OLD | NEW |
| (Empty) |
1 /* | |
2 ** 2001 September 15 | |
3 ** | |
4 ** The author disclaims copyright to this source code. In place of | |
5 ** a legal notice, here is a blessing: | |
6 ** | |
7 ** May you do good and not evil. | |
8 ** May you find forgiveness for yourself and forgive others. | |
9 ** May you share freely, never taking more than you give. | |
10 ** | |
11 ************************************************************************* | |
12 ** This file contains SQLite's grammar for SQL. Process this file | |
13 ** using the lemon parser generator to generate C code that runs | |
14 ** the parser. Lemon will also generate a header file containing | |
15 ** numeric codes for all of the tokens. | |
16 */ | |
17 | |
18 // All token codes are small integers with #defines that begin with "TK_" | |
19 %token_prefix TK_ | |
20 | |
21 // The type of the data attached to each token is Token. This is also the | |
22 // default type for non-terminals. | |
23 // | |
24 %token_type {Token} | |
25 %default_type {Token} | |
26 | |
27 // The generated parser function takes a 4th argument as follows: | |
28 %extra_argument {Parse *pParse} | |
29 | |
30 // This code runs whenever there is a syntax error | |
31 // | |
32 %syntax_error { | |
33 UNUSED_PARAMETER(yymajor); /* Silence some compiler warnings */ | |
34 assert( TOKEN.z[0] ); /* The tokenizer always gives us a token */ | |
35 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &TOKEN); | |
36 } | |
37 %stack_overflow { | |
38 UNUSED_PARAMETER(yypMinor); /* Silence some compiler warnings */ | |
39 sqlite3ErrorMsg(pParse, "parser stack overflow"); | |
40 } | |
41 | |
42 // The name of the generated procedure that implements the parser | |
43 // is as follows: | |
44 %name sqlite3Parser | |
45 | |
46 // The following text is included near the beginning of the C source | |
47 // code file that implements the parser. | |
48 // | |
49 %include { | |
50 #include "sqliteInt.h" | |
51 | |
52 /* | |
53 ** Disable all error recovery processing in the parser push-down | |
54 ** automaton. | |
55 */ | |
56 #define YYNOERRORRECOVERY 1 | |
57 | |
58 /* | |
59 ** Make yytestcase() the same as testcase() | |
60 */ | |
61 #define yytestcase(X) testcase(X) | |
62 | |
63 /* | |
64 ** Indicate that sqlite3ParserFree() will never be called with a null | |
65 ** pointer. | |
66 */ | |
67 #define YYPARSEFREENEVERNULL 1 | |
68 | |
69 /* | |
70 ** Alternative datatype for the argument to the malloc() routine passed | |
71 ** into sqlite3ParserAlloc(). The default is size_t. | |
72 */ | |
73 #define YYMALLOCARGTYPE u64 | |
74 | |
75 /* | |
76 ** An instance of this structure holds information about the | |
77 ** LIMIT clause of a SELECT statement. | |
78 */ | |
79 struct LimitVal { | |
80 Expr *pLimit; /* The LIMIT expression. NULL if there is no limit */ | |
81 Expr *pOffset; /* The OFFSET expression. NULL if there is none */ | |
82 }; | |
83 | |
84 /* | |
85 ** An instance of this structure is used to store the LIKE, | |
86 ** GLOB, NOT LIKE, and NOT GLOB operators. | |
87 */ | |
88 struct LikeOp { | |
89 Token eOperator; /* "like" or "glob" or "regexp" */ | |
90 int bNot; /* True if the NOT keyword is present */ | |
91 }; | |
92 | |
93 /* | |
94 ** An instance of the following structure describes the event of a | |
95 ** TRIGGER. "a" is the event type, one of TK_UPDATE, TK_INSERT, | |
96 ** TK_DELETE, or TK_INSTEAD. If the event is of the form | |
97 ** | |
98 ** UPDATE ON (a,b,c) | |
99 ** | |
100 ** Then the "b" IdList records the list "a,b,c". | |
101 */ | |
102 struct TrigEvent { int a; IdList * b; }; | |
103 | |
104 /* | |
105 ** An instance of this structure holds the ATTACH key and the key type. | |
106 */ | |
107 struct AttachKey { int type; Token key; }; | |
108 | |
109 } // end %include | |
110 | |
111 // Input is a single SQL command | |
112 input ::= cmdlist. | |
113 cmdlist ::= cmdlist ecmd. | |
114 cmdlist ::= ecmd. | |
115 ecmd ::= SEMI. | |
116 ecmd ::= explain cmdx SEMI. | |
117 explain ::= . { sqlite3BeginParse(pParse, 0); } | |
118 %ifndef SQLITE_OMIT_EXPLAIN | |
119 explain ::= EXPLAIN. { sqlite3BeginParse(pParse, 1); } | |
120 explain ::= EXPLAIN QUERY PLAN. { sqlite3BeginParse(pParse, 2); } | |
121 %endif SQLITE_OMIT_EXPLAIN | |
122 cmdx ::= cmd. { sqlite3FinishCoding(pParse); } | |
123 | |
124 ///////////////////// Begin and end transactions. //////////////////////////// | |
125 // | |
126 | |
127 cmd ::= BEGIN transtype(Y) trans_opt. {sqlite3BeginTransaction(pParse, Y);} | |
128 trans_opt ::= . | |
129 trans_opt ::= TRANSACTION. | |
130 trans_opt ::= TRANSACTION nm. | |
131 %type transtype {int} | |
132 transtype(A) ::= . {A = TK_DEFERRED;} | |
133 transtype(A) ::= DEFERRED(X). {A = @X;} | |
134 transtype(A) ::= IMMEDIATE(X). {A = @X;} | |
135 transtype(A) ::= EXCLUSIVE(X). {A = @X;} | |
136 cmd ::= COMMIT trans_opt. {sqlite3CommitTransaction(pParse);} | |
137 cmd ::= END trans_opt. {sqlite3CommitTransaction(pParse);} | |
138 cmd ::= ROLLBACK trans_opt. {sqlite3RollbackTransaction(pParse);} | |
139 | |
140 savepoint_opt ::= SAVEPOINT. | |
141 savepoint_opt ::= . | |
142 cmd ::= SAVEPOINT nm(X). { | |
143 sqlite3Savepoint(pParse, SAVEPOINT_BEGIN, &X); | |
144 } | |
145 cmd ::= RELEASE savepoint_opt nm(X). { | |
146 sqlite3Savepoint(pParse, SAVEPOINT_RELEASE, &X); | |
147 } | |
148 cmd ::= ROLLBACK trans_opt TO savepoint_opt nm(X). { | |
149 sqlite3Savepoint(pParse, SAVEPOINT_ROLLBACK, &X); | |
150 } | |
151 | |
152 ///////////////////// The CREATE TABLE statement //////////////////////////// | |
153 // | |
154 cmd ::= create_table create_table_args. | |
155 create_table ::= createkw temp(T) TABLE ifnotexists(E) nm(Y) dbnm(Z). { | |
156 sqlite3StartTable(pParse,&Y,&Z,T,0,0,E); | |
157 } | |
158 createkw(A) ::= CREATE(X). { | |
159 pParse->db->lookaside.bEnabled = 0; | |
160 A = X; | |
161 } | |
162 %type ifnotexists {int} | |
163 ifnotexists(A) ::= . {A = 0;} | |
164 ifnotexists(A) ::= IF NOT EXISTS. {A = 1;} | |
165 %type temp {int} | |
166 %ifndef SQLITE_OMIT_TEMPDB | |
167 temp(A) ::= TEMP. {A = 1;} | |
168 %endif SQLITE_OMIT_TEMPDB | |
169 temp(A) ::= . {A = 0;} | |
170 create_table_args ::= LP columnlist conslist_opt(X) RP(E) table_options(F). { | |
171 sqlite3EndTable(pParse,&X,&E,F,0); | |
172 } | |
173 create_table_args ::= AS select(S). { | |
174 sqlite3EndTable(pParse,0,0,0,S); | |
175 sqlite3SelectDelete(pParse->db, S); | |
176 } | |
177 %type table_options {int} | |
178 table_options(A) ::= . {A = 0;} | |
179 table_options(A) ::= WITHOUT nm(X). { | |
180 if( X.n==5 && sqlite3_strnicmp(X.z,"rowid",5)==0 ){ | |
181 A = TF_WithoutRowid | TF_NoVisibleRowid; | |
182 }else{ | |
183 A = 0; | |
184 sqlite3ErrorMsg(pParse, "unknown table option: %.*s", X.n, X.z); | |
185 } | |
186 } | |
187 columnlist ::= columnlist COMMA column. | |
188 columnlist ::= column. | |
189 | |
190 // A "column" is a complete description of a single column in a | |
191 // CREATE TABLE statement. This includes the column name, its | |
192 // datatype, and other keywords such as PRIMARY KEY, UNIQUE, REFERENCES, | |
193 // NOT NULL and so forth. | |
194 // | |
195 column(A) ::= columnid(X) type carglist. { | |
196 A.z = X.z; | |
197 A.n = (int)(pParse->sLastToken.z-X.z) + pParse->sLastToken.n; | |
198 } | |
199 columnid(A) ::= nm(X). { | |
200 sqlite3AddColumn(pParse,&X); | |
201 A = X; | |
202 pParse->constraintName.n = 0; | |
203 } | |
204 | |
205 | |
206 // An IDENTIFIER can be a generic identifier, or one of several | |
207 // keywords. Any non-standard keyword can also be an identifier. | |
208 // | |
209 %token_class id ID|INDEXED. | |
210 | |
211 // The following directive causes tokens ABORT, AFTER, ASC, etc. to | |
212 // fallback to ID if they will not parse as their original value. | |
213 // This obviates the need for the "id" nonterminal. | |
214 // | |
215 %fallback ID | |
216 ABORT ACTION AFTER ANALYZE ASC ATTACH BEFORE BEGIN BY CASCADE CAST COLUMNKW | |
217 CONFLICT DATABASE DEFERRED DESC DETACH EACH END EXCLUSIVE EXPLAIN FAIL FOR | |
218 IGNORE IMMEDIATE INITIALLY INSTEAD LIKE_KW MATCH NO PLAN | |
219 QUERY KEY OF OFFSET PRAGMA RAISE RECURSIVE RELEASE REPLACE RESTRICT ROW | |
220 ROLLBACK SAVEPOINT TEMP TRIGGER VACUUM VIEW VIRTUAL WITH WITHOUT | |
221 %ifdef SQLITE_OMIT_COMPOUND_SELECT | |
222 EXCEPT INTERSECT UNION | |
223 %endif SQLITE_OMIT_COMPOUND_SELECT | |
224 REINDEX RENAME CTIME_KW IF | |
225 . | |
226 %wildcard ANY. | |
227 | |
228 // Define operator precedence early so that this is the first occurrence | |
229 // of the operator tokens in the grammer. Keeping the operators together | |
230 // causes them to be assigned integer values that are close together, | |
231 // which keeps parser tables smaller. | |
232 // | |
233 // The token values assigned to these symbols is determined by the order | |
234 // in which lemon first sees them. It must be the case that ISNULL/NOTNULL, | |
235 // NE/EQ, GT/LE, and GE/LT are separated by only a single value. See | |
236 // the sqlite3ExprIfFalse() routine for additional information on this | |
237 // constraint. | |
238 // | |
239 %left OR. | |
240 %left AND. | |
241 %right NOT. | |
242 %left IS MATCH LIKE_KW BETWEEN IN ISNULL NOTNULL NE EQ. | |
243 %left GT LE LT GE. | |
244 %right ESCAPE. | |
245 %left BITAND BITOR LSHIFT RSHIFT. | |
246 %left PLUS MINUS. | |
247 %left STAR SLASH REM. | |
248 %left CONCAT. | |
249 %left COLLATE. | |
250 %right BITNOT. | |
251 | |
252 // And "ids" is an identifer-or-string. | |
253 // | |
254 %token_class ids ID|STRING. | |
255 | |
256 // The name of a column or table can be any of the following: | |
257 // | |
258 %type nm {Token} | |
259 nm(A) ::= id(X). {A = X;} | |
260 nm(A) ::= STRING(X). {A = X;} | |
261 nm(A) ::= JOIN_KW(X). {A = X;} | |
262 | |
263 // A typetoken is really one or more tokens that form a type name such | |
264 // as can be found after the column name in a CREATE TABLE statement. | |
265 // Multiple tokens are concatenated to form the value of the typetoken. | |
266 // | |
267 %type typetoken {Token} | |
268 type ::= . | |
269 type ::= typetoken(X). {sqlite3AddColumnType(pParse,&X);} | |
270 typetoken(A) ::= typename(X). {A = X;} | |
271 typetoken(A) ::= typename(X) LP signed RP(Y). { | |
272 A.z = X.z; | |
273 A.n = (int)(&Y.z[Y.n] - X.z); | |
274 } | |
275 typetoken(A) ::= typename(X) LP signed COMMA signed RP(Y). { | |
276 A.z = X.z; | |
277 A.n = (int)(&Y.z[Y.n] - X.z); | |
278 } | |
279 %type typename {Token} | |
280 typename(A) ::= ids(X). {A = X;} | |
281 typename(A) ::= typename(X) ids(Y). {A.z=X.z; A.n=Y.n+(int)(Y.z-X.z);} | |
282 signed ::= plus_num. | |
283 signed ::= minus_num. | |
284 | |
285 // "carglist" is a list of additional constraints that come after the | |
286 // column name and column type in a CREATE TABLE statement. | |
287 // | |
288 carglist ::= carglist ccons. | |
289 carglist ::= . | |
290 ccons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} | |
291 ccons ::= DEFAULT term(X). {sqlite3AddDefaultValue(pParse,&X);} | |
292 ccons ::= DEFAULT LP expr(X) RP. {sqlite3AddDefaultValue(pParse,&X);} | |
293 ccons ::= DEFAULT PLUS term(X). {sqlite3AddDefaultValue(pParse,&X);} | |
294 ccons ::= DEFAULT MINUS(A) term(X). { | |
295 ExprSpan v; | |
296 v.pExpr = sqlite3PExpr(pParse, TK_UMINUS, X.pExpr, 0, 0); | |
297 v.zStart = A.z; | |
298 v.zEnd = X.zEnd; | |
299 sqlite3AddDefaultValue(pParse,&v); | |
300 } | |
301 ccons ::= DEFAULT id(X). { | |
302 ExprSpan v; | |
303 spanExpr(&v, pParse, TK_STRING, &X); | |
304 sqlite3AddDefaultValue(pParse,&v); | |
305 } | |
306 | |
307 // In addition to the type name, we also care about the primary key and | |
308 // UNIQUE constraints. | |
309 // | |
310 ccons ::= NULL onconf. | |
311 ccons ::= NOT NULL onconf(R). {sqlite3AddNotNull(pParse, R);} | |
312 ccons ::= PRIMARY KEY sortorder(Z) onconf(R) autoinc(I). | |
313 {sqlite3AddPrimaryKey(pParse,0,R,I,Z);} | |
314 ccons ::= UNIQUE onconf(R). {sqlite3CreateIndex(pParse,0,0,0,0,R,0,0,0,0);} | |
315 ccons ::= CHECK LP expr(X) RP. {sqlite3AddCheckConstraint(pParse,X.pExpr);} | |
316 ccons ::= REFERENCES nm(T) eidlist_opt(TA) refargs(R). | |
317 {sqlite3CreateForeignKey(pParse,0,&T,TA,R);} | |
318 ccons ::= defer_subclause(D). {sqlite3DeferForeignKey(pParse,D);} | |
319 ccons ::= COLLATE ids(C). {sqlite3AddCollateType(pParse, &C);} | |
320 | |
321 // The optional AUTOINCREMENT keyword | |
322 %type autoinc {int} | |
323 autoinc(X) ::= . {X = 0;} | |
324 autoinc(X) ::= AUTOINCR. {X = 1;} | |
325 | |
326 // The next group of rules parses the arguments to a REFERENCES clause | |
327 // that determine if the referential integrity checking is deferred or | |
328 // or immediate and which determine what action to take if a ref-integ | |
329 // check fails. | |
330 // | |
331 %type refargs {int} | |
332 refargs(A) ::= . { A = OE_None*0x0101; /* EV: R-19803-45884 */} | |
333 refargs(A) ::= refargs(X) refarg(Y). { A = (X & ~Y.mask) | Y.value; } | |
334 %type refarg {struct {int value; int mask;}} | |
335 refarg(A) ::= MATCH nm. { A.value = 0; A.mask = 0x000000; } | |
336 refarg(A) ::= ON INSERT refact. { A.value = 0; A.mask = 0x000000; } | |
337 refarg(A) ::= ON DELETE refact(X). { A.value = X; A.mask = 0x0000ff; } | |
338 refarg(A) ::= ON UPDATE refact(X). { A.value = X<<8; A.mask = 0x00ff00; } | |
339 %type refact {int} | |
340 refact(A) ::= SET NULL. { A = OE_SetNull; /* EV: R-33326-45252 */} | |
341 refact(A) ::= SET DEFAULT. { A = OE_SetDflt; /* EV: R-33326-45252 */} | |
342 refact(A) ::= CASCADE. { A = OE_Cascade; /* EV: R-33326-45252 */} | |
343 refact(A) ::= RESTRICT. { A = OE_Restrict; /* EV: R-33326-45252 */} | |
344 refact(A) ::= NO ACTION. { A = OE_None; /* EV: R-33326-45252 */} | |
345 %type defer_subclause {int} | |
346 defer_subclause(A) ::= NOT DEFERRABLE init_deferred_pred_opt. {A = 0;} | |
347 defer_subclause(A) ::= DEFERRABLE init_deferred_pred_opt(X). {A = X;} | |
348 %type init_deferred_pred_opt {int} | |
349 init_deferred_pred_opt(A) ::= . {A = 0;} | |
350 init_deferred_pred_opt(A) ::= INITIALLY DEFERRED. {A = 1;} | |
351 init_deferred_pred_opt(A) ::= INITIALLY IMMEDIATE. {A = 0;} | |
352 | |
353 conslist_opt(A) ::= . {A.n = 0; A.z = 0;} | |
354 conslist_opt(A) ::= COMMA(X) conslist. {A = X;} | |
355 conslist ::= conslist tconscomma tcons. | |
356 conslist ::= tcons. | |
357 tconscomma ::= COMMA. {pParse->constraintName.n = 0;} | |
358 tconscomma ::= . | |
359 tcons ::= CONSTRAINT nm(X). {pParse->constraintName = X;} | |
360 tcons ::= PRIMARY KEY LP sortlist(X) autoinc(I) RP onconf(R). | |
361 {sqlite3AddPrimaryKey(pParse,X,R,I,0);} | |
362 tcons ::= UNIQUE LP sortlist(X) RP onconf(R). | |
363 {sqlite3CreateIndex(pParse,0,0,0,X,R,0,0,0,0);} | |
364 tcons ::= CHECK LP expr(E) RP onconf. | |
365 {sqlite3AddCheckConstraint(pParse,E.pExpr);} | |
366 tcons ::= FOREIGN KEY LP eidlist(FA) RP | |
367 REFERENCES nm(T) eidlist_opt(TA) refargs(R) defer_subclause_opt(D). { | |
368 sqlite3CreateForeignKey(pParse, FA, &T, TA, R); | |
369 sqlite3DeferForeignKey(pParse, D); | |
370 } | |
371 %type defer_subclause_opt {int} | |
372 defer_subclause_opt(A) ::= . {A = 0;} | |
373 defer_subclause_opt(A) ::= defer_subclause(X). {A = X;} | |
374 | |
375 // The following is a non-standard extension that allows us to declare the | |
376 // default behavior when there is a constraint conflict. | |
377 // | |
378 %type onconf {int} | |
379 %type orconf {int} | |
380 %type resolvetype {int} | |
381 onconf(A) ::= . {A = OE_Default;} | |
382 onconf(A) ::= ON CONFLICT resolvetype(X). {A = X;} | |
383 orconf(A) ::= . {A = OE_Default;} | |
384 orconf(A) ::= OR resolvetype(X). {A = X;} | |
385 resolvetype(A) ::= raisetype(X). {A = X;} | |
386 resolvetype(A) ::= IGNORE. {A = OE_Ignore;} | |
387 resolvetype(A) ::= REPLACE. {A = OE_Replace;} | |
388 | |
389 ////////////////////////// The DROP TABLE ///////////////////////////////////// | |
390 // | |
391 cmd ::= DROP TABLE ifexists(E) fullname(X). { | |
392 sqlite3DropTable(pParse, X, 0, E); | |
393 } | |
394 %type ifexists {int} | |
395 ifexists(A) ::= IF EXISTS. {A = 1;} | |
396 ifexists(A) ::= . {A = 0;} | |
397 | |
398 ///////////////////// The CREATE VIEW statement ///////////////////////////// | |
399 // | |
400 %ifndef SQLITE_OMIT_VIEW | |
401 cmd ::= createkw(X) temp(T) VIEW ifnotexists(E) nm(Y) dbnm(Z) eidlist_opt(C) | |
402 AS select(S). { | |
403 sqlite3CreateView(pParse, &X, &Y, &Z, C, S, T, E); | |
404 } | |
405 cmd ::= DROP VIEW ifexists(E) fullname(X). { | |
406 sqlite3DropTable(pParse, X, 1, E); | |
407 } | |
408 %endif SQLITE_OMIT_VIEW | |
409 | |
410 //////////////////////// The SELECT statement ///////////////////////////////// | |
411 // | |
412 cmd ::= select(X). { | |
413 SelectDest dest = {SRT_Output, 0, 0, 0, 0, 0}; | |
414 sqlite3Select(pParse, X, &dest); | |
415 sqlite3SelectDelete(pParse->db, X); | |
416 } | |
417 | |
418 %type select {Select*} | |
419 %destructor select {sqlite3SelectDelete(pParse->db, $$);} | |
420 %type selectnowith {Select*} | |
421 %destructor selectnowith {sqlite3SelectDelete(pParse->db, $$);} | |
422 %type oneselect {Select*} | |
423 %destructor oneselect {sqlite3SelectDelete(pParse->db, $$);} | |
424 | |
425 %include { | |
426 /* | |
427 ** For a compound SELECT statement, make sure p->pPrior->pNext==p for | |
428 ** all elements in the list. And make sure list length does not exceed | |
429 ** SQLITE_LIMIT_COMPOUND_SELECT. | |
430 */ | |
431 static void parserDoubleLinkSelect(Parse *pParse, Select *p){ | |
432 if( p->pPrior ){ | |
433 Select *pNext = 0, *pLoop; | |
434 int mxSelect, cnt = 0; | |
435 for(pLoop=p; pLoop; pNext=pLoop, pLoop=pLoop->pPrior, cnt++){ | |
436 pLoop->pNext = pNext; | |
437 pLoop->selFlags |= SF_Compound; | |
438 } | |
439 if( (p->selFlags & SF_MultiValue)==0 && | |
440 (mxSelect = pParse->db->aLimit[SQLITE_LIMIT_COMPOUND_SELECT])>0 && | |
441 cnt>mxSelect | |
442 ){ | |
443 sqlite3ErrorMsg(pParse, "too many terms in compound SELECT"); | |
444 } | |
445 } | |
446 } | |
447 } | |
448 | |
449 select(A) ::= with(W) selectnowith(X). { | |
450 Select *p = X; | |
451 if( p ){ | |
452 p->pWith = W; | |
453 parserDoubleLinkSelect(pParse, p); | |
454 }else{ | |
455 sqlite3WithDelete(pParse->db, W); | |
456 } | |
457 A = p; | |
458 } | |
459 | |
460 selectnowith(A) ::= oneselect(X). {A = X;} | |
461 %ifndef SQLITE_OMIT_COMPOUND_SELECT | |
462 selectnowith(A) ::= selectnowith(X) multiselect_op(Y) oneselect(Z). { | |
463 Select *pRhs = Z; | |
464 Select *pLhs = X; | |
465 if( pRhs && pRhs->pPrior ){ | |
466 SrcList *pFrom; | |
467 Token x; | |
468 x.n = 0; | |
469 parserDoubleLinkSelect(pParse, pRhs); | |
470 pFrom = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&x,pRhs,0,0); | |
471 pRhs = sqlite3SelectNew(pParse,0,pFrom,0,0,0,0,0,0,0); | |
472 } | |
473 if( pRhs ){ | |
474 pRhs->op = (u8)Y; | |
475 pRhs->pPrior = pLhs; | |
476 if( ALWAYS(pLhs) ) pLhs->selFlags &= ~SF_MultiValue; | |
477 pRhs->selFlags &= ~SF_MultiValue; | |
478 if( Y!=TK_ALL ) pParse->hasCompound = 1; | |
479 }else{ | |
480 sqlite3SelectDelete(pParse->db, pLhs); | |
481 } | |
482 A = pRhs; | |
483 } | |
484 %type multiselect_op {int} | |
485 multiselect_op(A) ::= UNION(OP). {A = @OP;} | |
486 multiselect_op(A) ::= UNION ALL. {A = TK_ALL;} | |
487 multiselect_op(A) ::= EXCEPT|INTERSECT(OP). {A = @OP;} | |
488 %endif SQLITE_OMIT_COMPOUND_SELECT | |
489 oneselect(A) ::= SELECT(S) distinct(D) selcollist(W) from(X) where_opt(Y) | |
490 groupby_opt(P) having_opt(Q) orderby_opt(Z) limit_opt(L). { | |
491 A = sqlite3SelectNew(pParse,W,X,Y,P,Q,Z,D,L.pLimit,L.pOffset); | |
492 #if SELECTTRACE_ENABLED | |
493 /* Populate the Select.zSelName[] string that is used to help with | |
494 ** query planner debugging, to differentiate between multiple Select | |
495 ** objects in a complex query. | |
496 ** | |
497 ** If the SELECT keyword is immediately followed by a C-style comment | |
498 ** then extract the first few alphanumeric characters from within that | |
499 ** comment to be the zSelName value. Otherwise, the label is #N where | |
500 ** is an integer that is incremented with each SELECT statement seen. | |
501 */ | |
502 if( A!=0 ){ | |
503 const char *z = S.z+6; | |
504 int i; | |
505 sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "#%d", | |
506 ++pParse->nSelect); | |
507 while( z[0]==' ' ) z++; | |
508 if( z[0]=='/' && z[1]=='*' ){ | |
509 z += 2; | |
510 while( z[0]==' ' ) z++; | |
511 for(i=0; sqlite3Isalnum(z[i]); i++){} | |
512 sqlite3_snprintf(sizeof(A->zSelName), A->zSelName, "%.*s", i, z); | |
513 } | |
514 } | |
515 #endif /* SELECTRACE_ENABLED */ | |
516 } | |
517 oneselect(A) ::= values(X). {A = X;} | |
518 | |
519 %type values {Select*} | |
520 %destructor values {sqlite3SelectDelete(pParse->db, $$);} | |
521 values(A) ::= VALUES LP nexprlist(X) RP. { | |
522 A = sqlite3SelectNew(pParse,X,0,0,0,0,0,SF_Values,0,0); | |
523 } | |
524 values(A) ::= values(X) COMMA LP exprlist(Y) RP. { | |
525 Select *pRight, *pLeft = X; | |
526 pRight = sqlite3SelectNew(pParse,Y,0,0,0,0,0,SF_Values|SF_MultiValue,0,0); | |
527 if( ALWAYS(pLeft) ) pLeft->selFlags &= ~SF_MultiValue; | |
528 if( pRight ){ | |
529 pRight->op = TK_ALL; | |
530 pLeft = X; | |
531 pRight->pPrior = pLeft; | |
532 A = pRight; | |
533 }else{ | |
534 A = pLeft; | |
535 } | |
536 } | |
537 | |
538 // The "distinct" nonterminal is true (1) if the DISTINCT keyword is | |
539 // present and false (0) if it is not. | |
540 // | |
541 %type distinct {int} | |
542 distinct(A) ::= DISTINCT. {A = SF_Distinct;} | |
543 distinct(A) ::= ALL. {A = SF_All;} | |
544 distinct(A) ::= . {A = 0;} | |
545 | |
546 // selcollist is a list of expressions that are to become the return | |
547 // values of the SELECT statement. The "*" in statements like | |
548 // "SELECT * FROM ..." is encoded as a special expression with an | |
549 // opcode of TK_ASTERISK. | |
550 // | |
551 %type selcollist {ExprList*} | |
552 %destructor selcollist {sqlite3ExprListDelete(pParse->db, $$);} | |
553 %type sclp {ExprList*} | |
554 %destructor sclp {sqlite3ExprListDelete(pParse->db, $$);} | |
555 sclp(A) ::= selcollist(X) COMMA. {A = X;} | |
556 sclp(A) ::= . {A = 0;} | |
557 selcollist(A) ::= sclp(P) expr(X) as(Y). { | |
558 A = sqlite3ExprListAppend(pParse, P, X.pExpr); | |
559 if( Y.n>0 ) sqlite3ExprListSetName(pParse, A, &Y, 1); | |
560 sqlite3ExprListSetSpan(pParse,A,&X); | |
561 } | |
562 selcollist(A) ::= sclp(P) STAR. { | |
563 Expr *p = sqlite3Expr(pParse->db, TK_ASTERISK, 0); | |
564 A = sqlite3ExprListAppend(pParse, P, p); | |
565 } | |
566 selcollist(A) ::= sclp(P) nm(X) DOT STAR(Y). { | |
567 Expr *pRight = sqlite3PExpr(pParse, TK_ASTERISK, 0, 0, &Y); | |
568 Expr *pLeft = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); | |
569 Expr *pDot = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight, 0); | |
570 A = sqlite3ExprListAppend(pParse,P, pDot); | |
571 } | |
572 | |
573 // An option "AS <id>" phrase that can follow one of the expressions that | |
574 // define the result set, or one of the tables in the FROM clause. | |
575 // | |
576 %type as {Token} | |
577 as(X) ::= AS nm(Y). {X = Y;} | |
578 as(X) ::= ids(Y). {X = Y;} | |
579 as(X) ::= . {X.n = 0;} | |
580 | |
581 | |
582 %type seltablist {SrcList*} | |
583 %destructor seltablist {sqlite3SrcListDelete(pParse->db, $$);} | |
584 %type stl_prefix {SrcList*} | |
585 %destructor stl_prefix {sqlite3SrcListDelete(pParse->db, $$);} | |
586 %type from {SrcList*} | |
587 %destructor from {sqlite3SrcListDelete(pParse->db, $$);} | |
588 | |
589 // A complete FROM clause. | |
590 // | |
591 from(A) ::= . {A = sqlite3DbMallocZero(pParse->db, sizeof(*A));} | |
592 from(A) ::= FROM seltablist(X). { | |
593 A = X; | |
594 sqlite3SrcListShiftJoinType(A); | |
595 } | |
596 | |
597 // "seltablist" is a "Select Table List" - the content of the FROM clause | |
598 // in a SELECT statement. "stl_prefix" is a prefix of this list. | |
599 // | |
600 stl_prefix(A) ::= seltablist(X) joinop(Y). { | |
601 A = X; | |
602 if( ALWAYS(A && A->nSrc>0) ) A->a[A->nSrc-1].fg.jointype = (u8)Y; | |
603 } | |
604 stl_prefix(A) ::= . {A = 0;} | |
605 seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) as(Z) indexed_opt(I) | |
606 on_opt(N) using_opt(U). { | |
607 A = sqlite3SrcListAppendFromTerm(pParse,X,&Y,&D,&Z,0,N,U); | |
608 sqlite3SrcListIndexedBy(pParse, A, &I); | |
609 } | |
610 seltablist(A) ::= stl_prefix(X) nm(Y) dbnm(D) LP exprlist(E) RP as(Z) | |
611 on_opt(N) using_opt(U). { | |
612 A = sqlite3SrcListAppendFromTerm(pParse,X,&Y,&D,&Z,0,N,U); | |
613 sqlite3SrcListFuncArgs(pParse, A, E); | |
614 } | |
615 %ifndef SQLITE_OMIT_SUBQUERY | |
616 seltablist(A) ::= stl_prefix(X) LP select(S) RP | |
617 as(Z) on_opt(N) using_opt(U). { | |
618 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,S,N,U); | |
619 } | |
620 seltablist(A) ::= stl_prefix(X) LP seltablist(F) RP | |
621 as(Z) on_opt(N) using_opt(U). { | |
622 if( X==0 && Z.n==0 && N==0 && U==0 ){ | |
623 A = F; | |
624 }else if( F->nSrc==1 ){ | |
625 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,0,N,U); | |
626 if( A ){ | |
627 struct SrcList_item *pNew = &A->a[A->nSrc-1]; | |
628 struct SrcList_item *pOld = F->a; | |
629 pNew->zName = pOld->zName; | |
630 pNew->zDatabase = pOld->zDatabase; | |
631 pNew->pSelect = pOld->pSelect; | |
632 pOld->zName = pOld->zDatabase = 0; | |
633 pOld->pSelect = 0; | |
634 } | |
635 sqlite3SrcListDelete(pParse->db, F); | |
636 }else{ | |
637 Select *pSubquery; | |
638 sqlite3SrcListShiftJoinType(F); | |
639 pSubquery = sqlite3SelectNew(pParse,0,F,0,0,0,0,SF_NestedFrom,0,0); | |
640 A = sqlite3SrcListAppendFromTerm(pParse,X,0,0,&Z,pSubquery,N,U); | |
641 } | |
642 } | |
643 %endif SQLITE_OMIT_SUBQUERY | |
644 | |
645 %type dbnm {Token} | |
646 dbnm(A) ::= . {A.z=0; A.n=0;} | |
647 dbnm(A) ::= DOT nm(X). {A = X;} | |
648 | |
649 %type fullname {SrcList*} | |
650 %destructor fullname {sqlite3SrcListDelete(pParse->db, $$);} | |
651 fullname(A) ::= nm(X) dbnm(Y). {A = sqlite3SrcListAppend(pParse->db,0,&X,&Y);} | |
652 | |
653 %type joinop {int} | |
654 joinop(X) ::= COMMA|JOIN. { X = JT_INNER; } | |
655 joinop(X) ::= JOIN_KW(A) JOIN. { X = sqlite3JoinType(pParse,&A,0,0); } | |
656 joinop(X) ::= JOIN_KW(A) nm(B) JOIN. { X = sqlite3JoinType(pParse,&A,&B,0); } | |
657 joinop(X) ::= JOIN_KW(A) nm(B) nm(C) JOIN. | |
658 { X = sqlite3JoinType(pParse,&A,&B,&C); } | |
659 | |
660 %type on_opt {Expr*} | |
661 %destructor on_opt {sqlite3ExprDelete(pParse->db, $$);} | |
662 on_opt(N) ::= ON expr(E). {N = E.pExpr;} | |
663 on_opt(N) ::= . {N = 0;} | |
664 | |
665 // Note that this block abuses the Token type just a little. If there is | |
666 // no "INDEXED BY" clause, the returned token is empty (z==0 && n==0). If | |
667 // there is an INDEXED BY clause, then the token is populated as per normal, | |
668 // with z pointing to the token data and n containing the number of bytes | |
669 // in the token. | |
670 // | |
671 // If there is a "NOT INDEXED" clause, then (z==0 && n==1), which is | |
672 // normally illegal. The sqlite3SrcListIndexedBy() function | |
673 // recognizes and interprets this as a special case. | |
674 // | |
675 %type indexed_opt {Token} | |
676 indexed_opt(A) ::= . {A.z=0; A.n=0;} | |
677 indexed_opt(A) ::= INDEXED BY nm(X). {A = X;} | |
678 indexed_opt(A) ::= NOT INDEXED. {A.z=0; A.n=1;} | |
679 | |
680 %type using_opt {IdList*} | |
681 %destructor using_opt {sqlite3IdListDelete(pParse->db, $$);} | |
682 using_opt(U) ::= USING LP idlist(L) RP. {U = L;} | |
683 using_opt(U) ::= . {U = 0;} | |
684 | |
685 | |
686 %type orderby_opt {ExprList*} | |
687 %destructor orderby_opt {sqlite3ExprListDelete(pParse->db, $$);} | |
688 | |
689 // the sortlist non-terminal stores a list of expression where each | |
690 // expression is optionally followed by ASC or DESC to indicate the | |
691 // sort order. | |
692 // | |
693 %type sortlist {ExprList*} | |
694 %destructor sortlist {sqlite3ExprListDelete(pParse->db, $$);} | |
695 | |
696 orderby_opt(A) ::= . {A = 0;} | |
697 orderby_opt(A) ::= ORDER BY sortlist(X). {A = X;} | |
698 sortlist(A) ::= sortlist(X) COMMA expr(Y) sortorder(Z). { | |
699 A = sqlite3ExprListAppend(pParse,X,Y.pExpr); | |
700 sqlite3ExprListSetSortOrder(A,Z); | |
701 } | |
702 sortlist(A) ::= expr(Y) sortorder(Z). { | |
703 A = sqlite3ExprListAppend(pParse,0,Y.pExpr); | |
704 sqlite3ExprListSetSortOrder(A,Z); | |
705 } | |
706 | |
707 %type sortorder {int} | |
708 | |
709 sortorder(A) ::= ASC. {A = SQLITE_SO_ASC;} | |
710 sortorder(A) ::= DESC. {A = SQLITE_SO_DESC;} | |
711 sortorder(A) ::= . {A = SQLITE_SO_UNDEFINED;} | |
712 | |
713 %type groupby_opt {ExprList*} | |
714 %destructor groupby_opt {sqlite3ExprListDelete(pParse->db, $$);} | |
715 groupby_opt(A) ::= . {A = 0;} | |
716 groupby_opt(A) ::= GROUP BY nexprlist(X). {A = X;} | |
717 | |
718 %type having_opt {Expr*} | |
719 %destructor having_opt {sqlite3ExprDelete(pParse->db, $$);} | |
720 having_opt(A) ::= . {A = 0;} | |
721 having_opt(A) ::= HAVING expr(X). {A = X.pExpr;} | |
722 | |
723 %type limit_opt {struct LimitVal} | |
724 | |
725 // The destructor for limit_opt will never fire in the current grammar. | |
726 // The limit_opt non-terminal only occurs at the end of a single production | |
727 // rule for SELECT statements. As soon as the rule that create the | |
728 // limit_opt non-terminal reduces, the SELECT statement rule will also | |
729 // reduce. So there is never a limit_opt non-terminal on the stack | |
730 // except as a transient. So there is never anything to destroy. | |
731 // | |
732 //%destructor limit_opt { | |
733 // sqlite3ExprDelete(pParse->db, $$.pLimit); | |
734 // sqlite3ExprDelete(pParse->db, $$.pOffset); | |
735 //} | |
736 limit_opt(A) ::= . {A.pLimit = 0; A.pOffset = 0;} | |
737 limit_opt(A) ::= LIMIT expr(X). {A.pLimit = X.pExpr; A.pOffset = 0;} | |
738 limit_opt(A) ::= LIMIT expr(X) OFFSET expr(Y). | |
739 {A.pLimit = X.pExpr; A.pOffset = Y.pExpr;} | |
740 limit_opt(A) ::= LIMIT expr(X) COMMA expr(Y). | |
741 {A.pOffset = X.pExpr; A.pLimit = Y.pExpr;} | |
742 | |
743 /////////////////////////// The DELETE statement ///////////////////////////// | |
744 // | |
745 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT | |
746 cmd ::= with(C) DELETE FROM fullname(X) indexed_opt(I) where_opt(W) | |
747 orderby_opt(O) limit_opt(L). { | |
748 sqlite3WithPush(pParse, C, 1); | |
749 sqlite3SrcListIndexedBy(pParse, X, &I); | |
750 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "DELETE"); | |
751 sqlite3DeleteFrom(pParse,X,W); | |
752 } | |
753 %endif | |
754 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT | |
755 cmd ::= with(C) DELETE FROM fullname(X) indexed_opt(I) where_opt(W). { | |
756 sqlite3WithPush(pParse, C, 1); | |
757 sqlite3SrcListIndexedBy(pParse, X, &I); | |
758 sqlite3DeleteFrom(pParse,X,W); | |
759 } | |
760 %endif | |
761 | |
762 %type where_opt {Expr*} | |
763 %destructor where_opt {sqlite3ExprDelete(pParse->db, $$);} | |
764 | |
765 where_opt(A) ::= . {A = 0;} | |
766 where_opt(A) ::= WHERE expr(X). {A = X.pExpr;} | |
767 | |
768 ////////////////////////// The UPDATE command //////////////////////////////// | |
769 // | |
770 %ifdef SQLITE_ENABLE_UPDATE_DELETE_LIMIT | |
771 cmd ::= with(C) UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) | |
772 where_opt(W) orderby_opt(O) limit_opt(L). { | |
773 sqlite3WithPush(pParse, C, 1); | |
774 sqlite3SrcListIndexedBy(pParse, X, &I); | |
775 sqlite3ExprListCheckLength(pParse,Y,"set list"); | |
776 W = sqlite3LimitWhere(pParse, X, W, O, L.pLimit, L.pOffset, "UPDATE"); | |
777 sqlite3Update(pParse,X,Y,W,R); | |
778 } | |
779 %endif | |
780 %ifndef SQLITE_ENABLE_UPDATE_DELETE_LIMIT | |
781 cmd ::= with(C) UPDATE orconf(R) fullname(X) indexed_opt(I) SET setlist(Y) | |
782 where_opt(W). { | |
783 sqlite3WithPush(pParse, C, 1); | |
784 sqlite3SrcListIndexedBy(pParse, X, &I); | |
785 sqlite3ExprListCheckLength(pParse,Y,"set list"); | |
786 sqlite3Update(pParse,X,Y,W,R); | |
787 } | |
788 %endif | |
789 | |
790 %type setlist {ExprList*} | |
791 %destructor setlist {sqlite3ExprListDelete(pParse->db, $$);} | |
792 | |
793 setlist(A) ::= setlist(Z) COMMA nm(X) EQ expr(Y). { | |
794 A = sqlite3ExprListAppend(pParse, Z, Y.pExpr); | |
795 sqlite3ExprListSetName(pParse, A, &X, 1); | |
796 } | |
797 setlist(A) ::= nm(X) EQ expr(Y). { | |
798 A = sqlite3ExprListAppend(pParse, 0, Y.pExpr); | |
799 sqlite3ExprListSetName(pParse, A, &X, 1); | |
800 } | |
801 | |
802 ////////////////////////// The INSERT command ///////////////////////////////// | |
803 // | |
804 cmd ::= with(W) insert_cmd(R) INTO fullname(X) idlist_opt(F) select(S). { | |
805 sqlite3WithPush(pParse, W, 1); | |
806 sqlite3Insert(pParse, X, S, F, R); | |
807 } | |
808 cmd ::= with(W) insert_cmd(R) INTO fullname(X) idlist_opt(F) DEFAULT VALUES. | |
809 { | |
810 sqlite3WithPush(pParse, W, 1); | |
811 sqlite3Insert(pParse, X, 0, F, R); | |
812 } | |
813 | |
814 %type insert_cmd {int} | |
815 insert_cmd(A) ::= INSERT orconf(R). {A = R;} | |
816 insert_cmd(A) ::= REPLACE. {A = OE_Replace;} | |
817 | |
818 %type idlist_opt {IdList*} | |
819 %destructor idlist_opt {sqlite3IdListDelete(pParse->db, $$);} | |
820 %type idlist {IdList*} | |
821 %destructor idlist {sqlite3IdListDelete(pParse->db, $$);} | |
822 | |
823 idlist_opt(A) ::= . {A = 0;} | |
824 idlist_opt(A) ::= LP idlist(X) RP. {A = X;} | |
825 idlist(A) ::= idlist(X) COMMA nm(Y). | |
826 {A = sqlite3IdListAppend(pParse->db,X,&Y);} | |
827 idlist(A) ::= nm(Y). | |
828 {A = sqlite3IdListAppend(pParse->db,0,&Y);} | |
829 | |
830 /////////////////////////// Expression Processing ///////////////////////////// | |
831 // | |
832 | |
833 %type expr {ExprSpan} | |
834 %destructor expr {sqlite3ExprDelete(pParse->db, $$.pExpr);} | |
835 %type term {ExprSpan} | |
836 %destructor term {sqlite3ExprDelete(pParse->db, $$.pExpr);} | |
837 | |
838 %include { | |
839 /* This is a utility routine used to set the ExprSpan.zStart and | |
840 ** ExprSpan.zEnd values of pOut so that the span covers the complete | |
841 ** range of text beginning with pStart and going to the end of pEnd. | |
842 */ | |
843 static void spanSet(ExprSpan *pOut, Token *pStart, Token *pEnd){ | |
844 pOut->zStart = pStart->z; | |
845 pOut->zEnd = &pEnd->z[pEnd->n]; | |
846 } | |
847 | |
848 /* Construct a new Expr object from a single identifier. Use the | |
849 ** new Expr to populate pOut. Set the span of pOut to be the identifier | |
850 ** that created the expression. | |
851 */ | |
852 static void spanExpr(ExprSpan *pOut, Parse *pParse, int op, Token *pValue){ | |
853 pOut->pExpr = sqlite3PExpr(pParse, op, 0, 0, pValue); | |
854 pOut->zStart = pValue->z; | |
855 pOut->zEnd = &pValue->z[pValue->n]; | |
856 } | |
857 } | |
858 | |
859 expr(A) ::= term(X). {A = X;} | |
860 expr(A) ::= LP(B) expr(X) RP(E). {A.pExpr = X.pExpr; spanSet(&A,&B,&E);} | |
861 term(A) ::= NULL(X). {spanExpr(&A, pParse, @X, &X);} | |
862 expr(A) ::= id(X). {spanExpr(&A, pParse, TK_ID, &X);} | |
863 expr(A) ::= JOIN_KW(X). {spanExpr(&A, pParse, TK_ID, &X);} | |
864 expr(A) ::= nm(X) DOT nm(Y). { | |
865 Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); | |
866 Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); | |
867 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp2, 0); | |
868 spanSet(&A,&X,&Y); | |
869 } | |
870 expr(A) ::= nm(X) DOT nm(Y) DOT nm(Z). { | |
871 Expr *temp1 = sqlite3PExpr(pParse, TK_ID, 0, 0, &X); | |
872 Expr *temp2 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Y); | |
873 Expr *temp3 = sqlite3PExpr(pParse, TK_ID, 0, 0, &Z); | |
874 Expr *temp4 = sqlite3PExpr(pParse, TK_DOT, temp2, temp3, 0); | |
875 A.pExpr = sqlite3PExpr(pParse, TK_DOT, temp1, temp4, 0); | |
876 spanSet(&A,&X,&Z); | |
877 } | |
878 term(A) ::= INTEGER|FLOAT|BLOB(X). {spanExpr(&A, pParse, @X, &X);} | |
879 term(A) ::= STRING(X). {spanExpr(&A, pParse, @X, &X);} | |
880 expr(A) ::= VARIABLE(X). { | |
881 if( X.n>=2 && X.z[0]=='#' && sqlite3Isdigit(X.z[1]) ){ | |
882 /* When doing a nested parse, one can include terms in an expression | |
883 ** that look like this: #1 #2 ... These terms refer to registers | |
884 ** in the virtual machine. #N is the N-th register. */ | |
885 if( pParse->nested==0 ){ | |
886 sqlite3ErrorMsg(pParse, "near \"%T\": syntax error", &X); | |
887 A.pExpr = 0; | |
888 }else{ | |
889 A.pExpr = sqlite3PExpr(pParse, TK_REGISTER, 0, 0, &X); | |
890 if( A.pExpr ) sqlite3GetInt32(&X.z[1], &A.pExpr->iTable); | |
891 } | |
892 }else{ | |
893 spanExpr(&A, pParse, TK_VARIABLE, &X); | |
894 sqlite3ExprAssignVarNumber(pParse, A.pExpr); | |
895 } | |
896 spanSet(&A, &X, &X); | |
897 } | |
898 expr(A) ::= expr(E) COLLATE ids(C). { | |
899 A.pExpr = sqlite3ExprAddCollateToken(pParse, E.pExpr, &C, 1); | |
900 A.zStart = E.zStart; | |
901 A.zEnd = &C.z[C.n]; | |
902 } | |
903 %ifndef SQLITE_OMIT_CAST | |
904 expr(A) ::= CAST(X) LP expr(E) AS typetoken(T) RP(Y). { | |
905 A.pExpr = sqlite3PExpr(pParse, TK_CAST, E.pExpr, 0, &T); | |
906 spanSet(&A,&X,&Y); | |
907 } | |
908 %endif SQLITE_OMIT_CAST | |
909 expr(A) ::= id(X) LP distinct(D) exprlist(Y) RP(E). { | |
910 if( Y && Y->nExpr>pParse->db->aLimit[SQLITE_LIMIT_FUNCTION_ARG] ){ | |
911 sqlite3ErrorMsg(pParse, "too many arguments on function %T", &X); | |
912 } | |
913 A.pExpr = sqlite3ExprFunction(pParse, Y, &X); | |
914 spanSet(&A,&X,&E); | |
915 if( D==SF_Distinct && A.pExpr ){ | |
916 A.pExpr->flags |= EP_Distinct; | |
917 } | |
918 } | |
919 expr(A) ::= id(X) LP STAR RP(E). { | |
920 A.pExpr = sqlite3ExprFunction(pParse, 0, &X); | |
921 spanSet(&A,&X,&E); | |
922 } | |
923 term(A) ::= CTIME_KW(OP). { | |
924 A.pExpr = sqlite3ExprFunction(pParse, 0, &OP); | |
925 spanSet(&A, &OP, &OP); | |
926 } | |
927 | |
928 %include { | |
929 /* This routine constructs a binary expression node out of two ExprSpan | |
930 ** objects and uses the result to populate a new ExprSpan object. | |
931 */ | |
932 static void spanBinaryExpr( | |
933 ExprSpan *pOut, /* Write the result here */ | |
934 Parse *pParse, /* The parsing context. Errors accumulate here */ | |
935 int op, /* The binary operation */ | |
936 ExprSpan *pLeft, /* The left operand */ | |
937 ExprSpan *pRight /* The right operand */ | |
938 ){ | |
939 pOut->pExpr = sqlite3PExpr(pParse, op, pLeft->pExpr, pRight->pExpr, 0); | |
940 pOut->zStart = pLeft->zStart; | |
941 pOut->zEnd = pRight->zEnd; | |
942 } | |
943 | |
944 /* If doNot is true, then add a TK_NOT Expr-node wrapper around the | |
945 ** outside of *ppExpr. | |
946 */ | |
947 static void exprNot(Parse *pParse, int doNot, Expr **ppExpr){ | |
948 if( doNot ) *ppExpr = sqlite3PExpr(pParse, TK_NOT, *ppExpr, 0, 0); | |
949 } | |
950 } | |
951 | |
952 expr(A) ::= expr(X) AND(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} | |
953 expr(A) ::= expr(X) OR(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} | |
954 expr(A) ::= expr(X) LT|GT|GE|LE(OP) expr(Y). | |
955 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} | |
956 expr(A) ::= expr(X) EQ|NE(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} | |
957 expr(A) ::= expr(X) BITAND|BITOR|LSHIFT|RSHIFT(OP) expr(Y). | |
958 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} | |
959 expr(A) ::= expr(X) PLUS|MINUS(OP) expr(Y). | |
960 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} | |
961 expr(A) ::= expr(X) STAR|SLASH|REM(OP) expr(Y). | |
962 {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} | |
963 expr(A) ::= expr(X) CONCAT(OP) expr(Y). {spanBinaryExpr(&A,pParse,@OP,&X,&Y);} | |
964 %type likeop {struct LikeOp} | |
965 likeop(A) ::= LIKE_KW|MATCH(X). {A.eOperator = X; A.bNot = 0;} | |
966 likeop(A) ::= NOT LIKE_KW|MATCH(X). {A.eOperator = X; A.bNot = 1;} | |
967 expr(A) ::= expr(X) likeop(OP) expr(Y). [LIKE_KW] { | |
968 ExprList *pList; | |
969 pList = sqlite3ExprListAppend(pParse,0, Y.pExpr); | |
970 pList = sqlite3ExprListAppend(pParse,pList, X.pExpr); | |
971 A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator); | |
972 exprNot(pParse, OP.bNot, &A.pExpr); | |
973 A.zStart = X.zStart; | |
974 A.zEnd = Y.zEnd; | |
975 if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc; | |
976 } | |
977 expr(A) ::= expr(X) likeop(OP) expr(Y) ESCAPE expr(E). [LIKE_KW] { | |
978 ExprList *pList; | |
979 pList = sqlite3ExprListAppend(pParse,0, Y.pExpr); | |
980 pList = sqlite3ExprListAppend(pParse,pList, X.pExpr); | |
981 pList = sqlite3ExprListAppend(pParse,pList, E.pExpr); | |
982 A.pExpr = sqlite3ExprFunction(pParse, pList, &OP.eOperator); | |
983 exprNot(pParse, OP.bNot, &A.pExpr); | |
984 A.zStart = X.zStart; | |
985 A.zEnd = E.zEnd; | |
986 if( A.pExpr ) A.pExpr->flags |= EP_InfixFunc; | |
987 } | |
988 | |
989 %include { | |
990 /* Construct an expression node for a unary postfix operator | |
991 */ | |
992 static void spanUnaryPostfix( | |
993 ExprSpan *pOut, /* Write the new expression node here */ | |
994 Parse *pParse, /* Parsing context to record errors */ | |
995 int op, /* The operator */ | |
996 ExprSpan *pOperand, /* The operand */ | |
997 Token *pPostOp /* The operand token for setting the span */ | |
998 ){ | |
999 pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); | |
1000 pOut->zStart = pOperand->zStart; | |
1001 pOut->zEnd = &pPostOp->z[pPostOp->n]; | |
1002 } | |
1003 } | |
1004 | |
1005 expr(A) ::= expr(X) ISNULL|NOTNULL(E). {spanUnaryPostfix(&A,pParse,@E,&X,&E);} | |
1006 expr(A) ::= expr(X) NOT NULL(E). {spanUnaryPostfix(&A,pParse,TK_NOTNULL,&X,&E);} | |
1007 | |
1008 %include { | |
1009 /* A routine to convert a binary TK_IS or TK_ISNOT expression into a | |
1010 ** unary TK_ISNULL or TK_NOTNULL expression. */ | |
1011 static void binaryToUnaryIfNull(Parse *pParse, Expr *pY, Expr *pA, int op){ | |
1012 sqlite3 *db = pParse->db; | |
1013 if( pY && pA && pY->op==TK_NULL ){ | |
1014 pA->op = (u8)op; | |
1015 sqlite3ExprDelete(db, pA->pRight); | |
1016 pA->pRight = 0; | |
1017 } | |
1018 } | |
1019 } | |
1020 | |
1021 // expr1 IS expr2 | |
1022 // expr1 IS NOT expr2 | |
1023 // | |
1024 // If expr2 is NULL then code as TK_ISNULL or TK_NOTNULL. If expr2 | |
1025 // is any other expression, code as TK_IS or TK_ISNOT. | |
1026 // | |
1027 expr(A) ::= expr(X) IS expr(Y). { | |
1028 spanBinaryExpr(&A,pParse,TK_IS,&X,&Y); | |
1029 binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_ISNULL); | |
1030 } | |
1031 expr(A) ::= expr(X) IS NOT expr(Y). { | |
1032 spanBinaryExpr(&A,pParse,TK_ISNOT,&X,&Y); | |
1033 binaryToUnaryIfNull(pParse, Y.pExpr, A.pExpr, TK_NOTNULL); | |
1034 } | |
1035 | |
1036 %include { | |
1037 /* Construct an expression node for a unary prefix operator | |
1038 */ | |
1039 static void spanUnaryPrefix( | |
1040 ExprSpan *pOut, /* Write the new expression node here */ | |
1041 Parse *pParse, /* Parsing context to record errors */ | |
1042 int op, /* The operator */ | |
1043 ExprSpan *pOperand, /* The operand */ | |
1044 Token *pPreOp /* The operand token for setting the span */ | |
1045 ){ | |
1046 pOut->pExpr = sqlite3PExpr(pParse, op, pOperand->pExpr, 0, 0); | |
1047 pOut->zStart = pPreOp->z; | |
1048 pOut->zEnd = pOperand->zEnd; | |
1049 } | |
1050 } | |
1051 | |
1052 | |
1053 | |
1054 expr(A) ::= NOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);} | |
1055 expr(A) ::= BITNOT(B) expr(X). {spanUnaryPrefix(&A,pParse,@B,&X,&B);} | |
1056 expr(A) ::= MINUS(B) expr(X). [BITNOT] | |
1057 {spanUnaryPrefix(&A,pParse,TK_UMINUS,&X,&B);} | |
1058 expr(A) ::= PLUS(B) expr(X). [BITNOT] | |
1059 {spanUnaryPrefix(&A,pParse,TK_UPLUS,&X,&B);} | |
1060 | |
1061 %type between_op {int} | |
1062 between_op(A) ::= BETWEEN. {A = 0;} | |
1063 between_op(A) ::= NOT BETWEEN. {A = 1;} | |
1064 expr(A) ::= expr(W) between_op(N) expr(X) AND expr(Y). [BETWEEN] { | |
1065 ExprList *pList = sqlite3ExprListAppend(pParse,0, X.pExpr); | |
1066 pList = sqlite3ExprListAppend(pParse,pList, Y.pExpr); | |
1067 A.pExpr = sqlite3PExpr(pParse, TK_BETWEEN, W.pExpr, 0, 0); | |
1068 if( A.pExpr ){ | |
1069 A.pExpr->x.pList = pList; | |
1070 }else{ | |
1071 sqlite3ExprListDelete(pParse->db, pList); | |
1072 } | |
1073 exprNot(pParse, N, &A.pExpr); | |
1074 A.zStart = W.zStart; | |
1075 A.zEnd = Y.zEnd; | |
1076 } | |
1077 %ifndef SQLITE_OMIT_SUBQUERY | |
1078 %type in_op {int} | |
1079 in_op(A) ::= IN. {A = 0;} | |
1080 in_op(A) ::= NOT IN. {A = 1;} | |
1081 expr(A) ::= expr(X) in_op(N) LP exprlist(Y) RP(E). [IN] { | |
1082 if( Y==0 ){ | |
1083 /* Expressions of the form | |
1084 ** | |
1085 ** expr1 IN () | |
1086 ** expr1 NOT IN () | |
1087 ** | |
1088 ** simplify to constants 0 (false) and 1 (true), respectively, | |
1089 ** regardless of the value of expr1. | |
1090 */ | |
1091 A.pExpr = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, &sqlite3IntTokens[N]); | |
1092 sqlite3ExprDelete(pParse->db, X.pExpr); | |
1093 }else if( Y->nExpr==1 ){ | |
1094 /* Expressions of the form: | |
1095 ** | |
1096 ** expr1 IN (?1) | |
1097 ** expr1 NOT IN (?2) | |
1098 ** | |
1099 ** with exactly one value on the RHS can be simplified to something | |
1100 ** like this: | |
1101 ** | |
1102 ** expr1 == ?1 | |
1103 ** expr1 <> ?2 | |
1104 ** | |
1105 ** But, the RHS of the == or <> is marked with the EP_Generic flag | |
1106 ** so that it may not contribute to the computation of comparison | |
1107 ** affinity or the collating sequence to use for comparison. Otherwise, | |
1108 ** the semantics would be subtly different from IN or NOT IN. | |
1109 */ | |
1110 Expr *pRHS = Y->a[0].pExpr; | |
1111 Y->a[0].pExpr = 0; | |
1112 sqlite3ExprListDelete(pParse->db, Y); | |
1113 /* pRHS cannot be NULL because a malloc error would have been detected | |
1114 ** before now and control would have never reached this point */ | |
1115 if( ALWAYS(pRHS) ){ | |
1116 pRHS->flags &= ~EP_Collate; | |
1117 pRHS->flags |= EP_Generic; | |
1118 } | |
1119 A.pExpr = sqlite3PExpr(pParse, N ? TK_NE : TK_EQ, X.pExpr, pRHS, 0); | |
1120 }else{ | |
1121 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); | |
1122 if( A.pExpr ){ | |
1123 A.pExpr->x.pList = Y; | |
1124 sqlite3ExprSetHeightAndFlags(pParse, A.pExpr); | |
1125 }else{ | |
1126 sqlite3ExprListDelete(pParse->db, Y); | |
1127 } | |
1128 exprNot(pParse, N, &A.pExpr); | |
1129 } | |
1130 A.zStart = X.zStart; | |
1131 A.zEnd = &E.z[E.n]; | |
1132 } | |
1133 expr(A) ::= LP(B) select(X) RP(E). { | |
1134 A.pExpr = sqlite3PExpr(pParse, TK_SELECT, 0, 0, 0); | |
1135 if( A.pExpr ){ | |
1136 A.pExpr->x.pSelect = X; | |
1137 ExprSetProperty(A.pExpr, EP_xIsSelect|EP_Subquery); | |
1138 sqlite3ExprSetHeightAndFlags(pParse, A.pExpr); | |
1139 }else{ | |
1140 sqlite3SelectDelete(pParse->db, X); | |
1141 } | |
1142 A.zStart = B.z; | |
1143 A.zEnd = &E.z[E.n]; | |
1144 } | |
1145 expr(A) ::= expr(X) in_op(N) LP select(Y) RP(E). [IN] { | |
1146 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); | |
1147 if( A.pExpr ){ | |
1148 A.pExpr->x.pSelect = Y; | |
1149 ExprSetProperty(A.pExpr, EP_xIsSelect|EP_Subquery); | |
1150 sqlite3ExprSetHeightAndFlags(pParse, A.pExpr); | |
1151 }else{ | |
1152 sqlite3SelectDelete(pParse->db, Y); | |
1153 } | |
1154 exprNot(pParse, N, &A.pExpr); | |
1155 A.zStart = X.zStart; | |
1156 A.zEnd = &E.z[E.n]; | |
1157 } | |
1158 expr(A) ::= expr(X) in_op(N) nm(Y) dbnm(Z). [IN] { | |
1159 SrcList *pSrc = sqlite3SrcListAppend(pParse->db, 0,&Y,&Z); | |
1160 A.pExpr = sqlite3PExpr(pParse, TK_IN, X.pExpr, 0, 0); | |
1161 if( A.pExpr ){ | |
1162 A.pExpr->x.pSelect = sqlite3SelectNew(pParse, 0,pSrc,0,0,0,0,0,0,0); | |
1163 ExprSetProperty(A.pExpr, EP_xIsSelect|EP_Subquery); | |
1164 sqlite3ExprSetHeightAndFlags(pParse, A.pExpr); | |
1165 }else{ | |
1166 sqlite3SrcListDelete(pParse->db, pSrc); | |
1167 } | |
1168 exprNot(pParse, N, &A.pExpr); | |
1169 A.zStart = X.zStart; | |
1170 A.zEnd = Z.z ? &Z.z[Z.n] : &Y.z[Y.n]; | |
1171 } | |
1172 expr(A) ::= EXISTS(B) LP select(Y) RP(E). { | |
1173 Expr *p = A.pExpr = sqlite3PExpr(pParse, TK_EXISTS, 0, 0, 0); | |
1174 if( p ){ | |
1175 p->x.pSelect = Y; | |
1176 ExprSetProperty(p, EP_xIsSelect|EP_Subquery); | |
1177 sqlite3ExprSetHeightAndFlags(pParse, p); | |
1178 }else{ | |
1179 sqlite3SelectDelete(pParse->db, Y); | |
1180 } | |
1181 A.zStart = B.z; | |
1182 A.zEnd = &E.z[E.n]; | |
1183 } | |
1184 %endif SQLITE_OMIT_SUBQUERY | |
1185 | |
1186 /* CASE expressions */ | |
1187 expr(A) ::= CASE(C) case_operand(X) case_exprlist(Y) case_else(Z) END(E). { | |
1188 A.pExpr = sqlite3PExpr(pParse, TK_CASE, X, 0, 0); | |
1189 if( A.pExpr ){ | |
1190 A.pExpr->x.pList = Z ? sqlite3ExprListAppend(pParse,Y,Z) : Y; | |
1191 sqlite3ExprSetHeightAndFlags(pParse, A.pExpr); | |
1192 }else{ | |
1193 sqlite3ExprListDelete(pParse->db, Y); | |
1194 sqlite3ExprDelete(pParse->db, Z); | |
1195 } | |
1196 A.zStart = C.z; | |
1197 A.zEnd = &E.z[E.n]; | |
1198 } | |
1199 %type case_exprlist {ExprList*} | |
1200 %destructor case_exprlist {sqlite3ExprListDelete(pParse->db, $$);} | |
1201 case_exprlist(A) ::= case_exprlist(X) WHEN expr(Y) THEN expr(Z). { | |
1202 A = sqlite3ExprListAppend(pParse,X, Y.pExpr); | |
1203 A = sqlite3ExprListAppend(pParse,A, Z.pExpr); | |
1204 } | |
1205 case_exprlist(A) ::= WHEN expr(Y) THEN expr(Z). { | |
1206 A = sqlite3ExprListAppend(pParse,0, Y.pExpr); | |
1207 A = sqlite3ExprListAppend(pParse,A, Z.pExpr); | |
1208 } | |
1209 %type case_else {Expr*} | |
1210 %destructor case_else {sqlite3ExprDelete(pParse->db, $$);} | |
1211 case_else(A) ::= ELSE expr(X). {A = X.pExpr;} | |
1212 case_else(A) ::= . {A = 0;} | |
1213 %type case_operand {Expr*} | |
1214 %destructor case_operand {sqlite3ExprDelete(pParse->db, $$);} | |
1215 case_operand(A) ::= expr(X). {A = X.pExpr;} | |
1216 case_operand(A) ::= . {A = 0;} | |
1217 | |
1218 %type exprlist {ExprList*} | |
1219 %destructor exprlist {sqlite3ExprListDelete(pParse->db, $$);} | |
1220 %type nexprlist {ExprList*} | |
1221 %destructor nexprlist {sqlite3ExprListDelete(pParse->db, $$);} | |
1222 | |
1223 exprlist(A) ::= nexprlist(X). {A = X;} | |
1224 exprlist(A) ::= . {A = 0;} | |
1225 nexprlist(A) ::= nexprlist(X) COMMA expr(Y). | |
1226 {A = sqlite3ExprListAppend(pParse,X,Y.pExpr);} | |
1227 nexprlist(A) ::= expr(Y). | |
1228 {A = sqlite3ExprListAppend(pParse,0,Y.pExpr);} | |
1229 | |
1230 | |
1231 ///////////////////////////// The CREATE INDEX command /////////////////////// | |
1232 // | |
1233 cmd ::= createkw(S) uniqueflag(U) INDEX ifnotexists(NE) nm(X) dbnm(D) | |
1234 ON nm(Y) LP sortlist(Z) RP where_opt(W). { | |
1235 sqlite3CreateIndex(pParse, &X, &D, | |
1236 sqlite3SrcListAppend(pParse->db,0,&Y,0), Z, U, | |
1237 &S, W, SQLITE_SO_ASC, NE); | |
1238 } | |
1239 | |
1240 %type uniqueflag {int} | |
1241 uniqueflag(A) ::= UNIQUE. {A = OE_Abort;} | |
1242 uniqueflag(A) ::= . {A = OE_None;} | |
1243 | |
1244 | |
1245 // The eidlist non-terminal (Expression Id List) generates an ExprList | |
1246 // from a list of identifiers. The identifier names are in ExprList.a[].zName. | |
1247 // This list is stored in an ExprList rather than an IdList so that it | |
1248 // can be easily sent to sqlite3ColumnsExprList(). | |
1249 // | |
1250 // eidlist is grouped with CREATE INDEX because it used to be the non-terminal | |
1251 // used for the arguments to an index. That is just an historical accident. | |
1252 // | |
1253 // IMPORTANT COMPATIBILITY NOTE: Some prior versions of SQLite accepted | |
1254 // COLLATE clauses and ASC or DESC keywords on ID lists in inappropriate | |
1255 // places - places that might have been stored in the sqlite_master schema. | |
1256 // Those extra features were ignored. But because they might be in some | |
1257 // (busted) old databases, we need to continue parsing them when loading | |
1258 // historical schemas. | |
1259 // | |
1260 %type eidlist {ExprList*} | |
1261 %destructor eidlist {sqlite3ExprListDelete(pParse->db, $$);} | |
1262 %type eidlist_opt {ExprList*} | |
1263 %destructor eidlist_opt {sqlite3ExprListDelete(pParse->db, $$);} | |
1264 | |
1265 %include { | |
1266 /* Add a single new term to an ExprList that is used to store a | |
1267 ** list of identifiers. Report an error if the ID list contains | |
1268 ** a COLLATE clause or an ASC or DESC keyword, except ignore the | |
1269 ** error while parsing a legacy schema. | |
1270 */ | |
1271 static ExprList *parserAddExprIdListTerm( | |
1272 Parse *pParse, | |
1273 ExprList *pPrior, | |
1274 Token *pIdToken, | |
1275 int hasCollate, | |
1276 int sortOrder | |
1277 ){ | |
1278 ExprList *p = sqlite3ExprListAppend(pParse, pPrior, 0); | |
1279 if( (hasCollate || sortOrder!=SQLITE_SO_UNDEFINED) | |
1280 && pParse->db->init.busy==0 | |
1281 ){ | |
1282 sqlite3ErrorMsg(pParse, "syntax error after column name \"%.*s\"", | |
1283 pIdToken->n, pIdToken->z); | |
1284 } | |
1285 sqlite3ExprListSetName(pParse, p, pIdToken, 1); | |
1286 return p; | |
1287 } | |
1288 } // end %include | |
1289 | |
1290 eidlist_opt(A) ::= . {A = 0;} | |
1291 eidlist_opt(A) ::= LP eidlist(X) RP. {A = X;} | |
1292 eidlist(A) ::= eidlist(X) COMMA nm(Y) collate(C) sortorder(Z). { | |
1293 A = parserAddExprIdListTerm(pParse, X, &Y, C, Z); | |
1294 } | |
1295 eidlist(A) ::= nm(Y) collate(C) sortorder(Z). { | |
1296 A = parserAddExprIdListTerm(pParse, 0, &Y, C, Z); | |
1297 } | |
1298 | |
1299 %type collate {int} | |
1300 collate(C) ::= . {C = 0;} | |
1301 collate(C) ::= COLLATE ids. {C = 1;} | |
1302 | |
1303 | |
1304 ///////////////////////////// The DROP INDEX command ///////////////////////// | |
1305 // | |
1306 cmd ::= DROP INDEX ifexists(E) fullname(X). {sqlite3DropIndex(pParse, X, E);} | |
1307 | |
1308 ///////////////////////////// The VACUUM command ///////////////////////////// | |
1309 // | |
1310 %ifndef SQLITE_OMIT_VACUUM | |
1311 %ifndef SQLITE_OMIT_ATTACH | |
1312 cmd ::= VACUUM. {sqlite3Vacuum(pParse);} | |
1313 cmd ::= VACUUM nm. {sqlite3Vacuum(pParse);} | |
1314 %endif SQLITE_OMIT_ATTACH | |
1315 %endif SQLITE_OMIT_VACUUM | |
1316 | |
1317 ///////////////////////////// The PRAGMA command ///////////////////////////// | |
1318 // | |
1319 %ifndef SQLITE_OMIT_PRAGMA | |
1320 cmd ::= PRAGMA nm(X) dbnm(Z). {sqlite3Pragma(pParse,&X,&Z,0,0);} | |
1321 cmd ::= PRAGMA nm(X) dbnm(Z) EQ nmnum(Y). {sqlite3Pragma(pParse,&X,&Z,&Y,0);} | |
1322 cmd ::= PRAGMA nm(X) dbnm(Z) LP nmnum(Y) RP. {sqlite3Pragma(pParse,&X,&Z,&Y,0);} | |
1323 cmd ::= PRAGMA nm(X) dbnm(Z) EQ minus_num(Y). | |
1324 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} | |
1325 cmd ::= PRAGMA nm(X) dbnm(Z) LP minus_num(Y) RP. | |
1326 {sqlite3Pragma(pParse,&X,&Z,&Y,1);} | |
1327 | |
1328 nmnum(A) ::= plus_num(X). {A = X;} | |
1329 nmnum(A) ::= nm(X). {A = X;} | |
1330 nmnum(A) ::= ON(X). {A = X;} | |
1331 nmnum(A) ::= DELETE(X). {A = X;} | |
1332 nmnum(A) ::= DEFAULT(X). {A = X;} | |
1333 %endif SQLITE_OMIT_PRAGMA | |
1334 %token_class number INTEGER|FLOAT. | |
1335 plus_num(A) ::= PLUS number(X). {A = X;} | |
1336 plus_num(A) ::= number(X). {A = X;} | |
1337 minus_num(A) ::= MINUS number(X). {A = X;} | |
1338 //////////////////////////// The CREATE TRIGGER command ///////////////////// | |
1339 | |
1340 %ifndef SQLITE_OMIT_TRIGGER | |
1341 | |
1342 cmd ::= createkw trigger_decl(A) BEGIN trigger_cmd_list(S) END(Z). { | |
1343 Token all; | |
1344 all.z = A.z; | |
1345 all.n = (int)(Z.z - A.z) + Z.n; | |
1346 sqlite3FinishTrigger(pParse, S, &all); | |
1347 } | |
1348 | |
1349 trigger_decl(A) ::= temp(T) TRIGGER ifnotexists(NOERR) nm(B) dbnm(Z) | |
1350 trigger_time(C) trigger_event(D) | |
1351 ON fullname(E) foreach_clause when_clause(G). { | |
1352 sqlite3BeginTrigger(pParse, &B, &Z, C, D.a, D.b, E, G, T, NOERR); | |
1353 A = (Z.n==0?B:Z); | |
1354 } | |
1355 | |
1356 %type trigger_time {int} | |
1357 trigger_time(A) ::= BEFORE. { A = TK_BEFORE; } | |
1358 trigger_time(A) ::= AFTER. { A = TK_AFTER; } | |
1359 trigger_time(A) ::= INSTEAD OF. { A = TK_INSTEAD;} | |
1360 trigger_time(A) ::= . { A = TK_BEFORE; } | |
1361 | |
1362 %type trigger_event {struct TrigEvent} | |
1363 %destructor trigger_event {sqlite3IdListDelete(pParse->db, $$.b);} | |
1364 trigger_event(A) ::= DELETE|INSERT(OP). {A.a = @OP; A.b = 0;} | |
1365 trigger_event(A) ::= UPDATE(OP). {A.a = @OP; A.b = 0;} | |
1366 trigger_event(A) ::= UPDATE OF idlist(X). {A.a = TK_UPDATE; A.b = X;} | |
1367 | |
1368 foreach_clause ::= . | |
1369 foreach_clause ::= FOR EACH ROW. | |
1370 | |
1371 %type when_clause {Expr*} | |
1372 %destructor when_clause {sqlite3ExprDelete(pParse->db, $$);} | |
1373 when_clause(A) ::= . { A = 0; } | |
1374 when_clause(A) ::= WHEN expr(X). { A = X.pExpr; } | |
1375 | |
1376 %type trigger_cmd_list {TriggerStep*} | |
1377 %destructor trigger_cmd_list {sqlite3DeleteTriggerStep(pParse->db, $$);} | |
1378 trigger_cmd_list(A) ::= trigger_cmd_list(Y) trigger_cmd(X) SEMI. { | |
1379 assert( Y!=0 ); | |
1380 Y->pLast->pNext = X; | |
1381 Y->pLast = X; | |
1382 A = Y; | |
1383 } | |
1384 trigger_cmd_list(A) ::= trigger_cmd(X) SEMI. { | |
1385 assert( X!=0 ); | |
1386 X->pLast = X; | |
1387 A = X; | |
1388 } | |
1389 | |
1390 // Disallow qualified table names on INSERT, UPDATE, and DELETE statements | |
1391 // within a trigger. The table to INSERT, UPDATE, or DELETE is always in | |
1392 // the same database as the table that the trigger fires on. | |
1393 // | |
1394 %type trnm {Token} | |
1395 trnm(A) ::= nm(X). {A = X;} | |
1396 trnm(A) ::= nm DOT nm(X). { | |
1397 A = X; | |
1398 sqlite3ErrorMsg(pParse, | |
1399 "qualified table names are not allowed on INSERT, UPDATE, and DELETE " | |
1400 "statements within triggers"); | |
1401 } | |
1402 | |
1403 // Disallow the INDEX BY and NOT INDEXED clauses on UPDATE and DELETE | |
1404 // statements within triggers. We make a specific error message for this | |
1405 // since it is an exception to the default grammar rules. | |
1406 // | |
1407 tridxby ::= . | |
1408 tridxby ::= INDEXED BY nm. { | |
1409 sqlite3ErrorMsg(pParse, | |
1410 "the INDEXED BY clause is not allowed on UPDATE or DELETE statements " | |
1411 "within triggers"); | |
1412 } | |
1413 tridxby ::= NOT INDEXED. { | |
1414 sqlite3ErrorMsg(pParse, | |
1415 "the NOT INDEXED clause is not allowed on UPDATE or DELETE statements " | |
1416 "within triggers"); | |
1417 } | |
1418 | |
1419 | |
1420 | |
1421 %type trigger_cmd {TriggerStep*} | |
1422 %destructor trigger_cmd {sqlite3DeleteTriggerStep(pParse->db, $$);} | |
1423 // UPDATE | |
1424 trigger_cmd(A) ::= | |
1425 UPDATE orconf(R) trnm(X) tridxby SET setlist(Y) where_opt(Z). | |
1426 { A = sqlite3TriggerUpdateStep(pParse->db, &X, Y, Z, R); } | |
1427 | |
1428 // INSERT | |
1429 trigger_cmd(A) ::= insert_cmd(R) INTO trnm(X) idlist_opt(F) select(S). | |
1430 {A = sqlite3TriggerInsertStep(pParse->db, &X, F, S, R);} | |
1431 | |
1432 // DELETE | |
1433 trigger_cmd(A) ::= DELETE FROM trnm(X) tridxby where_opt(Y). | |
1434 {A = sqlite3TriggerDeleteStep(pParse->db, &X, Y);} | |
1435 | |
1436 // SELECT | |
1437 trigger_cmd(A) ::= select(X). {A = sqlite3TriggerSelectStep(pParse->db, X); } | |
1438 | |
1439 // The special RAISE expression that may occur in trigger programs | |
1440 expr(A) ::= RAISE(X) LP IGNORE RP(Y). { | |
1441 A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, 0); | |
1442 if( A.pExpr ){ | |
1443 A.pExpr->affinity = OE_Ignore; | |
1444 } | |
1445 A.zStart = X.z; | |
1446 A.zEnd = &Y.z[Y.n]; | |
1447 } | |
1448 expr(A) ::= RAISE(X) LP raisetype(T) COMMA nm(Z) RP(Y). { | |
1449 A.pExpr = sqlite3PExpr(pParse, TK_RAISE, 0, 0, &Z); | |
1450 if( A.pExpr ) { | |
1451 A.pExpr->affinity = (char)T; | |
1452 } | |
1453 A.zStart = X.z; | |
1454 A.zEnd = &Y.z[Y.n]; | |
1455 } | |
1456 %endif !SQLITE_OMIT_TRIGGER | |
1457 | |
1458 %type raisetype {int} | |
1459 raisetype(A) ::= ROLLBACK. {A = OE_Rollback;} | |
1460 raisetype(A) ::= ABORT. {A = OE_Abort;} | |
1461 raisetype(A) ::= FAIL. {A = OE_Fail;} | |
1462 | |
1463 | |
1464 //////////////////////// DROP TRIGGER statement ////////////////////////////// | |
1465 %ifndef SQLITE_OMIT_TRIGGER | |
1466 cmd ::= DROP TRIGGER ifexists(NOERR) fullname(X). { | |
1467 sqlite3DropTrigger(pParse,X,NOERR); | |
1468 } | |
1469 %endif !SQLITE_OMIT_TRIGGER | |
1470 | |
1471 //////////////////////// ATTACH DATABASE file AS name ///////////////////////// | |
1472 %ifndef SQLITE_OMIT_ATTACH | |
1473 cmd ::= ATTACH database_kw_opt expr(F) AS expr(D) key_opt(K). { | |
1474 sqlite3Attach(pParse, F.pExpr, D.pExpr, K); | |
1475 } | |
1476 cmd ::= DETACH database_kw_opt expr(D). { | |
1477 sqlite3Detach(pParse, D.pExpr); | |
1478 } | |
1479 | |
1480 %type key_opt {Expr*} | |
1481 %destructor key_opt {sqlite3ExprDelete(pParse->db, $$);} | |
1482 key_opt(A) ::= . { A = 0; } | |
1483 key_opt(A) ::= KEY expr(X). { A = X.pExpr; } | |
1484 | |
1485 database_kw_opt ::= DATABASE. | |
1486 database_kw_opt ::= . | |
1487 %endif SQLITE_OMIT_ATTACH | |
1488 | |
1489 ////////////////////////// REINDEX collation ////////////////////////////////// | |
1490 %ifndef SQLITE_OMIT_REINDEX | |
1491 cmd ::= REINDEX. {sqlite3Reindex(pParse, 0, 0);} | |
1492 cmd ::= REINDEX nm(X) dbnm(Y). {sqlite3Reindex(pParse, &X, &Y);} | |
1493 %endif SQLITE_OMIT_REINDEX | |
1494 | |
1495 /////////////////////////////////// ANALYZE /////////////////////////////////// | |
1496 %ifndef SQLITE_OMIT_ANALYZE | |
1497 cmd ::= ANALYZE. {sqlite3Analyze(pParse, 0, 0);} | |
1498 cmd ::= ANALYZE nm(X) dbnm(Y). {sqlite3Analyze(pParse, &X, &Y);} | |
1499 %endif | |
1500 | |
1501 //////////////////////// ALTER TABLE table ... //////////////////////////////// | |
1502 %ifndef SQLITE_OMIT_ALTERTABLE | |
1503 cmd ::= ALTER TABLE fullname(X) RENAME TO nm(Z). { | |
1504 sqlite3AlterRenameTable(pParse,X,&Z); | |
1505 } | |
1506 cmd ::= ALTER TABLE add_column_fullname ADD kwcolumn_opt column(Y). { | |
1507 sqlite3AlterFinishAddColumn(pParse, &Y); | |
1508 } | |
1509 add_column_fullname ::= fullname(X). { | |
1510 pParse->db->lookaside.bEnabled = 0; | |
1511 sqlite3AlterBeginAddColumn(pParse, X); | |
1512 } | |
1513 kwcolumn_opt ::= . | |
1514 kwcolumn_opt ::= COLUMNKW. | |
1515 %endif SQLITE_OMIT_ALTERTABLE | |
1516 | |
1517 //////////////////////// CREATE VIRTUAL TABLE ... ///////////////////////////// | |
1518 %ifndef SQLITE_OMIT_VIRTUALTABLE | |
1519 cmd ::= create_vtab. {sqlite3VtabFinishParse(pParse,0);} | |
1520 cmd ::= create_vtab LP vtabarglist RP(X). {sqlite3VtabFinishParse(pParse,&X);} | |
1521 create_vtab ::= createkw VIRTUAL TABLE ifnotexists(E) | |
1522 nm(X) dbnm(Y) USING nm(Z). { | |
1523 sqlite3VtabBeginParse(pParse, &X, &Y, &Z, E); | |
1524 } | |
1525 vtabarglist ::= vtabarg. | |
1526 vtabarglist ::= vtabarglist COMMA vtabarg. | |
1527 vtabarg ::= . {sqlite3VtabArgInit(pParse);} | |
1528 vtabarg ::= vtabarg vtabargtoken. | |
1529 vtabargtoken ::= ANY(X). {sqlite3VtabArgExtend(pParse,&X);} | |
1530 vtabargtoken ::= lp anylist RP(X). {sqlite3VtabArgExtend(pParse,&X);} | |
1531 lp ::= LP(X). {sqlite3VtabArgExtend(pParse,&X);} | |
1532 anylist ::= . | |
1533 anylist ::= anylist LP anylist RP. | |
1534 anylist ::= anylist ANY. | |
1535 %endif SQLITE_OMIT_VIRTUALTABLE | |
1536 | |
1537 | |
1538 //////////////////////// COMMON TABLE EXPRESSIONS //////////////////////////// | |
1539 %type with {With*} | |
1540 %type wqlist {With*} | |
1541 %destructor with {sqlite3WithDelete(pParse->db, $$);} | |
1542 %destructor wqlist {sqlite3WithDelete(pParse->db, $$);} | |
1543 | |
1544 with(A) ::= . {A = 0;} | |
1545 %ifndef SQLITE_OMIT_CTE | |
1546 with(A) ::= WITH wqlist(W). { A = W; } | |
1547 with(A) ::= WITH RECURSIVE wqlist(W). { A = W; } | |
1548 | |
1549 wqlist(A) ::= nm(X) eidlist_opt(Y) AS LP select(Z) RP. { | |
1550 A = sqlite3WithAdd(pParse, 0, &X, Y, Z); | |
1551 } | |
1552 wqlist(A) ::= wqlist(W) COMMA nm(X) eidlist_opt(Y) AS LP select(Z) RP. { | |
1553 A = sqlite3WithAdd(pParse, W, &X, Y, Z); | |
1554 } | |
1555 %endif SQLITE_OMIT_CTE | |
OLD | NEW |