OLD | NEW |
| (Empty) |
1 /* | |
2 ** | |
3 ** The author disclaims copyright to this source code. In place of | |
4 ** a legal notice, here is a blessing: | |
5 ** | |
6 ** May you do good and not evil. | |
7 ** May you find forgiveness for yourself and forgive others. | |
8 ** May you share freely, never taking more than you give. | |
9 ** | |
10 ************************************************************************* | |
11 ** This file contains code used by the compiler to add foreign key | |
12 ** support to compiled SQL statements. | |
13 */ | |
14 #include "sqliteInt.h" | |
15 | |
16 #ifndef SQLITE_OMIT_FOREIGN_KEY | |
17 #ifndef SQLITE_OMIT_TRIGGER | |
18 | |
19 /* | |
20 ** Deferred and Immediate FKs | |
21 ** -------------------------- | |
22 ** | |
23 ** Foreign keys in SQLite come in two flavours: deferred and immediate. | |
24 ** If an immediate foreign key constraint is violated, | |
25 ** SQLITE_CONSTRAINT_FOREIGNKEY is returned and the current | |
26 ** statement transaction rolled back. If a | |
27 ** deferred foreign key constraint is violated, no action is taken | |
28 ** immediately. However if the application attempts to commit the | |
29 ** transaction before fixing the constraint violation, the attempt fails. | |
30 ** | |
31 ** Deferred constraints are implemented using a simple counter associated | |
32 ** with the database handle. The counter is set to zero each time a | |
33 ** database transaction is opened. Each time a statement is executed | |
34 ** that causes a foreign key violation, the counter is incremented. Each | |
35 ** time a statement is executed that removes an existing violation from | |
36 ** the database, the counter is decremented. When the transaction is | |
37 ** committed, the commit fails if the current value of the counter is | |
38 ** greater than zero. This scheme has two big drawbacks: | |
39 ** | |
40 ** * When a commit fails due to a deferred foreign key constraint, | |
41 ** there is no way to tell which foreign constraint is not satisfied, | |
42 ** or which row it is not satisfied for. | |
43 ** | |
44 ** * If the database contains foreign key violations when the | |
45 ** transaction is opened, this may cause the mechanism to malfunction. | |
46 ** | |
47 ** Despite these problems, this approach is adopted as it seems simpler | |
48 ** than the alternatives. | |
49 ** | |
50 ** INSERT operations: | |
51 ** | |
52 ** I.1) For each FK for which the table is the child table, search | |
53 ** the parent table for a match. If none is found increment the | |
54 ** constraint counter. | |
55 ** | |
56 ** I.2) For each FK for which the table is the parent table, | |
57 ** search the child table for rows that correspond to the new | |
58 ** row in the parent table. Decrement the counter for each row | |
59 ** found (as the constraint is now satisfied). | |
60 ** | |
61 ** DELETE operations: | |
62 ** | |
63 ** D.1) For each FK for which the table is the child table, | |
64 ** search the parent table for a row that corresponds to the | |
65 ** deleted row in the child table. If such a row is not found, | |
66 ** decrement the counter. | |
67 ** | |
68 ** D.2) For each FK for which the table is the parent table, search | |
69 ** the child table for rows that correspond to the deleted row | |
70 ** in the parent table. For each found increment the counter. | |
71 ** | |
72 ** UPDATE operations: | |
73 ** | |
74 ** An UPDATE command requires that all 4 steps above are taken, but only | |
75 ** for FK constraints for which the affected columns are actually | |
76 ** modified (values must be compared at runtime). | |
77 ** | |
78 ** Note that I.1 and D.1 are very similar operations, as are I.2 and D.2. | |
79 ** This simplifies the implementation a bit. | |
80 ** | |
81 ** For the purposes of immediate FK constraints, the OR REPLACE conflict | |
82 ** resolution is considered to delete rows before the new row is inserted. | |
83 ** If a delete caused by OR REPLACE violates an FK constraint, an exception | |
84 ** is thrown, even if the FK constraint would be satisfied after the new | |
85 ** row is inserted. | |
86 ** | |
87 ** Immediate constraints are usually handled similarly. The only difference | |
88 ** is that the counter used is stored as part of each individual statement | |
89 ** object (struct Vdbe). If, after the statement has run, its immediate | |
90 ** constraint counter is greater than zero, | |
91 ** it returns SQLITE_CONSTRAINT_FOREIGNKEY | |
92 ** and the statement transaction is rolled back. An exception is an INSERT | |
93 ** statement that inserts a single row only (no triggers). In this case, | |
94 ** instead of using a counter, an exception is thrown immediately if the | |
95 ** INSERT violates a foreign key constraint. This is necessary as such | |
96 ** an INSERT does not open a statement transaction. | |
97 ** | |
98 ** TODO: How should dropping a table be handled? How should renaming a | |
99 ** table be handled? | |
100 ** | |
101 ** | |
102 ** Query API Notes | |
103 ** --------------- | |
104 ** | |
105 ** Before coding an UPDATE or DELETE row operation, the code-generator | |
106 ** for those two operations needs to know whether or not the operation | |
107 ** requires any FK processing and, if so, which columns of the original | |
108 ** row are required by the FK processing VDBE code (i.e. if FKs were | |
109 ** implemented using triggers, which of the old.* columns would be | |
110 ** accessed). No information is required by the code-generator before | |
111 ** coding an INSERT operation. The functions used by the UPDATE/DELETE | |
112 ** generation code to query for this information are: | |
113 ** | |
114 ** sqlite3FkRequired() - Test to see if FK processing is required. | |
115 ** sqlite3FkOldmask() - Query for the set of required old.* columns. | |
116 ** | |
117 ** | |
118 ** Externally accessible module functions | |
119 ** -------------------------------------- | |
120 ** | |
121 ** sqlite3FkCheck() - Check for foreign key violations. | |
122 ** sqlite3FkActions() - Code triggers for ON UPDATE/ON DELETE actions. | |
123 ** sqlite3FkDelete() - Delete an FKey structure. | |
124 */ | |
125 | |
126 /* | |
127 ** VDBE Calling Convention | |
128 ** ----------------------- | |
129 ** | |
130 ** Example: | |
131 ** | |
132 ** For the following INSERT statement: | |
133 ** | |
134 ** CREATE TABLE t1(a, b INTEGER PRIMARY KEY, c); | |
135 ** INSERT INTO t1 VALUES(1, 2, 3.1); | |
136 ** | |
137 ** Register (x): 2 (type integer) | |
138 ** Register (x+1): 1 (type integer) | |
139 ** Register (x+2): NULL (type NULL) | |
140 ** Register (x+3): 3.1 (type real) | |
141 */ | |
142 | |
143 /* | |
144 ** A foreign key constraint requires that the key columns in the parent | |
145 ** table are collectively subject to a UNIQUE or PRIMARY KEY constraint. | |
146 ** Given that pParent is the parent table for foreign key constraint pFKey, | |
147 ** search the schema for a unique index on the parent key columns. | |
148 ** | |
149 ** If successful, zero is returned. If the parent key is an INTEGER PRIMARY | |
150 ** KEY column, then output variable *ppIdx is set to NULL. Otherwise, *ppIdx | |
151 ** is set to point to the unique index. | |
152 ** | |
153 ** If the parent key consists of a single column (the foreign key constraint | |
154 ** is not a composite foreign key), output variable *paiCol is set to NULL. | |
155 ** Otherwise, it is set to point to an allocated array of size N, where | |
156 ** N is the number of columns in the parent key. The first element of the | |
157 ** array is the index of the child table column that is mapped by the FK | |
158 ** constraint to the parent table column stored in the left-most column | |
159 ** of index *ppIdx. The second element of the array is the index of the | |
160 ** child table column that corresponds to the second left-most column of | |
161 ** *ppIdx, and so on. | |
162 ** | |
163 ** If the required index cannot be found, either because: | |
164 ** | |
165 ** 1) The named parent key columns do not exist, or | |
166 ** | |
167 ** 2) The named parent key columns do exist, but are not subject to a | |
168 ** UNIQUE or PRIMARY KEY constraint, or | |
169 ** | |
170 ** 3) No parent key columns were provided explicitly as part of the | |
171 ** foreign key definition, and the parent table does not have a | |
172 ** PRIMARY KEY, or | |
173 ** | |
174 ** 4) No parent key columns were provided explicitly as part of the | |
175 ** foreign key definition, and the PRIMARY KEY of the parent table | |
176 ** consists of a different number of columns to the child key in | |
177 ** the child table. | |
178 ** | |
179 ** then non-zero is returned, and a "foreign key mismatch" error loaded | |
180 ** into pParse. If an OOM error occurs, non-zero is returned and the | |
181 ** pParse->db->mallocFailed flag is set. | |
182 */ | |
183 int sqlite3FkLocateIndex( | |
184 Parse *pParse, /* Parse context to store any error in */ | |
185 Table *pParent, /* Parent table of FK constraint pFKey */ | |
186 FKey *pFKey, /* Foreign key to find index for */ | |
187 Index **ppIdx, /* OUT: Unique index on parent table */ | |
188 int **paiCol /* OUT: Map of index columns in pFKey */ | |
189 ){ | |
190 Index *pIdx = 0; /* Value to return via *ppIdx */ | |
191 int *aiCol = 0; /* Value to return via *paiCol */ | |
192 int nCol = pFKey->nCol; /* Number of columns in parent key */ | |
193 char *zKey = pFKey->aCol[0].zCol; /* Name of left-most parent key column */ | |
194 | |
195 /* The caller is responsible for zeroing output parameters. */ | |
196 assert( ppIdx && *ppIdx==0 ); | |
197 assert( !paiCol || *paiCol==0 ); | |
198 assert( pParse ); | |
199 | |
200 /* If this is a non-composite (single column) foreign key, check if it | |
201 ** maps to the INTEGER PRIMARY KEY of table pParent. If so, leave *ppIdx | |
202 ** and *paiCol set to zero and return early. | |
203 ** | |
204 ** Otherwise, for a composite foreign key (more than one column), allocate | |
205 ** space for the aiCol array (returned via output parameter *paiCol). | |
206 ** Non-composite foreign keys do not require the aiCol array. | |
207 */ | |
208 if( nCol==1 ){ | |
209 /* The FK maps to the IPK if any of the following are true: | |
210 ** | |
211 ** 1) There is an INTEGER PRIMARY KEY column and the FK is implicitly | |
212 ** mapped to the primary key of table pParent, or | |
213 ** 2) The FK is explicitly mapped to a column declared as INTEGER | |
214 ** PRIMARY KEY. | |
215 */ | |
216 if( pParent->iPKey>=0 ){ | |
217 if( !zKey ) return 0; | |
218 if( !sqlite3StrICmp(pParent->aCol[pParent->iPKey].zName, zKey) ) return 0; | |
219 } | |
220 }else if( paiCol ){ | |
221 assert( nCol>1 ); | |
222 aiCol = (int *)sqlite3DbMallocRaw(pParse->db, nCol*sizeof(int)); | |
223 if( !aiCol ) return 1; | |
224 *paiCol = aiCol; | |
225 } | |
226 | |
227 for(pIdx=pParent->pIndex; pIdx; pIdx=pIdx->pNext){ | |
228 if( pIdx->nKeyCol==nCol && IsUniqueIndex(pIdx) ){ | |
229 /* pIdx is a UNIQUE index (or a PRIMARY KEY) and has the right number | |
230 ** of columns. If each indexed column corresponds to a foreign key | |
231 ** column of pFKey, then this index is a winner. */ | |
232 | |
233 if( zKey==0 ){ | |
234 /* If zKey is NULL, then this foreign key is implicitly mapped to | |
235 ** the PRIMARY KEY of table pParent. The PRIMARY KEY index may be | |
236 ** identified by the test. */ | |
237 if( IsPrimaryKeyIndex(pIdx) ){ | |
238 if( aiCol ){ | |
239 int i; | |
240 for(i=0; i<nCol; i++) aiCol[i] = pFKey->aCol[i].iFrom; | |
241 } | |
242 break; | |
243 } | |
244 }else{ | |
245 /* If zKey is non-NULL, then this foreign key was declared to | |
246 ** map to an explicit list of columns in table pParent. Check if this | |
247 ** index matches those columns. Also, check that the index uses | |
248 ** the default collation sequences for each column. */ | |
249 int i, j; | |
250 for(i=0; i<nCol; i++){ | |
251 i16 iCol = pIdx->aiColumn[i]; /* Index of column in parent tbl */ | |
252 const char *zDfltColl; /* Def. collation for column */ | |
253 char *zIdxCol; /* Name of indexed column */ | |
254 | |
255 if( iCol<0 ) break; /* No foreign keys against expression indexes */ | |
256 | |
257 /* If the index uses a collation sequence that is different from | |
258 ** the default collation sequence for the column, this index is | |
259 ** unusable. Bail out early in this case. */ | |
260 zDfltColl = pParent->aCol[iCol].zColl; | |
261 if( !zDfltColl ) zDfltColl = sqlite3StrBINARY; | |
262 if( sqlite3StrICmp(pIdx->azColl[i], zDfltColl) ) break; | |
263 | |
264 zIdxCol = pParent->aCol[iCol].zName; | |
265 for(j=0; j<nCol; j++){ | |
266 if( sqlite3StrICmp(pFKey->aCol[j].zCol, zIdxCol)==0 ){ | |
267 if( aiCol ) aiCol[i] = pFKey->aCol[j].iFrom; | |
268 break; | |
269 } | |
270 } | |
271 if( j==nCol ) break; | |
272 } | |
273 if( i==nCol ) break; /* pIdx is usable */ | |
274 } | |
275 } | |
276 } | |
277 | |
278 if( !pIdx ){ | |
279 if( !pParse->disableTriggers ){ | |
280 sqlite3ErrorMsg(pParse, | |
281 "foreign key mismatch - \"%w\" referencing \"%w\"", | |
282 pFKey->pFrom->zName, pFKey->zTo); | |
283 } | |
284 sqlite3DbFree(pParse->db, aiCol); | |
285 return 1; | |
286 } | |
287 | |
288 *ppIdx = pIdx; | |
289 return 0; | |
290 } | |
291 | |
292 /* | |
293 ** This function is called when a row is inserted into or deleted from the | |
294 ** child table of foreign key constraint pFKey. If an SQL UPDATE is executed | |
295 ** on the child table of pFKey, this function is invoked twice for each row | |
296 ** affected - once to "delete" the old row, and then again to "insert" the | |
297 ** new row. | |
298 ** | |
299 ** Each time it is called, this function generates VDBE code to locate the | |
300 ** row in the parent table that corresponds to the row being inserted into | |
301 ** or deleted from the child table. If the parent row can be found, no | |
302 ** special action is taken. Otherwise, if the parent row can *not* be | |
303 ** found in the parent table: | |
304 ** | |
305 ** Operation | FK type | Action taken | |
306 ** -------------------------------------------------------------------------- | |
307 ** INSERT immediate Increment the "immediate constraint counter". | |
308 ** | |
309 ** DELETE immediate Decrement the "immediate constraint counter". | |
310 ** | |
311 ** INSERT deferred Increment the "deferred constraint counter". | |
312 ** | |
313 ** DELETE deferred Decrement the "deferred constraint counter". | |
314 ** | |
315 ** These operations are identified in the comment at the top of this file | |
316 ** (fkey.c) as "I.1" and "D.1". | |
317 */ | |
318 static void fkLookupParent( | |
319 Parse *pParse, /* Parse context */ | |
320 int iDb, /* Index of database housing pTab */ | |
321 Table *pTab, /* Parent table of FK pFKey */ | |
322 Index *pIdx, /* Unique index on parent key columns in pTab */ | |
323 FKey *pFKey, /* Foreign key constraint */ | |
324 int *aiCol, /* Map from parent key columns to child table columns */ | |
325 int regData, /* Address of array containing child table row */ | |
326 int nIncr, /* Increment constraint counter by this */ | |
327 int isIgnore /* If true, pretend pTab contains all NULL values */ | |
328 ){ | |
329 int i; /* Iterator variable */ | |
330 Vdbe *v = sqlite3GetVdbe(pParse); /* Vdbe to add code to */ | |
331 int iCur = pParse->nTab - 1; /* Cursor number to use */ | |
332 int iOk = sqlite3VdbeMakeLabel(v); /* jump here if parent key found */ | |
333 | |
334 /* If nIncr is less than zero, then check at runtime if there are any | |
335 ** outstanding constraints to resolve. If there are not, there is no need | |
336 ** to check if deleting this row resolves any outstanding violations. | |
337 ** | |
338 ** Check if any of the key columns in the child table row are NULL. If | |
339 ** any are, then the constraint is considered satisfied. No need to | |
340 ** search for a matching row in the parent table. */ | |
341 if( nIncr<0 ){ | |
342 sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, iOk); | |
343 VdbeCoverage(v); | |
344 } | |
345 for(i=0; i<pFKey->nCol; i++){ | |
346 int iReg = aiCol[i] + regData + 1; | |
347 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iOk); VdbeCoverage(v); | |
348 } | |
349 | |
350 if( isIgnore==0 ){ | |
351 if( pIdx==0 ){ | |
352 /* If pIdx is NULL, then the parent key is the INTEGER PRIMARY KEY | |
353 ** column of the parent table (table pTab). */ | |
354 int iMustBeInt; /* Address of MustBeInt instruction */ | |
355 int regTemp = sqlite3GetTempReg(pParse); | |
356 | |
357 /* Invoke MustBeInt to coerce the child key value to an integer (i.e. | |
358 ** apply the affinity of the parent key). If this fails, then there | |
359 ** is no matching parent key. Before using MustBeInt, make a copy of | |
360 ** the value. Otherwise, the value inserted into the child key column | |
361 ** will have INTEGER affinity applied to it, which may not be correct. */ | |
362 sqlite3VdbeAddOp2(v, OP_SCopy, aiCol[0]+1+regData, regTemp); | |
363 iMustBeInt = sqlite3VdbeAddOp2(v, OP_MustBeInt, regTemp, 0); | |
364 VdbeCoverage(v); | |
365 | |
366 /* If the parent table is the same as the child table, and we are about | |
367 ** to increment the constraint-counter (i.e. this is an INSERT operation), | |
368 ** then check if the row being inserted matches itself. If so, do not | |
369 ** increment the constraint-counter. */ | |
370 if( pTab==pFKey->pFrom && nIncr==1 ){ | |
371 sqlite3VdbeAddOp3(v, OP_Eq, regData, iOk, regTemp); VdbeCoverage(v); | |
372 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL); | |
373 } | |
374 | |
375 sqlite3OpenTable(pParse, iCur, iDb, pTab, OP_OpenRead); | |
376 sqlite3VdbeAddOp3(v, OP_NotExists, iCur, 0, regTemp); VdbeCoverage(v); | |
377 sqlite3VdbeGoto(v, iOk); | |
378 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2); | |
379 sqlite3VdbeJumpHere(v, iMustBeInt); | |
380 sqlite3ReleaseTempReg(pParse, regTemp); | |
381 }else{ | |
382 int nCol = pFKey->nCol; | |
383 int regTemp = sqlite3GetTempRange(pParse, nCol); | |
384 int regRec = sqlite3GetTempReg(pParse); | |
385 | |
386 sqlite3VdbeAddOp3(v, OP_OpenRead, iCur, pIdx->tnum, iDb); | |
387 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); | |
388 for(i=0; i<nCol; i++){ | |
389 sqlite3VdbeAddOp2(v, OP_Copy, aiCol[i]+1+regData, regTemp+i); | |
390 } | |
391 | |
392 /* If the parent table is the same as the child table, and we are about | |
393 ** to increment the constraint-counter (i.e. this is an INSERT operation), | |
394 ** then check if the row being inserted matches itself. If so, do not | |
395 ** increment the constraint-counter. | |
396 ** | |
397 ** If any of the parent-key values are NULL, then the row cannot match | |
398 ** itself. So set JUMPIFNULL to make sure we do the OP_Found if any | |
399 ** of the parent-key values are NULL (at this point it is known that | |
400 ** none of the child key values are). | |
401 */ | |
402 if( pTab==pFKey->pFrom && nIncr==1 ){ | |
403 int iJump = sqlite3VdbeCurrentAddr(v) + nCol + 1; | |
404 for(i=0; i<nCol; i++){ | |
405 int iChild = aiCol[i]+1+regData; | |
406 int iParent = pIdx->aiColumn[i]+1+regData; | |
407 assert( pIdx->aiColumn[i]>=0 ); | |
408 assert( aiCol[i]!=pTab->iPKey ); | |
409 if( pIdx->aiColumn[i]==pTab->iPKey ){ | |
410 /* The parent key is a composite key that includes the IPK column */ | |
411 iParent = regData; | |
412 } | |
413 sqlite3VdbeAddOp3(v, OP_Ne, iChild, iJump, iParent); VdbeCoverage(v); | |
414 sqlite3VdbeChangeP5(v, SQLITE_JUMPIFNULL); | |
415 } | |
416 sqlite3VdbeGoto(v, iOk); | |
417 } | |
418 | |
419 sqlite3VdbeAddOp4(v, OP_MakeRecord, regTemp, nCol, regRec, | |
420 sqlite3IndexAffinityStr(pParse->db,pIdx), nCol); | |
421 sqlite3VdbeAddOp4Int(v, OP_Found, iCur, iOk, regRec, 0); VdbeCoverage(v); | |
422 | |
423 sqlite3ReleaseTempReg(pParse, regRec); | |
424 sqlite3ReleaseTempRange(pParse, regTemp, nCol); | |
425 } | |
426 } | |
427 | |
428 if( !pFKey->isDeferred && !(pParse->db->flags & SQLITE_DeferFKs) | |
429 && !pParse->pToplevel | |
430 && !pParse->isMultiWrite | |
431 ){ | |
432 /* Special case: If this is an INSERT statement that will insert exactly | |
433 ** one row into the table, raise a constraint immediately instead of | |
434 ** incrementing a counter. This is necessary as the VM code is being | |
435 ** generated for will not open a statement transaction. */ | |
436 assert( nIncr==1 ); | |
437 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, | |
438 OE_Abort, 0, P4_STATIC, P5_ConstraintFK); | |
439 }else{ | |
440 if( nIncr>0 && pFKey->isDeferred==0 ){ | |
441 sqlite3MayAbort(pParse); | |
442 } | |
443 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); | |
444 } | |
445 | |
446 sqlite3VdbeResolveLabel(v, iOk); | |
447 sqlite3VdbeAddOp1(v, OP_Close, iCur); | |
448 } | |
449 | |
450 | |
451 /* | |
452 ** Return an Expr object that refers to a memory register corresponding | |
453 ** to column iCol of table pTab. | |
454 ** | |
455 ** regBase is the first of an array of register that contains the data | |
456 ** for pTab. regBase itself holds the rowid. regBase+1 holds the first | |
457 ** column. regBase+2 holds the second column, and so forth. | |
458 */ | |
459 static Expr *exprTableRegister( | |
460 Parse *pParse, /* Parsing and code generating context */ | |
461 Table *pTab, /* The table whose content is at r[regBase]... */ | |
462 int regBase, /* Contents of table pTab */ | |
463 i16 iCol /* Which column of pTab is desired */ | |
464 ){ | |
465 Expr *pExpr; | |
466 Column *pCol; | |
467 const char *zColl; | |
468 sqlite3 *db = pParse->db; | |
469 | |
470 pExpr = sqlite3Expr(db, TK_REGISTER, 0); | |
471 if( pExpr ){ | |
472 if( iCol>=0 && iCol!=pTab->iPKey ){ | |
473 pCol = &pTab->aCol[iCol]; | |
474 pExpr->iTable = regBase + iCol + 1; | |
475 pExpr->affinity = pCol->affinity; | |
476 zColl = pCol->zColl; | |
477 if( zColl==0 ) zColl = db->pDfltColl->zName; | |
478 pExpr = sqlite3ExprAddCollateString(pParse, pExpr, zColl); | |
479 }else{ | |
480 pExpr->iTable = regBase; | |
481 pExpr->affinity = SQLITE_AFF_INTEGER; | |
482 } | |
483 } | |
484 return pExpr; | |
485 } | |
486 | |
487 /* | |
488 ** Return an Expr object that refers to column iCol of table pTab which | |
489 ** has cursor iCur. | |
490 */ | |
491 static Expr *exprTableColumn( | |
492 sqlite3 *db, /* The database connection */ | |
493 Table *pTab, /* The table whose column is desired */ | |
494 int iCursor, /* The open cursor on the table */ | |
495 i16 iCol /* The column that is wanted */ | |
496 ){ | |
497 Expr *pExpr = sqlite3Expr(db, TK_COLUMN, 0); | |
498 if( pExpr ){ | |
499 pExpr->pTab = pTab; | |
500 pExpr->iTable = iCursor; | |
501 pExpr->iColumn = iCol; | |
502 } | |
503 return pExpr; | |
504 } | |
505 | |
506 /* | |
507 ** This function is called to generate code executed when a row is deleted | |
508 ** from the parent table of foreign key constraint pFKey and, if pFKey is | |
509 ** deferred, when a row is inserted into the same table. When generating | |
510 ** code for an SQL UPDATE operation, this function may be called twice - | |
511 ** once to "delete" the old row and once to "insert" the new row. | |
512 ** | |
513 ** Parameter nIncr is passed -1 when inserting a row (as this may decrease | |
514 ** the number of FK violations in the db) or +1 when deleting one (as this | |
515 ** may increase the number of FK constraint problems). | |
516 ** | |
517 ** The code generated by this function scans through the rows in the child | |
518 ** table that correspond to the parent table row being deleted or inserted. | |
519 ** For each child row found, one of the following actions is taken: | |
520 ** | |
521 ** Operation | FK type | Action taken | |
522 ** -------------------------------------------------------------------------- | |
523 ** DELETE immediate Increment the "immediate constraint counter". | |
524 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT, | |
525 ** throw a "FOREIGN KEY constraint failed" exception. | |
526 ** | |
527 ** INSERT immediate Decrement the "immediate constraint counter". | |
528 ** | |
529 ** DELETE deferred Increment the "deferred constraint counter". | |
530 ** Or, if the ON (UPDATE|DELETE) action is RESTRICT, | |
531 ** throw a "FOREIGN KEY constraint failed" exception. | |
532 ** | |
533 ** INSERT deferred Decrement the "deferred constraint counter". | |
534 ** | |
535 ** These operations are identified in the comment at the top of this file | |
536 ** (fkey.c) as "I.2" and "D.2". | |
537 */ | |
538 static void fkScanChildren( | |
539 Parse *pParse, /* Parse context */ | |
540 SrcList *pSrc, /* The child table to be scanned */ | |
541 Table *pTab, /* The parent table */ | |
542 Index *pIdx, /* Index on parent covering the foreign key */ | |
543 FKey *pFKey, /* The foreign key linking pSrc to pTab */ | |
544 int *aiCol, /* Map from pIdx cols to child table cols */ | |
545 int regData, /* Parent row data starts here */ | |
546 int nIncr /* Amount to increment deferred counter by */ | |
547 ){ | |
548 sqlite3 *db = pParse->db; /* Database handle */ | |
549 int i; /* Iterator variable */ | |
550 Expr *pWhere = 0; /* WHERE clause to scan with */ | |
551 NameContext sNameContext; /* Context used to resolve WHERE clause */ | |
552 WhereInfo *pWInfo; /* Context used by sqlite3WhereXXX() */ | |
553 int iFkIfZero = 0; /* Address of OP_FkIfZero */ | |
554 Vdbe *v = sqlite3GetVdbe(pParse); | |
555 | |
556 assert( pIdx==0 || pIdx->pTable==pTab ); | |
557 assert( pIdx==0 || pIdx->nKeyCol==pFKey->nCol ); | |
558 assert( pIdx!=0 || pFKey->nCol==1 ); | |
559 assert( pIdx!=0 || HasRowid(pTab) ); | |
560 | |
561 if( nIncr<0 ){ | |
562 iFkIfZero = sqlite3VdbeAddOp2(v, OP_FkIfZero, pFKey->isDeferred, 0); | |
563 VdbeCoverage(v); | |
564 } | |
565 | |
566 /* Create an Expr object representing an SQL expression like: | |
567 ** | |
568 ** <parent-key1> = <child-key1> AND <parent-key2> = <child-key2> ... | |
569 ** | |
570 ** The collation sequence used for the comparison should be that of | |
571 ** the parent key columns. The affinity of the parent key column should | |
572 ** be applied to each child key value before the comparison takes place. | |
573 */ | |
574 for(i=0; i<pFKey->nCol; i++){ | |
575 Expr *pLeft; /* Value from parent table row */ | |
576 Expr *pRight; /* Column ref to child table */ | |
577 Expr *pEq; /* Expression (pLeft = pRight) */ | |
578 i16 iCol; /* Index of column in child table */ | |
579 const char *zCol; /* Name of column in child table */ | |
580 | |
581 iCol = pIdx ? pIdx->aiColumn[i] : -1; | |
582 pLeft = exprTableRegister(pParse, pTab, regData, iCol); | |
583 iCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; | |
584 assert( iCol>=0 ); | |
585 zCol = pFKey->pFrom->aCol[iCol].zName; | |
586 pRight = sqlite3Expr(db, TK_ID, zCol); | |
587 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0); | |
588 pWhere = sqlite3ExprAnd(db, pWhere, pEq); | |
589 } | |
590 | |
591 /* If the child table is the same as the parent table, then add terms | |
592 ** to the WHERE clause that prevent this entry from being scanned. | |
593 ** The added WHERE clause terms are like this: | |
594 ** | |
595 ** $current_rowid!=rowid | |
596 ** NOT( $current_a==a AND $current_b==b AND ... ) | |
597 ** | |
598 ** The first form is used for rowid tables. The second form is used | |
599 ** for WITHOUT ROWID tables. In the second form, the primary key is | |
600 ** (a,b,...) | |
601 */ | |
602 if( pTab==pFKey->pFrom && nIncr>0 ){ | |
603 Expr *pNe; /* Expression (pLeft != pRight) */ | |
604 Expr *pLeft; /* Value from parent table row */ | |
605 Expr *pRight; /* Column ref to child table */ | |
606 if( HasRowid(pTab) ){ | |
607 pLeft = exprTableRegister(pParse, pTab, regData, -1); | |
608 pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, -1); | |
609 pNe = sqlite3PExpr(pParse, TK_NE, pLeft, pRight, 0); | |
610 }else{ | |
611 Expr *pEq, *pAll = 0; | |
612 Index *pPk = sqlite3PrimaryKeyIndex(pTab); | |
613 assert( pIdx!=0 ); | |
614 for(i=0; i<pPk->nKeyCol; i++){ | |
615 i16 iCol = pIdx->aiColumn[i]; | |
616 assert( iCol>=0 ); | |
617 pLeft = exprTableRegister(pParse, pTab, regData, iCol); | |
618 pRight = exprTableColumn(db, pTab, pSrc->a[0].iCursor, iCol); | |
619 pEq = sqlite3PExpr(pParse, TK_EQ, pLeft, pRight, 0); | |
620 pAll = sqlite3ExprAnd(db, pAll, pEq); | |
621 } | |
622 pNe = sqlite3PExpr(pParse, TK_NOT, pAll, 0, 0); | |
623 } | |
624 pWhere = sqlite3ExprAnd(db, pWhere, pNe); | |
625 } | |
626 | |
627 /* Resolve the references in the WHERE clause. */ | |
628 memset(&sNameContext, 0, sizeof(NameContext)); | |
629 sNameContext.pSrcList = pSrc; | |
630 sNameContext.pParse = pParse; | |
631 sqlite3ResolveExprNames(&sNameContext, pWhere); | |
632 | |
633 /* Create VDBE to loop through the entries in pSrc that match the WHERE | |
634 ** clause. For each row found, increment either the deferred or immediate | |
635 ** foreign key constraint counter. */ | |
636 pWInfo = sqlite3WhereBegin(pParse, pSrc, pWhere, 0, 0, 0, 0); | |
637 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, nIncr); | |
638 if( pWInfo ){ | |
639 sqlite3WhereEnd(pWInfo); | |
640 } | |
641 | |
642 /* Clean up the WHERE clause constructed above. */ | |
643 sqlite3ExprDelete(db, pWhere); | |
644 if( iFkIfZero ){ | |
645 sqlite3VdbeJumpHere(v, iFkIfZero); | |
646 } | |
647 } | |
648 | |
649 /* | |
650 ** This function returns a linked list of FKey objects (connected by | |
651 ** FKey.pNextTo) holding all children of table pTab. For example, | |
652 ** given the following schema: | |
653 ** | |
654 ** CREATE TABLE t1(a PRIMARY KEY); | |
655 ** CREATE TABLE t2(b REFERENCES t1(a); | |
656 ** | |
657 ** Calling this function with table "t1" as an argument returns a pointer | |
658 ** to the FKey structure representing the foreign key constraint on table | |
659 ** "t2". Calling this function with "t2" as the argument would return a | |
660 ** NULL pointer (as there are no FK constraints for which t2 is the parent | |
661 ** table). | |
662 */ | |
663 FKey *sqlite3FkReferences(Table *pTab){ | |
664 return (FKey *)sqlite3HashFind(&pTab->pSchema->fkeyHash, pTab->zName); | |
665 } | |
666 | |
667 /* | |
668 ** The second argument is a Trigger structure allocated by the | |
669 ** fkActionTrigger() routine. This function deletes the Trigger structure | |
670 ** and all of its sub-components. | |
671 ** | |
672 ** The Trigger structure or any of its sub-components may be allocated from | |
673 ** the lookaside buffer belonging to database handle dbMem. | |
674 */ | |
675 static void fkTriggerDelete(sqlite3 *dbMem, Trigger *p){ | |
676 if( p ){ | |
677 TriggerStep *pStep = p->step_list; | |
678 sqlite3ExprDelete(dbMem, pStep->pWhere); | |
679 sqlite3ExprListDelete(dbMem, pStep->pExprList); | |
680 sqlite3SelectDelete(dbMem, pStep->pSelect); | |
681 sqlite3ExprDelete(dbMem, p->pWhen); | |
682 sqlite3DbFree(dbMem, p); | |
683 } | |
684 } | |
685 | |
686 /* | |
687 ** This function is called to generate code that runs when table pTab is | |
688 ** being dropped from the database. The SrcList passed as the second argument | |
689 ** to this function contains a single entry guaranteed to resolve to | |
690 ** table pTab. | |
691 ** | |
692 ** Normally, no code is required. However, if either | |
693 ** | |
694 ** (a) The table is the parent table of a FK constraint, or | |
695 ** (b) The table is the child table of a deferred FK constraint and it is | |
696 ** determined at runtime that there are outstanding deferred FK | |
697 ** constraint violations in the database, | |
698 ** | |
699 ** then the equivalent of "DELETE FROM <tbl>" is executed before dropping | |
700 ** the table from the database. Triggers are disabled while running this | |
701 ** DELETE, but foreign key actions are not. | |
702 */ | |
703 void sqlite3FkDropTable(Parse *pParse, SrcList *pName, Table *pTab){ | |
704 sqlite3 *db = pParse->db; | |
705 if( (db->flags&SQLITE_ForeignKeys) && !IsVirtual(pTab) && !pTab->pSelect ){ | |
706 int iSkip = 0; | |
707 Vdbe *v = sqlite3GetVdbe(pParse); | |
708 | |
709 assert( v ); /* VDBE has already been allocated */ | |
710 if( sqlite3FkReferences(pTab)==0 ){ | |
711 /* Search for a deferred foreign key constraint for which this table | |
712 ** is the child table. If one cannot be found, return without | |
713 ** generating any VDBE code. If one can be found, then jump over | |
714 ** the entire DELETE if there are no outstanding deferred constraints | |
715 ** when this statement is run. */ | |
716 FKey *p; | |
717 for(p=pTab->pFKey; p; p=p->pNextFrom){ | |
718 if( p->isDeferred || (db->flags & SQLITE_DeferFKs) ) break; | |
719 } | |
720 if( !p ) return; | |
721 iSkip = sqlite3VdbeMakeLabel(v); | |
722 sqlite3VdbeAddOp2(v, OP_FkIfZero, 1, iSkip); VdbeCoverage(v); | |
723 } | |
724 | |
725 pParse->disableTriggers = 1; | |
726 sqlite3DeleteFrom(pParse, sqlite3SrcListDup(db, pName, 0), 0); | |
727 pParse->disableTriggers = 0; | |
728 | |
729 /* If the DELETE has generated immediate foreign key constraint | |
730 ** violations, halt the VDBE and return an error at this point, before | |
731 ** any modifications to the schema are made. This is because statement | |
732 ** transactions are not able to rollback schema changes. | |
733 ** | |
734 ** If the SQLITE_DeferFKs flag is set, then this is not required, as | |
735 ** the statement transaction will not be rolled back even if FK | |
736 ** constraints are violated. | |
737 */ | |
738 if( (db->flags & SQLITE_DeferFKs)==0 ){ | |
739 sqlite3VdbeAddOp2(v, OP_FkIfZero, 0, sqlite3VdbeCurrentAddr(v)+2); | |
740 VdbeCoverage(v); | |
741 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_FOREIGNKEY, | |
742 OE_Abort, 0, P4_STATIC, P5_ConstraintFK); | |
743 } | |
744 | |
745 if( iSkip ){ | |
746 sqlite3VdbeResolveLabel(v, iSkip); | |
747 } | |
748 } | |
749 } | |
750 | |
751 | |
752 /* | |
753 ** The second argument points to an FKey object representing a foreign key | |
754 ** for which pTab is the child table. An UPDATE statement against pTab | |
755 ** is currently being processed. For each column of the table that is | |
756 ** actually updated, the corresponding element in the aChange[] array | |
757 ** is zero or greater (if a column is unmodified the corresponding element | |
758 ** is set to -1). If the rowid column is modified by the UPDATE statement | |
759 ** the bChngRowid argument is non-zero. | |
760 ** | |
761 ** This function returns true if any of the columns that are part of the | |
762 ** child key for FK constraint *p are modified. | |
763 */ | |
764 static int fkChildIsModified( | |
765 Table *pTab, /* Table being updated */ | |
766 FKey *p, /* Foreign key for which pTab is the child */ | |
767 int *aChange, /* Array indicating modified columns */ | |
768 int bChngRowid /* True if rowid is modified by this update */ | |
769 ){ | |
770 int i; | |
771 for(i=0; i<p->nCol; i++){ | |
772 int iChildKey = p->aCol[i].iFrom; | |
773 if( aChange[iChildKey]>=0 ) return 1; | |
774 if( iChildKey==pTab->iPKey && bChngRowid ) return 1; | |
775 } | |
776 return 0; | |
777 } | |
778 | |
779 /* | |
780 ** The second argument points to an FKey object representing a foreign key | |
781 ** for which pTab is the parent table. An UPDATE statement against pTab | |
782 ** is currently being processed. For each column of the table that is | |
783 ** actually updated, the corresponding element in the aChange[] array | |
784 ** is zero or greater (if a column is unmodified the corresponding element | |
785 ** is set to -1). If the rowid column is modified by the UPDATE statement | |
786 ** the bChngRowid argument is non-zero. | |
787 ** | |
788 ** This function returns true if any of the columns that are part of the | |
789 ** parent key for FK constraint *p are modified. | |
790 */ | |
791 static int fkParentIsModified( | |
792 Table *pTab, | |
793 FKey *p, | |
794 int *aChange, | |
795 int bChngRowid | |
796 ){ | |
797 int i; | |
798 for(i=0; i<p->nCol; i++){ | |
799 char *zKey = p->aCol[i].zCol; | |
800 int iKey; | |
801 for(iKey=0; iKey<pTab->nCol; iKey++){ | |
802 if( aChange[iKey]>=0 || (iKey==pTab->iPKey && bChngRowid) ){ | |
803 Column *pCol = &pTab->aCol[iKey]; | |
804 if( zKey ){ | |
805 if( 0==sqlite3StrICmp(pCol->zName, zKey) ) return 1; | |
806 }else if( pCol->colFlags & COLFLAG_PRIMKEY ){ | |
807 return 1; | |
808 } | |
809 } | |
810 } | |
811 } | |
812 return 0; | |
813 } | |
814 | |
815 /* | |
816 ** Return true if the parser passed as the first argument is being | |
817 ** used to code a trigger that is really a "SET NULL" action belonging | |
818 ** to trigger pFKey. | |
819 */ | |
820 static int isSetNullAction(Parse *pParse, FKey *pFKey){ | |
821 Parse *pTop = sqlite3ParseToplevel(pParse); | |
822 if( pTop->pTriggerPrg ){ | |
823 Trigger *p = pTop->pTriggerPrg->pTrigger; | |
824 if( (p==pFKey->apTrigger[0] && pFKey->aAction[0]==OE_SetNull) | |
825 || (p==pFKey->apTrigger[1] && pFKey->aAction[1]==OE_SetNull) | |
826 ){ | |
827 return 1; | |
828 } | |
829 } | |
830 return 0; | |
831 } | |
832 | |
833 /* | |
834 ** This function is called when inserting, deleting or updating a row of | |
835 ** table pTab to generate VDBE code to perform foreign key constraint | |
836 ** processing for the operation. | |
837 ** | |
838 ** For a DELETE operation, parameter regOld is passed the index of the | |
839 ** first register in an array of (pTab->nCol+1) registers containing the | |
840 ** rowid of the row being deleted, followed by each of the column values | |
841 ** of the row being deleted, from left to right. Parameter regNew is passed | |
842 ** zero in this case. | |
843 ** | |
844 ** For an INSERT operation, regOld is passed zero and regNew is passed the | |
845 ** first register of an array of (pTab->nCol+1) registers containing the new | |
846 ** row data. | |
847 ** | |
848 ** For an UPDATE operation, this function is called twice. Once before | |
849 ** the original record is deleted from the table using the calling convention | |
850 ** described for DELETE. Then again after the original record is deleted | |
851 ** but before the new record is inserted using the INSERT convention. | |
852 */ | |
853 void sqlite3FkCheck( | |
854 Parse *pParse, /* Parse context */ | |
855 Table *pTab, /* Row is being deleted from this table */ | |
856 int regOld, /* Previous row data is stored here */ | |
857 int regNew, /* New row data is stored here */ | |
858 int *aChange, /* Array indicating UPDATEd columns (or 0) */ | |
859 int bChngRowid /* True if rowid is UPDATEd */ | |
860 ){ | |
861 sqlite3 *db = pParse->db; /* Database handle */ | |
862 FKey *pFKey; /* Used to iterate through FKs */ | |
863 int iDb; /* Index of database containing pTab */ | |
864 const char *zDb; /* Name of database containing pTab */ | |
865 int isIgnoreErrors = pParse->disableTriggers; | |
866 | |
867 /* Exactly one of regOld and regNew should be non-zero. */ | |
868 assert( (regOld==0)!=(regNew==0) ); | |
869 | |
870 /* If foreign-keys are disabled, this function is a no-op. */ | |
871 if( (db->flags&SQLITE_ForeignKeys)==0 ) return; | |
872 | |
873 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); | |
874 zDb = db->aDb[iDb].zName; | |
875 | |
876 /* Loop through all the foreign key constraints for which pTab is the | |
877 ** child table (the table that the foreign key definition is part of). */ | |
878 for(pFKey=pTab->pFKey; pFKey; pFKey=pFKey->pNextFrom){ | |
879 Table *pTo; /* Parent table of foreign key pFKey */ | |
880 Index *pIdx = 0; /* Index on key columns in pTo */ | |
881 int *aiFree = 0; | |
882 int *aiCol; | |
883 int iCol; | |
884 int i; | |
885 int bIgnore = 0; | |
886 | |
887 if( aChange | |
888 && sqlite3_stricmp(pTab->zName, pFKey->zTo)!=0 | |
889 && fkChildIsModified(pTab, pFKey, aChange, bChngRowid)==0 | |
890 ){ | |
891 continue; | |
892 } | |
893 | |
894 /* Find the parent table of this foreign key. Also find a unique index | |
895 ** on the parent key columns in the parent table. If either of these | |
896 ** schema items cannot be located, set an error in pParse and return | |
897 ** early. */ | |
898 if( pParse->disableTriggers ){ | |
899 pTo = sqlite3FindTable(db, pFKey->zTo, zDb); | |
900 }else{ | |
901 pTo = sqlite3LocateTable(pParse, 0, pFKey->zTo, zDb); | |
902 } | |
903 if( !pTo || sqlite3FkLocateIndex(pParse, pTo, pFKey, &pIdx, &aiFree) ){ | |
904 assert( isIgnoreErrors==0 || (regOld!=0 && regNew==0) ); | |
905 if( !isIgnoreErrors || db->mallocFailed ) return; | |
906 if( pTo==0 ){ | |
907 /* If isIgnoreErrors is true, then a table is being dropped. In this | |
908 ** case SQLite runs a "DELETE FROM xxx" on the table being dropped | |
909 ** before actually dropping it in order to check FK constraints. | |
910 ** If the parent table of an FK constraint on the current table is | |
911 ** missing, behave as if it is empty. i.e. decrement the relevant | |
912 ** FK counter for each row of the current table with non-NULL keys. | |
913 */ | |
914 Vdbe *v = sqlite3GetVdbe(pParse); | |
915 int iJump = sqlite3VdbeCurrentAddr(v) + pFKey->nCol + 1; | |
916 for(i=0; i<pFKey->nCol; i++){ | |
917 int iReg = pFKey->aCol[i].iFrom + regOld + 1; | |
918 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iJump); VdbeCoverage(v); | |
919 } | |
920 sqlite3VdbeAddOp2(v, OP_FkCounter, pFKey->isDeferred, -1); | |
921 } | |
922 continue; | |
923 } | |
924 assert( pFKey->nCol==1 || (aiFree && pIdx) ); | |
925 | |
926 if( aiFree ){ | |
927 aiCol = aiFree; | |
928 }else{ | |
929 iCol = pFKey->aCol[0].iFrom; | |
930 aiCol = &iCol; | |
931 } | |
932 for(i=0; i<pFKey->nCol; i++){ | |
933 if( aiCol[i]==pTab->iPKey ){ | |
934 aiCol[i] = -1; | |
935 } | |
936 assert( pIdx==0 || pIdx->aiColumn[i]>=0 ); | |
937 #ifndef SQLITE_OMIT_AUTHORIZATION | |
938 /* Request permission to read the parent key columns. If the | |
939 ** authorization callback returns SQLITE_IGNORE, behave as if any | |
940 ** values read from the parent table are NULL. */ | |
941 if( db->xAuth ){ | |
942 int rcauth; | |
943 char *zCol = pTo->aCol[pIdx ? pIdx->aiColumn[i] : pTo->iPKey].zName; | |
944 rcauth = sqlite3AuthReadCol(pParse, pTo->zName, zCol, iDb); | |
945 bIgnore = (rcauth==SQLITE_IGNORE); | |
946 } | |
947 #endif | |
948 } | |
949 | |
950 /* Take a shared-cache advisory read-lock on the parent table. Allocate | |
951 ** a cursor to use to search the unique index on the parent key columns | |
952 ** in the parent table. */ | |
953 sqlite3TableLock(pParse, iDb, pTo->tnum, 0, pTo->zName); | |
954 pParse->nTab++; | |
955 | |
956 if( regOld!=0 ){ | |
957 /* A row is being removed from the child table. Search for the parent. | |
958 ** If the parent does not exist, removing the child row resolves an | |
959 ** outstanding foreign key constraint violation. */ | |
960 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regOld, -1, bIgnore); | |
961 } | |
962 if( regNew!=0 && !isSetNullAction(pParse, pFKey) ){ | |
963 /* A row is being added to the child table. If a parent row cannot | |
964 ** be found, adding the child row has violated the FK constraint. | |
965 ** | |
966 ** If this operation is being performed as part of a trigger program | |
967 ** that is actually a "SET NULL" action belonging to this very | |
968 ** foreign key, then omit this scan altogether. As all child key | |
969 ** values are guaranteed to be NULL, it is not possible for adding | |
970 ** this row to cause an FK violation. */ | |
971 fkLookupParent(pParse, iDb, pTo, pIdx, pFKey, aiCol, regNew, +1, bIgnore); | |
972 } | |
973 | |
974 sqlite3DbFree(db, aiFree); | |
975 } | |
976 | |
977 /* Loop through all the foreign key constraints that refer to this table. | |
978 ** (the "child" constraints) */ | |
979 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ | |
980 Index *pIdx = 0; /* Foreign key index for pFKey */ | |
981 SrcList *pSrc; | |
982 int *aiCol = 0; | |
983 | |
984 if( aChange && fkParentIsModified(pTab, pFKey, aChange, bChngRowid)==0 ){ | |
985 continue; | |
986 } | |
987 | |
988 if( !pFKey->isDeferred && !(db->flags & SQLITE_DeferFKs) | |
989 && !pParse->pToplevel && !pParse->isMultiWrite | |
990 ){ | |
991 assert( regOld==0 && regNew!=0 ); | |
992 /* Inserting a single row into a parent table cannot cause (or fix) | |
993 ** an immediate foreign key violation. So do nothing in this case. */ | |
994 continue; | |
995 } | |
996 | |
997 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ){ | |
998 if( !isIgnoreErrors || db->mallocFailed ) return; | |
999 continue; | |
1000 } | |
1001 assert( aiCol || pFKey->nCol==1 ); | |
1002 | |
1003 /* Create a SrcList structure containing the child table. We need the | |
1004 ** child table as a SrcList for sqlite3WhereBegin() */ | |
1005 pSrc = sqlite3SrcListAppend(db, 0, 0, 0); | |
1006 if( pSrc ){ | |
1007 struct SrcList_item *pItem = pSrc->a; | |
1008 pItem->pTab = pFKey->pFrom; | |
1009 pItem->zName = pFKey->pFrom->zName; | |
1010 pItem->pTab->nRef++; | |
1011 pItem->iCursor = pParse->nTab++; | |
1012 | |
1013 if( regNew!=0 ){ | |
1014 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regNew, -1); | |
1015 } | |
1016 if( regOld!=0 ){ | |
1017 int eAction = pFKey->aAction[aChange!=0]; | |
1018 fkScanChildren(pParse, pSrc, pTab, pIdx, pFKey, aiCol, regOld, 1); | |
1019 /* If this is a deferred FK constraint, or a CASCADE or SET NULL | |
1020 ** action applies, then any foreign key violations caused by | |
1021 ** removing the parent key will be rectified by the action trigger. | |
1022 ** So do not set the "may-abort" flag in this case. | |
1023 ** | |
1024 ** Note 1: If the FK is declared "ON UPDATE CASCADE", then the | |
1025 ** may-abort flag will eventually be set on this statement anyway | |
1026 ** (when this function is called as part of processing the UPDATE | |
1027 ** within the action trigger). | |
1028 ** | |
1029 ** Note 2: At first glance it may seem like SQLite could simply omit | |
1030 ** all OP_FkCounter related scans when either CASCADE or SET NULL | |
1031 ** applies. The trouble starts if the CASCADE or SET NULL action | |
1032 ** trigger causes other triggers or action rules attached to the | |
1033 ** child table to fire. In these cases the fk constraint counters | |
1034 ** might be set incorrectly if any OP_FkCounter related scans are | |
1035 ** omitted. */ | |
1036 if( !pFKey->isDeferred && eAction!=OE_Cascade && eAction!=OE_SetNull ){ | |
1037 sqlite3MayAbort(pParse); | |
1038 } | |
1039 } | |
1040 pItem->zName = 0; | |
1041 sqlite3SrcListDelete(db, pSrc); | |
1042 } | |
1043 sqlite3DbFree(db, aiCol); | |
1044 } | |
1045 } | |
1046 | |
1047 #define COLUMN_MASK(x) (((x)>31) ? 0xffffffff : ((u32)1<<(x))) | |
1048 | |
1049 /* | |
1050 ** This function is called before generating code to update or delete a | |
1051 ** row contained in table pTab. | |
1052 */ | |
1053 u32 sqlite3FkOldmask( | |
1054 Parse *pParse, /* Parse context */ | |
1055 Table *pTab /* Table being modified */ | |
1056 ){ | |
1057 u32 mask = 0; | |
1058 if( pParse->db->flags&SQLITE_ForeignKeys ){ | |
1059 FKey *p; | |
1060 int i; | |
1061 for(p=pTab->pFKey; p; p=p->pNextFrom){ | |
1062 for(i=0; i<p->nCol; i++) mask |= COLUMN_MASK(p->aCol[i].iFrom); | |
1063 } | |
1064 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ | |
1065 Index *pIdx = 0; | |
1066 sqlite3FkLocateIndex(pParse, pTab, p, &pIdx, 0); | |
1067 if( pIdx ){ | |
1068 for(i=0; i<pIdx->nKeyCol; i++){ | |
1069 assert( pIdx->aiColumn[i]>=0 ); | |
1070 mask |= COLUMN_MASK(pIdx->aiColumn[i]); | |
1071 } | |
1072 } | |
1073 } | |
1074 } | |
1075 return mask; | |
1076 } | |
1077 | |
1078 | |
1079 /* | |
1080 ** This function is called before generating code to update or delete a | |
1081 ** row contained in table pTab. If the operation is a DELETE, then | |
1082 ** parameter aChange is passed a NULL value. For an UPDATE, aChange points | |
1083 ** to an array of size N, where N is the number of columns in table pTab. | |
1084 ** If the i'th column is not modified by the UPDATE, then the corresponding | |
1085 ** entry in the aChange[] array is set to -1. If the column is modified, | |
1086 ** the value is 0 or greater. Parameter chngRowid is set to true if the | |
1087 ** UPDATE statement modifies the rowid fields of the table. | |
1088 ** | |
1089 ** If any foreign key processing will be required, this function returns | |
1090 ** true. If there is no foreign key related processing, this function | |
1091 ** returns false. | |
1092 */ | |
1093 int sqlite3FkRequired( | |
1094 Parse *pParse, /* Parse context */ | |
1095 Table *pTab, /* Table being modified */ | |
1096 int *aChange, /* Non-NULL for UPDATE operations */ | |
1097 int chngRowid /* True for UPDATE that affects rowid */ | |
1098 ){ | |
1099 if( pParse->db->flags&SQLITE_ForeignKeys ){ | |
1100 if( !aChange ){ | |
1101 /* A DELETE operation. Foreign key processing is required if the | |
1102 ** table in question is either the child or parent table for any | |
1103 ** foreign key constraint. */ | |
1104 return (sqlite3FkReferences(pTab) || pTab->pFKey); | |
1105 }else{ | |
1106 /* This is an UPDATE. Foreign key processing is only required if the | |
1107 ** operation modifies one or more child or parent key columns. */ | |
1108 FKey *p; | |
1109 | |
1110 /* Check if any child key columns are being modified. */ | |
1111 for(p=pTab->pFKey; p; p=p->pNextFrom){ | |
1112 if( fkChildIsModified(pTab, p, aChange, chngRowid) ) return 1; | |
1113 } | |
1114 | |
1115 /* Check if any parent key columns are being modified. */ | |
1116 for(p=sqlite3FkReferences(pTab); p; p=p->pNextTo){ | |
1117 if( fkParentIsModified(pTab, p, aChange, chngRowid) ) return 1; | |
1118 } | |
1119 } | |
1120 } | |
1121 return 0; | |
1122 } | |
1123 | |
1124 /* | |
1125 ** This function is called when an UPDATE or DELETE operation is being | |
1126 ** compiled on table pTab, which is the parent table of foreign-key pFKey. | |
1127 ** If the current operation is an UPDATE, then the pChanges parameter is | |
1128 ** passed a pointer to the list of columns being modified. If it is a | |
1129 ** DELETE, pChanges is passed a NULL pointer. | |
1130 ** | |
1131 ** It returns a pointer to a Trigger structure containing a trigger | |
1132 ** equivalent to the ON UPDATE or ON DELETE action specified by pFKey. | |
1133 ** If the action is "NO ACTION" or "RESTRICT", then a NULL pointer is | |
1134 ** returned (these actions require no special handling by the triggers | |
1135 ** sub-system, code for them is created by fkScanChildren()). | |
1136 ** | |
1137 ** For example, if pFKey is the foreign key and pTab is table "p" in | |
1138 ** the following schema: | |
1139 ** | |
1140 ** CREATE TABLE p(pk PRIMARY KEY); | |
1141 ** CREATE TABLE c(ck REFERENCES p ON DELETE CASCADE); | |
1142 ** | |
1143 ** then the returned trigger structure is equivalent to: | |
1144 ** | |
1145 ** CREATE TRIGGER ... DELETE ON p BEGIN | |
1146 ** DELETE FROM c WHERE ck = old.pk; | |
1147 ** END; | |
1148 ** | |
1149 ** The returned pointer is cached as part of the foreign key object. It | |
1150 ** is eventually freed along with the rest of the foreign key object by | |
1151 ** sqlite3FkDelete(). | |
1152 */ | |
1153 static Trigger *fkActionTrigger( | |
1154 Parse *pParse, /* Parse context */ | |
1155 Table *pTab, /* Table being updated or deleted from */ | |
1156 FKey *pFKey, /* Foreign key to get action for */ | |
1157 ExprList *pChanges /* Change-list for UPDATE, NULL for DELETE */ | |
1158 ){ | |
1159 sqlite3 *db = pParse->db; /* Database handle */ | |
1160 int action; /* One of OE_None, OE_Cascade etc. */ | |
1161 Trigger *pTrigger; /* Trigger definition to return */ | |
1162 int iAction = (pChanges!=0); /* 1 for UPDATE, 0 for DELETE */ | |
1163 | |
1164 action = pFKey->aAction[iAction]; | |
1165 pTrigger = pFKey->apTrigger[iAction]; | |
1166 | |
1167 if( action!=OE_None && !pTrigger ){ | |
1168 u8 enableLookaside; /* Copy of db->lookaside.bEnabled */ | |
1169 char const *zFrom; /* Name of child table */ | |
1170 int nFrom; /* Length in bytes of zFrom */ | |
1171 Index *pIdx = 0; /* Parent key index for this FK */ | |
1172 int *aiCol = 0; /* child table cols -> parent key cols */ | |
1173 TriggerStep *pStep = 0; /* First (only) step of trigger program */ | |
1174 Expr *pWhere = 0; /* WHERE clause of trigger step */ | |
1175 ExprList *pList = 0; /* Changes list if ON UPDATE CASCADE */ | |
1176 Select *pSelect = 0; /* If RESTRICT, "SELECT RAISE(...)" */ | |
1177 int i; /* Iterator variable */ | |
1178 Expr *pWhen = 0; /* WHEN clause for the trigger */ | |
1179 | |
1180 if( sqlite3FkLocateIndex(pParse, pTab, pFKey, &pIdx, &aiCol) ) return 0; | |
1181 assert( aiCol || pFKey->nCol==1 ); | |
1182 | |
1183 for(i=0; i<pFKey->nCol; i++){ | |
1184 Token tOld = { "old", 3 }; /* Literal "old" token */ | |
1185 Token tNew = { "new", 3 }; /* Literal "new" token */ | |
1186 Token tFromCol; /* Name of column in child table */ | |
1187 Token tToCol; /* Name of column in parent table */ | |
1188 int iFromCol; /* Idx of column in child table */ | |
1189 Expr *pEq; /* tFromCol = OLD.tToCol */ | |
1190 | |
1191 iFromCol = aiCol ? aiCol[i] : pFKey->aCol[0].iFrom; | |
1192 assert( iFromCol>=0 ); | |
1193 assert( pIdx!=0 || (pTab->iPKey>=0 && pTab->iPKey<pTab->nCol) ); | |
1194 assert( pIdx==0 || pIdx->aiColumn[i]>=0 ); | |
1195 tToCol.z = pTab->aCol[pIdx ? pIdx->aiColumn[i] : pTab->iPKey].zName; | |
1196 tFromCol.z = pFKey->pFrom->aCol[iFromCol].zName; | |
1197 | |
1198 tToCol.n = sqlite3Strlen30(tToCol.z); | |
1199 tFromCol.n = sqlite3Strlen30(tFromCol.z); | |
1200 | |
1201 /* Create the expression "OLD.zToCol = zFromCol". It is important | |
1202 ** that the "OLD.zToCol" term is on the LHS of the = operator, so | |
1203 ** that the affinity and collation sequence associated with the | |
1204 ** parent table are used for the comparison. */ | |
1205 pEq = sqlite3PExpr(pParse, TK_EQ, | |
1206 sqlite3PExpr(pParse, TK_DOT, | |
1207 sqlite3ExprAlloc(db, TK_ID, &tOld, 0), | |
1208 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0) | |
1209 , 0), | |
1210 sqlite3ExprAlloc(db, TK_ID, &tFromCol, 0) | |
1211 , 0); | |
1212 pWhere = sqlite3ExprAnd(db, pWhere, pEq); | |
1213 | |
1214 /* For ON UPDATE, construct the next term of the WHEN clause. | |
1215 ** The final WHEN clause will be like this: | |
1216 ** | |
1217 ** WHEN NOT(old.col1 IS new.col1 AND ... AND old.colN IS new.colN) | |
1218 */ | |
1219 if( pChanges ){ | |
1220 pEq = sqlite3PExpr(pParse, TK_IS, | |
1221 sqlite3PExpr(pParse, TK_DOT, | |
1222 sqlite3ExprAlloc(db, TK_ID, &tOld, 0), | |
1223 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0), | |
1224 0), | |
1225 sqlite3PExpr(pParse, TK_DOT, | |
1226 sqlite3ExprAlloc(db, TK_ID, &tNew, 0), | |
1227 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0), | |
1228 0), | |
1229 0); | |
1230 pWhen = sqlite3ExprAnd(db, pWhen, pEq); | |
1231 } | |
1232 | |
1233 if( action!=OE_Restrict && (action!=OE_Cascade || pChanges) ){ | |
1234 Expr *pNew; | |
1235 if( action==OE_Cascade ){ | |
1236 pNew = sqlite3PExpr(pParse, TK_DOT, | |
1237 sqlite3ExprAlloc(db, TK_ID, &tNew, 0), | |
1238 sqlite3ExprAlloc(db, TK_ID, &tToCol, 0) | |
1239 , 0); | |
1240 }else if( action==OE_SetDflt ){ | |
1241 Expr *pDflt = pFKey->pFrom->aCol[iFromCol].pDflt; | |
1242 if( pDflt ){ | |
1243 pNew = sqlite3ExprDup(db, pDflt, 0); | |
1244 }else{ | |
1245 pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); | |
1246 } | |
1247 }else{ | |
1248 pNew = sqlite3PExpr(pParse, TK_NULL, 0, 0, 0); | |
1249 } | |
1250 pList = sqlite3ExprListAppend(pParse, pList, pNew); | |
1251 sqlite3ExprListSetName(pParse, pList, &tFromCol, 0); | |
1252 } | |
1253 } | |
1254 sqlite3DbFree(db, aiCol); | |
1255 | |
1256 zFrom = pFKey->pFrom->zName; | |
1257 nFrom = sqlite3Strlen30(zFrom); | |
1258 | |
1259 if( action==OE_Restrict ){ | |
1260 Token tFrom; | |
1261 Expr *pRaise; | |
1262 | |
1263 tFrom.z = zFrom; | |
1264 tFrom.n = nFrom; | |
1265 pRaise = sqlite3Expr(db, TK_RAISE, "FOREIGN KEY constraint failed"); | |
1266 if( pRaise ){ | |
1267 pRaise->affinity = OE_Abort; | |
1268 } | |
1269 pSelect = sqlite3SelectNew(pParse, | |
1270 sqlite3ExprListAppend(pParse, 0, pRaise), | |
1271 sqlite3SrcListAppend(db, 0, &tFrom, 0), | |
1272 pWhere, | |
1273 0, 0, 0, 0, 0, 0 | |
1274 ); | |
1275 pWhere = 0; | |
1276 } | |
1277 | |
1278 /* Disable lookaside memory allocation */ | |
1279 enableLookaside = db->lookaside.bEnabled; | |
1280 db->lookaside.bEnabled = 0; | |
1281 | |
1282 pTrigger = (Trigger *)sqlite3DbMallocZero(db, | |
1283 sizeof(Trigger) + /* struct Trigger */ | |
1284 sizeof(TriggerStep) + /* Single step in trigger program */ | |
1285 nFrom + 1 /* Space for pStep->zTarget */ | |
1286 ); | |
1287 if( pTrigger ){ | |
1288 pStep = pTrigger->step_list = (TriggerStep *)&pTrigger[1]; | |
1289 pStep->zTarget = (char *)&pStep[1]; | |
1290 memcpy((char *)pStep->zTarget, zFrom, nFrom); | |
1291 | |
1292 pStep->pWhere = sqlite3ExprDup(db, pWhere, EXPRDUP_REDUCE); | |
1293 pStep->pExprList = sqlite3ExprListDup(db, pList, EXPRDUP_REDUCE); | |
1294 pStep->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE); | |
1295 if( pWhen ){ | |
1296 pWhen = sqlite3PExpr(pParse, TK_NOT, pWhen, 0, 0); | |
1297 pTrigger->pWhen = sqlite3ExprDup(db, pWhen, EXPRDUP_REDUCE); | |
1298 } | |
1299 } | |
1300 | |
1301 /* Re-enable the lookaside buffer, if it was disabled earlier. */ | |
1302 db->lookaside.bEnabled = enableLookaside; | |
1303 | |
1304 sqlite3ExprDelete(db, pWhere); | |
1305 sqlite3ExprDelete(db, pWhen); | |
1306 sqlite3ExprListDelete(db, pList); | |
1307 sqlite3SelectDelete(db, pSelect); | |
1308 if( db->mallocFailed==1 ){ | |
1309 fkTriggerDelete(db, pTrigger); | |
1310 return 0; | |
1311 } | |
1312 assert( pStep!=0 ); | |
1313 | |
1314 switch( action ){ | |
1315 case OE_Restrict: | |
1316 pStep->op = TK_SELECT; | |
1317 break; | |
1318 case OE_Cascade: | |
1319 if( !pChanges ){ | |
1320 pStep->op = TK_DELETE; | |
1321 break; | |
1322 } | |
1323 default: | |
1324 pStep->op = TK_UPDATE; | |
1325 } | |
1326 pStep->pTrig = pTrigger; | |
1327 pTrigger->pSchema = pTab->pSchema; | |
1328 pTrigger->pTabSchema = pTab->pSchema; | |
1329 pFKey->apTrigger[iAction] = pTrigger; | |
1330 pTrigger->op = (pChanges ? TK_UPDATE : TK_DELETE); | |
1331 } | |
1332 | |
1333 return pTrigger; | |
1334 } | |
1335 | |
1336 /* | |
1337 ** This function is called when deleting or updating a row to implement | |
1338 ** any required CASCADE, SET NULL or SET DEFAULT actions. | |
1339 */ | |
1340 void sqlite3FkActions( | |
1341 Parse *pParse, /* Parse context */ | |
1342 Table *pTab, /* Table being updated or deleted from */ | |
1343 ExprList *pChanges, /* Change-list for UPDATE, NULL for DELETE */ | |
1344 int regOld, /* Address of array containing old row */ | |
1345 int *aChange, /* Array indicating UPDATEd columns (or 0) */ | |
1346 int bChngRowid /* True if rowid is UPDATEd */ | |
1347 ){ | |
1348 /* If foreign-key support is enabled, iterate through all FKs that | |
1349 ** refer to table pTab. If there is an action associated with the FK | |
1350 ** for this operation (either update or delete), invoke the associated | |
1351 ** trigger sub-program. */ | |
1352 if( pParse->db->flags&SQLITE_ForeignKeys ){ | |
1353 FKey *pFKey; /* Iterator variable */ | |
1354 for(pFKey = sqlite3FkReferences(pTab); pFKey; pFKey=pFKey->pNextTo){ | |
1355 if( aChange==0 || fkParentIsModified(pTab, pFKey, aChange, bChngRowid) ){ | |
1356 Trigger *pAct = fkActionTrigger(pParse, pTab, pFKey, pChanges); | |
1357 if( pAct ){ | |
1358 sqlite3CodeRowTriggerDirect(pParse, pAct, pTab, regOld, OE_Abort, 0); | |
1359 } | |
1360 } | |
1361 } | |
1362 } | |
1363 } | |
1364 | |
1365 #endif /* ifndef SQLITE_OMIT_TRIGGER */ | |
1366 | |
1367 /* | |
1368 ** Free all memory associated with foreign key definitions attached to | |
1369 ** table pTab. Remove the deleted foreign keys from the Schema.fkeyHash | |
1370 ** hash table. | |
1371 */ | |
1372 void sqlite3FkDelete(sqlite3 *db, Table *pTab){ | |
1373 FKey *pFKey; /* Iterator variable */ | |
1374 FKey *pNext; /* Copy of pFKey->pNextFrom */ | |
1375 | |
1376 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pTab->pSchema) ); | |
1377 for(pFKey=pTab->pFKey; pFKey; pFKey=pNext){ | |
1378 | |
1379 /* Remove the FK from the fkeyHash hash table. */ | |
1380 if( !db || db->pnBytesFreed==0 ){ | |
1381 if( pFKey->pPrevTo ){ | |
1382 pFKey->pPrevTo->pNextTo = pFKey->pNextTo; | |
1383 }else{ | |
1384 void *p = (void *)pFKey->pNextTo; | |
1385 const char *z = (p ? pFKey->pNextTo->zTo : pFKey->zTo); | |
1386 sqlite3HashInsert(&pTab->pSchema->fkeyHash, z, p); | |
1387 } | |
1388 if( pFKey->pNextTo ){ | |
1389 pFKey->pNextTo->pPrevTo = pFKey->pPrevTo; | |
1390 } | |
1391 } | |
1392 | |
1393 /* EV: R-30323-21917 Each foreign key constraint in SQLite is | |
1394 ** classified as either immediate or deferred. | |
1395 */ | |
1396 assert( pFKey->isDeferred==0 || pFKey->isDeferred==1 ); | |
1397 | |
1398 /* Delete any triggers created to implement actions for this FK. */ | |
1399 #ifndef SQLITE_OMIT_TRIGGER | |
1400 fkTriggerDelete(db, pFKey->apTrigger[0]); | |
1401 fkTriggerDelete(db, pFKey->apTrigger[1]); | |
1402 #endif | |
1403 | |
1404 pNext = pFKey->pNextFrom; | |
1405 sqlite3DbFree(db, pFKey); | |
1406 } | |
1407 } | |
1408 #endif /* ifndef SQLITE_OMIT_FOREIGN_KEY */ | |
OLD | NEW |