Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(22)

Side by Side Diff: third_party/sqlite/sqlite-src-3100200/src/pcache1.c

Issue 2846743003: [sql] Remove SQLite 3.10.2 reference directory. (Closed)
Patch Set: Created 3 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 ** 2008 November 05
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This file implements the default page cache implementation (the
14 ** sqlite3_pcache interface). It also contains part of the implementation
15 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
16 ** If the default page cache implementation is overridden, then neither of
17 ** these two features are available.
18 **
19 ** A Page cache line looks like this:
20 **
21 ** -------------------------------------------------------------
22 ** | database page content | PgHdr1 | MemPage | PgHdr |
23 ** -------------------------------------------------------------
24 **
25 ** The database page content is up front (so that buffer overreads tend to
26 ** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions). MemPage
27 ** is the extension added by the btree.c module containing information such
28 ** as the database page number and how that database page is used. PgHdr
29 ** is added by the pcache.c layer and contains information used to keep track
30 ** of which pages are "dirty". PgHdr1 is an extension added by this
31 ** module (pcache1.c). The PgHdr1 header is a subclass of sqlite3_pcache_page.
32 ** PgHdr1 contains information needed to look up a page by its page number.
33 ** The superclass sqlite3_pcache_page.pBuf points to the start of the
34 ** database page content and sqlite3_pcache_page.pExtra points to PgHdr.
35 **
36 ** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at
37 ** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size). The
38 ** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this
39 ** size can vary according to architecture, compile-time options, and
40 ** SQLite library version number.
41 **
42 ** If SQLITE_PCACHE_SEPARATE_HEADER is defined, then the extension is obtained
43 ** using a separate memory allocation from the database page content. This
44 ** seeks to overcome the "clownshoe" problem (also called "internal
45 ** fragmentation" in academic literature) of allocating a few bytes more
46 ** than a power of two with the memory allocator rounding up to the next
47 ** power of two, and leaving the rounded-up space unused.
48 **
49 ** This module tracks pointers to PgHdr1 objects. Only pcache.c communicates
50 ** with this module. Information is passed back and forth as PgHdr1 pointers.
51 **
52 ** The pcache.c and pager.c modules deal pointers to PgHdr objects.
53 ** The btree.c module deals with pointers to MemPage objects.
54 **
55 ** SOURCE OF PAGE CACHE MEMORY:
56 **
57 ** Memory for a page might come from any of three sources:
58 **
59 ** (1) The general-purpose memory allocator - sqlite3Malloc()
60 ** (2) Global page-cache memory provided using sqlite3_config() with
61 ** SQLITE_CONFIG_PAGECACHE.
62 ** (3) PCache-local bulk allocation.
63 **
64 ** The third case is a chunk of heap memory (defaulting to 100 pages worth)
65 ** that is allocated when the page cache is created. The size of the local
66 ** bulk allocation can be adjusted using
67 **
68 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N).
69 **
70 ** If N is positive, then N pages worth of memory are allocated using a single
71 ** sqlite3Malloc() call and that memory is used for the first N pages allocated.
72 ** Or if N is negative, then -1024*N bytes of memory are allocated and used
73 ** for as many pages as can be accomodated.
74 **
75 ** Only one of (2) or (3) can be used. Once the memory available to (2) or
76 ** (3) is exhausted, subsequent allocations fail over to the general-purpose
77 ** memory allocator (1).
78 **
79 ** Earlier versions of SQLite used only methods (1) and (2). But experiments
80 ** show that method (3) with N==100 provides about a 5% performance boost for
81 ** common workloads.
82 */
83 #include "sqliteInt.h"
84
85 typedef struct PCache1 PCache1;
86 typedef struct PgHdr1 PgHdr1;
87 typedef struct PgFreeslot PgFreeslot;
88 typedef struct PGroup PGroup;
89
90 /*
91 ** Each cache entry is represented by an instance of the following
92 ** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of
93 ** PgHdr1.pCache->szPage bytes is allocated directly before this structure
94 ** in memory.
95 */
96 struct PgHdr1 {
97 sqlite3_pcache_page page; /* Base class. Must be first. pBuf & pExtra */
98 unsigned int iKey; /* Key value (page number) */
99 u8 isPinned; /* Page in use, not on the LRU list */
100 u8 isBulkLocal; /* This page from bulk local storage */
101 u8 isAnchor; /* This is the PGroup.lru element */
102 PgHdr1 *pNext; /* Next in hash table chain */
103 PCache1 *pCache; /* Cache that currently owns this page */
104 PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */
105 PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */
106 };
107
108 /* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set
109 ** of one or more PCaches that are able to recycle each other's unpinned
110 ** pages when they are under memory pressure. A PGroup is an instance of
111 ** the following object.
112 **
113 ** This page cache implementation works in one of two modes:
114 **
115 ** (1) Every PCache is the sole member of its own PGroup. There is
116 ** one PGroup per PCache.
117 **
118 ** (2) There is a single global PGroup that all PCaches are a member
119 ** of.
120 **
121 ** Mode 1 uses more memory (since PCache instances are not able to rob
122 ** unused pages from other PCaches) but it also operates without a mutex,
123 ** and is therefore often faster. Mode 2 requires a mutex in order to be
124 ** threadsafe, but recycles pages more efficiently.
125 **
126 ** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single
127 ** PGroup which is the pcache1.grp global variable and its mutex is
128 ** SQLITE_MUTEX_STATIC_LRU.
129 */
130 struct PGroup {
131 sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */
132 unsigned int nMaxPage; /* Sum of nMax for purgeable caches */
133 unsigned int nMinPage; /* Sum of nMin for purgeable caches */
134 unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */
135 unsigned int nCurrentPage; /* Number of purgeable pages allocated */
136 PgHdr1 lru; /* The beginning and end of the LRU list */
137 };
138
139 /* Each page cache is an instance of the following object. Every
140 ** open database file (including each in-memory database and each
141 ** temporary or transient database) has a single page cache which
142 ** is an instance of this object.
143 **
144 ** Pointers to structures of this type are cast and returned as
145 ** opaque sqlite3_pcache* handles.
146 */
147 struct PCache1 {
148 /* Cache configuration parameters. Page size (szPage) and the purgeable
149 ** flag (bPurgeable) are set when the cache is created. nMax may be
150 ** modified at any time by a call to the pcache1Cachesize() method.
151 ** The PGroup mutex must be held when accessing nMax.
152 */
153 PGroup *pGroup; /* PGroup this cache belongs to */
154 int szPage; /* Size of database content section */
155 int szExtra; /* sizeof(MemPage)+sizeof(PgHdr) */
156 int szAlloc; /* Total size of one pcache line */
157 int bPurgeable; /* True if cache is purgeable */
158 unsigned int nMin; /* Minimum number of pages reserved */
159 unsigned int nMax; /* Configured "cache_size" value */
160 unsigned int n90pct; /* nMax*9/10 */
161 unsigned int iMaxKey; /* Largest key seen since xTruncate() */
162
163 /* Hash table of all pages. The following variables may only be accessed
164 ** when the accessor is holding the PGroup mutex.
165 */
166 unsigned int nRecyclable; /* Number of pages in the LRU list */
167 unsigned int nPage; /* Total number of pages in apHash */
168 unsigned int nHash; /* Number of slots in apHash[] */
169 PgHdr1 **apHash; /* Hash table for fast lookup by key */
170 PgHdr1 *pFree; /* List of unused pcache-local pages */
171 void *pBulk; /* Bulk memory used by pcache-local */
172 };
173
174 /*
175 ** Free slots in the allocator used to divide up the global page cache
176 ** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism.
177 */
178 struct PgFreeslot {
179 PgFreeslot *pNext; /* Next free slot */
180 };
181
182 /*
183 ** Global data used by this cache.
184 */
185 static SQLITE_WSD struct PCacheGlobal {
186 PGroup grp; /* The global PGroup for mode (2) */
187
188 /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The
189 ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
190 ** fixed at sqlite3_initialize() time and do not require mutex protection.
191 ** The nFreeSlot and pFree values do require mutex protection.
192 */
193 int isInit; /* True if initialized */
194 int separateCache; /* Use a new PGroup for each PCache */
195 int nInitPage; /* Initial bulk allocation size */
196 int szSlot; /* Size of each free slot */
197 int nSlot; /* The number of pcache slots */
198 int nReserve; /* Try to keep nFreeSlot above this */
199 void *pStart, *pEnd; /* Bounds of global page cache memory */
200 /* Above requires no mutex. Use mutex below for variable that follow. */
201 sqlite3_mutex *mutex; /* Mutex for accessing the following: */
202 PgFreeslot *pFree; /* Free page blocks */
203 int nFreeSlot; /* Number of unused pcache slots */
204 /* The following value requires a mutex to change. We skip the mutex on
205 ** reading because (1) most platforms read a 32-bit integer atomically and
206 ** (2) even if an incorrect value is read, no great harm is done since this
207 ** is really just an optimization. */
208 int bUnderPressure; /* True if low on PAGECACHE memory */
209 } pcache1_g;
210
211 /*
212 ** All code in this file should access the global structure above via the
213 ** alias "pcache1". This ensures that the WSD emulation is used when
214 ** compiling for systems that do not support real WSD.
215 */
216 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
217
218 /*
219 ** Macros to enter and leave the PCache LRU mutex.
220 */
221 #if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
222 # define pcache1EnterMutex(X) assert((X)->mutex==0)
223 # define pcache1LeaveMutex(X) assert((X)->mutex==0)
224 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 0
225 #else
226 # define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
227 # define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
228 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 1
229 #endif
230
231 /******************************************************************************/
232 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
233
234
235 /*
236 ** This function is called during initialization if a static buffer is
237 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
238 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large
239 ** enough to contain 'n' buffers of 'sz' bytes each.
240 **
241 ** This routine is called from sqlite3_initialize() and so it is guaranteed
242 ** to be serialized already. There is no need for further mutexing.
243 */
244 void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
245 if( pcache1.isInit ){
246 PgFreeslot *p;
247 if( pBuf==0 ) sz = n = 0;
248 sz = ROUNDDOWN8(sz);
249 pcache1.szSlot = sz;
250 pcache1.nSlot = pcache1.nFreeSlot = n;
251 pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
252 pcache1.pStart = pBuf;
253 pcache1.pFree = 0;
254 pcache1.bUnderPressure = 0;
255 while( n-- ){
256 p = (PgFreeslot*)pBuf;
257 p->pNext = pcache1.pFree;
258 pcache1.pFree = p;
259 pBuf = (void*)&((char*)pBuf)[sz];
260 }
261 pcache1.pEnd = pBuf;
262 }
263 }
264
265 /*
266 ** Try to initialize the pCache->pFree and pCache->pBulk fields. Return
267 ** true if pCache->pFree ends up containing one or more free pages.
268 */
269 static int pcache1InitBulk(PCache1 *pCache){
270 i64 szBulk;
271 char *zBulk;
272 if( pcache1.nInitPage==0 ) return 0;
273 /* Do not bother with a bulk allocation if the cache size very small */
274 if( pCache->nMax<3 ) return 0;
275 sqlite3BeginBenignMalloc();
276 if( pcache1.nInitPage>0 ){
277 szBulk = pCache->szAlloc * (i64)pcache1.nInitPage;
278 }else{
279 szBulk = -1024 * (i64)pcache1.nInitPage;
280 }
281 if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){
282 szBulk = pCache->szAlloc*pCache->nMax;
283 }
284 zBulk = pCache->pBulk = sqlite3Malloc( szBulk );
285 sqlite3EndBenignMalloc();
286 if( zBulk ){
287 int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc;
288 int i;
289 for(i=0; i<nBulk; i++){
290 PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage];
291 pX->page.pBuf = zBulk;
292 pX->page.pExtra = &pX[1];
293 pX->isBulkLocal = 1;
294 pX->isAnchor = 0;
295 pX->pNext = pCache->pFree;
296 pCache->pFree = pX;
297 zBulk += pCache->szAlloc;
298 }
299 }
300 return pCache->pFree!=0;
301 }
302
303 /*
304 ** Malloc function used within this file to allocate space from the buffer
305 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
306 ** such buffer exists or there is no space left in it, this function falls
307 ** back to sqlite3Malloc().
308 **
309 ** Multiple threads can run this routine at the same time. Global variables
310 ** in pcache1 need to be protected via mutex.
311 */
312 static void *pcache1Alloc(int nByte){
313 void *p = 0;
314 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
315 if( nByte<=pcache1.szSlot ){
316 sqlite3_mutex_enter(pcache1.mutex);
317 p = (PgHdr1 *)pcache1.pFree;
318 if( p ){
319 pcache1.pFree = pcache1.pFree->pNext;
320 pcache1.nFreeSlot--;
321 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
322 assert( pcache1.nFreeSlot>=0 );
323 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
324 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1);
325 }
326 sqlite3_mutex_leave(pcache1.mutex);
327 }
328 if( p==0 ){
329 /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get
330 ** it from sqlite3Malloc instead.
331 */
332 p = sqlite3Malloc(nByte);
333 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
334 if( p ){
335 int sz = sqlite3MallocSize(p);
336 sqlite3_mutex_enter(pcache1.mutex);
337 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
338 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
339 sqlite3_mutex_leave(pcache1.mutex);
340 }
341 #endif
342 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
343 }
344 return p;
345 }
346
347 /*
348 ** Free an allocated buffer obtained from pcache1Alloc().
349 */
350 static void pcache1Free(void *p){
351 int nFreed = 0;
352 if( p==0 ) return;
353 if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){
354 PgFreeslot *pSlot;
355 sqlite3_mutex_enter(pcache1.mutex);
356 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1);
357 pSlot = (PgFreeslot*)p;
358 pSlot->pNext = pcache1.pFree;
359 pcache1.pFree = pSlot;
360 pcache1.nFreeSlot++;
361 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
362 assert( pcache1.nFreeSlot<=pcache1.nSlot );
363 sqlite3_mutex_leave(pcache1.mutex);
364 }else{
365 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
366 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
367 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
368 nFreed = sqlite3MallocSize(p);
369 sqlite3_mutex_enter(pcache1.mutex);
370 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed);
371 sqlite3_mutex_leave(pcache1.mutex);
372 #endif
373 sqlite3_free(p);
374 }
375 }
376
377 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
378 /*
379 ** Return the size of a pcache allocation
380 */
381 static int pcache1MemSize(void *p){
382 if( p>=pcache1.pStart && p<pcache1.pEnd ){
383 return pcache1.szSlot;
384 }else{
385 int iSize;
386 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
387 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
388 iSize = sqlite3MallocSize(p);
389 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
390 return iSize;
391 }
392 }
393 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
394
395 /*
396 ** Allocate a new page object initially associated with cache pCache.
397 */
398 static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){
399 PgHdr1 *p = 0;
400 void *pPg;
401
402 assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
403 if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){
404 p = pCache->pFree;
405 pCache->pFree = p->pNext;
406 p->pNext = 0;
407 }else{
408 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
409 /* The group mutex must be released before pcache1Alloc() is called. This
410 ** is because it might call sqlite3_release_memory(), which assumes that
411 ** this mutex is not held. */
412 assert( pcache1.separateCache==0 );
413 assert( pCache->pGroup==&pcache1.grp );
414 pcache1LeaveMutex(pCache->pGroup);
415 #endif
416 if( benignMalloc ){ sqlite3BeginBenignMalloc(); }
417 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
418 pPg = pcache1Alloc(pCache->szPage);
419 p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra);
420 if( !pPg || !p ){
421 pcache1Free(pPg);
422 sqlite3_free(p);
423 pPg = 0;
424 }
425 #else
426 pPg = pcache1Alloc(pCache->szAlloc);
427 p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage];
428 #endif
429 if( benignMalloc ){ sqlite3EndBenignMalloc(); }
430 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
431 pcache1EnterMutex(pCache->pGroup);
432 #endif
433 if( pPg==0 ) return 0;
434 p->page.pBuf = pPg;
435 p->page.pExtra = &p[1];
436 p->isBulkLocal = 0;
437 p->isAnchor = 0;
438 }
439 if( pCache->bPurgeable ){
440 pCache->pGroup->nCurrentPage++;
441 }
442 return p;
443 }
444
445 /*
446 ** Free a page object allocated by pcache1AllocPage().
447 */
448 static void pcache1FreePage(PgHdr1 *p){
449 PCache1 *pCache;
450 assert( p!=0 );
451 pCache = p->pCache;
452 assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) );
453 if( p->isBulkLocal ){
454 p->pNext = pCache->pFree;
455 pCache->pFree = p;
456 }else{
457 pcache1Free(p->page.pBuf);
458 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
459 sqlite3_free(p);
460 #endif
461 }
462 if( pCache->bPurgeable ){
463 pCache->pGroup->nCurrentPage--;
464 }
465 }
466
467 /*
468 ** Malloc function used by SQLite to obtain space from the buffer configured
469 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
470 ** exists, this function falls back to sqlite3Malloc().
471 */
472 void *sqlite3PageMalloc(int sz){
473 return pcache1Alloc(sz);
474 }
475
476 /*
477 ** Free an allocated buffer obtained from sqlite3PageMalloc().
478 */
479 void sqlite3PageFree(void *p){
480 pcache1Free(p);
481 }
482
483
484 /*
485 ** Return true if it desirable to avoid allocating a new page cache
486 ** entry.
487 **
488 ** If memory was allocated specifically to the page cache using
489 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
490 ** it is desirable to avoid allocating a new page cache entry because
491 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
492 ** for all page cache needs and we should not need to spill the
493 ** allocation onto the heap.
494 **
495 ** Or, the heap is used for all page cache memory but the heap is
496 ** under memory pressure, then again it is desirable to avoid
497 ** allocating a new page cache entry in order to avoid stressing
498 ** the heap even further.
499 */
500 static int pcache1UnderMemoryPressure(PCache1 *pCache){
501 if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){
502 return pcache1.bUnderPressure;
503 }else{
504 return sqlite3HeapNearlyFull();
505 }
506 }
507
508 /******************************************************************************/
509 /******** General Implementation Functions ************************************/
510
511 /*
512 ** This function is used to resize the hash table used by the cache passed
513 ** as the first argument.
514 **
515 ** The PCache mutex must be held when this function is called.
516 */
517 static void pcache1ResizeHash(PCache1 *p){
518 PgHdr1 **apNew;
519 unsigned int nNew;
520 unsigned int i;
521
522 assert( sqlite3_mutex_held(p->pGroup->mutex) );
523
524 nNew = p->nHash*2;
525 if( nNew<256 ){
526 nNew = 256;
527 }
528
529 pcache1LeaveMutex(p->pGroup);
530 if( p->nHash ){ sqlite3BeginBenignMalloc(); }
531 apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew);
532 if( p->nHash ){ sqlite3EndBenignMalloc(); }
533 pcache1EnterMutex(p->pGroup);
534 if( apNew ){
535 for(i=0; i<p->nHash; i++){
536 PgHdr1 *pPage;
537 PgHdr1 *pNext = p->apHash[i];
538 while( (pPage = pNext)!=0 ){
539 unsigned int h = pPage->iKey % nNew;
540 pNext = pPage->pNext;
541 pPage->pNext = apNew[h];
542 apNew[h] = pPage;
543 }
544 }
545 sqlite3_free(p->apHash);
546 p->apHash = apNew;
547 p->nHash = nNew;
548 }
549 }
550
551 /*
552 ** This function is used internally to remove the page pPage from the
553 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup
554 ** LRU list, then this function is a no-op.
555 **
556 ** The PGroup mutex must be held when this function is called.
557 */
558 static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){
559 PCache1 *pCache;
560
561 assert( pPage!=0 );
562 assert( pPage->isPinned==0 );
563 pCache = pPage->pCache;
564 assert( pPage->pLruNext );
565 assert( pPage->pLruPrev );
566 assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
567 pPage->pLruPrev->pLruNext = pPage->pLruNext;
568 pPage->pLruNext->pLruPrev = pPage->pLruPrev;
569 pPage->pLruNext = 0;
570 pPage->pLruPrev = 0;
571 pPage->isPinned = 1;
572 assert( pPage->isAnchor==0 );
573 assert( pCache->pGroup->lru.isAnchor==1 );
574 pCache->nRecyclable--;
575 return pPage;
576 }
577
578
579 /*
580 ** Remove the page supplied as an argument from the hash table
581 ** (PCache1.apHash structure) that it is currently stored in.
582 ** Also free the page if freePage is true.
583 **
584 ** The PGroup mutex must be held when this function is called.
585 */
586 static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){
587 unsigned int h;
588 PCache1 *pCache = pPage->pCache;
589 PgHdr1 **pp;
590
591 assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
592 h = pPage->iKey % pCache->nHash;
593 for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
594 *pp = (*pp)->pNext;
595
596 pCache->nPage--;
597 if( freeFlag ) pcache1FreePage(pPage);
598 }
599
600 /*
601 ** If there are currently more than nMaxPage pages allocated, try
602 ** to recycle pages to reduce the number allocated to nMaxPage.
603 */
604 static void pcache1EnforceMaxPage(PCache1 *pCache){
605 PGroup *pGroup = pCache->pGroup;
606 PgHdr1 *p;
607 assert( sqlite3_mutex_held(pGroup->mutex) );
608 while( pGroup->nCurrentPage>pGroup->nMaxPage
609 && (p=pGroup->lru.pLruPrev)->isAnchor==0
610 ){
611 assert( p->pCache->pGroup==pGroup );
612 assert( p->isPinned==0 );
613 pcache1PinPage(p);
614 pcache1RemoveFromHash(p, 1);
615 }
616 if( pCache->nPage==0 && pCache->pBulk ){
617 sqlite3_free(pCache->pBulk);
618 pCache->pBulk = pCache->pFree = 0;
619 }
620 }
621
622 /*
623 ** Discard all pages from cache pCache with a page number (key value)
624 ** greater than or equal to iLimit. Any pinned pages that meet this
625 ** criteria are unpinned before they are discarded.
626 **
627 ** The PCache mutex must be held when this function is called.
628 */
629 static void pcache1TruncateUnsafe(
630 PCache1 *pCache, /* The cache to truncate */
631 unsigned int iLimit /* Drop pages with this pgno or larger */
632 ){
633 TESTONLY( unsigned int nPage = 0; ) /* To assert pCache->nPage is correct */
634 unsigned int h;
635 assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
636 for(h=0; h<pCache->nHash; h++){
637 PgHdr1 **pp = &pCache->apHash[h];
638 PgHdr1 *pPage;
639 while( (pPage = *pp)!=0 ){
640 if( pPage->iKey>=iLimit ){
641 pCache->nPage--;
642 *pp = pPage->pNext;
643 if( !pPage->isPinned ) pcache1PinPage(pPage);
644 pcache1FreePage(pPage);
645 }else{
646 pp = &pPage->pNext;
647 TESTONLY( nPage++; )
648 }
649 }
650 }
651 assert( pCache->nPage==nPage );
652 }
653
654 /******************************************************************************/
655 /******** sqlite3_pcache Methods **********************************************/
656
657 /*
658 ** Implementation of the sqlite3_pcache.xInit method.
659 */
660 static int pcache1Init(void *NotUsed){
661 UNUSED_PARAMETER(NotUsed);
662 assert( pcache1.isInit==0 );
663 memset(&pcache1, 0, sizeof(pcache1));
664
665
666 /*
667 ** The pcache1.separateCache variable is true if each PCache has its own
668 ** private PGroup (mode-1). pcache1.separateCache is false if the single
669 ** PGroup in pcache1.grp is used for all page caches (mode-2).
670 **
671 ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
672 **
673 ** * Use a unified cache in single-threaded applications that have
674 ** configured a start-time buffer for use as page-cache memory using
675 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL
676 ** pBuf argument.
677 **
678 ** * Otherwise use separate caches (mode-1)
679 */
680 #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT)
681 pcache1.separateCache = 0;
682 #elif SQLITE_THREADSAFE
683 pcache1.separateCache = sqlite3GlobalConfig.pPage==0
684 || sqlite3GlobalConfig.bCoreMutex>0;
685 #else
686 pcache1.separateCache = sqlite3GlobalConfig.pPage==0;
687 #endif
688
689 #if SQLITE_THREADSAFE
690 if( sqlite3GlobalConfig.bCoreMutex ){
691 pcache1.grp.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_LRU);
692 pcache1.mutex = sqlite3_mutex_alloc(SQLITE_MUTEX_STATIC_PMEM);
693 }
694 #endif
695 if( pcache1.separateCache
696 && sqlite3GlobalConfig.nPage!=0
697 && sqlite3GlobalConfig.pPage==0
698 ){
699 pcache1.nInitPage = sqlite3GlobalConfig.nPage;
700 }else{
701 pcache1.nInitPage = 0;
702 }
703 pcache1.grp.mxPinned = 10;
704 pcache1.isInit = 1;
705 return SQLITE_OK;
706 }
707
708 /*
709 ** Implementation of the sqlite3_pcache.xShutdown method.
710 ** Note that the static mutex allocated in xInit does
711 ** not need to be freed.
712 */
713 static void pcache1Shutdown(void *NotUsed){
714 UNUSED_PARAMETER(NotUsed);
715 assert( pcache1.isInit!=0 );
716 memset(&pcache1, 0, sizeof(pcache1));
717 }
718
719 /* forward declaration */
720 static void pcache1Destroy(sqlite3_pcache *p);
721
722 /*
723 ** Implementation of the sqlite3_pcache.xCreate method.
724 **
725 ** Allocate a new cache.
726 */
727 static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){
728 PCache1 *pCache; /* The newly created page cache */
729 PGroup *pGroup; /* The group the new page cache will belong to */
730 int sz; /* Bytes of memory required to allocate the new cache */
731
732 assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 );
733 assert( szExtra < 300 );
734
735 sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache;
736 pCache = (PCache1 *)sqlite3MallocZero(sz);
737 if( pCache ){
738 if( pcache1.separateCache ){
739 pGroup = (PGroup*)&pCache[1];
740 pGroup->mxPinned = 10;
741 }else{
742 pGroup = &pcache1.grp;
743 }
744 if( pGroup->lru.isAnchor==0 ){
745 pGroup->lru.isAnchor = 1;
746 pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru;
747 }
748 pCache->pGroup = pGroup;
749 pCache->szPage = szPage;
750 pCache->szExtra = szExtra;
751 pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1));
752 pCache->bPurgeable = (bPurgeable ? 1 : 0);
753 pcache1EnterMutex(pGroup);
754 pcache1ResizeHash(pCache);
755 if( bPurgeable ){
756 pCache->nMin = 10;
757 pGroup->nMinPage += pCache->nMin;
758 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
759 }
760 pcache1LeaveMutex(pGroup);
761 if( pCache->nHash==0 ){
762 pcache1Destroy((sqlite3_pcache*)pCache);
763 pCache = 0;
764 }
765 }
766 return (sqlite3_pcache *)pCache;
767 }
768
769 /*
770 ** Implementation of the sqlite3_pcache.xCachesize method.
771 **
772 ** Configure the cache_size limit for a cache.
773 */
774 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
775 PCache1 *pCache = (PCache1 *)p;
776 if( pCache->bPurgeable ){
777 PGroup *pGroup = pCache->pGroup;
778 pcache1EnterMutex(pGroup);
779 pGroup->nMaxPage += (nMax - pCache->nMax);
780 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
781 pCache->nMax = nMax;
782 pCache->n90pct = pCache->nMax*9/10;
783 pcache1EnforceMaxPage(pCache);
784 pcache1LeaveMutex(pGroup);
785 }
786 }
787
788 /*
789 ** Implementation of the sqlite3_pcache.xShrink method.
790 **
791 ** Free up as much memory as possible.
792 */
793 static void pcache1Shrink(sqlite3_pcache *p){
794 PCache1 *pCache = (PCache1*)p;
795 if( pCache->bPurgeable ){
796 PGroup *pGroup = pCache->pGroup;
797 int savedMaxPage;
798 pcache1EnterMutex(pGroup);
799 savedMaxPage = pGroup->nMaxPage;
800 pGroup->nMaxPage = 0;
801 pcache1EnforceMaxPage(pCache);
802 pGroup->nMaxPage = savedMaxPage;
803 pcache1LeaveMutex(pGroup);
804 }
805 }
806
807 /*
808 ** Implementation of the sqlite3_pcache.xPagecount method.
809 */
810 static int pcache1Pagecount(sqlite3_pcache *p){
811 int n;
812 PCache1 *pCache = (PCache1*)p;
813 pcache1EnterMutex(pCache->pGroup);
814 n = pCache->nPage;
815 pcache1LeaveMutex(pCache->pGroup);
816 return n;
817 }
818
819
820 /*
821 ** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described
822 ** in the header of the pcache1Fetch() procedure.
823 **
824 ** This steps are broken out into a separate procedure because they are
825 ** usually not needed, and by avoiding the stack initialization required
826 ** for these steps, the main pcache1Fetch() procedure can run faster.
827 */
828 static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2(
829 PCache1 *pCache,
830 unsigned int iKey,
831 int createFlag
832 ){
833 unsigned int nPinned;
834 PGroup *pGroup = pCache->pGroup;
835 PgHdr1 *pPage = 0;
836
837 /* Step 3: Abort if createFlag is 1 but the cache is nearly full */
838 assert( pCache->nPage >= pCache->nRecyclable );
839 nPinned = pCache->nPage - pCache->nRecyclable;
840 assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage );
841 assert( pCache->n90pct == pCache->nMax*9/10 );
842 if( createFlag==1 && (
843 nPinned>=pGroup->mxPinned
844 || nPinned>=pCache->n90pct
845 || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned)
846 )){
847 return 0;
848 }
849
850 if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache);
851 assert( pCache->nHash>0 && pCache->apHash );
852
853 /* Step 4. Try to recycle a page. */
854 if( pCache->bPurgeable
855 && !pGroup->lru.pLruPrev->isAnchor
856 && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache))
857 ){
858 PCache1 *pOther;
859 pPage = pGroup->lru.pLruPrev;
860 assert( pPage->isPinned==0 );
861 pcache1RemoveFromHash(pPage, 0);
862 pcache1PinPage(pPage);
863 pOther = pPage->pCache;
864 if( pOther->szAlloc != pCache->szAlloc ){
865 pcache1FreePage(pPage);
866 pPage = 0;
867 }else{
868 pGroup->nCurrentPage -= (pOther->bPurgeable - pCache->bPurgeable);
869 }
870 }
871
872 /* Step 5. If a usable page buffer has still not been found,
873 ** attempt to allocate a new one.
874 */
875 if( !pPage ){
876 pPage = pcache1AllocPage(pCache, createFlag==1);
877 }
878
879 if( pPage ){
880 unsigned int h = iKey % pCache->nHash;
881 pCache->nPage++;
882 pPage->iKey = iKey;
883 pPage->pNext = pCache->apHash[h];
884 pPage->pCache = pCache;
885 pPage->pLruPrev = 0;
886 pPage->pLruNext = 0;
887 pPage->isPinned = 1;
888 *(void **)pPage->page.pExtra = 0;
889 pCache->apHash[h] = pPage;
890 if( iKey>pCache->iMaxKey ){
891 pCache->iMaxKey = iKey;
892 }
893 }
894 return pPage;
895 }
896
897 /*
898 ** Implementation of the sqlite3_pcache.xFetch method.
899 **
900 ** Fetch a page by key value.
901 **
902 ** Whether or not a new page may be allocated by this function depends on
903 ** the value of the createFlag argument. 0 means do not allocate a new
904 ** page. 1 means allocate a new page if space is easily available. 2
905 ** means to try really hard to allocate a new page.
906 **
907 ** For a non-purgeable cache (a cache used as the storage for an in-memory
908 ** database) there is really no difference between createFlag 1 and 2. So
909 ** the calling function (pcache.c) will never have a createFlag of 1 on
910 ** a non-purgeable cache.
911 **
912 ** There are three different approaches to obtaining space for a page,
913 ** depending on the value of parameter createFlag (which may be 0, 1 or 2).
914 **
915 ** 1. Regardless of the value of createFlag, the cache is searched for a
916 ** copy of the requested page. If one is found, it is returned.
917 **
918 ** 2. If createFlag==0 and the page is not already in the cache, NULL is
919 ** returned.
920 **
921 ** 3. If createFlag is 1, and the page is not already in the cache, then
922 ** return NULL (do not allocate a new page) if any of the following
923 ** conditions are true:
924 **
925 ** (a) the number of pages pinned by the cache is greater than
926 ** PCache1.nMax, or
927 **
928 ** (b) the number of pages pinned by the cache is greater than
929 ** the sum of nMax for all purgeable caches, less the sum of
930 ** nMin for all other purgeable caches, or
931 **
932 ** 4. If none of the first three conditions apply and the cache is marked
933 ** as purgeable, and if one of the following is true:
934 **
935 ** (a) The number of pages allocated for the cache is already
936 ** PCache1.nMax, or
937 **
938 ** (b) The number of pages allocated for all purgeable caches is
939 ** already equal to or greater than the sum of nMax for all
940 ** purgeable caches,
941 **
942 ** (c) The system is under memory pressure and wants to avoid
943 ** unnecessary pages cache entry allocations
944 **
945 ** then attempt to recycle a page from the LRU list. If it is the right
946 ** size, return the recycled buffer. Otherwise, free the buffer and
947 ** proceed to step 5.
948 **
949 ** 5. Otherwise, allocate and return a new page buffer.
950 **
951 ** There are two versions of this routine. pcache1FetchWithMutex() is
952 ** the general case. pcache1FetchNoMutex() is a faster implementation for
953 ** the common case where pGroup->mutex is NULL. The pcache1Fetch() wrapper
954 ** invokes the appropriate routine.
955 */
956 static PgHdr1 *pcache1FetchNoMutex(
957 sqlite3_pcache *p,
958 unsigned int iKey,
959 int createFlag
960 ){
961 PCache1 *pCache = (PCache1 *)p;
962 PgHdr1 *pPage = 0;
963
964 /* Step 1: Search the hash table for an existing entry. */
965 pPage = pCache->apHash[iKey % pCache->nHash];
966 while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; }
967
968 /* Step 2: If the page was found in the hash table, then return it.
969 ** If the page was not in the hash table and createFlag is 0, abort.
970 ** Otherwise (page not in hash and createFlag!=0) continue with
971 ** subsequent steps to try to create the page. */
972 if( pPage ){
973 if( !pPage->isPinned ){
974 return pcache1PinPage(pPage);
975 }else{
976 return pPage;
977 }
978 }else if( createFlag ){
979 /* Steps 3, 4, and 5 implemented by this subroutine */
980 return pcache1FetchStage2(pCache, iKey, createFlag);
981 }else{
982 return 0;
983 }
984 }
985 #if PCACHE1_MIGHT_USE_GROUP_MUTEX
986 static PgHdr1 *pcache1FetchWithMutex(
987 sqlite3_pcache *p,
988 unsigned int iKey,
989 int createFlag
990 ){
991 PCache1 *pCache = (PCache1 *)p;
992 PgHdr1 *pPage;
993
994 pcache1EnterMutex(pCache->pGroup);
995 pPage = pcache1FetchNoMutex(p, iKey, createFlag);
996 assert( pPage==0 || pCache->iMaxKey>=iKey );
997 pcache1LeaveMutex(pCache->pGroup);
998 return pPage;
999 }
1000 #endif
1001 static sqlite3_pcache_page *pcache1Fetch(
1002 sqlite3_pcache *p,
1003 unsigned int iKey,
1004 int createFlag
1005 ){
1006 #if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG)
1007 PCache1 *pCache = (PCache1 *)p;
1008 #endif
1009
1010 assert( offsetof(PgHdr1,page)==0 );
1011 assert( pCache->bPurgeable || createFlag!=1 );
1012 assert( pCache->bPurgeable || pCache->nMin==0 );
1013 assert( pCache->bPurgeable==0 || pCache->nMin==10 );
1014 assert( pCache->nMin==0 || pCache->bPurgeable );
1015 assert( pCache->nHash>0 );
1016 #if PCACHE1_MIGHT_USE_GROUP_MUTEX
1017 if( pCache->pGroup->mutex ){
1018 return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag);
1019 }else
1020 #endif
1021 {
1022 return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag);
1023 }
1024 }
1025
1026
1027 /*
1028 ** Implementation of the sqlite3_pcache.xUnpin method.
1029 **
1030 ** Mark a page as unpinned (eligible for asynchronous recycling).
1031 */
1032 static void pcache1Unpin(
1033 sqlite3_pcache *p,
1034 sqlite3_pcache_page *pPg,
1035 int reuseUnlikely
1036 ){
1037 PCache1 *pCache = (PCache1 *)p;
1038 PgHdr1 *pPage = (PgHdr1 *)pPg;
1039 PGroup *pGroup = pCache->pGroup;
1040
1041 assert( pPage->pCache==pCache );
1042 pcache1EnterMutex(pGroup);
1043
1044 /* It is an error to call this function if the page is already
1045 ** part of the PGroup LRU list.
1046 */
1047 assert( pPage->pLruPrev==0 && pPage->pLruNext==0 );
1048 assert( pPage->isPinned==1 );
1049
1050 if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){
1051 pcache1RemoveFromHash(pPage, 1);
1052 }else{
1053 /* Add the page to the PGroup LRU list. */
1054 PgHdr1 **ppFirst = &pGroup->lru.pLruNext;
1055 pPage->pLruPrev = &pGroup->lru;
1056 (pPage->pLruNext = *ppFirst)->pLruPrev = pPage;
1057 *ppFirst = pPage;
1058 pCache->nRecyclable++;
1059 pPage->isPinned = 0;
1060 }
1061
1062 pcache1LeaveMutex(pCache->pGroup);
1063 }
1064
1065 /*
1066 ** Implementation of the sqlite3_pcache.xRekey method.
1067 */
1068 static void pcache1Rekey(
1069 sqlite3_pcache *p,
1070 sqlite3_pcache_page *pPg,
1071 unsigned int iOld,
1072 unsigned int iNew
1073 ){
1074 PCache1 *pCache = (PCache1 *)p;
1075 PgHdr1 *pPage = (PgHdr1 *)pPg;
1076 PgHdr1 **pp;
1077 unsigned int h;
1078 assert( pPage->iKey==iOld );
1079 assert( pPage->pCache==pCache );
1080
1081 pcache1EnterMutex(pCache->pGroup);
1082
1083 h = iOld%pCache->nHash;
1084 pp = &pCache->apHash[h];
1085 while( (*pp)!=pPage ){
1086 pp = &(*pp)->pNext;
1087 }
1088 *pp = pPage->pNext;
1089
1090 h = iNew%pCache->nHash;
1091 pPage->iKey = iNew;
1092 pPage->pNext = pCache->apHash[h];
1093 pCache->apHash[h] = pPage;
1094 if( iNew>pCache->iMaxKey ){
1095 pCache->iMaxKey = iNew;
1096 }
1097
1098 pcache1LeaveMutex(pCache->pGroup);
1099 }
1100
1101 /*
1102 ** Implementation of the sqlite3_pcache.xTruncate method.
1103 **
1104 ** Discard all unpinned pages in the cache with a page number equal to
1105 ** or greater than parameter iLimit. Any pinned pages with a page number
1106 ** equal to or greater than iLimit are implicitly unpinned.
1107 */
1108 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
1109 PCache1 *pCache = (PCache1 *)p;
1110 pcache1EnterMutex(pCache->pGroup);
1111 if( iLimit<=pCache->iMaxKey ){
1112 pcache1TruncateUnsafe(pCache, iLimit);
1113 pCache->iMaxKey = iLimit-1;
1114 }
1115 pcache1LeaveMutex(pCache->pGroup);
1116 }
1117
1118 /*
1119 ** Implementation of the sqlite3_pcache.xDestroy method.
1120 **
1121 ** Destroy a cache allocated using pcache1Create().
1122 */
1123 static void pcache1Destroy(sqlite3_pcache *p){
1124 PCache1 *pCache = (PCache1 *)p;
1125 PGroup *pGroup = pCache->pGroup;
1126 assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) );
1127 pcache1EnterMutex(pGroup);
1128 pcache1TruncateUnsafe(pCache, 0);
1129 assert( pGroup->nMaxPage >= pCache->nMax );
1130 pGroup->nMaxPage -= pCache->nMax;
1131 assert( pGroup->nMinPage >= pCache->nMin );
1132 pGroup->nMinPage -= pCache->nMin;
1133 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
1134 pcache1EnforceMaxPage(pCache);
1135 pcache1LeaveMutex(pGroup);
1136 sqlite3_free(pCache->pBulk);
1137 sqlite3_free(pCache->apHash);
1138 sqlite3_free(pCache);
1139 }
1140
1141 /*
1142 ** This function is called during initialization (sqlite3_initialize()) to
1143 ** install the default pluggable cache module, assuming the user has not
1144 ** already provided an alternative.
1145 */
1146 void sqlite3PCacheSetDefault(void){
1147 static const sqlite3_pcache_methods2 defaultMethods = {
1148 1, /* iVersion */
1149 0, /* pArg */
1150 pcache1Init, /* xInit */
1151 pcache1Shutdown, /* xShutdown */
1152 pcache1Create, /* xCreate */
1153 pcache1Cachesize, /* xCachesize */
1154 pcache1Pagecount, /* xPagecount */
1155 pcache1Fetch, /* xFetch */
1156 pcache1Unpin, /* xUnpin */
1157 pcache1Rekey, /* xRekey */
1158 pcache1Truncate, /* xTruncate */
1159 pcache1Destroy, /* xDestroy */
1160 pcache1Shrink /* xShrink */
1161 };
1162 sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
1163 }
1164
1165 /*
1166 ** Return the size of the header on each page of this PCACHE implementation.
1167 */
1168 int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); }
1169
1170 /*
1171 ** Return the global mutex used by this PCACHE implementation. The
1172 ** sqlite3_status() routine needs access to this mutex.
1173 */
1174 sqlite3_mutex *sqlite3Pcache1Mutex(void){
1175 return pcache1.mutex;
1176 }
1177
1178 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
1179 /*
1180 ** This function is called to free superfluous dynamically allocated memory
1181 ** held by the pager system. Memory in use by any SQLite pager allocated
1182 ** by the current thread may be sqlite3_free()ed.
1183 **
1184 ** nReq is the number of bytes of memory required. Once this much has
1185 ** been released, the function returns. The return value is the total number
1186 ** of bytes of memory released.
1187 */
1188 int sqlite3PcacheReleaseMemory(int nReq){
1189 int nFree = 0;
1190 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
1191 assert( sqlite3_mutex_notheld(pcache1.mutex) );
1192 if( sqlite3GlobalConfig.nPage==0 ){
1193 PgHdr1 *p;
1194 pcache1EnterMutex(&pcache1.grp);
1195 while( (nReq<0 || nFree<nReq)
1196 && (p=pcache1.grp.lru.pLruPrev)!=0
1197 && p->isAnchor==0
1198 ){
1199 nFree += pcache1MemSize(p->page.pBuf);
1200 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
1201 nFree += sqlite3MemSize(p);
1202 #endif
1203 assert( p->isPinned==0 );
1204 pcache1PinPage(p);
1205 pcache1RemoveFromHash(p, 1);
1206 }
1207 pcache1LeaveMutex(&pcache1.grp);
1208 }
1209 return nFree;
1210 }
1211 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
1212
1213 #ifdef SQLITE_TEST
1214 /*
1215 ** This function is used by test procedures to inspect the internal state
1216 ** of the global cache.
1217 */
1218 void sqlite3PcacheStats(
1219 int *pnCurrent, /* OUT: Total number of pages cached */
1220 int *pnMax, /* OUT: Global maximum cache size */
1221 int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */
1222 int *pnRecyclable /* OUT: Total number of pages available for recycling */
1223 ){
1224 PgHdr1 *p;
1225 int nRecyclable = 0;
1226 for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){
1227 assert( p->isPinned==0 );
1228 nRecyclable++;
1229 }
1230 *pnCurrent = pcache1.grp.nCurrentPage;
1231 *pnMax = (int)pcache1.grp.nMaxPage;
1232 *pnMin = (int)pcache1.grp.nMinPage;
1233 *pnRecyclable = nRecyclable;
1234 }
1235 #endif
OLDNEW
« no previous file with comments | « third_party/sqlite/sqlite-src-3100200/src/pcache.c ('k') | third_party/sqlite/sqlite-src-3100200/src/pragma.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698