OLD | NEW |
| (Empty) |
1 /* | |
2 ** 2001 September 15 | |
3 ** | |
4 ** The author disclaims copyright to this source code. In place of | |
5 ** a legal notice, here is a blessing: | |
6 ** | |
7 ** May you do good and not evil. | |
8 ** May you find forgiveness for yourself and forgive others. | |
9 ** May you share freely, never taking more than you give. | |
10 ** | |
11 ************************************************************************* | |
12 ** | |
13 ** Memory allocation functions used throughout sqlite. | |
14 */ | |
15 #include "sqliteInt.h" | |
16 #include <stdarg.h> | |
17 | |
18 /* | |
19 ** Attempt to release up to n bytes of non-essential memory currently | |
20 ** held by SQLite. An example of non-essential memory is memory used to | |
21 ** cache database pages that are not currently in use. | |
22 */ | |
23 int sqlite3_release_memory(int n){ | |
24 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT | |
25 return sqlite3PcacheReleaseMemory(n); | |
26 #else | |
27 /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine | |
28 ** is a no-op returning zero if SQLite is not compiled with | |
29 ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */ | |
30 UNUSED_PARAMETER(n); | |
31 return 0; | |
32 #endif | |
33 } | |
34 | |
35 /* | |
36 ** An instance of the following object records the location of | |
37 ** each unused scratch buffer. | |
38 */ | |
39 typedef struct ScratchFreeslot { | |
40 struct ScratchFreeslot *pNext; /* Next unused scratch buffer */ | |
41 } ScratchFreeslot; | |
42 | |
43 /* | |
44 ** State information local to the memory allocation subsystem. | |
45 */ | |
46 static SQLITE_WSD struct Mem0Global { | |
47 sqlite3_mutex *mutex; /* Mutex to serialize access */ | |
48 sqlite3_int64 alarmThreshold; /* The soft heap limit */ | |
49 | |
50 /* | |
51 ** Pointers to the end of sqlite3GlobalConfig.pScratch memory | |
52 ** (so that a range test can be used to determine if an allocation | |
53 ** being freed came from pScratch) and a pointer to the list of | |
54 ** unused scratch allocations. | |
55 */ | |
56 void *pScratchEnd; | |
57 ScratchFreeslot *pScratchFree; | |
58 u32 nScratchFree; | |
59 | |
60 /* | |
61 ** True if heap is nearly "full" where "full" is defined by the | |
62 ** sqlite3_soft_heap_limit() setting. | |
63 */ | |
64 int nearlyFull; | |
65 } mem0 = { 0, 0, 0, 0, 0, 0 }; | |
66 | |
67 #define mem0 GLOBAL(struct Mem0Global, mem0) | |
68 | |
69 /* | |
70 ** Return the memory allocator mutex. sqlite3_status() needs it. | |
71 */ | |
72 sqlite3_mutex *sqlite3MallocMutex(void){ | |
73 return mem0.mutex; | |
74 } | |
75 | |
76 #ifndef SQLITE_OMIT_DEPRECATED | |
77 /* | |
78 ** Deprecated external interface. It used to set an alarm callback | |
79 ** that was invoked when memory usage grew too large. Now it is a | |
80 ** no-op. | |
81 */ | |
82 int sqlite3_memory_alarm( | |
83 void(*xCallback)(void *pArg, sqlite3_int64 used,int N), | |
84 void *pArg, | |
85 sqlite3_int64 iThreshold | |
86 ){ | |
87 (void)xCallback; | |
88 (void)pArg; | |
89 (void)iThreshold; | |
90 return SQLITE_OK; | |
91 } | |
92 #endif | |
93 | |
94 /* | |
95 ** Set the soft heap-size limit for the library. Passing a zero or | |
96 ** negative value indicates no limit. | |
97 */ | |
98 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){ | |
99 sqlite3_int64 priorLimit; | |
100 sqlite3_int64 excess; | |
101 sqlite3_int64 nUsed; | |
102 #ifndef SQLITE_OMIT_AUTOINIT | |
103 int rc = sqlite3_initialize(); | |
104 if( rc ) return -1; | |
105 #endif | |
106 sqlite3_mutex_enter(mem0.mutex); | |
107 priorLimit = mem0.alarmThreshold; | |
108 if( n<0 ){ | |
109 sqlite3_mutex_leave(mem0.mutex); | |
110 return priorLimit; | |
111 } | |
112 mem0.alarmThreshold = n; | |
113 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); | |
114 mem0.nearlyFull = (n>0 && n<=nUsed); | |
115 sqlite3_mutex_leave(mem0.mutex); | |
116 excess = sqlite3_memory_used() - n; | |
117 if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff)); | |
118 return priorLimit; | |
119 } | |
120 void sqlite3_soft_heap_limit(int n){ | |
121 if( n<0 ) n = 0; | |
122 sqlite3_soft_heap_limit64(n); | |
123 } | |
124 | |
125 /* | |
126 ** Initialize the memory allocation subsystem. | |
127 */ | |
128 int sqlite3MallocInit(void){ | |
129 int rc; | |
130 if( sqlite3GlobalConfig.m.xMalloc==0 ){ | |
131 sqlite3MemSetDefault(); | |
132 } | |
133 memset(&mem0, 0, sizeof(mem0)); | |
134 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM); | |
135 if( sqlite3GlobalConfig.pScratch && sqlite3GlobalConfig.szScratch>=100 | |
136 && sqlite3GlobalConfig.nScratch>0 ){ | |
137 int i, n, sz; | |
138 ScratchFreeslot *pSlot; | |
139 sz = ROUNDDOWN8(sqlite3GlobalConfig.szScratch); | |
140 sqlite3GlobalConfig.szScratch = sz; | |
141 pSlot = (ScratchFreeslot*)sqlite3GlobalConfig.pScratch; | |
142 n = sqlite3GlobalConfig.nScratch; | |
143 mem0.pScratchFree = pSlot; | |
144 mem0.nScratchFree = n; | |
145 for(i=0; i<n-1; i++){ | |
146 pSlot->pNext = (ScratchFreeslot*)(sz+(char*)pSlot); | |
147 pSlot = pSlot->pNext; | |
148 } | |
149 pSlot->pNext = 0; | |
150 mem0.pScratchEnd = (void*)&pSlot[1]; | |
151 }else{ | |
152 mem0.pScratchEnd = 0; | |
153 sqlite3GlobalConfig.pScratch = 0; | |
154 sqlite3GlobalConfig.szScratch = 0; | |
155 sqlite3GlobalConfig.nScratch = 0; | |
156 } | |
157 if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512 | |
158 || sqlite3GlobalConfig.nPage<=0 ){ | |
159 sqlite3GlobalConfig.pPage = 0; | |
160 sqlite3GlobalConfig.szPage = 0; | |
161 } | |
162 rc = sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData); | |
163 if( rc!=SQLITE_OK ) memset(&mem0, 0, sizeof(mem0)); | |
164 return rc; | |
165 } | |
166 | |
167 /* | |
168 ** Return true if the heap is currently under memory pressure - in other | |
169 ** words if the amount of heap used is close to the limit set by | |
170 ** sqlite3_soft_heap_limit(). | |
171 */ | |
172 int sqlite3HeapNearlyFull(void){ | |
173 return mem0.nearlyFull; | |
174 } | |
175 | |
176 /* | |
177 ** Deinitialize the memory allocation subsystem. | |
178 */ | |
179 void sqlite3MallocEnd(void){ | |
180 if( sqlite3GlobalConfig.m.xShutdown ){ | |
181 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData); | |
182 } | |
183 memset(&mem0, 0, sizeof(mem0)); | |
184 } | |
185 | |
186 /* | |
187 ** Return the amount of memory currently checked out. | |
188 */ | |
189 sqlite3_int64 sqlite3_memory_used(void){ | |
190 sqlite3_int64 res, mx; | |
191 sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, 0); | |
192 return res; | |
193 } | |
194 | |
195 /* | |
196 ** Return the maximum amount of memory that has ever been | |
197 ** checked out since either the beginning of this process | |
198 ** or since the most recent reset. | |
199 */ | |
200 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){ | |
201 sqlite3_int64 res, mx; | |
202 sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, resetFlag); | |
203 return mx; | |
204 } | |
205 | |
206 /* | |
207 ** Trigger the alarm | |
208 */ | |
209 static void sqlite3MallocAlarm(int nByte){ | |
210 if( mem0.alarmThreshold<=0 ) return; | |
211 sqlite3_mutex_leave(mem0.mutex); | |
212 sqlite3_release_memory(nByte); | |
213 sqlite3_mutex_enter(mem0.mutex); | |
214 } | |
215 | |
216 /* | |
217 ** Do a memory allocation with statistics and alarms. Assume the | |
218 ** lock is already held. | |
219 */ | |
220 static int mallocWithAlarm(int n, void **pp){ | |
221 int nFull; | |
222 void *p; | |
223 assert( sqlite3_mutex_held(mem0.mutex) ); | |
224 nFull = sqlite3GlobalConfig.m.xRoundup(n); | |
225 sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, n); | |
226 if( mem0.alarmThreshold>0 ){ | |
227 sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED); | |
228 if( nUsed >= mem0.alarmThreshold - nFull ){ | |
229 mem0.nearlyFull = 1; | |
230 sqlite3MallocAlarm(nFull); | |
231 }else{ | |
232 mem0.nearlyFull = 0; | |
233 } | |
234 } | |
235 p = sqlite3GlobalConfig.m.xMalloc(nFull); | |
236 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT | |
237 if( p==0 && mem0.alarmThreshold>0 ){ | |
238 sqlite3MallocAlarm(nFull); | |
239 p = sqlite3GlobalConfig.m.xMalloc(nFull); | |
240 } | |
241 #endif | |
242 if( p ){ | |
243 nFull = sqlite3MallocSize(p); | |
244 sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull); | |
245 sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1); | |
246 } | |
247 *pp = p; | |
248 return nFull; | |
249 } | |
250 | |
251 /* | |
252 ** Allocate memory. This routine is like sqlite3_malloc() except that it | |
253 ** assumes the memory subsystem has already been initialized. | |
254 */ | |
255 void *sqlite3Malloc(u64 n){ | |
256 void *p; | |
257 if( n==0 || n>=0x7fffff00 ){ | |
258 /* A memory allocation of a number of bytes which is near the maximum | |
259 ** signed integer value might cause an integer overflow inside of the | |
260 ** xMalloc(). Hence we limit the maximum size to 0x7fffff00, giving | |
261 ** 255 bytes of overhead. SQLite itself will never use anything near | |
262 ** this amount. The only way to reach the limit is with sqlite3_malloc() */ | |
263 p = 0; | |
264 }else if( sqlite3GlobalConfig.bMemstat ){ | |
265 sqlite3_mutex_enter(mem0.mutex); | |
266 mallocWithAlarm((int)n, &p); | |
267 sqlite3_mutex_leave(mem0.mutex); | |
268 }else{ | |
269 p = sqlite3GlobalConfig.m.xMalloc((int)n); | |
270 } | |
271 assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-11148-40995 */ | |
272 return p; | |
273 } | |
274 | |
275 /* | |
276 ** This version of the memory allocation is for use by the application. | |
277 ** First make sure the memory subsystem is initialized, then do the | |
278 ** allocation. | |
279 */ | |
280 void *sqlite3_malloc(int n){ | |
281 #ifndef SQLITE_OMIT_AUTOINIT | |
282 if( sqlite3_initialize() ) return 0; | |
283 #endif | |
284 return n<=0 ? 0 : sqlite3Malloc(n); | |
285 } | |
286 void *sqlite3_malloc64(sqlite3_uint64 n){ | |
287 #ifndef SQLITE_OMIT_AUTOINIT | |
288 if( sqlite3_initialize() ) return 0; | |
289 #endif | |
290 return sqlite3Malloc(n); | |
291 } | |
292 | |
293 /* | |
294 ** Each thread may only have a single outstanding allocation from | |
295 ** xScratchMalloc(). We verify this constraint in the single-threaded | |
296 ** case by setting scratchAllocOut to 1 when an allocation | |
297 ** is outstanding clearing it when the allocation is freed. | |
298 */ | |
299 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) | |
300 static int scratchAllocOut = 0; | |
301 #endif | |
302 | |
303 | |
304 /* | |
305 ** Allocate memory that is to be used and released right away. | |
306 ** This routine is similar to alloca() in that it is not intended | |
307 ** for situations where the memory might be held long-term. This | |
308 ** routine is intended to get memory to old large transient data | |
309 ** structures that would not normally fit on the stack of an | |
310 ** embedded processor. | |
311 */ | |
312 void *sqlite3ScratchMalloc(int n){ | |
313 void *p; | |
314 assert( n>0 ); | |
315 | |
316 sqlite3_mutex_enter(mem0.mutex); | |
317 sqlite3StatusHighwater(SQLITE_STATUS_SCRATCH_SIZE, n); | |
318 if( mem0.nScratchFree && sqlite3GlobalConfig.szScratch>=n ){ | |
319 p = mem0.pScratchFree; | |
320 mem0.pScratchFree = mem0.pScratchFree->pNext; | |
321 mem0.nScratchFree--; | |
322 sqlite3StatusUp(SQLITE_STATUS_SCRATCH_USED, 1); | |
323 sqlite3_mutex_leave(mem0.mutex); | |
324 }else{ | |
325 sqlite3_mutex_leave(mem0.mutex); | |
326 p = sqlite3Malloc(n); | |
327 if( sqlite3GlobalConfig.bMemstat && p ){ | |
328 sqlite3_mutex_enter(mem0.mutex); | |
329 sqlite3StatusUp(SQLITE_STATUS_SCRATCH_OVERFLOW, sqlite3MallocSize(p)); | |
330 sqlite3_mutex_leave(mem0.mutex); | |
331 } | |
332 sqlite3MemdebugSetType(p, MEMTYPE_SCRATCH); | |
333 } | |
334 assert( sqlite3_mutex_notheld(mem0.mutex) ); | |
335 | |
336 | |
337 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) | |
338 /* EVIDENCE-OF: R-12970-05880 SQLite will not use more than one scratch | |
339 ** buffers per thread. | |
340 ** | |
341 ** This can only be checked in single-threaded mode. | |
342 */ | |
343 assert( scratchAllocOut==0 ); | |
344 if( p ) scratchAllocOut++; | |
345 #endif | |
346 | |
347 return p; | |
348 } | |
349 void sqlite3ScratchFree(void *p){ | |
350 if( p ){ | |
351 | |
352 #if SQLITE_THREADSAFE==0 && !defined(NDEBUG) | |
353 /* Verify that no more than two scratch allocation per thread | |
354 ** is outstanding at one time. (This is only checked in the | |
355 ** single-threaded case since checking in the multi-threaded case | |
356 ** would be much more complicated.) */ | |
357 assert( scratchAllocOut>=1 && scratchAllocOut<=2 ); | |
358 scratchAllocOut--; | |
359 #endif | |
360 | |
361 if( SQLITE_WITHIN(p, sqlite3GlobalConfig.pScratch, mem0.pScratchEnd) ){ | |
362 /* Release memory from the SQLITE_CONFIG_SCRATCH allocation */ | |
363 ScratchFreeslot *pSlot; | |
364 pSlot = (ScratchFreeslot*)p; | |
365 sqlite3_mutex_enter(mem0.mutex); | |
366 pSlot->pNext = mem0.pScratchFree; | |
367 mem0.pScratchFree = pSlot; | |
368 mem0.nScratchFree++; | |
369 assert( mem0.nScratchFree <= (u32)sqlite3GlobalConfig.nScratch ); | |
370 sqlite3StatusDown(SQLITE_STATUS_SCRATCH_USED, 1); | |
371 sqlite3_mutex_leave(mem0.mutex); | |
372 }else{ | |
373 /* Release memory back to the heap */ | |
374 assert( sqlite3MemdebugHasType(p, MEMTYPE_SCRATCH) ); | |
375 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_SCRATCH) ); | |
376 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); | |
377 if( sqlite3GlobalConfig.bMemstat ){ | |
378 int iSize = sqlite3MallocSize(p); | |
379 sqlite3_mutex_enter(mem0.mutex); | |
380 sqlite3StatusDown(SQLITE_STATUS_SCRATCH_OVERFLOW, iSize); | |
381 sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, iSize); | |
382 sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1); | |
383 sqlite3GlobalConfig.m.xFree(p); | |
384 sqlite3_mutex_leave(mem0.mutex); | |
385 }else{ | |
386 sqlite3GlobalConfig.m.xFree(p); | |
387 } | |
388 } | |
389 } | |
390 } | |
391 | |
392 /* | |
393 ** TRUE if p is a lookaside memory allocation from db | |
394 */ | |
395 #ifndef SQLITE_OMIT_LOOKASIDE | |
396 static int isLookaside(sqlite3 *db, void *p){ | |
397 return SQLITE_WITHIN(p, db->lookaside.pStart, db->lookaside.pEnd); | |
398 } | |
399 #else | |
400 #define isLookaside(A,B) 0 | |
401 #endif | |
402 | |
403 /* | |
404 ** Return the size of a memory allocation previously obtained from | |
405 ** sqlite3Malloc() or sqlite3_malloc(). | |
406 */ | |
407 int sqlite3MallocSize(void *p){ | |
408 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); | |
409 return sqlite3GlobalConfig.m.xSize(p); | |
410 } | |
411 int sqlite3DbMallocSize(sqlite3 *db, void *p){ | |
412 assert( p!=0 ); | |
413 if( db==0 || !isLookaside(db,p) ){ | |
414 #if SQLITE_DEBUG | |
415 if( db==0 ){ | |
416 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); | |
417 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); | |
418 }else{ | |
419 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); | |
420 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); | |
421 } | |
422 #endif | |
423 return sqlite3GlobalConfig.m.xSize(p); | |
424 }else{ | |
425 assert( sqlite3_mutex_held(db->mutex) ); | |
426 return db->lookaside.sz; | |
427 } | |
428 } | |
429 sqlite3_uint64 sqlite3_msize(void *p){ | |
430 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); | |
431 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); | |
432 return p ? sqlite3GlobalConfig.m.xSize(p) : 0; | |
433 } | |
434 | |
435 /* | |
436 ** Free memory previously obtained from sqlite3Malloc(). | |
437 */ | |
438 void sqlite3_free(void *p){ | |
439 if( p==0 ) return; /* IMP: R-49053-54554 */ | |
440 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) ); | |
441 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) ); | |
442 if( sqlite3GlobalConfig.bMemstat ){ | |
443 sqlite3_mutex_enter(mem0.mutex); | |
444 sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p)); | |
445 sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1); | |
446 sqlite3GlobalConfig.m.xFree(p); | |
447 sqlite3_mutex_leave(mem0.mutex); | |
448 }else{ | |
449 sqlite3GlobalConfig.m.xFree(p); | |
450 } | |
451 } | |
452 | |
453 /* | |
454 ** Add the size of memory allocation "p" to the count in | |
455 ** *db->pnBytesFreed. | |
456 */ | |
457 static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){ | |
458 *db->pnBytesFreed += sqlite3DbMallocSize(db,p); | |
459 } | |
460 | |
461 /* | |
462 ** Free memory that might be associated with a particular database | |
463 ** connection. | |
464 */ | |
465 void sqlite3DbFree(sqlite3 *db, void *p){ | |
466 assert( db==0 || sqlite3_mutex_held(db->mutex) ); | |
467 if( p==0 ) return; | |
468 if( db ){ | |
469 if( db->pnBytesFreed ){ | |
470 measureAllocationSize(db, p); | |
471 return; | |
472 } | |
473 if( isLookaside(db, p) ){ | |
474 LookasideSlot *pBuf = (LookasideSlot*)p; | |
475 #if SQLITE_DEBUG | |
476 /* Trash all content in the buffer being freed */ | |
477 memset(p, 0xaa, db->lookaside.sz); | |
478 #endif | |
479 pBuf->pNext = db->lookaside.pFree; | |
480 db->lookaside.pFree = pBuf; | |
481 db->lookaside.nOut--; | |
482 return; | |
483 } | |
484 } | |
485 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); | |
486 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); | |
487 assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) ); | |
488 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); | |
489 sqlite3_free(p); | |
490 } | |
491 | |
492 /* | |
493 ** Change the size of an existing memory allocation | |
494 */ | |
495 void *sqlite3Realloc(void *pOld, u64 nBytes){ | |
496 int nOld, nNew, nDiff; | |
497 void *pNew; | |
498 assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) ); | |
499 assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) ); | |
500 if( pOld==0 ){ | |
501 return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */ | |
502 } | |
503 if( nBytes==0 ){ | |
504 sqlite3_free(pOld); /* IMP: R-26507-47431 */ | |
505 return 0; | |
506 } | |
507 if( nBytes>=0x7fffff00 ){ | |
508 /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */ | |
509 return 0; | |
510 } | |
511 nOld = sqlite3MallocSize(pOld); | |
512 /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second | |
513 ** argument to xRealloc is always a value returned by a prior call to | |
514 ** xRoundup. */ | |
515 nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes); | |
516 if( nOld==nNew ){ | |
517 pNew = pOld; | |
518 }else if( sqlite3GlobalConfig.bMemstat ){ | |
519 sqlite3_mutex_enter(mem0.mutex); | |
520 sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes); | |
521 nDiff = nNew - nOld; | |
522 if( sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED) >= | |
523 mem0.alarmThreshold-nDiff ){ | |
524 sqlite3MallocAlarm(nDiff); | |
525 } | |
526 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); | |
527 if( pNew==0 && mem0.alarmThreshold>0 ){ | |
528 sqlite3MallocAlarm((int)nBytes); | |
529 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); | |
530 } | |
531 if( pNew ){ | |
532 nNew = sqlite3MallocSize(pNew); | |
533 sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld); | |
534 } | |
535 sqlite3_mutex_leave(mem0.mutex); | |
536 }else{ | |
537 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew); | |
538 } | |
539 assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */ | |
540 return pNew; | |
541 } | |
542 | |
543 /* | |
544 ** The public interface to sqlite3Realloc. Make sure that the memory | |
545 ** subsystem is initialized prior to invoking sqliteRealloc. | |
546 */ | |
547 void *sqlite3_realloc(void *pOld, int n){ | |
548 #ifndef SQLITE_OMIT_AUTOINIT | |
549 if( sqlite3_initialize() ) return 0; | |
550 #endif | |
551 if( n<0 ) n = 0; /* IMP: R-26507-47431 */ | |
552 return sqlite3Realloc(pOld, n); | |
553 } | |
554 void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){ | |
555 #ifndef SQLITE_OMIT_AUTOINIT | |
556 if( sqlite3_initialize() ) return 0; | |
557 #endif | |
558 return sqlite3Realloc(pOld, n); | |
559 } | |
560 | |
561 | |
562 /* | |
563 ** Allocate and zero memory. | |
564 */ | |
565 void *sqlite3MallocZero(u64 n){ | |
566 void *p = sqlite3Malloc(n); | |
567 if( p ){ | |
568 memset(p, 0, (size_t)n); | |
569 } | |
570 return p; | |
571 } | |
572 | |
573 /* | |
574 ** Allocate and zero memory. If the allocation fails, make | |
575 ** the mallocFailed flag in the connection pointer. | |
576 */ | |
577 void *sqlite3DbMallocZero(sqlite3 *db, u64 n){ | |
578 void *p = sqlite3DbMallocRaw(db, n); | |
579 if( p ){ | |
580 memset(p, 0, (size_t)n); | |
581 } | |
582 return p; | |
583 } | |
584 | |
585 /* | |
586 ** Allocate and zero memory. If the allocation fails, make | |
587 ** the mallocFailed flag in the connection pointer. | |
588 ** | |
589 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc | |
590 ** failure on the same database connection) then always return 0. | |
591 ** Hence for a particular database connection, once malloc starts | |
592 ** failing, it fails consistently until mallocFailed is reset. | |
593 ** This is an important assumption. There are many places in the | |
594 ** code that do things like this: | |
595 ** | |
596 ** int *a = (int*)sqlite3DbMallocRaw(db, 100); | |
597 ** int *b = (int*)sqlite3DbMallocRaw(db, 200); | |
598 ** if( b ) a[10] = 9; | |
599 ** | |
600 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed | |
601 ** that all prior mallocs (ex: "a") worked too. | |
602 */ | |
603 void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){ | |
604 void *p; | |
605 assert( db==0 || sqlite3_mutex_held(db->mutex) ); | |
606 assert( db==0 || db->pnBytesFreed==0 ); | |
607 #ifndef SQLITE_OMIT_LOOKASIDE | |
608 if( db ){ | |
609 LookasideSlot *pBuf; | |
610 if( db->mallocFailed ){ | |
611 return 0; | |
612 } | |
613 if( db->lookaside.bEnabled ){ | |
614 if( n>db->lookaside.sz ){ | |
615 db->lookaside.anStat[1]++; | |
616 }else if( (pBuf = db->lookaside.pFree)==0 ){ | |
617 db->lookaside.anStat[2]++; | |
618 }else{ | |
619 db->lookaside.pFree = pBuf->pNext; | |
620 db->lookaside.nOut++; | |
621 db->lookaside.anStat[0]++; | |
622 if( db->lookaside.nOut>db->lookaside.mxOut ){ | |
623 db->lookaside.mxOut = db->lookaside.nOut; | |
624 } | |
625 return (void*)pBuf; | |
626 } | |
627 } | |
628 } | |
629 #else | |
630 if( db && db->mallocFailed ){ | |
631 return 0; | |
632 } | |
633 #endif | |
634 p = sqlite3Malloc(n); | |
635 if( !p && db ){ | |
636 db->mallocFailed = 1; | |
637 } | |
638 sqlite3MemdebugSetType(p, | |
639 (db && db->lookaside.bEnabled) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP); | |
640 return p; | |
641 } | |
642 | |
643 /* | |
644 ** Resize the block of memory pointed to by p to n bytes. If the | |
645 ** resize fails, set the mallocFailed flag in the connection object. | |
646 */ | |
647 void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){ | |
648 void *pNew = 0; | |
649 assert( db!=0 ); | |
650 assert( sqlite3_mutex_held(db->mutex) ); | |
651 if( db->mallocFailed==0 ){ | |
652 if( p==0 ){ | |
653 return sqlite3DbMallocRaw(db, n); | |
654 } | |
655 if( isLookaside(db, p) ){ | |
656 if( n<=db->lookaside.sz ){ | |
657 return p; | |
658 } | |
659 pNew = sqlite3DbMallocRaw(db, n); | |
660 if( pNew ){ | |
661 memcpy(pNew, p, db->lookaside.sz); | |
662 sqlite3DbFree(db, p); | |
663 } | |
664 }else{ | |
665 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); | |
666 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) ); | |
667 sqlite3MemdebugSetType(p, MEMTYPE_HEAP); | |
668 pNew = sqlite3_realloc64(p, n); | |
669 if( !pNew ){ | |
670 db->mallocFailed = 1; | |
671 } | |
672 sqlite3MemdebugSetType(pNew, | |
673 (db->lookaside.bEnabled ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP)); | |
674 } | |
675 } | |
676 return pNew; | |
677 } | |
678 | |
679 /* | |
680 ** Attempt to reallocate p. If the reallocation fails, then free p | |
681 ** and set the mallocFailed flag in the database connection. | |
682 */ | |
683 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){ | |
684 void *pNew; | |
685 pNew = sqlite3DbRealloc(db, p, n); | |
686 if( !pNew ){ | |
687 sqlite3DbFree(db, p); | |
688 } | |
689 return pNew; | |
690 } | |
691 | |
692 /* | |
693 ** Make a copy of a string in memory obtained from sqliteMalloc(). These | |
694 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This | |
695 ** is because when memory debugging is turned on, these two functions are | |
696 ** called via macros that record the current file and line number in the | |
697 ** ThreadData structure. | |
698 */ | |
699 char *sqlite3DbStrDup(sqlite3 *db, const char *z){ | |
700 char *zNew; | |
701 size_t n; | |
702 if( z==0 ){ | |
703 return 0; | |
704 } | |
705 n = sqlite3Strlen30(z) + 1; | |
706 assert( (n&0x7fffffff)==n ); | |
707 zNew = sqlite3DbMallocRaw(db, (int)n); | |
708 if( zNew ){ | |
709 memcpy(zNew, z, n); | |
710 } | |
711 return zNew; | |
712 } | |
713 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){ | |
714 char *zNew; | |
715 if( z==0 ){ | |
716 return 0; | |
717 } | |
718 assert( (n&0x7fffffff)==n ); | |
719 zNew = sqlite3DbMallocRaw(db, n+1); | |
720 if( zNew ){ | |
721 memcpy(zNew, z, (size_t)n); | |
722 zNew[n] = 0; | |
723 } | |
724 return zNew; | |
725 } | |
726 | |
727 /* | |
728 ** Free any prior content in *pz and replace it with a copy of zNew. | |
729 */ | |
730 void sqlite3SetString(char **pz, sqlite3 *db, const char *zNew){ | |
731 sqlite3DbFree(db, *pz); | |
732 *pz = sqlite3DbStrDup(db, zNew); | |
733 } | |
734 | |
735 /* | |
736 ** Take actions at the end of an API call to indicate an OOM error | |
737 */ | |
738 static SQLITE_NOINLINE int apiOomError(sqlite3 *db){ | |
739 db->mallocFailed = 0; | |
740 sqlite3Error(db, SQLITE_NOMEM); | |
741 return SQLITE_NOMEM; | |
742 } | |
743 | |
744 /* | |
745 ** This function must be called before exiting any API function (i.e. | |
746 ** returning control to the user) that has called sqlite3_malloc or | |
747 ** sqlite3_realloc. | |
748 ** | |
749 ** The returned value is normally a copy of the second argument to this | |
750 ** function. However, if a malloc() failure has occurred since the previous | |
751 ** invocation SQLITE_NOMEM is returned instead. | |
752 ** | |
753 ** If an OOM as occurred, then the connection error-code (the value | |
754 ** returned by sqlite3_errcode()) is set to SQLITE_NOMEM. | |
755 */ | |
756 int sqlite3ApiExit(sqlite3* db, int rc){ | |
757 /* If the db handle must hold the connection handle mutex here. | |
758 ** Otherwise the read (and possible write) of db->mallocFailed | |
759 ** is unsafe, as is the call to sqlite3Error(). | |
760 */ | |
761 assert( db!=0 ); | |
762 assert( sqlite3_mutex_held(db->mutex) ); | |
763 if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){ | |
764 return apiOomError(db); | |
765 } | |
766 return rc & db->errMask; | |
767 } | |
OLD | NEW |