| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 ** 2001 September 15 | |
| 3 ** | |
| 4 ** The author disclaims copyright to this source code. In place of | |
| 5 ** a legal notice, here is a blessing: | |
| 6 ** | |
| 7 ** May you do good and not evil. | |
| 8 ** May you find forgiveness for yourself and forgive others. | |
| 9 ** May you share freely, never taking more than you give. | |
| 10 ** | |
| 11 ************************************************************************* | |
| 12 ** | |
| 13 ** Memory allocation functions used throughout sqlite. | |
| 14 */ | |
| 15 #include "sqliteInt.h" | |
| 16 #include <stdarg.h> | |
| 17 | |
| 18 /* | |
| 19 ** Attempt to release up to n bytes of non-essential memory currently | |
| 20 ** held by SQLite. An example of non-essential memory is memory used to | |
| 21 ** cache database pages that are not currently in use. | |
| 22 */ | |
| 23 int sqlite3_release_memory(int n){ | |
| 24 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT | |
| 25 return sqlite3PcacheReleaseMemory(n); | |
| 26 #else | |
| 27 /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine | |
| 28 ** is a no-op returning zero if SQLite is not compiled with | |
| 29 ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */ | |
| 30 UNUSED_PARAMETER(n); | |
| 31 return 0; | |
| 32 #endif | |
| 33 } | |
| 34 | |
| 35 /* | |
| 36 ** An instance of the following object records the location of | |
| 37 ** each unused scratch buffer. | |
| 38 */ | |
| 39 typedef struct ScratchFreeslot { | |
| 40 struct ScratchFreeslot *pNext; /* Next unused scratch buffer */ | |
| 41 } ScratchFreeslot; | |
| 42 | |
| 43 /* | |
| 44 ** State information local to the memory allocation subsystem. | |
| 45 */ | |
| 46 static SQLITE_WSD struct Mem0Global { | |
| 47 sqlite3_mutex *mutex; /* Mutex to serialize access */ | |
| 48 sqlite3_int64 alarmThreshold; /* The soft heap limit */ | |
| 49 | |
| 50 /* | |
| 51 ** Pointers to the end of sqlite3GlobalConfig.pScratch memory | |
| 52 ** (so that a range test can be used to determine if an allocation | |
| 53 ** being freed came from pScratch) and a pointer to the list of | |
| 54 ** unused scratch allocations. | |
| 55 */ | |
| 56 void *pScratchEnd; | |
| 57 ScratchFreeslot *pScratchFree; | |
| 58 u32 nScratchFree; | |
| 59 | |
| 60 /* | |
| 61 ** True if heap is nearly "full" where "full" is defined by the | |
| 62 ** sqlite3_soft_heap_limit() setting. | |
| 63 */ | |
| 64 int nearlyFull; | |
| 65 } mem0 = { 0, 0, 0, 0, 0, 0 }; | |
| 66 | |
| 67 #define mem0 GLOBAL(struct Mem0Global, mem0) | |
| 68 | |
| 69 /* | |
| 70 ** Return the memory allocator mutex. sqlite3_status() needs it. | |
| 71 */ | |
| 72 sqlite3_mutex *sqlite3MallocMutex(void){ | |
| 73 return mem0.mutex; | |
| 74 } | |
| 75 | |
| 76 #ifndef SQLITE_OMIT_DEPRECATED | |
| 77 /* | |
| 78 ** Deprecated external interface. It used to set an alarm callback | |
| 79 ** that was invoked when memory usage grew too large. Now it is a | |
| 80 ** no-op. | |
| 81 */ | |
| 82 int sqlite3_memory_alarm( | |
| 83 void(*xCallback)(void *pArg, sqlite3_int64 used,int N), | |
| 84 void *pArg, | |
| 85 sqlite3_int64 iThreshold | |
| 86 ){ | |
| 87 (void)xCallback; | |
| 88 (void)pArg; | |
| 89 (void)iThreshold; | |
| 90 return SQLITE_OK; | |
| 91 } | |
| 92 #endif | |
| 93 | |
| 94 /* | |
| 95 ** Set the soft heap-size limit for the library. Passing a zero or | |
| 96 ** negative value indicates no limit. | |
| 97 */ | |
| 98 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){ | |
| 99 sqlite3_int64 priorLimit; | |
| 100 sqlite3_int64 excess; | |
| 101 sqlite3_int64 nUsed; | |
| 102 #ifndef SQLITE_OMIT_AUTOINIT | |
| 103 int rc = sqlite3_initialize(); | |
| 104 if( rc ) return -1; | |
| 105 #endif | |
| 106 sqlite3_mutex_enter(mem0.mutex); | |
| 107 priorLimit = mem0.alarmThreshold; | |
| 108 if( n<0 ){ | |
| 109 sqlite3_mutex_leave(mem0.mutex); | |
| 110 return priorLimit; | |
| 111 } | |
| 112 mem0.alarmThreshold = n; | |
| 113 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); | |
| 114 mem0.nearlyFull = (n>0 && n<=nUsed); | |
| 115 sqlite3_mutex_leave(mem0.mutex); | |
| 116 excess = sqlite3_memory_used() - n; | |
| 117 if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff)); | |
| 118 return priorLimit; | |
| 119 } | |
| 120 void sqlite3_soft_heap_limit(int n){ | |
| 121 if( n<0 ) n = 0; | |
| 122 sqlite3_soft_heap_limit64(n); | |
| 123 } | |
| 124 | |
| 125 /* | |
| 126 ** Initialize the memory allocation subsystem. | |
| 127 */ | |
| 128 int sqlite3MallocInit(void){ | |
| 129 int rc; | |
| 130 if( sqlite3GlobalConfig.m.xMalloc==0 ){ | |
| 131 sqlite3MemSetDefault(); | |
| 132 } | |
| 133 memset(&mem0, 0, sizeof(mem0)); | |
| 134 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); | |
| 135 if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100 | |
| 136 && sqlite3GlobalConfig.nScratch>0 ){ | |
| 137 int i, n, sz; | |
| 138 ScratchFreeslot *pSlot; | |
| 139 sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch); | |
| 140 sqlite3GlobalConfig.szScratch = sz; | |
| 141 pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch; | |
| 142 n = sqlite3GlobalConfig.nScratch; | |
| 143 mem0.pScratchFree = pSlot; | |
| 144 mem0.nScratchFree = n; | |
| 145 for(i=0; i<n-1; i++){ | |
| 146 pSlot->pNext = (ScratchFreeslot*)(sz+(char*)pSlot); | |
| 147 pSlot = pSlot->pNext; | |
| 148 } | |
| 149 pSlot->pNext = 0; | |
| 150 mem0.pScratchEnd = (void*)&pSlot[1]; | |
| 151 }else{ | |
| 152 mem0.pScratchEnd = 0; | |
| 153 sqlite3GlobalConfig.pScratch = 0; | |
| 154 sqlite3GlobalConfig.szScratch = 0; | |
| 155 sqlite3GlobalConfig.nScratch = 0; | |
| 156 } | |
| 157 if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512 | |
| 158 || sqlite3GlobalConfig.nPage<=0 ){ | |
| 159 sqlite3GlobalConfig.pPage = 0; | |
| 160 sqlite3GlobalConfig.szPage = 0; | |
| 161 } | |
| 162 rc = sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData); | |
| 163 if( rc!=SQLITE_OK ) memset(&mem0, 0, sizeof(mem0)); | |
| 164 return rc; | |
| 165 } | |
| 166 | |
| 167 /* | |
| 168 ** Return true if the heap is currently under memory pressure - in other | |
| 169 ** words if the amount of heap used is close to the limit set by | |
| 170 ** sqlite3_soft_heap_limit(). | |
| 171 */ | |
| 172 int sqlite3HeapNearlyFull(void){ | |
| 173 return mem0.nearlyFull; | |
| 174 } | |
| 175 | |
| 176 /* | |
| 177 ** Deinitialize the memory allocation subsystem. | |
| 178 */ | |
| 179 void sqlite3MallocEnd(void){ | |
| 180 if( sqlite3GlobalConfig.m.xShutdown ){ | |
| 181 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData); | |
| 182 } | |
| 183 memset(&mem0, 0, sizeof(mem0)); | |
| 184 } | |
| 185 | |
| 186 /* | |
| 187 ** Return the amount of memory currently checked out. | |
| 188 */ | |
| 189 sqlite3_int64 sqlite3_memory_used(void){ | |
| 190 sqlite3_int64 res, mx; | |
| 191 sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, 0); | |
| 192 return res; | |
| 193 } | |
| 194 | |
| 195 /* | |
| 196 ** Return the maximum amount of memory that has ever been | |
| 197 ** checked out since either the beginning of this process | |
| 198 ** or since the most recent reset. | |
| 199 */ | |
| 200 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ | |
| 201 sqlite3_int64 res, mx; | |
| 202 sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, resetFlag); | |
| 203 return mx; | |
| 204 } | |
| 205 | |
| 206 /* | |
| 207 ** Trigger the alarm | |
| 208 */ | |
| 209 static void sqlite3MallocAlarm(int nByte){ | |
| 210 if( mem0.alarmThreshold<=0 ) return; | |
| 211 sqlite3_mutex_leave(mem0.mutex); | |
| 212 sqlite3_release_memory(nByte); | |
| 213 sqlite3_mutex_enter(mem0.mutex); | |
| 214 } | |
| 215 | |
| 216 /* | |
| 217 ** Do a memory allocation with statistics and alarms. Assume the | |
| 218 ** lock is already held. | |
| 219 */ | |
| 220 static int mallocWithAlarm(int n, void **pp){ | |
| 221 int nFull; | |
| 222 void *p; | |
| 223 assert( sqlite3_mutex_held(mem0.mutex) ); | |
| 224 nFull = sqlite3GlobalConfig.m.xRoundup(n); | |
| 225 sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, n); | |
| 226 if( mem0.alarmThreshold>0 ){ | |
| 227 sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); | |
| 228 if( nUsed >= mem0.alarmThreshold - nFull ){ | |
| 229 mem0.nearlyFull = 1; | |
| 230 sqlite3MallocAlarm(nFull); | |
| 231 }else{ | |
| 232 mem0.nearlyFull = 0; | |
| 233 } | |
| 234 } | |
| 235 p = sqlite3GlobalConfig.m.xMalloc(nFull); | |
| 236 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT | |
| 237 if( p==0 && mem0.alarmThreshold>0 ){ | |
| 238 sqlite3MallocAlarm(nFull); | |
| 239 p = sqlite3GlobalConfig.m.xMalloc(nFull); | |
| 240 } | |
| 241 #endif | |
| 242 if( p ){ | |
| 243 nFull = sqlite3MallocSize(p); | |
| 244 sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull); | |
| 245 sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1); | |
| 246 } | |
| 247 *pp = p; | |
| 248 return nFull; | |
| 249 } | |
| 250 | |
| 251 /* | |
| 252 ** Allocate memory. This routine is like sqlite3_malloc() except that it | |
| 253 ** assumes the memory subsystem has already been initialized. | |
| 254 */ | |
| 255 void *sqlite3Malloc(u64 n){ | |
| 256 void *p; | |
| 257 if( n==0 || n>=0x7fffff00 ){ | |
| 258 /* A memory allocation of a number of bytes which is near the maximum | |
| 259 ** signed integer value might cause an integer overflow inside of the | |
| 260 ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving | |
| 261 ** 255 bytes of overhead. SQLite itself will never use anything near | |
| 262 ** this amount. The only way to reach the limit is with sqlite3_malloc() */ | |
| 263 p = 0; | |
| 264 }else if( sqlite3GlobalConfig.bMemstat ){ | |
| 265 sqlite3_mutex_enter(mem0.mutex); | |
| 266 mallocWithAlarm((int)n, &p); | |
| 267 sqlite3_mutex_leave(mem0.mutex); | |
| 268 }else{ | |
| 269 p = sqlite3GlobalConfig.m.xMalloc((int)n); | |
| 270 } | |
| 271 assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-11148-40995 */ | |
| 272 return p; | |
| 273 } | |
| 274 | |
| 275 /* | |
| 276 ** This version of the memory allocation is for use by the application. | |
| 277 ** First make sure the memory subsystem is initialized, then do the | |
| 278 ** allocation. | |
| 279 */ | |
| 280 void *sqlite3_malloc(int n){ | |
| 281 #ifndef SQLITE_OMIT_AUTOINIT | |
| 282 if( sqlite3_initialize() ) return 0; | |
| 283 #endif | |
| 284 return n<=0 ? 0 : sqlite3Malloc(n); | |
| 285 } | |
| 286 void *sqlite3_malloc64(sqlite3_uint64 n){ | |
| 287 #ifndef SQLITE_OMIT_AUTOINIT | |
| 288 if( sqlite3_initialize() ) return 0; | |
| 289 #endif | |
| 290 return sqlite3Malloc(n); | |
| 291 } | |
| 292 | |
| 293 /* | |
| 294 ** Each thread may only have a single outstanding allocation from | |
| 295 ** xScratchMalloc(). We verify this constraint in the single-threaded | |
| 296 ** case by setting scratchAllocOut to 1 when an allocation | |
| 297 ** is outstanding clearing it when the allocation is freed. | |
| 298 */ | |
| 299 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) | |
| 300 static int scratchAllocOut = 0; | |
| 301 #endif | |
| 302 | |
| 303 | |
| 304 /* | |
| 305 ** Allocate memory that is to be used and released right away. | |
| 306 ** This routine is similar to alloca() in that it is not intended | |
| 307 ** for situations where the memory might be held long-term. This | |
| 308 ** routine is intended to get memory to old large transient data | |
| 309 ** structures that would not normally fit on the stack of an | |
| 310 ** embedded processor. | |
| 311 */ | |
| 312 void *sqlite3ScratchMalloc(int n){ | |
| 313 void *p; | |
| 314 assert( n>0 ); | |
| 315 | |
| 316 sqlite3_mutex_enter(mem0.mutex); | |
| 317 sqlite3StatusHighwater(SQLITE_STATUS_SCRATCH_SIZE, n); | |
| 318 if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){ | |
| 319 p = mem0.pScratchFree; | |
| 320 mem0.pScratchFree = mem0.pScratchFree->pNext; | |
| 321 mem0.nScratchFree--; | |
| 322 sqlite3StatusUp(SQLITE_STATUS_SCRATCH_USED, 1); | |
| 323 sqlite3_mutex_leave(mem0.mutex); | |
| 324 }else{ | |
| 325 sqlite3_mutex_leave(mem0.mutex); | |
| 326 p = sqlite3Malloc(n); | |
| 327 if( sqlite3GlobalConfig.bMemstat && p ){ | |
| 328 sqlite3_mutex_enter(mem0.mutex); | |
| 329 sqlite3StatusUp(SQLITE_STATUS_SCRATCH_OVERFLOW, sqlite3MallocSize(p)); | |
| 330 sqlite3_mutex_leave(mem0.mutex); | |
| 331 } | |
| 332 sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH); | |
| 333 } | |
| 334 assert( sqlite3_mutex_notheld(mem0.mutex) ); | |
| 335 | |
| 336 | |
| 337 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) | |
| 338 /* EVIDENCE-OF: R-12970-05880 SQLite will not use more than one scratch | |
| 339 ** buffers per thread. | |
| 340 ** | |
| 341 ** This can only be checked in single-threaded mode. | |
| 342 */ | |
| 343 assert( scratchAllocOut==0 ); | |
| 344 if( p ) scratchAllocOut++; | |
| 345 #endif | |
| 346 | |
| 347 return p; | |
| 348 } | |
| 349 void sqlite3ScratchFree(void *p){ | |
| 350 if( p ){ | |
| 351 | |
| 352 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) | |
| 353 /* Verify that no more than two scratch allocation per thread | |
| 354 ** is outstanding at one time. (This is only checked in the | |
| 355 ** single-threaded case since checking in the multi-threaded case | |
| 356 ** would be much more complicated.) */ | |
| 357 assert( scratchAllocOut>=1 && scratchAllocOut<=2 ); | |
| 358 scratchAllocOut--; | |
| 359 #endif | |
| 360 | |
| 361 if( SQLITE_WITHIN(p, sqlite3GlobalConfig.pScratch, mem0.pScratchEnd) ){ | |
| 362 /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */ | |
| 363 ScratchFreeslot *pSlot; | |
| 364 pSlot = (ScratchFreeslot*)p; | |
| 365 sqlite3_mutex_enter(mem0.mutex); | |
| 366 pSlot->pNext = mem0.pScratchFree; | |
| 367 mem0.pScratchFree = pSlot; | |
| 368 mem0.nScratchFree++; | |
| 369 assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch ); | |
| 370 sqlite3StatusDown(SQLITE_STATUS_SCRATCH_USED, 1); | |
| 371 sqlite3_mutex_leave(mem0.mutex); | |
| 372 }else{ | |
| 373 /* Release memory back to the heap */ | |
| 374 assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) ); | |
| 375 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_SCRATCH) ); | |
| 376 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); | |
| 377 if( sqlite3GlobalConfig.bMemstat ){ | |
| 378 int iSize = sqlite3MallocSize(p); | |
| 379 sqlite3_mutex_enter(mem0.mutex); | |
| 380 sqlite3StatusDown(SQLITE_STATUS_SCRATCH_OVERFLOW, iSize); | |
| 381 sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, iSize); | |
| 382 sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1); | |
| 383 sqlite3GlobalConfig.m.xFree(p); | |
| 384 sqlite3_mutex_leave(mem0.mutex); | |
| 385 }else{ | |
| 386 sqlite3GlobalConfig.m.xFree(p); | |
| 387 } | |
| 388 } | |
| 389 } | |
| 390 } | |
| 391 | |
| 392 /* | |
| 393 ** TRUE if p is a lookaside memory allocation from db | |
| 394 */ | |
| 395 #ifndef SQLITE_OMIT_LOOKASIDE | |
| 396 static int isLookaside(sqlite3 *db, void *p){ | |
| 397 return SQLITE_WITHIN(p, db->lookaside.pStart, db->lookaside.pEnd); | |
| 398 } | |
| 399 #else | |
| 400 #define isLookaside(A,B) 0 | |
| 401 #endif | |
| 402 | |
| 403 /* | |
| 404 ** Return the size of a memory allocation previously obtained from | |
| 405 ** sqlite3Malloc() or sqlite3_malloc(). | |
| 406 */ | |
| 407 int sqlite3MallocSize(void *p){ | |
| 408 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); | |
| 409 return sqlite3GlobalConfig.m.xSize(p); | |
| 410 } | |
| 411 int sqlite3DbMallocSize(sqlite3 *db, void *p){ | |
| 412 assert( p!=0 ); | |
| 413 if( db==0 || !isLookaside(db,p) ){ | |
| 414 #if SQLITE_DEBUG | |
| 415 if( db==0 ){ | |
| 416 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); | |
| 417 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); | |
| 418 }else{ | |
| 419 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); | |
| 420 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); | |
| 421 } | |
| 422 #endif | |
| 423 return sqlite3GlobalConfig.m.xSize(p); | |
| 424 }else{ | |
| 425 assert( sqlite3_mutex_held(db->mutex) ); | |
| 426 return db->lookaside.sz; | |
| 427 } | |
| 428 } | |
| 429 sqlite3_uint64 sqlite3_msize(void *p){ | |
| 430 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); | |
| 431 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); | |
| 432 return p ? sqlite3GlobalConfig.m.xSize(p) : 0; | |
| 433 } | |
| 434 | |
| 435 /* | |
| 436 ** Free memory previously obtained from sqlite3Malloc(). | |
| 437 */ | |
| 438 void sqlite3_free(void *p){ | |
| 439 if( p==0 ) return; /* IMP: R-49053-54554 */ | |
| 440 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); | |
| 441 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); | |
| 442 if( sqlite3GlobalConfig.bMemstat ){ | |
| 443 sqlite3_mutex_enter(mem0.mutex); | |
| 444 sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p)); | |
| 445 sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1); | |
| 446 sqlite3GlobalConfig.m.xFree(p); | |
| 447 sqlite3_mutex_leave(mem0.mutex); | |
| 448 }else{ | |
| 449 sqlite3GlobalConfig.m.xFree(p); | |
| 450 } | |
| 451 } | |
| 452 | |
| 453 /* | |
| 454 ** Add the size of memory allocation "p" to the count in | |
| 455 ** *db->pnBytesFreed. | |
| 456 */ | |
| 457 static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){ | |
| 458 *db->pnBytesFreed += sqlite3DbMallocSize(db,p); | |
| 459 } | |
| 460 | |
| 461 /* | |
| 462 ** Free memory that might be associated with a particular database | |
| 463 ** connection. | |
| 464 */ | |
| 465 void sqlite3DbFree(sqlite3 *db, void *p){ | |
| 466 assert( db==0 || sqlite3_mutex_held(db->mutex) ); | |
| 467 if( p==0 ) return; | |
| 468 if( db ){ | |
| 469 if( db->pnBytesFreed ){ | |
| 470 measureAllocationSize(db, p); | |
| 471 return; | |
| 472 } | |
| 473 if( isLookaside(db, p) ){ | |
| 474 LookasideSlot *pBuf = (LookasideSlot*)p; | |
| 475 #if SQLITE_DEBUG | |
| 476 /* Trash all content in the buffer being freed */ | |
| 477 memset(p, 0xaa, db->lookaside.sz); | |
| 478 #endif | |
| 479 pBuf->pNext = db->lookaside.pFree; | |
| 480 db->lookaside.pFree = pBuf; | |
| 481 db->lookaside.nOut--; | |
| 482 return; | |
| 483 } | |
| 484 } | |
| 485 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); | |
| 486 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); | |
| 487 assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); | |
| 488 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); | |
| 489 sqlite3_free(p); | |
| 490 } | |
| 491 | |
| 492 /* | |
| 493 ** Change the size of an existing memory allocation | |
| 494 */ | |
| 495 void *sqlite3Realloc(void *pOld, u64 nBytes){ | |
| 496 int nOld, nNew, nDiff; | |
| 497 void *pNew; | |
| 498 assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); | |
| 499 assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) ); | |
| 500 if( pOld==0 ){ | |
| 501 return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */ | |
| 502 } | |
| 503 if( nBytes==0 ){ | |
| 504 sqlite3_free(pOld); /* IMP: R-26507-47431 */ | |
| 505 return 0; | |
| 506 } | |
| 507 if( nBytes>=0x7fffff00 ){ | |
| 508 /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ | |
| 509 return 0; | |
| 510 } | |
| 511 nOld = sqlite3MallocSize(pOld); | |
| 512 /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second | |
| 513 ** argument to xRealloc is always a value returned by a prior call to | |
| 514 ** xRoundup. */ | |
| 515 nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes); | |
| 516 if( nOld==nNew ){ | |
| 517 pNew = pOld; | |
| 518 }else if( sqlite3GlobalConfig.bMemstat ){ | |
| 519 sqlite3_mutex_enter(mem0.mutex); | |
| 520 sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes); | |
| 521 nDiff = nNew - nOld; | |
| 522 if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >= | |
| 523 mem0.alarmThreshold-nDiff ){ | |
| 524 sqlite3MallocAlarm(nDiff); | |
| 525 } | |
| 526 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); | |
| 527 if( pNew==0 && mem0.alarmThreshold>0 ){ | |
| 528 sqlite3MallocAlarm((int)nBytes); | |
| 529 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); | |
| 530 } | |
| 531 if( pNew ){ | |
| 532 nNew = sqlite3MallocSize(pNew); | |
| 533 sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld); | |
| 534 } | |
| 535 sqlite3_mutex_leave(mem0.mutex); | |
| 536 }else{ | |
| 537 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); | |
| 538 } | |
| 539 assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */ | |
| 540 return pNew; | |
| 541 } | |
| 542 | |
| 543 /* | |
| 544 ** The public interface to sqlite3Realloc. Make sure that the memory | |
| 545 ** subsystem is initialized prior to invoking sqliteRealloc. | |
| 546 */ | |
| 547 void *sqlite3_realloc(void *pOld, int n){ | |
| 548 #ifndef SQLITE_OMIT_AUTOINIT | |
| 549 if( sqlite3_initialize() ) return 0; | |
| 550 #endif | |
| 551 if( n<0 ) n = 0; /* IMP: R-26507-47431 */ | |
| 552 return sqlite3Realloc(pOld, n); | |
| 553 } | |
| 554 void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){ | |
| 555 #ifndef SQLITE_OMIT_AUTOINIT | |
| 556 if( sqlite3_initialize() ) return 0; | |
| 557 #endif | |
| 558 return sqlite3Realloc(pOld, n); | |
| 559 } | |
| 560 | |
| 561 | |
| 562 /* | |
| 563 ** Allocate and zero memory. | |
| 564 */ | |
| 565 void *sqlite3MallocZero(u64 n){ | |
| 566 void *p = sqlite3Malloc(n); | |
| 567 if( p ){ | |
| 568 memset(p, 0, (size_t)n); | |
| 569 } | |
| 570 return p; | |
| 571 } | |
| 572 | |
| 573 /* | |
| 574 ** Allocate and zero memory. If the allocation fails, make | |
| 575 ** the mallocFailed flag in the connection pointer. | |
| 576 */ | |
| 577 void *sqlite3DbMallocZero(sqlite3 *db, u64 n){ | |
| 578 void *p = sqlite3DbMallocRaw(db, n); | |
| 579 if( p ){ | |
| 580 memset(p, 0, (size_t)n); | |
| 581 } | |
| 582 return p; | |
| 583 } | |
| 584 | |
| 585 /* | |
| 586 ** Allocate and zero memory. If the allocation fails, make | |
| 587 ** the mallocFailed flag in the connection pointer. | |
| 588 ** | |
| 589 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc | |
| 590 ** failure on the same database connection) then always return 0. | |
| 591 ** Hence for a particular database connection, once malloc starts | |
| 592 ** failing, it fails consistently until mallocFailed is reset. | |
| 593 ** This is an important assumption. There are many places in the | |
| 594 ** code that do things like this: | |
| 595 ** | |
| 596 ** int *a = (int*)sqlite3DbMallocRaw(db, 100); | |
| 597 ** int *b = (int*)sqlite3DbMallocRaw(db, 200); | |
| 598 ** if( b ) a[10] = 9; | |
| 599 ** | |
| 600 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed | |
| 601 ** that all prior mallocs (ex: "a") worked too. | |
| 602 */ | |
| 603 void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){ | |
| 604 void *p; | |
| 605 assert( db==0 || sqlite3_mutex_held(db->mutex) ); | |
| 606 assert( db==0 || db->pnBytesFreed==0 ); | |
| 607 #ifndef SQLITE_OMIT_LOOKASIDE | |
| 608 if( db ){ | |
| 609 LookasideSlot *pBuf; | |
| 610 if( db->mallocFailed ){ | |
| 611 return 0; | |
| 612 } | |
| 613 if( db->lookaside.bEnabled ){ | |
| 614 if( n>db->lookaside.sz ){ | |
| 615 db->lookaside.anStat[1]++; | |
| 616 }else if( (pBuf = db->lookaside.pFree)==0 ){ | |
| 617 db->lookaside.anStat[2]++; | |
| 618 }else{ | |
| 619 db->lookaside.pFree = pBuf->pNext; | |
| 620 db->lookaside.nOut++; | |
| 621 db->lookaside.anStat[0]++; | |
| 622 if( db->lookaside.nOut>db->lookaside.mxOut ){ | |
| 623 db->lookaside.mxOut = db->lookaside.nOut; | |
| 624 } | |
| 625 return (void*)pBuf; | |
| 626 } | |
| 627 } | |
| 628 } | |
| 629 #else | |
| 630 if( db && db->mallocFailed ){ | |
| 631 return 0; | |
| 632 } | |
| 633 #endif | |
| 634 p = sqlite3Malloc(n); | |
| 635 if( !p && db ){ | |
| 636 db->mallocFailed = 1; | |
| 637 } | |
| 638 sqlite3MemdebugSetType(p, | |
| 639 (db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP); | |
| 640 return p; | |
| 641 } | |
| 642 | |
| 643 /* | |
| 644 ** Resize the block of memory pointed to by p to n bytes. If the | |
| 645 ** resize fails, set the mallocFailed flag in the connection object. | |
| 646 */ | |
| 647 void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){ | |
| 648 void *pNew = 0; | |
| 649 assert( db!=0 ); | |
| 650 assert( sqlite3_mutex_held(db->mutex) ); | |
| 651 if( db->mallocFailed==0 ){ | |
| 652 if( p==0 ){ | |
| 653 return sqlite3DbMallocRaw(db, n); | |
| 654 } | |
| 655 if( isLookaside(db, p) ){ | |
| 656 if( n<=db->lookaside.sz ){ | |
| 657 return p; | |
| 658 } | |
| 659 pNew = sqlite3DbMallocRaw(db, n); | |
| 660 if( pNew ){ | |
| 661 memcpy(pNew, p, db->lookaside.sz); | |
| 662 sqlite3DbFree(db, p); | |
| 663 } | |
| 664 }else{ | |
| 665 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); | |
| 666 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); | |
| 667 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); | |
| 668 pNew = sqlite3_realloc64(p, n); | |
| 669 if( !pNew ){ | |
| 670 db->mallocFailed = 1; | |
| 671 } | |
| 672 sqlite3MemdebugSetType(pNew, | |
| 673 (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); | |
| 674 } | |
| 675 } | |
| 676 return pNew; | |
| 677 } | |
| 678 | |
| 679 /* | |
| 680 ** Attempt to reallocate p. If the reallocation fails, then free p | |
| 681 ** and set the mallocFailed flag in the database connection. | |
| 682 */ | |
| 683 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){ | |
| 684 void *pNew; | |
| 685 pNew = sqlite3DbRealloc(db, p, n); | |
| 686 if( !pNew ){ | |
| 687 sqlite3DbFree(db, p); | |
| 688 } | |
| 689 return pNew; | |
| 690 } | |
| 691 | |
| 692 /* | |
| 693 ** Make a copy of a string in memory obtained from sqliteMalloc(). These | |
| 694 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This | |
| 695 ** is because when memory debugging is turned on, these two functions are | |
| 696 ** called via macros that record the current file and line number in the | |
| 697 ** ThreadData structure. | |
| 698 */ | |
| 699 char *sqlite3DbStrDup(sqlite3 *db, const char *z){ | |
| 700 char *zNew; | |
| 701 size_t n; | |
| 702 if( z==0 ){ | |
| 703 return 0; | |
| 704 } | |
| 705 n = sqlite3Strlen30(z) + 1; | |
| 706 assert( (n&0x7fffffff)==n ); | |
| 707 zNew = sqlite3DbMallocRaw(db, (int)n); | |
| 708 if( zNew ){ | |
| 709 memcpy(zNew, z, n); | |
| 710 } | |
| 711 return zNew; | |
| 712 } | |
| 713 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){ | |
| 714 char *zNew; | |
| 715 if( z==0 ){ | |
| 716 return 0; | |
| 717 } | |
| 718 assert( (n&0x7fffffff)==n ); | |
| 719 zNew = sqlite3DbMallocRaw(db, n+1); | |
| 720 if( zNew ){ | |
| 721 memcpy(zNew, z, (size_t)n); | |
| 722 zNew[n] = 0; | |
| 723 } | |
| 724 return zNew; | |
| 725 } | |
| 726 | |
| 727 /* | |
| 728 ** Free any prior content in *pz and replace it with a copy of zNew. | |
| 729 */ | |
| 730 void sqlite3SetString(char **pz, sqlite3 *db, const char *zNew){ | |
| 731 sqlite3DbFree(db, *pz); | |
| 732 *pz = sqlite3DbStrDup(db, zNew); | |
| 733 } | |
| 734 | |
| 735 /* | |
| 736 ** Take actions at the end of an API call to indicate an OOM error | |
| 737 */ | |
| 738 static SQLITE_NOINLINE int apiOomError(sqlite3 *db){ | |
| 739 db->mallocFailed = 0; | |
| 740 sqlite3Error(db, SQLITE_NOMEM); | |
| 741 return SQLITE_NOMEM; | |
| 742 } | |
| 743 | |
| 744 /* | |
| 745 ** This function must be called before exiting any API function (i.e. | |
| 746 ** returning control to the user) that has called sqlite3_malloc or | |
| 747 ** sqlite3_realloc. | |
| 748 ** | |
| 749 ** The returned value is normally a copy of the second argument to this | |
| 750 ** function. However, if a malloc() failure has occurred since the previous | |
| 751 ** invocation SQLITE_NOMEM is returned instead. | |
| 752 ** | |
| 753 ** If an OOM as occurred, then the connection error-code (the value | |
| 754 ** returned by sqlite3_errcode()) is set to SQLITE_NOMEM. | |
| 755 */ | |
| 756 int sqlite3ApiExit(sqlite3* db, int rc){ | |
| 757 /* If the db handle must hold the connection handle mutex here. | |
| 758 ** Otherwise the read (and possible write) of db->mallocFailed | |
| 759 ** is unsafe, as is the call to sqlite3Error(). | |
| 760 */ | |
| 761 assert( db!=0 ); | |
| 762 assert( sqlite3_mutex_held(db->mutex) ); | |
| 763 if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){ | |
| 764 return apiOomError(db); | |
| 765 } | |
| 766 return rc & db->errMask; | |
| 767 } | |
| OLD | NEW |