OLD | NEW |
| (Empty) |
1 /* | |
2 ** 2001 September 15 | |
3 ** | |
4 ** The author disclaims copyright to this source code. In place of | |
5 ** a legal notice, here is a blessing: | |
6 ** | |
7 ** May you do good and not evil. | |
8 ** May you find forgiveness for yourself and forgive others. | |
9 ** May you share freely, never taking more than you give. | |
10 ** | |
11 ************************************************************************* | |
12 ** This file contains routines used for analyzing expressions and | |
13 ** for generating VDBE code that evaluates expressions in SQLite. | |
14 */ | |
15 #include "sqliteInt.h" | |
16 | |
17 /* | |
18 ** Return the 'affinity' of the expression pExpr if any. | |
19 ** | |
20 ** If pExpr is a column, a reference to a column via an 'AS' alias, | |
21 ** or a sub-select with a column as the return value, then the | |
22 ** affinity of that column is returned. Otherwise, 0x00 is returned, | |
23 ** indicating no affinity for the expression. | |
24 ** | |
25 ** i.e. the WHERE clause expressions in the following statements all | |
26 ** have an affinity: | |
27 ** | |
28 ** CREATE TABLE t1(a); | |
29 ** SELECT * FROM t1 WHERE a; | |
30 ** SELECT a AS b FROM t1 WHERE b; | |
31 ** SELECT * FROM t1 WHERE (select a from t1); | |
32 */ | |
33 char sqlite3ExprAffinity(Expr *pExpr){ | |
34 int op; | |
35 pExpr = sqlite3ExprSkipCollate(pExpr); | |
36 if( pExpr->flags & EP_Generic ) return 0; | |
37 op = pExpr->op; | |
38 if( op==TK_SELECT ){ | |
39 assert( pExpr->flags&EP_xIsSelect ); | |
40 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); | |
41 } | |
42 #ifndef SQLITE_OMIT_CAST | |
43 if( op==TK_CAST ){ | |
44 assert( !ExprHasProperty(pExpr, EP_IntValue) ); | |
45 return sqlite3AffinityType(pExpr->u.zToken, 0); | |
46 } | |
47 #endif | |
48 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) | |
49 && pExpr->pTab!=0 | |
50 ){ | |
51 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally | |
52 ** a TK_COLUMN but was previously evaluated and cached in a register */ | |
53 int j = pExpr->iColumn; | |
54 if( j<0 ) return SQLITE_AFF_INTEGER; | |
55 assert( pExpr->pTab && j<pExpr->pTab->nCol ); | |
56 return pExpr->pTab->aCol[j].affinity; | |
57 } | |
58 return pExpr->affinity; | |
59 } | |
60 | |
61 /* | |
62 ** Set the collating sequence for expression pExpr to be the collating | |
63 ** sequence named by pToken. Return a pointer to a new Expr node that | |
64 ** implements the COLLATE operator. | |
65 ** | |
66 ** If a memory allocation error occurs, that fact is recorded in pParse->db | |
67 ** and the pExpr parameter is returned unchanged. | |
68 */ | |
69 Expr *sqlite3ExprAddCollateToken( | |
70 Parse *pParse, /* Parsing context */ | |
71 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ | |
72 const Token *pCollName, /* Name of collating sequence */ | |
73 int dequote /* True to dequote pCollName */ | |
74 ){ | |
75 if( pCollName->n>0 ){ | |
76 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); | |
77 if( pNew ){ | |
78 pNew->pLeft = pExpr; | |
79 pNew->flags |= EP_Collate|EP_Skip; | |
80 pExpr = pNew; | |
81 } | |
82 } | |
83 return pExpr; | |
84 } | |
85 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ | |
86 Token s; | |
87 assert( zC!=0 ); | |
88 s.z = zC; | |
89 s.n = sqlite3Strlen30(s.z); | |
90 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); | |
91 } | |
92 | |
93 /* | |
94 ** Skip over any TK_COLLATE operators and any unlikely() | |
95 ** or likelihood() function at the root of an expression. | |
96 */ | |
97 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ | |
98 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ | |
99 if( ExprHasProperty(pExpr, EP_Unlikely) ){ | |
100 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); | |
101 assert( pExpr->x.pList->nExpr>0 ); | |
102 assert( pExpr->op==TK_FUNCTION ); | |
103 pExpr = pExpr->x.pList->a[0].pExpr; | |
104 }else{ | |
105 assert( pExpr->op==TK_COLLATE ); | |
106 pExpr = pExpr->pLeft; | |
107 } | |
108 } | |
109 return pExpr; | |
110 } | |
111 | |
112 /* | |
113 ** Return the collation sequence for the expression pExpr. If | |
114 ** there is no defined collating sequence, return NULL. | |
115 ** | |
116 ** The collating sequence might be determined by a COLLATE operator | |
117 ** or by the presence of a column with a defined collating sequence. | |
118 ** COLLATE operators take first precedence. Left operands take | |
119 ** precedence over right operands. | |
120 */ | |
121 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ | |
122 sqlite3 *db = pParse->db; | |
123 CollSeq *pColl = 0; | |
124 Expr *p = pExpr; | |
125 while( p ){ | |
126 int op = p->op; | |
127 if( p->flags & EP_Generic ) break; | |
128 if( op==TK_CAST || op==TK_UPLUS ){ | |
129 p = p->pLeft; | |
130 continue; | |
131 } | |
132 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ | |
133 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); | |
134 break; | |
135 } | |
136 if( (op==TK_AGG_COLUMN || op==TK_COLUMN | |
137 || op==TK_REGISTER || op==TK_TRIGGER) | |
138 && p->pTab!=0 | |
139 ){ | |
140 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally | |
141 ** a TK_COLUMN but was previously evaluated and cached in a register */ | |
142 int j = p->iColumn; | |
143 if( j>=0 ){ | |
144 const char *zColl = p->pTab->aCol[j].zColl; | |
145 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); | |
146 } | |
147 break; | |
148 } | |
149 if( p->flags & EP_Collate ){ | |
150 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ | |
151 p = p->pLeft; | |
152 }else{ | |
153 Expr *pNext = p->pRight; | |
154 /* The Expr.x union is never used at the same time as Expr.pRight */ | |
155 assert( p->x.pList==0 || p->pRight==0 ); | |
156 /* p->flags holds EP_Collate and p->pLeft->flags does not. And | |
157 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at | |
158 ** least one EP_Collate. Thus the following two ALWAYS. */ | |
159 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){ | |
160 int i; | |
161 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ | |
162 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ | |
163 pNext = p->x.pList->a[i].pExpr; | |
164 break; | |
165 } | |
166 } | |
167 } | |
168 p = pNext; | |
169 } | |
170 }else{ | |
171 break; | |
172 } | |
173 } | |
174 if( sqlite3CheckCollSeq(pParse, pColl) ){ | |
175 pColl = 0; | |
176 } | |
177 return pColl; | |
178 } | |
179 | |
180 /* | |
181 ** pExpr is an operand of a comparison operator. aff2 is the | |
182 ** type affinity of the other operand. This routine returns the | |
183 ** type affinity that should be used for the comparison operator. | |
184 */ | |
185 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ | |
186 char aff1 = sqlite3ExprAffinity(pExpr); | |
187 if( aff1 && aff2 ){ | |
188 /* Both sides of the comparison are columns. If one has numeric | |
189 ** affinity, use that. Otherwise use no affinity. | |
190 */ | |
191 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ | |
192 return SQLITE_AFF_NUMERIC; | |
193 }else{ | |
194 return SQLITE_AFF_BLOB; | |
195 } | |
196 }else if( !aff1 && !aff2 ){ | |
197 /* Neither side of the comparison is a column. Compare the | |
198 ** results directly. | |
199 */ | |
200 return SQLITE_AFF_BLOB; | |
201 }else{ | |
202 /* One side is a column, the other is not. Use the columns affinity. */ | |
203 assert( aff1==0 || aff2==0 ); | |
204 return (aff1 + aff2); | |
205 } | |
206 } | |
207 | |
208 /* | |
209 ** pExpr is a comparison operator. Return the type affinity that should | |
210 ** be applied to both operands prior to doing the comparison. | |
211 */ | |
212 static char comparisonAffinity(Expr *pExpr){ | |
213 char aff; | |
214 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || | |
215 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || | |
216 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); | |
217 assert( pExpr->pLeft ); | |
218 aff = sqlite3ExprAffinity(pExpr->pLeft); | |
219 if( pExpr->pRight ){ | |
220 aff = sqlite3CompareAffinity(pExpr->pRight, aff); | |
221 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ | |
222 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); | |
223 }else if( !aff ){ | |
224 aff = SQLITE_AFF_BLOB; | |
225 } | |
226 return aff; | |
227 } | |
228 | |
229 /* | |
230 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. | |
231 ** idx_affinity is the affinity of an indexed column. Return true | |
232 ** if the index with affinity idx_affinity may be used to implement | |
233 ** the comparison in pExpr. | |
234 */ | |
235 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ | |
236 char aff = comparisonAffinity(pExpr); | |
237 switch( aff ){ | |
238 case SQLITE_AFF_BLOB: | |
239 return 1; | |
240 case SQLITE_AFF_TEXT: | |
241 return idx_affinity==SQLITE_AFF_TEXT; | |
242 default: | |
243 return sqlite3IsNumericAffinity(idx_affinity); | |
244 } | |
245 } | |
246 | |
247 /* | |
248 ** Return the P5 value that should be used for a binary comparison | |
249 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. | |
250 */ | |
251 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ | |
252 u8 aff = (char)sqlite3ExprAffinity(pExpr2); | |
253 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; | |
254 return aff; | |
255 } | |
256 | |
257 /* | |
258 ** Return a pointer to the collation sequence that should be used by | |
259 ** a binary comparison operator comparing pLeft and pRight. | |
260 ** | |
261 ** If the left hand expression has a collating sequence type, then it is | |
262 ** used. Otherwise the collation sequence for the right hand expression | |
263 ** is used, or the default (BINARY) if neither expression has a collating | |
264 ** type. | |
265 ** | |
266 ** Argument pRight (but not pLeft) may be a null pointer. In this case, | |
267 ** it is not considered. | |
268 */ | |
269 CollSeq *sqlite3BinaryCompareCollSeq( | |
270 Parse *pParse, | |
271 Expr *pLeft, | |
272 Expr *pRight | |
273 ){ | |
274 CollSeq *pColl; | |
275 assert( pLeft ); | |
276 if( pLeft->flags & EP_Collate ){ | |
277 pColl = sqlite3ExprCollSeq(pParse, pLeft); | |
278 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ | |
279 pColl = sqlite3ExprCollSeq(pParse, pRight); | |
280 }else{ | |
281 pColl = sqlite3ExprCollSeq(pParse, pLeft); | |
282 if( !pColl ){ | |
283 pColl = sqlite3ExprCollSeq(pParse, pRight); | |
284 } | |
285 } | |
286 return pColl; | |
287 } | |
288 | |
289 /* | |
290 ** Generate code for a comparison operator. | |
291 */ | |
292 static int codeCompare( | |
293 Parse *pParse, /* The parsing (and code generating) context */ | |
294 Expr *pLeft, /* The left operand */ | |
295 Expr *pRight, /* The right operand */ | |
296 int opcode, /* The comparison opcode */ | |
297 int in1, int in2, /* Register holding operands */ | |
298 int dest, /* Jump here if true. */ | |
299 int jumpIfNull /* If true, jump if either operand is NULL */ | |
300 ){ | |
301 int p5; | |
302 int addr; | |
303 CollSeq *p4; | |
304 | |
305 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); | |
306 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); | |
307 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, | |
308 (void*)p4, P4_COLLSEQ); | |
309 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); | |
310 return addr; | |
311 } | |
312 | |
313 #if SQLITE_MAX_EXPR_DEPTH>0 | |
314 /* | |
315 ** Check that argument nHeight is less than or equal to the maximum | |
316 ** expression depth allowed. If it is not, leave an error message in | |
317 ** pParse. | |
318 */ | |
319 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ | |
320 int rc = SQLITE_OK; | |
321 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; | |
322 if( nHeight>mxHeight ){ | |
323 sqlite3ErrorMsg(pParse, | |
324 "Expression tree is too large (maximum depth %d)", mxHeight | |
325 ); | |
326 rc = SQLITE_ERROR; | |
327 } | |
328 return rc; | |
329 } | |
330 | |
331 /* The following three functions, heightOfExpr(), heightOfExprList() | |
332 ** and heightOfSelect(), are used to determine the maximum height | |
333 ** of any expression tree referenced by the structure passed as the | |
334 ** first argument. | |
335 ** | |
336 ** If this maximum height is greater than the current value pointed | |
337 ** to by pnHeight, the second parameter, then set *pnHeight to that | |
338 ** value. | |
339 */ | |
340 static void heightOfExpr(Expr *p, int *pnHeight){ | |
341 if( p ){ | |
342 if( p->nHeight>*pnHeight ){ | |
343 *pnHeight = p->nHeight; | |
344 } | |
345 } | |
346 } | |
347 static void heightOfExprList(ExprList *p, int *pnHeight){ | |
348 if( p ){ | |
349 int i; | |
350 for(i=0; i<p->nExpr; i++){ | |
351 heightOfExpr(p->a[i].pExpr, pnHeight); | |
352 } | |
353 } | |
354 } | |
355 static void heightOfSelect(Select *p, int *pnHeight){ | |
356 if( p ){ | |
357 heightOfExpr(p->pWhere, pnHeight); | |
358 heightOfExpr(p->pHaving, pnHeight); | |
359 heightOfExpr(p->pLimit, pnHeight); | |
360 heightOfExpr(p->pOffset, pnHeight); | |
361 heightOfExprList(p->pEList, pnHeight); | |
362 heightOfExprList(p->pGroupBy, pnHeight); | |
363 heightOfExprList(p->pOrderBy, pnHeight); | |
364 heightOfSelect(p->pPrior, pnHeight); | |
365 } | |
366 } | |
367 | |
368 /* | |
369 ** Set the Expr.nHeight variable in the structure passed as an | |
370 ** argument. An expression with no children, Expr.pList or | |
371 ** Expr.pSelect member has a height of 1. Any other expression | |
372 ** has a height equal to the maximum height of any other | |
373 ** referenced Expr plus one. | |
374 ** | |
375 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, | |
376 ** if appropriate. | |
377 */ | |
378 static void exprSetHeight(Expr *p){ | |
379 int nHeight = 0; | |
380 heightOfExpr(p->pLeft, &nHeight); | |
381 heightOfExpr(p->pRight, &nHeight); | |
382 if( ExprHasProperty(p, EP_xIsSelect) ){ | |
383 heightOfSelect(p->x.pSelect, &nHeight); | |
384 }else if( p->x.pList ){ | |
385 heightOfExprList(p->x.pList, &nHeight); | |
386 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); | |
387 } | |
388 p->nHeight = nHeight + 1; | |
389 } | |
390 | |
391 /* | |
392 ** Set the Expr.nHeight variable using the exprSetHeight() function. If | |
393 ** the height is greater than the maximum allowed expression depth, | |
394 ** leave an error in pParse. | |
395 ** | |
396 ** Also propagate all EP_Propagate flags from the Expr.x.pList into | |
397 ** Expr.flags. | |
398 */ | |
399 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ | |
400 if( pParse->nErr ) return; | |
401 exprSetHeight(p); | |
402 sqlite3ExprCheckHeight(pParse, p->nHeight); | |
403 } | |
404 | |
405 /* | |
406 ** Return the maximum height of any expression tree referenced | |
407 ** by the select statement passed as an argument. | |
408 */ | |
409 int sqlite3SelectExprHeight(Select *p){ | |
410 int nHeight = 0; | |
411 heightOfSelect(p, &nHeight); | |
412 return nHeight; | |
413 } | |
414 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ | |
415 /* | |
416 ** Propagate all EP_Propagate flags from the Expr.x.pList into | |
417 ** Expr.flags. | |
418 */ | |
419 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ | |
420 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ | |
421 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); | |
422 } | |
423 } | |
424 #define exprSetHeight(y) | |
425 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ | |
426 | |
427 /* | |
428 ** This routine is the core allocator for Expr nodes. | |
429 ** | |
430 ** Construct a new expression node and return a pointer to it. Memory | |
431 ** for this node and for the pToken argument is a single allocation | |
432 ** obtained from sqlite3DbMalloc(). The calling function | |
433 ** is responsible for making sure the node eventually gets freed. | |
434 ** | |
435 ** If dequote is true, then the token (if it exists) is dequoted. | |
436 ** If dequote is false, no dequoting is performed. The deQuote | |
437 ** parameter is ignored if pToken is NULL or if the token does not | |
438 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) | |
439 ** then the EP_DblQuoted flag is set on the expression node. | |
440 ** | |
441 ** Special case: If op==TK_INTEGER and pToken points to a string that | |
442 ** can be translated into a 32-bit integer, then the token is not | |
443 ** stored in u.zToken. Instead, the integer values is written | |
444 ** into u.iValue and the EP_IntValue flag is set. No extra storage | |
445 ** is allocated to hold the integer text and the dequote flag is ignored. | |
446 */ | |
447 Expr *sqlite3ExprAlloc( | |
448 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ | |
449 int op, /* Expression opcode */ | |
450 const Token *pToken, /* Token argument. Might be NULL */ | |
451 int dequote /* True to dequote */ | |
452 ){ | |
453 Expr *pNew; | |
454 int nExtra = 0; | |
455 int iValue = 0; | |
456 | |
457 if( pToken ){ | |
458 if( op!=TK_INTEGER || pToken->z==0 | |
459 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ | |
460 nExtra = pToken->n+1; | |
461 assert( iValue>=0 ); | |
462 } | |
463 } | |
464 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); | |
465 if( pNew ){ | |
466 pNew->op = (u8)op; | |
467 pNew->iAgg = -1; | |
468 if( pToken ){ | |
469 if( nExtra==0 ){ | |
470 pNew->flags |= EP_IntValue; | |
471 pNew->u.iValue = iValue; | |
472 }else{ | |
473 int c; | |
474 pNew->u.zToken = (char*)&pNew[1]; | |
475 assert( pToken->z!=0 || pToken->n==0 ); | |
476 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); | |
477 pNew->u.zToken[pToken->n] = 0; | |
478 if( dequote && nExtra>=3 | |
479 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ | |
480 sqlite3Dequote(pNew->u.zToken); | |
481 if( c=='"' ) pNew->flags |= EP_DblQuoted; | |
482 } | |
483 } | |
484 } | |
485 #if SQLITE_MAX_EXPR_DEPTH>0 | |
486 pNew->nHeight = 1; | |
487 #endif | |
488 } | |
489 return pNew; | |
490 } | |
491 | |
492 /* | |
493 ** Allocate a new expression node from a zero-terminated token that has | |
494 ** already been dequoted. | |
495 */ | |
496 Expr *sqlite3Expr( | |
497 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ | |
498 int op, /* Expression opcode */ | |
499 const char *zToken /* Token argument. Might be NULL */ | |
500 ){ | |
501 Token x; | |
502 x.z = zToken; | |
503 x.n = zToken ? sqlite3Strlen30(zToken) : 0; | |
504 return sqlite3ExprAlloc(db, op, &x, 0); | |
505 } | |
506 | |
507 /* | |
508 ** Attach subtrees pLeft and pRight to the Expr node pRoot. | |
509 ** | |
510 ** If pRoot==NULL that means that a memory allocation error has occurred. | |
511 ** In that case, delete the subtrees pLeft and pRight. | |
512 */ | |
513 void sqlite3ExprAttachSubtrees( | |
514 sqlite3 *db, | |
515 Expr *pRoot, | |
516 Expr *pLeft, | |
517 Expr *pRight | |
518 ){ | |
519 if( pRoot==0 ){ | |
520 assert( db->mallocFailed ); | |
521 sqlite3ExprDelete(db, pLeft); | |
522 sqlite3ExprDelete(db, pRight); | |
523 }else{ | |
524 if( pRight ){ | |
525 pRoot->pRight = pRight; | |
526 pRoot->flags |= EP_Propagate & pRight->flags; | |
527 } | |
528 if( pLeft ){ | |
529 pRoot->pLeft = pLeft; | |
530 pRoot->flags |= EP_Propagate & pLeft->flags; | |
531 } | |
532 exprSetHeight(pRoot); | |
533 } | |
534 } | |
535 | |
536 /* | |
537 ** Allocate an Expr node which joins as many as two subtrees. | |
538 ** | |
539 ** One or both of the subtrees can be NULL. Return a pointer to the new | |
540 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, | |
541 ** free the subtrees and return NULL. | |
542 */ | |
543 Expr *sqlite3PExpr( | |
544 Parse *pParse, /* Parsing context */ | |
545 int op, /* Expression opcode */ | |
546 Expr *pLeft, /* Left operand */ | |
547 Expr *pRight, /* Right operand */ | |
548 const Token *pToken /* Argument token */ | |
549 ){ | |
550 Expr *p; | |
551 if( op==TK_AND && pParse->nErr==0 ){ | |
552 /* Take advantage of short-circuit false optimization for AND */ | |
553 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); | |
554 }else{ | |
555 p = sqlite3ExprAlloc(pParse->db, op & TKFLG_MASK, pToken, 1); | |
556 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); | |
557 } | |
558 if( p ) { | |
559 sqlite3ExprCheckHeight(pParse, p->nHeight); | |
560 } | |
561 return p; | |
562 } | |
563 | |
564 /* | |
565 ** If the expression is always either TRUE or FALSE (respectively), | |
566 ** then return 1. If one cannot determine the truth value of the | |
567 ** expression at compile-time return 0. | |
568 ** | |
569 ** This is an optimization. If is OK to return 0 here even if | |
570 ** the expression really is always false or false (a false negative). | |
571 ** But it is a bug to return 1 if the expression might have different | |
572 ** boolean values in different circumstances (a false positive.) | |
573 ** | |
574 ** Note that if the expression is part of conditional for a | |
575 ** LEFT JOIN, then we cannot determine at compile-time whether or not | |
576 ** is it true or false, so always return 0. | |
577 */ | |
578 static int exprAlwaysTrue(Expr *p){ | |
579 int v = 0; | |
580 if( ExprHasProperty(p, EP_FromJoin) ) return 0; | |
581 if( !sqlite3ExprIsInteger(p, &v) ) return 0; | |
582 return v!=0; | |
583 } | |
584 static int exprAlwaysFalse(Expr *p){ | |
585 int v = 0; | |
586 if( ExprHasProperty(p, EP_FromJoin) ) return 0; | |
587 if( !sqlite3ExprIsInteger(p, &v) ) return 0; | |
588 return v==0; | |
589 } | |
590 | |
591 /* | |
592 ** Join two expressions using an AND operator. If either expression is | |
593 ** NULL, then just return the other expression. | |
594 ** | |
595 ** If one side or the other of the AND is known to be false, then instead | |
596 ** of returning an AND expression, just return a constant expression with | |
597 ** a value of false. | |
598 */ | |
599 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ | |
600 if( pLeft==0 ){ | |
601 return pRight; | |
602 }else if( pRight==0 ){ | |
603 return pLeft; | |
604 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ | |
605 sqlite3ExprDelete(db, pLeft); | |
606 sqlite3ExprDelete(db, pRight); | |
607 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); | |
608 }else{ | |
609 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); | |
610 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); | |
611 return pNew; | |
612 } | |
613 } | |
614 | |
615 /* | |
616 ** Construct a new expression node for a function with multiple | |
617 ** arguments. | |
618 */ | |
619 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ | |
620 Expr *pNew; | |
621 sqlite3 *db = pParse->db; | |
622 assert( pToken ); | |
623 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); | |
624 if( pNew==0 ){ | |
625 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ | |
626 return 0; | |
627 } | |
628 pNew->x.pList = pList; | |
629 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); | |
630 sqlite3ExprSetHeightAndFlags(pParse, pNew); | |
631 return pNew; | |
632 } | |
633 | |
634 /* | |
635 ** Assign a variable number to an expression that encodes a wildcard | |
636 ** in the original SQL statement. | |
637 ** | |
638 ** Wildcards consisting of a single "?" are assigned the next sequential | |
639 ** variable number. | |
640 ** | |
641 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make | |
642 ** sure "nnn" is not too be to avoid a denial of service attack when | |
643 ** the SQL statement comes from an external source. | |
644 ** | |
645 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number | |
646 ** as the previous instance of the same wildcard. Or if this is the first | |
647 ** instance of the wildcard, the next sequential variable number is | |
648 ** assigned. | |
649 */ | |
650 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ | |
651 sqlite3 *db = pParse->db; | |
652 const char *z; | |
653 | |
654 if( pExpr==0 ) return; | |
655 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); | |
656 z = pExpr->u.zToken; | |
657 assert( z!=0 ); | |
658 assert( z[0]!=0 ); | |
659 if( z[1]==0 ){ | |
660 /* Wildcard of the form "?". Assign the next variable number */ | |
661 assert( z[0]=='?' ); | |
662 pExpr->iColumn = (ynVar)(++pParse->nVar); | |
663 }else{ | |
664 ynVar x = 0; | |
665 u32 n = sqlite3Strlen30(z); | |
666 if( z[0]=='?' ){ | |
667 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and | |
668 ** use it as the variable number */ | |
669 i64 i; | |
670 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); | |
671 pExpr->iColumn = x = (ynVar)i; | |
672 testcase( i==0 ); | |
673 testcase( i==1 ); | |
674 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); | |
675 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); | |
676 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ | |
677 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", | |
678 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); | |
679 x = 0; | |
680 } | |
681 if( i>pParse->nVar ){ | |
682 pParse->nVar = (int)i; | |
683 } | |
684 }else{ | |
685 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable | |
686 ** number as the prior appearance of the same name, or if the name | |
687 ** has never appeared before, reuse the same variable number | |
688 */ | |
689 ynVar i; | |
690 for(i=0; i<pParse->nzVar; i++){ | |
691 if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){ | |
692 pExpr->iColumn = x = (ynVar)i+1; | |
693 break; | |
694 } | |
695 } | |
696 if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar); | |
697 } | |
698 if( x>0 ){ | |
699 if( x>pParse->nzVar ){ | |
700 char **a; | |
701 a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0])); | |
702 if( a==0 ) return; /* Error reported through db->mallocFailed */ | |
703 pParse->azVar = a; | |
704 memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0])); | |
705 pParse->nzVar = x; | |
706 } | |
707 if( z[0]!='?' || pParse->azVar[x-1]==0 ){ | |
708 sqlite3DbFree(db, pParse->azVar[x-1]); | |
709 pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n); | |
710 } | |
711 } | |
712 } | |
713 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ | |
714 sqlite3ErrorMsg(pParse, "too many SQL variables"); | |
715 } | |
716 } | |
717 | |
718 /* | |
719 ** Recursively delete an expression tree. | |
720 */ | |
721 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ | |
722 if( p==0 ) return; | |
723 /* Sanity check: Assert that the IntValue is non-negative if it exists */ | |
724 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); | |
725 if( !ExprHasProperty(p, EP_TokenOnly) ){ | |
726 /* The Expr.x union is never used at the same time as Expr.pRight */ | |
727 assert( p->x.pList==0 || p->pRight==0 ); | |
728 sqlite3ExprDelete(db, p->pLeft); | |
729 sqlite3ExprDelete(db, p->pRight); | |
730 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); | |
731 if( ExprHasProperty(p, EP_xIsSelect) ){ | |
732 sqlite3SelectDelete(db, p->x.pSelect); | |
733 }else{ | |
734 sqlite3ExprListDelete(db, p->x.pList); | |
735 } | |
736 } | |
737 if( !ExprHasProperty(p, EP_Static) ){ | |
738 sqlite3DbFree(db, p); | |
739 } | |
740 } | |
741 | |
742 /* | |
743 ** Return the number of bytes allocated for the expression structure | |
744 ** passed as the first argument. This is always one of EXPR_FULLSIZE, | |
745 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. | |
746 */ | |
747 static int exprStructSize(Expr *p){ | |
748 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; | |
749 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; | |
750 return EXPR_FULLSIZE; | |
751 } | |
752 | |
753 /* | |
754 ** The dupedExpr*Size() routines each return the number of bytes required | |
755 ** to store a copy of an expression or expression tree. They differ in | |
756 ** how much of the tree is measured. | |
757 ** | |
758 ** dupedExprStructSize() Size of only the Expr structure | |
759 ** dupedExprNodeSize() Size of Expr + space for token | |
760 ** dupedExprSize() Expr + token + subtree components | |
761 ** | |
762 *************************************************************************** | |
763 ** | |
764 ** The dupedExprStructSize() function returns two values OR-ed together: | |
765 ** (1) the space required for a copy of the Expr structure only and | |
766 ** (2) the EP_xxx flags that indicate what the structure size should be. | |
767 ** The return values is always one of: | |
768 ** | |
769 ** EXPR_FULLSIZE | |
770 ** EXPR_REDUCEDSIZE | EP_Reduced | |
771 ** EXPR_TOKENONLYSIZE | EP_TokenOnly | |
772 ** | |
773 ** The size of the structure can be found by masking the return value | |
774 ** of this routine with 0xfff. The flags can be found by masking the | |
775 ** return value with EP_Reduced|EP_TokenOnly. | |
776 ** | |
777 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size | |
778 ** (unreduced) Expr objects as they or originally constructed by the parser. | |
779 ** During expression analysis, extra information is computed and moved into | |
780 ** later parts of teh Expr object and that extra information might get chopped | |
781 ** off if the expression is reduced. Note also that it does not work to | |
782 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal | |
783 ** to reduce a pristine expression tree from the parser. The implementation | |
784 ** of dupedExprStructSize() contain multiple assert() statements that attempt | |
785 ** to enforce this constraint. | |
786 */ | |
787 static int dupedExprStructSize(Expr *p, int flags){ | |
788 int nSize; | |
789 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ | |
790 assert( EXPR_FULLSIZE<=0xfff ); | |
791 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); | |
792 if( 0==(flags&EXPRDUP_REDUCE) ){ | |
793 nSize = EXPR_FULLSIZE; | |
794 }else{ | |
795 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); | |
796 assert( !ExprHasProperty(p, EP_FromJoin) ); | |
797 assert( !ExprHasProperty(p, EP_MemToken) ); | |
798 assert( !ExprHasProperty(p, EP_NoReduce) ); | |
799 if( p->pLeft || p->x.pList ){ | |
800 nSize = EXPR_REDUCEDSIZE | EP_Reduced; | |
801 }else{ | |
802 assert( p->pRight==0 ); | |
803 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; | |
804 } | |
805 } | |
806 return nSize; | |
807 } | |
808 | |
809 /* | |
810 ** This function returns the space in bytes required to store the copy | |
811 ** of the Expr structure and a copy of the Expr.u.zToken string (if that | |
812 ** string is defined.) | |
813 */ | |
814 static int dupedExprNodeSize(Expr *p, int flags){ | |
815 int nByte = dupedExprStructSize(p, flags) & 0xfff; | |
816 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ | |
817 nByte += sqlite3Strlen30(p->u.zToken)+1; | |
818 } | |
819 return ROUND8(nByte); | |
820 } | |
821 | |
822 /* | |
823 ** Return the number of bytes required to create a duplicate of the | |
824 ** expression passed as the first argument. The second argument is a | |
825 ** mask containing EXPRDUP_XXX flags. | |
826 ** | |
827 ** The value returned includes space to create a copy of the Expr struct | |
828 ** itself and the buffer referred to by Expr.u.zToken, if any. | |
829 ** | |
830 ** If the EXPRDUP_REDUCE flag is set, then the return value includes | |
831 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft | |
832 ** and Expr.pRight variables (but not for any structures pointed to or | |
833 ** descended from the Expr.x.pList or Expr.x.pSelect variables). | |
834 */ | |
835 static int dupedExprSize(Expr *p, int flags){ | |
836 int nByte = 0; | |
837 if( p ){ | |
838 nByte = dupedExprNodeSize(p, flags); | |
839 if( flags&EXPRDUP_REDUCE ){ | |
840 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); | |
841 } | |
842 } | |
843 return nByte; | |
844 } | |
845 | |
846 /* | |
847 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer | |
848 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough | |
849 ** to store the copy of expression p, the copies of p->u.zToken | |
850 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, | |
851 ** if any. Before returning, *pzBuffer is set to the first byte past the | |
852 ** portion of the buffer copied into by this function. | |
853 */ | |
854 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ | |
855 Expr *pNew = 0; /* Value to return */ | |
856 assert( flags==0 || flags==EXPRDUP_REDUCE ); | |
857 if( p ){ | |
858 const int isReduced = (flags&EXPRDUP_REDUCE); | |
859 u8 *zAlloc; | |
860 u32 staticFlag = 0; | |
861 | |
862 assert( pzBuffer==0 || isReduced ); | |
863 | |
864 /* Figure out where to write the new Expr structure. */ | |
865 if( pzBuffer ){ | |
866 zAlloc = *pzBuffer; | |
867 staticFlag = EP_Static; | |
868 }else{ | |
869 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); | |
870 } | |
871 pNew = (Expr *)zAlloc; | |
872 | |
873 if( pNew ){ | |
874 /* Set nNewSize to the size allocated for the structure pointed to | |
875 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or | |
876 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed | |
877 ** by the copy of the p->u.zToken string (if any). | |
878 */ | |
879 const unsigned nStructSize = dupedExprStructSize(p, flags); | |
880 const int nNewSize = nStructSize & 0xfff; | |
881 int nToken; | |
882 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ | |
883 nToken = sqlite3Strlen30(p->u.zToken) + 1; | |
884 }else{ | |
885 nToken = 0; | |
886 } | |
887 if( isReduced ){ | |
888 assert( ExprHasProperty(p, EP_Reduced)==0 ); | |
889 memcpy(zAlloc, p, nNewSize); | |
890 }else{ | |
891 u32 nSize = (u32)exprStructSize(p); | |
892 memcpy(zAlloc, p, nSize); | |
893 if( nSize<EXPR_FULLSIZE ){ | |
894 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); | |
895 } | |
896 } | |
897 | |
898 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ | |
899 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); | |
900 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); | |
901 pNew->flags |= staticFlag; | |
902 | |
903 /* Copy the p->u.zToken string, if any. */ | |
904 if( nToken ){ | |
905 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; | |
906 memcpy(zToken, p->u.zToken, nToken); | |
907 } | |
908 | |
909 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ | |
910 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ | |
911 if( ExprHasProperty(p, EP_xIsSelect) ){ | |
912 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); | |
913 }else{ | |
914 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); | |
915 } | |
916 } | |
917 | |
918 /* Fill in pNew->pLeft and pNew->pRight. */ | |
919 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ | |
920 zAlloc += dupedExprNodeSize(p, flags); | |
921 if( ExprHasProperty(pNew, EP_Reduced) ){ | |
922 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); | |
923 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); | |
924 } | |
925 if( pzBuffer ){ | |
926 *pzBuffer = zAlloc; | |
927 } | |
928 }else{ | |
929 if( !ExprHasProperty(p, EP_TokenOnly) ){ | |
930 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); | |
931 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); | |
932 } | |
933 } | |
934 | |
935 } | |
936 } | |
937 return pNew; | |
938 } | |
939 | |
940 /* | |
941 ** Create and return a deep copy of the object passed as the second | |
942 ** argument. If an OOM condition is encountered, NULL is returned | |
943 ** and the db->mallocFailed flag set. | |
944 */ | |
945 #ifndef SQLITE_OMIT_CTE | |
946 static With *withDup(sqlite3 *db, With *p){ | |
947 With *pRet = 0; | |
948 if( p ){ | |
949 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); | |
950 pRet = sqlite3DbMallocZero(db, nByte); | |
951 if( pRet ){ | |
952 int i; | |
953 pRet->nCte = p->nCte; | |
954 for(i=0; i<p->nCte; i++){ | |
955 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); | |
956 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); | |
957 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); | |
958 } | |
959 } | |
960 } | |
961 return pRet; | |
962 } | |
963 #else | |
964 # define withDup(x,y) 0 | |
965 #endif | |
966 | |
967 /* | |
968 ** The following group of routines make deep copies of expressions, | |
969 ** expression lists, ID lists, and select statements. The copies can | |
970 ** be deleted (by being passed to their respective ...Delete() routines) | |
971 ** without effecting the originals. | |
972 ** | |
973 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), | |
974 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded | |
975 ** by subsequent calls to sqlite*ListAppend() routines. | |
976 ** | |
977 ** Any tables that the SrcList might point to are not duplicated. | |
978 ** | |
979 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. | |
980 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a | |
981 ** truncated version of the usual Expr structure that will be stored as | |
982 ** part of the in-memory representation of the database schema. | |
983 */ | |
984 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ | |
985 assert( flags==0 || flags==EXPRDUP_REDUCE ); | |
986 return exprDup(db, p, flags, 0); | |
987 } | |
988 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ | |
989 ExprList *pNew; | |
990 struct ExprList_item *pItem, *pOldItem; | |
991 int i; | |
992 if( p==0 ) return 0; | |
993 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); | |
994 if( pNew==0 ) return 0; | |
995 pNew->nExpr = i = p->nExpr; | |
996 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} | |
997 pNew->a = pItem = sqlite3DbMallocRaw(db, i*sizeof(p->a[0]) ); | |
998 if( pItem==0 ){ | |
999 sqlite3DbFree(db, pNew); | |
1000 return 0; | |
1001 } | |
1002 pOldItem = p->a; | |
1003 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ | |
1004 Expr *pOldExpr = pOldItem->pExpr; | |
1005 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); | |
1006 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); | |
1007 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); | |
1008 pItem->sortOrder = pOldItem->sortOrder; | |
1009 pItem->done = 0; | |
1010 pItem->bSpanIsTab = pOldItem->bSpanIsTab; | |
1011 pItem->u = pOldItem->u; | |
1012 } | |
1013 return pNew; | |
1014 } | |
1015 | |
1016 /* | |
1017 ** If cursors, triggers, views and subqueries are all omitted from | |
1018 ** the build, then none of the following routines, except for | |
1019 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes | |
1020 ** called with a NULL argument. | |
1021 */ | |
1022 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ | |
1023 || !defined(SQLITE_OMIT_SUBQUERY) | |
1024 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ | |
1025 SrcList *pNew; | |
1026 int i; | |
1027 int nByte; | |
1028 if( p==0 ) return 0; | |
1029 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); | |
1030 pNew = sqlite3DbMallocRaw(db, nByte ); | |
1031 if( pNew==0 ) return 0; | |
1032 pNew->nSrc = pNew->nAlloc = p->nSrc; | |
1033 for(i=0; i<p->nSrc; i++){ | |
1034 struct SrcList_item *pNewItem = &pNew->a[i]; | |
1035 struct SrcList_item *pOldItem = &p->a[i]; | |
1036 Table *pTab; | |
1037 pNewItem->pSchema = pOldItem->pSchema; | |
1038 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); | |
1039 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); | |
1040 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); | |
1041 pNewItem->fg = pOldItem->fg; | |
1042 pNewItem->iCursor = pOldItem->iCursor; | |
1043 pNewItem->addrFillSub = pOldItem->addrFillSub; | |
1044 pNewItem->regReturn = pOldItem->regReturn; | |
1045 if( pNewItem->fg.isIndexedBy ){ | |
1046 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); | |
1047 } | |
1048 pNewItem->pIBIndex = pOldItem->pIBIndex; | |
1049 if( pNewItem->fg.isTabFunc ){ | |
1050 pNewItem->u1.pFuncArg = | |
1051 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); | |
1052 } | |
1053 pTab = pNewItem->pTab = pOldItem->pTab; | |
1054 if( pTab ){ | |
1055 pTab->nRef++; | |
1056 } | |
1057 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); | |
1058 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); | |
1059 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); | |
1060 pNewItem->colUsed = pOldItem->colUsed; | |
1061 } | |
1062 return pNew; | |
1063 } | |
1064 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ | |
1065 IdList *pNew; | |
1066 int i; | |
1067 if( p==0 ) return 0; | |
1068 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); | |
1069 if( pNew==0 ) return 0; | |
1070 pNew->nId = p->nId; | |
1071 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); | |
1072 if( pNew->a==0 ){ | |
1073 sqlite3DbFree(db, pNew); | |
1074 return 0; | |
1075 } | |
1076 /* Note that because the size of the allocation for p->a[] is not | |
1077 ** necessarily a power of two, sqlite3IdListAppend() may not be called | |
1078 ** on the duplicate created by this function. */ | |
1079 for(i=0; i<p->nId; i++){ | |
1080 struct IdList_item *pNewItem = &pNew->a[i]; | |
1081 struct IdList_item *pOldItem = &p->a[i]; | |
1082 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); | |
1083 pNewItem->idx = pOldItem->idx; | |
1084 } | |
1085 return pNew; | |
1086 } | |
1087 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ | |
1088 Select *pNew, *pPrior; | |
1089 if( p==0 ) return 0; | |
1090 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); | |
1091 if( pNew==0 ) return 0; | |
1092 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); | |
1093 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); | |
1094 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); | |
1095 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); | |
1096 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); | |
1097 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); | |
1098 pNew->op = p->op; | |
1099 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags); | |
1100 if( pPrior ) pPrior->pNext = pNew; | |
1101 pNew->pNext = 0; | |
1102 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); | |
1103 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); | |
1104 pNew->iLimit = 0; | |
1105 pNew->iOffset = 0; | |
1106 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; | |
1107 pNew->addrOpenEphm[0] = -1; | |
1108 pNew->addrOpenEphm[1] = -1; | |
1109 pNew->nSelectRow = p->nSelectRow; | |
1110 pNew->pWith = withDup(db, p->pWith); | |
1111 sqlite3SelectSetName(pNew, p->zSelName); | |
1112 return pNew; | |
1113 } | |
1114 #else | |
1115 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ | |
1116 assert( p==0 ); | |
1117 return 0; | |
1118 } | |
1119 #endif | |
1120 | |
1121 | |
1122 /* | |
1123 ** Add a new element to the end of an expression list. If pList is | |
1124 ** initially NULL, then create a new expression list. | |
1125 ** | |
1126 ** If a memory allocation error occurs, the entire list is freed and | |
1127 ** NULL is returned. If non-NULL is returned, then it is guaranteed | |
1128 ** that the new entry was successfully appended. | |
1129 */ | |
1130 ExprList *sqlite3ExprListAppend( | |
1131 Parse *pParse, /* Parsing context */ | |
1132 ExprList *pList, /* List to which to append. Might be NULL */ | |
1133 Expr *pExpr /* Expression to be appended. Might be NULL */ | |
1134 ){ | |
1135 sqlite3 *db = pParse->db; | |
1136 if( pList==0 ){ | |
1137 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); | |
1138 if( pList==0 ){ | |
1139 goto no_mem; | |
1140 } | |
1141 pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0])); | |
1142 if( pList->a==0 ) goto no_mem; | |
1143 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ | |
1144 struct ExprList_item *a; | |
1145 assert( pList->nExpr>0 ); | |
1146 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); | |
1147 if( a==0 ){ | |
1148 goto no_mem; | |
1149 } | |
1150 pList->a = a; | |
1151 } | |
1152 assert( pList->a!=0 ); | |
1153 if( 1 ){ | |
1154 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; | |
1155 memset(pItem, 0, sizeof(*pItem)); | |
1156 pItem->pExpr = pExpr; | |
1157 } | |
1158 return pList; | |
1159 | |
1160 no_mem: | |
1161 /* Avoid leaking memory if malloc has failed. */ | |
1162 sqlite3ExprDelete(db, pExpr); | |
1163 sqlite3ExprListDelete(db, pList); | |
1164 return 0; | |
1165 } | |
1166 | |
1167 /* | |
1168 ** Set the sort order for the last element on the given ExprList. | |
1169 */ | |
1170 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){ | |
1171 if( p==0 ) return; | |
1172 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 ); | |
1173 assert( p->nExpr>0 ); | |
1174 if( iSortOrder<0 ){ | |
1175 assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC ); | |
1176 return; | |
1177 } | |
1178 p->a[p->nExpr-1].sortOrder = (u8)iSortOrder; | |
1179 } | |
1180 | |
1181 /* | |
1182 ** Set the ExprList.a[].zName element of the most recently added item | |
1183 ** on the expression list. | |
1184 ** | |
1185 ** pList might be NULL following an OOM error. But pName should never be | |
1186 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag | |
1187 ** is set. | |
1188 */ | |
1189 void sqlite3ExprListSetName( | |
1190 Parse *pParse, /* Parsing context */ | |
1191 ExprList *pList, /* List to which to add the span. */ | |
1192 Token *pName, /* Name to be added */ | |
1193 int dequote /* True to cause the name to be dequoted */ | |
1194 ){ | |
1195 assert( pList!=0 || pParse->db->mallocFailed!=0 ); | |
1196 if( pList ){ | |
1197 struct ExprList_item *pItem; | |
1198 assert( pList->nExpr>0 ); | |
1199 pItem = &pList->a[pList->nExpr-1]; | |
1200 assert( pItem->zName==0 ); | |
1201 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); | |
1202 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); | |
1203 } | |
1204 } | |
1205 | |
1206 /* | |
1207 ** Set the ExprList.a[].zSpan element of the most recently added item | |
1208 ** on the expression list. | |
1209 ** | |
1210 ** pList might be NULL following an OOM error. But pSpan should never be | |
1211 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag | |
1212 ** is set. | |
1213 */ | |
1214 void sqlite3ExprListSetSpan( | |
1215 Parse *pParse, /* Parsing context */ | |
1216 ExprList *pList, /* List to which to add the span. */ | |
1217 ExprSpan *pSpan /* The span to be added */ | |
1218 ){ | |
1219 sqlite3 *db = pParse->db; | |
1220 assert( pList!=0 || db->mallocFailed!=0 ); | |
1221 if( pList ){ | |
1222 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; | |
1223 assert( pList->nExpr>0 ); | |
1224 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); | |
1225 sqlite3DbFree(db, pItem->zSpan); | |
1226 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, | |
1227 (int)(pSpan->zEnd - pSpan->zStart)); | |
1228 } | |
1229 } | |
1230 | |
1231 /* | |
1232 ** If the expression list pEList contains more than iLimit elements, | |
1233 ** leave an error message in pParse. | |
1234 */ | |
1235 void sqlite3ExprListCheckLength( | |
1236 Parse *pParse, | |
1237 ExprList *pEList, | |
1238 const char *zObject | |
1239 ){ | |
1240 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; | |
1241 testcase( pEList && pEList->nExpr==mx ); | |
1242 testcase( pEList && pEList->nExpr==mx+1 ); | |
1243 if( pEList && pEList->nExpr>mx ){ | |
1244 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); | |
1245 } | |
1246 } | |
1247 | |
1248 /* | |
1249 ** Delete an entire expression list. | |
1250 */ | |
1251 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ | |
1252 int i; | |
1253 struct ExprList_item *pItem; | |
1254 if( pList==0 ) return; | |
1255 assert( pList->a!=0 || pList->nExpr==0 ); | |
1256 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ | |
1257 sqlite3ExprDelete(db, pItem->pExpr); | |
1258 sqlite3DbFree(db, pItem->zName); | |
1259 sqlite3DbFree(db, pItem->zSpan); | |
1260 } | |
1261 sqlite3DbFree(db, pList->a); | |
1262 sqlite3DbFree(db, pList); | |
1263 } | |
1264 | |
1265 /* | |
1266 ** Return the bitwise-OR of all Expr.flags fields in the given | |
1267 ** ExprList. | |
1268 */ | |
1269 u32 sqlite3ExprListFlags(const ExprList *pList){ | |
1270 int i; | |
1271 u32 m = 0; | |
1272 if( pList ){ | |
1273 for(i=0; i<pList->nExpr; i++){ | |
1274 Expr *pExpr = pList->a[i].pExpr; | |
1275 if( ALWAYS(pExpr) ) m |= pExpr->flags; | |
1276 } | |
1277 } | |
1278 return m; | |
1279 } | |
1280 | |
1281 /* | |
1282 ** These routines are Walker callbacks used to check expressions to | |
1283 ** see if they are "constant" for some definition of constant. The | |
1284 ** Walker.eCode value determines the type of "constant" we are looking | |
1285 ** for. | |
1286 ** | |
1287 ** These callback routines are used to implement the following: | |
1288 ** | |
1289 ** sqlite3ExprIsConstant() pWalker->eCode==1 | |
1290 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 | |
1291 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 | |
1292 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 | |
1293 ** | |
1294 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression | |
1295 ** is found to not be a constant. | |
1296 ** | |
1297 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions | |
1298 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing | |
1299 ** an existing schema and 4 when processing a new statement. A bound | |
1300 ** parameter raises an error for new statements, but is silently converted | |
1301 ** to NULL for existing schemas. This allows sqlite_master tables that | |
1302 ** contain a bound parameter because they were generated by older versions | |
1303 ** of SQLite to be parsed by newer versions of SQLite without raising a | |
1304 ** malformed schema error. | |
1305 */ | |
1306 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ | |
1307 | |
1308 /* If pWalker->eCode is 2 then any term of the expression that comes from | |
1309 ** the ON or USING clauses of a left join disqualifies the expression | |
1310 ** from being considered constant. */ | |
1311 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ | |
1312 pWalker->eCode = 0; | |
1313 return WRC_Abort; | |
1314 } | |
1315 | |
1316 switch( pExpr->op ){ | |
1317 /* Consider functions to be constant if all their arguments are constant | |
1318 ** and either pWalker->eCode==4 or 5 or the function has the | |
1319 ** SQLITE_FUNC_CONST flag. */ | |
1320 case TK_FUNCTION: | |
1321 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ | |
1322 return WRC_Continue; | |
1323 }else{ | |
1324 pWalker->eCode = 0; | |
1325 return WRC_Abort; | |
1326 } | |
1327 case TK_ID: | |
1328 case TK_COLUMN: | |
1329 case TK_AGG_FUNCTION: | |
1330 case TK_AGG_COLUMN: | |
1331 testcase( pExpr->op==TK_ID ); | |
1332 testcase( pExpr->op==TK_COLUMN ); | |
1333 testcase( pExpr->op==TK_AGG_FUNCTION ); | |
1334 testcase( pExpr->op==TK_AGG_COLUMN ); | |
1335 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ | |
1336 return WRC_Continue; | |
1337 }else{ | |
1338 pWalker->eCode = 0; | |
1339 return WRC_Abort; | |
1340 } | |
1341 case TK_VARIABLE: | |
1342 if( pWalker->eCode==5 ){ | |
1343 /* Silently convert bound parameters that appear inside of CREATE | |
1344 ** statements into a NULL when parsing the CREATE statement text out | |
1345 ** of the sqlite_master table */ | |
1346 pExpr->op = TK_NULL; | |
1347 }else if( pWalker->eCode==4 ){ | |
1348 /* A bound parameter in a CREATE statement that originates from | |
1349 ** sqlite3_prepare() causes an error */ | |
1350 pWalker->eCode = 0; | |
1351 return WRC_Abort; | |
1352 } | |
1353 /* Fall through */ | |
1354 default: | |
1355 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ | |
1356 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ | |
1357 return WRC_Continue; | |
1358 } | |
1359 } | |
1360 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ | |
1361 UNUSED_PARAMETER(NotUsed); | |
1362 pWalker->eCode = 0; | |
1363 return WRC_Abort; | |
1364 } | |
1365 static int exprIsConst(Expr *p, int initFlag, int iCur){ | |
1366 Walker w; | |
1367 memset(&w, 0, sizeof(w)); | |
1368 w.eCode = initFlag; | |
1369 w.xExprCallback = exprNodeIsConstant; | |
1370 w.xSelectCallback = selectNodeIsConstant; | |
1371 w.u.iCur = iCur; | |
1372 sqlite3WalkExpr(&w, p); | |
1373 return w.eCode; | |
1374 } | |
1375 | |
1376 /* | |
1377 ** Walk an expression tree. Return non-zero if the expression is constant | |
1378 ** and 0 if it involves variables or function calls. | |
1379 ** | |
1380 ** For the purposes of this function, a double-quoted string (ex: "abc") | |
1381 ** is considered a variable but a single-quoted string (ex: 'abc') is | |
1382 ** a constant. | |
1383 */ | |
1384 int sqlite3ExprIsConstant(Expr *p){ | |
1385 return exprIsConst(p, 1, 0); | |
1386 } | |
1387 | |
1388 /* | |
1389 ** Walk an expression tree. Return non-zero if the expression is constant | |
1390 ** that does no originate from the ON or USING clauses of a join. | |
1391 ** Return 0 if it involves variables or function calls or terms from | |
1392 ** an ON or USING clause. | |
1393 */ | |
1394 int sqlite3ExprIsConstantNotJoin(Expr *p){ | |
1395 return exprIsConst(p, 2, 0); | |
1396 } | |
1397 | |
1398 /* | |
1399 ** Walk an expression tree. Return non-zero if the expression is constant | |
1400 ** for any single row of the table with cursor iCur. In other words, the | |
1401 ** expression must not refer to any non-deterministic function nor any | |
1402 ** table other than iCur. | |
1403 */ | |
1404 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ | |
1405 return exprIsConst(p, 3, iCur); | |
1406 } | |
1407 | |
1408 /* | |
1409 ** Walk an expression tree. Return non-zero if the expression is constant | |
1410 ** or a function call with constant arguments. Return and 0 if there | |
1411 ** are any variables. | |
1412 ** | |
1413 ** For the purposes of this function, a double-quoted string (ex: "abc") | |
1414 ** is considered a variable but a single-quoted string (ex: 'abc') is | |
1415 ** a constant. | |
1416 */ | |
1417 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ | |
1418 assert( isInit==0 || isInit==1 ); | |
1419 return exprIsConst(p, 4+isInit, 0); | |
1420 } | |
1421 | |
1422 #ifdef SQLITE_ENABLE_CURSOR_HINTS | |
1423 /* | |
1424 ** Walk an expression tree. Return 1 if the expression contains a | |
1425 ** subquery of some kind. Return 0 if there are no subqueries. | |
1426 */ | |
1427 int sqlite3ExprContainsSubquery(Expr *p){ | |
1428 Walker w; | |
1429 memset(&w, 0, sizeof(w)); | |
1430 w.eCode = 1; | |
1431 w.xExprCallback = sqlite3ExprWalkNoop; | |
1432 w.xSelectCallback = selectNodeIsConstant; | |
1433 sqlite3WalkExpr(&w, p); | |
1434 return w.eCode==0; | |
1435 } | |
1436 #endif | |
1437 | |
1438 /* | |
1439 ** If the expression p codes a constant integer that is small enough | |
1440 ** to fit in a 32-bit integer, return 1 and put the value of the integer | |
1441 ** in *pValue. If the expression is not an integer or if it is too big | |
1442 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. | |
1443 */ | |
1444 int sqlite3ExprIsInteger(Expr *p, int *pValue){ | |
1445 int rc = 0; | |
1446 | |
1447 /* If an expression is an integer literal that fits in a signed 32-bit | |
1448 ** integer, then the EP_IntValue flag will have already been set */ | |
1449 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 | |
1450 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); | |
1451 | |
1452 if( p->flags & EP_IntValue ){ | |
1453 *pValue = p->u.iValue; | |
1454 return 1; | |
1455 } | |
1456 switch( p->op ){ | |
1457 case TK_UPLUS: { | |
1458 rc = sqlite3ExprIsInteger(p->pLeft, pValue); | |
1459 break; | |
1460 } | |
1461 case TK_UMINUS: { | |
1462 int v; | |
1463 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ | |
1464 assert( v!=(-2147483647-1) ); | |
1465 *pValue = -v; | |
1466 rc = 1; | |
1467 } | |
1468 break; | |
1469 } | |
1470 default: break; | |
1471 } | |
1472 return rc; | |
1473 } | |
1474 | |
1475 /* | |
1476 ** Return FALSE if there is no chance that the expression can be NULL. | |
1477 ** | |
1478 ** If the expression might be NULL or if the expression is too complex | |
1479 ** to tell return TRUE. | |
1480 ** | |
1481 ** This routine is used as an optimization, to skip OP_IsNull opcodes | |
1482 ** when we know that a value cannot be NULL. Hence, a false positive | |
1483 ** (returning TRUE when in fact the expression can never be NULL) might | |
1484 ** be a small performance hit but is otherwise harmless. On the other | |
1485 ** hand, a false negative (returning FALSE when the result could be NULL) | |
1486 ** will likely result in an incorrect answer. So when in doubt, return | |
1487 ** TRUE. | |
1488 */ | |
1489 int sqlite3ExprCanBeNull(const Expr *p){ | |
1490 u8 op; | |
1491 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } | |
1492 op = p->op; | |
1493 if( op==TK_REGISTER ) op = p->op2; | |
1494 switch( op ){ | |
1495 case TK_INTEGER: | |
1496 case TK_STRING: | |
1497 case TK_FLOAT: | |
1498 case TK_BLOB: | |
1499 return 0; | |
1500 case TK_COLUMN: | |
1501 assert( p->pTab!=0 ); | |
1502 return ExprHasProperty(p, EP_CanBeNull) || | |
1503 (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0); | |
1504 default: | |
1505 return 1; | |
1506 } | |
1507 } | |
1508 | |
1509 /* | |
1510 ** Return TRUE if the given expression is a constant which would be | |
1511 ** unchanged by OP_Affinity with the affinity given in the second | |
1512 ** argument. | |
1513 ** | |
1514 ** This routine is used to determine if the OP_Affinity operation | |
1515 ** can be omitted. When in doubt return FALSE. A false negative | |
1516 ** is harmless. A false positive, however, can result in the wrong | |
1517 ** answer. | |
1518 */ | |
1519 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ | |
1520 u8 op; | |
1521 if( aff==SQLITE_AFF_BLOB ) return 1; | |
1522 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } | |
1523 op = p->op; | |
1524 if( op==TK_REGISTER ) op = p->op2; | |
1525 switch( op ){ | |
1526 case TK_INTEGER: { | |
1527 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; | |
1528 } | |
1529 case TK_FLOAT: { | |
1530 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; | |
1531 } | |
1532 case TK_STRING: { | |
1533 return aff==SQLITE_AFF_TEXT; | |
1534 } | |
1535 case TK_BLOB: { | |
1536 return 1; | |
1537 } | |
1538 case TK_COLUMN: { | |
1539 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ | |
1540 return p->iColumn<0 | |
1541 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); | |
1542 } | |
1543 default: { | |
1544 return 0; | |
1545 } | |
1546 } | |
1547 } | |
1548 | |
1549 /* | |
1550 ** Return TRUE if the given string is a row-id column name. | |
1551 */ | |
1552 int sqlite3IsRowid(const char *z){ | |
1553 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; | |
1554 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; | |
1555 if( sqlite3StrICmp(z, "OID")==0 ) return 1; | |
1556 return 0; | |
1557 } | |
1558 | |
1559 /* | |
1560 ** Return true if we are able to the IN operator optimization on a | |
1561 ** query of the form | |
1562 ** | |
1563 ** x IN (SELECT ...) | |
1564 ** | |
1565 ** Where the SELECT... clause is as specified by the parameter to this | |
1566 ** routine. | |
1567 ** | |
1568 ** The Select object passed in has already been preprocessed and no | |
1569 ** errors have been found. | |
1570 */ | |
1571 #ifndef SQLITE_OMIT_SUBQUERY | |
1572 static int isCandidateForInOpt(Select *p){ | |
1573 SrcList *pSrc; | |
1574 ExprList *pEList; | |
1575 Table *pTab; | |
1576 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ | |
1577 if( p->pPrior ) return 0; /* Not a compound SELECT */ | |
1578 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ | |
1579 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); | |
1580 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); | |
1581 return 0; /* No DISTINCT keyword and no aggregate functions */ | |
1582 } | |
1583 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ | |
1584 if( p->pLimit ) return 0; /* Has no LIMIT clause */ | |
1585 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ | |
1586 if( p->pWhere ) return 0; /* Has no WHERE clause */ | |
1587 pSrc = p->pSrc; | |
1588 assert( pSrc!=0 ); | |
1589 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ | |
1590 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ | |
1591 pTab = pSrc->a[0].pTab; | |
1592 if( NEVER(pTab==0) ) return 0; | |
1593 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ | |
1594 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ | |
1595 pEList = p->pEList; | |
1596 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ | |
1597 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ | |
1598 return 1; | |
1599 } | |
1600 #endif /* SQLITE_OMIT_SUBQUERY */ | |
1601 | |
1602 /* | |
1603 ** Code an OP_Once instruction and allocate space for its flag. Return the | |
1604 ** address of the new instruction. | |
1605 */ | |
1606 int sqlite3CodeOnce(Parse *pParse){ | |
1607 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ | |
1608 return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); | |
1609 } | |
1610 | |
1611 /* | |
1612 ** Generate code that checks the left-most column of index table iCur to see if | |
1613 ** it contains any NULL entries. Cause the register at regHasNull to be set | |
1614 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull | |
1615 ** to be set to NULL if iCur contains one or more NULL values. | |
1616 */ | |
1617 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ | |
1618 int addr1; | |
1619 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); | |
1620 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); | |
1621 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); | |
1622 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); | |
1623 VdbeComment((v, "first_entry_in(%d)", iCur)); | |
1624 sqlite3VdbeJumpHere(v, addr1); | |
1625 } | |
1626 | |
1627 | |
1628 #ifndef SQLITE_OMIT_SUBQUERY | |
1629 /* | |
1630 ** The argument is an IN operator with a list (not a subquery) on the | |
1631 ** right-hand side. Return TRUE if that list is constant. | |
1632 */ | |
1633 static int sqlite3InRhsIsConstant(Expr *pIn){ | |
1634 Expr *pLHS; | |
1635 int res; | |
1636 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); | |
1637 pLHS = pIn->pLeft; | |
1638 pIn->pLeft = 0; | |
1639 res = sqlite3ExprIsConstant(pIn); | |
1640 pIn->pLeft = pLHS; | |
1641 return res; | |
1642 } | |
1643 #endif | |
1644 | |
1645 /* | |
1646 ** This function is used by the implementation of the IN (...) operator. | |
1647 ** The pX parameter is the expression on the RHS of the IN operator, which | |
1648 ** might be either a list of expressions or a subquery. | |
1649 ** | |
1650 ** The job of this routine is to find or create a b-tree object that can | |
1651 ** be used either to test for membership in the RHS set or to iterate through | |
1652 ** all members of the RHS set, skipping duplicates. | |
1653 ** | |
1654 ** A cursor is opened on the b-tree object that is the RHS of the IN operator | |
1655 ** and pX->iTable is set to the index of that cursor. | |
1656 ** | |
1657 ** The returned value of this function indicates the b-tree type, as follows: | |
1658 ** | |
1659 ** IN_INDEX_ROWID - The cursor was opened on a database table. | |
1660 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. | |
1661 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. | |
1662 ** IN_INDEX_EPH - The cursor was opened on a specially created and | |
1663 ** populated epheremal table. | |
1664 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be | |
1665 ** implemented as a sequence of comparisons. | |
1666 ** | |
1667 ** An existing b-tree might be used if the RHS expression pX is a simple | |
1668 ** subquery such as: | |
1669 ** | |
1670 ** SELECT <column> FROM <table> | |
1671 ** | |
1672 ** If the RHS of the IN operator is a list or a more complex subquery, then | |
1673 ** an ephemeral table might need to be generated from the RHS and then | |
1674 ** pX->iTable made to point to the ephemeral table instead of an | |
1675 ** existing table. | |
1676 ** | |
1677 ** The inFlags parameter must contain exactly one of the bits | |
1678 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains | |
1679 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a | |
1680 ** fast membership test. When the IN_INDEX_LOOP bit is set, the | |
1681 ** IN index will be used to loop over all values of the RHS of the | |
1682 ** IN operator. | |
1683 ** | |
1684 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate | |
1685 ** through the set members) then the b-tree must not contain duplicates. | |
1686 ** An epheremal table must be used unless the selected <column> is guaranteed | |
1687 ** to be unique - either because it is an INTEGER PRIMARY KEY or it | |
1688 ** has a UNIQUE constraint or UNIQUE index. | |
1689 ** | |
1690 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used | |
1691 ** for fast set membership tests) then an epheremal table must | |
1692 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can | |
1693 ** be found with <column> as its left-most column. | |
1694 ** | |
1695 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and | |
1696 ** if the RHS of the IN operator is a list (not a subquery) then this | |
1697 ** routine might decide that creating an ephemeral b-tree for membership | |
1698 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the | |
1699 ** calling routine should implement the IN operator using a sequence | |
1700 ** of Eq or Ne comparison operations. | |
1701 ** | |
1702 ** When the b-tree is being used for membership tests, the calling function | |
1703 ** might need to know whether or not the RHS side of the IN operator | |
1704 ** contains a NULL. If prRhsHasNull is not a NULL pointer and | |
1705 ** if there is any chance that the (...) might contain a NULL value at | |
1706 ** runtime, then a register is allocated and the register number written | |
1707 ** to *prRhsHasNull. If there is no chance that the (...) contains a | |
1708 ** NULL value, then *prRhsHasNull is left unchanged. | |
1709 ** | |
1710 ** If a register is allocated and its location stored in *prRhsHasNull, then | |
1711 ** the value in that register will be NULL if the b-tree contains one or more | |
1712 ** NULL values, and it will be some non-NULL value if the b-tree contains no | |
1713 ** NULL values. | |
1714 */ | |
1715 #ifndef SQLITE_OMIT_SUBQUERY | |
1716 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){ | |
1717 Select *p; /* SELECT to the right of IN operator */ | |
1718 int eType = 0; /* Type of RHS table. IN_INDEX_* */ | |
1719 int iTab = pParse->nTab++; /* Cursor of the RHS table */ | |
1720 int mustBeUnique; /* True if RHS must be unique */ | |
1721 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ | |
1722 | |
1723 assert( pX->op==TK_IN ); | |
1724 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; | |
1725 | |
1726 /* Check to see if an existing table or index can be used to | |
1727 ** satisfy the query. This is preferable to generating a new | |
1728 ** ephemeral table. | |
1729 */ | |
1730 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); | |
1731 if( pParse->nErr==0 && isCandidateForInOpt(p) ){ | |
1732 sqlite3 *db = pParse->db; /* Database connection */ | |
1733 Table *pTab; /* Table <table>. */ | |
1734 Expr *pExpr; /* Expression <column> */ | |
1735 i16 iCol; /* Index of column <column> */ | |
1736 i16 iDb; /* Database idx for pTab */ | |
1737 | |
1738 assert( p ); /* Because of isCandidateForInOpt(p) */ | |
1739 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ | |
1740 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ | |
1741 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ | |
1742 pTab = p->pSrc->a[0].pTab; | |
1743 pExpr = p->pEList->a[0].pExpr; | |
1744 iCol = (i16)pExpr->iColumn; | |
1745 | |
1746 /* Code an OP_Transaction and OP_TableLock for <table>. */ | |
1747 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); | |
1748 sqlite3CodeVerifySchema(pParse, iDb); | |
1749 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); | |
1750 | |
1751 /* This function is only called from two places. In both cases the vdbe | |
1752 ** has already been allocated. So assume sqlite3GetVdbe() is always | |
1753 ** successful here. | |
1754 */ | |
1755 assert(v); | |
1756 if( iCol<0 ){ | |
1757 int iAddr = sqlite3CodeOnce(pParse); | |
1758 VdbeCoverage(v); | |
1759 | |
1760 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); | |
1761 eType = IN_INDEX_ROWID; | |
1762 | |
1763 sqlite3VdbeJumpHere(v, iAddr); | |
1764 }else{ | |
1765 Index *pIdx; /* Iterator variable */ | |
1766 | |
1767 /* The collation sequence used by the comparison. If an index is to | |
1768 ** be used in place of a temp-table, it must be ordered according | |
1769 ** to this collation sequence. */ | |
1770 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); | |
1771 | |
1772 /* Check that the affinity that will be used to perform the | |
1773 ** comparison is the same as the affinity of the column. If | |
1774 ** it is not, it is not possible to use any index. | |
1775 */ | |
1776 int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); | |
1777 | |
1778 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ | |
1779 if( (pIdx->aiColumn[0]==iCol) | |
1780 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq | |
1781 && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx))) | |
1782 ){ | |
1783 int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); | |
1784 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); | |
1785 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); | |
1786 VdbeComment((v, "%s", pIdx->zName)); | |
1787 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); | |
1788 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; | |
1789 | |
1790 if( prRhsHasNull && !pTab->aCol[iCol].notNull ){ | |
1791 *prRhsHasNull = ++pParse->nMem; | |
1792 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); | |
1793 } | |
1794 sqlite3VdbeJumpHere(v, iAddr); | |
1795 } | |
1796 } | |
1797 } | |
1798 } | |
1799 | |
1800 /* If no preexisting index is available for the IN clause | |
1801 ** and IN_INDEX_NOOP is an allowed reply | |
1802 ** and the RHS of the IN operator is a list, not a subquery | |
1803 ** and the RHS is not contant or has two or fewer terms, | |
1804 ** then it is not worth creating an ephemeral table to evaluate | |
1805 ** the IN operator so return IN_INDEX_NOOP. | |
1806 */ | |
1807 if( eType==0 | |
1808 && (inFlags & IN_INDEX_NOOP_OK) | |
1809 && !ExprHasProperty(pX, EP_xIsSelect) | |
1810 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) | |
1811 ){ | |
1812 eType = IN_INDEX_NOOP; | |
1813 } | |
1814 | |
1815 | |
1816 if( eType==0 ){ | |
1817 /* Could not find an existing table or index to use as the RHS b-tree. | |
1818 ** We will have to generate an ephemeral table to do the job. | |
1819 */ | |
1820 u32 savedNQueryLoop = pParse->nQueryLoop; | |
1821 int rMayHaveNull = 0; | |
1822 eType = IN_INDEX_EPH; | |
1823 if( inFlags & IN_INDEX_LOOP ){ | |
1824 pParse->nQueryLoop = 0; | |
1825 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ | |
1826 eType = IN_INDEX_ROWID; | |
1827 } | |
1828 }else if( prRhsHasNull ){ | |
1829 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; | |
1830 } | |
1831 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); | |
1832 pParse->nQueryLoop = savedNQueryLoop; | |
1833 }else{ | |
1834 pX->iTable = iTab; | |
1835 } | |
1836 return eType; | |
1837 } | |
1838 #endif | |
1839 | |
1840 /* | |
1841 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, | |
1842 ** or IN operators. Examples: | |
1843 ** | |
1844 ** (SELECT a FROM b) -- subquery | |
1845 ** EXISTS (SELECT a FROM b) -- EXISTS subquery | |
1846 ** x IN (4,5,11) -- IN operator with list on right-hand side | |
1847 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right | |
1848 ** | |
1849 ** The pExpr parameter describes the expression that contains the IN | |
1850 ** operator or subquery. | |
1851 ** | |
1852 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed | |
1853 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference | |
1854 ** to some integer key column of a table B-Tree. In this case, use an | |
1855 ** intkey B-Tree to store the set of IN(...) values instead of the usual | |
1856 ** (slower) variable length keys B-Tree. | |
1857 ** | |
1858 ** If rMayHaveNull is non-zero, that means that the operation is an IN | |
1859 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. | |
1860 ** All this routine does is initialize the register given by rMayHaveNull | |
1861 ** to NULL. Calling routines will take care of changing this register | |
1862 ** value to non-NULL if the RHS is NULL-free. | |
1863 ** | |
1864 ** For a SELECT or EXISTS operator, return the register that holds the | |
1865 ** result. For IN operators or if an error occurs, the return value is 0. | |
1866 */ | |
1867 #ifndef SQLITE_OMIT_SUBQUERY | |
1868 int sqlite3CodeSubselect( | |
1869 Parse *pParse, /* Parsing context */ | |
1870 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ | |
1871 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ | |
1872 int isRowid /* If true, LHS of IN operator is a rowid */ | |
1873 ){ | |
1874 int jmpIfDynamic = -1; /* One-time test address */ | |
1875 int rReg = 0; /* Register storing resulting */ | |
1876 Vdbe *v = sqlite3GetVdbe(pParse); | |
1877 if( NEVER(v==0) ) return 0; | |
1878 sqlite3ExprCachePush(pParse); | |
1879 | |
1880 /* This code must be run in its entirety every time it is encountered | |
1881 ** if any of the following is true: | |
1882 ** | |
1883 ** * The right-hand side is a correlated subquery | |
1884 ** * The right-hand side is an expression list containing variables | |
1885 ** * We are inside a trigger | |
1886 ** | |
1887 ** If all of the above are false, then we can run this code just once | |
1888 ** save the results, and reuse the same result on subsequent invocations. | |
1889 */ | |
1890 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ | |
1891 jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v); | |
1892 } | |
1893 | |
1894 #ifndef SQLITE_OMIT_EXPLAIN | |
1895 if( pParse->explain==2 ){ | |
1896 char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d", | |
1897 jmpIfDynamic>=0?"":"CORRELATED ", | |
1898 pExpr->op==TK_IN?"LIST":"SCALAR", | |
1899 pParse->iNextSelectId | |
1900 ); | |
1901 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); | |
1902 } | |
1903 #endif | |
1904 | |
1905 switch( pExpr->op ){ | |
1906 case TK_IN: { | |
1907 char affinity; /* Affinity of the LHS of the IN */ | |
1908 int addr; /* Address of OP_OpenEphemeral instruction */ | |
1909 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ | |
1910 KeyInfo *pKeyInfo = 0; /* Key information */ | |
1911 | |
1912 affinity = sqlite3ExprAffinity(pLeft); | |
1913 | |
1914 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' | |
1915 ** expression it is handled the same way. An ephemeral table is | |
1916 ** filled with single-field index keys representing the results | |
1917 ** from the SELECT or the <exprlist>. | |
1918 ** | |
1919 ** If the 'x' expression is a column value, or the SELECT... | |
1920 ** statement returns a column value, then the affinity of that | |
1921 ** column is used to build the index keys. If both 'x' and the | |
1922 ** SELECT... statement are columns, then numeric affinity is used | |
1923 ** if either column has NUMERIC or INTEGER affinity. If neither | |
1924 ** 'x' nor the SELECT... statement are columns, then numeric affinity | |
1925 ** is used. | |
1926 */ | |
1927 pExpr->iTable = pParse->nTab++; | |
1928 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); | |
1929 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1); | |
1930 | |
1931 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ | |
1932 /* Case 1: expr IN (SELECT ...) | |
1933 ** | |
1934 ** Generate code to write the results of the select into the temporary | |
1935 ** table allocated and opened above. | |
1936 */ | |
1937 Select *pSelect = pExpr->x.pSelect; | |
1938 SelectDest dest; | |
1939 ExprList *pEList; | |
1940 | |
1941 assert( !isRowid ); | |
1942 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); | |
1943 dest.affSdst = (u8)affinity; | |
1944 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); | |
1945 pSelect->iLimit = 0; | |
1946 testcase( pSelect->selFlags & SF_Distinct ); | |
1947 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ | |
1948 if( sqlite3Select(pParse, pSelect, &dest) ){ | |
1949 sqlite3KeyInfoUnref(pKeyInfo); | |
1950 return 0; | |
1951 } | |
1952 pEList = pSelect->pEList; | |
1953 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ | |
1954 assert( pEList!=0 ); | |
1955 assert( pEList->nExpr>0 ); | |
1956 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); | |
1957 pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, | |
1958 pEList->a[0].pExpr); | |
1959 }else if( ALWAYS(pExpr->x.pList!=0) ){ | |
1960 /* Case 2: expr IN (exprlist) | |
1961 ** | |
1962 ** For each expression, build an index key from the evaluation and | |
1963 ** store it in the temporary table. If <expr> is a column, then use | |
1964 ** that columns affinity when building index keys. If <expr> is not | |
1965 ** a column, use numeric affinity. | |
1966 */ | |
1967 int i; | |
1968 ExprList *pList = pExpr->x.pList; | |
1969 struct ExprList_item *pItem; | |
1970 int r1, r2, r3; | |
1971 | |
1972 if( !affinity ){ | |
1973 affinity = SQLITE_AFF_BLOB; | |
1974 } | |
1975 if( pKeyInfo ){ | |
1976 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); | |
1977 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); | |
1978 } | |
1979 | |
1980 /* Loop through each expression in <exprlist>. */ | |
1981 r1 = sqlite3GetTempReg(pParse); | |
1982 r2 = sqlite3GetTempReg(pParse); | |
1983 if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2); | |
1984 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ | |
1985 Expr *pE2 = pItem->pExpr; | |
1986 int iValToIns; | |
1987 | |
1988 /* If the expression is not constant then we will need to | |
1989 ** disable the test that was generated above that makes sure | |
1990 ** this code only executes once. Because for a non-constant | |
1991 ** expression we need to rerun this code each time. | |
1992 */ | |
1993 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ | |
1994 sqlite3VdbeChangeToNoop(v, jmpIfDynamic); | |
1995 jmpIfDynamic = -1; | |
1996 } | |
1997 | |
1998 /* Evaluate the expression and insert it into the temp table */ | |
1999 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ | |
2000 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); | |
2001 }else{ | |
2002 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); | |
2003 if( isRowid ){ | |
2004 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, | |
2005 sqlite3VdbeCurrentAddr(v)+2); | |
2006 VdbeCoverage(v); | |
2007 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); | |
2008 }else{ | |
2009 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); | |
2010 sqlite3ExprCacheAffinityChange(pParse, r3, 1); | |
2011 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); | |
2012 } | |
2013 } | |
2014 } | |
2015 sqlite3ReleaseTempReg(pParse, r1); | |
2016 sqlite3ReleaseTempReg(pParse, r2); | |
2017 } | |
2018 if( pKeyInfo ){ | |
2019 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); | |
2020 } | |
2021 break; | |
2022 } | |
2023 | |
2024 case TK_EXISTS: | |
2025 case TK_SELECT: | |
2026 default: { | |
2027 /* If this has to be a scalar SELECT. Generate code to put the | |
2028 ** value of this select in a memory cell and record the number | |
2029 ** of the memory cell in iColumn. If this is an EXISTS, write | |
2030 ** an integer 0 (not exists) or 1 (exists) into a memory cell | |
2031 ** and record that memory cell in iColumn. | |
2032 */ | |
2033 Select *pSel; /* SELECT statement to encode */ | |
2034 SelectDest dest; /* How to deal with SELECt result */ | |
2035 | |
2036 testcase( pExpr->op==TK_EXISTS ); | |
2037 testcase( pExpr->op==TK_SELECT ); | |
2038 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); | |
2039 | |
2040 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); | |
2041 pSel = pExpr->x.pSelect; | |
2042 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); | |
2043 if( pExpr->op==TK_SELECT ){ | |
2044 dest.eDest = SRT_Mem; | |
2045 dest.iSdst = dest.iSDParm; | |
2046 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm); | |
2047 VdbeComment((v, "Init subquery result")); | |
2048 }else{ | |
2049 dest.eDest = SRT_Exists; | |
2050 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); | |
2051 VdbeComment((v, "Init EXISTS result")); | |
2052 } | |
2053 sqlite3ExprDelete(pParse->db, pSel->pLimit); | |
2054 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, | |
2055 &sqlite3IntTokens[1]); | |
2056 pSel->iLimit = 0; | |
2057 pSel->selFlags &= ~SF_MultiValue; | |
2058 if( sqlite3Select(pParse, pSel, &dest) ){ | |
2059 return 0; | |
2060 } | |
2061 rReg = dest.iSDParm; | |
2062 ExprSetVVAProperty(pExpr, EP_NoReduce); | |
2063 break; | |
2064 } | |
2065 } | |
2066 | |
2067 if( rHasNullFlag ){ | |
2068 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); | |
2069 } | |
2070 | |
2071 if( jmpIfDynamic>=0 ){ | |
2072 sqlite3VdbeJumpHere(v, jmpIfDynamic); | |
2073 } | |
2074 sqlite3ExprCachePop(pParse); | |
2075 | |
2076 return rReg; | |
2077 } | |
2078 #endif /* SQLITE_OMIT_SUBQUERY */ | |
2079 | |
2080 #ifndef SQLITE_OMIT_SUBQUERY | |
2081 /* | |
2082 ** Generate code for an IN expression. | |
2083 ** | |
2084 ** x IN (SELECT ...) | |
2085 ** x IN (value, value, ...) | |
2086 ** | |
2087 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) | |
2088 ** is an array of zero or more values. The expression is true if the LHS is | |
2089 ** contained within the RHS. The value of the expression is unknown (NULL) | |
2090 ** if the LHS is NULL or if the LHS is not contained within the RHS and the | |
2091 ** RHS contains one or more NULL values. | |
2092 ** | |
2093 ** This routine generates code that jumps to destIfFalse if the LHS is not | |
2094 ** contained within the RHS. If due to NULLs we cannot determine if the LHS | |
2095 ** is contained in the RHS then jump to destIfNull. If the LHS is contained | |
2096 ** within the RHS then fall through. | |
2097 */ | |
2098 static void sqlite3ExprCodeIN( | |
2099 Parse *pParse, /* Parsing and code generating context */ | |
2100 Expr *pExpr, /* The IN expression */ | |
2101 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ | |
2102 int destIfNull /* Jump here if the results are unknown due to NULLs */ | |
2103 ){ | |
2104 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ | |
2105 char affinity; /* Comparison affinity to use */ | |
2106 int eType; /* Type of the RHS */ | |
2107 int r1; /* Temporary use register */ | |
2108 Vdbe *v; /* Statement under construction */ | |
2109 | |
2110 /* Compute the RHS. After this step, the table with cursor | |
2111 ** pExpr->iTable will contains the values that make up the RHS. | |
2112 */ | |
2113 v = pParse->pVdbe; | |
2114 assert( v!=0 ); /* OOM detected prior to this routine */ | |
2115 VdbeNoopComment((v, "begin IN expr")); | |
2116 eType = sqlite3FindInIndex(pParse, pExpr, | |
2117 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, | |
2118 destIfFalse==destIfNull ? 0 : &rRhsHasNull); | |
2119 | |
2120 /* Figure out the affinity to use to create a key from the results | |
2121 ** of the expression. affinityStr stores a static string suitable for | |
2122 ** P4 of OP_MakeRecord. | |
2123 */ | |
2124 affinity = comparisonAffinity(pExpr); | |
2125 | |
2126 /* Code the LHS, the <expr> from "<expr> IN (...)". | |
2127 */ | |
2128 sqlite3ExprCachePush(pParse); | |
2129 r1 = sqlite3GetTempReg(pParse); | |
2130 sqlite3ExprCode(pParse, pExpr->pLeft, r1); | |
2131 | |
2132 /* If sqlite3FindInIndex() did not find or create an index that is | |
2133 ** suitable for evaluating the IN operator, then evaluate using a | |
2134 ** sequence of comparisons. | |
2135 */ | |
2136 if( eType==IN_INDEX_NOOP ){ | |
2137 ExprList *pList = pExpr->x.pList; | |
2138 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); | |
2139 int labelOk = sqlite3VdbeMakeLabel(v); | |
2140 int r2, regToFree; | |
2141 int regCkNull = 0; | |
2142 int ii; | |
2143 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); | |
2144 if( destIfNull!=destIfFalse ){ | |
2145 regCkNull = sqlite3GetTempReg(pParse); | |
2146 sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull); | |
2147 } | |
2148 for(ii=0; ii<pList->nExpr; ii++){ | |
2149 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); | |
2150 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ | |
2151 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); | |
2152 } | |
2153 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ | |
2154 sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2, | |
2155 (void*)pColl, P4_COLLSEQ); | |
2156 VdbeCoverageIf(v, ii<pList->nExpr-1); | |
2157 VdbeCoverageIf(v, ii==pList->nExpr-1); | |
2158 sqlite3VdbeChangeP5(v, affinity); | |
2159 }else{ | |
2160 assert( destIfNull==destIfFalse ); | |
2161 sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2, | |
2162 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); | |
2163 sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL); | |
2164 } | |
2165 sqlite3ReleaseTempReg(pParse, regToFree); | |
2166 } | |
2167 if( regCkNull ){ | |
2168 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); | |
2169 sqlite3VdbeGoto(v, destIfFalse); | |
2170 } | |
2171 sqlite3VdbeResolveLabel(v, labelOk); | |
2172 sqlite3ReleaseTempReg(pParse, regCkNull); | |
2173 }else{ | |
2174 | |
2175 /* If the LHS is NULL, then the result is either false or NULL depending | |
2176 ** on whether the RHS is empty or not, respectively. | |
2177 */ | |
2178 if( sqlite3ExprCanBeNull(pExpr->pLeft) ){ | |
2179 if( destIfNull==destIfFalse ){ | |
2180 /* Shortcut for the common case where the false and NULL outcomes are | |
2181 ** the same. */ | |
2182 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v); | |
2183 }else{ | |
2184 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v); | |
2185 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); | |
2186 VdbeCoverage(v); | |
2187 sqlite3VdbeGoto(v, destIfNull); | |
2188 sqlite3VdbeJumpHere(v, addr1); | |
2189 } | |
2190 } | |
2191 | |
2192 if( eType==IN_INDEX_ROWID ){ | |
2193 /* In this case, the RHS is the ROWID of table b-tree | |
2194 */ | |
2195 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v); | |
2196 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); | |
2197 VdbeCoverage(v); | |
2198 }else{ | |
2199 /* In this case, the RHS is an index b-tree. | |
2200 */ | |
2201 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); | |
2202 | |
2203 /* If the set membership test fails, then the result of the | |
2204 ** "x IN (...)" expression must be either 0 or NULL. If the set | |
2205 ** contains no NULL values, then the result is 0. If the set | |
2206 ** contains one or more NULL values, then the result of the | |
2207 ** expression is also NULL. | |
2208 */ | |
2209 assert( destIfFalse!=destIfNull || rRhsHasNull==0 ); | |
2210 if( rRhsHasNull==0 ){ | |
2211 /* This branch runs if it is known at compile time that the RHS | |
2212 ** cannot contain NULL values. This happens as the result | |
2213 ** of a "NOT NULL" constraint in the database schema. | |
2214 ** | |
2215 ** Also run this branch if NULL is equivalent to FALSE | |
2216 ** for this particular IN operator. | |
2217 */ | |
2218 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); | |
2219 VdbeCoverage(v); | |
2220 }else{ | |
2221 /* In this branch, the RHS of the IN might contain a NULL and | |
2222 ** the presence of a NULL on the RHS makes a difference in the | |
2223 ** outcome. | |
2224 */ | |
2225 int addr1; | |
2226 | |
2227 /* First check to see if the LHS is contained in the RHS. If so, | |
2228 ** then the answer is TRUE the presence of NULLs in the RHS does | |
2229 ** not matter. If the LHS is not contained in the RHS, then the | |
2230 ** answer is NULL if the RHS contains NULLs and the answer is | |
2231 ** FALSE if the RHS is NULL-free. | |
2232 */ | |
2233 addr1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); | |
2234 VdbeCoverage(v); | |
2235 sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull); | |
2236 VdbeCoverage(v); | |
2237 sqlite3VdbeGoto(v, destIfFalse); | |
2238 sqlite3VdbeJumpHere(v, addr1); | |
2239 } | |
2240 } | |
2241 } | |
2242 sqlite3ReleaseTempReg(pParse, r1); | |
2243 sqlite3ExprCachePop(pParse); | |
2244 VdbeComment((v, "end IN expr")); | |
2245 } | |
2246 #endif /* SQLITE_OMIT_SUBQUERY */ | |
2247 | |
2248 #ifndef SQLITE_OMIT_FLOATING_POINT | |
2249 /* | |
2250 ** Generate an instruction that will put the floating point | |
2251 ** value described by z[0..n-1] into register iMem. | |
2252 ** | |
2253 ** The z[] string will probably not be zero-terminated. But the | |
2254 ** z[n] character is guaranteed to be something that does not look | |
2255 ** like the continuation of the number. | |
2256 */ | |
2257 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ | |
2258 if( ALWAYS(z!=0) ){ | |
2259 double value; | |
2260 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); | |
2261 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ | |
2262 if( negateFlag ) value = -value; | |
2263 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); | |
2264 } | |
2265 } | |
2266 #endif | |
2267 | |
2268 | |
2269 /* | |
2270 ** Generate an instruction that will put the integer describe by | |
2271 ** text z[0..n-1] into register iMem. | |
2272 ** | |
2273 ** Expr.u.zToken is always UTF8 and zero-terminated. | |
2274 */ | |
2275 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ | |
2276 Vdbe *v = pParse->pVdbe; | |
2277 if( pExpr->flags & EP_IntValue ){ | |
2278 int i = pExpr->u.iValue; | |
2279 assert( i>=0 ); | |
2280 if( negFlag ) i = -i; | |
2281 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); | |
2282 }else{ | |
2283 int c; | |
2284 i64 value; | |
2285 const char *z = pExpr->u.zToken; | |
2286 assert( z!=0 ); | |
2287 c = sqlite3DecOrHexToI64(z, &value); | |
2288 if( c==0 || (c==2 && negFlag) ){ | |
2289 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } | |
2290 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); | |
2291 }else{ | |
2292 #ifdef SQLITE_OMIT_FLOATING_POINT | |
2293 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); | |
2294 #else | |
2295 #ifndef SQLITE_OMIT_HEX_INTEGER | |
2296 if( sqlite3_strnicmp(z,"0x",2)==0 ){ | |
2297 sqlite3ErrorMsg(pParse, "hex literal too big: %s", z); | |
2298 }else | |
2299 #endif | |
2300 { | |
2301 codeReal(v, z, negFlag, iMem); | |
2302 } | |
2303 #endif | |
2304 } | |
2305 } | |
2306 } | |
2307 | |
2308 /* | |
2309 ** Clear a cache entry. | |
2310 */ | |
2311 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ | |
2312 if( p->tempReg ){ | |
2313 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ | |
2314 pParse->aTempReg[pParse->nTempReg++] = p->iReg; | |
2315 } | |
2316 p->tempReg = 0; | |
2317 } | |
2318 } | |
2319 | |
2320 | |
2321 /* | |
2322 ** Record in the column cache that a particular column from a | |
2323 ** particular table is stored in a particular register. | |
2324 */ | |
2325 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ | |
2326 int i; | |
2327 int minLru; | |
2328 int idxLru; | |
2329 struct yColCache *p; | |
2330 | |
2331 /* Unless an error has occurred, register numbers are always positive. */ | |
2332 assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed ); | |
2333 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ | |
2334 | |
2335 /* The SQLITE_ColumnCache flag disables the column cache. This is used | |
2336 ** for testing only - to verify that SQLite always gets the same answer | |
2337 ** with and without the column cache. | |
2338 */ | |
2339 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; | |
2340 | |
2341 /* First replace any existing entry. | |
2342 ** | |
2343 ** Actually, the way the column cache is currently used, we are guaranteed | |
2344 ** that the object will never already be in cache. Verify this guarantee. | |
2345 */ | |
2346 #ifndef NDEBUG | |
2347 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ | |
2348 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); | |
2349 } | |
2350 #endif | |
2351 | |
2352 /* Find an empty slot and replace it */ | |
2353 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ | |
2354 if( p->iReg==0 ){ | |
2355 p->iLevel = pParse->iCacheLevel; | |
2356 p->iTable = iTab; | |
2357 p->iColumn = iCol; | |
2358 p->iReg = iReg; | |
2359 p->tempReg = 0; | |
2360 p->lru = pParse->iCacheCnt++; | |
2361 return; | |
2362 } | |
2363 } | |
2364 | |
2365 /* Replace the last recently used */ | |
2366 minLru = 0x7fffffff; | |
2367 idxLru = -1; | |
2368 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ | |
2369 if( p->lru<minLru ){ | |
2370 idxLru = i; | |
2371 minLru = p->lru; | |
2372 } | |
2373 } | |
2374 if( ALWAYS(idxLru>=0) ){ | |
2375 p = &pParse->aColCache[idxLru]; | |
2376 p->iLevel = pParse->iCacheLevel; | |
2377 p->iTable = iTab; | |
2378 p->iColumn = iCol; | |
2379 p->iReg = iReg; | |
2380 p->tempReg = 0; | |
2381 p->lru = pParse->iCacheCnt++; | |
2382 return; | |
2383 } | |
2384 } | |
2385 | |
2386 /* | |
2387 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. | |
2388 ** Purge the range of registers from the column cache. | |
2389 */ | |
2390 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ | |
2391 int i; | |
2392 int iLast = iReg + nReg - 1; | |
2393 struct yColCache *p; | |
2394 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ | |
2395 int r = p->iReg; | |
2396 if( r>=iReg && r<=iLast ){ | |
2397 cacheEntryClear(pParse, p); | |
2398 p->iReg = 0; | |
2399 } | |
2400 } | |
2401 } | |
2402 | |
2403 /* | |
2404 ** Remember the current column cache context. Any new entries added | |
2405 ** added to the column cache after this call are removed when the | |
2406 ** corresponding pop occurs. | |
2407 */ | |
2408 void sqlite3ExprCachePush(Parse *pParse){ | |
2409 pParse->iCacheLevel++; | |
2410 #ifdef SQLITE_DEBUG | |
2411 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ | |
2412 printf("PUSH to %d\n", pParse->iCacheLevel); | |
2413 } | |
2414 #endif | |
2415 } | |
2416 | |
2417 /* | |
2418 ** Remove from the column cache any entries that were added since the | |
2419 ** the previous sqlite3ExprCachePush operation. In other words, restore | |
2420 ** the cache to the state it was in prior the most recent Push. | |
2421 */ | |
2422 void sqlite3ExprCachePop(Parse *pParse){ | |
2423 int i; | |
2424 struct yColCache *p; | |
2425 assert( pParse->iCacheLevel>=1 ); | |
2426 pParse->iCacheLevel--; | |
2427 #ifdef SQLITE_DEBUG | |
2428 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ | |
2429 printf("POP to %d\n", pParse->iCacheLevel); | |
2430 } | |
2431 #endif | |
2432 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ | |
2433 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ | |
2434 cacheEntryClear(pParse, p); | |
2435 p->iReg = 0; | |
2436 } | |
2437 } | |
2438 } | |
2439 | |
2440 /* | |
2441 ** When a cached column is reused, make sure that its register is | |
2442 ** no longer available as a temp register. ticket #3879: that same | |
2443 ** register might be in the cache in multiple places, so be sure to | |
2444 ** get them all. | |
2445 */ | |
2446 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ | |
2447 int i; | |
2448 struct yColCache *p; | |
2449 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ | |
2450 if( p->iReg==iReg ){ | |
2451 p->tempReg = 0; | |
2452 } | |
2453 } | |
2454 } | |
2455 | |
2456 /* Generate code that will load into register regOut a value that is | |
2457 ** appropriate for the iIdxCol-th column of index pIdx. | |
2458 */ | |
2459 void sqlite3ExprCodeLoadIndexColumn( | |
2460 Parse *pParse, /* The parsing context */ | |
2461 Index *pIdx, /* The index whose column is to be loaded */ | |
2462 int iTabCur, /* Cursor pointing to a table row */ | |
2463 int iIdxCol, /* The column of the index to be loaded */ | |
2464 int regOut /* Store the index column value in this register */ | |
2465 ){ | |
2466 i16 iTabCol = pIdx->aiColumn[iIdxCol]; | |
2467 if( iTabCol==XN_EXPR ){ | |
2468 assert( pIdx->aColExpr ); | |
2469 assert( pIdx->aColExpr->nExpr>iIdxCol ); | |
2470 pParse->iSelfTab = iTabCur; | |
2471 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); | |
2472 }else{ | |
2473 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, | |
2474 iTabCol, regOut); | |
2475 } | |
2476 } | |
2477 | |
2478 /* | |
2479 ** Generate code to extract the value of the iCol-th column of a table. | |
2480 */ | |
2481 void sqlite3ExprCodeGetColumnOfTable( | |
2482 Vdbe *v, /* The VDBE under construction */ | |
2483 Table *pTab, /* The table containing the value */ | |
2484 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ | |
2485 int iCol, /* Index of the column to extract */ | |
2486 int regOut /* Extract the value into this register */ | |
2487 ){ | |
2488 if( iCol<0 || iCol==pTab->iPKey ){ | |
2489 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); | |
2490 }else{ | |
2491 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; | |
2492 int x = iCol; | |
2493 if( !HasRowid(pTab) ){ | |
2494 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); | |
2495 } | |
2496 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); | |
2497 } | |
2498 if( iCol>=0 ){ | |
2499 sqlite3ColumnDefault(v, pTab, iCol, regOut); | |
2500 } | |
2501 } | |
2502 | |
2503 /* | |
2504 ** Generate code that will extract the iColumn-th column from | |
2505 ** table pTab and store the column value in a register. | |
2506 ** | |
2507 ** An effort is made to store the column value in register iReg. This | |
2508 ** is not garanteeed for GetColumn() - the result can be stored in | |
2509 ** any register. But the result is guaranteed to land in register iReg | |
2510 ** for GetColumnToReg(). | |
2511 ** | |
2512 ** There must be an open cursor to pTab in iTable when this routine | |
2513 ** is called. If iColumn<0 then code is generated that extracts the rowid. | |
2514 */ | |
2515 int sqlite3ExprCodeGetColumn( | |
2516 Parse *pParse, /* Parsing and code generating context */ | |
2517 Table *pTab, /* Description of the table we are reading from */ | |
2518 int iColumn, /* Index of the table column */ | |
2519 int iTable, /* The cursor pointing to the table */ | |
2520 int iReg, /* Store results here */ | |
2521 u8 p5 /* P5 value for OP_Column + FLAGS */ | |
2522 ){ | |
2523 Vdbe *v = pParse->pVdbe; | |
2524 int i; | |
2525 struct yColCache *p; | |
2526 | |
2527 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ | |
2528 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ | |
2529 p->lru = pParse->iCacheCnt++; | |
2530 sqlite3ExprCachePinRegister(pParse, p->iReg); | |
2531 return p->iReg; | |
2532 } | |
2533 } | |
2534 assert( v!=0 ); | |
2535 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); | |
2536 if( p5 ){ | |
2537 sqlite3VdbeChangeP5(v, p5); | |
2538 }else{ | |
2539 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); | |
2540 } | |
2541 return iReg; | |
2542 } | |
2543 void sqlite3ExprCodeGetColumnToReg( | |
2544 Parse *pParse, /* Parsing and code generating context */ | |
2545 Table *pTab, /* Description of the table we are reading from */ | |
2546 int iColumn, /* Index of the table column */ | |
2547 int iTable, /* The cursor pointing to the table */ | |
2548 int iReg /* Store results here */ | |
2549 ){ | |
2550 int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0); | |
2551 if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg); | |
2552 } | |
2553 | |
2554 | |
2555 /* | |
2556 ** Clear all column cache entries. | |
2557 */ | |
2558 void sqlite3ExprCacheClear(Parse *pParse){ | |
2559 int i; | |
2560 struct yColCache *p; | |
2561 | |
2562 #if SQLITE_DEBUG | |
2563 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ | |
2564 printf("CLEAR\n"); | |
2565 } | |
2566 #endif | |
2567 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ | |
2568 if( p->iReg ){ | |
2569 cacheEntryClear(pParse, p); | |
2570 p->iReg = 0; | |
2571 } | |
2572 } | |
2573 } | |
2574 | |
2575 /* | |
2576 ** Record the fact that an affinity change has occurred on iCount | |
2577 ** registers starting with iStart. | |
2578 */ | |
2579 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ | |
2580 sqlite3ExprCacheRemove(pParse, iStart, iCount); | |
2581 } | |
2582 | |
2583 /* | |
2584 ** Generate code to move content from registers iFrom...iFrom+nReg-1 | |
2585 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. | |
2586 */ | |
2587 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ | |
2588 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); | |
2589 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); | |
2590 sqlite3ExprCacheRemove(pParse, iFrom, nReg); | |
2591 } | |
2592 | |
2593 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) | |
2594 /* | |
2595 ** Return true if any register in the range iFrom..iTo (inclusive) | |
2596 ** is used as part of the column cache. | |
2597 ** | |
2598 ** This routine is used within assert() and testcase() macros only | |
2599 ** and does not appear in a normal build. | |
2600 */ | |
2601 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ | |
2602 int i; | |
2603 struct yColCache *p; | |
2604 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ | |
2605 int r = p->iReg; | |
2606 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ | |
2607 } | |
2608 return 0; | |
2609 } | |
2610 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ | |
2611 | |
2612 /* | |
2613 ** Convert an expression node to a TK_REGISTER | |
2614 */ | |
2615 static void exprToRegister(Expr *p, int iReg){ | |
2616 p->op2 = p->op; | |
2617 p->op = TK_REGISTER; | |
2618 p->iTable = iReg; | |
2619 ExprClearProperty(p, EP_Skip); | |
2620 } | |
2621 | |
2622 /* | |
2623 ** Generate code into the current Vdbe to evaluate the given | |
2624 ** expression. Attempt to store the results in register "target". | |
2625 ** Return the register where results are stored. | |
2626 ** | |
2627 ** With this routine, there is no guarantee that results will | |
2628 ** be stored in target. The result might be stored in some other | |
2629 ** register if it is convenient to do so. The calling function | |
2630 ** must check the return code and move the results to the desired | |
2631 ** register. | |
2632 */ | |
2633 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ | |
2634 Vdbe *v = pParse->pVdbe; /* The VM under construction */ | |
2635 int op; /* The opcode being coded */ | |
2636 int inReg = target; /* Results stored in register inReg */ | |
2637 int regFree1 = 0; /* If non-zero free this temporary register */ | |
2638 int regFree2 = 0; /* If non-zero free this temporary register */ | |
2639 int r1, r2, r3, r4; /* Various register numbers */ | |
2640 sqlite3 *db = pParse->db; /* The database connection */ | |
2641 Expr tempX; /* Temporary expression node */ | |
2642 | |
2643 assert( target>0 && target<=pParse->nMem ); | |
2644 if( v==0 ){ | |
2645 assert( pParse->db->mallocFailed ); | |
2646 return 0; | |
2647 } | |
2648 | |
2649 if( pExpr==0 ){ | |
2650 op = TK_NULL; | |
2651 }else{ | |
2652 op = pExpr->op; | |
2653 } | |
2654 switch( op ){ | |
2655 case TK_AGG_COLUMN: { | |
2656 AggInfo *pAggInfo = pExpr->pAggInfo; | |
2657 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; | |
2658 if( !pAggInfo->directMode ){ | |
2659 assert( pCol->iMem>0 ); | |
2660 inReg = pCol->iMem; | |
2661 break; | |
2662 }else if( pAggInfo->useSortingIdx ){ | |
2663 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, | |
2664 pCol->iSorterColumn, target); | |
2665 break; | |
2666 } | |
2667 /* Otherwise, fall thru into the TK_COLUMN case */ | |
2668 } | |
2669 case TK_COLUMN: { | |
2670 int iTab = pExpr->iTable; | |
2671 if( iTab<0 ){ | |
2672 if( pParse->ckBase>0 ){ | |
2673 /* Generating CHECK constraints or inserting into partial index */ | |
2674 inReg = pExpr->iColumn + pParse->ckBase; | |
2675 break; | |
2676 }else{ | |
2677 /* Coding an expression that is part of an index where column names | |
2678 ** in the index refer to the table to which the index belongs */ | |
2679 iTab = pParse->iSelfTab; | |
2680 } | |
2681 } | |
2682 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, | |
2683 pExpr->iColumn, iTab, target, | |
2684 pExpr->op2); | |
2685 break; | |
2686 } | |
2687 case TK_INTEGER: { | |
2688 codeInteger(pParse, pExpr, 0, target); | |
2689 break; | |
2690 } | |
2691 #ifndef SQLITE_OMIT_FLOATING_POINT | |
2692 case TK_FLOAT: { | |
2693 assert( !ExprHasProperty(pExpr, EP_IntValue) ); | |
2694 codeReal(v, pExpr->u.zToken, 0, target); | |
2695 break; | |
2696 } | |
2697 #endif | |
2698 case TK_STRING: { | |
2699 assert( !ExprHasProperty(pExpr, EP_IntValue) ); | |
2700 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); | |
2701 break; | |
2702 } | |
2703 case TK_NULL: { | |
2704 sqlite3VdbeAddOp2(v, OP_Null, 0, target); | |
2705 break; | |
2706 } | |
2707 #ifndef SQLITE_OMIT_BLOB_LITERAL | |
2708 case TK_BLOB: { | |
2709 int n; | |
2710 const char *z; | |
2711 char *zBlob; | |
2712 assert( !ExprHasProperty(pExpr, EP_IntValue) ); | |
2713 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); | |
2714 assert( pExpr->u.zToken[1]=='\'' ); | |
2715 z = &pExpr->u.zToken[2]; | |
2716 n = sqlite3Strlen30(z) - 1; | |
2717 assert( z[n]=='\'' ); | |
2718 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); | |
2719 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); | |
2720 break; | |
2721 } | |
2722 #endif | |
2723 case TK_VARIABLE: { | |
2724 assert( !ExprHasProperty(pExpr, EP_IntValue) ); | |
2725 assert( pExpr->u.zToken!=0 ); | |
2726 assert( pExpr->u.zToken[0]!=0 ); | |
2727 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); | |
2728 if( pExpr->u.zToken[1]!=0 ){ | |
2729 assert( pExpr->u.zToken[0]=='?' | |
2730 || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); | |
2731 sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC); | |
2732 } | |
2733 break; | |
2734 } | |
2735 case TK_REGISTER: { | |
2736 inReg = pExpr->iTable; | |
2737 break; | |
2738 } | |
2739 #ifndef SQLITE_OMIT_CAST | |
2740 case TK_CAST: { | |
2741 /* Expressions of the form: CAST(pLeft AS token) */ | |
2742 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); | |
2743 if( inReg!=target ){ | |
2744 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); | |
2745 inReg = target; | |
2746 } | |
2747 sqlite3VdbeAddOp2(v, OP_Cast, target, | |
2748 sqlite3AffinityType(pExpr->u.zToken, 0)); | |
2749 testcase( usedAsColumnCache(pParse, inReg, inReg) ); | |
2750 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); | |
2751 break; | |
2752 } | |
2753 #endif /* SQLITE_OMIT_CAST */ | |
2754 case TK_LT: | |
2755 case TK_LE: | |
2756 case TK_GT: | |
2757 case TK_GE: | |
2758 case TK_NE: | |
2759 case TK_EQ: { | |
2760 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); | |
2761 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); | |
2762 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, | |
2763 r1, r2, inReg, SQLITE_STOREP2); | |
2764 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); | |
2765 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); | |
2766 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); | |
2767 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); | |
2768 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); | |
2769 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); | |
2770 testcase( regFree1==0 ); | |
2771 testcase( regFree2==0 ); | |
2772 break; | |
2773 } | |
2774 case TK_IS: | |
2775 case TK_ISNOT: { | |
2776 testcase( op==TK_IS ); | |
2777 testcase( op==TK_ISNOT ); | |
2778 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); | |
2779 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); | |
2780 op = (op==TK_IS) ? TK_EQ : TK_NE; | |
2781 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, | |
2782 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); | |
2783 VdbeCoverageIf(v, op==TK_EQ); | |
2784 VdbeCoverageIf(v, op==TK_NE); | |
2785 testcase( regFree1==0 ); | |
2786 testcase( regFree2==0 ); | |
2787 break; | |
2788 } | |
2789 case TK_AND: | |
2790 case TK_OR: | |
2791 case TK_PLUS: | |
2792 case TK_STAR: | |
2793 case TK_MINUS: | |
2794 case TK_REM: | |
2795 case TK_BITAND: | |
2796 case TK_BITOR: | |
2797 case TK_SLASH: | |
2798 case TK_LSHIFT: | |
2799 case TK_RSHIFT: | |
2800 case TK_CONCAT: { | |
2801 assert( TK_AND==OP_And ); testcase( op==TK_AND ); | |
2802 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); | |
2803 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); | |
2804 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); | |
2805 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); | |
2806 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); | |
2807 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); | |
2808 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); | |
2809 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); | |
2810 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); | |
2811 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); | |
2812 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); | |
2813 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); | |
2814 sqlite3VdbeAddOp3(v, op, r2, r1, target); | |
2815 testcase( regFree1==0 ); | |
2816 testcase( regFree2==0 ); | |
2817 break; | |
2818 } | |
2819 case TK_UMINUS: { | |
2820 Expr *pLeft = pExpr->pLeft; | |
2821 assert( pLeft ); | |
2822 if( pLeft->op==TK_INTEGER ){ | |
2823 codeInteger(pParse, pLeft, 1, target); | |
2824 #ifndef SQLITE_OMIT_FLOATING_POINT | |
2825 }else if( pLeft->op==TK_FLOAT ){ | |
2826 assert( !ExprHasProperty(pExpr, EP_IntValue) ); | |
2827 codeReal(v, pLeft->u.zToken, 1, target); | |
2828 #endif | |
2829 }else{ | |
2830 tempX.op = TK_INTEGER; | |
2831 tempX.flags = EP_IntValue|EP_TokenOnly; | |
2832 tempX.u.iValue = 0; | |
2833 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); | |
2834 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); | |
2835 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); | |
2836 testcase( regFree2==0 ); | |
2837 } | |
2838 inReg = target; | |
2839 break; | |
2840 } | |
2841 case TK_BITNOT: | |
2842 case TK_NOT: { | |
2843 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); | |
2844 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); | |
2845 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); | |
2846 testcase( regFree1==0 ); | |
2847 inReg = target; | |
2848 sqlite3VdbeAddOp2(v, op, r1, inReg); | |
2849 break; | |
2850 } | |
2851 case TK_ISNULL: | |
2852 case TK_NOTNULL: { | |
2853 int addr; | |
2854 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); | |
2855 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); | |
2856 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); | |
2857 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); | |
2858 testcase( regFree1==0 ); | |
2859 addr = sqlite3VdbeAddOp1(v, op, r1); | |
2860 VdbeCoverageIf(v, op==TK_ISNULL); | |
2861 VdbeCoverageIf(v, op==TK_NOTNULL); | |
2862 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); | |
2863 sqlite3VdbeJumpHere(v, addr); | |
2864 break; | |
2865 } | |
2866 case TK_AGG_FUNCTION: { | |
2867 AggInfo *pInfo = pExpr->pAggInfo; | |
2868 if( pInfo==0 ){ | |
2869 assert( !ExprHasProperty(pExpr, EP_IntValue) ); | |
2870 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); | |
2871 }else{ | |
2872 inReg = pInfo->aFunc[pExpr->iAgg].iMem; | |
2873 } | |
2874 break; | |
2875 } | |
2876 case TK_FUNCTION: { | |
2877 ExprList *pFarg; /* List of function arguments */ | |
2878 int nFarg; /* Number of function arguments */ | |
2879 FuncDef *pDef; /* The function definition object */ | |
2880 int nId; /* Length of the function name in bytes */ | |
2881 const char *zId; /* The function name */ | |
2882 u32 constMask = 0; /* Mask of function arguments that are constant */ | |
2883 int i; /* Loop counter */ | |
2884 u8 enc = ENC(db); /* The text encoding used by this database */ | |
2885 CollSeq *pColl = 0; /* A collating sequence */ | |
2886 | |
2887 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); | |
2888 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ | |
2889 pFarg = 0; | |
2890 }else{ | |
2891 pFarg = pExpr->x.pList; | |
2892 } | |
2893 nFarg = pFarg ? pFarg->nExpr : 0; | |
2894 assert( !ExprHasProperty(pExpr, EP_IntValue) ); | |
2895 zId = pExpr->u.zToken; | |
2896 nId = sqlite3Strlen30(zId); | |
2897 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); | |
2898 if( pDef==0 || pDef->xFunc==0 ){ | |
2899 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); | |
2900 break; | |
2901 } | |
2902 | |
2903 /* Attempt a direct implementation of the built-in COALESCE() and | |
2904 ** IFNULL() functions. This avoids unnecessary evaluation of | |
2905 ** arguments past the first non-NULL argument. | |
2906 */ | |
2907 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ | |
2908 int endCoalesce = sqlite3VdbeMakeLabel(v); | |
2909 assert( nFarg>=2 ); | |
2910 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); | |
2911 for(i=1; i<nFarg; i++){ | |
2912 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); | |
2913 VdbeCoverage(v); | |
2914 sqlite3ExprCacheRemove(pParse, target, 1); | |
2915 sqlite3ExprCachePush(pParse); | |
2916 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); | |
2917 sqlite3ExprCachePop(pParse); | |
2918 } | |
2919 sqlite3VdbeResolveLabel(v, endCoalesce); | |
2920 break; | |
2921 } | |
2922 | |
2923 /* The UNLIKELY() function is a no-op. The result is the value | |
2924 ** of the first argument. | |
2925 */ | |
2926 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ | |
2927 assert( nFarg>=1 ); | |
2928 inReg = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); | |
2929 break; | |
2930 } | |
2931 | |
2932 for(i=0; i<nFarg; i++){ | |
2933 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ | |
2934 testcase( i==31 ); | |
2935 constMask |= MASKBIT32(i); | |
2936 } | |
2937 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ | |
2938 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); | |
2939 } | |
2940 } | |
2941 if( pFarg ){ | |
2942 if( constMask ){ | |
2943 r1 = pParse->nMem+1; | |
2944 pParse->nMem += nFarg; | |
2945 }else{ | |
2946 r1 = sqlite3GetTempRange(pParse, nFarg); | |
2947 } | |
2948 | |
2949 /* For length() and typeof() functions with a column argument, | |
2950 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG | |
2951 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data | |
2952 ** loading. | |
2953 */ | |
2954 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ | |
2955 u8 exprOp; | |
2956 assert( nFarg==1 ); | |
2957 assert( pFarg->a[0].pExpr!=0 ); | |
2958 exprOp = pFarg->a[0].pExpr->op; | |
2959 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ | |
2960 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); | |
2961 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); | |
2962 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); | |
2963 pFarg->a[0].pExpr->op2 = | |
2964 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); | |
2965 } | |
2966 } | |
2967 | |
2968 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ | |
2969 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, | |
2970 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); | |
2971 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */ | |
2972 }else{ | |
2973 r1 = 0; | |
2974 } | |
2975 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
2976 /* Possibly overload the function if the first argument is | |
2977 ** a virtual table column. | |
2978 ** | |
2979 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the | |
2980 ** second argument, not the first, as the argument to test to | |
2981 ** see if it is a column in a virtual table. This is done because | |
2982 ** the left operand of infix functions (the operand we want to | |
2983 ** control overloading) ends up as the second argument to the | |
2984 ** function. The expression "A glob B" is equivalent to | |
2985 ** "glob(B,A). We want to use the A in "A glob B" to test | |
2986 ** for function overloading. But we use the B term in "glob(B,A)". | |
2987 */ | |
2988 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ | |
2989 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); | |
2990 }else if( nFarg>0 ){ | |
2991 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); | |
2992 } | |
2993 #endif | |
2994 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ | |
2995 if( !pColl ) pColl = db->pDfltColl; | |
2996 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); | |
2997 } | |
2998 sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target, | |
2999 (char*)pDef, P4_FUNCDEF); | |
3000 sqlite3VdbeChangeP5(v, (u8)nFarg); | |
3001 if( nFarg && constMask==0 ){ | |
3002 sqlite3ReleaseTempRange(pParse, r1, nFarg); | |
3003 } | |
3004 break; | |
3005 } | |
3006 #ifndef SQLITE_OMIT_SUBQUERY | |
3007 case TK_EXISTS: | |
3008 case TK_SELECT: { | |
3009 testcase( op==TK_EXISTS ); | |
3010 testcase( op==TK_SELECT ); | |
3011 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); | |
3012 break; | |
3013 } | |
3014 case TK_IN: { | |
3015 int destIfFalse = sqlite3VdbeMakeLabel(v); | |
3016 int destIfNull = sqlite3VdbeMakeLabel(v); | |
3017 sqlite3VdbeAddOp2(v, OP_Null, 0, target); | |
3018 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); | |
3019 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); | |
3020 sqlite3VdbeResolveLabel(v, destIfFalse); | |
3021 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); | |
3022 sqlite3VdbeResolveLabel(v, destIfNull); | |
3023 break; | |
3024 } | |
3025 #endif /* SQLITE_OMIT_SUBQUERY */ | |
3026 | |
3027 | |
3028 /* | |
3029 ** x BETWEEN y AND z | |
3030 ** | |
3031 ** This is equivalent to | |
3032 ** | |
3033 ** x>=y AND x<=z | |
3034 ** | |
3035 ** X is stored in pExpr->pLeft. | |
3036 ** Y is stored in pExpr->pList->a[0].pExpr. | |
3037 ** Z is stored in pExpr->pList->a[1].pExpr. | |
3038 */ | |
3039 case TK_BETWEEN: { | |
3040 Expr *pLeft = pExpr->pLeft; | |
3041 struct ExprList_item *pLItem = pExpr->x.pList->a; | |
3042 Expr *pRight = pLItem->pExpr; | |
3043 | |
3044 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); | |
3045 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); | |
3046 testcase( regFree1==0 ); | |
3047 testcase( regFree2==0 ); | |
3048 r3 = sqlite3GetTempReg(pParse); | |
3049 r4 = sqlite3GetTempReg(pParse); | |
3050 codeCompare(pParse, pLeft, pRight, OP_Ge, | |
3051 r1, r2, r3, SQLITE_STOREP2); VdbeCoverage(v); | |
3052 pLItem++; | |
3053 pRight = pLItem->pExpr; | |
3054 sqlite3ReleaseTempReg(pParse, regFree2); | |
3055 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); | |
3056 testcase( regFree2==0 ); | |
3057 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); | |
3058 VdbeCoverage(v); | |
3059 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); | |
3060 sqlite3ReleaseTempReg(pParse, r3); | |
3061 sqlite3ReleaseTempReg(pParse, r4); | |
3062 break; | |
3063 } | |
3064 case TK_COLLATE: | |
3065 case TK_UPLUS: { | |
3066 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); | |
3067 break; | |
3068 } | |
3069 | |
3070 case TK_TRIGGER: { | |
3071 /* If the opcode is TK_TRIGGER, then the expression is a reference | |
3072 ** to a column in the new.* or old.* pseudo-tables available to | |
3073 ** trigger programs. In this case Expr.iTable is set to 1 for the | |
3074 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn | |
3075 ** is set to the column of the pseudo-table to read, or to -1 to | |
3076 ** read the rowid field. | |
3077 ** | |
3078 ** The expression is implemented using an OP_Param opcode. The p1 | |
3079 ** parameter is set to 0 for an old.rowid reference, or to (i+1) | |
3080 ** to reference another column of the old.* pseudo-table, where | |
3081 ** i is the index of the column. For a new.rowid reference, p1 is | |
3082 ** set to (n+1), where n is the number of columns in each pseudo-table. | |
3083 ** For a reference to any other column in the new.* pseudo-table, p1 | |
3084 ** is set to (n+2+i), where n and i are as defined previously. For | |
3085 ** example, if the table on which triggers are being fired is | |
3086 ** declared as: | |
3087 ** | |
3088 ** CREATE TABLE t1(a, b); | |
3089 ** | |
3090 ** Then p1 is interpreted as follows: | |
3091 ** | |
3092 ** p1==0 -> old.rowid p1==3 -> new.rowid | |
3093 ** p1==1 -> old.a p1==4 -> new.a | |
3094 ** p1==2 -> old.b p1==5 -> new.b | |
3095 */ | |
3096 Table *pTab = pExpr->pTab; | |
3097 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; | |
3098 | |
3099 assert( pExpr->iTable==0 || pExpr->iTable==1 ); | |
3100 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); | |
3101 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); | |
3102 assert( p1>=0 && p1<(pTab->nCol*2+2) ); | |
3103 | |
3104 sqlite3VdbeAddOp2(v, OP_Param, p1, target); | |
3105 VdbeComment((v, "%s.%s -> $%d", | |
3106 (pExpr->iTable ? "new" : "old"), | |
3107 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), | |
3108 target | |
3109 )); | |
3110 | |
3111 #ifndef SQLITE_OMIT_FLOATING_POINT | |
3112 /* If the column has REAL affinity, it may currently be stored as an | |
3113 ** integer. Use OP_RealAffinity to make sure it is really real. | |
3114 ** | |
3115 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to | |
3116 ** floating point when extracting it from the record. */ | |
3117 if( pExpr->iColumn>=0 | |
3118 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL | |
3119 ){ | |
3120 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); | |
3121 } | |
3122 #endif | |
3123 break; | |
3124 } | |
3125 | |
3126 | |
3127 /* | |
3128 ** Form A: | |
3129 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END | |
3130 ** | |
3131 ** Form B: | |
3132 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END | |
3133 ** | |
3134 ** Form A is can be transformed into the equivalent form B as follows: | |
3135 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... | |
3136 ** WHEN x=eN THEN rN ELSE y END | |
3137 ** | |
3138 ** X (if it exists) is in pExpr->pLeft. | |
3139 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is | |
3140 ** odd. The Y is also optional. If the number of elements in x.pList | |
3141 ** is even, then Y is omitted and the "otherwise" result is NULL. | |
3142 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. | |
3143 ** | |
3144 ** The result of the expression is the Ri for the first matching Ei, | |
3145 ** or if there is no matching Ei, the ELSE term Y, or if there is | |
3146 ** no ELSE term, NULL. | |
3147 */ | |
3148 default: assert( op==TK_CASE ); { | |
3149 int endLabel; /* GOTO label for end of CASE stmt */ | |
3150 int nextCase; /* GOTO label for next WHEN clause */ | |
3151 int nExpr; /* 2x number of WHEN terms */ | |
3152 int i; /* Loop counter */ | |
3153 ExprList *pEList; /* List of WHEN terms */ | |
3154 struct ExprList_item *aListelem; /* Array of WHEN terms */ | |
3155 Expr opCompare; /* The X==Ei expression */ | |
3156 Expr *pX; /* The X expression */ | |
3157 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ | |
3158 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) | |
3159 | |
3160 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); | |
3161 assert(pExpr->x.pList->nExpr > 0); | |
3162 pEList = pExpr->x.pList; | |
3163 aListelem = pEList->a; | |
3164 nExpr = pEList->nExpr; | |
3165 endLabel = sqlite3VdbeMakeLabel(v); | |
3166 if( (pX = pExpr->pLeft)!=0 ){ | |
3167 tempX = *pX; | |
3168 testcase( pX->op==TK_COLUMN ); | |
3169 exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, ®Free1)); | |
3170 testcase( regFree1==0 ); | |
3171 opCompare.op = TK_EQ; | |
3172 opCompare.pLeft = &tempX; | |
3173 pTest = &opCompare; | |
3174 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: | |
3175 ** The value in regFree1 might get SCopy-ed into the file result. | |
3176 ** So make sure that the regFree1 register is not reused for other | |
3177 ** purposes and possibly overwritten. */ | |
3178 regFree1 = 0; | |
3179 } | |
3180 for(i=0; i<nExpr-1; i=i+2){ | |
3181 sqlite3ExprCachePush(pParse); | |
3182 if( pX ){ | |
3183 assert( pTest!=0 ); | |
3184 opCompare.pRight = aListelem[i].pExpr; | |
3185 }else{ | |
3186 pTest = aListelem[i].pExpr; | |
3187 } | |
3188 nextCase = sqlite3VdbeMakeLabel(v); | |
3189 testcase( pTest->op==TK_COLUMN ); | |
3190 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); | |
3191 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); | |
3192 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); | |
3193 sqlite3VdbeGoto(v, endLabel); | |
3194 sqlite3ExprCachePop(pParse); | |
3195 sqlite3VdbeResolveLabel(v, nextCase); | |
3196 } | |
3197 if( (nExpr&1)!=0 ){ | |
3198 sqlite3ExprCachePush(pParse); | |
3199 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); | |
3200 sqlite3ExprCachePop(pParse); | |
3201 }else{ | |
3202 sqlite3VdbeAddOp2(v, OP_Null, 0, target); | |
3203 } | |
3204 assert( db->mallocFailed || pParse->nErr>0 | |
3205 || pParse->iCacheLevel==iCacheLevel ); | |
3206 sqlite3VdbeResolveLabel(v, endLabel); | |
3207 break; | |
3208 } | |
3209 #ifndef SQLITE_OMIT_TRIGGER | |
3210 case TK_RAISE: { | |
3211 assert( pExpr->affinity==OE_Rollback | |
3212 || pExpr->affinity==OE_Abort | |
3213 || pExpr->affinity==OE_Fail | |
3214 || pExpr->affinity==OE_Ignore | |
3215 ); | |
3216 if( !pParse->pTriggerTab ){ | |
3217 sqlite3ErrorMsg(pParse, | |
3218 "RAISE() may only be used within a trigger-program"); | |
3219 return 0; | |
3220 } | |
3221 if( pExpr->affinity==OE_Abort ){ | |
3222 sqlite3MayAbort(pParse); | |
3223 } | |
3224 assert( !ExprHasProperty(pExpr, EP_IntValue) ); | |
3225 if( pExpr->affinity==OE_Ignore ){ | |
3226 sqlite3VdbeAddOp4( | |
3227 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); | |
3228 VdbeCoverage(v); | |
3229 }else{ | |
3230 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, | |
3231 pExpr->affinity, pExpr->u.zToken, 0, 0); | |
3232 } | |
3233 | |
3234 break; | |
3235 } | |
3236 #endif | |
3237 } | |
3238 sqlite3ReleaseTempReg(pParse, regFree1); | |
3239 sqlite3ReleaseTempReg(pParse, regFree2); | |
3240 return inReg; | |
3241 } | |
3242 | |
3243 /* | |
3244 ** Factor out the code of the given expression to initialization time. | |
3245 */ | |
3246 void sqlite3ExprCodeAtInit( | |
3247 Parse *pParse, /* Parsing context */ | |
3248 Expr *pExpr, /* The expression to code when the VDBE initializes */ | |
3249 int regDest, /* Store the value in this register */ | |
3250 u8 reusable /* True if this expression is reusable */ | |
3251 ){ | |
3252 ExprList *p; | |
3253 assert( ConstFactorOk(pParse) ); | |
3254 p = pParse->pConstExpr; | |
3255 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); | |
3256 p = sqlite3ExprListAppend(pParse, p, pExpr); | |
3257 if( p ){ | |
3258 struct ExprList_item *pItem = &p->a[p->nExpr-1]; | |
3259 pItem->u.iConstExprReg = regDest; | |
3260 pItem->reusable = reusable; | |
3261 } | |
3262 pParse->pConstExpr = p; | |
3263 } | |
3264 | |
3265 /* | |
3266 ** Generate code to evaluate an expression and store the results | |
3267 ** into a register. Return the register number where the results | |
3268 ** are stored. | |
3269 ** | |
3270 ** If the register is a temporary register that can be deallocated, | |
3271 ** then write its number into *pReg. If the result register is not | |
3272 ** a temporary, then set *pReg to zero. | |
3273 ** | |
3274 ** If pExpr is a constant, then this routine might generate this | |
3275 ** code to fill the register in the initialization section of the | |
3276 ** VDBE program, in order to factor it out of the evaluation loop. | |
3277 */ | |
3278 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ | |
3279 int r2; | |
3280 pExpr = sqlite3ExprSkipCollate(pExpr); | |
3281 if( ConstFactorOk(pParse) | |
3282 && pExpr->op!=TK_REGISTER | |
3283 && sqlite3ExprIsConstantNotJoin(pExpr) | |
3284 ){ | |
3285 ExprList *p = pParse->pConstExpr; | |
3286 int i; | |
3287 *pReg = 0; | |
3288 if( p ){ | |
3289 struct ExprList_item *pItem; | |
3290 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ | |
3291 if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){ | |
3292 return pItem->u.iConstExprReg; | |
3293 } | |
3294 } | |
3295 } | |
3296 r2 = ++pParse->nMem; | |
3297 sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1); | |
3298 }else{ | |
3299 int r1 = sqlite3GetTempReg(pParse); | |
3300 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); | |
3301 if( r2==r1 ){ | |
3302 *pReg = r1; | |
3303 }else{ | |
3304 sqlite3ReleaseTempReg(pParse, r1); | |
3305 *pReg = 0; | |
3306 } | |
3307 } | |
3308 return r2; | |
3309 } | |
3310 | |
3311 /* | |
3312 ** Generate code that will evaluate expression pExpr and store the | |
3313 ** results in register target. The results are guaranteed to appear | |
3314 ** in register target. | |
3315 */ | |
3316 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ | |
3317 int inReg; | |
3318 | |
3319 assert( target>0 && target<=pParse->nMem ); | |
3320 if( pExpr && pExpr->op==TK_REGISTER ){ | |
3321 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); | |
3322 }else{ | |
3323 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); | |
3324 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); | |
3325 if( inReg!=target && pParse->pVdbe ){ | |
3326 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); | |
3327 } | |
3328 } | |
3329 } | |
3330 | |
3331 /* | |
3332 ** Make a transient copy of expression pExpr and then code it using | |
3333 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() | |
3334 ** except that the input expression is guaranteed to be unchanged. | |
3335 */ | |
3336 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ | |
3337 sqlite3 *db = pParse->db; | |
3338 pExpr = sqlite3ExprDup(db, pExpr, 0); | |
3339 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); | |
3340 sqlite3ExprDelete(db, pExpr); | |
3341 } | |
3342 | |
3343 /* | |
3344 ** Generate code that will evaluate expression pExpr and store the | |
3345 ** results in register target. The results are guaranteed to appear | |
3346 ** in register target. If the expression is constant, then this routine | |
3347 ** might choose to code the expression at initialization time. | |
3348 */ | |
3349 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ | |
3350 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ | |
3351 sqlite3ExprCodeAtInit(pParse, pExpr, target, 0); | |
3352 }else{ | |
3353 sqlite3ExprCode(pParse, pExpr, target); | |
3354 } | |
3355 } | |
3356 | |
3357 /* | |
3358 ** Generate code that evaluates the given expression and puts the result | |
3359 ** in register target. | |
3360 ** | |
3361 ** Also make a copy of the expression results into another "cache" register | |
3362 ** and modify the expression so that the next time it is evaluated, | |
3363 ** the result is a copy of the cache register. | |
3364 ** | |
3365 ** This routine is used for expressions that are used multiple | |
3366 ** times. They are evaluated once and the results of the expression | |
3367 ** are reused. | |
3368 */ | |
3369 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ | |
3370 Vdbe *v = pParse->pVdbe; | |
3371 int iMem; | |
3372 | |
3373 assert( target>0 ); | |
3374 assert( pExpr->op!=TK_REGISTER ); | |
3375 sqlite3ExprCode(pParse, pExpr, target); | |
3376 iMem = ++pParse->nMem; | |
3377 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); | |
3378 exprToRegister(pExpr, iMem); | |
3379 } | |
3380 | |
3381 /* | |
3382 ** Generate code that pushes the value of every element of the given | |
3383 ** expression list into a sequence of registers beginning at target. | |
3384 ** | |
3385 ** Return the number of elements evaluated. | |
3386 ** | |
3387 ** The SQLITE_ECEL_DUP flag prevents the arguments from being | |
3388 ** filled using OP_SCopy. OP_Copy must be used instead. | |
3389 ** | |
3390 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be | |
3391 ** factored out into initialization code. | |
3392 ** | |
3393 ** The SQLITE_ECEL_REF flag means that expressions in the list with | |
3394 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored | |
3395 ** in registers at srcReg, and so the value can be copied from there. | |
3396 */ | |
3397 int sqlite3ExprCodeExprList( | |
3398 Parse *pParse, /* Parsing context */ | |
3399 ExprList *pList, /* The expression list to be coded */ | |
3400 int target, /* Where to write results */ | |
3401 int srcReg, /* Source registers if SQLITE_ECEL_REF */ | |
3402 u8 flags /* SQLITE_ECEL_* flags */ | |
3403 ){ | |
3404 struct ExprList_item *pItem; | |
3405 int i, j, n; | |
3406 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; | |
3407 Vdbe *v = pParse->pVdbe; | |
3408 assert( pList!=0 ); | |
3409 assert( target>0 ); | |
3410 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ | |
3411 n = pList->nExpr; | |
3412 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; | |
3413 for(pItem=pList->a, i=0; i<n; i++, pItem++){ | |
3414 Expr *pExpr = pItem->pExpr; | |
3415 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pList->a[i].u.x.iOrderByCol)>0 ){ | |
3416 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); | |
3417 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ | |
3418 sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0); | |
3419 }else{ | |
3420 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); | |
3421 if( inReg!=target+i ){ | |
3422 VdbeOp *pOp; | |
3423 if( copyOp==OP_Copy | |
3424 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy | |
3425 && pOp->p1+pOp->p3+1==inReg | |
3426 && pOp->p2+pOp->p3+1==target+i | |
3427 ){ | |
3428 pOp->p3++; | |
3429 }else{ | |
3430 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); | |
3431 } | |
3432 } | |
3433 } | |
3434 } | |
3435 return n; | |
3436 } | |
3437 | |
3438 /* | |
3439 ** Generate code for a BETWEEN operator. | |
3440 ** | |
3441 ** x BETWEEN y AND z | |
3442 ** | |
3443 ** The above is equivalent to | |
3444 ** | |
3445 ** x>=y AND x<=z | |
3446 ** | |
3447 ** Code it as such, taking care to do the common subexpression | |
3448 ** elimination of x. | |
3449 */ | |
3450 static void exprCodeBetween( | |
3451 Parse *pParse, /* Parsing and code generating context */ | |
3452 Expr *pExpr, /* The BETWEEN expression */ | |
3453 int dest, /* Jump here if the jump is taken */ | |
3454 int jumpIfTrue, /* Take the jump if the BETWEEN is true */ | |
3455 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ | |
3456 ){ | |
3457 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ | |
3458 Expr compLeft; /* The x>=y term */ | |
3459 Expr compRight; /* The x<=z term */ | |
3460 Expr exprX; /* The x subexpression */ | |
3461 int regFree1 = 0; /* Temporary use register */ | |
3462 | |
3463 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); | |
3464 exprX = *pExpr->pLeft; | |
3465 exprAnd.op = TK_AND; | |
3466 exprAnd.pLeft = &compLeft; | |
3467 exprAnd.pRight = &compRight; | |
3468 compLeft.op = TK_GE; | |
3469 compLeft.pLeft = &exprX; | |
3470 compLeft.pRight = pExpr->x.pList->a[0].pExpr; | |
3471 compRight.op = TK_LE; | |
3472 compRight.pLeft = &exprX; | |
3473 compRight.pRight = pExpr->x.pList->a[1].pExpr; | |
3474 exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, ®Free1)); | |
3475 if( jumpIfTrue ){ | |
3476 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); | |
3477 }else{ | |
3478 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); | |
3479 } | |
3480 sqlite3ReleaseTempReg(pParse, regFree1); | |
3481 | |
3482 /* Ensure adequate test coverage */ | |
3483 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); | |
3484 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); | |
3485 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); | |
3486 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); | |
3487 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); | |
3488 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); | |
3489 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); | |
3490 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); | |
3491 } | |
3492 | |
3493 /* | |
3494 ** Generate code for a boolean expression such that a jump is made | |
3495 ** to the label "dest" if the expression is true but execution | |
3496 ** continues straight thru if the expression is false. | |
3497 ** | |
3498 ** If the expression evaluates to NULL (neither true nor false), then | |
3499 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. | |
3500 ** | |
3501 ** This code depends on the fact that certain token values (ex: TK_EQ) | |
3502 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding | |
3503 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in | |
3504 ** the make process cause these values to align. Assert()s in the code | |
3505 ** below verify that the numbers are aligned correctly. | |
3506 */ | |
3507 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ | |
3508 Vdbe *v = pParse->pVdbe; | |
3509 int op = 0; | |
3510 int regFree1 = 0; | |
3511 int regFree2 = 0; | |
3512 int r1, r2; | |
3513 | |
3514 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); | |
3515 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ | |
3516 if( NEVER(pExpr==0) ) return; /* No way this can happen */ | |
3517 op = pExpr->op; | |
3518 switch( op ){ | |
3519 case TK_AND: { | |
3520 int d2 = sqlite3VdbeMakeLabel(v); | |
3521 testcase( jumpIfNull==0 ); | |
3522 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); | |
3523 sqlite3ExprCachePush(pParse); | |
3524 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); | |
3525 sqlite3VdbeResolveLabel(v, d2); | |
3526 sqlite3ExprCachePop(pParse); | |
3527 break; | |
3528 } | |
3529 case TK_OR: { | |
3530 testcase( jumpIfNull==0 ); | |
3531 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); | |
3532 sqlite3ExprCachePush(pParse); | |
3533 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); | |
3534 sqlite3ExprCachePop(pParse); | |
3535 break; | |
3536 } | |
3537 case TK_NOT: { | |
3538 testcase( jumpIfNull==0 ); | |
3539 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); | |
3540 break; | |
3541 } | |
3542 case TK_LT: | |
3543 case TK_LE: | |
3544 case TK_GT: | |
3545 case TK_GE: | |
3546 case TK_NE: | |
3547 case TK_EQ: { | |
3548 testcase( jumpIfNull==0 ); | |
3549 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); | |
3550 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); | |
3551 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, | |
3552 r1, r2, dest, jumpIfNull); | |
3553 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); | |
3554 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); | |
3555 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); | |
3556 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); | |
3557 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); | |
3558 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); | |
3559 testcase( regFree1==0 ); | |
3560 testcase( regFree2==0 ); | |
3561 break; | |
3562 } | |
3563 case TK_IS: | |
3564 case TK_ISNOT: { | |
3565 testcase( op==TK_IS ); | |
3566 testcase( op==TK_ISNOT ); | |
3567 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); | |
3568 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); | |
3569 op = (op==TK_IS) ? TK_EQ : TK_NE; | |
3570 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, | |
3571 r1, r2, dest, SQLITE_NULLEQ); | |
3572 VdbeCoverageIf(v, op==TK_EQ); | |
3573 VdbeCoverageIf(v, op==TK_NE); | |
3574 testcase( regFree1==0 ); | |
3575 testcase( regFree2==0 ); | |
3576 break; | |
3577 } | |
3578 case TK_ISNULL: | |
3579 case TK_NOTNULL: { | |
3580 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); | |
3581 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); | |
3582 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); | |
3583 sqlite3VdbeAddOp2(v, op, r1, dest); | |
3584 VdbeCoverageIf(v, op==TK_ISNULL); | |
3585 VdbeCoverageIf(v, op==TK_NOTNULL); | |
3586 testcase( regFree1==0 ); | |
3587 break; | |
3588 } | |
3589 case TK_BETWEEN: { | |
3590 testcase( jumpIfNull==0 ); | |
3591 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); | |
3592 break; | |
3593 } | |
3594 #ifndef SQLITE_OMIT_SUBQUERY | |
3595 case TK_IN: { | |
3596 int destIfFalse = sqlite3VdbeMakeLabel(v); | |
3597 int destIfNull = jumpIfNull ? dest : destIfFalse; | |
3598 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); | |
3599 sqlite3VdbeGoto(v, dest); | |
3600 sqlite3VdbeResolveLabel(v, destIfFalse); | |
3601 break; | |
3602 } | |
3603 #endif | |
3604 default: { | |
3605 if( exprAlwaysTrue(pExpr) ){ | |
3606 sqlite3VdbeGoto(v, dest); | |
3607 }else if( exprAlwaysFalse(pExpr) ){ | |
3608 /* No-op */ | |
3609 }else{ | |
3610 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); | |
3611 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); | |
3612 VdbeCoverage(v); | |
3613 testcase( regFree1==0 ); | |
3614 testcase( jumpIfNull==0 ); | |
3615 } | |
3616 break; | |
3617 } | |
3618 } | |
3619 sqlite3ReleaseTempReg(pParse, regFree1); | |
3620 sqlite3ReleaseTempReg(pParse, regFree2); | |
3621 } | |
3622 | |
3623 /* | |
3624 ** Generate code for a boolean expression such that a jump is made | |
3625 ** to the label "dest" if the expression is false but execution | |
3626 ** continues straight thru if the expression is true. | |
3627 ** | |
3628 ** If the expression evaluates to NULL (neither true nor false) then | |
3629 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull | |
3630 ** is 0. | |
3631 */ | |
3632 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ | |
3633 Vdbe *v = pParse->pVdbe; | |
3634 int op = 0; | |
3635 int regFree1 = 0; | |
3636 int regFree2 = 0; | |
3637 int r1, r2; | |
3638 | |
3639 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); | |
3640 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ | |
3641 if( pExpr==0 ) return; | |
3642 | |
3643 /* The value of pExpr->op and op are related as follows: | |
3644 ** | |
3645 ** pExpr->op op | |
3646 ** --------- ---------- | |
3647 ** TK_ISNULL OP_NotNull | |
3648 ** TK_NOTNULL OP_IsNull | |
3649 ** TK_NE OP_Eq | |
3650 ** TK_EQ OP_Ne | |
3651 ** TK_GT OP_Le | |
3652 ** TK_LE OP_Gt | |
3653 ** TK_GE OP_Lt | |
3654 ** TK_LT OP_Ge | |
3655 ** | |
3656 ** For other values of pExpr->op, op is undefined and unused. | |
3657 ** The value of TK_ and OP_ constants are arranged such that we | |
3658 ** can compute the mapping above using the following expression. | |
3659 ** Assert()s verify that the computation is correct. | |
3660 */ | |
3661 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); | |
3662 | |
3663 /* Verify correct alignment of TK_ and OP_ constants | |
3664 */ | |
3665 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); | |
3666 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); | |
3667 assert( pExpr->op!=TK_NE || op==OP_Eq ); | |
3668 assert( pExpr->op!=TK_EQ || op==OP_Ne ); | |
3669 assert( pExpr->op!=TK_LT || op==OP_Ge ); | |
3670 assert( pExpr->op!=TK_LE || op==OP_Gt ); | |
3671 assert( pExpr->op!=TK_GT || op==OP_Le ); | |
3672 assert( pExpr->op!=TK_GE || op==OP_Lt ); | |
3673 | |
3674 switch( pExpr->op ){ | |
3675 case TK_AND: { | |
3676 testcase( jumpIfNull==0 ); | |
3677 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); | |
3678 sqlite3ExprCachePush(pParse); | |
3679 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); | |
3680 sqlite3ExprCachePop(pParse); | |
3681 break; | |
3682 } | |
3683 case TK_OR: { | |
3684 int d2 = sqlite3VdbeMakeLabel(v); | |
3685 testcase( jumpIfNull==0 ); | |
3686 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); | |
3687 sqlite3ExprCachePush(pParse); | |
3688 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); | |
3689 sqlite3VdbeResolveLabel(v, d2); | |
3690 sqlite3ExprCachePop(pParse); | |
3691 break; | |
3692 } | |
3693 case TK_NOT: { | |
3694 testcase( jumpIfNull==0 ); | |
3695 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); | |
3696 break; | |
3697 } | |
3698 case TK_LT: | |
3699 case TK_LE: | |
3700 case TK_GT: | |
3701 case TK_GE: | |
3702 case TK_NE: | |
3703 case TK_EQ: { | |
3704 testcase( jumpIfNull==0 ); | |
3705 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); | |
3706 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); | |
3707 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, | |
3708 r1, r2, dest, jumpIfNull); | |
3709 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); | |
3710 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); | |
3711 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); | |
3712 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); | |
3713 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); | |
3714 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); | |
3715 testcase( regFree1==0 ); | |
3716 testcase( regFree2==0 ); | |
3717 break; | |
3718 } | |
3719 case TK_IS: | |
3720 case TK_ISNOT: { | |
3721 testcase( pExpr->op==TK_IS ); | |
3722 testcase( pExpr->op==TK_ISNOT ); | |
3723 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); | |
3724 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); | |
3725 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; | |
3726 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, | |
3727 r1, r2, dest, SQLITE_NULLEQ); | |
3728 VdbeCoverageIf(v, op==TK_EQ); | |
3729 VdbeCoverageIf(v, op==TK_NE); | |
3730 testcase( regFree1==0 ); | |
3731 testcase( regFree2==0 ); | |
3732 break; | |
3733 } | |
3734 case TK_ISNULL: | |
3735 case TK_NOTNULL: { | |
3736 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); | |
3737 sqlite3VdbeAddOp2(v, op, r1, dest); | |
3738 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); | |
3739 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); | |
3740 testcase( regFree1==0 ); | |
3741 break; | |
3742 } | |
3743 case TK_BETWEEN: { | |
3744 testcase( jumpIfNull==0 ); | |
3745 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); | |
3746 break; | |
3747 } | |
3748 #ifndef SQLITE_OMIT_SUBQUERY | |
3749 case TK_IN: { | |
3750 if( jumpIfNull ){ | |
3751 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); | |
3752 }else{ | |
3753 int destIfNull = sqlite3VdbeMakeLabel(v); | |
3754 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); | |
3755 sqlite3VdbeResolveLabel(v, destIfNull); | |
3756 } | |
3757 break; | |
3758 } | |
3759 #endif | |
3760 default: { | |
3761 if( exprAlwaysFalse(pExpr) ){ | |
3762 sqlite3VdbeGoto(v, dest); | |
3763 }else if( exprAlwaysTrue(pExpr) ){ | |
3764 /* no-op */ | |
3765 }else{ | |
3766 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); | |
3767 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); | |
3768 VdbeCoverage(v); | |
3769 testcase( regFree1==0 ); | |
3770 testcase( jumpIfNull==0 ); | |
3771 } | |
3772 break; | |
3773 } | |
3774 } | |
3775 sqlite3ReleaseTempReg(pParse, regFree1); | |
3776 sqlite3ReleaseTempReg(pParse, regFree2); | |
3777 } | |
3778 | |
3779 /* | |
3780 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before | |
3781 ** code generation, and that copy is deleted after code generation. This | |
3782 ** ensures that the original pExpr is unchanged. | |
3783 */ | |
3784 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ | |
3785 sqlite3 *db = pParse->db; | |
3786 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); | |
3787 if( db->mallocFailed==0 ){ | |
3788 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); | |
3789 } | |
3790 sqlite3ExprDelete(db, pCopy); | |
3791 } | |
3792 | |
3793 | |
3794 /* | |
3795 ** Do a deep comparison of two expression trees. Return 0 if the two | |
3796 ** expressions are completely identical. Return 1 if they differ only | |
3797 ** by a COLLATE operator at the top level. Return 2 if there are differences | |
3798 ** other than the top-level COLLATE operator. | |
3799 ** | |
3800 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed | |
3801 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. | |
3802 ** | |
3803 ** The pA side might be using TK_REGISTER. If that is the case and pB is | |
3804 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. | |
3805 ** | |
3806 ** Sometimes this routine will return 2 even if the two expressions | |
3807 ** really are equivalent. If we cannot prove that the expressions are | |
3808 ** identical, we return 2 just to be safe. So if this routine | |
3809 ** returns 2, then you do not really know for certain if the two | |
3810 ** expressions are the same. But if you get a 0 or 1 return, then you | |
3811 ** can be sure the expressions are the same. In the places where | |
3812 ** this routine is used, it does not hurt to get an extra 2 - that | |
3813 ** just might result in some slightly slower code. But returning | |
3814 ** an incorrect 0 or 1 could lead to a malfunction. | |
3815 */ | |
3816 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){ | |
3817 u32 combinedFlags; | |
3818 if( pA==0 || pB==0 ){ | |
3819 return pB==pA ? 0 : 2; | |
3820 } | |
3821 combinedFlags = pA->flags | pB->flags; | |
3822 if( combinedFlags & EP_IntValue ){ | |
3823 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ | |
3824 return 0; | |
3825 } | |
3826 return 2; | |
3827 } | |
3828 if( pA->op!=pB->op ){ | |
3829 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){ | |
3830 return 1; | |
3831 } | |
3832 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){ | |
3833 return 1; | |
3834 } | |
3835 return 2; | |
3836 } | |
3837 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ | |
3838 if( pA->op==TK_FUNCTION ){ | |
3839 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; | |
3840 }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ | |
3841 return pA->op==TK_COLLATE ? 1 : 2; | |
3842 } | |
3843 } | |
3844 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; | |
3845 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ | |
3846 if( combinedFlags & EP_xIsSelect ) return 2; | |
3847 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2; | |
3848 if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2; | |
3849 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; | |
3850 if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){ | |
3851 if( pA->iColumn!=pB->iColumn ) return 2; | |
3852 if( pA->iTable!=pB->iTable | |
3853 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; | |
3854 } | |
3855 } | |
3856 return 0; | |
3857 } | |
3858 | |
3859 /* | |
3860 ** Compare two ExprList objects. Return 0 if they are identical and | |
3861 ** non-zero if they differ in any way. | |
3862 ** | |
3863 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed | |
3864 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. | |
3865 ** | |
3866 ** This routine might return non-zero for equivalent ExprLists. The | |
3867 ** only consequence will be disabled optimizations. But this routine | |
3868 ** must never return 0 if the two ExprList objects are different, or | |
3869 ** a malfunction will result. | |
3870 ** | |
3871 ** Two NULL pointers are considered to be the same. But a NULL pointer | |
3872 ** always differs from a non-NULL pointer. | |
3873 */ | |
3874 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ | |
3875 int i; | |
3876 if( pA==0 && pB==0 ) return 0; | |
3877 if( pA==0 || pB==0 ) return 1; | |
3878 if( pA->nExpr!=pB->nExpr ) return 1; | |
3879 for(i=0; i<pA->nExpr; i++){ | |
3880 Expr *pExprA = pA->a[i].pExpr; | |
3881 Expr *pExprB = pB->a[i].pExpr; | |
3882 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; | |
3883 if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1; | |
3884 } | |
3885 return 0; | |
3886 } | |
3887 | |
3888 /* | |
3889 ** Return true if we can prove the pE2 will always be true if pE1 is | |
3890 ** true. Return false if we cannot complete the proof or if pE2 might | |
3891 ** be false. Examples: | |
3892 ** | |
3893 ** pE1: x==5 pE2: x==5 Result: true | |
3894 ** pE1: x>0 pE2: x==5 Result: false | |
3895 ** pE1: x=21 pE2: x=21 OR y=43 Result: true | |
3896 ** pE1: x!=123 pE2: x IS NOT NULL Result: true | |
3897 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true | |
3898 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false | |
3899 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false | |
3900 ** | |
3901 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has | |
3902 ** Expr.iTable<0 then assume a table number given by iTab. | |
3903 ** | |
3904 ** When in doubt, return false. Returning true might give a performance | |
3905 ** improvement. Returning false might cause a performance reduction, but | |
3906 ** it will always give the correct answer and is hence always safe. | |
3907 */ | |
3908 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){ | |
3909 if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){ | |
3910 return 1; | |
3911 } | |
3912 if( pE2->op==TK_OR | |
3913 && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab) | |
3914 || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) ) | |
3915 ){ | |
3916 return 1; | |
3917 } | |
3918 if( pE2->op==TK_NOTNULL | |
3919 && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0 | |
3920 && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS) | |
3921 ){ | |
3922 return 1; | |
3923 } | |
3924 return 0; | |
3925 } | |
3926 | |
3927 /* | |
3928 ** An instance of the following structure is used by the tree walker | |
3929 ** to count references to table columns in the arguments of an | |
3930 ** aggregate function, in order to implement the | |
3931 ** sqlite3FunctionThisSrc() routine. | |
3932 */ | |
3933 struct SrcCount { | |
3934 SrcList *pSrc; /* One particular FROM clause in a nested query */ | |
3935 int nThis; /* Number of references to columns in pSrcList */ | |
3936 int nOther; /* Number of references to columns in other FROM clauses */ | |
3937 }; | |
3938 | |
3939 /* | |
3940 ** Count the number of references to columns. | |
3941 */ | |
3942 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ | |
3943 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() | |
3944 ** is always called before sqlite3ExprAnalyzeAggregates() and so the | |
3945 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If | |
3946 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the | |
3947 ** NEVER() will need to be removed. */ | |
3948 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ | |
3949 int i; | |
3950 struct SrcCount *p = pWalker->u.pSrcCount; | |
3951 SrcList *pSrc = p->pSrc; | |
3952 int nSrc = pSrc ? pSrc->nSrc : 0; | |
3953 for(i=0; i<nSrc; i++){ | |
3954 if( pExpr->iTable==pSrc->a[i].iCursor ) break; | |
3955 } | |
3956 if( i<nSrc ){ | |
3957 p->nThis++; | |
3958 }else{ | |
3959 p->nOther++; | |
3960 } | |
3961 } | |
3962 return WRC_Continue; | |
3963 } | |
3964 | |
3965 /* | |
3966 ** Determine if any of the arguments to the pExpr Function reference | |
3967 ** pSrcList. Return true if they do. Also return true if the function | |
3968 ** has no arguments or has only constant arguments. Return false if pExpr | |
3969 ** references columns but not columns of tables found in pSrcList. | |
3970 */ | |
3971 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ | |
3972 Walker w; | |
3973 struct SrcCount cnt; | |
3974 assert( pExpr->op==TK_AGG_FUNCTION ); | |
3975 memset(&w, 0, sizeof(w)); | |
3976 w.xExprCallback = exprSrcCount; | |
3977 w.u.pSrcCount = &cnt; | |
3978 cnt.pSrc = pSrcList; | |
3979 cnt.nThis = 0; | |
3980 cnt.nOther = 0; | |
3981 sqlite3WalkExprList(&w, pExpr->x.pList); | |
3982 return cnt.nThis>0 || cnt.nOther==0; | |
3983 } | |
3984 | |
3985 /* | |
3986 ** Add a new element to the pAggInfo->aCol[] array. Return the index of | |
3987 ** the new element. Return a negative number if malloc fails. | |
3988 */ | |
3989 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ | |
3990 int i; | |
3991 pInfo->aCol = sqlite3ArrayAllocate( | |
3992 db, | |
3993 pInfo->aCol, | |
3994 sizeof(pInfo->aCol[0]), | |
3995 &pInfo->nColumn, | |
3996 &i | |
3997 ); | |
3998 return i; | |
3999 } | |
4000 | |
4001 /* | |
4002 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of | |
4003 ** the new element. Return a negative number if malloc fails. | |
4004 */ | |
4005 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ | |
4006 int i; | |
4007 pInfo->aFunc = sqlite3ArrayAllocate( | |
4008 db, | |
4009 pInfo->aFunc, | |
4010 sizeof(pInfo->aFunc[0]), | |
4011 &pInfo->nFunc, | |
4012 &i | |
4013 ); | |
4014 return i; | |
4015 } | |
4016 | |
4017 /* | |
4018 ** This is the xExprCallback for a tree walker. It is used to | |
4019 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates | |
4020 ** for additional information. | |
4021 */ | |
4022 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ | |
4023 int i; | |
4024 NameContext *pNC = pWalker->u.pNC; | |
4025 Parse *pParse = pNC->pParse; | |
4026 SrcList *pSrcList = pNC->pSrcList; | |
4027 AggInfo *pAggInfo = pNC->pAggInfo; | |
4028 | |
4029 switch( pExpr->op ){ | |
4030 case TK_AGG_COLUMN: | |
4031 case TK_COLUMN: { | |
4032 testcase( pExpr->op==TK_AGG_COLUMN ); | |
4033 testcase( pExpr->op==TK_COLUMN ); | |
4034 /* Check to see if the column is in one of the tables in the FROM | |
4035 ** clause of the aggregate query */ | |
4036 if( ALWAYS(pSrcList!=0) ){ | |
4037 struct SrcList_item *pItem = pSrcList->a; | |
4038 for(i=0; i<pSrcList->nSrc; i++, pItem++){ | |
4039 struct AggInfo_col *pCol; | |
4040 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); | |
4041 if( pExpr->iTable==pItem->iCursor ){ | |
4042 /* If we reach this point, it means that pExpr refers to a table | |
4043 ** that is in the FROM clause of the aggregate query. | |
4044 ** | |
4045 ** Make an entry for the column in pAggInfo->aCol[] if there | |
4046 ** is not an entry there already. | |
4047 */ | |
4048 int k; | |
4049 pCol = pAggInfo->aCol; | |
4050 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ | |
4051 if( pCol->iTable==pExpr->iTable && | |
4052 pCol->iColumn==pExpr->iColumn ){ | |
4053 break; | |
4054 } | |
4055 } | |
4056 if( (k>=pAggInfo->nColumn) | |
4057 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 | |
4058 ){ | |
4059 pCol = &pAggInfo->aCol[k]; | |
4060 pCol->pTab = pExpr->pTab; | |
4061 pCol->iTable = pExpr->iTable; | |
4062 pCol->iColumn = pExpr->iColumn; | |
4063 pCol->iMem = ++pParse->nMem; | |
4064 pCol->iSorterColumn = -1; | |
4065 pCol->pExpr = pExpr; | |
4066 if( pAggInfo->pGroupBy ){ | |
4067 int j, n; | |
4068 ExprList *pGB = pAggInfo->pGroupBy; | |
4069 struct ExprList_item *pTerm = pGB->a; | |
4070 n = pGB->nExpr; | |
4071 for(j=0; j<n; j++, pTerm++){ | |
4072 Expr *pE = pTerm->pExpr; | |
4073 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && | |
4074 pE->iColumn==pExpr->iColumn ){ | |
4075 pCol->iSorterColumn = j; | |
4076 break; | |
4077 } | |
4078 } | |
4079 } | |
4080 if( pCol->iSorterColumn<0 ){ | |
4081 pCol->iSorterColumn = pAggInfo->nSortingColumn++; | |
4082 } | |
4083 } | |
4084 /* There is now an entry for pExpr in pAggInfo->aCol[] (either | |
4085 ** because it was there before or because we just created it). | |
4086 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that | |
4087 ** pAggInfo->aCol[] entry. | |
4088 */ | |
4089 ExprSetVVAProperty(pExpr, EP_NoReduce); | |
4090 pExpr->pAggInfo = pAggInfo; | |
4091 pExpr->op = TK_AGG_COLUMN; | |
4092 pExpr->iAgg = (i16)k; | |
4093 break; | |
4094 } /* endif pExpr->iTable==pItem->iCursor */ | |
4095 } /* end loop over pSrcList */ | |
4096 } | |
4097 return WRC_Prune; | |
4098 } | |
4099 case TK_AGG_FUNCTION: { | |
4100 if( (pNC->ncFlags & NC_InAggFunc)==0 | |
4101 && pWalker->walkerDepth==pExpr->op2 | |
4102 ){ | |
4103 /* Check to see if pExpr is a duplicate of another aggregate | |
4104 ** function that is already in the pAggInfo structure | |
4105 */ | |
4106 struct AggInfo_func *pItem = pAggInfo->aFunc; | |
4107 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ | |
4108 if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){ | |
4109 break; | |
4110 } | |
4111 } | |
4112 if( i>=pAggInfo->nFunc ){ | |
4113 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] | |
4114 */ | |
4115 u8 enc = ENC(pParse->db); | |
4116 i = addAggInfoFunc(pParse->db, pAggInfo); | |
4117 if( i>=0 ){ | |
4118 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); | |
4119 pItem = &pAggInfo->aFunc[i]; | |
4120 pItem->pExpr = pExpr; | |
4121 pItem->iMem = ++pParse->nMem; | |
4122 assert( !ExprHasProperty(pExpr, EP_IntValue) ); | |
4123 pItem->pFunc = sqlite3FindFunction(pParse->db, | |
4124 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), | |
4125 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); | |
4126 if( pExpr->flags & EP_Distinct ){ | |
4127 pItem->iDistinct = pParse->nTab++; | |
4128 }else{ | |
4129 pItem->iDistinct = -1; | |
4130 } | |
4131 } | |
4132 } | |
4133 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry | |
4134 */ | |
4135 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); | |
4136 ExprSetVVAProperty(pExpr, EP_NoReduce); | |
4137 pExpr->iAgg = (i16)i; | |
4138 pExpr->pAggInfo = pAggInfo; | |
4139 return WRC_Prune; | |
4140 }else{ | |
4141 return WRC_Continue; | |
4142 } | |
4143 } | |
4144 } | |
4145 return WRC_Continue; | |
4146 } | |
4147 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ | |
4148 UNUSED_PARAMETER(pWalker); | |
4149 UNUSED_PARAMETER(pSelect); | |
4150 return WRC_Continue; | |
4151 } | |
4152 | |
4153 /* | |
4154 ** Analyze the pExpr expression looking for aggregate functions and | |
4155 ** for variables that need to be added to AggInfo object that pNC->pAggInfo | |
4156 ** points to. Additional entries are made on the AggInfo object as | |
4157 ** necessary. | |
4158 ** | |
4159 ** This routine should only be called after the expression has been | |
4160 ** analyzed by sqlite3ResolveExprNames(). | |
4161 */ | |
4162 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ | |
4163 Walker w; | |
4164 memset(&w, 0, sizeof(w)); | |
4165 w.xExprCallback = analyzeAggregate; | |
4166 w.xSelectCallback = analyzeAggregatesInSelect; | |
4167 w.u.pNC = pNC; | |
4168 assert( pNC->pSrcList!=0 ); | |
4169 sqlite3WalkExpr(&w, pExpr); | |
4170 } | |
4171 | |
4172 /* | |
4173 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an | |
4174 ** expression list. Return the number of errors. | |
4175 ** | |
4176 ** If an error is found, the analysis is cut short. | |
4177 */ | |
4178 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ | |
4179 struct ExprList_item *pItem; | |
4180 int i; | |
4181 if( pList ){ | |
4182 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ | |
4183 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); | |
4184 } | |
4185 } | |
4186 } | |
4187 | |
4188 /* | |
4189 ** Allocate a single new register for use to hold some intermediate result. | |
4190 */ | |
4191 int sqlite3GetTempReg(Parse *pParse){ | |
4192 if( pParse->nTempReg==0 ){ | |
4193 return ++pParse->nMem; | |
4194 } | |
4195 return pParse->aTempReg[--pParse->nTempReg]; | |
4196 } | |
4197 | |
4198 /* | |
4199 ** Deallocate a register, making available for reuse for some other | |
4200 ** purpose. | |
4201 ** | |
4202 ** If a register is currently being used by the column cache, then | |
4203 ** the deallocation is deferred until the column cache line that uses | |
4204 ** the register becomes stale. | |
4205 */ | |
4206 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ | |
4207 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ | |
4208 int i; | |
4209 struct yColCache *p; | |
4210 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ | |
4211 if( p->iReg==iReg ){ | |
4212 p->tempReg = 1; | |
4213 return; | |
4214 } | |
4215 } | |
4216 pParse->aTempReg[pParse->nTempReg++] = iReg; | |
4217 } | |
4218 } | |
4219 | |
4220 /* | |
4221 ** Allocate or deallocate a block of nReg consecutive registers | |
4222 */ | |
4223 int sqlite3GetTempRange(Parse *pParse, int nReg){ | |
4224 int i, n; | |
4225 i = pParse->iRangeReg; | |
4226 n = pParse->nRangeReg; | |
4227 if( nReg<=n ){ | |
4228 assert( !usedAsColumnCache(pParse, i, i+n-1) ); | |
4229 pParse->iRangeReg += nReg; | |
4230 pParse->nRangeReg -= nReg; | |
4231 }else{ | |
4232 i = pParse->nMem+1; | |
4233 pParse->nMem += nReg; | |
4234 } | |
4235 return i; | |
4236 } | |
4237 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ | |
4238 sqlite3ExprCacheRemove(pParse, iReg, nReg); | |
4239 if( nReg>pParse->nRangeReg ){ | |
4240 pParse->nRangeReg = nReg; | |
4241 pParse->iRangeReg = iReg; | |
4242 } | |
4243 } | |
4244 | |
4245 /* | |
4246 ** Mark all temporary registers as being unavailable for reuse. | |
4247 */ | |
4248 void sqlite3ClearTempRegCache(Parse *pParse){ | |
4249 pParse->nTempReg = 0; | |
4250 pParse->nRangeReg = 0; | |
4251 } | |
OLD | NEW |