OLD | NEW |
| (Empty) |
1 /* | |
2 ** 2002 February 23 | |
3 ** | |
4 ** The author disclaims copyright to this source code. In place of | |
5 ** a legal notice, here is a blessing: | |
6 ** | |
7 ** May you do good and not evil. | |
8 ** May you find forgiveness for yourself and forgive others. | |
9 ** May you share freely, never taking more than you give. | |
10 ** | |
11 ************************************************************************* | |
12 ** This file contains the C-language implementations for many of the SQL | |
13 ** functions of SQLite. (Some function, and in particular the date and | |
14 ** time functions, are implemented separately.) | |
15 */ | |
16 #include "sqliteInt.h" | |
17 #include <stdlib.h> | |
18 #include <assert.h> | |
19 #include "vdbeInt.h" | |
20 | |
21 /* | |
22 ** Return the collating function associated with a function. | |
23 */ | |
24 static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){ | |
25 VdbeOp *pOp; | |
26 assert( context->pVdbe!=0 ); | |
27 pOp = &context->pVdbe->aOp[context->iOp-1]; | |
28 assert( pOp->opcode==OP_CollSeq ); | |
29 assert( pOp->p4type==P4_COLLSEQ ); | |
30 return pOp->p4.pColl; | |
31 } | |
32 | |
33 /* | |
34 ** Indicate that the accumulator load should be skipped on this | |
35 ** iteration of the aggregate loop. | |
36 */ | |
37 static void sqlite3SkipAccumulatorLoad(sqlite3_context *context){ | |
38 context->skipFlag = 1; | |
39 } | |
40 | |
41 /* | |
42 ** Implementation of the non-aggregate min() and max() functions | |
43 */ | |
44 static void minmaxFunc( | |
45 sqlite3_context *context, | |
46 int argc, | |
47 sqlite3_value **argv | |
48 ){ | |
49 int i; | |
50 int mask; /* 0 for min() or 0xffffffff for max() */ | |
51 int iBest; | |
52 CollSeq *pColl; | |
53 | |
54 assert( argc>1 ); | |
55 mask = sqlite3_user_data(context)==0 ? 0 : -1; | |
56 pColl = sqlite3GetFuncCollSeq(context); | |
57 assert( pColl ); | |
58 assert( mask==-1 || mask==0 ); | |
59 iBest = 0; | |
60 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; | |
61 for(i=1; i<argc; i++){ | |
62 if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return; | |
63 if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){ | |
64 testcase( mask==0 ); | |
65 iBest = i; | |
66 } | |
67 } | |
68 sqlite3_result_value(context, argv[iBest]); | |
69 } | |
70 | |
71 /* | |
72 ** Return the type of the argument. | |
73 */ | |
74 static void typeofFunc( | |
75 sqlite3_context *context, | |
76 int NotUsed, | |
77 sqlite3_value **argv | |
78 ){ | |
79 const char *z = 0; | |
80 UNUSED_PARAMETER(NotUsed); | |
81 switch( sqlite3_value_type(argv[0]) ){ | |
82 case SQLITE_INTEGER: z = "integer"; break; | |
83 case SQLITE_TEXT: z = "text"; break; | |
84 case SQLITE_FLOAT: z = "real"; break; | |
85 case SQLITE_BLOB: z = "blob"; break; | |
86 default: z = "null"; break; | |
87 } | |
88 sqlite3_result_text(context, z, -1, SQLITE_STATIC); | |
89 } | |
90 | |
91 | |
92 /* | |
93 ** Implementation of the length() function | |
94 */ | |
95 static void lengthFunc( | |
96 sqlite3_context *context, | |
97 int argc, | |
98 sqlite3_value **argv | |
99 ){ | |
100 int len; | |
101 | |
102 assert( argc==1 ); | |
103 UNUSED_PARAMETER(argc); | |
104 switch( sqlite3_value_type(argv[0]) ){ | |
105 case SQLITE_BLOB: | |
106 case SQLITE_INTEGER: | |
107 case SQLITE_FLOAT: { | |
108 sqlite3_result_int(context, sqlite3_value_bytes(argv[0])); | |
109 break; | |
110 } | |
111 case SQLITE_TEXT: { | |
112 const unsigned char *z = sqlite3_value_text(argv[0]); | |
113 if( z==0 ) return; | |
114 len = 0; | |
115 while( *z ){ | |
116 len++; | |
117 SQLITE_SKIP_UTF8(z); | |
118 } | |
119 sqlite3_result_int(context, len); | |
120 break; | |
121 } | |
122 default: { | |
123 sqlite3_result_null(context); | |
124 break; | |
125 } | |
126 } | |
127 } | |
128 | |
129 /* | |
130 ** Implementation of the abs() function. | |
131 ** | |
132 ** IMP: R-23979-26855 The abs(X) function returns the absolute value of | |
133 ** the numeric argument X. | |
134 */ | |
135 static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ | |
136 assert( argc==1 ); | |
137 UNUSED_PARAMETER(argc); | |
138 switch( sqlite3_value_type(argv[0]) ){ | |
139 case SQLITE_INTEGER: { | |
140 i64 iVal = sqlite3_value_int64(argv[0]); | |
141 if( iVal<0 ){ | |
142 if( iVal==SMALLEST_INT64 ){ | |
143 /* IMP: R-31676-45509 If X is the integer -9223372036854775808 | |
144 ** then abs(X) throws an integer overflow error since there is no | |
145 ** equivalent positive 64-bit two complement value. */ | |
146 sqlite3_result_error(context, "integer overflow", -1); | |
147 return; | |
148 } | |
149 iVal = -iVal; | |
150 } | |
151 sqlite3_result_int64(context, iVal); | |
152 break; | |
153 } | |
154 case SQLITE_NULL: { | |
155 /* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */ | |
156 sqlite3_result_null(context); | |
157 break; | |
158 } | |
159 default: { | |
160 /* Because sqlite3_value_double() returns 0.0 if the argument is not | |
161 ** something that can be converted into a number, we have: | |
162 ** IMP: R-01992-00519 Abs(X) returns 0.0 if X is a string or blob | |
163 ** that cannot be converted to a numeric value. | |
164 */ | |
165 double rVal = sqlite3_value_double(argv[0]); | |
166 if( rVal<0 ) rVal = -rVal; | |
167 sqlite3_result_double(context, rVal); | |
168 break; | |
169 } | |
170 } | |
171 } | |
172 | |
173 /* | |
174 ** Implementation of the instr() function. | |
175 ** | |
176 ** instr(haystack,needle) finds the first occurrence of needle | |
177 ** in haystack and returns the number of previous characters plus 1, | |
178 ** or 0 if needle does not occur within haystack. | |
179 ** | |
180 ** If both haystack and needle are BLOBs, then the result is one more than | |
181 ** the number of bytes in haystack prior to the first occurrence of needle, | |
182 ** or 0 if needle never occurs in haystack. | |
183 */ | |
184 static void instrFunc( | |
185 sqlite3_context *context, | |
186 int argc, | |
187 sqlite3_value **argv | |
188 ){ | |
189 const unsigned char *zHaystack; | |
190 const unsigned char *zNeedle; | |
191 int nHaystack; | |
192 int nNeedle; | |
193 int typeHaystack, typeNeedle; | |
194 int N = 1; | |
195 int isText; | |
196 | |
197 UNUSED_PARAMETER(argc); | |
198 typeHaystack = sqlite3_value_type(argv[0]); | |
199 typeNeedle = sqlite3_value_type(argv[1]); | |
200 if( typeHaystack==SQLITE_NULL || typeNeedle==SQLITE_NULL ) return; | |
201 nHaystack = sqlite3_value_bytes(argv[0]); | |
202 nNeedle = sqlite3_value_bytes(argv[1]); | |
203 if( typeHaystack==SQLITE_BLOB && typeNeedle==SQLITE_BLOB ){ | |
204 zHaystack = sqlite3_value_blob(argv[0]); | |
205 zNeedle = sqlite3_value_blob(argv[1]); | |
206 isText = 0; | |
207 }else{ | |
208 zHaystack = sqlite3_value_text(argv[0]); | |
209 zNeedle = sqlite3_value_text(argv[1]); | |
210 isText = 1; | |
211 } | |
212 while( nNeedle<=nHaystack && memcmp(zHaystack, zNeedle, nNeedle)!=0 ){ | |
213 N++; | |
214 do{ | |
215 nHaystack--; | |
216 zHaystack++; | |
217 }while( isText && (zHaystack[0]&0xc0)==0x80 ); | |
218 } | |
219 if( nNeedle>nHaystack ) N = 0; | |
220 sqlite3_result_int(context, N); | |
221 } | |
222 | |
223 /* | |
224 ** Implementation of the printf() function. | |
225 */ | |
226 static void printfFunc( | |
227 sqlite3_context *context, | |
228 int argc, | |
229 sqlite3_value **argv | |
230 ){ | |
231 PrintfArguments x; | |
232 StrAccum str; | |
233 const char *zFormat; | |
234 int n; | |
235 sqlite3 *db = sqlite3_context_db_handle(context); | |
236 | |
237 if( argc>=1 && (zFormat = (const char*)sqlite3_value_text(argv[0]))!=0 ){ | |
238 x.nArg = argc-1; | |
239 x.nUsed = 0; | |
240 x.apArg = argv+1; | |
241 sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]); | |
242 sqlite3XPrintf(&str, SQLITE_PRINTF_SQLFUNC, zFormat, &x); | |
243 n = str.nChar; | |
244 sqlite3_result_text(context, sqlite3StrAccumFinish(&str), n, | |
245 SQLITE_DYNAMIC); | |
246 } | |
247 } | |
248 | |
249 /* | |
250 ** Implementation of the substr() function. | |
251 ** | |
252 ** substr(x,p1,p2) returns p2 characters of x[] beginning with p1. | |
253 ** p1 is 1-indexed. So substr(x,1,1) returns the first character | |
254 ** of x. If x is text, then we actually count UTF-8 characters. | |
255 ** If x is a blob, then we count bytes. | |
256 ** | |
257 ** If p1 is negative, then we begin abs(p1) from the end of x[]. | |
258 ** | |
259 ** If p2 is negative, return the p2 characters preceding p1. | |
260 */ | |
261 static void substrFunc( | |
262 sqlite3_context *context, | |
263 int argc, | |
264 sqlite3_value **argv | |
265 ){ | |
266 const unsigned char *z; | |
267 const unsigned char *z2; | |
268 int len; | |
269 int p0type; | |
270 i64 p1, p2; | |
271 int negP2 = 0; | |
272 | |
273 assert( argc==3 || argc==2 ); | |
274 if( sqlite3_value_type(argv[1])==SQLITE_NULL | |
275 || (argc==3 && sqlite3_value_type(argv[2])==SQLITE_NULL) | |
276 ){ | |
277 return; | |
278 } | |
279 p0type = sqlite3_value_type(argv[0]); | |
280 p1 = sqlite3_value_int(argv[1]); | |
281 if( p0type==SQLITE_BLOB ){ | |
282 len = sqlite3_value_bytes(argv[0]); | |
283 z = sqlite3_value_blob(argv[0]); | |
284 if( z==0 ) return; | |
285 assert( len==sqlite3_value_bytes(argv[0]) ); | |
286 }else{ | |
287 z = sqlite3_value_text(argv[0]); | |
288 if( z==0 ) return; | |
289 len = 0; | |
290 if( p1<0 ){ | |
291 for(z2=z; *z2; len++){ | |
292 SQLITE_SKIP_UTF8(z2); | |
293 } | |
294 } | |
295 } | |
296 #ifdef SQLITE_SUBSTR_COMPATIBILITY | |
297 /* If SUBSTR_COMPATIBILITY is defined then substr(X,0,N) work the same as | |
298 ** as substr(X,1,N) - it returns the first N characters of X. This | |
299 ** is essentially a back-out of the bug-fix in check-in [5fc125d362df4b8] | |
300 ** from 2009-02-02 for compatibility of applications that exploited the | |
301 ** old buggy behavior. */ | |
302 if( p1==0 ) p1 = 1; /* <rdar://problem/6778339> */ | |
303 #endif | |
304 if( argc==3 ){ | |
305 p2 = sqlite3_value_int(argv[2]); | |
306 if( p2<0 ){ | |
307 p2 = -p2; | |
308 negP2 = 1; | |
309 } | |
310 }else{ | |
311 p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH]; | |
312 } | |
313 if( p1<0 ){ | |
314 p1 += len; | |
315 if( p1<0 ){ | |
316 p2 += p1; | |
317 if( p2<0 ) p2 = 0; | |
318 p1 = 0; | |
319 } | |
320 }else if( p1>0 ){ | |
321 p1--; | |
322 }else if( p2>0 ){ | |
323 p2--; | |
324 } | |
325 if( negP2 ){ | |
326 p1 -= p2; | |
327 if( p1<0 ){ | |
328 p2 += p1; | |
329 p1 = 0; | |
330 } | |
331 } | |
332 assert( p1>=0 && p2>=0 ); | |
333 if( p0type!=SQLITE_BLOB ){ | |
334 while( *z && p1 ){ | |
335 SQLITE_SKIP_UTF8(z); | |
336 p1--; | |
337 } | |
338 for(z2=z; *z2 && p2; p2--){ | |
339 SQLITE_SKIP_UTF8(z2); | |
340 } | |
341 sqlite3_result_text64(context, (char*)z, z2-z, SQLITE_TRANSIENT, | |
342 SQLITE_UTF8); | |
343 }else{ | |
344 if( p1+p2>len ){ | |
345 p2 = len-p1; | |
346 if( p2<0 ) p2 = 0; | |
347 } | |
348 sqlite3_result_blob64(context, (char*)&z[p1], (u64)p2, SQLITE_TRANSIENT); | |
349 } | |
350 } | |
351 | |
352 /* | |
353 ** Implementation of the round() function | |
354 */ | |
355 #ifndef SQLITE_OMIT_FLOATING_POINT | |
356 static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ | |
357 int n = 0; | |
358 double r; | |
359 char *zBuf; | |
360 assert( argc==1 || argc==2 ); | |
361 if( argc==2 ){ | |
362 if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return; | |
363 n = sqlite3_value_int(argv[1]); | |
364 if( n>30 ) n = 30; | |
365 if( n<0 ) n = 0; | |
366 } | |
367 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; | |
368 r = sqlite3_value_double(argv[0]); | |
369 /* If Y==0 and X will fit in a 64-bit int, | |
370 ** handle the rounding directly, | |
371 ** otherwise use printf. | |
372 */ | |
373 if( n==0 && r>=0 && r<LARGEST_INT64-1 ){ | |
374 r = (double)((sqlite_int64)(r+0.5)); | |
375 }else if( n==0 && r<0 && (-r)<LARGEST_INT64-1 ){ | |
376 r = -(double)((sqlite_int64)((-r)+0.5)); | |
377 }else{ | |
378 zBuf = sqlite3_mprintf("%.*f",n,r); | |
379 if( zBuf==0 ){ | |
380 sqlite3_result_error_nomem(context); | |
381 return; | |
382 } | |
383 sqlite3AtoF(zBuf, &r, sqlite3Strlen30(zBuf), SQLITE_UTF8); | |
384 sqlite3_free(zBuf); | |
385 } | |
386 sqlite3_result_double(context, r); | |
387 } | |
388 #endif | |
389 | |
390 /* | |
391 ** Allocate nByte bytes of space using sqlite3Malloc(). If the | |
392 ** allocation fails, call sqlite3_result_error_nomem() to notify | |
393 ** the database handle that malloc() has failed and return NULL. | |
394 ** If nByte is larger than the maximum string or blob length, then | |
395 ** raise an SQLITE_TOOBIG exception and return NULL. | |
396 */ | |
397 static void *contextMalloc(sqlite3_context *context, i64 nByte){ | |
398 char *z; | |
399 sqlite3 *db = sqlite3_context_db_handle(context); | |
400 assert( nByte>0 ); | |
401 testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] ); | |
402 testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH]+1 ); | |
403 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){ | |
404 sqlite3_result_error_toobig(context); | |
405 z = 0; | |
406 }else{ | |
407 z = sqlite3Malloc(nByte); | |
408 if( !z ){ | |
409 sqlite3_result_error_nomem(context); | |
410 } | |
411 } | |
412 return z; | |
413 } | |
414 | |
415 /* | |
416 ** Implementation of the upper() and lower() SQL functions. | |
417 */ | |
418 static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ | |
419 char *z1; | |
420 const char *z2; | |
421 int i, n; | |
422 UNUSED_PARAMETER(argc); | |
423 z2 = (char*)sqlite3_value_text(argv[0]); | |
424 n = sqlite3_value_bytes(argv[0]); | |
425 /* Verify that the call to _bytes() does not invalidate the _text() pointer */ | |
426 assert( z2==(char*)sqlite3_value_text(argv[0]) ); | |
427 if( z2 ){ | |
428 z1 = contextMalloc(context, ((i64)n)+1); | |
429 if( z1 ){ | |
430 for(i=0; i<n; i++){ | |
431 z1[i] = (char)sqlite3Toupper(z2[i]); | |
432 } | |
433 sqlite3_result_text(context, z1, n, sqlite3_free); | |
434 } | |
435 } | |
436 } | |
437 static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ | |
438 char *z1; | |
439 const char *z2; | |
440 int i, n; | |
441 UNUSED_PARAMETER(argc); | |
442 z2 = (char*)sqlite3_value_text(argv[0]); | |
443 n = sqlite3_value_bytes(argv[0]); | |
444 /* Verify that the call to _bytes() does not invalidate the _text() pointer */ | |
445 assert( z2==(char*)sqlite3_value_text(argv[0]) ); | |
446 if( z2 ){ | |
447 z1 = contextMalloc(context, ((i64)n)+1); | |
448 if( z1 ){ | |
449 for(i=0; i<n; i++){ | |
450 z1[i] = sqlite3Tolower(z2[i]); | |
451 } | |
452 sqlite3_result_text(context, z1, n, sqlite3_free); | |
453 } | |
454 } | |
455 } | |
456 | |
457 /* | |
458 ** Some functions like COALESCE() and IFNULL() and UNLIKELY() are implemented | |
459 ** as VDBE code so that unused argument values do not have to be computed. | |
460 ** However, we still need some kind of function implementation for this | |
461 ** routines in the function table. The noopFunc macro provides this. | |
462 ** noopFunc will never be called so it doesn't matter what the implementation | |
463 ** is. We might as well use the "version()" function as a substitute. | |
464 */ | |
465 #define noopFunc versionFunc /* Substitute function - never called */ | |
466 | |
467 /* | |
468 ** Implementation of random(). Return a random integer. | |
469 */ | |
470 static void randomFunc( | |
471 sqlite3_context *context, | |
472 int NotUsed, | |
473 sqlite3_value **NotUsed2 | |
474 ){ | |
475 sqlite_int64 r; | |
476 UNUSED_PARAMETER2(NotUsed, NotUsed2); | |
477 sqlite3_randomness(sizeof(r), &r); | |
478 if( r<0 ){ | |
479 /* We need to prevent a random number of 0x8000000000000000 | |
480 ** (or -9223372036854775808) since when you do abs() of that | |
481 ** number of you get the same value back again. To do this | |
482 ** in a way that is testable, mask the sign bit off of negative | |
483 ** values, resulting in a positive value. Then take the | |
484 ** 2s complement of that positive value. The end result can | |
485 ** therefore be no less than -9223372036854775807. | |
486 */ | |
487 r = -(r & LARGEST_INT64); | |
488 } | |
489 sqlite3_result_int64(context, r); | |
490 } | |
491 | |
492 /* | |
493 ** Implementation of randomblob(N). Return a random blob | |
494 ** that is N bytes long. | |
495 */ | |
496 static void randomBlob( | |
497 sqlite3_context *context, | |
498 int argc, | |
499 sqlite3_value **argv | |
500 ){ | |
501 int n; | |
502 unsigned char *p; | |
503 assert( argc==1 ); | |
504 UNUSED_PARAMETER(argc); | |
505 n = sqlite3_value_int(argv[0]); | |
506 if( n<1 ){ | |
507 n = 1; | |
508 } | |
509 p = contextMalloc(context, n); | |
510 if( p ){ | |
511 sqlite3_randomness(n, p); | |
512 sqlite3_result_blob(context, (char*)p, n, sqlite3_free); | |
513 } | |
514 } | |
515 | |
516 /* | |
517 ** Implementation of the last_insert_rowid() SQL function. The return | |
518 ** value is the same as the sqlite3_last_insert_rowid() API function. | |
519 */ | |
520 static void last_insert_rowid( | |
521 sqlite3_context *context, | |
522 int NotUsed, | |
523 sqlite3_value **NotUsed2 | |
524 ){ | |
525 sqlite3 *db = sqlite3_context_db_handle(context); | |
526 UNUSED_PARAMETER2(NotUsed, NotUsed2); | |
527 /* IMP: R-51513-12026 The last_insert_rowid() SQL function is a | |
528 ** wrapper around the sqlite3_last_insert_rowid() C/C++ interface | |
529 ** function. */ | |
530 sqlite3_result_int64(context, sqlite3_last_insert_rowid(db)); | |
531 } | |
532 | |
533 /* | |
534 ** Implementation of the changes() SQL function. | |
535 ** | |
536 ** IMP: R-62073-11209 The changes() SQL function is a wrapper | |
537 ** around the sqlite3_changes() C/C++ function and hence follows the same | |
538 ** rules for counting changes. | |
539 */ | |
540 static void changes( | |
541 sqlite3_context *context, | |
542 int NotUsed, | |
543 sqlite3_value **NotUsed2 | |
544 ){ | |
545 sqlite3 *db = sqlite3_context_db_handle(context); | |
546 UNUSED_PARAMETER2(NotUsed, NotUsed2); | |
547 sqlite3_result_int(context, sqlite3_changes(db)); | |
548 } | |
549 | |
550 /* | |
551 ** Implementation of the total_changes() SQL function. The return value is | |
552 ** the same as the sqlite3_total_changes() API function. | |
553 */ | |
554 static void total_changes( | |
555 sqlite3_context *context, | |
556 int NotUsed, | |
557 sqlite3_value **NotUsed2 | |
558 ){ | |
559 sqlite3 *db = sqlite3_context_db_handle(context); | |
560 UNUSED_PARAMETER2(NotUsed, NotUsed2); | |
561 /* IMP: R-52756-41993 This function is a wrapper around the | |
562 ** sqlite3_total_changes() C/C++ interface. */ | |
563 sqlite3_result_int(context, sqlite3_total_changes(db)); | |
564 } | |
565 | |
566 /* | |
567 ** A structure defining how to do GLOB-style comparisons. | |
568 */ | |
569 struct compareInfo { | |
570 u8 matchAll; | |
571 u8 matchOne; | |
572 u8 matchSet; | |
573 u8 noCase; | |
574 }; | |
575 | |
576 /* | |
577 ** For LIKE and GLOB matching on EBCDIC machines, assume that every | |
578 ** character is exactly one byte in size. Also, provde the Utf8Read() | |
579 ** macro for fast reading of the next character in the common case where | |
580 ** the next character is ASCII. | |
581 */ | |
582 #if defined(SQLITE_EBCDIC) | |
583 # define sqlite3Utf8Read(A) (*((*A)++)) | |
584 # define Utf8Read(A) (*(A++)) | |
585 #else | |
586 # define Utf8Read(A) (A[0]<0x80?*(A++):sqlite3Utf8Read(&A)) | |
587 #endif | |
588 | |
589 static const struct compareInfo globInfo = { '*', '?', '[', 0 }; | |
590 /* The correct SQL-92 behavior is for the LIKE operator to ignore | |
591 ** case. Thus 'a' LIKE 'A' would be true. */ | |
592 static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 }; | |
593 /* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator | |
594 ** is case sensitive causing 'a' LIKE 'A' to be false */ | |
595 static const struct compareInfo likeInfoAlt = { '%', '_', 0, 0 }; | |
596 | |
597 /* | |
598 ** Compare two UTF-8 strings for equality where the first string can | |
599 ** potentially be a "glob" or "like" expression. Return true (1) if they | |
600 ** are the same and false (0) if they are different. | |
601 ** | |
602 ** Globbing rules: | |
603 ** | |
604 ** '*' Matches any sequence of zero or more characters. | |
605 ** | |
606 ** '?' Matches exactly one character. | |
607 ** | |
608 ** [...] Matches one character from the enclosed list of | |
609 ** characters. | |
610 ** | |
611 ** [^...] Matches one character not in the enclosed list. | |
612 ** | |
613 ** With the [...] and [^...] matching, a ']' character can be included | |
614 ** in the list by making it the first character after '[' or '^'. A | |
615 ** range of characters can be specified using '-'. Example: | |
616 ** "[a-z]" matches any single lower-case letter. To match a '-', make | |
617 ** it the last character in the list. | |
618 ** | |
619 ** Like matching rules: | |
620 ** | |
621 ** '%' Matches any sequence of zero or more characters | |
622 ** | |
623 *** '_' Matches any one character | |
624 ** | |
625 ** Ec Where E is the "esc" character and c is any other | |
626 ** character, including '%', '_', and esc, match exactly c. | |
627 ** | |
628 ** The comments within this routine usually assume glob matching. | |
629 ** | |
630 ** This routine is usually quick, but can be N**2 in the worst case. | |
631 */ | |
632 static int patternCompare( | |
633 const u8 *zPattern, /* The glob pattern */ | |
634 const u8 *zString, /* The string to compare against the glob */ | |
635 const struct compareInfo *pInfo, /* Information about how to do the compare */ | |
636 u32 esc /* The escape character */ | |
637 ){ | |
638 u32 c, c2; /* Next pattern and input string chars */ | |
639 u32 matchOne = pInfo->matchOne; /* "?" or "_" */ | |
640 u32 matchAll = pInfo->matchAll; /* "*" or "%" */ | |
641 u32 matchOther; /* "[" or the escape character */ | |
642 u8 noCase = pInfo->noCase; /* True if uppercase==lowercase */ | |
643 const u8 *zEscaped = 0; /* One past the last escaped input char */ | |
644 | |
645 /* The GLOB operator does not have an ESCAPE clause. And LIKE does not | |
646 ** have the matchSet operator. So we either have to look for one or | |
647 ** the other, never both. Hence the single variable matchOther is used | |
648 ** to store the one we have to look for. | |
649 */ | |
650 matchOther = esc ? esc : pInfo->matchSet; | |
651 | |
652 while( (c = Utf8Read(zPattern))!=0 ){ | |
653 if( c==matchAll ){ /* Match "*" */ | |
654 /* Skip over multiple "*" characters in the pattern. If there | |
655 ** are also "?" characters, skip those as well, but consume a | |
656 ** single character of the input string for each "?" skipped */ | |
657 while( (c=Utf8Read(zPattern)) == matchAll || c == matchOne ){ | |
658 if( c==matchOne && sqlite3Utf8Read(&zString)==0 ){ | |
659 return 0; | |
660 } | |
661 } | |
662 if( c==0 ){ | |
663 return 1; /* "*" at the end of the pattern matches */ | |
664 }else if( c==matchOther ){ | |
665 if( esc ){ | |
666 c = sqlite3Utf8Read(&zPattern); | |
667 if( c==0 ) return 0; | |
668 }else{ | |
669 /* "[...]" immediately follows the "*". We have to do a slow | |
670 ** recursive search in this case, but it is an unusual case. */ | |
671 assert( matchOther<0x80 ); /* '[' is a single-byte character */ | |
672 while( *zString | |
673 && patternCompare(&zPattern[-1],zString,pInfo,esc)==0 ){ | |
674 SQLITE_SKIP_UTF8(zString); | |
675 } | |
676 return *zString!=0; | |
677 } | |
678 } | |
679 | |
680 /* At this point variable c contains the first character of the | |
681 ** pattern string past the "*". Search in the input string for the | |
682 ** first matching character and recursively contine the match from | |
683 ** that point. | |
684 ** | |
685 ** For a case-insensitive search, set variable cx to be the same as | |
686 ** c but in the other case and search the input string for either | |
687 ** c or cx. | |
688 */ | |
689 if( c<=0x80 ){ | |
690 u32 cx; | |
691 if( noCase ){ | |
692 cx = sqlite3Toupper(c); | |
693 c = sqlite3Tolower(c); | |
694 }else{ | |
695 cx = c; | |
696 } | |
697 while( (c2 = *(zString++))!=0 ){ | |
698 if( c2!=c && c2!=cx ) continue; | |
699 if( patternCompare(zPattern,zString,pInfo,esc) ) return 1; | |
700 } | |
701 }else{ | |
702 while( (c2 = Utf8Read(zString))!=0 ){ | |
703 if( c2!=c ) continue; | |
704 if( patternCompare(zPattern,zString,pInfo,esc) ) return 1; | |
705 } | |
706 } | |
707 return 0; | |
708 } | |
709 if( c==matchOther ){ | |
710 if( esc ){ | |
711 c = sqlite3Utf8Read(&zPattern); | |
712 if( c==0 ) return 0; | |
713 zEscaped = zPattern; | |
714 }else{ | |
715 u32 prior_c = 0; | |
716 int seen = 0; | |
717 int invert = 0; | |
718 c = sqlite3Utf8Read(&zString); | |
719 if( c==0 ) return 0; | |
720 c2 = sqlite3Utf8Read(&zPattern); | |
721 if( c2=='^' ){ | |
722 invert = 1; | |
723 c2 = sqlite3Utf8Read(&zPattern); | |
724 } | |
725 if( c2==']' ){ | |
726 if( c==']' ) seen = 1; | |
727 c2 = sqlite3Utf8Read(&zPattern); | |
728 } | |
729 while( c2 && c2!=']' ){ | |
730 if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){ | |
731 c2 = sqlite3Utf8Read(&zPattern); | |
732 if( c>=prior_c && c<=c2 ) seen = 1; | |
733 prior_c = 0; | |
734 }else{ | |
735 if( c==c2 ){ | |
736 seen = 1; | |
737 } | |
738 prior_c = c2; | |
739 } | |
740 c2 = sqlite3Utf8Read(&zPattern); | |
741 } | |
742 if( c2==0 || (seen ^ invert)==0 ){ | |
743 return 0; | |
744 } | |
745 continue; | |
746 } | |
747 } | |
748 c2 = Utf8Read(zString); | |
749 if( c==c2 ) continue; | |
750 if( noCase && c<0x80 && c2<0x80 && sqlite3Tolower(c)==sqlite3Tolower(c2) ){ | |
751 continue; | |
752 } | |
753 if( c==matchOne && zPattern!=zEscaped && c2!=0 ) continue; | |
754 return 0; | |
755 } | |
756 return *zString==0; | |
757 } | |
758 | |
759 /* | |
760 ** The sqlite3_strglob() interface. | |
761 */ | |
762 int sqlite3_strglob(const char *zGlobPattern, const char *zString){ | |
763 return patternCompare((u8*)zGlobPattern, (u8*)zString, &globInfo, 0)==0; | |
764 } | |
765 | |
766 /* | |
767 ** The sqlite3_strlike() interface. | |
768 */ | |
769 int sqlite3_strlike(const char *zPattern, const char *zStr, unsigned int esc){ | |
770 return patternCompare((u8*)zPattern, (u8*)zStr, &likeInfoNorm, esc)==0; | |
771 } | |
772 | |
773 /* | |
774 ** Count the number of times that the LIKE operator (or GLOB which is | |
775 ** just a variation of LIKE) gets called. This is used for testing | |
776 ** only. | |
777 */ | |
778 #ifdef SQLITE_TEST | |
779 int sqlite3_like_count = 0; | |
780 #endif | |
781 | |
782 | |
783 /* | |
784 ** Implementation of the like() SQL function. This function implements | |
785 ** the build-in LIKE operator. The first argument to the function is the | |
786 ** pattern and the second argument is the string. So, the SQL statements: | |
787 ** | |
788 ** A LIKE B | |
789 ** | |
790 ** is implemented as like(B,A). | |
791 ** | |
792 ** This same function (with a different compareInfo structure) computes | |
793 ** the GLOB operator. | |
794 */ | |
795 static void likeFunc( | |
796 sqlite3_context *context, | |
797 int argc, | |
798 sqlite3_value **argv | |
799 ){ | |
800 const unsigned char *zA, *zB; | |
801 u32 escape = 0; | |
802 int nPat; | |
803 sqlite3 *db = sqlite3_context_db_handle(context); | |
804 | |
805 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS | |
806 if( sqlite3_value_type(argv[0])==SQLITE_BLOB | |
807 || sqlite3_value_type(argv[1])==SQLITE_BLOB | |
808 ){ | |
809 #ifdef SQLITE_TEST | |
810 sqlite3_like_count++; | |
811 #endif | |
812 sqlite3_result_int(context, 0); | |
813 return; | |
814 } | |
815 #endif | |
816 zB = sqlite3_value_text(argv[0]); | |
817 zA = sqlite3_value_text(argv[1]); | |
818 | |
819 /* Limit the length of the LIKE or GLOB pattern to avoid problems | |
820 ** of deep recursion and N*N behavior in patternCompare(). | |
821 */ | |
822 nPat = sqlite3_value_bytes(argv[0]); | |
823 testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ); | |
824 testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]+1 ); | |
825 if( nPat > db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){ | |
826 sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1); | |
827 return; | |
828 } | |
829 assert( zB==sqlite3_value_text(argv[0]) ); /* Encoding did not change */ | |
830 | |
831 if( argc==3 ){ | |
832 /* The escape character string must consist of a single UTF-8 character. | |
833 ** Otherwise, return an error. | |
834 */ | |
835 const unsigned char *zEsc = sqlite3_value_text(argv[2]); | |
836 if( zEsc==0 ) return; | |
837 if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){ | |
838 sqlite3_result_error(context, | |
839 "ESCAPE expression must be a single character", -1); | |
840 return; | |
841 } | |
842 escape = sqlite3Utf8Read(&zEsc); | |
843 } | |
844 if( zA && zB ){ | |
845 struct compareInfo *pInfo = sqlite3_user_data(context); | |
846 #ifdef SQLITE_TEST | |
847 sqlite3_like_count++; | |
848 #endif | |
849 | |
850 sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape)); | |
851 } | |
852 } | |
853 | |
854 /* | |
855 ** Implementation of the NULLIF(x,y) function. The result is the first | |
856 ** argument if the arguments are different. The result is NULL if the | |
857 ** arguments are equal to each other. | |
858 */ | |
859 static void nullifFunc( | |
860 sqlite3_context *context, | |
861 int NotUsed, | |
862 sqlite3_value **argv | |
863 ){ | |
864 CollSeq *pColl = sqlite3GetFuncCollSeq(context); | |
865 UNUSED_PARAMETER(NotUsed); | |
866 if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){ | |
867 sqlite3_result_value(context, argv[0]); | |
868 } | |
869 } | |
870 | |
871 /* | |
872 ** Implementation of the sqlite_version() function. The result is the version | |
873 ** of the SQLite library that is running. | |
874 */ | |
875 static void versionFunc( | |
876 sqlite3_context *context, | |
877 int NotUsed, | |
878 sqlite3_value **NotUsed2 | |
879 ){ | |
880 UNUSED_PARAMETER2(NotUsed, NotUsed2); | |
881 /* IMP: R-48699-48617 This function is an SQL wrapper around the | |
882 ** sqlite3_libversion() C-interface. */ | |
883 sqlite3_result_text(context, sqlite3_libversion(), -1, SQLITE_STATIC); | |
884 } | |
885 | |
886 /* | |
887 ** Implementation of the sqlite_source_id() function. The result is a string | |
888 ** that identifies the particular version of the source code used to build | |
889 ** SQLite. | |
890 */ | |
891 static void sourceidFunc( | |
892 sqlite3_context *context, | |
893 int NotUsed, | |
894 sqlite3_value **NotUsed2 | |
895 ){ | |
896 UNUSED_PARAMETER2(NotUsed, NotUsed2); | |
897 /* IMP: R-24470-31136 This function is an SQL wrapper around the | |
898 ** sqlite3_sourceid() C interface. */ | |
899 sqlite3_result_text(context, sqlite3_sourceid(), -1, SQLITE_STATIC); | |
900 } | |
901 | |
902 /* | |
903 ** Implementation of the sqlite_log() function. This is a wrapper around | |
904 ** sqlite3_log(). The return value is NULL. The function exists purely for | |
905 ** its side-effects. | |
906 */ | |
907 static void errlogFunc( | |
908 sqlite3_context *context, | |
909 int argc, | |
910 sqlite3_value **argv | |
911 ){ | |
912 UNUSED_PARAMETER(argc); | |
913 UNUSED_PARAMETER(context); | |
914 sqlite3_log(sqlite3_value_int(argv[0]), "%s", sqlite3_value_text(argv[1])); | |
915 } | |
916 | |
917 /* | |
918 ** Implementation of the sqlite_compileoption_used() function. | |
919 ** The result is an integer that identifies if the compiler option | |
920 ** was used to build SQLite. | |
921 */ | |
922 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS | |
923 static void compileoptionusedFunc( | |
924 sqlite3_context *context, | |
925 int argc, | |
926 sqlite3_value **argv | |
927 ){ | |
928 const char *zOptName; | |
929 assert( argc==1 ); | |
930 UNUSED_PARAMETER(argc); | |
931 /* IMP: R-39564-36305 The sqlite_compileoption_used() SQL | |
932 ** function is a wrapper around the sqlite3_compileoption_used() C/C++ | |
933 ** function. | |
934 */ | |
935 if( (zOptName = (const char*)sqlite3_value_text(argv[0]))!=0 ){ | |
936 sqlite3_result_int(context, sqlite3_compileoption_used(zOptName)); | |
937 } | |
938 } | |
939 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ | |
940 | |
941 /* | |
942 ** Implementation of the sqlite_compileoption_get() function. | |
943 ** The result is a string that identifies the compiler options | |
944 ** used to build SQLite. | |
945 */ | |
946 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS | |
947 static void compileoptiongetFunc( | |
948 sqlite3_context *context, | |
949 int argc, | |
950 sqlite3_value **argv | |
951 ){ | |
952 int n; | |
953 assert( argc==1 ); | |
954 UNUSED_PARAMETER(argc); | |
955 /* IMP: R-04922-24076 The sqlite_compileoption_get() SQL function | |
956 ** is a wrapper around the sqlite3_compileoption_get() C/C++ function. | |
957 */ | |
958 n = sqlite3_value_int(argv[0]); | |
959 sqlite3_result_text(context, sqlite3_compileoption_get(n), -1, SQLITE_STATIC); | |
960 } | |
961 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ | |
962 | |
963 /* Array for converting from half-bytes (nybbles) into ASCII hex | |
964 ** digits. */ | |
965 static const char hexdigits[] = { | |
966 '0', '1', '2', '3', '4', '5', '6', '7', | |
967 '8', '9', 'A', 'B', 'C', 'D', 'E', 'F' | |
968 }; | |
969 | |
970 /* | |
971 ** Implementation of the QUOTE() function. This function takes a single | |
972 ** argument. If the argument is numeric, the return value is the same as | |
973 ** the argument. If the argument is NULL, the return value is the string | |
974 ** "NULL". Otherwise, the argument is enclosed in single quotes with | |
975 ** single-quote escapes. | |
976 */ | |
977 static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){ | |
978 assert( argc==1 ); | |
979 UNUSED_PARAMETER(argc); | |
980 switch( sqlite3_value_type(argv[0]) ){ | |
981 case SQLITE_FLOAT: { | |
982 double r1, r2; | |
983 char zBuf[50]; | |
984 r1 = sqlite3_value_double(argv[0]); | |
985 sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.15g", r1); | |
986 sqlite3AtoF(zBuf, &r2, 20, SQLITE_UTF8); | |
987 if( r1!=r2 ){ | |
988 sqlite3_snprintf(sizeof(zBuf), zBuf, "%!.20e", r1); | |
989 } | |
990 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); | |
991 break; | |
992 } | |
993 case SQLITE_INTEGER: { | |
994 sqlite3_result_value(context, argv[0]); | |
995 break; | |
996 } | |
997 case SQLITE_BLOB: { | |
998 char *zText = 0; | |
999 char const *zBlob = sqlite3_value_blob(argv[0]); | |
1000 int nBlob = sqlite3_value_bytes(argv[0]); | |
1001 assert( zBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */ | |
1002 zText = (char *)contextMalloc(context, (2*(i64)nBlob)+4); | |
1003 if( zText ){ | |
1004 int i; | |
1005 for(i=0; i<nBlob; i++){ | |
1006 zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F]; | |
1007 zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F]; | |
1008 } | |
1009 zText[(nBlob*2)+2] = '\''; | |
1010 zText[(nBlob*2)+3] = '\0'; | |
1011 zText[0] = 'X'; | |
1012 zText[1] = '\''; | |
1013 sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT); | |
1014 sqlite3_free(zText); | |
1015 } | |
1016 break; | |
1017 } | |
1018 case SQLITE_TEXT: { | |
1019 int i,j; | |
1020 u64 n; | |
1021 const unsigned char *zArg = sqlite3_value_text(argv[0]); | |
1022 char *z; | |
1023 | |
1024 if( zArg==0 ) return; | |
1025 for(i=0, n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; } | |
1026 z = contextMalloc(context, ((i64)i)+((i64)n)+3); | |
1027 if( z ){ | |
1028 z[0] = '\''; | |
1029 for(i=0, j=1; zArg[i]; i++){ | |
1030 z[j++] = zArg[i]; | |
1031 if( zArg[i]=='\'' ){ | |
1032 z[j++] = '\''; | |
1033 } | |
1034 } | |
1035 z[j++] = '\''; | |
1036 z[j] = 0; | |
1037 sqlite3_result_text(context, z, j, sqlite3_free); | |
1038 } | |
1039 break; | |
1040 } | |
1041 default: { | |
1042 assert( sqlite3_value_type(argv[0])==SQLITE_NULL ); | |
1043 sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC); | |
1044 break; | |
1045 } | |
1046 } | |
1047 } | |
1048 | |
1049 /* | |
1050 ** The unicode() function. Return the integer unicode code-point value | |
1051 ** for the first character of the input string. | |
1052 */ | |
1053 static void unicodeFunc( | |
1054 sqlite3_context *context, | |
1055 int argc, | |
1056 sqlite3_value **argv | |
1057 ){ | |
1058 const unsigned char *z = sqlite3_value_text(argv[0]); | |
1059 (void)argc; | |
1060 if( z && z[0] ) sqlite3_result_int(context, sqlite3Utf8Read(&z)); | |
1061 } | |
1062 | |
1063 /* | |
1064 ** The char() function takes zero or more arguments, each of which is | |
1065 ** an integer. It constructs a string where each character of the string | |
1066 ** is the unicode character for the corresponding integer argument. | |
1067 */ | |
1068 static void charFunc( | |
1069 sqlite3_context *context, | |
1070 int argc, | |
1071 sqlite3_value **argv | |
1072 ){ | |
1073 unsigned char *z, *zOut; | |
1074 int i; | |
1075 zOut = z = sqlite3_malloc64( argc*4+1 ); | |
1076 if( z==0 ){ | |
1077 sqlite3_result_error_nomem(context); | |
1078 return; | |
1079 } | |
1080 for(i=0; i<argc; i++){ | |
1081 sqlite3_int64 x; | |
1082 unsigned c; | |
1083 x = sqlite3_value_int64(argv[i]); | |
1084 if( x<0 || x>0x10ffff ) x = 0xfffd; | |
1085 c = (unsigned)(x & 0x1fffff); | |
1086 if( c<0x00080 ){ | |
1087 *zOut++ = (u8)(c&0xFF); | |
1088 }else if( c<0x00800 ){ | |
1089 *zOut++ = 0xC0 + (u8)((c>>6)&0x1F); | |
1090 *zOut++ = 0x80 + (u8)(c & 0x3F); | |
1091 }else if( c<0x10000 ){ | |
1092 *zOut++ = 0xE0 + (u8)((c>>12)&0x0F); | |
1093 *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); | |
1094 *zOut++ = 0x80 + (u8)(c & 0x3F); | |
1095 }else{ | |
1096 *zOut++ = 0xF0 + (u8)((c>>18) & 0x07); | |
1097 *zOut++ = 0x80 + (u8)((c>>12) & 0x3F); | |
1098 *zOut++ = 0x80 + (u8)((c>>6) & 0x3F); | |
1099 *zOut++ = 0x80 + (u8)(c & 0x3F); | |
1100 } \ | |
1101 } | |
1102 sqlite3_result_text64(context, (char*)z, zOut-z, sqlite3_free, SQLITE_UTF8); | |
1103 } | |
1104 | |
1105 /* | |
1106 ** The hex() function. Interpret the argument as a blob. Return | |
1107 ** a hexadecimal rendering as text. | |
1108 */ | |
1109 static void hexFunc( | |
1110 sqlite3_context *context, | |
1111 int argc, | |
1112 sqlite3_value **argv | |
1113 ){ | |
1114 int i, n; | |
1115 const unsigned char *pBlob; | |
1116 char *zHex, *z; | |
1117 assert( argc==1 ); | |
1118 UNUSED_PARAMETER(argc); | |
1119 pBlob = sqlite3_value_blob(argv[0]); | |
1120 n = sqlite3_value_bytes(argv[0]); | |
1121 assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */ | |
1122 z = zHex = contextMalloc(context, ((i64)n)*2 + 1); | |
1123 if( zHex ){ | |
1124 for(i=0; i<n; i++, pBlob++){ | |
1125 unsigned char c = *pBlob; | |
1126 *(z++) = hexdigits[(c>>4)&0xf]; | |
1127 *(z++) = hexdigits[c&0xf]; | |
1128 } | |
1129 *z = 0; | |
1130 sqlite3_result_text(context, zHex, n*2, sqlite3_free); | |
1131 } | |
1132 } | |
1133 | |
1134 /* | |
1135 ** The zeroblob(N) function returns a zero-filled blob of size N bytes. | |
1136 */ | |
1137 static void zeroblobFunc( | |
1138 sqlite3_context *context, | |
1139 int argc, | |
1140 sqlite3_value **argv | |
1141 ){ | |
1142 i64 n; | |
1143 int rc; | |
1144 assert( argc==1 ); | |
1145 UNUSED_PARAMETER(argc); | |
1146 n = sqlite3_value_int64(argv[0]); | |
1147 if( n<0 ) n = 0; | |
1148 rc = sqlite3_result_zeroblob64(context, n); /* IMP: R-00293-64994 */ | |
1149 if( rc ){ | |
1150 sqlite3_result_error_code(context, rc); | |
1151 } | |
1152 } | |
1153 | |
1154 /* | |
1155 ** The replace() function. Three arguments are all strings: call | |
1156 ** them A, B, and C. The result is also a string which is derived | |
1157 ** from A by replacing every occurrence of B with C. The match | |
1158 ** must be exact. Collating sequences are not used. | |
1159 */ | |
1160 static void replaceFunc( | |
1161 sqlite3_context *context, | |
1162 int argc, | |
1163 sqlite3_value **argv | |
1164 ){ | |
1165 const unsigned char *zStr; /* The input string A */ | |
1166 const unsigned char *zPattern; /* The pattern string B */ | |
1167 const unsigned char *zRep; /* The replacement string C */ | |
1168 unsigned char *zOut; /* The output */ | |
1169 int nStr; /* Size of zStr */ | |
1170 int nPattern; /* Size of zPattern */ | |
1171 int nRep; /* Size of zRep */ | |
1172 i64 nOut; /* Maximum size of zOut */ | |
1173 int loopLimit; /* Last zStr[] that might match zPattern[] */ | |
1174 int i, j; /* Loop counters */ | |
1175 | |
1176 assert( argc==3 ); | |
1177 UNUSED_PARAMETER(argc); | |
1178 zStr = sqlite3_value_text(argv[0]); | |
1179 if( zStr==0 ) return; | |
1180 nStr = sqlite3_value_bytes(argv[0]); | |
1181 assert( zStr==sqlite3_value_text(argv[0]) ); /* No encoding change */ | |
1182 zPattern = sqlite3_value_text(argv[1]); | |
1183 if( zPattern==0 ){ | |
1184 assert( sqlite3_value_type(argv[1])==SQLITE_NULL | |
1185 || sqlite3_context_db_handle(context)->mallocFailed ); | |
1186 return; | |
1187 } | |
1188 if( zPattern[0]==0 ){ | |
1189 assert( sqlite3_value_type(argv[1])!=SQLITE_NULL ); | |
1190 sqlite3_result_value(context, argv[0]); | |
1191 return; | |
1192 } | |
1193 nPattern = sqlite3_value_bytes(argv[1]); | |
1194 assert( zPattern==sqlite3_value_text(argv[1]) ); /* No encoding change */ | |
1195 zRep = sqlite3_value_text(argv[2]); | |
1196 if( zRep==0 ) return; | |
1197 nRep = sqlite3_value_bytes(argv[2]); | |
1198 assert( zRep==sqlite3_value_text(argv[2]) ); | |
1199 nOut = nStr + 1; | |
1200 assert( nOut<SQLITE_MAX_LENGTH ); | |
1201 zOut = contextMalloc(context, (i64)nOut); | |
1202 if( zOut==0 ){ | |
1203 return; | |
1204 } | |
1205 loopLimit = nStr - nPattern; | |
1206 for(i=j=0; i<=loopLimit; i++){ | |
1207 if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){ | |
1208 zOut[j++] = zStr[i]; | |
1209 }else{ | |
1210 u8 *zOld; | |
1211 sqlite3 *db = sqlite3_context_db_handle(context); | |
1212 nOut += nRep - nPattern; | |
1213 testcase( nOut-1==db->aLimit[SQLITE_LIMIT_LENGTH] ); | |
1214 testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] ); | |
1215 if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){ | |
1216 sqlite3_result_error_toobig(context); | |
1217 sqlite3_free(zOut); | |
1218 return; | |
1219 } | |
1220 zOld = zOut; | |
1221 zOut = sqlite3_realloc64(zOut, (int)nOut); | |
1222 if( zOut==0 ){ | |
1223 sqlite3_result_error_nomem(context); | |
1224 sqlite3_free(zOld); | |
1225 return; | |
1226 } | |
1227 memcpy(&zOut[j], zRep, nRep); | |
1228 j += nRep; | |
1229 i += nPattern-1; | |
1230 } | |
1231 } | |
1232 assert( j+nStr-i+1==nOut ); | |
1233 memcpy(&zOut[j], &zStr[i], nStr-i); | |
1234 j += nStr - i; | |
1235 assert( j<=nOut ); | |
1236 zOut[j] = 0; | |
1237 sqlite3_result_text(context, (char*)zOut, j, sqlite3_free); | |
1238 } | |
1239 | |
1240 /* | |
1241 ** Implementation of the TRIM(), LTRIM(), and RTRIM() functions. | |
1242 ** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both. | |
1243 */ | |
1244 static void trimFunc( | |
1245 sqlite3_context *context, | |
1246 int argc, | |
1247 sqlite3_value **argv | |
1248 ){ | |
1249 const unsigned char *zIn; /* Input string */ | |
1250 const unsigned char *zCharSet; /* Set of characters to trim */ | |
1251 int nIn; /* Number of bytes in input */ | |
1252 int flags; /* 1: trimleft 2: trimright 3: trim */ | |
1253 int i; /* Loop counter */ | |
1254 unsigned char *aLen = 0; /* Length of each character in zCharSet */ | |
1255 unsigned char **azChar = 0; /* Individual characters in zCharSet */ | |
1256 int nChar; /* Number of characters in zCharSet */ | |
1257 | |
1258 if( sqlite3_value_type(argv[0])==SQLITE_NULL ){ | |
1259 return; | |
1260 } | |
1261 zIn = sqlite3_value_text(argv[0]); | |
1262 if( zIn==0 ) return; | |
1263 nIn = sqlite3_value_bytes(argv[0]); | |
1264 assert( zIn==sqlite3_value_text(argv[0]) ); | |
1265 if( argc==1 ){ | |
1266 static const unsigned char lenOne[] = { 1 }; | |
1267 static unsigned char * const azOne[] = { (u8*)" " }; | |
1268 nChar = 1; | |
1269 aLen = (u8*)lenOne; | |
1270 azChar = (unsigned char **)azOne; | |
1271 zCharSet = 0; | |
1272 }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){ | |
1273 return; | |
1274 }else{ | |
1275 const unsigned char *z; | |
1276 for(z=zCharSet, nChar=0; *z; nChar++){ | |
1277 SQLITE_SKIP_UTF8(z); | |
1278 } | |
1279 if( nChar>0 ){ | |
1280 azChar = contextMalloc(context, ((i64)nChar)*(sizeof(char*)+1)); | |
1281 if( azChar==0 ){ | |
1282 return; | |
1283 } | |
1284 aLen = (unsigned char*)&azChar[nChar]; | |
1285 for(z=zCharSet, nChar=0; *z; nChar++){ | |
1286 azChar[nChar] = (unsigned char *)z; | |
1287 SQLITE_SKIP_UTF8(z); | |
1288 aLen[nChar] = (u8)(z - azChar[nChar]); | |
1289 } | |
1290 } | |
1291 } | |
1292 if( nChar>0 ){ | |
1293 flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context)); | |
1294 if( flags & 1 ){ | |
1295 while( nIn>0 ){ | |
1296 int len = 0; | |
1297 for(i=0; i<nChar; i++){ | |
1298 len = aLen[i]; | |
1299 if( len<=nIn && memcmp(zIn, azChar[i], len)==0 ) break; | |
1300 } | |
1301 if( i>=nChar ) break; | |
1302 zIn += len; | |
1303 nIn -= len; | |
1304 } | |
1305 } | |
1306 if( flags & 2 ){ | |
1307 while( nIn>0 ){ | |
1308 int len = 0; | |
1309 for(i=0; i<nChar; i++){ | |
1310 len = aLen[i]; | |
1311 if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break; | |
1312 } | |
1313 if( i>=nChar ) break; | |
1314 nIn -= len; | |
1315 } | |
1316 } | |
1317 if( zCharSet ){ | |
1318 sqlite3_free(azChar); | |
1319 } | |
1320 } | |
1321 sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT); | |
1322 } | |
1323 | |
1324 | |
1325 /* IMP: R-25361-16150 This function is omitted from SQLite by default. It | |
1326 ** is only available if the SQLITE_SOUNDEX compile-time option is used | |
1327 ** when SQLite is built. | |
1328 */ | |
1329 #ifdef SQLITE_SOUNDEX | |
1330 /* | |
1331 ** Compute the soundex encoding of a word. | |
1332 ** | |
1333 ** IMP: R-59782-00072 The soundex(X) function returns a string that is the | |
1334 ** soundex encoding of the string X. | |
1335 */ | |
1336 static void soundexFunc( | |
1337 sqlite3_context *context, | |
1338 int argc, | |
1339 sqlite3_value **argv | |
1340 ){ | |
1341 char zResult[8]; | |
1342 const u8 *zIn; | |
1343 int i, j; | |
1344 static const unsigned char iCode[] = { | |
1345 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
1346 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
1347 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
1348 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, | |
1349 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0, | |
1350 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, | |
1351 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0, | |
1352 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0, | |
1353 }; | |
1354 assert( argc==1 ); | |
1355 zIn = (u8*)sqlite3_value_text(argv[0]); | |
1356 if( zIn==0 ) zIn = (u8*)""; | |
1357 for(i=0; zIn[i] && !sqlite3Isalpha(zIn[i]); i++){} | |
1358 if( zIn[i] ){ | |
1359 u8 prevcode = iCode[zIn[i]&0x7f]; | |
1360 zResult[0] = sqlite3Toupper(zIn[i]); | |
1361 for(j=1; j<4 && zIn[i]; i++){ | |
1362 int code = iCode[zIn[i]&0x7f]; | |
1363 if( code>0 ){ | |
1364 if( code!=prevcode ){ | |
1365 prevcode = code; | |
1366 zResult[j++] = code + '0'; | |
1367 } | |
1368 }else{ | |
1369 prevcode = 0; | |
1370 } | |
1371 } | |
1372 while( j<4 ){ | |
1373 zResult[j++] = '0'; | |
1374 } | |
1375 zResult[j] = 0; | |
1376 sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT); | |
1377 }else{ | |
1378 /* IMP: R-64894-50321 The string "?000" is returned if the argument | |
1379 ** is NULL or contains no ASCII alphabetic characters. */ | |
1380 sqlite3_result_text(context, "?000", 4, SQLITE_STATIC); | |
1381 } | |
1382 } | |
1383 #endif /* SQLITE_SOUNDEX */ | |
1384 | |
1385 #ifndef SQLITE_OMIT_LOAD_EXTENSION | |
1386 /* | |
1387 ** A function that loads a shared-library extension then returns NULL. | |
1388 */ | |
1389 static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){ | |
1390 const char *zFile = (const char *)sqlite3_value_text(argv[0]); | |
1391 const char *zProc; | |
1392 sqlite3 *db = sqlite3_context_db_handle(context); | |
1393 char *zErrMsg = 0; | |
1394 | |
1395 if( argc==2 ){ | |
1396 zProc = (const char *)sqlite3_value_text(argv[1]); | |
1397 }else{ | |
1398 zProc = 0; | |
1399 } | |
1400 if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){ | |
1401 sqlite3_result_error(context, zErrMsg, -1); | |
1402 sqlite3_free(zErrMsg); | |
1403 } | |
1404 } | |
1405 #endif | |
1406 | |
1407 | |
1408 /* | |
1409 ** An instance of the following structure holds the context of a | |
1410 ** sum() or avg() aggregate computation. | |
1411 */ | |
1412 typedef struct SumCtx SumCtx; | |
1413 struct SumCtx { | |
1414 double rSum; /* Floating point sum */ | |
1415 i64 iSum; /* Integer sum */ | |
1416 i64 cnt; /* Number of elements summed */ | |
1417 u8 overflow; /* True if integer overflow seen */ | |
1418 u8 approx; /* True if non-integer value was input to the sum */ | |
1419 }; | |
1420 | |
1421 /* | |
1422 ** Routines used to compute the sum, average, and total. | |
1423 ** | |
1424 ** The SUM() function follows the (broken) SQL standard which means | |
1425 ** that it returns NULL if it sums over no inputs. TOTAL returns | |
1426 ** 0.0 in that case. In addition, TOTAL always returns a float where | |
1427 ** SUM might return an integer if it never encounters a floating point | |
1428 ** value. TOTAL never fails, but SUM might through an exception if | |
1429 ** it overflows an integer. | |
1430 */ | |
1431 static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){ | |
1432 SumCtx *p; | |
1433 int type; | |
1434 assert( argc==1 ); | |
1435 UNUSED_PARAMETER(argc); | |
1436 p = sqlite3_aggregate_context(context, sizeof(*p)); | |
1437 type = sqlite3_value_numeric_type(argv[0]); | |
1438 if( p && type!=SQLITE_NULL ){ | |
1439 p->cnt++; | |
1440 if( type==SQLITE_INTEGER ){ | |
1441 i64 v = sqlite3_value_int64(argv[0]); | |
1442 p->rSum += v; | |
1443 if( (p->approx|p->overflow)==0 && sqlite3AddInt64(&p->iSum, v) ){ | |
1444 p->overflow = 1; | |
1445 } | |
1446 }else{ | |
1447 p->rSum += sqlite3_value_double(argv[0]); | |
1448 p->approx = 1; | |
1449 } | |
1450 } | |
1451 } | |
1452 static void sumFinalize(sqlite3_context *context){ | |
1453 SumCtx *p; | |
1454 p = sqlite3_aggregate_context(context, 0); | |
1455 if( p && p->cnt>0 ){ | |
1456 if( p->overflow ){ | |
1457 sqlite3_result_error(context,"integer overflow",-1); | |
1458 }else if( p->approx ){ | |
1459 sqlite3_result_double(context, p->rSum); | |
1460 }else{ | |
1461 sqlite3_result_int64(context, p->iSum); | |
1462 } | |
1463 } | |
1464 } | |
1465 static void avgFinalize(sqlite3_context *context){ | |
1466 SumCtx *p; | |
1467 p = sqlite3_aggregate_context(context, 0); | |
1468 if( p && p->cnt>0 ){ | |
1469 sqlite3_result_double(context, p->rSum/(double)p->cnt); | |
1470 } | |
1471 } | |
1472 static void totalFinalize(sqlite3_context *context){ | |
1473 SumCtx *p; | |
1474 p = sqlite3_aggregate_context(context, 0); | |
1475 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */ | |
1476 sqlite3_result_double(context, p ? p->rSum : (double)0); | |
1477 } | |
1478 | |
1479 /* | |
1480 ** The following structure keeps track of state information for the | |
1481 ** count() aggregate function. | |
1482 */ | |
1483 typedef struct CountCtx CountCtx; | |
1484 struct CountCtx { | |
1485 i64 n; | |
1486 }; | |
1487 | |
1488 /* | |
1489 ** Routines to implement the count() aggregate function. | |
1490 */ | |
1491 static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){ | |
1492 CountCtx *p; | |
1493 p = sqlite3_aggregate_context(context, sizeof(*p)); | |
1494 if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){ | |
1495 p->n++; | |
1496 } | |
1497 | |
1498 #ifndef SQLITE_OMIT_DEPRECATED | |
1499 /* The sqlite3_aggregate_count() function is deprecated. But just to make | |
1500 ** sure it still operates correctly, verify that its count agrees with our | |
1501 ** internal count when using count(*) and when the total count can be | |
1502 ** expressed as a 32-bit integer. */ | |
1503 assert( argc==1 || p==0 || p->n>0x7fffffff | |
1504 || p->n==sqlite3_aggregate_count(context) ); | |
1505 #endif | |
1506 } | |
1507 static void countFinalize(sqlite3_context *context){ | |
1508 CountCtx *p; | |
1509 p = sqlite3_aggregate_context(context, 0); | |
1510 sqlite3_result_int64(context, p ? p->n : 0); | |
1511 } | |
1512 | |
1513 /* | |
1514 ** Routines to implement min() and max() aggregate functions. | |
1515 */ | |
1516 static void minmaxStep( | |
1517 sqlite3_context *context, | |
1518 int NotUsed, | |
1519 sqlite3_value **argv | |
1520 ){ | |
1521 Mem *pArg = (Mem *)argv[0]; | |
1522 Mem *pBest; | |
1523 UNUSED_PARAMETER(NotUsed); | |
1524 | |
1525 pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest)); | |
1526 if( !pBest ) return; | |
1527 | |
1528 if( sqlite3_value_type(argv[0])==SQLITE_NULL ){ | |
1529 if( pBest->flags ) sqlite3SkipAccumulatorLoad(context); | |
1530 }else if( pBest->flags ){ | |
1531 int max; | |
1532 int cmp; | |
1533 CollSeq *pColl = sqlite3GetFuncCollSeq(context); | |
1534 /* This step function is used for both the min() and max() aggregates, | |
1535 ** the only difference between the two being that the sense of the | |
1536 ** comparison is inverted. For the max() aggregate, the | |
1537 ** sqlite3_user_data() function returns (void *)-1. For min() it | |
1538 ** returns (void *)db, where db is the sqlite3* database pointer. | |
1539 ** Therefore the next statement sets variable 'max' to 1 for the max() | |
1540 ** aggregate, or 0 for min(). | |
1541 */ | |
1542 max = sqlite3_user_data(context)!=0; | |
1543 cmp = sqlite3MemCompare(pBest, pArg, pColl); | |
1544 if( (max && cmp<0) || (!max && cmp>0) ){ | |
1545 sqlite3VdbeMemCopy(pBest, pArg); | |
1546 }else{ | |
1547 sqlite3SkipAccumulatorLoad(context); | |
1548 } | |
1549 }else{ | |
1550 pBest->db = sqlite3_context_db_handle(context); | |
1551 sqlite3VdbeMemCopy(pBest, pArg); | |
1552 } | |
1553 } | |
1554 static void minMaxFinalize(sqlite3_context *context){ | |
1555 sqlite3_value *pRes; | |
1556 pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0); | |
1557 if( pRes ){ | |
1558 if( pRes->flags ){ | |
1559 sqlite3_result_value(context, pRes); | |
1560 } | |
1561 sqlite3VdbeMemRelease(pRes); | |
1562 } | |
1563 } | |
1564 | |
1565 /* | |
1566 ** group_concat(EXPR, ?SEPARATOR?) | |
1567 */ | |
1568 static void groupConcatStep( | |
1569 sqlite3_context *context, | |
1570 int argc, | |
1571 sqlite3_value **argv | |
1572 ){ | |
1573 const char *zVal; | |
1574 StrAccum *pAccum; | |
1575 const char *zSep; | |
1576 int nVal, nSep; | |
1577 assert( argc==1 || argc==2 ); | |
1578 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return; | |
1579 pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum)); | |
1580 | |
1581 if( pAccum ){ | |
1582 sqlite3 *db = sqlite3_context_db_handle(context); | |
1583 int firstTerm = pAccum->mxAlloc==0; | |
1584 pAccum->mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH]; | |
1585 if( !firstTerm ){ | |
1586 if( argc==2 ){ | |
1587 zSep = (char*)sqlite3_value_text(argv[1]); | |
1588 nSep = sqlite3_value_bytes(argv[1]); | |
1589 }else{ | |
1590 zSep = ","; | |
1591 nSep = 1; | |
1592 } | |
1593 if( nSep ) sqlite3StrAccumAppend(pAccum, zSep, nSep); | |
1594 } | |
1595 zVal = (char*)sqlite3_value_text(argv[0]); | |
1596 nVal = sqlite3_value_bytes(argv[0]); | |
1597 if( zVal ) sqlite3StrAccumAppend(pAccum, zVal, nVal); | |
1598 } | |
1599 } | |
1600 static void groupConcatFinalize(sqlite3_context *context){ | |
1601 StrAccum *pAccum; | |
1602 pAccum = sqlite3_aggregate_context(context, 0); | |
1603 if( pAccum ){ | |
1604 if( pAccum->accError==STRACCUM_TOOBIG ){ | |
1605 sqlite3_result_error_toobig(context); | |
1606 }else if( pAccum->accError==STRACCUM_NOMEM ){ | |
1607 sqlite3_result_error_nomem(context); | |
1608 }else{ | |
1609 sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1, | |
1610 sqlite3_free); | |
1611 } | |
1612 } | |
1613 } | |
1614 | |
1615 /* | |
1616 ** This routine does per-connection function registration. Most | |
1617 ** of the built-in functions above are part of the global function set. | |
1618 ** This routine only deals with those that are not global. | |
1619 */ | |
1620 void sqlite3RegisterBuiltinFunctions(sqlite3 *db){ | |
1621 int rc = sqlite3_overload_function(db, "MATCH", 2); | |
1622 assert( rc==SQLITE_NOMEM || rc==SQLITE_OK ); | |
1623 if( rc==SQLITE_NOMEM ){ | |
1624 db->mallocFailed = 1; | |
1625 } | |
1626 } | |
1627 | |
1628 /* | |
1629 ** Set the LIKEOPT flag on the 2-argument function with the given name. | |
1630 */ | |
1631 static void setLikeOptFlag(sqlite3 *db, const char *zName, u8 flagVal){ | |
1632 FuncDef *pDef; | |
1633 pDef = sqlite3FindFunction(db, zName, sqlite3Strlen30(zName), | |
1634 2, SQLITE_UTF8, 0); | |
1635 if( ALWAYS(pDef) ){ | |
1636 pDef->funcFlags |= flagVal; | |
1637 } | |
1638 } | |
1639 | |
1640 /* | |
1641 ** Register the built-in LIKE and GLOB functions. The caseSensitive | |
1642 ** parameter determines whether or not the LIKE operator is case | |
1643 ** sensitive. GLOB is always case sensitive. | |
1644 */ | |
1645 void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){ | |
1646 struct compareInfo *pInfo; | |
1647 if( caseSensitive ){ | |
1648 pInfo = (struct compareInfo*)&likeInfoAlt; | |
1649 }else{ | |
1650 pInfo = (struct compareInfo*)&likeInfoNorm; | |
1651 } | |
1652 sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0); | |
1653 sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0); | |
1654 sqlite3CreateFunc(db, "glob", 2, SQLITE_UTF8, | |
1655 (struct compareInfo*)&globInfo, likeFunc, 0, 0, 0); | |
1656 setLikeOptFlag(db, "glob", SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE); | |
1657 setLikeOptFlag(db, "like", | |
1658 caseSensitive ? (SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE) : SQLITE_FUNC_LIKE); | |
1659 } | |
1660 | |
1661 /* | |
1662 ** pExpr points to an expression which implements a function. If | |
1663 ** it is appropriate to apply the LIKE optimization to that function | |
1664 ** then set aWc[0] through aWc[2] to the wildcard characters and | |
1665 ** return TRUE. If the function is not a LIKE-style function then | |
1666 ** return FALSE. | |
1667 ** | |
1668 ** *pIsNocase is set to true if uppercase and lowercase are equivalent for | |
1669 ** the function (default for LIKE). If the function makes the distinction | |
1670 ** between uppercase and lowercase (as does GLOB) then *pIsNocase is set to | |
1671 ** false. | |
1672 */ | |
1673 int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){ | |
1674 FuncDef *pDef; | |
1675 if( pExpr->op!=TK_FUNCTION | |
1676 || !pExpr->x.pList | |
1677 || pExpr->x.pList->nExpr!=2 | |
1678 ){ | |
1679 return 0; | |
1680 } | |
1681 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); | |
1682 pDef = sqlite3FindFunction(db, pExpr->u.zToken, | |
1683 sqlite3Strlen30(pExpr->u.zToken), | |
1684 2, SQLITE_UTF8, 0); | |
1685 if( NEVER(pDef==0) || (pDef->funcFlags & SQLITE_FUNC_LIKE)==0 ){ | |
1686 return 0; | |
1687 } | |
1688 | |
1689 /* The memcpy() statement assumes that the wildcard characters are | |
1690 ** the first three statements in the compareInfo structure. The | |
1691 ** asserts() that follow verify that assumption | |
1692 */ | |
1693 memcpy(aWc, pDef->pUserData, 3); | |
1694 assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll ); | |
1695 assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne ); | |
1696 assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet ); | |
1697 *pIsNocase = (pDef->funcFlags & SQLITE_FUNC_CASE)==0; | |
1698 return 1; | |
1699 } | |
1700 | |
1701 /* | |
1702 ** All of the FuncDef structures in the aBuiltinFunc[] array above | |
1703 ** to the global function hash table. This occurs at start-time (as | |
1704 ** a consequence of calling sqlite3_initialize()). | |
1705 ** | |
1706 ** After this routine runs | |
1707 */ | |
1708 void sqlite3RegisterGlobalFunctions(void){ | |
1709 /* | |
1710 ** The following array holds FuncDef structures for all of the functions | |
1711 ** defined in this file. | |
1712 ** | |
1713 ** The array cannot be constant since changes are made to the | |
1714 ** FuncDef.pHash elements at start-time. The elements of this array | |
1715 ** are read-only after initialization is complete. | |
1716 */ | |
1717 static SQLITE_WSD FuncDef aBuiltinFunc[] = { | |
1718 FUNCTION(ltrim, 1, 1, 0, trimFunc ), | |
1719 FUNCTION(ltrim, 2, 1, 0, trimFunc ), | |
1720 FUNCTION(rtrim, 1, 2, 0, trimFunc ), | |
1721 FUNCTION(rtrim, 2, 2, 0, trimFunc ), | |
1722 FUNCTION(trim, 1, 3, 0, trimFunc ), | |
1723 FUNCTION(trim, 2, 3, 0, trimFunc ), | |
1724 FUNCTION(min, -1, 0, 1, minmaxFunc ), | |
1725 FUNCTION(min, 0, 0, 1, 0 ), | |
1726 AGGREGATE2(min, 1, 0, 1, minmaxStep, minMaxFinalize, | |
1727 SQLITE_FUNC_MINMAX ), | |
1728 FUNCTION(max, -1, 1, 1, minmaxFunc ), | |
1729 FUNCTION(max, 0, 1, 1, 0 ), | |
1730 AGGREGATE2(max, 1, 1, 1, minmaxStep, minMaxFinalize, | |
1731 SQLITE_FUNC_MINMAX ), | |
1732 FUNCTION2(typeof, 1, 0, 0, typeofFunc, SQLITE_FUNC_TYPEOF), | |
1733 FUNCTION2(length, 1, 0, 0, lengthFunc, SQLITE_FUNC_LENGTH), | |
1734 FUNCTION(instr, 2, 0, 0, instrFunc ), | |
1735 FUNCTION(substr, 2, 0, 0, substrFunc ), | |
1736 FUNCTION(substr, 3, 0, 0, substrFunc ), | |
1737 FUNCTION(printf, -1, 0, 0, printfFunc ), | |
1738 FUNCTION(unicode, 1, 0, 0, unicodeFunc ), | |
1739 FUNCTION(char, -1, 0, 0, charFunc ), | |
1740 FUNCTION(abs, 1, 0, 0, absFunc ), | |
1741 #ifndef SQLITE_OMIT_FLOATING_POINT | |
1742 FUNCTION(round, 1, 0, 0, roundFunc ), | |
1743 FUNCTION(round, 2, 0, 0, roundFunc ), | |
1744 #endif | |
1745 FUNCTION(upper, 1, 0, 0, upperFunc ), | |
1746 FUNCTION(lower, 1, 0, 0, lowerFunc ), | |
1747 FUNCTION(coalesce, 1, 0, 0, 0 ), | |
1748 FUNCTION(coalesce, 0, 0, 0, 0 ), | |
1749 FUNCTION2(coalesce, -1, 0, 0, noopFunc, SQLITE_FUNC_COALESCE), | |
1750 FUNCTION(hex, 1, 0, 0, hexFunc ), | |
1751 FUNCTION2(ifnull, 2, 0, 0, noopFunc, SQLITE_FUNC_COALESCE), | |
1752 FUNCTION2(unlikely, 1, 0, 0, noopFunc, SQLITE_FUNC_UNLIKELY), | |
1753 FUNCTION2(likelihood, 2, 0, 0, noopFunc, SQLITE_FUNC_UNLIKELY), | |
1754 FUNCTION2(likely, 1, 0, 0, noopFunc, SQLITE_FUNC_UNLIKELY), | |
1755 VFUNCTION(random, 0, 0, 0, randomFunc ), | |
1756 VFUNCTION(randomblob, 1, 0, 0, randomBlob ), | |
1757 FUNCTION(nullif, 2, 0, 1, nullifFunc ), | |
1758 DFUNCTION(sqlite_version, 0, 0, 0, versionFunc ), | |
1759 DFUNCTION(sqlite_source_id, 0, 0, 0, sourceidFunc ), | |
1760 FUNCTION(sqlite_log, 2, 0, 0, errlogFunc ), | |
1761 #if SQLITE_USER_AUTHENTICATION | |
1762 FUNCTION(sqlite_crypt, 2, 0, 0, sqlite3CryptFunc ), | |
1763 #endif | |
1764 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS | |
1765 DFUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc ), | |
1766 DFUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc ), | |
1767 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */ | |
1768 FUNCTION(quote, 1, 0, 0, quoteFunc ), | |
1769 VFUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid), | |
1770 VFUNCTION(changes, 0, 0, 0, changes ), | |
1771 VFUNCTION(total_changes, 0, 0, 0, total_changes ), | |
1772 FUNCTION(replace, 3, 0, 0, replaceFunc ), | |
1773 FUNCTION(zeroblob, 1, 0, 0, zeroblobFunc ), | |
1774 #ifdef SQLITE_SOUNDEX | |
1775 FUNCTION(soundex, 1, 0, 0, soundexFunc ), | |
1776 #endif | |
1777 #ifndef SQLITE_OMIT_LOAD_EXTENSION | |
1778 VFUNCTION(load_extension, 1, 0, 0, loadExt ), | |
1779 VFUNCTION(load_extension, 2, 0, 0, loadExt ), | |
1780 #endif | |
1781 AGGREGATE(sum, 1, 0, 0, sumStep, sumFinalize ), | |
1782 AGGREGATE(total, 1, 0, 0, sumStep, totalFinalize ), | |
1783 AGGREGATE(avg, 1, 0, 0, sumStep, avgFinalize ), | |
1784 AGGREGATE2(count, 0, 0, 0, countStep, countFinalize, | |
1785 SQLITE_FUNC_COUNT ), | |
1786 AGGREGATE(count, 1, 0, 0, countStep, countFinalize ), | |
1787 AGGREGATE(group_concat, 1, 0, 0, groupConcatStep, groupConcatFinalize), | |
1788 AGGREGATE(group_concat, 2, 0, 0, groupConcatStep, groupConcatFinalize), | |
1789 | |
1790 LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE), | |
1791 #ifdef SQLITE_CASE_SENSITIVE_LIKE | |
1792 LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE), | |
1793 LIKEFUNC(like, 3, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE), | |
1794 #else | |
1795 LIKEFUNC(like, 2, &likeInfoNorm, SQLITE_FUNC_LIKE), | |
1796 LIKEFUNC(like, 3, &likeInfoNorm, SQLITE_FUNC_LIKE), | |
1797 #endif | |
1798 }; | |
1799 | |
1800 int i; | |
1801 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); | |
1802 FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aBuiltinFunc); | |
1803 | |
1804 for(i=0; i<ArraySize(aBuiltinFunc); i++){ | |
1805 sqlite3FuncDefInsert(pHash, &aFunc[i]); | |
1806 } | |
1807 sqlite3RegisterDateTimeFunctions(); | |
1808 #ifndef SQLITE_OMIT_ALTERTABLE | |
1809 sqlite3AlterFunctions(); | |
1810 #endif | |
1811 #if defined(SQLITE_ENABLE_STAT3) || defined(SQLITE_ENABLE_STAT4) | |
1812 sqlite3AnalyzeFunctions(); | |
1813 #endif | |
1814 } | |
OLD | NEW |