OLD | NEW |
| (Empty) |
1 /* | |
2 ** 2008 August 05 | |
3 ** | |
4 ** The author disclaims copyright to this source code. In place of | |
5 ** a legal notice, here is a blessing: | |
6 ** | |
7 ** May you do good and not evil. | |
8 ** May you find forgiveness for yourself and forgive others. | |
9 ** May you share freely, never taking more than you give. | |
10 ** | |
11 ************************************************************************* | |
12 ** This file implements that page cache. | |
13 */ | |
14 #include "sqliteInt.h" | |
15 | |
16 /* | |
17 ** A complete page cache is an instance of this structure. | |
18 */ | |
19 struct PCache { | |
20 PgHdr *pDirty, *pDirtyTail; /* List of dirty pages in LRU order */ | |
21 PgHdr *pSynced; /* Last synced page in dirty page list */ | |
22 int nRefSum; /* Sum of ref counts over all pages */ | |
23 int szCache; /* Configured cache size */ | |
24 int szSpill; /* Size before spilling occurs */ | |
25 int szPage; /* Size of every page in this cache */ | |
26 int szExtra; /* Size of extra space for each page */ | |
27 u8 bPurgeable; /* True if pages are on backing store */ | |
28 u8 eCreate; /* eCreate value for for xFetch() */ | |
29 int (*xStress)(void*,PgHdr*); /* Call to try make a page clean */ | |
30 void *pStress; /* Argument to xStress */ | |
31 sqlite3_pcache *pCache; /* Pluggable cache module */ | |
32 }; | |
33 | |
34 /********************************** Linked List Management ********************/ | |
35 | |
36 /* Allowed values for second argument to pcacheManageDirtyList() */ | |
37 #define PCACHE_DIRTYLIST_REMOVE 1 /* Remove pPage from dirty list */ | |
38 #define PCACHE_DIRTYLIST_ADD 2 /* Add pPage to the dirty list */ | |
39 #define PCACHE_DIRTYLIST_FRONT 3 /* Move pPage to the front of the list */ | |
40 | |
41 /* | |
42 ** Manage pPage's participation on the dirty list. Bits of the addRemove | |
43 ** argument determines what operation to do. The 0x01 bit means first | |
44 ** remove pPage from the dirty list. The 0x02 means add pPage back to | |
45 ** the dirty list. Doing both moves pPage to the front of the dirty list. | |
46 */ | |
47 static void pcacheManageDirtyList(PgHdr *pPage, u8 addRemove){ | |
48 PCache *p = pPage->pCache; | |
49 | |
50 if( addRemove & PCACHE_DIRTYLIST_REMOVE ){ | |
51 assert( pPage->pDirtyNext || pPage==p->pDirtyTail ); | |
52 assert( pPage->pDirtyPrev || pPage==p->pDirty ); | |
53 | |
54 /* Update the PCache1.pSynced variable if necessary. */ | |
55 if( p->pSynced==pPage ){ | |
56 PgHdr *pSynced = pPage->pDirtyPrev; | |
57 while( pSynced && (pSynced->flags&PGHDR_NEED_SYNC) ){ | |
58 pSynced = pSynced->pDirtyPrev; | |
59 } | |
60 p->pSynced = pSynced; | |
61 } | |
62 | |
63 if( pPage->pDirtyNext ){ | |
64 pPage->pDirtyNext->pDirtyPrev = pPage->pDirtyPrev; | |
65 }else{ | |
66 assert( pPage==p->pDirtyTail ); | |
67 p->pDirtyTail = pPage->pDirtyPrev; | |
68 } | |
69 if( pPage->pDirtyPrev ){ | |
70 pPage->pDirtyPrev->pDirtyNext = pPage->pDirtyNext; | |
71 }else{ | |
72 assert( pPage==p->pDirty ); | |
73 p->pDirty = pPage->pDirtyNext; | |
74 if( p->pDirty==0 && p->bPurgeable ){ | |
75 assert( p->eCreate==1 ); | |
76 p->eCreate = 2; | |
77 } | |
78 } | |
79 pPage->pDirtyNext = 0; | |
80 pPage->pDirtyPrev = 0; | |
81 } | |
82 if( addRemove & PCACHE_DIRTYLIST_ADD ){ | |
83 assert( pPage->pDirtyNext==0 && pPage->pDirtyPrev==0 && p->pDirty!=pPage ); | |
84 | |
85 pPage->pDirtyNext = p->pDirty; | |
86 if( pPage->pDirtyNext ){ | |
87 assert( pPage->pDirtyNext->pDirtyPrev==0 ); | |
88 pPage->pDirtyNext->pDirtyPrev = pPage; | |
89 }else{ | |
90 p->pDirtyTail = pPage; | |
91 if( p->bPurgeable ){ | |
92 assert( p->eCreate==2 ); | |
93 p->eCreate = 1; | |
94 } | |
95 } | |
96 p->pDirty = pPage; | |
97 if( !p->pSynced && 0==(pPage->flags&PGHDR_NEED_SYNC) ){ | |
98 p->pSynced = pPage; | |
99 } | |
100 } | |
101 } | |
102 | |
103 /* | |
104 ** Wrapper around the pluggable caches xUnpin method. If the cache is | |
105 ** being used for an in-memory database, this function is a no-op. | |
106 */ | |
107 static void pcacheUnpin(PgHdr *p){ | |
108 if( p->pCache->bPurgeable ){ | |
109 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 0); | |
110 } | |
111 } | |
112 | |
113 /* | |
114 ** Compute the number of pages of cache requested. p->szCache is the | |
115 ** cache size requested by the "PRAGMA cache_size" statement. | |
116 */ | |
117 static int numberOfCachePages(PCache *p){ | |
118 if( p->szCache>=0 ){ | |
119 /* IMPLEMENTATION-OF: R-42059-47211 If the argument N is positive then the | |
120 ** suggested cache size is set to N. */ | |
121 return p->szCache; | |
122 }else{ | |
123 /* IMPLEMENTATION-OF: R-61436-13639 If the argument N is negative, then | |
124 ** the number of cache pages is adjusted to use approximately abs(N*1024) | |
125 ** bytes of memory. */ | |
126 return (int)((-1024*(i64)p->szCache)/(p->szPage+p->szExtra)); | |
127 } | |
128 } | |
129 | |
130 /*************************************************** General Interfaces ****** | |
131 ** | |
132 ** Initialize and shutdown the page cache subsystem. Neither of these | |
133 ** functions are threadsafe. | |
134 */ | |
135 int sqlite3PcacheInitialize(void){ | |
136 if( sqlite3GlobalConfig.pcache2.xInit==0 ){ | |
137 /* IMPLEMENTATION-OF: R-26801-64137 If the xInit() method is NULL, then the | |
138 ** built-in default page cache is used instead of the application defined | |
139 ** page cache. */ | |
140 sqlite3PCacheSetDefault(); | |
141 } | |
142 return sqlite3GlobalConfig.pcache2.xInit(sqlite3GlobalConfig.pcache2.pArg); | |
143 } | |
144 void sqlite3PcacheShutdown(void){ | |
145 if( sqlite3GlobalConfig.pcache2.xShutdown ){ | |
146 /* IMPLEMENTATION-OF: R-26000-56589 The xShutdown() method may be NULL. */ | |
147 sqlite3GlobalConfig.pcache2.xShutdown(sqlite3GlobalConfig.pcache2.pArg); | |
148 } | |
149 } | |
150 | |
151 /* | |
152 ** Return the size in bytes of a PCache object. | |
153 */ | |
154 int sqlite3PcacheSize(void){ return sizeof(PCache); } | |
155 | |
156 /* | |
157 ** Create a new PCache object. Storage space to hold the object | |
158 ** has already been allocated and is passed in as the p pointer. | |
159 ** The caller discovers how much space needs to be allocated by | |
160 ** calling sqlite3PcacheSize(). | |
161 */ | |
162 int sqlite3PcacheOpen( | |
163 int szPage, /* Size of every page */ | |
164 int szExtra, /* Extra space associated with each page */ | |
165 int bPurgeable, /* True if pages are on backing store */ | |
166 int (*xStress)(void*,PgHdr*),/* Call to try to make pages clean */ | |
167 void *pStress, /* Argument to xStress */ | |
168 PCache *p /* Preallocated space for the PCache */ | |
169 ){ | |
170 memset(p, 0, sizeof(PCache)); | |
171 p->szPage = 1; | |
172 p->szExtra = szExtra; | |
173 p->bPurgeable = bPurgeable; | |
174 p->eCreate = 2; | |
175 p->xStress = xStress; | |
176 p->pStress = pStress; | |
177 p->szCache = 100; | |
178 p->szSpill = 1; | |
179 return sqlite3PcacheSetPageSize(p, szPage); | |
180 } | |
181 | |
182 /* | |
183 ** Change the page size for PCache object. The caller must ensure that there | |
184 ** are no outstanding page references when this function is called. | |
185 */ | |
186 int sqlite3PcacheSetPageSize(PCache *pCache, int szPage){ | |
187 assert( pCache->nRefSum==0 && pCache->pDirty==0 ); | |
188 if( pCache->szPage ){ | |
189 sqlite3_pcache *pNew; | |
190 pNew = sqlite3GlobalConfig.pcache2.xCreate( | |
191 szPage, pCache->szExtra + ROUND8(sizeof(PgHdr)), | |
192 pCache->bPurgeable | |
193 ); | |
194 if( pNew==0 ) return SQLITE_NOMEM; | |
195 sqlite3GlobalConfig.pcache2.xCachesize(pNew, numberOfCachePages(pCache)); | |
196 if( pCache->pCache ){ | |
197 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); | |
198 } | |
199 pCache->pCache = pNew; | |
200 pCache->szPage = szPage; | |
201 } | |
202 return SQLITE_OK; | |
203 } | |
204 | |
205 /* | |
206 ** Try to obtain a page from the cache. | |
207 ** | |
208 ** This routine returns a pointer to an sqlite3_pcache_page object if | |
209 ** such an object is already in cache, or if a new one is created. | |
210 ** This routine returns a NULL pointer if the object was not in cache | |
211 ** and could not be created. | |
212 ** | |
213 ** The createFlags should be 0 to check for existing pages and should | |
214 ** be 3 (not 1, but 3) to try to create a new page. | |
215 ** | |
216 ** If the createFlag is 0, then NULL is always returned if the page | |
217 ** is not already in the cache. If createFlag is 1, then a new page | |
218 ** is created only if that can be done without spilling dirty pages | |
219 ** and without exceeding the cache size limit. | |
220 ** | |
221 ** The caller needs to invoke sqlite3PcacheFetchFinish() to properly | |
222 ** initialize the sqlite3_pcache_page object and convert it into a | |
223 ** PgHdr object. The sqlite3PcacheFetch() and sqlite3PcacheFetchFinish() | |
224 ** routines are split this way for performance reasons. When separated | |
225 ** they can both (usually) operate without having to push values to | |
226 ** the stack on entry and pop them back off on exit, which saves a | |
227 ** lot of pushing and popping. | |
228 */ | |
229 sqlite3_pcache_page *sqlite3PcacheFetch( | |
230 PCache *pCache, /* Obtain the page from this cache */ | |
231 Pgno pgno, /* Page number to obtain */ | |
232 int createFlag /* If true, create page if it does not exist already */ | |
233 ){ | |
234 int eCreate; | |
235 | |
236 assert( pCache!=0 ); | |
237 assert( pCache->pCache!=0 ); | |
238 assert( createFlag==3 || createFlag==0 ); | |
239 assert( pgno>0 ); | |
240 | |
241 /* eCreate defines what to do if the page does not exist. | |
242 ** 0 Do not allocate a new page. (createFlag==0) | |
243 ** 1 Allocate a new page if doing so is inexpensive. | |
244 ** (createFlag==1 AND bPurgeable AND pDirty) | |
245 ** 2 Allocate a new page even it doing so is difficult. | |
246 ** (createFlag==1 AND !(bPurgeable AND pDirty) | |
247 */ | |
248 eCreate = createFlag & pCache->eCreate; | |
249 assert( eCreate==0 || eCreate==1 || eCreate==2 ); | |
250 assert( createFlag==0 || pCache->eCreate==eCreate ); | |
251 assert( createFlag==0 || eCreate==1+(!pCache->bPurgeable||!pCache->pDirty) ); | |
252 return sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, eCreate); | |
253 } | |
254 | |
255 /* | |
256 ** If the sqlite3PcacheFetch() routine is unable to allocate a new | |
257 ** page because new clean pages are available for reuse and the cache | |
258 ** size limit has been reached, then this routine can be invoked to | |
259 ** try harder to allocate a page. This routine might invoke the stress | |
260 ** callback to spill dirty pages to the journal. It will then try to | |
261 ** allocate the new page and will only fail to allocate a new page on | |
262 ** an OOM error. | |
263 ** | |
264 ** This routine should be invoked only after sqlite3PcacheFetch() fails. | |
265 */ | |
266 int sqlite3PcacheFetchStress( | |
267 PCache *pCache, /* Obtain the page from this cache */ | |
268 Pgno pgno, /* Page number to obtain */ | |
269 sqlite3_pcache_page **ppPage /* Write result here */ | |
270 ){ | |
271 PgHdr *pPg; | |
272 if( pCache->eCreate==2 ) return 0; | |
273 | |
274 if( sqlite3PcachePagecount(pCache)>pCache->szSpill ){ | |
275 /* Find a dirty page to write-out and recycle. First try to find a | |
276 ** page that does not require a journal-sync (one with PGHDR_NEED_SYNC | |
277 ** cleared), but if that is not possible settle for any other | |
278 ** unreferenced dirty page. | |
279 */ | |
280 for(pPg=pCache->pSynced; | |
281 pPg && (pPg->nRef || (pPg->flags&PGHDR_NEED_SYNC)); | |
282 pPg=pPg->pDirtyPrev | |
283 ); | |
284 pCache->pSynced = pPg; | |
285 if( !pPg ){ | |
286 for(pPg=pCache->pDirtyTail; pPg && pPg->nRef; pPg=pPg->pDirtyPrev); | |
287 } | |
288 if( pPg ){ | |
289 int rc; | |
290 #ifdef SQLITE_LOG_CACHE_SPILL | |
291 sqlite3_log(SQLITE_FULL, | |
292 "spill page %d making room for %d - cache used: %d/%d", | |
293 pPg->pgno, pgno, | |
294 sqlite3GlobalConfig.pcache.xPagecount(pCache->pCache), | |
295 numberOfCachePages(pCache)); | |
296 #endif | |
297 rc = pCache->xStress(pCache->pStress, pPg); | |
298 if( rc!=SQLITE_OK && rc!=SQLITE_BUSY ){ | |
299 return rc; | |
300 } | |
301 } | |
302 } | |
303 *ppPage = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache, pgno, 2); | |
304 return *ppPage==0 ? SQLITE_NOMEM : SQLITE_OK; | |
305 } | |
306 | |
307 /* | |
308 ** This is a helper routine for sqlite3PcacheFetchFinish() | |
309 ** | |
310 ** In the uncommon case where the page being fetched has not been | |
311 ** initialized, this routine is invoked to do the initialization. | |
312 ** This routine is broken out into a separate function since it | |
313 ** requires extra stack manipulation that can be avoided in the common | |
314 ** case. | |
315 */ | |
316 static SQLITE_NOINLINE PgHdr *pcacheFetchFinishWithInit( | |
317 PCache *pCache, /* Obtain the page from this cache */ | |
318 Pgno pgno, /* Page number obtained */ | |
319 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ | |
320 ){ | |
321 PgHdr *pPgHdr; | |
322 assert( pPage!=0 ); | |
323 pPgHdr = (PgHdr*)pPage->pExtra; | |
324 assert( pPgHdr->pPage==0 ); | |
325 memset(pPgHdr, 0, sizeof(PgHdr)); | |
326 pPgHdr->pPage = pPage; | |
327 pPgHdr->pData = pPage->pBuf; | |
328 pPgHdr->pExtra = (void *)&pPgHdr[1]; | |
329 memset(pPgHdr->pExtra, 0, pCache->szExtra); | |
330 pPgHdr->pCache = pCache; | |
331 pPgHdr->pgno = pgno; | |
332 pPgHdr->flags = PGHDR_CLEAN; | |
333 return sqlite3PcacheFetchFinish(pCache,pgno,pPage); | |
334 } | |
335 | |
336 /* | |
337 ** This routine converts the sqlite3_pcache_page object returned by | |
338 ** sqlite3PcacheFetch() into an initialized PgHdr object. This routine | |
339 ** must be called after sqlite3PcacheFetch() in order to get a usable | |
340 ** result. | |
341 */ | |
342 PgHdr *sqlite3PcacheFetchFinish( | |
343 PCache *pCache, /* Obtain the page from this cache */ | |
344 Pgno pgno, /* Page number obtained */ | |
345 sqlite3_pcache_page *pPage /* Page obtained by prior PcacheFetch() call */ | |
346 ){ | |
347 PgHdr *pPgHdr; | |
348 | |
349 assert( pPage!=0 ); | |
350 pPgHdr = (PgHdr *)pPage->pExtra; | |
351 | |
352 if( !pPgHdr->pPage ){ | |
353 return pcacheFetchFinishWithInit(pCache, pgno, pPage); | |
354 } | |
355 pCache->nRefSum++; | |
356 pPgHdr->nRef++; | |
357 return pPgHdr; | |
358 } | |
359 | |
360 /* | |
361 ** Decrement the reference count on a page. If the page is clean and the | |
362 ** reference count drops to 0, then it is made eligible for recycling. | |
363 */ | |
364 void SQLITE_NOINLINE sqlite3PcacheRelease(PgHdr *p){ | |
365 assert( p->nRef>0 ); | |
366 p->pCache->nRefSum--; | |
367 if( (--p->nRef)==0 ){ | |
368 if( p->flags&PGHDR_CLEAN ){ | |
369 pcacheUnpin(p); | |
370 }else if( p->pDirtyPrev!=0 ){ | |
371 /* Move the page to the head of the dirty list. */ | |
372 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); | |
373 } | |
374 } | |
375 } | |
376 | |
377 /* | |
378 ** Increase the reference count of a supplied page by 1. | |
379 */ | |
380 void sqlite3PcacheRef(PgHdr *p){ | |
381 assert(p->nRef>0); | |
382 p->nRef++; | |
383 p->pCache->nRefSum++; | |
384 } | |
385 | |
386 /* | |
387 ** Drop a page from the cache. There must be exactly one reference to the | |
388 ** page. This function deletes that reference, so after it returns the | |
389 ** page pointed to by p is invalid. | |
390 */ | |
391 void sqlite3PcacheDrop(PgHdr *p){ | |
392 assert( p->nRef==1 ); | |
393 if( p->flags&PGHDR_DIRTY ){ | |
394 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); | |
395 } | |
396 p->pCache->nRefSum--; | |
397 sqlite3GlobalConfig.pcache2.xUnpin(p->pCache->pCache, p->pPage, 1); | |
398 } | |
399 | |
400 /* | |
401 ** Make sure the page is marked as dirty. If it isn't dirty already, | |
402 ** make it so. | |
403 */ | |
404 void sqlite3PcacheMakeDirty(PgHdr *p){ | |
405 assert( p->nRef>0 ); | |
406 if( p->flags & (PGHDR_CLEAN|PGHDR_DONT_WRITE) ){ | |
407 p->flags &= ~PGHDR_DONT_WRITE; | |
408 if( p->flags & PGHDR_CLEAN ){ | |
409 p->flags ^= (PGHDR_DIRTY|PGHDR_CLEAN); | |
410 assert( (p->flags & (PGHDR_DIRTY|PGHDR_CLEAN))==PGHDR_DIRTY ); | |
411 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_ADD); | |
412 } | |
413 } | |
414 } | |
415 | |
416 /* | |
417 ** Make sure the page is marked as clean. If it isn't clean already, | |
418 ** make it so. | |
419 */ | |
420 void sqlite3PcacheMakeClean(PgHdr *p){ | |
421 if( (p->flags & PGHDR_DIRTY) ){ | |
422 assert( (p->flags & PGHDR_CLEAN)==0 ); | |
423 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_REMOVE); | |
424 p->flags &= ~(PGHDR_DIRTY|PGHDR_NEED_SYNC|PGHDR_WRITEABLE); | |
425 p->flags |= PGHDR_CLEAN; | |
426 if( p->nRef==0 ){ | |
427 pcacheUnpin(p); | |
428 } | |
429 } | |
430 } | |
431 | |
432 /* | |
433 ** Make every page in the cache clean. | |
434 */ | |
435 void sqlite3PcacheCleanAll(PCache *pCache){ | |
436 PgHdr *p; | |
437 while( (p = pCache->pDirty)!=0 ){ | |
438 sqlite3PcacheMakeClean(p); | |
439 } | |
440 } | |
441 | |
442 /* | |
443 ** Clear the PGHDR_NEED_SYNC flag from all dirty pages. | |
444 */ | |
445 void sqlite3PcacheClearSyncFlags(PCache *pCache){ | |
446 PgHdr *p; | |
447 for(p=pCache->pDirty; p; p=p->pDirtyNext){ | |
448 p->flags &= ~PGHDR_NEED_SYNC; | |
449 } | |
450 pCache->pSynced = pCache->pDirtyTail; | |
451 } | |
452 | |
453 /* | |
454 ** Change the page number of page p to newPgno. | |
455 */ | |
456 void sqlite3PcacheMove(PgHdr *p, Pgno newPgno){ | |
457 PCache *pCache = p->pCache; | |
458 assert( p->nRef>0 ); | |
459 assert( newPgno>0 ); | |
460 sqlite3GlobalConfig.pcache2.xRekey(pCache->pCache, p->pPage, p->pgno,newPgno); | |
461 p->pgno = newPgno; | |
462 if( (p->flags&PGHDR_DIRTY) && (p->flags&PGHDR_NEED_SYNC) ){ | |
463 pcacheManageDirtyList(p, PCACHE_DIRTYLIST_FRONT); | |
464 } | |
465 } | |
466 | |
467 /* | |
468 ** Drop every cache entry whose page number is greater than "pgno". The | |
469 ** caller must ensure that there are no outstanding references to any pages | |
470 ** other than page 1 with a page number greater than pgno. | |
471 ** | |
472 ** If there is a reference to page 1 and the pgno parameter passed to this | |
473 ** function is 0, then the data area associated with page 1 is zeroed, but | |
474 ** the page object is not dropped. | |
475 */ | |
476 void sqlite3PcacheTruncate(PCache *pCache, Pgno pgno){ | |
477 if( pCache->pCache ){ | |
478 PgHdr *p; | |
479 PgHdr *pNext; | |
480 for(p=pCache->pDirty; p; p=pNext){ | |
481 pNext = p->pDirtyNext; | |
482 /* This routine never gets call with a positive pgno except right | |
483 ** after sqlite3PcacheCleanAll(). So if there are dirty pages, | |
484 ** it must be that pgno==0. | |
485 */ | |
486 assert( p->pgno>0 ); | |
487 if( ALWAYS(p->pgno>pgno) ){ | |
488 assert( p->flags&PGHDR_DIRTY ); | |
489 sqlite3PcacheMakeClean(p); | |
490 } | |
491 } | |
492 if( pgno==0 && pCache->nRefSum ){ | |
493 sqlite3_pcache_page *pPage1; | |
494 pPage1 = sqlite3GlobalConfig.pcache2.xFetch(pCache->pCache,1,0); | |
495 if( ALWAYS(pPage1) ){ /* Page 1 is always available in cache, because | |
496 ** pCache->nRefSum>0 */ | |
497 memset(pPage1->pBuf, 0, pCache->szPage); | |
498 pgno = 1; | |
499 } | |
500 } | |
501 sqlite3GlobalConfig.pcache2.xTruncate(pCache->pCache, pgno+1); | |
502 } | |
503 } | |
504 | |
505 /* | |
506 ** Close a cache. | |
507 */ | |
508 void sqlite3PcacheClose(PCache *pCache){ | |
509 assert( pCache->pCache!=0 ); | |
510 sqlite3GlobalConfig.pcache2.xDestroy(pCache->pCache); | |
511 } | |
512 | |
513 /* | |
514 ** Discard the contents of the cache. | |
515 */ | |
516 void sqlite3PcacheClear(PCache *pCache){ | |
517 sqlite3PcacheTruncate(pCache, 0); | |
518 } | |
519 | |
520 /* | |
521 ** Merge two lists of pages connected by pDirty and in pgno order. | |
522 ** Do not both fixing the pDirtyPrev pointers. | |
523 */ | |
524 static PgHdr *pcacheMergeDirtyList(PgHdr *pA, PgHdr *pB){ | |
525 PgHdr result, *pTail; | |
526 pTail = &result; | |
527 while( pA && pB ){ | |
528 if( pA->pgno<pB->pgno ){ | |
529 pTail->pDirty = pA; | |
530 pTail = pA; | |
531 pA = pA->pDirty; | |
532 }else{ | |
533 pTail->pDirty = pB; | |
534 pTail = pB; | |
535 pB = pB->pDirty; | |
536 } | |
537 } | |
538 if( pA ){ | |
539 pTail->pDirty = pA; | |
540 }else if( pB ){ | |
541 pTail->pDirty = pB; | |
542 }else{ | |
543 pTail->pDirty = 0; | |
544 } | |
545 return result.pDirty; | |
546 } | |
547 | |
548 /* | |
549 ** Sort the list of pages in accending order by pgno. Pages are | |
550 ** connected by pDirty pointers. The pDirtyPrev pointers are | |
551 ** corrupted by this sort. | |
552 ** | |
553 ** Since there cannot be more than 2^31 distinct pages in a database, | |
554 ** there cannot be more than 31 buckets required by the merge sorter. | |
555 ** One extra bucket is added to catch overflow in case something | |
556 ** ever changes to make the previous sentence incorrect. | |
557 */ | |
558 #define N_SORT_BUCKET 32 | |
559 static PgHdr *pcacheSortDirtyList(PgHdr *pIn){ | |
560 PgHdr *a[N_SORT_BUCKET], *p; | |
561 int i; | |
562 memset(a, 0, sizeof(a)); | |
563 while( pIn ){ | |
564 p = pIn; | |
565 pIn = p->pDirty; | |
566 p->pDirty = 0; | |
567 for(i=0; ALWAYS(i<N_SORT_BUCKET-1); i++){ | |
568 if( a[i]==0 ){ | |
569 a[i] = p; | |
570 break; | |
571 }else{ | |
572 p = pcacheMergeDirtyList(a[i], p); | |
573 a[i] = 0; | |
574 } | |
575 } | |
576 if( NEVER(i==N_SORT_BUCKET-1) ){ | |
577 /* To get here, there need to be 2^(N_SORT_BUCKET) elements in | |
578 ** the input list. But that is impossible. | |
579 */ | |
580 a[i] = pcacheMergeDirtyList(a[i], p); | |
581 } | |
582 } | |
583 p = a[0]; | |
584 for(i=1; i<N_SORT_BUCKET; i++){ | |
585 p = pcacheMergeDirtyList(p, a[i]); | |
586 } | |
587 return p; | |
588 } | |
589 | |
590 /* | |
591 ** Return a list of all dirty pages in the cache, sorted by page number. | |
592 */ | |
593 PgHdr *sqlite3PcacheDirtyList(PCache *pCache){ | |
594 PgHdr *p; | |
595 for(p=pCache->pDirty; p; p=p->pDirtyNext){ | |
596 p->pDirty = p->pDirtyNext; | |
597 } | |
598 return pcacheSortDirtyList(pCache->pDirty); | |
599 } | |
600 | |
601 /* | |
602 ** Return the total number of references to all pages held by the cache. | |
603 ** | |
604 ** This is not the total number of pages referenced, but the sum of the | |
605 ** reference count for all pages. | |
606 */ | |
607 int sqlite3PcacheRefCount(PCache *pCache){ | |
608 return pCache->nRefSum; | |
609 } | |
610 | |
611 /* | |
612 ** Return the number of references to the page supplied as an argument. | |
613 */ | |
614 int sqlite3PcachePageRefcount(PgHdr *p){ | |
615 return p->nRef; | |
616 } | |
617 | |
618 /* | |
619 ** Return the total number of pages in the cache. | |
620 */ | |
621 int sqlite3PcachePagecount(PCache *pCache){ | |
622 assert( pCache->pCache!=0 ); | |
623 return sqlite3GlobalConfig.pcache2.xPagecount(pCache->pCache); | |
624 } | |
625 | |
626 #ifdef SQLITE_TEST | |
627 /* | |
628 ** Get the suggested cache-size value. | |
629 */ | |
630 int sqlite3PcacheGetCachesize(PCache *pCache){ | |
631 return numberOfCachePages(pCache); | |
632 } | |
633 #endif | |
634 | |
635 /* | |
636 ** Set the suggested cache-size value. | |
637 */ | |
638 void sqlite3PcacheSetCachesize(PCache *pCache, int mxPage){ | |
639 assert( pCache->pCache!=0 ); | |
640 pCache->szCache = mxPage; | |
641 sqlite3GlobalConfig.pcache2.xCachesize(pCache->pCache, | |
642 numberOfCachePages(pCache)); | |
643 } | |
644 | |
645 /* | |
646 ** Set the suggested cache-spill value. Make no changes if if the | |
647 ** argument is zero. Return the effective cache-spill size, which will | |
648 ** be the larger of the szSpill and szCache. | |
649 */ | |
650 int sqlite3PcacheSetSpillsize(PCache *p, int mxPage){ | |
651 int res; | |
652 assert( p->pCache!=0 ); | |
653 if( mxPage ){ | |
654 if( mxPage<0 ){ | |
655 mxPage = (int)((-1024*(i64)mxPage)/(p->szPage+p->szExtra)); | |
656 } | |
657 p->szSpill = mxPage; | |
658 } | |
659 res = numberOfCachePages(p); | |
660 if( res<p->szSpill ) res = p->szSpill; | |
661 return res; | |
662 } | |
663 | |
664 /* | |
665 ** Free up as much memory as possible from the page cache. | |
666 */ | |
667 void sqlite3PcacheShrink(PCache *pCache){ | |
668 assert( pCache->pCache!=0 ); | |
669 sqlite3GlobalConfig.pcache2.xShrink(pCache->pCache); | |
670 } | |
671 | |
672 /* | |
673 ** Return the size of the header added by this middleware layer | |
674 ** in the page-cache hierarchy. | |
675 */ | |
676 int sqlite3HeaderSizePcache(void){ return ROUND8(sizeof(PgHdr)); } | |
677 | |
678 | |
679 #if defined(SQLITE_CHECK_PAGES) || defined(SQLITE_DEBUG) | |
680 /* | |
681 ** For all dirty pages currently in the cache, invoke the specified | |
682 ** callback. This is only used if the SQLITE_CHECK_PAGES macro is | |
683 ** defined. | |
684 */ | |
685 void sqlite3PcacheIterateDirty(PCache *pCache, void (*xIter)(PgHdr *)){ | |
686 PgHdr *pDirty; | |
687 for(pDirty=pCache->pDirty; pDirty; pDirty=pDirty->pDirtyNext){ | |
688 xIter(pDirty); | |
689 } | |
690 } | |
691 #endif | |
OLD | NEW |