Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(41)

Side by Side Diff: third_party/sqlite/sqlite-src-3100200/src/expr.c

Issue 2846743003: [sql] Remove SQLite 3.10.2 reference directory. (Closed)
Patch Set: Created 3 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
14 */
15 #include "sqliteInt.h"
16
17 /*
18 ** Return the 'affinity' of the expression pExpr if any.
19 **
20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression.
24 **
25 ** i.e. the WHERE clause expressions in the following statements all
26 ** have an affinity:
27 **
28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1);
32 */
33 char sqlite3ExprAffinity(Expr *pExpr){
34 int op;
35 pExpr = sqlite3ExprSkipCollate(pExpr);
36 if( pExpr->flags & EP_Generic ) return 0;
37 op = pExpr->op;
38 if( op==TK_SELECT ){
39 assert( pExpr->flags&EP_xIsSelect );
40 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
41 }
42 #ifndef SQLITE_OMIT_CAST
43 if( op==TK_CAST ){
44 assert( !ExprHasProperty(pExpr, EP_IntValue) );
45 return sqlite3AffinityType(pExpr->u.zToken, 0);
46 }
47 #endif
48 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
49 && pExpr->pTab!=0
50 ){
51 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
52 ** a TK_COLUMN but was previously evaluated and cached in a register */
53 int j = pExpr->iColumn;
54 if( j<0 ) return SQLITE_AFF_INTEGER;
55 assert( pExpr->pTab && j<pExpr->pTab->nCol );
56 return pExpr->pTab->aCol[j].affinity;
57 }
58 return pExpr->affinity;
59 }
60
61 /*
62 ** Set the collating sequence for expression pExpr to be the collating
63 ** sequence named by pToken. Return a pointer to a new Expr node that
64 ** implements the COLLATE operator.
65 **
66 ** If a memory allocation error occurs, that fact is recorded in pParse->db
67 ** and the pExpr parameter is returned unchanged.
68 */
69 Expr *sqlite3ExprAddCollateToken(
70 Parse *pParse, /* Parsing context */
71 Expr *pExpr, /* Add the "COLLATE" clause to this expression */
72 const Token *pCollName, /* Name of collating sequence */
73 int dequote /* True to dequote pCollName */
74 ){
75 if( pCollName->n>0 ){
76 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote);
77 if( pNew ){
78 pNew->pLeft = pExpr;
79 pNew->flags |= EP_Collate|EP_Skip;
80 pExpr = pNew;
81 }
82 }
83 return pExpr;
84 }
85 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
86 Token s;
87 assert( zC!=0 );
88 s.z = zC;
89 s.n = sqlite3Strlen30(s.z);
90 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0);
91 }
92
93 /*
94 ** Skip over any TK_COLLATE operators and any unlikely()
95 ** or likelihood() function at the root of an expression.
96 */
97 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
98 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){
99 if( ExprHasProperty(pExpr, EP_Unlikely) ){
100 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
101 assert( pExpr->x.pList->nExpr>0 );
102 assert( pExpr->op==TK_FUNCTION );
103 pExpr = pExpr->x.pList->a[0].pExpr;
104 }else{
105 assert( pExpr->op==TK_COLLATE );
106 pExpr = pExpr->pLeft;
107 }
108 }
109 return pExpr;
110 }
111
112 /*
113 ** Return the collation sequence for the expression pExpr. If
114 ** there is no defined collating sequence, return NULL.
115 **
116 ** The collating sequence might be determined by a COLLATE operator
117 ** or by the presence of a column with a defined collating sequence.
118 ** COLLATE operators take first precedence. Left operands take
119 ** precedence over right operands.
120 */
121 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
122 sqlite3 *db = pParse->db;
123 CollSeq *pColl = 0;
124 Expr *p = pExpr;
125 while( p ){
126 int op = p->op;
127 if( p->flags & EP_Generic ) break;
128 if( op==TK_CAST || op==TK_UPLUS ){
129 p = p->pLeft;
130 continue;
131 }
132 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){
133 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
134 break;
135 }
136 if( (op==TK_AGG_COLUMN || op==TK_COLUMN
137 || op==TK_REGISTER || op==TK_TRIGGER)
138 && p->pTab!=0
139 ){
140 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
141 ** a TK_COLUMN but was previously evaluated and cached in a register */
142 int j = p->iColumn;
143 if( j>=0 ){
144 const char *zColl = p->pTab->aCol[j].zColl;
145 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
146 }
147 break;
148 }
149 if( p->flags & EP_Collate ){
150 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){
151 p = p->pLeft;
152 }else{
153 Expr *pNext = p->pRight;
154 /* The Expr.x union is never used at the same time as Expr.pRight */
155 assert( p->x.pList==0 || p->pRight==0 );
156 /* p->flags holds EP_Collate and p->pLeft->flags does not. And
157 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at
158 ** least one EP_Collate. Thus the following two ALWAYS. */
159 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){
160 int i;
161 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){
162 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){
163 pNext = p->x.pList->a[i].pExpr;
164 break;
165 }
166 }
167 }
168 p = pNext;
169 }
170 }else{
171 break;
172 }
173 }
174 if( sqlite3CheckCollSeq(pParse, pColl) ){
175 pColl = 0;
176 }
177 return pColl;
178 }
179
180 /*
181 ** pExpr is an operand of a comparison operator. aff2 is the
182 ** type affinity of the other operand. This routine returns the
183 ** type affinity that should be used for the comparison operator.
184 */
185 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
186 char aff1 = sqlite3ExprAffinity(pExpr);
187 if( aff1 && aff2 ){
188 /* Both sides of the comparison are columns. If one has numeric
189 ** affinity, use that. Otherwise use no affinity.
190 */
191 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
192 return SQLITE_AFF_NUMERIC;
193 }else{
194 return SQLITE_AFF_BLOB;
195 }
196 }else if( !aff1 && !aff2 ){
197 /* Neither side of the comparison is a column. Compare the
198 ** results directly.
199 */
200 return SQLITE_AFF_BLOB;
201 }else{
202 /* One side is a column, the other is not. Use the columns affinity. */
203 assert( aff1==0 || aff2==0 );
204 return (aff1 + aff2);
205 }
206 }
207
208 /*
209 ** pExpr is a comparison operator. Return the type affinity that should
210 ** be applied to both operands prior to doing the comparison.
211 */
212 static char comparisonAffinity(Expr *pExpr){
213 char aff;
214 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
215 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
216 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
217 assert( pExpr->pLeft );
218 aff = sqlite3ExprAffinity(pExpr->pLeft);
219 if( pExpr->pRight ){
220 aff = sqlite3CompareAffinity(pExpr->pRight, aff);
221 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
222 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
223 }else if( !aff ){
224 aff = SQLITE_AFF_BLOB;
225 }
226 return aff;
227 }
228
229 /*
230 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
231 ** idx_affinity is the affinity of an indexed column. Return true
232 ** if the index with affinity idx_affinity may be used to implement
233 ** the comparison in pExpr.
234 */
235 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
236 char aff = comparisonAffinity(pExpr);
237 switch( aff ){
238 case SQLITE_AFF_BLOB:
239 return 1;
240 case SQLITE_AFF_TEXT:
241 return idx_affinity==SQLITE_AFF_TEXT;
242 default:
243 return sqlite3IsNumericAffinity(idx_affinity);
244 }
245 }
246
247 /*
248 ** Return the P5 value that should be used for a binary comparison
249 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
250 */
251 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
252 u8 aff = (char)sqlite3ExprAffinity(pExpr2);
253 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
254 return aff;
255 }
256
257 /*
258 ** Return a pointer to the collation sequence that should be used by
259 ** a binary comparison operator comparing pLeft and pRight.
260 **
261 ** If the left hand expression has a collating sequence type, then it is
262 ** used. Otherwise the collation sequence for the right hand expression
263 ** is used, or the default (BINARY) if neither expression has a collating
264 ** type.
265 **
266 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
267 ** it is not considered.
268 */
269 CollSeq *sqlite3BinaryCompareCollSeq(
270 Parse *pParse,
271 Expr *pLeft,
272 Expr *pRight
273 ){
274 CollSeq *pColl;
275 assert( pLeft );
276 if( pLeft->flags & EP_Collate ){
277 pColl = sqlite3ExprCollSeq(pParse, pLeft);
278 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
279 pColl = sqlite3ExprCollSeq(pParse, pRight);
280 }else{
281 pColl = sqlite3ExprCollSeq(pParse, pLeft);
282 if( !pColl ){
283 pColl = sqlite3ExprCollSeq(pParse, pRight);
284 }
285 }
286 return pColl;
287 }
288
289 /*
290 ** Generate code for a comparison operator.
291 */
292 static int codeCompare(
293 Parse *pParse, /* The parsing (and code generating) context */
294 Expr *pLeft, /* The left operand */
295 Expr *pRight, /* The right operand */
296 int opcode, /* The comparison opcode */
297 int in1, int in2, /* Register holding operands */
298 int dest, /* Jump here if true. */
299 int jumpIfNull /* If true, jump if either operand is NULL */
300 ){
301 int p5;
302 int addr;
303 CollSeq *p4;
304
305 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
306 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
307 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
308 (void*)p4, P4_COLLSEQ);
309 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
310 return addr;
311 }
312
313 #if SQLITE_MAX_EXPR_DEPTH>0
314 /*
315 ** Check that argument nHeight is less than or equal to the maximum
316 ** expression depth allowed. If it is not, leave an error message in
317 ** pParse.
318 */
319 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
320 int rc = SQLITE_OK;
321 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
322 if( nHeight>mxHeight ){
323 sqlite3ErrorMsg(pParse,
324 "Expression tree is too large (maximum depth %d)", mxHeight
325 );
326 rc = SQLITE_ERROR;
327 }
328 return rc;
329 }
330
331 /* The following three functions, heightOfExpr(), heightOfExprList()
332 ** and heightOfSelect(), are used to determine the maximum height
333 ** of any expression tree referenced by the structure passed as the
334 ** first argument.
335 **
336 ** If this maximum height is greater than the current value pointed
337 ** to by pnHeight, the second parameter, then set *pnHeight to that
338 ** value.
339 */
340 static void heightOfExpr(Expr *p, int *pnHeight){
341 if( p ){
342 if( p->nHeight>*pnHeight ){
343 *pnHeight = p->nHeight;
344 }
345 }
346 }
347 static void heightOfExprList(ExprList *p, int *pnHeight){
348 if( p ){
349 int i;
350 for(i=0; i<p->nExpr; i++){
351 heightOfExpr(p->a[i].pExpr, pnHeight);
352 }
353 }
354 }
355 static void heightOfSelect(Select *p, int *pnHeight){
356 if( p ){
357 heightOfExpr(p->pWhere, pnHeight);
358 heightOfExpr(p->pHaving, pnHeight);
359 heightOfExpr(p->pLimit, pnHeight);
360 heightOfExpr(p->pOffset, pnHeight);
361 heightOfExprList(p->pEList, pnHeight);
362 heightOfExprList(p->pGroupBy, pnHeight);
363 heightOfExprList(p->pOrderBy, pnHeight);
364 heightOfSelect(p->pPrior, pnHeight);
365 }
366 }
367
368 /*
369 ** Set the Expr.nHeight variable in the structure passed as an
370 ** argument. An expression with no children, Expr.pList or
371 ** Expr.pSelect member has a height of 1. Any other expression
372 ** has a height equal to the maximum height of any other
373 ** referenced Expr plus one.
374 **
375 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags,
376 ** if appropriate.
377 */
378 static void exprSetHeight(Expr *p){
379 int nHeight = 0;
380 heightOfExpr(p->pLeft, &nHeight);
381 heightOfExpr(p->pRight, &nHeight);
382 if( ExprHasProperty(p, EP_xIsSelect) ){
383 heightOfSelect(p->x.pSelect, &nHeight);
384 }else if( p->x.pList ){
385 heightOfExprList(p->x.pList, &nHeight);
386 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
387 }
388 p->nHeight = nHeight + 1;
389 }
390
391 /*
392 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
393 ** the height is greater than the maximum allowed expression depth,
394 ** leave an error in pParse.
395 **
396 ** Also propagate all EP_Propagate flags from the Expr.x.pList into
397 ** Expr.flags.
398 */
399 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
400 if( pParse->nErr ) return;
401 exprSetHeight(p);
402 sqlite3ExprCheckHeight(pParse, p->nHeight);
403 }
404
405 /*
406 ** Return the maximum height of any expression tree referenced
407 ** by the select statement passed as an argument.
408 */
409 int sqlite3SelectExprHeight(Select *p){
410 int nHeight = 0;
411 heightOfSelect(p, &nHeight);
412 return nHeight;
413 }
414 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */
415 /*
416 ** Propagate all EP_Propagate flags from the Expr.x.pList into
417 ** Expr.flags.
418 */
419 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){
420 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){
421 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList);
422 }
423 }
424 #define exprSetHeight(y)
425 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
426
427 /*
428 ** This routine is the core allocator for Expr nodes.
429 **
430 ** Construct a new expression node and return a pointer to it. Memory
431 ** for this node and for the pToken argument is a single allocation
432 ** obtained from sqlite3DbMalloc(). The calling function
433 ** is responsible for making sure the node eventually gets freed.
434 **
435 ** If dequote is true, then the token (if it exists) is dequoted.
436 ** If dequote is false, no dequoting is performed. The deQuote
437 ** parameter is ignored if pToken is NULL or if the token does not
438 ** appear to be quoted. If the quotes were of the form "..." (double-quotes)
439 ** then the EP_DblQuoted flag is set on the expression node.
440 **
441 ** Special case: If op==TK_INTEGER and pToken points to a string that
442 ** can be translated into a 32-bit integer, then the token is not
443 ** stored in u.zToken. Instead, the integer values is written
444 ** into u.iValue and the EP_IntValue flag is set. No extra storage
445 ** is allocated to hold the integer text and the dequote flag is ignored.
446 */
447 Expr *sqlite3ExprAlloc(
448 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
449 int op, /* Expression opcode */
450 const Token *pToken, /* Token argument. Might be NULL */
451 int dequote /* True to dequote */
452 ){
453 Expr *pNew;
454 int nExtra = 0;
455 int iValue = 0;
456
457 if( pToken ){
458 if( op!=TK_INTEGER || pToken->z==0
459 || sqlite3GetInt32(pToken->z, &iValue)==0 ){
460 nExtra = pToken->n+1;
461 assert( iValue>=0 );
462 }
463 }
464 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
465 if( pNew ){
466 pNew->op = (u8)op;
467 pNew->iAgg = -1;
468 if( pToken ){
469 if( nExtra==0 ){
470 pNew->flags |= EP_IntValue;
471 pNew->u.iValue = iValue;
472 }else{
473 int c;
474 pNew->u.zToken = (char*)&pNew[1];
475 assert( pToken->z!=0 || pToken->n==0 );
476 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
477 pNew->u.zToken[pToken->n] = 0;
478 if( dequote && nExtra>=3
479 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
480 sqlite3Dequote(pNew->u.zToken);
481 if( c=='"' ) pNew->flags |= EP_DblQuoted;
482 }
483 }
484 }
485 #if SQLITE_MAX_EXPR_DEPTH>0
486 pNew->nHeight = 1;
487 #endif
488 }
489 return pNew;
490 }
491
492 /*
493 ** Allocate a new expression node from a zero-terminated token that has
494 ** already been dequoted.
495 */
496 Expr *sqlite3Expr(
497 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
498 int op, /* Expression opcode */
499 const char *zToken /* Token argument. Might be NULL */
500 ){
501 Token x;
502 x.z = zToken;
503 x.n = zToken ? sqlite3Strlen30(zToken) : 0;
504 return sqlite3ExprAlloc(db, op, &x, 0);
505 }
506
507 /*
508 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
509 **
510 ** If pRoot==NULL that means that a memory allocation error has occurred.
511 ** In that case, delete the subtrees pLeft and pRight.
512 */
513 void sqlite3ExprAttachSubtrees(
514 sqlite3 *db,
515 Expr *pRoot,
516 Expr *pLeft,
517 Expr *pRight
518 ){
519 if( pRoot==0 ){
520 assert( db->mallocFailed );
521 sqlite3ExprDelete(db, pLeft);
522 sqlite3ExprDelete(db, pRight);
523 }else{
524 if( pRight ){
525 pRoot->pRight = pRight;
526 pRoot->flags |= EP_Propagate & pRight->flags;
527 }
528 if( pLeft ){
529 pRoot->pLeft = pLeft;
530 pRoot->flags |= EP_Propagate & pLeft->flags;
531 }
532 exprSetHeight(pRoot);
533 }
534 }
535
536 /*
537 ** Allocate an Expr node which joins as many as two subtrees.
538 **
539 ** One or both of the subtrees can be NULL. Return a pointer to the new
540 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed,
541 ** free the subtrees and return NULL.
542 */
543 Expr *sqlite3PExpr(
544 Parse *pParse, /* Parsing context */
545 int op, /* Expression opcode */
546 Expr *pLeft, /* Left operand */
547 Expr *pRight, /* Right operand */
548 const Token *pToken /* Argument token */
549 ){
550 Expr *p;
551 if( op==TK_AND && pParse->nErr==0 ){
552 /* Take advantage of short-circuit false optimization for AND */
553 p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
554 }else{
555 p = sqlite3ExprAlloc(pParse->db, op & TKFLG_MASK, pToken, 1);
556 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
557 }
558 if( p ) {
559 sqlite3ExprCheckHeight(pParse, p->nHeight);
560 }
561 return p;
562 }
563
564 /*
565 ** If the expression is always either TRUE or FALSE (respectively),
566 ** then return 1. If one cannot determine the truth value of the
567 ** expression at compile-time return 0.
568 **
569 ** This is an optimization. If is OK to return 0 here even if
570 ** the expression really is always false or false (a false negative).
571 ** But it is a bug to return 1 if the expression might have different
572 ** boolean values in different circumstances (a false positive.)
573 **
574 ** Note that if the expression is part of conditional for a
575 ** LEFT JOIN, then we cannot determine at compile-time whether or not
576 ** is it true or false, so always return 0.
577 */
578 static int exprAlwaysTrue(Expr *p){
579 int v = 0;
580 if( ExprHasProperty(p, EP_FromJoin) ) return 0;
581 if( !sqlite3ExprIsInteger(p, &v) ) return 0;
582 return v!=0;
583 }
584 static int exprAlwaysFalse(Expr *p){
585 int v = 0;
586 if( ExprHasProperty(p, EP_FromJoin) ) return 0;
587 if( !sqlite3ExprIsInteger(p, &v) ) return 0;
588 return v==0;
589 }
590
591 /*
592 ** Join two expressions using an AND operator. If either expression is
593 ** NULL, then just return the other expression.
594 **
595 ** If one side or the other of the AND is known to be false, then instead
596 ** of returning an AND expression, just return a constant expression with
597 ** a value of false.
598 */
599 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
600 if( pLeft==0 ){
601 return pRight;
602 }else if( pRight==0 ){
603 return pLeft;
604 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
605 sqlite3ExprDelete(db, pLeft);
606 sqlite3ExprDelete(db, pRight);
607 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
608 }else{
609 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
610 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
611 return pNew;
612 }
613 }
614
615 /*
616 ** Construct a new expression node for a function with multiple
617 ** arguments.
618 */
619 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
620 Expr *pNew;
621 sqlite3 *db = pParse->db;
622 assert( pToken );
623 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
624 if( pNew==0 ){
625 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
626 return 0;
627 }
628 pNew->x.pList = pList;
629 assert( !ExprHasProperty(pNew, EP_xIsSelect) );
630 sqlite3ExprSetHeightAndFlags(pParse, pNew);
631 return pNew;
632 }
633
634 /*
635 ** Assign a variable number to an expression that encodes a wildcard
636 ** in the original SQL statement.
637 **
638 ** Wildcards consisting of a single "?" are assigned the next sequential
639 ** variable number.
640 **
641 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make
642 ** sure "nnn" is not too be to avoid a denial of service attack when
643 ** the SQL statement comes from an external source.
644 **
645 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
646 ** as the previous instance of the same wildcard. Or if this is the first
647 ** instance of the wildcard, the next sequential variable number is
648 ** assigned.
649 */
650 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
651 sqlite3 *db = pParse->db;
652 const char *z;
653
654 if( pExpr==0 ) return;
655 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
656 z = pExpr->u.zToken;
657 assert( z!=0 );
658 assert( z[0]!=0 );
659 if( z[1]==0 ){
660 /* Wildcard of the form "?". Assign the next variable number */
661 assert( z[0]=='?' );
662 pExpr->iColumn = (ynVar)(++pParse->nVar);
663 }else{
664 ynVar x = 0;
665 u32 n = sqlite3Strlen30(z);
666 if( z[0]=='?' ){
667 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
668 ** use it as the variable number */
669 i64 i;
670 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
671 pExpr->iColumn = x = (ynVar)i;
672 testcase( i==0 );
673 testcase( i==1 );
674 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
675 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
676 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
677 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
678 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
679 x = 0;
680 }
681 if( i>pParse->nVar ){
682 pParse->nVar = (int)i;
683 }
684 }else{
685 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable
686 ** number as the prior appearance of the same name, or if the name
687 ** has never appeared before, reuse the same variable number
688 */
689 ynVar i;
690 for(i=0; i<pParse->nzVar; i++){
691 if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){
692 pExpr->iColumn = x = (ynVar)i+1;
693 break;
694 }
695 }
696 if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
697 }
698 if( x>0 ){
699 if( x>pParse->nzVar ){
700 char **a;
701 a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
702 if( a==0 ) return; /* Error reported through db->mallocFailed */
703 pParse->azVar = a;
704 memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
705 pParse->nzVar = x;
706 }
707 if( z[0]!='?' || pParse->azVar[x-1]==0 ){
708 sqlite3DbFree(db, pParse->azVar[x-1]);
709 pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
710 }
711 }
712 }
713 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
714 sqlite3ErrorMsg(pParse, "too many SQL variables");
715 }
716 }
717
718 /*
719 ** Recursively delete an expression tree.
720 */
721 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
722 if( p==0 ) return;
723 /* Sanity check: Assert that the IntValue is non-negative if it exists */
724 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
725 if( !ExprHasProperty(p, EP_TokenOnly) ){
726 /* The Expr.x union is never used at the same time as Expr.pRight */
727 assert( p->x.pList==0 || p->pRight==0 );
728 sqlite3ExprDelete(db, p->pLeft);
729 sqlite3ExprDelete(db, p->pRight);
730 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken);
731 if( ExprHasProperty(p, EP_xIsSelect) ){
732 sqlite3SelectDelete(db, p->x.pSelect);
733 }else{
734 sqlite3ExprListDelete(db, p->x.pList);
735 }
736 }
737 if( !ExprHasProperty(p, EP_Static) ){
738 sqlite3DbFree(db, p);
739 }
740 }
741
742 /*
743 ** Return the number of bytes allocated for the expression structure
744 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
745 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
746 */
747 static int exprStructSize(Expr *p){
748 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
749 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
750 return EXPR_FULLSIZE;
751 }
752
753 /*
754 ** The dupedExpr*Size() routines each return the number of bytes required
755 ** to store a copy of an expression or expression tree. They differ in
756 ** how much of the tree is measured.
757 **
758 ** dupedExprStructSize() Size of only the Expr structure
759 ** dupedExprNodeSize() Size of Expr + space for token
760 ** dupedExprSize() Expr + token + subtree components
761 **
762 ***************************************************************************
763 **
764 ** The dupedExprStructSize() function returns two values OR-ed together:
765 ** (1) the space required for a copy of the Expr structure only and
766 ** (2) the EP_xxx flags that indicate what the structure size should be.
767 ** The return values is always one of:
768 **
769 ** EXPR_FULLSIZE
770 ** EXPR_REDUCEDSIZE | EP_Reduced
771 ** EXPR_TOKENONLYSIZE | EP_TokenOnly
772 **
773 ** The size of the structure can be found by masking the return value
774 ** of this routine with 0xfff. The flags can be found by masking the
775 ** return value with EP_Reduced|EP_TokenOnly.
776 **
777 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
778 ** (unreduced) Expr objects as they or originally constructed by the parser.
779 ** During expression analysis, extra information is computed and moved into
780 ** later parts of teh Expr object and that extra information might get chopped
781 ** off if the expression is reduced. Note also that it does not work to
782 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal
783 ** to reduce a pristine expression tree from the parser. The implementation
784 ** of dupedExprStructSize() contain multiple assert() statements that attempt
785 ** to enforce this constraint.
786 */
787 static int dupedExprStructSize(Expr *p, int flags){
788 int nSize;
789 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
790 assert( EXPR_FULLSIZE<=0xfff );
791 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 );
792 if( 0==(flags&EXPRDUP_REDUCE) ){
793 nSize = EXPR_FULLSIZE;
794 }else{
795 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
796 assert( !ExprHasProperty(p, EP_FromJoin) );
797 assert( !ExprHasProperty(p, EP_MemToken) );
798 assert( !ExprHasProperty(p, EP_NoReduce) );
799 if( p->pLeft || p->x.pList ){
800 nSize = EXPR_REDUCEDSIZE | EP_Reduced;
801 }else{
802 assert( p->pRight==0 );
803 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
804 }
805 }
806 return nSize;
807 }
808
809 /*
810 ** This function returns the space in bytes required to store the copy
811 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
812 ** string is defined.)
813 */
814 static int dupedExprNodeSize(Expr *p, int flags){
815 int nByte = dupedExprStructSize(p, flags) & 0xfff;
816 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
817 nByte += sqlite3Strlen30(p->u.zToken)+1;
818 }
819 return ROUND8(nByte);
820 }
821
822 /*
823 ** Return the number of bytes required to create a duplicate of the
824 ** expression passed as the first argument. The second argument is a
825 ** mask containing EXPRDUP_XXX flags.
826 **
827 ** The value returned includes space to create a copy of the Expr struct
828 ** itself and the buffer referred to by Expr.u.zToken, if any.
829 **
830 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
831 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
832 ** and Expr.pRight variables (but not for any structures pointed to or
833 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
834 */
835 static int dupedExprSize(Expr *p, int flags){
836 int nByte = 0;
837 if( p ){
838 nByte = dupedExprNodeSize(p, flags);
839 if( flags&EXPRDUP_REDUCE ){
840 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
841 }
842 }
843 return nByte;
844 }
845
846 /*
847 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
848 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
849 ** to store the copy of expression p, the copies of p->u.zToken
850 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
851 ** if any. Before returning, *pzBuffer is set to the first byte past the
852 ** portion of the buffer copied into by this function.
853 */
854 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
855 Expr *pNew = 0; /* Value to return */
856 assert( flags==0 || flags==EXPRDUP_REDUCE );
857 if( p ){
858 const int isReduced = (flags&EXPRDUP_REDUCE);
859 u8 *zAlloc;
860 u32 staticFlag = 0;
861
862 assert( pzBuffer==0 || isReduced );
863
864 /* Figure out where to write the new Expr structure. */
865 if( pzBuffer ){
866 zAlloc = *pzBuffer;
867 staticFlag = EP_Static;
868 }else{
869 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
870 }
871 pNew = (Expr *)zAlloc;
872
873 if( pNew ){
874 /* Set nNewSize to the size allocated for the structure pointed to
875 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
876 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
877 ** by the copy of the p->u.zToken string (if any).
878 */
879 const unsigned nStructSize = dupedExprStructSize(p, flags);
880 const int nNewSize = nStructSize & 0xfff;
881 int nToken;
882 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
883 nToken = sqlite3Strlen30(p->u.zToken) + 1;
884 }else{
885 nToken = 0;
886 }
887 if( isReduced ){
888 assert( ExprHasProperty(p, EP_Reduced)==0 );
889 memcpy(zAlloc, p, nNewSize);
890 }else{
891 u32 nSize = (u32)exprStructSize(p);
892 memcpy(zAlloc, p, nSize);
893 if( nSize<EXPR_FULLSIZE ){
894 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
895 }
896 }
897
898 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
899 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken);
900 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
901 pNew->flags |= staticFlag;
902
903 /* Copy the p->u.zToken string, if any. */
904 if( nToken ){
905 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
906 memcpy(zToken, p->u.zToken, nToken);
907 }
908
909 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
910 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
911 if( ExprHasProperty(p, EP_xIsSelect) ){
912 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
913 }else{
914 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
915 }
916 }
917
918 /* Fill in pNew->pLeft and pNew->pRight. */
919 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){
920 zAlloc += dupedExprNodeSize(p, flags);
921 if( ExprHasProperty(pNew, EP_Reduced) ){
922 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
923 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
924 }
925 if( pzBuffer ){
926 *pzBuffer = zAlloc;
927 }
928 }else{
929 if( !ExprHasProperty(p, EP_TokenOnly) ){
930 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
931 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
932 }
933 }
934
935 }
936 }
937 return pNew;
938 }
939
940 /*
941 ** Create and return a deep copy of the object passed as the second
942 ** argument. If an OOM condition is encountered, NULL is returned
943 ** and the db->mallocFailed flag set.
944 */
945 #ifndef SQLITE_OMIT_CTE
946 static With *withDup(sqlite3 *db, With *p){
947 With *pRet = 0;
948 if( p ){
949 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1);
950 pRet = sqlite3DbMallocZero(db, nByte);
951 if( pRet ){
952 int i;
953 pRet->nCte = p->nCte;
954 for(i=0; i<p->nCte; i++){
955 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0);
956 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0);
957 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName);
958 }
959 }
960 }
961 return pRet;
962 }
963 #else
964 # define withDup(x,y) 0
965 #endif
966
967 /*
968 ** The following group of routines make deep copies of expressions,
969 ** expression lists, ID lists, and select statements. The copies can
970 ** be deleted (by being passed to their respective ...Delete() routines)
971 ** without effecting the originals.
972 **
973 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
974 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
975 ** by subsequent calls to sqlite*ListAppend() routines.
976 **
977 ** Any tables that the SrcList might point to are not duplicated.
978 **
979 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
980 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
981 ** truncated version of the usual Expr structure that will be stored as
982 ** part of the in-memory representation of the database schema.
983 */
984 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
985 assert( flags==0 || flags==EXPRDUP_REDUCE );
986 return exprDup(db, p, flags, 0);
987 }
988 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
989 ExprList *pNew;
990 struct ExprList_item *pItem, *pOldItem;
991 int i;
992 if( p==0 ) return 0;
993 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
994 if( pNew==0 ) return 0;
995 pNew->nExpr = i = p->nExpr;
996 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
997 pNew->a = pItem = sqlite3DbMallocRaw(db, i*sizeof(p->a[0]) );
998 if( pItem==0 ){
999 sqlite3DbFree(db, pNew);
1000 return 0;
1001 }
1002 pOldItem = p->a;
1003 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
1004 Expr *pOldExpr = pOldItem->pExpr;
1005 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
1006 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1007 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
1008 pItem->sortOrder = pOldItem->sortOrder;
1009 pItem->done = 0;
1010 pItem->bSpanIsTab = pOldItem->bSpanIsTab;
1011 pItem->u = pOldItem->u;
1012 }
1013 return pNew;
1014 }
1015
1016 /*
1017 ** If cursors, triggers, views and subqueries are all omitted from
1018 ** the build, then none of the following routines, except for
1019 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
1020 ** called with a NULL argument.
1021 */
1022 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
1023 || !defined(SQLITE_OMIT_SUBQUERY)
1024 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
1025 SrcList *pNew;
1026 int i;
1027 int nByte;
1028 if( p==0 ) return 0;
1029 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
1030 pNew = sqlite3DbMallocRaw(db, nByte );
1031 if( pNew==0 ) return 0;
1032 pNew->nSrc = pNew->nAlloc = p->nSrc;
1033 for(i=0; i<p->nSrc; i++){
1034 struct SrcList_item *pNewItem = &pNew->a[i];
1035 struct SrcList_item *pOldItem = &p->a[i];
1036 Table *pTab;
1037 pNewItem->pSchema = pOldItem->pSchema;
1038 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
1039 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1040 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
1041 pNewItem->fg = pOldItem->fg;
1042 pNewItem->iCursor = pOldItem->iCursor;
1043 pNewItem->addrFillSub = pOldItem->addrFillSub;
1044 pNewItem->regReturn = pOldItem->regReturn;
1045 if( pNewItem->fg.isIndexedBy ){
1046 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy);
1047 }
1048 pNewItem->pIBIndex = pOldItem->pIBIndex;
1049 if( pNewItem->fg.isTabFunc ){
1050 pNewItem->u1.pFuncArg =
1051 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags);
1052 }
1053 pTab = pNewItem->pTab = pOldItem->pTab;
1054 if( pTab ){
1055 pTab->nRef++;
1056 }
1057 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
1058 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
1059 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
1060 pNewItem->colUsed = pOldItem->colUsed;
1061 }
1062 return pNew;
1063 }
1064 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
1065 IdList *pNew;
1066 int i;
1067 if( p==0 ) return 0;
1068 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
1069 if( pNew==0 ) return 0;
1070 pNew->nId = p->nId;
1071 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
1072 if( pNew->a==0 ){
1073 sqlite3DbFree(db, pNew);
1074 return 0;
1075 }
1076 /* Note that because the size of the allocation for p->a[] is not
1077 ** necessarily a power of two, sqlite3IdListAppend() may not be called
1078 ** on the duplicate created by this function. */
1079 for(i=0; i<p->nId; i++){
1080 struct IdList_item *pNewItem = &pNew->a[i];
1081 struct IdList_item *pOldItem = &p->a[i];
1082 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
1083 pNewItem->idx = pOldItem->idx;
1084 }
1085 return pNew;
1086 }
1087 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1088 Select *pNew, *pPrior;
1089 if( p==0 ) return 0;
1090 pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
1091 if( pNew==0 ) return 0;
1092 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1093 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1094 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1095 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1096 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1097 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1098 pNew->op = p->op;
1099 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
1100 if( pPrior ) pPrior->pNext = pNew;
1101 pNew->pNext = 0;
1102 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1103 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
1104 pNew->iLimit = 0;
1105 pNew->iOffset = 0;
1106 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1107 pNew->addrOpenEphm[0] = -1;
1108 pNew->addrOpenEphm[1] = -1;
1109 pNew->nSelectRow = p->nSelectRow;
1110 pNew->pWith = withDup(db, p->pWith);
1111 sqlite3SelectSetName(pNew, p->zSelName);
1112 return pNew;
1113 }
1114 #else
1115 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1116 assert( p==0 );
1117 return 0;
1118 }
1119 #endif
1120
1121
1122 /*
1123 ** Add a new element to the end of an expression list. If pList is
1124 ** initially NULL, then create a new expression list.
1125 **
1126 ** If a memory allocation error occurs, the entire list is freed and
1127 ** NULL is returned. If non-NULL is returned, then it is guaranteed
1128 ** that the new entry was successfully appended.
1129 */
1130 ExprList *sqlite3ExprListAppend(
1131 Parse *pParse, /* Parsing context */
1132 ExprList *pList, /* List to which to append. Might be NULL */
1133 Expr *pExpr /* Expression to be appended. Might be NULL */
1134 ){
1135 sqlite3 *db = pParse->db;
1136 if( pList==0 ){
1137 pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
1138 if( pList==0 ){
1139 goto no_mem;
1140 }
1141 pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0]));
1142 if( pList->a==0 ) goto no_mem;
1143 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1144 struct ExprList_item *a;
1145 assert( pList->nExpr>0 );
1146 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
1147 if( a==0 ){
1148 goto no_mem;
1149 }
1150 pList->a = a;
1151 }
1152 assert( pList->a!=0 );
1153 if( 1 ){
1154 struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1155 memset(pItem, 0, sizeof(*pItem));
1156 pItem->pExpr = pExpr;
1157 }
1158 return pList;
1159
1160 no_mem:
1161 /* Avoid leaking memory if malloc has failed. */
1162 sqlite3ExprDelete(db, pExpr);
1163 sqlite3ExprListDelete(db, pList);
1164 return 0;
1165 }
1166
1167 /*
1168 ** Set the sort order for the last element on the given ExprList.
1169 */
1170 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){
1171 if( p==0 ) return;
1172 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 );
1173 assert( p->nExpr>0 );
1174 if( iSortOrder<0 ){
1175 assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC );
1176 return;
1177 }
1178 p->a[p->nExpr-1].sortOrder = (u8)iSortOrder;
1179 }
1180
1181 /*
1182 ** Set the ExprList.a[].zName element of the most recently added item
1183 ** on the expression list.
1184 **
1185 ** pList might be NULL following an OOM error. But pName should never be
1186 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
1187 ** is set.
1188 */
1189 void sqlite3ExprListSetName(
1190 Parse *pParse, /* Parsing context */
1191 ExprList *pList, /* List to which to add the span. */
1192 Token *pName, /* Name to be added */
1193 int dequote /* True to cause the name to be dequoted */
1194 ){
1195 assert( pList!=0 || pParse->db->mallocFailed!=0 );
1196 if( pList ){
1197 struct ExprList_item *pItem;
1198 assert( pList->nExpr>0 );
1199 pItem = &pList->a[pList->nExpr-1];
1200 assert( pItem->zName==0 );
1201 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1202 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
1203 }
1204 }
1205
1206 /*
1207 ** Set the ExprList.a[].zSpan element of the most recently added item
1208 ** on the expression list.
1209 **
1210 ** pList might be NULL following an OOM error. But pSpan should never be
1211 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
1212 ** is set.
1213 */
1214 void sqlite3ExprListSetSpan(
1215 Parse *pParse, /* Parsing context */
1216 ExprList *pList, /* List to which to add the span. */
1217 ExprSpan *pSpan /* The span to be added */
1218 ){
1219 sqlite3 *db = pParse->db;
1220 assert( pList!=0 || db->mallocFailed!=0 );
1221 if( pList ){
1222 struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1223 assert( pList->nExpr>0 );
1224 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1225 sqlite3DbFree(db, pItem->zSpan);
1226 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1227 (int)(pSpan->zEnd - pSpan->zStart));
1228 }
1229 }
1230
1231 /*
1232 ** If the expression list pEList contains more than iLimit elements,
1233 ** leave an error message in pParse.
1234 */
1235 void sqlite3ExprListCheckLength(
1236 Parse *pParse,
1237 ExprList *pEList,
1238 const char *zObject
1239 ){
1240 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1241 testcase( pEList && pEList->nExpr==mx );
1242 testcase( pEList && pEList->nExpr==mx+1 );
1243 if( pEList && pEList->nExpr>mx ){
1244 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1245 }
1246 }
1247
1248 /*
1249 ** Delete an entire expression list.
1250 */
1251 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1252 int i;
1253 struct ExprList_item *pItem;
1254 if( pList==0 ) return;
1255 assert( pList->a!=0 || pList->nExpr==0 );
1256 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1257 sqlite3ExprDelete(db, pItem->pExpr);
1258 sqlite3DbFree(db, pItem->zName);
1259 sqlite3DbFree(db, pItem->zSpan);
1260 }
1261 sqlite3DbFree(db, pList->a);
1262 sqlite3DbFree(db, pList);
1263 }
1264
1265 /*
1266 ** Return the bitwise-OR of all Expr.flags fields in the given
1267 ** ExprList.
1268 */
1269 u32 sqlite3ExprListFlags(const ExprList *pList){
1270 int i;
1271 u32 m = 0;
1272 if( pList ){
1273 for(i=0; i<pList->nExpr; i++){
1274 Expr *pExpr = pList->a[i].pExpr;
1275 if( ALWAYS(pExpr) ) m |= pExpr->flags;
1276 }
1277 }
1278 return m;
1279 }
1280
1281 /*
1282 ** These routines are Walker callbacks used to check expressions to
1283 ** see if they are "constant" for some definition of constant. The
1284 ** Walker.eCode value determines the type of "constant" we are looking
1285 ** for.
1286 **
1287 ** These callback routines are used to implement the following:
1288 **
1289 ** sqlite3ExprIsConstant() pWalker->eCode==1
1290 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2
1291 ** sqlite3ExprIsTableConstant() pWalker->eCode==3
1292 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5
1293 **
1294 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression
1295 ** is found to not be a constant.
1296 **
1297 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions
1298 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing
1299 ** an existing schema and 4 when processing a new statement. A bound
1300 ** parameter raises an error for new statements, but is silently converted
1301 ** to NULL for existing schemas. This allows sqlite_master tables that
1302 ** contain a bound parameter because they were generated by older versions
1303 ** of SQLite to be parsed by newer versions of SQLite without raising a
1304 ** malformed schema error.
1305 */
1306 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1307
1308 /* If pWalker->eCode is 2 then any term of the expression that comes from
1309 ** the ON or USING clauses of a left join disqualifies the expression
1310 ** from being considered constant. */
1311 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){
1312 pWalker->eCode = 0;
1313 return WRC_Abort;
1314 }
1315
1316 switch( pExpr->op ){
1317 /* Consider functions to be constant if all their arguments are constant
1318 ** and either pWalker->eCode==4 or 5 or the function has the
1319 ** SQLITE_FUNC_CONST flag. */
1320 case TK_FUNCTION:
1321 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){
1322 return WRC_Continue;
1323 }else{
1324 pWalker->eCode = 0;
1325 return WRC_Abort;
1326 }
1327 case TK_ID:
1328 case TK_COLUMN:
1329 case TK_AGG_FUNCTION:
1330 case TK_AGG_COLUMN:
1331 testcase( pExpr->op==TK_ID );
1332 testcase( pExpr->op==TK_COLUMN );
1333 testcase( pExpr->op==TK_AGG_FUNCTION );
1334 testcase( pExpr->op==TK_AGG_COLUMN );
1335 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){
1336 return WRC_Continue;
1337 }else{
1338 pWalker->eCode = 0;
1339 return WRC_Abort;
1340 }
1341 case TK_VARIABLE:
1342 if( pWalker->eCode==5 ){
1343 /* Silently convert bound parameters that appear inside of CREATE
1344 ** statements into a NULL when parsing the CREATE statement text out
1345 ** of the sqlite_master table */
1346 pExpr->op = TK_NULL;
1347 }else if( pWalker->eCode==4 ){
1348 /* A bound parameter in a CREATE statement that originates from
1349 ** sqlite3_prepare() causes an error */
1350 pWalker->eCode = 0;
1351 return WRC_Abort;
1352 }
1353 /* Fall through */
1354 default:
1355 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1356 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1357 return WRC_Continue;
1358 }
1359 }
1360 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1361 UNUSED_PARAMETER(NotUsed);
1362 pWalker->eCode = 0;
1363 return WRC_Abort;
1364 }
1365 static int exprIsConst(Expr *p, int initFlag, int iCur){
1366 Walker w;
1367 memset(&w, 0, sizeof(w));
1368 w.eCode = initFlag;
1369 w.xExprCallback = exprNodeIsConstant;
1370 w.xSelectCallback = selectNodeIsConstant;
1371 w.u.iCur = iCur;
1372 sqlite3WalkExpr(&w, p);
1373 return w.eCode;
1374 }
1375
1376 /*
1377 ** Walk an expression tree. Return non-zero if the expression is constant
1378 ** and 0 if it involves variables or function calls.
1379 **
1380 ** For the purposes of this function, a double-quoted string (ex: "abc")
1381 ** is considered a variable but a single-quoted string (ex: 'abc') is
1382 ** a constant.
1383 */
1384 int sqlite3ExprIsConstant(Expr *p){
1385 return exprIsConst(p, 1, 0);
1386 }
1387
1388 /*
1389 ** Walk an expression tree. Return non-zero if the expression is constant
1390 ** that does no originate from the ON or USING clauses of a join.
1391 ** Return 0 if it involves variables or function calls or terms from
1392 ** an ON or USING clause.
1393 */
1394 int sqlite3ExprIsConstantNotJoin(Expr *p){
1395 return exprIsConst(p, 2, 0);
1396 }
1397
1398 /*
1399 ** Walk an expression tree. Return non-zero if the expression is constant
1400 ** for any single row of the table with cursor iCur. In other words, the
1401 ** expression must not refer to any non-deterministic function nor any
1402 ** table other than iCur.
1403 */
1404 int sqlite3ExprIsTableConstant(Expr *p, int iCur){
1405 return exprIsConst(p, 3, iCur);
1406 }
1407
1408 /*
1409 ** Walk an expression tree. Return non-zero if the expression is constant
1410 ** or a function call with constant arguments. Return and 0 if there
1411 ** are any variables.
1412 **
1413 ** For the purposes of this function, a double-quoted string (ex: "abc")
1414 ** is considered a variable but a single-quoted string (ex: 'abc') is
1415 ** a constant.
1416 */
1417 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){
1418 assert( isInit==0 || isInit==1 );
1419 return exprIsConst(p, 4+isInit, 0);
1420 }
1421
1422 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1423 /*
1424 ** Walk an expression tree. Return 1 if the expression contains a
1425 ** subquery of some kind. Return 0 if there are no subqueries.
1426 */
1427 int sqlite3ExprContainsSubquery(Expr *p){
1428 Walker w;
1429 memset(&w, 0, sizeof(w));
1430 w.eCode = 1;
1431 w.xExprCallback = sqlite3ExprWalkNoop;
1432 w.xSelectCallback = selectNodeIsConstant;
1433 sqlite3WalkExpr(&w, p);
1434 return w.eCode==0;
1435 }
1436 #endif
1437
1438 /*
1439 ** If the expression p codes a constant integer that is small enough
1440 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1441 ** in *pValue. If the expression is not an integer or if it is too big
1442 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1443 */
1444 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1445 int rc = 0;
1446
1447 /* If an expression is an integer literal that fits in a signed 32-bit
1448 ** integer, then the EP_IntValue flag will have already been set */
1449 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1450 || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1451
1452 if( p->flags & EP_IntValue ){
1453 *pValue = p->u.iValue;
1454 return 1;
1455 }
1456 switch( p->op ){
1457 case TK_UPLUS: {
1458 rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1459 break;
1460 }
1461 case TK_UMINUS: {
1462 int v;
1463 if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1464 assert( v!=(-2147483647-1) );
1465 *pValue = -v;
1466 rc = 1;
1467 }
1468 break;
1469 }
1470 default: break;
1471 }
1472 return rc;
1473 }
1474
1475 /*
1476 ** Return FALSE if there is no chance that the expression can be NULL.
1477 **
1478 ** If the expression might be NULL or if the expression is too complex
1479 ** to tell return TRUE.
1480 **
1481 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1482 ** when we know that a value cannot be NULL. Hence, a false positive
1483 ** (returning TRUE when in fact the expression can never be NULL) might
1484 ** be a small performance hit but is otherwise harmless. On the other
1485 ** hand, a false negative (returning FALSE when the result could be NULL)
1486 ** will likely result in an incorrect answer. So when in doubt, return
1487 ** TRUE.
1488 */
1489 int sqlite3ExprCanBeNull(const Expr *p){
1490 u8 op;
1491 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1492 op = p->op;
1493 if( op==TK_REGISTER ) op = p->op2;
1494 switch( op ){
1495 case TK_INTEGER:
1496 case TK_STRING:
1497 case TK_FLOAT:
1498 case TK_BLOB:
1499 return 0;
1500 case TK_COLUMN:
1501 assert( p->pTab!=0 );
1502 return ExprHasProperty(p, EP_CanBeNull) ||
1503 (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0);
1504 default:
1505 return 1;
1506 }
1507 }
1508
1509 /*
1510 ** Return TRUE if the given expression is a constant which would be
1511 ** unchanged by OP_Affinity with the affinity given in the second
1512 ** argument.
1513 **
1514 ** This routine is used to determine if the OP_Affinity operation
1515 ** can be omitted. When in doubt return FALSE. A false negative
1516 ** is harmless. A false positive, however, can result in the wrong
1517 ** answer.
1518 */
1519 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1520 u8 op;
1521 if( aff==SQLITE_AFF_BLOB ) return 1;
1522 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1523 op = p->op;
1524 if( op==TK_REGISTER ) op = p->op2;
1525 switch( op ){
1526 case TK_INTEGER: {
1527 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1528 }
1529 case TK_FLOAT: {
1530 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1531 }
1532 case TK_STRING: {
1533 return aff==SQLITE_AFF_TEXT;
1534 }
1535 case TK_BLOB: {
1536 return 1;
1537 }
1538 case TK_COLUMN: {
1539 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */
1540 return p->iColumn<0
1541 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1542 }
1543 default: {
1544 return 0;
1545 }
1546 }
1547 }
1548
1549 /*
1550 ** Return TRUE if the given string is a row-id column name.
1551 */
1552 int sqlite3IsRowid(const char *z){
1553 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1554 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1555 if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1556 return 0;
1557 }
1558
1559 /*
1560 ** Return true if we are able to the IN operator optimization on a
1561 ** query of the form
1562 **
1563 ** x IN (SELECT ...)
1564 **
1565 ** Where the SELECT... clause is as specified by the parameter to this
1566 ** routine.
1567 **
1568 ** The Select object passed in has already been preprocessed and no
1569 ** errors have been found.
1570 */
1571 #ifndef SQLITE_OMIT_SUBQUERY
1572 static int isCandidateForInOpt(Select *p){
1573 SrcList *pSrc;
1574 ExprList *pEList;
1575 Table *pTab;
1576 if( p==0 ) return 0; /* right-hand side of IN is SELECT */
1577 if( p->pPrior ) return 0; /* Not a compound SELECT */
1578 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1579 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1580 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1581 return 0; /* No DISTINCT keyword and no aggregate functions */
1582 }
1583 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */
1584 if( p->pLimit ) return 0; /* Has no LIMIT clause */
1585 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */
1586 if( p->pWhere ) return 0; /* Has no WHERE clause */
1587 pSrc = p->pSrc;
1588 assert( pSrc!=0 );
1589 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */
1590 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */
1591 pTab = pSrc->a[0].pTab;
1592 if( NEVER(pTab==0) ) return 0;
1593 assert( pTab->pSelect==0 ); /* FROM clause is not a view */
1594 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */
1595 pEList = p->pEList;
1596 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */
1597 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1598 return 1;
1599 }
1600 #endif /* SQLITE_OMIT_SUBQUERY */
1601
1602 /*
1603 ** Code an OP_Once instruction and allocate space for its flag. Return the
1604 ** address of the new instruction.
1605 */
1606 int sqlite3CodeOnce(Parse *pParse){
1607 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */
1608 return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
1609 }
1610
1611 /*
1612 ** Generate code that checks the left-most column of index table iCur to see if
1613 ** it contains any NULL entries. Cause the register at regHasNull to be set
1614 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull
1615 ** to be set to NULL if iCur contains one or more NULL values.
1616 */
1617 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){
1618 int addr1;
1619 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull);
1620 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v);
1621 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull);
1622 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG);
1623 VdbeComment((v, "first_entry_in(%d)", iCur));
1624 sqlite3VdbeJumpHere(v, addr1);
1625 }
1626
1627
1628 #ifndef SQLITE_OMIT_SUBQUERY
1629 /*
1630 ** The argument is an IN operator with a list (not a subquery) on the
1631 ** right-hand side. Return TRUE if that list is constant.
1632 */
1633 static int sqlite3InRhsIsConstant(Expr *pIn){
1634 Expr *pLHS;
1635 int res;
1636 assert( !ExprHasProperty(pIn, EP_xIsSelect) );
1637 pLHS = pIn->pLeft;
1638 pIn->pLeft = 0;
1639 res = sqlite3ExprIsConstant(pIn);
1640 pIn->pLeft = pLHS;
1641 return res;
1642 }
1643 #endif
1644
1645 /*
1646 ** This function is used by the implementation of the IN (...) operator.
1647 ** The pX parameter is the expression on the RHS of the IN operator, which
1648 ** might be either a list of expressions or a subquery.
1649 **
1650 ** The job of this routine is to find or create a b-tree object that can
1651 ** be used either to test for membership in the RHS set or to iterate through
1652 ** all members of the RHS set, skipping duplicates.
1653 **
1654 ** A cursor is opened on the b-tree object that is the RHS of the IN operator
1655 ** and pX->iTable is set to the index of that cursor.
1656 **
1657 ** The returned value of this function indicates the b-tree type, as follows:
1658 **
1659 ** IN_INDEX_ROWID - The cursor was opened on a database table.
1660 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index.
1661 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
1662 ** IN_INDEX_EPH - The cursor was opened on a specially created and
1663 ** populated epheremal table.
1664 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be
1665 ** implemented as a sequence of comparisons.
1666 **
1667 ** An existing b-tree might be used if the RHS expression pX is a simple
1668 ** subquery such as:
1669 **
1670 ** SELECT <column> FROM <table>
1671 **
1672 ** If the RHS of the IN operator is a list or a more complex subquery, then
1673 ** an ephemeral table might need to be generated from the RHS and then
1674 ** pX->iTable made to point to the ephemeral table instead of an
1675 ** existing table.
1676 **
1677 ** The inFlags parameter must contain exactly one of the bits
1678 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains
1679 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a
1680 ** fast membership test. When the IN_INDEX_LOOP bit is set, the
1681 ** IN index will be used to loop over all values of the RHS of the
1682 ** IN operator.
1683 **
1684 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate
1685 ** through the set members) then the b-tree must not contain duplicates.
1686 ** An epheremal table must be used unless the selected <column> is guaranteed
1687 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1688 ** has a UNIQUE constraint or UNIQUE index.
1689 **
1690 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used
1691 ** for fast set membership tests) then an epheremal table must
1692 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1693 ** be found with <column> as its left-most column.
1694 **
1695 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and
1696 ** if the RHS of the IN operator is a list (not a subquery) then this
1697 ** routine might decide that creating an ephemeral b-tree for membership
1698 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the
1699 ** calling routine should implement the IN operator using a sequence
1700 ** of Eq or Ne comparison operations.
1701 **
1702 ** When the b-tree is being used for membership tests, the calling function
1703 ** might need to know whether or not the RHS side of the IN operator
1704 ** contains a NULL. If prRhsHasNull is not a NULL pointer and
1705 ** if there is any chance that the (...) might contain a NULL value at
1706 ** runtime, then a register is allocated and the register number written
1707 ** to *prRhsHasNull. If there is no chance that the (...) contains a
1708 ** NULL value, then *prRhsHasNull is left unchanged.
1709 **
1710 ** If a register is allocated and its location stored in *prRhsHasNull, then
1711 ** the value in that register will be NULL if the b-tree contains one or more
1712 ** NULL values, and it will be some non-NULL value if the b-tree contains no
1713 ** NULL values.
1714 */
1715 #ifndef SQLITE_OMIT_SUBQUERY
1716 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){
1717 Select *p; /* SELECT to the right of IN operator */
1718 int eType = 0; /* Type of RHS table. IN_INDEX_* */
1719 int iTab = pParse->nTab++; /* Cursor of the RHS table */
1720 int mustBeUnique; /* True if RHS must be unique */
1721 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */
1722
1723 assert( pX->op==TK_IN );
1724 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0;
1725
1726 /* Check to see if an existing table or index can be used to
1727 ** satisfy the query. This is preferable to generating a new
1728 ** ephemeral table.
1729 */
1730 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1731 if( pParse->nErr==0 && isCandidateForInOpt(p) ){
1732 sqlite3 *db = pParse->db; /* Database connection */
1733 Table *pTab; /* Table <table>. */
1734 Expr *pExpr; /* Expression <column> */
1735 i16 iCol; /* Index of column <column> */
1736 i16 iDb; /* Database idx for pTab */
1737
1738 assert( p ); /* Because of isCandidateForInOpt(p) */
1739 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */
1740 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
1741 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */
1742 pTab = p->pSrc->a[0].pTab;
1743 pExpr = p->pEList->a[0].pExpr;
1744 iCol = (i16)pExpr->iColumn;
1745
1746 /* Code an OP_Transaction and OP_TableLock for <table>. */
1747 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1748 sqlite3CodeVerifySchema(pParse, iDb);
1749 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1750
1751 /* This function is only called from two places. In both cases the vdbe
1752 ** has already been allocated. So assume sqlite3GetVdbe() is always
1753 ** successful here.
1754 */
1755 assert(v);
1756 if( iCol<0 ){
1757 int iAddr = sqlite3CodeOnce(pParse);
1758 VdbeCoverage(v);
1759
1760 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1761 eType = IN_INDEX_ROWID;
1762
1763 sqlite3VdbeJumpHere(v, iAddr);
1764 }else{
1765 Index *pIdx; /* Iterator variable */
1766
1767 /* The collation sequence used by the comparison. If an index is to
1768 ** be used in place of a temp-table, it must be ordered according
1769 ** to this collation sequence. */
1770 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1771
1772 /* Check that the affinity that will be used to perform the
1773 ** comparison is the same as the affinity of the column. If
1774 ** it is not, it is not possible to use any index.
1775 */
1776 int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity);
1777
1778 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1779 if( (pIdx->aiColumn[0]==iCol)
1780 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1781 && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx)))
1782 ){
1783 int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1784 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb);
1785 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
1786 VdbeComment((v, "%s", pIdx->zName));
1787 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
1788 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
1789
1790 if( prRhsHasNull && !pTab->aCol[iCol].notNull ){
1791 *prRhsHasNull = ++pParse->nMem;
1792 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull);
1793 }
1794 sqlite3VdbeJumpHere(v, iAddr);
1795 }
1796 }
1797 }
1798 }
1799
1800 /* If no preexisting index is available for the IN clause
1801 ** and IN_INDEX_NOOP is an allowed reply
1802 ** and the RHS of the IN operator is a list, not a subquery
1803 ** and the RHS is not contant or has two or fewer terms,
1804 ** then it is not worth creating an ephemeral table to evaluate
1805 ** the IN operator so return IN_INDEX_NOOP.
1806 */
1807 if( eType==0
1808 && (inFlags & IN_INDEX_NOOP_OK)
1809 && !ExprHasProperty(pX, EP_xIsSelect)
1810 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2)
1811 ){
1812 eType = IN_INDEX_NOOP;
1813 }
1814
1815
1816 if( eType==0 ){
1817 /* Could not find an existing table or index to use as the RHS b-tree.
1818 ** We will have to generate an ephemeral table to do the job.
1819 */
1820 u32 savedNQueryLoop = pParse->nQueryLoop;
1821 int rMayHaveNull = 0;
1822 eType = IN_INDEX_EPH;
1823 if( inFlags & IN_INDEX_LOOP ){
1824 pParse->nQueryLoop = 0;
1825 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){
1826 eType = IN_INDEX_ROWID;
1827 }
1828 }else if( prRhsHasNull ){
1829 *prRhsHasNull = rMayHaveNull = ++pParse->nMem;
1830 }
1831 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1832 pParse->nQueryLoop = savedNQueryLoop;
1833 }else{
1834 pX->iTable = iTab;
1835 }
1836 return eType;
1837 }
1838 #endif
1839
1840 /*
1841 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
1842 ** or IN operators. Examples:
1843 **
1844 ** (SELECT a FROM b) -- subquery
1845 ** EXISTS (SELECT a FROM b) -- EXISTS subquery
1846 ** x IN (4,5,11) -- IN operator with list on right-hand side
1847 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right
1848 **
1849 ** The pExpr parameter describes the expression that contains the IN
1850 ** operator or subquery.
1851 **
1852 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1853 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1854 ** to some integer key column of a table B-Tree. In this case, use an
1855 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1856 ** (slower) variable length keys B-Tree.
1857 **
1858 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1859 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1860 ** All this routine does is initialize the register given by rMayHaveNull
1861 ** to NULL. Calling routines will take care of changing this register
1862 ** value to non-NULL if the RHS is NULL-free.
1863 **
1864 ** For a SELECT or EXISTS operator, return the register that holds the
1865 ** result. For IN operators or if an error occurs, the return value is 0.
1866 */
1867 #ifndef SQLITE_OMIT_SUBQUERY
1868 int sqlite3CodeSubselect(
1869 Parse *pParse, /* Parsing context */
1870 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */
1871 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */
1872 int isRowid /* If true, LHS of IN operator is a rowid */
1873 ){
1874 int jmpIfDynamic = -1; /* One-time test address */
1875 int rReg = 0; /* Register storing resulting */
1876 Vdbe *v = sqlite3GetVdbe(pParse);
1877 if( NEVER(v==0) ) return 0;
1878 sqlite3ExprCachePush(pParse);
1879
1880 /* This code must be run in its entirety every time it is encountered
1881 ** if any of the following is true:
1882 **
1883 ** * The right-hand side is a correlated subquery
1884 ** * The right-hand side is an expression list containing variables
1885 ** * We are inside a trigger
1886 **
1887 ** If all of the above are false, then we can run this code just once
1888 ** save the results, and reuse the same result on subsequent invocations.
1889 */
1890 if( !ExprHasProperty(pExpr, EP_VarSelect) ){
1891 jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v);
1892 }
1893
1894 #ifndef SQLITE_OMIT_EXPLAIN
1895 if( pParse->explain==2 ){
1896 char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d",
1897 jmpIfDynamic>=0?"":"CORRELATED ",
1898 pExpr->op==TK_IN?"LIST":"SCALAR",
1899 pParse->iNextSelectId
1900 );
1901 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1902 }
1903 #endif
1904
1905 switch( pExpr->op ){
1906 case TK_IN: {
1907 char affinity; /* Affinity of the LHS of the IN */
1908 int addr; /* Address of OP_OpenEphemeral instruction */
1909 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
1910 KeyInfo *pKeyInfo = 0; /* Key information */
1911
1912 affinity = sqlite3ExprAffinity(pLeft);
1913
1914 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1915 ** expression it is handled the same way. An ephemeral table is
1916 ** filled with single-field index keys representing the results
1917 ** from the SELECT or the <exprlist>.
1918 **
1919 ** If the 'x' expression is a column value, or the SELECT...
1920 ** statement returns a column value, then the affinity of that
1921 ** column is used to build the index keys. If both 'x' and the
1922 ** SELECT... statement are columns, then numeric affinity is used
1923 ** if either column has NUMERIC or INTEGER affinity. If neither
1924 ** 'x' nor the SELECT... statement are columns, then numeric affinity
1925 ** is used.
1926 */
1927 pExpr->iTable = pParse->nTab++;
1928 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1929 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1);
1930
1931 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1932 /* Case 1: expr IN (SELECT ...)
1933 **
1934 ** Generate code to write the results of the select into the temporary
1935 ** table allocated and opened above.
1936 */
1937 Select *pSelect = pExpr->x.pSelect;
1938 SelectDest dest;
1939 ExprList *pEList;
1940
1941 assert( !isRowid );
1942 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1943 dest.affSdst = (u8)affinity;
1944 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1945 pSelect->iLimit = 0;
1946 testcase( pSelect->selFlags & SF_Distinct );
1947 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */
1948 if( sqlite3Select(pParse, pSelect, &dest) ){
1949 sqlite3KeyInfoUnref(pKeyInfo);
1950 return 0;
1951 }
1952 pEList = pSelect->pEList;
1953 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */
1954 assert( pEList!=0 );
1955 assert( pEList->nExpr>0 );
1956 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1957 pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1958 pEList->a[0].pExpr);
1959 }else if( ALWAYS(pExpr->x.pList!=0) ){
1960 /* Case 2: expr IN (exprlist)
1961 **
1962 ** For each expression, build an index key from the evaluation and
1963 ** store it in the temporary table. If <expr> is a column, then use
1964 ** that columns affinity when building index keys. If <expr> is not
1965 ** a column, use numeric affinity.
1966 */
1967 int i;
1968 ExprList *pList = pExpr->x.pList;
1969 struct ExprList_item *pItem;
1970 int r1, r2, r3;
1971
1972 if( !affinity ){
1973 affinity = SQLITE_AFF_BLOB;
1974 }
1975 if( pKeyInfo ){
1976 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) );
1977 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1978 }
1979
1980 /* Loop through each expression in <exprlist>. */
1981 r1 = sqlite3GetTempReg(pParse);
1982 r2 = sqlite3GetTempReg(pParse);
1983 if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1984 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1985 Expr *pE2 = pItem->pExpr;
1986 int iValToIns;
1987
1988 /* If the expression is not constant then we will need to
1989 ** disable the test that was generated above that makes sure
1990 ** this code only executes once. Because for a non-constant
1991 ** expression we need to rerun this code each time.
1992 */
1993 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){
1994 sqlite3VdbeChangeToNoop(v, jmpIfDynamic);
1995 jmpIfDynamic = -1;
1996 }
1997
1998 /* Evaluate the expression and insert it into the temp table */
1999 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
2000 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
2001 }else{
2002 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
2003 if( isRowid ){
2004 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
2005 sqlite3VdbeCurrentAddr(v)+2);
2006 VdbeCoverage(v);
2007 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
2008 }else{
2009 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
2010 sqlite3ExprCacheAffinityChange(pParse, r3, 1);
2011 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
2012 }
2013 }
2014 }
2015 sqlite3ReleaseTempReg(pParse, r1);
2016 sqlite3ReleaseTempReg(pParse, r2);
2017 }
2018 if( pKeyInfo ){
2019 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO);
2020 }
2021 break;
2022 }
2023
2024 case TK_EXISTS:
2025 case TK_SELECT:
2026 default: {
2027 /* If this has to be a scalar SELECT. Generate code to put the
2028 ** value of this select in a memory cell and record the number
2029 ** of the memory cell in iColumn. If this is an EXISTS, write
2030 ** an integer 0 (not exists) or 1 (exists) into a memory cell
2031 ** and record that memory cell in iColumn.
2032 */
2033 Select *pSel; /* SELECT statement to encode */
2034 SelectDest dest; /* How to deal with SELECt result */
2035
2036 testcase( pExpr->op==TK_EXISTS );
2037 testcase( pExpr->op==TK_SELECT );
2038 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
2039
2040 assert( ExprHasProperty(pExpr, EP_xIsSelect) );
2041 pSel = pExpr->x.pSelect;
2042 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
2043 if( pExpr->op==TK_SELECT ){
2044 dest.eDest = SRT_Mem;
2045 dest.iSdst = dest.iSDParm;
2046 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm);
2047 VdbeComment((v, "Init subquery result"));
2048 }else{
2049 dest.eDest = SRT_Exists;
2050 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
2051 VdbeComment((v, "Init EXISTS result"));
2052 }
2053 sqlite3ExprDelete(pParse->db, pSel->pLimit);
2054 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
2055 &sqlite3IntTokens[1]);
2056 pSel->iLimit = 0;
2057 pSel->selFlags &= ~SF_MultiValue;
2058 if( sqlite3Select(pParse, pSel, &dest) ){
2059 return 0;
2060 }
2061 rReg = dest.iSDParm;
2062 ExprSetVVAProperty(pExpr, EP_NoReduce);
2063 break;
2064 }
2065 }
2066
2067 if( rHasNullFlag ){
2068 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag);
2069 }
2070
2071 if( jmpIfDynamic>=0 ){
2072 sqlite3VdbeJumpHere(v, jmpIfDynamic);
2073 }
2074 sqlite3ExprCachePop(pParse);
2075
2076 return rReg;
2077 }
2078 #endif /* SQLITE_OMIT_SUBQUERY */
2079
2080 #ifndef SQLITE_OMIT_SUBQUERY
2081 /*
2082 ** Generate code for an IN expression.
2083 **
2084 ** x IN (SELECT ...)
2085 ** x IN (value, value, ...)
2086 **
2087 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS)
2088 ** is an array of zero or more values. The expression is true if the LHS is
2089 ** contained within the RHS. The value of the expression is unknown (NULL)
2090 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
2091 ** RHS contains one or more NULL values.
2092 **
2093 ** This routine generates code that jumps to destIfFalse if the LHS is not
2094 ** contained within the RHS. If due to NULLs we cannot determine if the LHS
2095 ** is contained in the RHS then jump to destIfNull. If the LHS is contained
2096 ** within the RHS then fall through.
2097 */
2098 static void sqlite3ExprCodeIN(
2099 Parse *pParse, /* Parsing and code generating context */
2100 Expr *pExpr, /* The IN expression */
2101 int destIfFalse, /* Jump here if LHS is not contained in the RHS */
2102 int destIfNull /* Jump here if the results are unknown due to NULLs */
2103 ){
2104 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */
2105 char affinity; /* Comparison affinity to use */
2106 int eType; /* Type of the RHS */
2107 int r1; /* Temporary use register */
2108 Vdbe *v; /* Statement under construction */
2109
2110 /* Compute the RHS. After this step, the table with cursor
2111 ** pExpr->iTable will contains the values that make up the RHS.
2112 */
2113 v = pParse->pVdbe;
2114 assert( v!=0 ); /* OOM detected prior to this routine */
2115 VdbeNoopComment((v, "begin IN expr"));
2116 eType = sqlite3FindInIndex(pParse, pExpr,
2117 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK,
2118 destIfFalse==destIfNull ? 0 : &rRhsHasNull);
2119
2120 /* Figure out the affinity to use to create a key from the results
2121 ** of the expression. affinityStr stores a static string suitable for
2122 ** P4 of OP_MakeRecord.
2123 */
2124 affinity = comparisonAffinity(pExpr);
2125
2126 /* Code the LHS, the <expr> from "<expr> IN (...)".
2127 */
2128 sqlite3ExprCachePush(pParse);
2129 r1 = sqlite3GetTempReg(pParse);
2130 sqlite3ExprCode(pParse, pExpr->pLeft, r1);
2131
2132 /* If sqlite3FindInIndex() did not find or create an index that is
2133 ** suitable for evaluating the IN operator, then evaluate using a
2134 ** sequence of comparisons.
2135 */
2136 if( eType==IN_INDEX_NOOP ){
2137 ExprList *pList = pExpr->x.pList;
2138 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
2139 int labelOk = sqlite3VdbeMakeLabel(v);
2140 int r2, regToFree;
2141 int regCkNull = 0;
2142 int ii;
2143 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2144 if( destIfNull!=destIfFalse ){
2145 regCkNull = sqlite3GetTempReg(pParse);
2146 sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull);
2147 }
2148 for(ii=0; ii<pList->nExpr; ii++){
2149 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, &regToFree);
2150 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){
2151 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull);
2152 }
2153 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){
2154 sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2,
2155 (void*)pColl, P4_COLLSEQ);
2156 VdbeCoverageIf(v, ii<pList->nExpr-1);
2157 VdbeCoverageIf(v, ii==pList->nExpr-1);
2158 sqlite3VdbeChangeP5(v, affinity);
2159 }else{
2160 assert( destIfNull==destIfFalse );
2161 sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2,
2162 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v);
2163 sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL);
2164 }
2165 sqlite3ReleaseTempReg(pParse, regToFree);
2166 }
2167 if( regCkNull ){
2168 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v);
2169 sqlite3VdbeGoto(v, destIfFalse);
2170 }
2171 sqlite3VdbeResolveLabel(v, labelOk);
2172 sqlite3ReleaseTempReg(pParse, regCkNull);
2173 }else{
2174
2175 /* If the LHS is NULL, then the result is either false or NULL depending
2176 ** on whether the RHS is empty or not, respectively.
2177 */
2178 if( sqlite3ExprCanBeNull(pExpr->pLeft) ){
2179 if( destIfNull==destIfFalse ){
2180 /* Shortcut for the common case where the false and NULL outcomes are
2181 ** the same. */
2182 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v);
2183 }else{
2184 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v);
2185 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
2186 VdbeCoverage(v);
2187 sqlite3VdbeGoto(v, destIfNull);
2188 sqlite3VdbeJumpHere(v, addr1);
2189 }
2190 }
2191
2192 if( eType==IN_INDEX_ROWID ){
2193 /* In this case, the RHS is the ROWID of table b-tree
2194 */
2195 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v);
2196 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
2197 VdbeCoverage(v);
2198 }else{
2199 /* In this case, the RHS is an index b-tree.
2200 */
2201 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
2202
2203 /* If the set membership test fails, then the result of the
2204 ** "x IN (...)" expression must be either 0 or NULL. If the set
2205 ** contains no NULL values, then the result is 0. If the set
2206 ** contains one or more NULL values, then the result of the
2207 ** expression is also NULL.
2208 */
2209 assert( destIfFalse!=destIfNull || rRhsHasNull==0 );
2210 if( rRhsHasNull==0 ){
2211 /* This branch runs if it is known at compile time that the RHS
2212 ** cannot contain NULL values. This happens as the result
2213 ** of a "NOT NULL" constraint in the database schema.
2214 **
2215 ** Also run this branch if NULL is equivalent to FALSE
2216 ** for this particular IN operator.
2217 */
2218 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
2219 VdbeCoverage(v);
2220 }else{
2221 /* In this branch, the RHS of the IN might contain a NULL and
2222 ** the presence of a NULL on the RHS makes a difference in the
2223 ** outcome.
2224 */
2225 int addr1;
2226
2227 /* First check to see if the LHS is contained in the RHS. If so,
2228 ** then the answer is TRUE the presence of NULLs in the RHS does
2229 ** not matter. If the LHS is not contained in the RHS, then the
2230 ** answer is NULL if the RHS contains NULLs and the answer is
2231 ** FALSE if the RHS is NULL-free.
2232 */
2233 addr1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
2234 VdbeCoverage(v);
2235 sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull);
2236 VdbeCoverage(v);
2237 sqlite3VdbeGoto(v, destIfFalse);
2238 sqlite3VdbeJumpHere(v, addr1);
2239 }
2240 }
2241 }
2242 sqlite3ReleaseTempReg(pParse, r1);
2243 sqlite3ExprCachePop(pParse);
2244 VdbeComment((v, "end IN expr"));
2245 }
2246 #endif /* SQLITE_OMIT_SUBQUERY */
2247
2248 #ifndef SQLITE_OMIT_FLOATING_POINT
2249 /*
2250 ** Generate an instruction that will put the floating point
2251 ** value described by z[0..n-1] into register iMem.
2252 **
2253 ** The z[] string will probably not be zero-terminated. But the
2254 ** z[n] character is guaranteed to be something that does not look
2255 ** like the continuation of the number.
2256 */
2257 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
2258 if( ALWAYS(z!=0) ){
2259 double value;
2260 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
2261 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
2262 if( negateFlag ) value = -value;
2263 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL);
2264 }
2265 }
2266 #endif
2267
2268
2269 /*
2270 ** Generate an instruction that will put the integer describe by
2271 ** text z[0..n-1] into register iMem.
2272 **
2273 ** Expr.u.zToken is always UTF8 and zero-terminated.
2274 */
2275 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
2276 Vdbe *v = pParse->pVdbe;
2277 if( pExpr->flags & EP_IntValue ){
2278 int i = pExpr->u.iValue;
2279 assert( i>=0 );
2280 if( negFlag ) i = -i;
2281 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
2282 }else{
2283 int c;
2284 i64 value;
2285 const char *z = pExpr->u.zToken;
2286 assert( z!=0 );
2287 c = sqlite3DecOrHexToI64(z, &value);
2288 if( c==0 || (c==2 && negFlag) ){
2289 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
2290 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64);
2291 }else{
2292 #ifdef SQLITE_OMIT_FLOATING_POINT
2293 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
2294 #else
2295 #ifndef SQLITE_OMIT_HEX_INTEGER
2296 if( sqlite3_strnicmp(z,"0x",2)==0 ){
2297 sqlite3ErrorMsg(pParse, "hex literal too big: %s", z);
2298 }else
2299 #endif
2300 {
2301 codeReal(v, z, negFlag, iMem);
2302 }
2303 #endif
2304 }
2305 }
2306 }
2307
2308 /*
2309 ** Clear a cache entry.
2310 */
2311 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
2312 if( p->tempReg ){
2313 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
2314 pParse->aTempReg[pParse->nTempReg++] = p->iReg;
2315 }
2316 p->tempReg = 0;
2317 }
2318 }
2319
2320
2321 /*
2322 ** Record in the column cache that a particular column from a
2323 ** particular table is stored in a particular register.
2324 */
2325 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
2326 int i;
2327 int minLru;
2328 int idxLru;
2329 struct yColCache *p;
2330
2331 /* Unless an error has occurred, register numbers are always positive. */
2332 assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed );
2333 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */
2334
2335 /* The SQLITE_ColumnCache flag disables the column cache. This is used
2336 ** for testing only - to verify that SQLite always gets the same answer
2337 ** with and without the column cache.
2338 */
2339 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
2340
2341 /* First replace any existing entry.
2342 **
2343 ** Actually, the way the column cache is currently used, we are guaranteed
2344 ** that the object will never already be in cache. Verify this guarantee.
2345 */
2346 #ifndef NDEBUG
2347 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2348 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
2349 }
2350 #endif
2351
2352 /* Find an empty slot and replace it */
2353 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2354 if( p->iReg==0 ){
2355 p->iLevel = pParse->iCacheLevel;
2356 p->iTable = iTab;
2357 p->iColumn = iCol;
2358 p->iReg = iReg;
2359 p->tempReg = 0;
2360 p->lru = pParse->iCacheCnt++;
2361 return;
2362 }
2363 }
2364
2365 /* Replace the last recently used */
2366 minLru = 0x7fffffff;
2367 idxLru = -1;
2368 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2369 if( p->lru<minLru ){
2370 idxLru = i;
2371 minLru = p->lru;
2372 }
2373 }
2374 if( ALWAYS(idxLru>=0) ){
2375 p = &pParse->aColCache[idxLru];
2376 p->iLevel = pParse->iCacheLevel;
2377 p->iTable = iTab;
2378 p->iColumn = iCol;
2379 p->iReg = iReg;
2380 p->tempReg = 0;
2381 p->lru = pParse->iCacheCnt++;
2382 return;
2383 }
2384 }
2385
2386 /*
2387 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
2388 ** Purge the range of registers from the column cache.
2389 */
2390 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
2391 int i;
2392 int iLast = iReg + nReg - 1;
2393 struct yColCache *p;
2394 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2395 int r = p->iReg;
2396 if( r>=iReg && r<=iLast ){
2397 cacheEntryClear(pParse, p);
2398 p->iReg = 0;
2399 }
2400 }
2401 }
2402
2403 /*
2404 ** Remember the current column cache context. Any new entries added
2405 ** added to the column cache after this call are removed when the
2406 ** corresponding pop occurs.
2407 */
2408 void sqlite3ExprCachePush(Parse *pParse){
2409 pParse->iCacheLevel++;
2410 #ifdef SQLITE_DEBUG
2411 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2412 printf("PUSH to %d\n", pParse->iCacheLevel);
2413 }
2414 #endif
2415 }
2416
2417 /*
2418 ** Remove from the column cache any entries that were added since the
2419 ** the previous sqlite3ExprCachePush operation. In other words, restore
2420 ** the cache to the state it was in prior the most recent Push.
2421 */
2422 void sqlite3ExprCachePop(Parse *pParse){
2423 int i;
2424 struct yColCache *p;
2425 assert( pParse->iCacheLevel>=1 );
2426 pParse->iCacheLevel--;
2427 #ifdef SQLITE_DEBUG
2428 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2429 printf("POP to %d\n", pParse->iCacheLevel);
2430 }
2431 #endif
2432 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2433 if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2434 cacheEntryClear(pParse, p);
2435 p->iReg = 0;
2436 }
2437 }
2438 }
2439
2440 /*
2441 ** When a cached column is reused, make sure that its register is
2442 ** no longer available as a temp register. ticket #3879: that same
2443 ** register might be in the cache in multiple places, so be sure to
2444 ** get them all.
2445 */
2446 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
2447 int i;
2448 struct yColCache *p;
2449 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2450 if( p->iReg==iReg ){
2451 p->tempReg = 0;
2452 }
2453 }
2454 }
2455
2456 /* Generate code that will load into register regOut a value that is
2457 ** appropriate for the iIdxCol-th column of index pIdx.
2458 */
2459 void sqlite3ExprCodeLoadIndexColumn(
2460 Parse *pParse, /* The parsing context */
2461 Index *pIdx, /* The index whose column is to be loaded */
2462 int iTabCur, /* Cursor pointing to a table row */
2463 int iIdxCol, /* The column of the index to be loaded */
2464 int regOut /* Store the index column value in this register */
2465 ){
2466 i16 iTabCol = pIdx->aiColumn[iIdxCol];
2467 if( iTabCol==XN_EXPR ){
2468 assert( pIdx->aColExpr );
2469 assert( pIdx->aColExpr->nExpr>iIdxCol );
2470 pParse->iSelfTab = iTabCur;
2471 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut);
2472 }else{
2473 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur,
2474 iTabCol, regOut);
2475 }
2476 }
2477
2478 /*
2479 ** Generate code to extract the value of the iCol-th column of a table.
2480 */
2481 void sqlite3ExprCodeGetColumnOfTable(
2482 Vdbe *v, /* The VDBE under construction */
2483 Table *pTab, /* The table containing the value */
2484 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */
2485 int iCol, /* Index of the column to extract */
2486 int regOut /* Extract the value into this register */
2487 ){
2488 if( iCol<0 || iCol==pTab->iPKey ){
2489 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
2490 }else{
2491 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2492 int x = iCol;
2493 if( !HasRowid(pTab) ){
2494 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol);
2495 }
2496 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut);
2497 }
2498 if( iCol>=0 ){
2499 sqlite3ColumnDefault(v, pTab, iCol, regOut);
2500 }
2501 }
2502
2503 /*
2504 ** Generate code that will extract the iColumn-th column from
2505 ** table pTab and store the column value in a register.
2506 **
2507 ** An effort is made to store the column value in register iReg. This
2508 ** is not garanteeed for GetColumn() - the result can be stored in
2509 ** any register. But the result is guaranteed to land in register iReg
2510 ** for GetColumnToReg().
2511 **
2512 ** There must be an open cursor to pTab in iTable when this routine
2513 ** is called. If iColumn<0 then code is generated that extracts the rowid.
2514 */
2515 int sqlite3ExprCodeGetColumn(
2516 Parse *pParse, /* Parsing and code generating context */
2517 Table *pTab, /* Description of the table we are reading from */
2518 int iColumn, /* Index of the table column */
2519 int iTable, /* The cursor pointing to the table */
2520 int iReg, /* Store results here */
2521 u8 p5 /* P5 value for OP_Column + FLAGS */
2522 ){
2523 Vdbe *v = pParse->pVdbe;
2524 int i;
2525 struct yColCache *p;
2526
2527 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2528 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
2529 p->lru = pParse->iCacheCnt++;
2530 sqlite3ExprCachePinRegister(pParse, p->iReg);
2531 return p->iReg;
2532 }
2533 }
2534 assert( v!=0 );
2535 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
2536 if( p5 ){
2537 sqlite3VdbeChangeP5(v, p5);
2538 }else{
2539 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2540 }
2541 return iReg;
2542 }
2543 void sqlite3ExprCodeGetColumnToReg(
2544 Parse *pParse, /* Parsing and code generating context */
2545 Table *pTab, /* Description of the table we are reading from */
2546 int iColumn, /* Index of the table column */
2547 int iTable, /* The cursor pointing to the table */
2548 int iReg /* Store results here */
2549 ){
2550 int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0);
2551 if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg);
2552 }
2553
2554
2555 /*
2556 ** Clear all column cache entries.
2557 */
2558 void sqlite3ExprCacheClear(Parse *pParse){
2559 int i;
2560 struct yColCache *p;
2561
2562 #if SQLITE_DEBUG
2563 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){
2564 printf("CLEAR\n");
2565 }
2566 #endif
2567 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2568 if( p->iReg ){
2569 cacheEntryClear(pParse, p);
2570 p->iReg = 0;
2571 }
2572 }
2573 }
2574
2575 /*
2576 ** Record the fact that an affinity change has occurred on iCount
2577 ** registers starting with iStart.
2578 */
2579 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2580 sqlite3ExprCacheRemove(pParse, iStart, iCount);
2581 }
2582
2583 /*
2584 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2585 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2586 */
2587 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2588 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
2589 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg);
2590 sqlite3ExprCacheRemove(pParse, iFrom, nReg);
2591 }
2592
2593 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2594 /*
2595 ** Return true if any register in the range iFrom..iTo (inclusive)
2596 ** is used as part of the column cache.
2597 **
2598 ** This routine is used within assert() and testcase() macros only
2599 ** and does not appear in a normal build.
2600 */
2601 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2602 int i;
2603 struct yColCache *p;
2604 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2605 int r = p->iReg;
2606 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/
2607 }
2608 return 0;
2609 }
2610 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2611
2612 /*
2613 ** Convert an expression node to a TK_REGISTER
2614 */
2615 static void exprToRegister(Expr *p, int iReg){
2616 p->op2 = p->op;
2617 p->op = TK_REGISTER;
2618 p->iTable = iReg;
2619 ExprClearProperty(p, EP_Skip);
2620 }
2621
2622 /*
2623 ** Generate code into the current Vdbe to evaluate the given
2624 ** expression. Attempt to store the results in register "target".
2625 ** Return the register where results are stored.
2626 **
2627 ** With this routine, there is no guarantee that results will
2628 ** be stored in target. The result might be stored in some other
2629 ** register if it is convenient to do so. The calling function
2630 ** must check the return code and move the results to the desired
2631 ** register.
2632 */
2633 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2634 Vdbe *v = pParse->pVdbe; /* The VM under construction */
2635 int op; /* The opcode being coded */
2636 int inReg = target; /* Results stored in register inReg */
2637 int regFree1 = 0; /* If non-zero free this temporary register */
2638 int regFree2 = 0; /* If non-zero free this temporary register */
2639 int r1, r2, r3, r4; /* Various register numbers */
2640 sqlite3 *db = pParse->db; /* The database connection */
2641 Expr tempX; /* Temporary expression node */
2642
2643 assert( target>0 && target<=pParse->nMem );
2644 if( v==0 ){
2645 assert( pParse->db->mallocFailed );
2646 return 0;
2647 }
2648
2649 if( pExpr==0 ){
2650 op = TK_NULL;
2651 }else{
2652 op = pExpr->op;
2653 }
2654 switch( op ){
2655 case TK_AGG_COLUMN: {
2656 AggInfo *pAggInfo = pExpr->pAggInfo;
2657 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2658 if( !pAggInfo->directMode ){
2659 assert( pCol->iMem>0 );
2660 inReg = pCol->iMem;
2661 break;
2662 }else if( pAggInfo->useSortingIdx ){
2663 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
2664 pCol->iSorterColumn, target);
2665 break;
2666 }
2667 /* Otherwise, fall thru into the TK_COLUMN case */
2668 }
2669 case TK_COLUMN: {
2670 int iTab = pExpr->iTable;
2671 if( iTab<0 ){
2672 if( pParse->ckBase>0 ){
2673 /* Generating CHECK constraints or inserting into partial index */
2674 inReg = pExpr->iColumn + pParse->ckBase;
2675 break;
2676 }else{
2677 /* Coding an expression that is part of an index where column names
2678 ** in the index refer to the table to which the index belongs */
2679 iTab = pParse->iSelfTab;
2680 }
2681 }
2682 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2683 pExpr->iColumn, iTab, target,
2684 pExpr->op2);
2685 break;
2686 }
2687 case TK_INTEGER: {
2688 codeInteger(pParse, pExpr, 0, target);
2689 break;
2690 }
2691 #ifndef SQLITE_OMIT_FLOATING_POINT
2692 case TK_FLOAT: {
2693 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2694 codeReal(v, pExpr->u.zToken, 0, target);
2695 break;
2696 }
2697 #endif
2698 case TK_STRING: {
2699 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2700 sqlite3VdbeLoadString(v, target, pExpr->u.zToken);
2701 break;
2702 }
2703 case TK_NULL: {
2704 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2705 break;
2706 }
2707 #ifndef SQLITE_OMIT_BLOB_LITERAL
2708 case TK_BLOB: {
2709 int n;
2710 const char *z;
2711 char *zBlob;
2712 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2713 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2714 assert( pExpr->u.zToken[1]=='\'' );
2715 z = &pExpr->u.zToken[2];
2716 n = sqlite3Strlen30(z) - 1;
2717 assert( z[n]=='\'' );
2718 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2719 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2720 break;
2721 }
2722 #endif
2723 case TK_VARIABLE: {
2724 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2725 assert( pExpr->u.zToken!=0 );
2726 assert( pExpr->u.zToken[0]!=0 );
2727 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
2728 if( pExpr->u.zToken[1]!=0 ){
2729 assert( pExpr->u.zToken[0]=='?'
2730 || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
2731 sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
2732 }
2733 break;
2734 }
2735 case TK_REGISTER: {
2736 inReg = pExpr->iTable;
2737 break;
2738 }
2739 #ifndef SQLITE_OMIT_CAST
2740 case TK_CAST: {
2741 /* Expressions of the form: CAST(pLeft AS token) */
2742 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2743 if( inReg!=target ){
2744 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2745 inReg = target;
2746 }
2747 sqlite3VdbeAddOp2(v, OP_Cast, target,
2748 sqlite3AffinityType(pExpr->u.zToken, 0));
2749 testcase( usedAsColumnCache(pParse, inReg, inReg) );
2750 sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2751 break;
2752 }
2753 #endif /* SQLITE_OMIT_CAST */
2754 case TK_LT:
2755 case TK_LE:
2756 case TK_GT:
2757 case TK_GE:
2758 case TK_NE:
2759 case TK_EQ: {
2760 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2761 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2762 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2763 r1, r2, inReg, SQLITE_STOREP2);
2764 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
2765 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
2766 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
2767 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
2768 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
2769 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
2770 testcase( regFree1==0 );
2771 testcase( regFree2==0 );
2772 break;
2773 }
2774 case TK_IS:
2775 case TK_ISNOT: {
2776 testcase( op==TK_IS );
2777 testcase( op==TK_ISNOT );
2778 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2779 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2780 op = (op==TK_IS) ? TK_EQ : TK_NE;
2781 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2782 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2783 VdbeCoverageIf(v, op==TK_EQ);
2784 VdbeCoverageIf(v, op==TK_NE);
2785 testcase( regFree1==0 );
2786 testcase( regFree2==0 );
2787 break;
2788 }
2789 case TK_AND:
2790 case TK_OR:
2791 case TK_PLUS:
2792 case TK_STAR:
2793 case TK_MINUS:
2794 case TK_REM:
2795 case TK_BITAND:
2796 case TK_BITOR:
2797 case TK_SLASH:
2798 case TK_LSHIFT:
2799 case TK_RSHIFT:
2800 case TK_CONCAT: {
2801 assert( TK_AND==OP_And ); testcase( op==TK_AND );
2802 assert( TK_OR==OP_Or ); testcase( op==TK_OR );
2803 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS );
2804 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS );
2805 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM );
2806 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND );
2807 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR );
2808 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH );
2809 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT );
2810 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT );
2811 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT );
2812 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2813 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2814 sqlite3VdbeAddOp3(v, op, r2, r1, target);
2815 testcase( regFree1==0 );
2816 testcase( regFree2==0 );
2817 break;
2818 }
2819 case TK_UMINUS: {
2820 Expr *pLeft = pExpr->pLeft;
2821 assert( pLeft );
2822 if( pLeft->op==TK_INTEGER ){
2823 codeInteger(pParse, pLeft, 1, target);
2824 #ifndef SQLITE_OMIT_FLOATING_POINT
2825 }else if( pLeft->op==TK_FLOAT ){
2826 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2827 codeReal(v, pLeft->u.zToken, 1, target);
2828 #endif
2829 }else{
2830 tempX.op = TK_INTEGER;
2831 tempX.flags = EP_IntValue|EP_TokenOnly;
2832 tempX.u.iValue = 0;
2833 r1 = sqlite3ExprCodeTemp(pParse, &tempX, &regFree1);
2834 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2835 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2836 testcase( regFree2==0 );
2837 }
2838 inReg = target;
2839 break;
2840 }
2841 case TK_BITNOT:
2842 case TK_NOT: {
2843 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT );
2844 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT );
2845 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2846 testcase( regFree1==0 );
2847 inReg = target;
2848 sqlite3VdbeAddOp2(v, op, r1, inReg);
2849 break;
2850 }
2851 case TK_ISNULL:
2852 case TK_NOTNULL: {
2853 int addr;
2854 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL );
2855 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
2856 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2857 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2858 testcase( regFree1==0 );
2859 addr = sqlite3VdbeAddOp1(v, op, r1);
2860 VdbeCoverageIf(v, op==TK_ISNULL);
2861 VdbeCoverageIf(v, op==TK_NOTNULL);
2862 sqlite3VdbeAddOp2(v, OP_Integer, 0, target);
2863 sqlite3VdbeJumpHere(v, addr);
2864 break;
2865 }
2866 case TK_AGG_FUNCTION: {
2867 AggInfo *pInfo = pExpr->pAggInfo;
2868 if( pInfo==0 ){
2869 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2870 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2871 }else{
2872 inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2873 }
2874 break;
2875 }
2876 case TK_FUNCTION: {
2877 ExprList *pFarg; /* List of function arguments */
2878 int nFarg; /* Number of function arguments */
2879 FuncDef *pDef; /* The function definition object */
2880 int nId; /* Length of the function name in bytes */
2881 const char *zId; /* The function name */
2882 u32 constMask = 0; /* Mask of function arguments that are constant */
2883 int i; /* Loop counter */
2884 u8 enc = ENC(db); /* The text encoding used by this database */
2885 CollSeq *pColl = 0; /* A collating sequence */
2886
2887 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2888 if( ExprHasProperty(pExpr, EP_TokenOnly) ){
2889 pFarg = 0;
2890 }else{
2891 pFarg = pExpr->x.pList;
2892 }
2893 nFarg = pFarg ? pFarg->nExpr : 0;
2894 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2895 zId = pExpr->u.zToken;
2896 nId = sqlite3Strlen30(zId);
2897 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
2898 if( pDef==0 || pDef->xFunc==0 ){
2899 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
2900 break;
2901 }
2902
2903 /* Attempt a direct implementation of the built-in COALESCE() and
2904 ** IFNULL() functions. This avoids unnecessary evaluation of
2905 ** arguments past the first non-NULL argument.
2906 */
2907 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){
2908 int endCoalesce = sqlite3VdbeMakeLabel(v);
2909 assert( nFarg>=2 );
2910 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2911 for(i=1; i<nFarg; i++){
2912 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2913 VdbeCoverage(v);
2914 sqlite3ExprCacheRemove(pParse, target, 1);
2915 sqlite3ExprCachePush(pParse);
2916 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2917 sqlite3ExprCachePop(pParse);
2918 }
2919 sqlite3VdbeResolveLabel(v, endCoalesce);
2920 break;
2921 }
2922
2923 /* The UNLIKELY() function is a no-op. The result is the value
2924 ** of the first argument.
2925 */
2926 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){
2927 assert( nFarg>=1 );
2928 inReg = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target);
2929 break;
2930 }
2931
2932 for(i=0; i<nFarg; i++){
2933 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2934 testcase( i==31 );
2935 constMask |= MASKBIT32(i);
2936 }
2937 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2938 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2939 }
2940 }
2941 if( pFarg ){
2942 if( constMask ){
2943 r1 = pParse->nMem+1;
2944 pParse->nMem += nFarg;
2945 }else{
2946 r1 = sqlite3GetTempRange(pParse, nFarg);
2947 }
2948
2949 /* For length() and typeof() functions with a column argument,
2950 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
2951 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
2952 ** loading.
2953 */
2954 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
2955 u8 exprOp;
2956 assert( nFarg==1 );
2957 assert( pFarg->a[0].pExpr!=0 );
2958 exprOp = pFarg->a[0].pExpr->op;
2959 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
2960 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
2961 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
2962 testcase( pDef->funcFlags & OPFLAG_LENGTHARG );
2963 pFarg->a[0].pExpr->op2 =
2964 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG);
2965 }
2966 }
2967
2968 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */
2969 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0,
2970 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR);
2971 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */
2972 }else{
2973 r1 = 0;
2974 }
2975 #ifndef SQLITE_OMIT_VIRTUALTABLE
2976 /* Possibly overload the function if the first argument is
2977 ** a virtual table column.
2978 **
2979 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2980 ** second argument, not the first, as the argument to test to
2981 ** see if it is a column in a virtual table. This is done because
2982 ** the left operand of infix functions (the operand we want to
2983 ** control overloading) ends up as the second argument to the
2984 ** function. The expression "A glob B" is equivalent to
2985 ** "glob(B,A). We want to use the A in "A glob B" to test
2986 ** for function overloading. But we use the B term in "glob(B,A)".
2987 */
2988 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
2989 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
2990 }else if( nFarg>0 ){
2991 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
2992 }
2993 #endif
2994 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){
2995 if( !pColl ) pColl = db->pDfltColl;
2996 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2997 }
2998 sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target,
2999 (char*)pDef, P4_FUNCDEF);
3000 sqlite3VdbeChangeP5(v, (u8)nFarg);
3001 if( nFarg && constMask==0 ){
3002 sqlite3ReleaseTempRange(pParse, r1, nFarg);
3003 }
3004 break;
3005 }
3006 #ifndef SQLITE_OMIT_SUBQUERY
3007 case TK_EXISTS:
3008 case TK_SELECT: {
3009 testcase( op==TK_EXISTS );
3010 testcase( op==TK_SELECT );
3011 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
3012 break;
3013 }
3014 case TK_IN: {
3015 int destIfFalse = sqlite3VdbeMakeLabel(v);
3016 int destIfNull = sqlite3VdbeMakeLabel(v);
3017 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3018 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3019 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
3020 sqlite3VdbeResolveLabel(v, destIfFalse);
3021 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
3022 sqlite3VdbeResolveLabel(v, destIfNull);
3023 break;
3024 }
3025 #endif /* SQLITE_OMIT_SUBQUERY */
3026
3027
3028 /*
3029 ** x BETWEEN y AND z
3030 **
3031 ** This is equivalent to
3032 **
3033 ** x>=y AND x<=z
3034 **
3035 ** X is stored in pExpr->pLeft.
3036 ** Y is stored in pExpr->pList->a[0].pExpr.
3037 ** Z is stored in pExpr->pList->a[1].pExpr.
3038 */
3039 case TK_BETWEEN: {
3040 Expr *pLeft = pExpr->pLeft;
3041 struct ExprList_item *pLItem = pExpr->x.pList->a;
3042 Expr *pRight = pLItem->pExpr;
3043
3044 r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
3045 r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
3046 testcase( regFree1==0 );
3047 testcase( regFree2==0 );
3048 r3 = sqlite3GetTempReg(pParse);
3049 r4 = sqlite3GetTempReg(pParse);
3050 codeCompare(pParse, pLeft, pRight, OP_Ge,
3051 r1, r2, r3, SQLITE_STOREP2); VdbeCoverage(v);
3052 pLItem++;
3053 pRight = pLItem->pExpr;
3054 sqlite3ReleaseTempReg(pParse, regFree2);
3055 r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
3056 testcase( regFree2==0 );
3057 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
3058 VdbeCoverage(v);
3059 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
3060 sqlite3ReleaseTempReg(pParse, r3);
3061 sqlite3ReleaseTempReg(pParse, r4);
3062 break;
3063 }
3064 case TK_COLLATE:
3065 case TK_UPLUS: {
3066 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
3067 break;
3068 }
3069
3070 case TK_TRIGGER: {
3071 /* If the opcode is TK_TRIGGER, then the expression is a reference
3072 ** to a column in the new.* or old.* pseudo-tables available to
3073 ** trigger programs. In this case Expr.iTable is set to 1 for the
3074 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3075 ** is set to the column of the pseudo-table to read, or to -1 to
3076 ** read the rowid field.
3077 **
3078 ** The expression is implemented using an OP_Param opcode. The p1
3079 ** parameter is set to 0 for an old.rowid reference, or to (i+1)
3080 ** to reference another column of the old.* pseudo-table, where
3081 ** i is the index of the column. For a new.rowid reference, p1 is
3082 ** set to (n+1), where n is the number of columns in each pseudo-table.
3083 ** For a reference to any other column in the new.* pseudo-table, p1
3084 ** is set to (n+2+i), where n and i are as defined previously. For
3085 ** example, if the table on which triggers are being fired is
3086 ** declared as:
3087 **
3088 ** CREATE TABLE t1(a, b);
3089 **
3090 ** Then p1 is interpreted as follows:
3091 **
3092 ** p1==0 -> old.rowid p1==3 -> new.rowid
3093 ** p1==1 -> old.a p1==4 -> new.a
3094 ** p1==2 -> old.b p1==5 -> new.b
3095 */
3096 Table *pTab = pExpr->pTab;
3097 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
3098
3099 assert( pExpr->iTable==0 || pExpr->iTable==1 );
3100 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
3101 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
3102 assert( p1>=0 && p1<(pTab->nCol*2+2) );
3103
3104 sqlite3VdbeAddOp2(v, OP_Param, p1, target);
3105 VdbeComment((v, "%s.%s -> $%d",
3106 (pExpr->iTable ? "new" : "old"),
3107 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
3108 target
3109 ));
3110
3111 #ifndef SQLITE_OMIT_FLOATING_POINT
3112 /* If the column has REAL affinity, it may currently be stored as an
3113 ** integer. Use OP_RealAffinity to make sure it is really real.
3114 **
3115 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to
3116 ** floating point when extracting it from the record. */
3117 if( pExpr->iColumn>=0
3118 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
3119 ){
3120 sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
3121 }
3122 #endif
3123 break;
3124 }
3125
3126
3127 /*
3128 ** Form A:
3129 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3130 **
3131 ** Form B:
3132 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
3133 **
3134 ** Form A is can be transformed into the equivalent form B as follows:
3135 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
3136 ** WHEN x=eN THEN rN ELSE y END
3137 **
3138 ** X (if it exists) is in pExpr->pLeft.
3139 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is
3140 ** odd. The Y is also optional. If the number of elements in x.pList
3141 ** is even, then Y is omitted and the "otherwise" result is NULL.
3142 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
3143 **
3144 ** The result of the expression is the Ri for the first matching Ei,
3145 ** or if there is no matching Ei, the ELSE term Y, or if there is
3146 ** no ELSE term, NULL.
3147 */
3148 default: assert( op==TK_CASE ); {
3149 int endLabel; /* GOTO label for end of CASE stmt */
3150 int nextCase; /* GOTO label for next WHEN clause */
3151 int nExpr; /* 2x number of WHEN terms */
3152 int i; /* Loop counter */
3153 ExprList *pEList; /* List of WHEN terms */
3154 struct ExprList_item *aListelem; /* Array of WHEN terms */
3155 Expr opCompare; /* The X==Ei expression */
3156 Expr *pX; /* The X expression */
3157 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */
3158 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
3159
3160 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
3161 assert(pExpr->x.pList->nExpr > 0);
3162 pEList = pExpr->x.pList;
3163 aListelem = pEList->a;
3164 nExpr = pEList->nExpr;
3165 endLabel = sqlite3VdbeMakeLabel(v);
3166 if( (pX = pExpr->pLeft)!=0 ){
3167 tempX = *pX;
3168 testcase( pX->op==TK_COLUMN );
3169 exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, &regFree1));
3170 testcase( regFree1==0 );
3171 opCompare.op = TK_EQ;
3172 opCompare.pLeft = &tempX;
3173 pTest = &opCompare;
3174 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
3175 ** The value in regFree1 might get SCopy-ed into the file result.
3176 ** So make sure that the regFree1 register is not reused for other
3177 ** purposes and possibly overwritten. */
3178 regFree1 = 0;
3179 }
3180 for(i=0; i<nExpr-1; i=i+2){
3181 sqlite3ExprCachePush(pParse);
3182 if( pX ){
3183 assert( pTest!=0 );
3184 opCompare.pRight = aListelem[i].pExpr;
3185 }else{
3186 pTest = aListelem[i].pExpr;
3187 }
3188 nextCase = sqlite3VdbeMakeLabel(v);
3189 testcase( pTest->op==TK_COLUMN );
3190 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
3191 testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
3192 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
3193 sqlite3VdbeGoto(v, endLabel);
3194 sqlite3ExprCachePop(pParse);
3195 sqlite3VdbeResolveLabel(v, nextCase);
3196 }
3197 if( (nExpr&1)!=0 ){
3198 sqlite3ExprCachePush(pParse);
3199 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target);
3200 sqlite3ExprCachePop(pParse);
3201 }else{
3202 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
3203 }
3204 assert( db->mallocFailed || pParse->nErr>0
3205 || pParse->iCacheLevel==iCacheLevel );
3206 sqlite3VdbeResolveLabel(v, endLabel);
3207 break;
3208 }
3209 #ifndef SQLITE_OMIT_TRIGGER
3210 case TK_RAISE: {
3211 assert( pExpr->affinity==OE_Rollback
3212 || pExpr->affinity==OE_Abort
3213 || pExpr->affinity==OE_Fail
3214 || pExpr->affinity==OE_Ignore
3215 );
3216 if( !pParse->pTriggerTab ){
3217 sqlite3ErrorMsg(pParse,
3218 "RAISE() may only be used within a trigger-program");
3219 return 0;
3220 }
3221 if( pExpr->affinity==OE_Abort ){
3222 sqlite3MayAbort(pParse);
3223 }
3224 assert( !ExprHasProperty(pExpr, EP_IntValue) );
3225 if( pExpr->affinity==OE_Ignore ){
3226 sqlite3VdbeAddOp4(
3227 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
3228 VdbeCoverage(v);
3229 }else{
3230 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
3231 pExpr->affinity, pExpr->u.zToken, 0, 0);
3232 }
3233
3234 break;
3235 }
3236 #endif
3237 }
3238 sqlite3ReleaseTempReg(pParse, regFree1);
3239 sqlite3ReleaseTempReg(pParse, regFree2);
3240 return inReg;
3241 }
3242
3243 /*
3244 ** Factor out the code of the given expression to initialization time.
3245 */
3246 void sqlite3ExprCodeAtInit(
3247 Parse *pParse, /* Parsing context */
3248 Expr *pExpr, /* The expression to code when the VDBE initializes */
3249 int regDest, /* Store the value in this register */
3250 u8 reusable /* True if this expression is reusable */
3251 ){
3252 ExprList *p;
3253 assert( ConstFactorOk(pParse) );
3254 p = pParse->pConstExpr;
3255 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0);
3256 p = sqlite3ExprListAppend(pParse, p, pExpr);
3257 if( p ){
3258 struct ExprList_item *pItem = &p->a[p->nExpr-1];
3259 pItem->u.iConstExprReg = regDest;
3260 pItem->reusable = reusable;
3261 }
3262 pParse->pConstExpr = p;
3263 }
3264
3265 /*
3266 ** Generate code to evaluate an expression and store the results
3267 ** into a register. Return the register number where the results
3268 ** are stored.
3269 **
3270 ** If the register is a temporary register that can be deallocated,
3271 ** then write its number into *pReg. If the result register is not
3272 ** a temporary, then set *pReg to zero.
3273 **
3274 ** If pExpr is a constant, then this routine might generate this
3275 ** code to fill the register in the initialization section of the
3276 ** VDBE program, in order to factor it out of the evaluation loop.
3277 */
3278 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
3279 int r2;
3280 pExpr = sqlite3ExprSkipCollate(pExpr);
3281 if( ConstFactorOk(pParse)
3282 && pExpr->op!=TK_REGISTER
3283 && sqlite3ExprIsConstantNotJoin(pExpr)
3284 ){
3285 ExprList *p = pParse->pConstExpr;
3286 int i;
3287 *pReg = 0;
3288 if( p ){
3289 struct ExprList_item *pItem;
3290 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){
3291 if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){
3292 return pItem->u.iConstExprReg;
3293 }
3294 }
3295 }
3296 r2 = ++pParse->nMem;
3297 sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1);
3298 }else{
3299 int r1 = sqlite3GetTempReg(pParse);
3300 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3301 if( r2==r1 ){
3302 *pReg = r1;
3303 }else{
3304 sqlite3ReleaseTempReg(pParse, r1);
3305 *pReg = 0;
3306 }
3307 }
3308 return r2;
3309 }
3310
3311 /*
3312 ** Generate code that will evaluate expression pExpr and store the
3313 ** results in register target. The results are guaranteed to appear
3314 ** in register target.
3315 */
3316 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
3317 int inReg;
3318
3319 assert( target>0 && target<=pParse->nMem );
3320 if( pExpr && pExpr->op==TK_REGISTER ){
3321 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
3322 }else{
3323 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
3324 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed );
3325 if( inReg!=target && pParse->pVdbe ){
3326 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
3327 }
3328 }
3329 }
3330
3331 /*
3332 ** Make a transient copy of expression pExpr and then code it using
3333 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode()
3334 ** except that the input expression is guaranteed to be unchanged.
3335 */
3336 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){
3337 sqlite3 *db = pParse->db;
3338 pExpr = sqlite3ExprDup(db, pExpr, 0);
3339 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target);
3340 sqlite3ExprDelete(db, pExpr);
3341 }
3342
3343 /*
3344 ** Generate code that will evaluate expression pExpr and store the
3345 ** results in register target. The results are guaranteed to appear
3346 ** in register target. If the expression is constant, then this routine
3347 ** might choose to code the expression at initialization time.
3348 */
3349 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){
3350 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){
3351 sqlite3ExprCodeAtInit(pParse, pExpr, target, 0);
3352 }else{
3353 sqlite3ExprCode(pParse, pExpr, target);
3354 }
3355 }
3356
3357 /*
3358 ** Generate code that evaluates the given expression and puts the result
3359 ** in register target.
3360 **
3361 ** Also make a copy of the expression results into another "cache" register
3362 ** and modify the expression so that the next time it is evaluated,
3363 ** the result is a copy of the cache register.
3364 **
3365 ** This routine is used for expressions that are used multiple
3366 ** times. They are evaluated once and the results of the expression
3367 ** are reused.
3368 */
3369 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
3370 Vdbe *v = pParse->pVdbe;
3371 int iMem;
3372
3373 assert( target>0 );
3374 assert( pExpr->op!=TK_REGISTER );
3375 sqlite3ExprCode(pParse, pExpr, target);
3376 iMem = ++pParse->nMem;
3377 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem);
3378 exprToRegister(pExpr, iMem);
3379 }
3380
3381 /*
3382 ** Generate code that pushes the value of every element of the given
3383 ** expression list into a sequence of registers beginning at target.
3384 **
3385 ** Return the number of elements evaluated.
3386 **
3387 ** The SQLITE_ECEL_DUP flag prevents the arguments from being
3388 ** filled using OP_SCopy. OP_Copy must be used instead.
3389 **
3390 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be
3391 ** factored out into initialization code.
3392 **
3393 ** The SQLITE_ECEL_REF flag means that expressions in the list with
3394 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored
3395 ** in registers at srcReg, and so the value can be copied from there.
3396 */
3397 int sqlite3ExprCodeExprList(
3398 Parse *pParse, /* Parsing context */
3399 ExprList *pList, /* The expression list to be coded */
3400 int target, /* Where to write results */
3401 int srcReg, /* Source registers if SQLITE_ECEL_REF */
3402 u8 flags /* SQLITE_ECEL_* flags */
3403 ){
3404 struct ExprList_item *pItem;
3405 int i, j, n;
3406 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy;
3407 Vdbe *v = pParse->pVdbe;
3408 assert( pList!=0 );
3409 assert( target>0 );
3410 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */
3411 n = pList->nExpr;
3412 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR;
3413 for(pItem=pList->a, i=0; i<n; i++, pItem++){
3414 Expr *pExpr = pItem->pExpr;
3415 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pList->a[i].u.x.iOrderByCol)>0 ){
3416 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i);
3417 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){
3418 sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0);
3419 }else{
3420 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
3421 if( inReg!=target+i ){
3422 VdbeOp *pOp;
3423 if( copyOp==OP_Copy
3424 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy
3425 && pOp->p1+pOp->p3+1==inReg
3426 && pOp->p2+pOp->p3+1==target+i
3427 ){
3428 pOp->p3++;
3429 }else{
3430 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i);
3431 }
3432 }
3433 }
3434 }
3435 return n;
3436 }
3437
3438 /*
3439 ** Generate code for a BETWEEN operator.
3440 **
3441 ** x BETWEEN y AND z
3442 **
3443 ** The above is equivalent to
3444 **
3445 ** x>=y AND x<=z
3446 **
3447 ** Code it as such, taking care to do the common subexpression
3448 ** elimination of x.
3449 */
3450 static void exprCodeBetween(
3451 Parse *pParse, /* Parsing and code generating context */
3452 Expr *pExpr, /* The BETWEEN expression */
3453 int dest, /* Jump here if the jump is taken */
3454 int jumpIfTrue, /* Take the jump if the BETWEEN is true */
3455 int jumpIfNull /* Take the jump if the BETWEEN is NULL */
3456 ){
3457 Expr exprAnd; /* The AND operator in x>=y AND x<=z */
3458 Expr compLeft; /* The x>=y term */
3459 Expr compRight; /* The x<=z term */
3460 Expr exprX; /* The x subexpression */
3461 int regFree1 = 0; /* Temporary use register */
3462
3463 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3464 exprX = *pExpr->pLeft;
3465 exprAnd.op = TK_AND;
3466 exprAnd.pLeft = &compLeft;
3467 exprAnd.pRight = &compRight;
3468 compLeft.op = TK_GE;
3469 compLeft.pLeft = &exprX;
3470 compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3471 compRight.op = TK_LE;
3472 compRight.pLeft = &exprX;
3473 compRight.pRight = pExpr->x.pList->a[1].pExpr;
3474 exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, &regFree1));
3475 if( jumpIfTrue ){
3476 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3477 }else{
3478 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3479 }
3480 sqlite3ReleaseTempReg(pParse, regFree1);
3481
3482 /* Ensure adequate test coverage */
3483 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3484 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
3485 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
3486 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
3487 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
3488 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
3489 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
3490 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
3491 }
3492
3493 /*
3494 ** Generate code for a boolean expression such that a jump is made
3495 ** to the label "dest" if the expression is true but execution
3496 ** continues straight thru if the expression is false.
3497 **
3498 ** If the expression evaluates to NULL (neither true nor false), then
3499 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3500 **
3501 ** This code depends on the fact that certain token values (ex: TK_EQ)
3502 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3503 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
3504 ** the make process cause these values to align. Assert()s in the code
3505 ** below verify that the numbers are aligned correctly.
3506 */
3507 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3508 Vdbe *v = pParse->pVdbe;
3509 int op = 0;
3510 int regFree1 = 0;
3511 int regFree2 = 0;
3512 int r1, r2;
3513
3514 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3515 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
3516 if( NEVER(pExpr==0) ) return; /* No way this can happen */
3517 op = pExpr->op;
3518 switch( op ){
3519 case TK_AND: {
3520 int d2 = sqlite3VdbeMakeLabel(v);
3521 testcase( jumpIfNull==0 );
3522 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3523 sqlite3ExprCachePush(pParse);
3524 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3525 sqlite3VdbeResolveLabel(v, d2);
3526 sqlite3ExprCachePop(pParse);
3527 break;
3528 }
3529 case TK_OR: {
3530 testcase( jumpIfNull==0 );
3531 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3532 sqlite3ExprCachePush(pParse);
3533 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3534 sqlite3ExprCachePop(pParse);
3535 break;
3536 }
3537 case TK_NOT: {
3538 testcase( jumpIfNull==0 );
3539 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3540 break;
3541 }
3542 case TK_LT:
3543 case TK_LE:
3544 case TK_GT:
3545 case TK_GE:
3546 case TK_NE:
3547 case TK_EQ: {
3548 testcase( jumpIfNull==0 );
3549 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3550 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3551 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3552 r1, r2, dest, jumpIfNull);
3553 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3554 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3555 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3556 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3557 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3558 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3559 testcase( regFree1==0 );
3560 testcase( regFree2==0 );
3561 break;
3562 }
3563 case TK_IS:
3564 case TK_ISNOT: {
3565 testcase( op==TK_IS );
3566 testcase( op==TK_ISNOT );
3567 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3568 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3569 op = (op==TK_IS) ? TK_EQ : TK_NE;
3570 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3571 r1, r2, dest, SQLITE_NULLEQ);
3572 VdbeCoverageIf(v, op==TK_EQ);
3573 VdbeCoverageIf(v, op==TK_NE);
3574 testcase( regFree1==0 );
3575 testcase( regFree2==0 );
3576 break;
3577 }
3578 case TK_ISNULL:
3579 case TK_NOTNULL: {
3580 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL );
3581 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL );
3582 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3583 sqlite3VdbeAddOp2(v, op, r1, dest);
3584 VdbeCoverageIf(v, op==TK_ISNULL);
3585 VdbeCoverageIf(v, op==TK_NOTNULL);
3586 testcase( regFree1==0 );
3587 break;
3588 }
3589 case TK_BETWEEN: {
3590 testcase( jumpIfNull==0 );
3591 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3592 break;
3593 }
3594 #ifndef SQLITE_OMIT_SUBQUERY
3595 case TK_IN: {
3596 int destIfFalse = sqlite3VdbeMakeLabel(v);
3597 int destIfNull = jumpIfNull ? dest : destIfFalse;
3598 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3599 sqlite3VdbeGoto(v, dest);
3600 sqlite3VdbeResolveLabel(v, destIfFalse);
3601 break;
3602 }
3603 #endif
3604 default: {
3605 if( exprAlwaysTrue(pExpr) ){
3606 sqlite3VdbeGoto(v, dest);
3607 }else if( exprAlwaysFalse(pExpr) ){
3608 /* No-op */
3609 }else{
3610 r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3611 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3612 VdbeCoverage(v);
3613 testcase( regFree1==0 );
3614 testcase( jumpIfNull==0 );
3615 }
3616 break;
3617 }
3618 }
3619 sqlite3ReleaseTempReg(pParse, regFree1);
3620 sqlite3ReleaseTempReg(pParse, regFree2);
3621 }
3622
3623 /*
3624 ** Generate code for a boolean expression such that a jump is made
3625 ** to the label "dest" if the expression is false but execution
3626 ** continues straight thru if the expression is true.
3627 **
3628 ** If the expression evaluates to NULL (neither true nor false) then
3629 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3630 ** is 0.
3631 */
3632 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3633 Vdbe *v = pParse->pVdbe;
3634 int op = 0;
3635 int regFree1 = 0;
3636 int regFree2 = 0;
3637 int r1, r2;
3638
3639 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3640 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
3641 if( pExpr==0 ) return;
3642
3643 /* The value of pExpr->op and op are related as follows:
3644 **
3645 ** pExpr->op op
3646 ** --------- ----------
3647 ** TK_ISNULL OP_NotNull
3648 ** TK_NOTNULL OP_IsNull
3649 ** TK_NE OP_Eq
3650 ** TK_EQ OP_Ne
3651 ** TK_GT OP_Le
3652 ** TK_LE OP_Gt
3653 ** TK_GE OP_Lt
3654 ** TK_LT OP_Ge
3655 **
3656 ** For other values of pExpr->op, op is undefined and unused.
3657 ** The value of TK_ and OP_ constants are arranged such that we
3658 ** can compute the mapping above using the following expression.
3659 ** Assert()s verify that the computation is correct.
3660 */
3661 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3662
3663 /* Verify correct alignment of TK_ and OP_ constants
3664 */
3665 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3666 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3667 assert( pExpr->op!=TK_NE || op==OP_Eq );
3668 assert( pExpr->op!=TK_EQ || op==OP_Ne );
3669 assert( pExpr->op!=TK_LT || op==OP_Ge );
3670 assert( pExpr->op!=TK_LE || op==OP_Gt );
3671 assert( pExpr->op!=TK_GT || op==OP_Le );
3672 assert( pExpr->op!=TK_GE || op==OP_Lt );
3673
3674 switch( pExpr->op ){
3675 case TK_AND: {
3676 testcase( jumpIfNull==0 );
3677 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3678 sqlite3ExprCachePush(pParse);
3679 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3680 sqlite3ExprCachePop(pParse);
3681 break;
3682 }
3683 case TK_OR: {
3684 int d2 = sqlite3VdbeMakeLabel(v);
3685 testcase( jumpIfNull==0 );
3686 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3687 sqlite3ExprCachePush(pParse);
3688 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3689 sqlite3VdbeResolveLabel(v, d2);
3690 sqlite3ExprCachePop(pParse);
3691 break;
3692 }
3693 case TK_NOT: {
3694 testcase( jumpIfNull==0 );
3695 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3696 break;
3697 }
3698 case TK_LT:
3699 case TK_LE:
3700 case TK_GT:
3701 case TK_GE:
3702 case TK_NE:
3703 case TK_EQ: {
3704 testcase( jumpIfNull==0 );
3705 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3706 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3707 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3708 r1, r2, dest, jumpIfNull);
3709 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt);
3710 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le);
3711 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt);
3712 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge);
3713 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq);
3714 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne);
3715 testcase( regFree1==0 );
3716 testcase( regFree2==0 );
3717 break;
3718 }
3719 case TK_IS:
3720 case TK_ISNOT: {
3721 testcase( pExpr->op==TK_IS );
3722 testcase( pExpr->op==TK_ISNOT );
3723 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3724 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3725 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3726 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3727 r1, r2, dest, SQLITE_NULLEQ);
3728 VdbeCoverageIf(v, op==TK_EQ);
3729 VdbeCoverageIf(v, op==TK_NE);
3730 testcase( regFree1==0 );
3731 testcase( regFree2==0 );
3732 break;
3733 }
3734 case TK_ISNULL:
3735 case TK_NOTNULL: {
3736 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3737 sqlite3VdbeAddOp2(v, op, r1, dest);
3738 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL);
3739 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL);
3740 testcase( regFree1==0 );
3741 break;
3742 }
3743 case TK_BETWEEN: {
3744 testcase( jumpIfNull==0 );
3745 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3746 break;
3747 }
3748 #ifndef SQLITE_OMIT_SUBQUERY
3749 case TK_IN: {
3750 if( jumpIfNull ){
3751 sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3752 }else{
3753 int destIfNull = sqlite3VdbeMakeLabel(v);
3754 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3755 sqlite3VdbeResolveLabel(v, destIfNull);
3756 }
3757 break;
3758 }
3759 #endif
3760 default: {
3761 if( exprAlwaysFalse(pExpr) ){
3762 sqlite3VdbeGoto(v, dest);
3763 }else if( exprAlwaysTrue(pExpr) ){
3764 /* no-op */
3765 }else{
3766 r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3767 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3768 VdbeCoverage(v);
3769 testcase( regFree1==0 );
3770 testcase( jumpIfNull==0 );
3771 }
3772 break;
3773 }
3774 }
3775 sqlite3ReleaseTempReg(pParse, regFree1);
3776 sqlite3ReleaseTempReg(pParse, regFree2);
3777 }
3778
3779 /*
3780 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before
3781 ** code generation, and that copy is deleted after code generation. This
3782 ** ensures that the original pExpr is unchanged.
3783 */
3784 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){
3785 sqlite3 *db = pParse->db;
3786 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0);
3787 if( db->mallocFailed==0 ){
3788 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull);
3789 }
3790 sqlite3ExprDelete(db, pCopy);
3791 }
3792
3793
3794 /*
3795 ** Do a deep comparison of two expression trees. Return 0 if the two
3796 ** expressions are completely identical. Return 1 if they differ only
3797 ** by a COLLATE operator at the top level. Return 2 if there are differences
3798 ** other than the top-level COLLATE operator.
3799 **
3800 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3801 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3802 **
3803 ** The pA side might be using TK_REGISTER. If that is the case and pB is
3804 ** not using TK_REGISTER but is otherwise equivalent, then still return 0.
3805 **
3806 ** Sometimes this routine will return 2 even if the two expressions
3807 ** really are equivalent. If we cannot prove that the expressions are
3808 ** identical, we return 2 just to be safe. So if this routine
3809 ** returns 2, then you do not really know for certain if the two
3810 ** expressions are the same. But if you get a 0 or 1 return, then you
3811 ** can be sure the expressions are the same. In the places where
3812 ** this routine is used, it does not hurt to get an extra 2 - that
3813 ** just might result in some slightly slower code. But returning
3814 ** an incorrect 0 or 1 could lead to a malfunction.
3815 */
3816 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){
3817 u32 combinedFlags;
3818 if( pA==0 || pB==0 ){
3819 return pB==pA ? 0 : 2;
3820 }
3821 combinedFlags = pA->flags | pB->flags;
3822 if( combinedFlags & EP_IntValue ){
3823 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){
3824 return 0;
3825 }
3826 return 2;
3827 }
3828 if( pA->op!=pB->op ){
3829 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){
3830 return 1;
3831 }
3832 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){
3833 return 1;
3834 }
3835 return 2;
3836 }
3837 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){
3838 if( pA->op==TK_FUNCTION ){
3839 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2;
3840 }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
3841 return pA->op==TK_COLLATE ? 1 : 2;
3842 }
3843 }
3844 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
3845 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){
3846 if( combinedFlags & EP_xIsSelect ) return 2;
3847 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2;
3848 if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2;
3849 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2;
3850 if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){
3851 if( pA->iColumn!=pB->iColumn ) return 2;
3852 if( pA->iTable!=pB->iTable
3853 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2;
3854 }
3855 }
3856 return 0;
3857 }
3858
3859 /*
3860 ** Compare two ExprList objects. Return 0 if they are identical and
3861 ** non-zero if they differ in any way.
3862 **
3863 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed
3864 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab.
3865 **
3866 ** This routine might return non-zero for equivalent ExprLists. The
3867 ** only consequence will be disabled optimizations. But this routine
3868 ** must never return 0 if the two ExprList objects are different, or
3869 ** a malfunction will result.
3870 **
3871 ** Two NULL pointers are considered to be the same. But a NULL pointer
3872 ** always differs from a non-NULL pointer.
3873 */
3874 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){
3875 int i;
3876 if( pA==0 && pB==0 ) return 0;
3877 if( pA==0 || pB==0 ) return 1;
3878 if( pA->nExpr!=pB->nExpr ) return 1;
3879 for(i=0; i<pA->nExpr; i++){
3880 Expr *pExprA = pA->a[i].pExpr;
3881 Expr *pExprB = pB->a[i].pExpr;
3882 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
3883 if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1;
3884 }
3885 return 0;
3886 }
3887
3888 /*
3889 ** Return true if we can prove the pE2 will always be true if pE1 is
3890 ** true. Return false if we cannot complete the proof or if pE2 might
3891 ** be false. Examples:
3892 **
3893 ** pE1: x==5 pE2: x==5 Result: true
3894 ** pE1: x>0 pE2: x==5 Result: false
3895 ** pE1: x=21 pE2: x=21 OR y=43 Result: true
3896 ** pE1: x!=123 pE2: x IS NOT NULL Result: true
3897 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true
3898 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false
3899 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false
3900 **
3901 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has
3902 ** Expr.iTable<0 then assume a table number given by iTab.
3903 **
3904 ** When in doubt, return false. Returning true might give a performance
3905 ** improvement. Returning false might cause a performance reduction, but
3906 ** it will always give the correct answer and is hence always safe.
3907 */
3908 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){
3909 if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){
3910 return 1;
3911 }
3912 if( pE2->op==TK_OR
3913 && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab)
3914 || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) )
3915 ){
3916 return 1;
3917 }
3918 if( pE2->op==TK_NOTNULL
3919 && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0
3920 && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS)
3921 ){
3922 return 1;
3923 }
3924 return 0;
3925 }
3926
3927 /*
3928 ** An instance of the following structure is used by the tree walker
3929 ** to count references to table columns in the arguments of an
3930 ** aggregate function, in order to implement the
3931 ** sqlite3FunctionThisSrc() routine.
3932 */
3933 struct SrcCount {
3934 SrcList *pSrc; /* One particular FROM clause in a nested query */
3935 int nThis; /* Number of references to columns in pSrcList */
3936 int nOther; /* Number of references to columns in other FROM clauses */
3937 };
3938
3939 /*
3940 ** Count the number of references to columns.
3941 */
3942 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
3943 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
3944 ** is always called before sqlite3ExprAnalyzeAggregates() and so the
3945 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If
3946 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
3947 ** NEVER() will need to be removed. */
3948 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
3949 int i;
3950 struct SrcCount *p = pWalker->u.pSrcCount;
3951 SrcList *pSrc = p->pSrc;
3952 int nSrc = pSrc ? pSrc->nSrc : 0;
3953 for(i=0; i<nSrc; i++){
3954 if( pExpr->iTable==pSrc->a[i].iCursor ) break;
3955 }
3956 if( i<nSrc ){
3957 p->nThis++;
3958 }else{
3959 p->nOther++;
3960 }
3961 }
3962 return WRC_Continue;
3963 }
3964
3965 /*
3966 ** Determine if any of the arguments to the pExpr Function reference
3967 ** pSrcList. Return true if they do. Also return true if the function
3968 ** has no arguments or has only constant arguments. Return false if pExpr
3969 ** references columns but not columns of tables found in pSrcList.
3970 */
3971 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
3972 Walker w;
3973 struct SrcCount cnt;
3974 assert( pExpr->op==TK_AGG_FUNCTION );
3975 memset(&w, 0, sizeof(w));
3976 w.xExprCallback = exprSrcCount;
3977 w.u.pSrcCount = &cnt;
3978 cnt.pSrc = pSrcList;
3979 cnt.nThis = 0;
3980 cnt.nOther = 0;
3981 sqlite3WalkExprList(&w, pExpr->x.pList);
3982 return cnt.nThis>0 || cnt.nOther==0;
3983 }
3984
3985 /*
3986 ** Add a new element to the pAggInfo->aCol[] array. Return the index of
3987 ** the new element. Return a negative number if malloc fails.
3988 */
3989 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
3990 int i;
3991 pInfo->aCol = sqlite3ArrayAllocate(
3992 db,
3993 pInfo->aCol,
3994 sizeof(pInfo->aCol[0]),
3995 &pInfo->nColumn,
3996 &i
3997 );
3998 return i;
3999 }
4000
4001 /*
4002 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of
4003 ** the new element. Return a negative number if malloc fails.
4004 */
4005 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
4006 int i;
4007 pInfo->aFunc = sqlite3ArrayAllocate(
4008 db,
4009 pInfo->aFunc,
4010 sizeof(pInfo->aFunc[0]),
4011 &pInfo->nFunc,
4012 &i
4013 );
4014 return i;
4015 }
4016
4017 /*
4018 ** This is the xExprCallback for a tree walker. It is used to
4019 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
4020 ** for additional information.
4021 */
4022 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
4023 int i;
4024 NameContext *pNC = pWalker->u.pNC;
4025 Parse *pParse = pNC->pParse;
4026 SrcList *pSrcList = pNC->pSrcList;
4027 AggInfo *pAggInfo = pNC->pAggInfo;
4028
4029 switch( pExpr->op ){
4030 case TK_AGG_COLUMN:
4031 case TK_COLUMN: {
4032 testcase( pExpr->op==TK_AGG_COLUMN );
4033 testcase( pExpr->op==TK_COLUMN );
4034 /* Check to see if the column is in one of the tables in the FROM
4035 ** clause of the aggregate query */
4036 if( ALWAYS(pSrcList!=0) ){
4037 struct SrcList_item *pItem = pSrcList->a;
4038 for(i=0; i<pSrcList->nSrc; i++, pItem++){
4039 struct AggInfo_col *pCol;
4040 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4041 if( pExpr->iTable==pItem->iCursor ){
4042 /* If we reach this point, it means that pExpr refers to a table
4043 ** that is in the FROM clause of the aggregate query.
4044 **
4045 ** Make an entry for the column in pAggInfo->aCol[] if there
4046 ** is not an entry there already.
4047 */
4048 int k;
4049 pCol = pAggInfo->aCol;
4050 for(k=0; k<pAggInfo->nColumn; k++, pCol++){
4051 if( pCol->iTable==pExpr->iTable &&
4052 pCol->iColumn==pExpr->iColumn ){
4053 break;
4054 }
4055 }
4056 if( (k>=pAggInfo->nColumn)
4057 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
4058 ){
4059 pCol = &pAggInfo->aCol[k];
4060 pCol->pTab = pExpr->pTab;
4061 pCol->iTable = pExpr->iTable;
4062 pCol->iColumn = pExpr->iColumn;
4063 pCol->iMem = ++pParse->nMem;
4064 pCol->iSorterColumn = -1;
4065 pCol->pExpr = pExpr;
4066 if( pAggInfo->pGroupBy ){
4067 int j, n;
4068 ExprList *pGB = pAggInfo->pGroupBy;
4069 struct ExprList_item *pTerm = pGB->a;
4070 n = pGB->nExpr;
4071 for(j=0; j<n; j++, pTerm++){
4072 Expr *pE = pTerm->pExpr;
4073 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
4074 pE->iColumn==pExpr->iColumn ){
4075 pCol->iSorterColumn = j;
4076 break;
4077 }
4078 }
4079 }
4080 if( pCol->iSorterColumn<0 ){
4081 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
4082 }
4083 }
4084 /* There is now an entry for pExpr in pAggInfo->aCol[] (either
4085 ** because it was there before or because we just created it).
4086 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
4087 ** pAggInfo->aCol[] entry.
4088 */
4089 ExprSetVVAProperty(pExpr, EP_NoReduce);
4090 pExpr->pAggInfo = pAggInfo;
4091 pExpr->op = TK_AGG_COLUMN;
4092 pExpr->iAgg = (i16)k;
4093 break;
4094 } /* endif pExpr->iTable==pItem->iCursor */
4095 } /* end loop over pSrcList */
4096 }
4097 return WRC_Prune;
4098 }
4099 case TK_AGG_FUNCTION: {
4100 if( (pNC->ncFlags & NC_InAggFunc)==0
4101 && pWalker->walkerDepth==pExpr->op2
4102 ){
4103 /* Check to see if pExpr is a duplicate of another aggregate
4104 ** function that is already in the pAggInfo structure
4105 */
4106 struct AggInfo_func *pItem = pAggInfo->aFunc;
4107 for(i=0; i<pAggInfo->nFunc; i++, pItem++){
4108 if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){
4109 break;
4110 }
4111 }
4112 if( i>=pAggInfo->nFunc ){
4113 /* pExpr is original. Make a new entry in pAggInfo->aFunc[]
4114 */
4115 u8 enc = ENC(pParse->db);
4116 i = addAggInfoFunc(pParse->db, pAggInfo);
4117 if( i>=0 ){
4118 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4119 pItem = &pAggInfo->aFunc[i];
4120 pItem->pExpr = pExpr;
4121 pItem->iMem = ++pParse->nMem;
4122 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4123 pItem->pFunc = sqlite3FindFunction(pParse->db,
4124 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
4125 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
4126 if( pExpr->flags & EP_Distinct ){
4127 pItem->iDistinct = pParse->nTab++;
4128 }else{
4129 pItem->iDistinct = -1;
4130 }
4131 }
4132 }
4133 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
4134 */
4135 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4136 ExprSetVVAProperty(pExpr, EP_NoReduce);
4137 pExpr->iAgg = (i16)i;
4138 pExpr->pAggInfo = pAggInfo;
4139 return WRC_Prune;
4140 }else{
4141 return WRC_Continue;
4142 }
4143 }
4144 }
4145 return WRC_Continue;
4146 }
4147 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
4148 UNUSED_PARAMETER(pWalker);
4149 UNUSED_PARAMETER(pSelect);
4150 return WRC_Continue;
4151 }
4152
4153 /*
4154 ** Analyze the pExpr expression looking for aggregate functions and
4155 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
4156 ** points to. Additional entries are made on the AggInfo object as
4157 ** necessary.
4158 **
4159 ** This routine should only be called after the expression has been
4160 ** analyzed by sqlite3ResolveExprNames().
4161 */
4162 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
4163 Walker w;
4164 memset(&w, 0, sizeof(w));
4165 w.xExprCallback = analyzeAggregate;
4166 w.xSelectCallback = analyzeAggregatesInSelect;
4167 w.u.pNC = pNC;
4168 assert( pNC->pSrcList!=0 );
4169 sqlite3WalkExpr(&w, pExpr);
4170 }
4171
4172 /*
4173 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
4174 ** expression list. Return the number of errors.
4175 **
4176 ** If an error is found, the analysis is cut short.
4177 */
4178 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
4179 struct ExprList_item *pItem;
4180 int i;
4181 if( pList ){
4182 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
4183 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
4184 }
4185 }
4186 }
4187
4188 /*
4189 ** Allocate a single new register for use to hold some intermediate result.
4190 */
4191 int sqlite3GetTempReg(Parse *pParse){
4192 if( pParse->nTempReg==0 ){
4193 return ++pParse->nMem;
4194 }
4195 return pParse->aTempReg[--pParse->nTempReg];
4196 }
4197
4198 /*
4199 ** Deallocate a register, making available for reuse for some other
4200 ** purpose.
4201 **
4202 ** If a register is currently being used by the column cache, then
4203 ** the deallocation is deferred until the column cache line that uses
4204 ** the register becomes stale.
4205 */
4206 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
4207 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
4208 int i;
4209 struct yColCache *p;
4210 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
4211 if( p->iReg==iReg ){
4212 p->tempReg = 1;
4213 return;
4214 }
4215 }
4216 pParse->aTempReg[pParse->nTempReg++] = iReg;
4217 }
4218 }
4219
4220 /*
4221 ** Allocate or deallocate a block of nReg consecutive registers
4222 */
4223 int sqlite3GetTempRange(Parse *pParse, int nReg){
4224 int i, n;
4225 i = pParse->iRangeReg;
4226 n = pParse->nRangeReg;
4227 if( nReg<=n ){
4228 assert( !usedAsColumnCache(pParse, i, i+n-1) );
4229 pParse->iRangeReg += nReg;
4230 pParse->nRangeReg -= nReg;
4231 }else{
4232 i = pParse->nMem+1;
4233 pParse->nMem += nReg;
4234 }
4235 return i;
4236 }
4237 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
4238 sqlite3ExprCacheRemove(pParse, iReg, nReg);
4239 if( nReg>pParse->nRangeReg ){
4240 pParse->nRangeReg = nReg;
4241 pParse->iRangeReg = iReg;
4242 }
4243 }
4244
4245 /*
4246 ** Mark all temporary registers as being unavailable for reuse.
4247 */
4248 void sqlite3ClearTempRegCache(Parse *pParse){
4249 pParse->nTempReg = 0;
4250 pParse->nRangeReg = 0;
4251 }
OLDNEW
« no previous file with comments | « third_party/sqlite/sqlite-src-3100200/src/delete.c ('k') | third_party/sqlite/sqlite-src-3100200/src/fault.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698