |
484 /* | |
485 ** Return true if it desirable to avoid allocating a new page cache | |
486 ** entry. | |
487 ** | |
488 ** If memory was allocated specifically to the page cache using | |
489 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then | |
490 ** it is desirable to avoid allocating a new page cache entry because | |
491 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient | |
492 ** for all page cache needs and we should not need to spill the | |
493 ** allocation onto the heap. | |
494 ** | |
495 ** Or, the heap is used for all page cache memory but the heap is | |
496 ** under memory pressure, then again it is desirable to avoid | |
497 ** allocating a new page cache entry in order to avoid stressing | |
498 ** the heap even further. | |
499 */ | |
500 static int pcache1UnderMemoryPressure(PCache1 *pCache){ | |
501 if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){ | |
502 return pcache1.bUnderPressure; | |
503 }else{ | |
504 return sqlite3HeapNearlyFull(); | |
505 } | |
506 } | |
507 | |
508 /******************************************************************************/ | |
509 /******** General Implementation Functions ************************************/ | |
510 | |
511 /* | |
512 ** This function is used to resize the hash table used by the cache passed | |
513 ** as the first argument. | |
514 ** | |
515 ** The PCache mutex must be held when this function is called. | |
516 */ | |
517 static void pcache1ResizeHash(PCache1 *p){ | |
518 PgHdr1 **apNew; | |
519 unsigned int nNew; | |
520 unsigned int i; | |
521 | |
522 assert( sqlite3_mutex_held(p->pGroup->mutex) ); | |
523 | |
524 nNew = p->nHash*2; | |
525 if( nNew<256 ){ | |
526 nNew = 256; | |
527 } | |
528 | |
529 pcache1LeaveMutex(p->pGroup); | |
530 if( p->nHash ){ sqlite3BeginBenignMalloc(); } | |
531 apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew); | |
532 if( p->nHash ){ sqlite3EndBenignMalloc(); } | |
533 pcache1EnterMutex(p->pGroup); | |
534 if( apNew ){ | |
535 for(i=0; i<p->nHash; i++){ | |
536 PgHdr1 *pPage; | |
537 PgHdr1 *pNext = p->apHash[i]; | |
538 while( (pPage = pNext)!=0 ){ | |
539 unsigned int h = pPage->iKey % nNew; | |
540 pNext = pPage->pNext; | |
541 pPage->pNext = apNew[h]; | |
542 apNew[h] = pPage; | |
543 } | |
544 } | |
545 sqlite3_free(p->apHash); | |
546 p->apHash = apNew; | |
547 p->nHash = nNew; | |
548 } | |
549 } | |
550 | |
551 /* | |
552 ** This function is used internally to remove the page pPage from the | |
553 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup | |
554 ** LRU list, then this function is a no-op. | |
555 ** | |
556 ** The PGroup mutex must be held when this function is called. | |
557 */ | |
558 static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){ | |
559 PCache1 *pCache; | |
560 | |
561 assert( pPage!=0 ); | |
562 assert( pPage->isPinned==0 ); | |
563 pCache = pPage->pCache; | |
564 assert( pPage->pLruNext ); | |
565 assert( pPage->pLruPrev ); | |
566 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); | |
567 pPage->pLruPrev->pLruNext = pPage->pLruNext; | |
568 pPage->pLruNext->pLruPrev = pPage->pLruPrev; | |
569 pPage->pLruNext = 0; | |
570 pPage->pLruPrev = 0; | |
571 pPage->isPinned = 1; | |
572 assert( pPage->isAnchor==0 ); | |
573 assert( pCache->pGroup->lru.isAnchor==1 ); | |
574 pCache->nRecyclable--; | |
575 return pPage; | |
576 } | |
577 | |
578 | |
579 /* | |
580 ** Remove the page supplied as an argument from the hash table | |
581 ** (PCache1.apHash structure) that it is currently stored in. | |
582 ** Also free the page if freePage is true. | |
583 ** | |
584 ** The PGroup mutex must be held when this function is called. | |
585 */ | |
586 static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){ | |
587 unsigned int h; | |
588 PCache1 *pCache = pPage->pCache; | |
589 PgHdr1 **pp; | |
590 | |
591 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); | |
592 h = pPage->iKey % pCache->nHash; | |
593 for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext); | |
594 *pp = (*pp)->pNext; | |
595 | |
596 pCache->nPage--; | |
597 if( freeFlag ) pcache1FreePage(pPage); | |
598 } | |
599 | |
600 /* | |
601 ** If there are currently more than nMaxPage pages allocated, try | |
602 ** to recycle pages to reduce the number allocated to nMaxPage. | |
603 */ | |
604 static void pcache1EnforceMaxPage(PCache1 *pCache){ | |
605 PGroup *pGroup = pCache->pGroup; | |
606 PgHdr1 *p; | |
607 assert( sqlite3_mutex_held(pGroup->mutex) ); | |
608 while( pGroup->nCurrentPage>pGroup->nMaxPage | |
609 && (p=pGroup->lru.pLruPrev)->isAnchor==0 | |
610 ){ | |
611 assert( p->pCache->pGroup==pGroup ); | |
612 assert( p->isPinned==0 ); | |
613 pcache1PinPage(p); | |
614 pcache1RemoveFromHash(p, 1); | |
615 } | |
616 if( pCache->nPage==0 && pCache->pBulk ){ | |
617 sqlite3_free(pCache->pBulk); | |
618 pCache->pBulk = pCache->pFree = 0; | |
619 } | |
620 } | |
621 | |
622 /* | |
623 ** Discard all pages from cache pCache with a page number (key value) | |
624 ** greater than or equal to iLimit. Any pinned pages that meet this | |
625 ** criteria are unpinned before they are discarded. | |
626 ** | |
627 ** The PCache mutex must be held when this function is called. | |
628 */ | |
629 static void pcache1TruncateUnsafe( | |
630 PCache1 *pCache, /* The cache to truncate */ | |
631 unsigned int iLimit /* Drop pages with this pgno or larger */ | |
632 ){ | |
633 TESTONLY( unsigned int nPage = 0; ) /* To assert pCache->nPage is correct */ | |
634 unsigned int h; | |
635 assert( sqlite3_mutex_held(pCache->pGroup->mutex) ); | |
636 for(h=0; h<pCache->nHash; h++){ | |
637 PgHdr1 **pp = &pCache->apHash[h]; | |
638 PgHdr1 *pPage; | |
639 while( (pPage = *pp)!=0 ){ | |
640 if( pPage->iKey>=iLimit ){ | |
641 pCache->nPage--; | |
642 *pp = pPage->pNext; | |
643 if( !pPage->isPinned ) pcache1PinPage(pPage); | |
644 pcache1FreePage(pPage); | |
645 }else{ | |
646 pp = &pPage->pNext; | |
647 TESTONLY( nPage++; ) | |
648 } | |
649 } | |
650 } | |
651 assert( pCache->nPage==nPage ); | |
652 } | |
653 | |
654 /******************************************************************************/ | |
655 /******** sqlite3_pcache Methods **********************************************/ | |
656 | |
657 /* | |
658 ** Implementation of the sqlite3_pcache.xInit method. | |
659 */ | |
660 static int pcache1Init(void *NotUsed){ | |
661 UNUSED_PARAMETER(NotUsed); | |
662 assert( pcache1.isInit==0 ); | |
663 memset(&pcache1, 0, sizeof(pcache1)); | |
664 | |
665 | |
666 /* | |
667 ** The pcache1.separateCache variable is true if each PCache has its own | |
668 ** private PGroup (mode-1). pcache1.separateCache is false if the single | |
669 ** PGroup in pcache1.grp is used for all page caches (mode-2). | |
670 ** | |
671 ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT | |
672 ** | |
673 ** * Use a unified cache in single-threaded applications that have | |
674 ** configured a start-time buffer for use as page-cache memory using | |
675 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL | |
676 ** pBuf argument. | |
677 ** | |
678 ** * Otherwise use separate caches (mode-1) | |
679 */ | |
680 #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) | |
681 pcache1.separateCache = 0; | |
682 #elif SQLITE_THREADSAFE | |
683 pcache1.separateCache = sqlite3GlobalConfig.pPage==0 | |
684 || sqlite3GlobalConfig.bCoreMutex>0; | |
685 #else | |
686 pcache1.separateCache = sqlite3GlobalConfig.pPage==0; | |
687 #endif | |
688 | |
689 #if SQLITE_THREADSAFE | |
690 if( sqlite3GlobalConfig.bCoreMutex ){ | |
691 pcache1.grp.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU); | |
692 pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PMEM); | |
693 } | |
694 #endif | |
695 if( pcache1.separateCache | |
696 && sqlite3GlobalConfig.nPage!=0 | |
697 && sqlite3GlobalConfig.pPage==0 | |
698 ){ | |
699 pcache1.nInitPage = sqlite3GlobalConfig.nPage; | |
700 }else{ | |
701 pcache1.nInitPage = 0; | |
702 } | |
703 pcache1.grp.mxPinned = 10; | |
704 pcache1.isInit = 1; | |
705 return SQLITE_OK; | |
706 } | |
707 | |
708 /* | |
709 ** Implementation of the sqlite3_pcache.xShutdown method. | |
710 ** Note that the static mutex allocated in xInit does | |
711 ** not need to be freed. | |
712 */ | |
713 static void pcache1Shutdown(void *NotUsed){ | |
714 UNUSED_PARAMETER(NotUsed); | |
715 assert( pcache1.isInit!=0 ); | |
716 memset(&pcache1, 0, sizeof(pcache1)); | |
717 } | |
718 | |
719 /* forward declaration */ | |
720 static void pcache1Destroy(sqlite3_pcache *p); | |
721 | |
722 /* | |
723 ** Implementation of the sqlite3_pcache.xCreate method. | |
724 ** | |
725 ** Allocate a new cache. | |
726 */ | |
727 static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){ | |
728 PCache1 *pCache; /* The newly created page cache */ | |
729 PGroup *pGroup; /* The group the new page cache will belong to */ | |
730 int sz; /* Bytes of memory required to allocate the new cache */ | |
731 | |
732 assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 ); | |
733 assert( szExtra < 300 ); | |
734 | |
735 sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache; | |
736 pCache = (PCache1 *)sqlite3MallocZero(sz); | |
737 if( pCache ){ | |
738 if( pcache1.separateCache ){ | |
739 pGroup = (PGroup*)&pCache[1]; | |
740 pGroup->mxPinned = 10; | |
741 }else{ | |
742 pGroup = &pcache1.grp; | |
743 } | |
744 if( pGroup->lru.isAnchor==0 ){ | |
745 pGroup->lru.isAnchor = 1; | |
746 pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru; | |
747 } | |
748 pCache->pGroup = pGroup; | |
749 pCache->szPage = szPage; | |
750 pCache->szExtra = szExtra; | |
751 pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1)); | |
752 pCache->bPurgeable = (bPurgeable ? 1 : 0); | |
753 pcache1EnterMutex(pGroup); | |
754 pcache1ResizeHash(pCache); | |
755 if( bPurgeable ){ | |
756 pCache->nMin = 10; | |
757 pGroup->nMinPage += pCache->nMin; | |
758 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; | |
759 } | |
760 pcache1LeaveMutex(pGroup); | |
761 if( pCache->nHash==0 ){ | |
762 pcache1Destroy((sqlite3_pcache*)pCache); | |
763 pCache = 0; | |
764 } | |
765 } | |
766 return (sqlite3_pcache *)pCache; | |
767 } | |
768 | |
769 /* | |
770 ** Implementation of the sqlite3_pcache.xCachesize method. | |
771 ** | |
772 ** Configure the cache_size limit for a cache. | |
773 */ | |
774 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){ | |
775 PCache1 *pCache = (PCache1 *)p; | |
776 if( pCache->bPurgeable ){ | |
777 PGroup *pGroup = pCache->pGroup; | |
778 pcache1EnterMutex(pGroup); | |
779 pGroup->nMaxPage += (nMax - pCache->nMax); | |
780 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; | |
781 pCache->nMax = nMax; | |
782 pCache->n90pct = pCache->nMax*9/10; | |
783 pcache1EnforceMaxPage(pCache); | |
784 pcache1LeaveMutex(pGroup); | |
785 } | |
786 } | |
787 | |
788 /* | |
789 ** Implementation of the sqlite3_pcache.xShrink method. | |
790 ** | |
791 ** Free up as much memory as possible. | |
792 */ | |
793 static void pcache1Shrink(sqlite3_pcache *p){ | |
794 PCache1 *pCache = (PCache1*)p; | |
795 if( pCache->bPurgeable ){ | |
796 PGroup *pGroup = pCache->pGroup; | |
797 int savedMaxPage; | |
798 pcache1EnterMutex(pGroup); | |
799 savedMaxPage = pGroup->nMaxPage; | |
800 pGroup->nMaxPage = 0; | |
801 pcache1EnforceMaxPage(pCache); | |
802 pGroup->nMaxPage = savedMaxPage; | |
803 pcache1LeaveMutex(pGroup); | |
804 } | |
805 } | |
806 | |
807 /* | |
808 ** Implementation of the sqlite3_pcache.xPagecount method. | |
809 */ | |
810 static int pcache1Pagecount(sqlite3_pcache *p){ | |
811 int n; | |
812 PCache1 *pCache = (PCache1*)p; | |
813 pcache1EnterMutex(pCache->pGroup); | |
814 n = pCache->nPage; | |
815 pcache1LeaveMutex(pCache->pGroup); | |
816 return n; | |
817 } | |
818 | |
819 | |
820 /* | |
821 ** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described | |
822 ** in the header of the pcache1Fetch() procedure. | |
823 ** | |
824 ** This steps are broken out into a separate procedure because they are | |
825 ** usually not needed, and by avoiding the stack initialization required | |
826 ** for these steps, the main pcache1Fetch() procedure can run faster. | |
827 */ | |
828 static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2( | |
829 PCache1 *pCache, | |
830 unsigned int iKey, | |
831 int createFlag | |
832 ){ | |
833 unsigned int nPinned; | |
834 PGroup *pGroup = pCache->pGroup; | |
835 PgHdr1 *pPage = 0; | |
836 | |
837 /* Step 3: Abort if createFlag is 1 but the cache is nearly full */ | |
838 assert( pCache->nPage >= pCache->nRecyclable ); | |
839 nPinned = pCache->nPage - pCache->nRecyclable; | |
840 assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage ); | |
841 assert( pCache->n90pct == pCache->nMax*9/10 ); | |
842 if( createFlag==1 && ( | |
843 nPinned>=pGroup->mxPinned | |
844 || nPinned>=pCache->n90pct | |
845 || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned) | |
846 )){ | |
847 return 0; | |
848 } | |
849 | |
850 if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache); | |
851 assert( pCache->nHash>0 && pCache->apHash ); | |
852 | |
853 /* Step 4. Try to recycle a page. */ | |
854 if( pCache->bPurgeable | |
855 && !pGroup->lru.pLruPrev->isAnchor | |
856 && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache)) | |
857 ){ | |
858 PCache1 *pOther; | |
859 pPage = pGroup->lru.pLruPrev; | |
860 assert( pPage->isPinned==0 ); | |
861 pcache1RemoveFromHash(pPage, 0); | |
862 pcache1PinPage(pPage); | |
863 pOther = pPage->pCache; | |
864 if( pOther->szAlloc != pCache->szAlloc ){ | |
865 pcache1FreePage(pPage); | |
866 pPage = 0; | |
867 }else{ | |
868 pGroup->nCurrentPage -= (pOther->bPurgeable - pCache->bPurgeable); | |
869 } | |
870 } | |
871 | |
872 /* Step 5. If a usable page buffer has still not been found, | |
873 ** attempt to allocate a new one. | |
874 */ | |
875 if( !pPage ){ | |
876 pPage = pcache1AllocPage(pCache, createFlag==1); | |
877 } | |
878 | |
879 if( pPage ){ | |
880 unsigned int h = iKey % pCache->nHash; | |
881 pCache->nPage++; | |
882 pPage->iKey = iKey; | |
883 pPage->pNext = pCache->apHash[h]; | |
884 pPage->pCache = pCache; | |
885 pPage->pLruPrev = 0; | |
886 pPage->pLruNext = 0; | |
887 pPage->isPinned = 1; | |
888 *(void **)pPage->page.pExtra = 0; | |
889 pCache->apHash[h] = pPage; | |
890 if( iKey>pCache->iMaxKey ){ | |
891 pCache->iMaxKey = iKey; | |
892 } | |
893 } | |
894 return pPage; | |
895 } | |
896 | |
897 /* | |
898 ** Implementation of the sqlite3_pcache.xFetch method. | |
899 ** | |
900 ** Fetch a page by key value. | |
901 ** | |
902 ** Whether or not a new page may be allocated by this function depends on | |
903 ** the value of the createFlag argument. 0 means do not allocate a new | |
904 ** page. 1 means allocate a new page if space is easily available. 2 | |
905 ** means to try really hard to allocate a new page. | |
906 ** | |
907 ** For a non-purgeable cache (a cache used as the storage for an in-memory | |
908 ** database) there is really no difference between createFlag 1 and 2. So | |
909 ** the calling function (pcache.c) will never have a createFlag of 1 on | |
910 ** a non-purgeable cache. | |
911 ** | |
912 ** There are three different approaches to obtaining space for a page, | |
913 ** depending on the value of parameter createFlag (which may be 0, 1 or 2). | |
914 ** | |
915 ** 1. Regardless of the value of createFlag, the cache is searched for a | |
916 ** copy of the requested page. If one is found, it is returned. | |
917 ** | |
918 ** 2. If createFlag==0 and the page is not already in the cache, NULL is | |
919 ** returned. | |
920 ** | |
921 ** 3. If createFlag is 1, and the page is not already in the cache, then | |
922 ** return NULL (do not allocate a new page) if any of the following | |
923 ** conditions are true: | |
924 ** | |
925 ** (a) the number of pages pinned by the cache is greater than | |
926 ** PCache1.nMax, or | |
927 ** | |
928 ** (b) the number of pages pinned by the cache is greater than | |
929 ** the sum of nMax for all purgeable caches, less the sum of | |
930 ** nMin for all other purgeable caches, or | |
931 ** | |
932 ** 4. If none of the first three conditions apply and the cache is marked | |
933 ** as purgeable, and if one of the following is true: | |
934 ** | |
935 ** (a) The number of pages allocated for the cache is already | |
936 ** PCache1.nMax, or | |
937 ** | |
938 ** (b) The number of pages allocated for all purgeable caches is | |
939 ** already equal to or greater than the sum of nMax for all | |
940 ** purgeable caches, | |
941 ** | |
942 ** (c) The system is under memory pressure and wants to avoid | |
943 ** unnecessary pages cache entry allocations | |
944 ** | |
945 ** then attempt to recycle a page from the LRU list. If it is the right | |
946 ** size, return the recycled buffer. Otherwise, free the buffer and | |
947 ** proceed to step 5. | |
948 ** | |
949 ** 5. Otherwise, allocate and return a new page buffer. | |
950 ** | |
951 ** There are two versions of this routine. pcache1FetchWithMutex() is | |
952 ** the general case. pcache1FetchNoMutex() is a faster implementation for | |
953 ** the common case where pGroup->mutex is NULL. The pcache1Fetch() wrapper | |
954 ** invokes the appropriate routine. | |
955 */ | |
956 static PgHdr1 *pcache1FetchNoMutex( | |
957 sqlite3_pcache *p, | |
958 unsigned int iKey, | |
959 int createFlag | |
960 ){ | |
961 PCache1 *pCache = (PCache1 *)p; | |
962 PgHdr1 *pPage = 0; | |
963 | |
964 /* Step 1: Search the hash table for an existing entry. */ | |
965 pPage = pCache->apHash[iKey % pCache->nHash]; | |
966 while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; } | |
967 | |
968 /* Step 2: If the page was found in the hash table, then return it. | |
969 ** If the page was not in the hash table and createFlag is 0, abort. | |
970 ** Otherwise (page not in hash and createFlag!=0) continue with | |
971 ** subsequent steps to try to create the page. */ | |
972 if( pPage ){ | |
973 if( !pPage->isPinned ){ | |
974 return pcache1PinPage(pPage); | |
975 }else{ | |
976 return pPage; | |
977 } | |
978 }else if( createFlag ){ | |
979 /* Steps 3, 4, and 5 implemented by this subroutine */ | |
980 return pcache1FetchStage2(pCache, iKey, createFlag); | |
981 }else{ | |
982 return 0; | |
983 } | |
984 } | |
985 #if PCACHE1_MIGHT_USE_GROUP_MUTEX | |
986 static PgHdr1 *pcache1FetchWithMutex( | |
987 sqlite3_pcache *p, | |
988 unsigned int iKey, | |
989 int createFlag | |
990 ){ | |
991 PCache1 *pCache = (PCache1 *)p; | |
992 PgHdr1 *pPage; | |
993 | |
994 pcache1EnterMutex(pCache->pGroup); | |
995 pPage = pcache1FetchNoMutex(p, iKey, createFlag); | |
996 assert( pPage==0 || pCache->iMaxKey>=iKey ); | |
997 pcache1LeaveMutex(pCache->pGroup); | |
998 return pPage; | |
999 } | |
1000 #endif | |
1001 static sqlite3_pcache_page *pcache1Fetch( | |
1002 sqlite3_pcache *p, | |
1003 unsigned int iKey, | |
1004 int createFlag | |
1005 ){ | |
1006 #if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG) | |
1007 PCache1 *pCache = (PCache1 *)p; | |
1008 #endif | |
1009 | |
1010 assert( offsetof(PgHdr1,page)==0 ); | |
1011 assert( pCache->bPurgeable || createFlag!=1 ); | |
1012 assert( pCache->bPurgeable || pCache->nMin==0 ); | |
1013 assert( pCache->bPurgeable==0 || pCache->nMin==10 ); | |
1014 assert( pCache->nMin==0 || pCache->bPurgeable ); | |
1015 assert( pCache->nHash>0 ); | |
1016 #if PCACHE1_MIGHT_USE_GROUP_MUTEX | |
1017 if( pCache->pGroup->mutex ){ | |
1018 return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag); | |
1019 }else | |
1020 #endif | |
1021 { | |
1022 return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag); | |
1023 } | |
1024 } | |
1025 | |
1026 | |
1027 /* | |
1028 ** Implementation of the sqlite3_pcache.xUnpin method. | |
1029 ** | |
1030 ** Mark a page as unpinned (eligible for asynchronous recycling). | |
1031 */ | |
1032 static void pcache1Unpin( | |
1033 sqlite3_pcache *p, | |
1034 sqlite3_pcache_page *pPg, | |
1035 int reuseUnlikely | |
1036 ){ | |
1037 PCache1 *pCache = (PCache1 *)p; | |
1038 PgHdr1 *pPage = (PgHdr1 *)pPg; | |
1039 PGroup *pGroup = pCache->pGroup; | |
1040 | |
1041 assert( pPage->pCache==pCache ); | |
1042 pcache1EnterMutex(pGroup); | |
1043 | |
1044 /* It is an error to call this function if the page is already | |
1045 ** part of the PGroup LRU list. | |
1046 */ | |
1047 assert( pPage->pLruPrev==0 && pPage->pLruNext==0 ); | |
1048 assert( pPage->isPinned==1 ); | |
1049 | |
1050 if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){ | |
1051 pcache1RemoveFromHash(pPage, 1); | |
1052 }else{ | |
1053 /* Add the page to the PGroup LRU list. */ | |
1054 PgHdr1 **ppFirst = &pGroup->lru.pLruNext; | |
1055 pPage->pLruPrev = &pGroup->lru; | |
1056 (pPage->pLruNext = *ppFirst)->pLruPrev = pPage; | |
1057 *ppFirst = pPage; | |
1058 pCache->nRecyclable++; | |
1059 pPage->isPinned = 0; | |
1060 } | |
1061 | |
1062 pcache1LeaveMutex(pCache->pGroup); | |
1063 } | |
1064 | |
1065 /* | |
1066 ** Implementation of the sqlite3_pcache.xRekey method. | |
1067 */ | |
1068 static void pcache1Rekey( | |
1069 sqlite3_pcache *p, | |
1070 sqlite3_pcache_page *pPg, | |
1071 unsigned int iOld, | |
1072 unsigned int iNew | |
1073 ){ | |
1074 PCache1 *pCache = (PCache1 *)p; | |
1075 PgHdr1 *pPage = (PgHdr1 *)pPg; | |
1076 PgHdr1 **pp; | |
1077 unsigned int h; | |
1078 assert( pPage->iKey==iOld ); | |
1079 assert( pPage->pCache==pCache ); | |
1080 | |
1081 pcache1EnterMutex(pCache->pGroup); | |
1082 | |
1083 h = iOld%pCache->nHash; | |
1084 pp = &pCache->apHash[h]; | |
1085 while( (*pp)!=pPage ){ | |
1086 pp = &(*pp)->pNext; | |
1087 } | |
1088 *pp = pPage->pNext; | |
1089 | |
1090 h = iNew%pCache->nHash; | |
1091 pPage->iKey = iNew; | |
1092 pPage->pNext = pCache->apHash[h]; | |
1093 pCache->apHash[h] = pPage; | |
1094 if( iNew>pCache->iMaxKey ){ | |
1095 pCache->iMaxKey = iNew; | |
1096 } | |
1097 | |
1098 pcache1LeaveMutex(pCache->pGroup); | |
1099 } | |
1100 | |
1101 /* | |
1102 ** Implementation of the sqlite3_pcache.xTruncate method. | |
1103 ** | |
1104 ** Discard all unpinned pages in the cache with a page number equal to | |
1105 ** or greater than parameter iLimit. Any pinned pages with a page number | |
1106 ** equal to or greater than iLimit are implicitly unpinned. | |
1107 */ | |
1108 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){ | |
1109 PCache1 *pCache = (PCache1 *)p; | |
1110 pcache1EnterMutex(pCache->pGroup); | |
1111 if( iLimit<=pCache->iMaxKey ){ | |
1112 pcache1TruncateUnsafe(pCache, iLimit); | |
1113 pCache->iMaxKey = iLimit-1; | |
1114 } | |
1115 pcache1LeaveMutex(pCache->pGroup); | |
1116 } | |
1117 | |
1118 /* | |
1119 ** Implementation of the sqlite3_pcache.xDestroy method. | |
1120 ** | |
1121 ** Destroy a cache allocated using pcache1Create(). | |
1122 */ | |
1123 static void pcache1Destroy(sqlite3_pcache *p){ | |
1124 PCache1 *pCache = (PCache1 *)p; | |
1125 PGroup *pGroup = pCache->pGroup; | |
1126 assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) ); | |
1127 pcache1EnterMutex(pGroup); | |
1128 pcache1TruncateUnsafe(pCache, 0); | |
1129 assert( pGroup->nMaxPage >= pCache->nMax ); | |
1130 pGroup->nMaxPage -= pCache->nMax; | |
1131 assert( pGroup->nMinPage >= pCache->nMin ); | |
1132 pGroup->nMinPage -= pCache->nMin; | |
1133 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage; | |
1134 pcache1EnforceMaxPage(pCache); | |
1135 pcache1LeaveMutex(pGroup); | |
1136 sqlite3_free(pCache->pBulk); | |
1137 sqlite3_free(pCache->apHash); | |
1138 sqlite3_free(pCache); | |
1139 } | |
1140 | |
1141 /* | |
1142 ** This function is called during initialization (sqlite3_initialize()) to | |
1143 ** install the default pluggable cache module, assuming the user has not | |
1144 ** already provided an alternative. | |
1145 */ | |
1146 void sqlite3PCacheSetDefault(void){ | |
1147 static const sqlite3_pcache_methods2 defaultMethods = { | |
1148 1, /* iVersion */ | |
1149 0, /* pArg */ | |
1150 pcache1Init, /* xInit */ | |
1151 pcache1Shutdown, /* xShutdown */ | |
1152 pcache1Create, /* xCreate */ | |
1153 pcache1Cachesize, /* xCachesize */ | |
1154 pcache1Pagecount, /* xPagecount */ | |
1155 pcache1Fetch, /* xFetch */ | |
1156 pcache1Unpin, /* xUnpin */ | |
1157 pcache1Rekey, /* xRekey */ | |
1158 pcache1Truncate, /* xTruncate */ | |
1159 pcache1Destroy, /* xDestroy */ | |
1160 pcache1Shrink /* xShrink */ | |
1161 }; | |
1162 sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods); | |
1163 } | |
1164 | |
1165 /* | |
1166 ** Return the size of the header on each page of this PCACHE implementation. | |
1167 */ | |
1168 int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); } | |
1169 | |
1170 /* | |
1171 ** Return the global mutex used by this PCACHE implementation. The | |
1172 ** sqlite3_status() routine needs access to this mutex. | |
1173 */ | |
1174 sqlite3_mutex *sqlite3Pcache1Mutex(void){ | |
1175 return pcache1.mutex; | |
1176 } | |
1177 | |
1178 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT | |
1179 /* | |
1180 ** This function is called to free superfluous dynamically allocated memory | |
1181 ** held by the pager system. Memory in use by any SQLite pager allocated | |
1182 ** by the current thread may be sqlite3_free()ed. | |
1183 ** | |
1184 ** nReq is the number of bytes of memory required. Once this much has | |
1185 ** been released, the function returns. The return value is the total number | |
1186 ** of bytes of memory released. | |
1187 */ | |
1188 int sqlite3PcacheReleaseMemory(int nReq){ | |
1189 int nFree = 0; | |
1190 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) ); | |
1191 assert( sqlite3_mutex_notheld(pcache1.mutex) ); | |
1192 if( sqlite3GlobalConfig.nPage==0 ){ | |
1193 PgHdr1 *p; | |
1194 pcache1EnterMutex(&pcache1.grp); | |
1195 while( (nReq<0 || nFree<nReq) | |
1196 && (p=pcache1.grp.lru.pLruPrev)!=0 | |
1197 && p->isAnchor==0 | |
1198 ){ | |
1199 nFree += pcache1MemSize(p->page.pBuf); | |
1200 #ifdef SQLITE_PCACHE_SEPARATE_HEADER | |
1201 nFree += sqlite3MemSize(p); | |
1202 #endif | |
1203 assert( p->isPinned==0 ); | |
1204 pcache1PinPage(p); | |
1205 pcache1RemoveFromHash(p, 1); | |
1206 } | |
1207 pcache1LeaveMutex(&pcache1.grp); | |
1208 } | |
1209 return nFree; | |
1210 } | |
1211 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */ | |
1212 | |
1213 #ifdef SQLITE_TEST | |
1214 /* | |
1215 ** This function is used by test procedures to inspect the internal state | |
1216 ** of the global cache. | |
1217 */ | |
1218 void sqlite3PcacheStats( | |
1219 int *pnCurrent, /* OUT: Total number of pages cached */ | |
1220 int *pnMax, /* OUT: Global maximum cache size */ | |
1221 int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */ | |
1222 int *pnRecyclable /* OUT: Total number of pages available for recycling */ | |
1223 ){ | |
1224 PgHdr1 *p; | |
1225 int nRecyclable = 0; | |
1226 for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){ | |
1227 assert( p->isPinned==0 ); | |
1228 nRecyclable++; | |
1229 } | |
1230 *pnCurrent = pcache1.grp.nCurrentPage; | |
1231 *pnMax = (int)pcache1.grp.nMaxPage; | |
1232 *pnMin = (int)pcache1.grp.nMinPage; | |
1233 *pnRecyclable = nRecyclable; | |
1234 } | |
1235 #endif | |
OLD | NEW |