| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 ** 2001 September 15 | |
| 3 ** | |
| 4 ** The author disclaims copyright to this source code. In place of | |
| 5 ** a legal notice, here is a blessing: | |
| 6 ** | |
| 7 ** May you do good and not evil. | |
| 8 ** May you find forgiveness for yourself and forgive others. | |
| 9 ** May you share freely, never taking more than you give. | |
| 10 ** | |
| 11 ************************************************************************* | |
| 12 ** This file contains routines used for analyzing expressions and | |
| 13 ** for generating VDBE code that evaluates expressions in SQLite. | |
| 14 */ | |
| 15 #include "sqliteInt.h" | |
| 16 | |
| 17 /* | |
| 18 ** Return the 'affinity' of the expression pExpr if any. | |
| 19 ** | |
| 20 ** If pExpr is a column, a reference to a column via an 'AS' alias, | |
| 21 ** or a sub-select with a column as the return value, then the | |
| 22 ** affinity of that column is returned. Otherwise, 0x00 is returned, | |
| 23 ** indicating no affinity for the expression. | |
| 24 ** | |
| 25 ** i.e. the WHERE clause expressions in the following statements all | |
| 26 ** have an affinity: | |
| 27 ** | |
| 28 ** CREATE TABLE t1(a); | |
| 29 ** SELECT * FROM t1 WHERE a; | |
| 30 ** SELECT a AS b FROM t1 WHERE b; | |
| 31 ** SELECT * FROM t1 WHERE (select a from t1); | |
| 32 */ | |
| 33 char sqlite3ExprAffinity(Expr *pExpr){ | |
| 34 int op; | |
| 35 pExpr = sqlite3ExprSkipCollate(pExpr); | |
| 36 if( pExpr->flags & EP_Generic ) return 0; | |
| 37 op = pExpr->op; | |
| 38 if( op==TK_SELECT ){ | |
| 39 assert( pExpr->flags&EP_xIsSelect ); | |
| 40 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr); | |
| 41 } | |
| 42 #ifndef SQLITE_OMIT_CAST | |
| 43 if( op==TK_CAST ){ | |
| 44 assert( !ExprHasProperty(pExpr, EP_IntValue) ); | |
| 45 return sqlite3AffinityType(pExpr->u.zToken, 0); | |
| 46 } | |
| 47 #endif | |
| 48 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER) | |
| 49 && pExpr->pTab!=0 | |
| 50 ){ | |
| 51 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally | |
| 52 ** a TK_COLUMN but was previously evaluated and cached in a register */ | |
| 53 int j = pExpr->iColumn; | |
| 54 if( j<0 ) return SQLITE_AFF_INTEGER; | |
| 55 assert( pExpr->pTab && j<pExpr->pTab->nCol ); | |
| 56 return pExpr->pTab->aCol[j].affinity; | |
| 57 } | |
| 58 return pExpr->affinity; | |
| 59 } | |
| 60 | |
| 61 /* | |
| 62 ** Set the collating sequence for expression pExpr to be the collating | |
| 63 ** sequence named by pToken. Return a pointer to a new Expr node that | |
| 64 ** implements the COLLATE operator. | |
| 65 ** | |
| 66 ** If a memory allocation error occurs, that fact is recorded in pParse->db | |
| 67 ** and the pExpr parameter is returned unchanged. | |
| 68 */ | |
| 69 Expr *sqlite3ExprAddCollateToken( | |
| 70 Parse *pParse, /* Parsing context */ | |
| 71 Expr *pExpr, /* Add the "COLLATE" clause to this expression */ | |
| 72 const Token *pCollName, /* Name of collating sequence */ | |
| 73 int dequote /* True to dequote pCollName */ | |
| 74 ){ | |
| 75 if( pCollName->n>0 ){ | |
| 76 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, dequote); | |
| 77 if( pNew ){ | |
| 78 pNew->pLeft = pExpr; | |
| 79 pNew->flags |= EP_Collate|EP_Skip; | |
| 80 pExpr = pNew; | |
| 81 } | |
| 82 } | |
| 83 return pExpr; | |
| 84 } | |
| 85 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){ | |
| 86 Token s; | |
| 87 assert( zC!=0 ); | |
| 88 s.z = zC; | |
| 89 s.n = sqlite3Strlen30(s.z); | |
| 90 return sqlite3ExprAddCollateToken(pParse, pExpr, &s, 0); | |
| 91 } | |
| 92 | |
| 93 /* | |
| 94 ** Skip over any TK_COLLATE operators and any unlikely() | |
| 95 ** or likelihood() function at the root of an expression. | |
| 96 */ | |
| 97 Expr *sqlite3ExprSkipCollate(Expr *pExpr){ | |
| 98 while( pExpr && ExprHasProperty(pExpr, EP_Skip) ){ | |
| 99 if( ExprHasProperty(pExpr, EP_Unlikely) ){ | |
| 100 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); | |
| 101 assert( pExpr->x.pList->nExpr>0 ); | |
| 102 assert( pExpr->op==TK_FUNCTION ); | |
| 103 pExpr = pExpr->x.pList->a[0].pExpr; | |
| 104 }else{ | |
| 105 assert( pExpr->op==TK_COLLATE ); | |
| 106 pExpr = pExpr->pLeft; | |
| 107 } | |
| 108 } | |
| 109 return pExpr; | |
| 110 } | |
| 111 | |
| 112 /* | |
| 113 ** Return the collation sequence for the expression pExpr. If | |
| 114 ** there is no defined collating sequence, return NULL. | |
| 115 ** | |
| 116 ** The collating sequence might be determined by a COLLATE operator | |
| 117 ** or by the presence of a column with a defined collating sequence. | |
| 118 ** COLLATE operators take first precedence. Left operands take | |
| 119 ** precedence over right operands. | |
| 120 */ | |
| 121 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){ | |
| 122 sqlite3 *db = pParse->db; | |
| 123 CollSeq *pColl = 0; | |
| 124 Expr *p = pExpr; | |
| 125 while( p ){ | |
| 126 int op = p->op; | |
| 127 if( p->flags & EP_Generic ) break; | |
| 128 if( op==TK_CAST || op==TK_UPLUS ){ | |
| 129 p = p->pLeft; | |
| 130 continue; | |
| 131 } | |
| 132 if( op==TK_COLLATE || (op==TK_REGISTER && p->op2==TK_COLLATE) ){ | |
| 133 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken); | |
| 134 break; | |
| 135 } | |
| 136 if( (op==TK_AGG_COLUMN || op==TK_COLUMN | |
| 137 || op==TK_REGISTER || op==TK_TRIGGER) | |
| 138 && p->pTab!=0 | |
| 139 ){ | |
| 140 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally | |
| 141 ** a TK_COLUMN but was previously evaluated and cached in a register */ | |
| 142 int j = p->iColumn; | |
| 143 if( j>=0 ){ | |
| 144 const char *zColl = p->pTab->aCol[j].zColl; | |
| 145 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0); | |
| 146 } | |
| 147 break; | |
| 148 } | |
| 149 if( p->flags & EP_Collate ){ | |
| 150 if( p->pLeft && (p->pLeft->flags & EP_Collate)!=0 ){ | |
| 151 p = p->pLeft; | |
| 152 }else{ | |
| 153 Expr *pNext = p->pRight; | |
| 154 /* The Expr.x union is never used at the same time as Expr.pRight */ | |
| 155 assert( p->x.pList==0 || p->pRight==0 ); | |
| 156 /* p->flags holds EP_Collate and p->pLeft->flags does not. And | |
| 157 ** p->x.pSelect cannot. So if p->x.pLeft exists, it must hold at | |
| 158 ** least one EP_Collate. Thus the following two ALWAYS. */ | |
| 159 if( p->x.pList!=0 && ALWAYS(!ExprHasProperty(p, EP_xIsSelect)) ){ | |
| 160 int i; | |
| 161 for(i=0; ALWAYS(i<p->x.pList->nExpr); i++){ | |
| 162 if( ExprHasProperty(p->x.pList->a[i].pExpr, EP_Collate) ){ | |
| 163 pNext = p->x.pList->a[i].pExpr; | |
| 164 break; | |
| 165 } | |
| 166 } | |
| 167 } | |
| 168 p = pNext; | |
| 169 } | |
| 170 }else{ | |
| 171 break; | |
| 172 } | |
| 173 } | |
| 174 if( sqlite3CheckCollSeq(pParse, pColl) ){ | |
| 175 pColl = 0; | |
| 176 } | |
| 177 return pColl; | |
| 178 } | |
| 179 | |
| 180 /* | |
| 181 ** pExpr is an operand of a comparison operator. aff2 is the | |
| 182 ** type affinity of the other operand. This routine returns the | |
| 183 ** type affinity that should be used for the comparison operator. | |
| 184 */ | |
| 185 char sqlite3CompareAffinity(Expr *pExpr, char aff2){ | |
| 186 char aff1 = sqlite3ExprAffinity(pExpr); | |
| 187 if( aff1 && aff2 ){ | |
| 188 /* Both sides of the comparison are columns. If one has numeric | |
| 189 ** affinity, use that. Otherwise use no affinity. | |
| 190 */ | |
| 191 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){ | |
| 192 return SQLITE_AFF_NUMERIC; | |
| 193 }else{ | |
| 194 return SQLITE_AFF_BLOB; | |
| 195 } | |
| 196 }else if( !aff1 && !aff2 ){ | |
| 197 /* Neither side of the comparison is a column. Compare the | |
| 198 ** results directly. | |
| 199 */ | |
| 200 return SQLITE_AFF_BLOB; | |
| 201 }else{ | |
| 202 /* One side is a column, the other is not. Use the columns affinity. */ | |
| 203 assert( aff1==0 || aff2==0 ); | |
| 204 return (aff1 + aff2); | |
| 205 } | |
| 206 } | |
| 207 | |
| 208 /* | |
| 209 ** pExpr is a comparison operator. Return the type affinity that should | |
| 210 ** be applied to both operands prior to doing the comparison. | |
| 211 */ | |
| 212 static char comparisonAffinity(Expr *pExpr){ | |
| 213 char aff; | |
| 214 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT || | |
| 215 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE || | |
| 216 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT ); | |
| 217 assert( pExpr->pLeft ); | |
| 218 aff = sqlite3ExprAffinity(pExpr->pLeft); | |
| 219 if( pExpr->pRight ){ | |
| 220 aff = sqlite3CompareAffinity(pExpr->pRight, aff); | |
| 221 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){ | |
| 222 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff); | |
| 223 }else if( !aff ){ | |
| 224 aff = SQLITE_AFF_BLOB; | |
| 225 } | |
| 226 return aff; | |
| 227 } | |
| 228 | |
| 229 /* | |
| 230 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc. | |
| 231 ** idx_affinity is the affinity of an indexed column. Return true | |
| 232 ** if the index with affinity idx_affinity may be used to implement | |
| 233 ** the comparison in pExpr. | |
| 234 */ | |
| 235 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){ | |
| 236 char aff = comparisonAffinity(pExpr); | |
| 237 switch( aff ){ | |
| 238 case SQLITE_AFF_BLOB: | |
| 239 return 1; | |
| 240 case SQLITE_AFF_TEXT: | |
| 241 return idx_affinity==SQLITE_AFF_TEXT; | |
| 242 default: | |
| 243 return sqlite3IsNumericAffinity(idx_affinity); | |
| 244 } | |
| 245 } | |
| 246 | |
| 247 /* | |
| 248 ** Return the P5 value that should be used for a binary comparison | |
| 249 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2. | |
| 250 */ | |
| 251 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){ | |
| 252 u8 aff = (char)sqlite3ExprAffinity(pExpr2); | |
| 253 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull; | |
| 254 return aff; | |
| 255 } | |
| 256 | |
| 257 /* | |
| 258 ** Return a pointer to the collation sequence that should be used by | |
| 259 ** a binary comparison operator comparing pLeft and pRight. | |
| 260 ** | |
| 261 ** If the left hand expression has a collating sequence type, then it is | |
| 262 ** used. Otherwise the collation sequence for the right hand expression | |
| 263 ** is used, or the default (BINARY) if neither expression has a collating | |
| 264 ** type. | |
| 265 ** | |
| 266 ** Argument pRight (but not pLeft) may be a null pointer. In this case, | |
| 267 ** it is not considered. | |
| 268 */ | |
| 269 CollSeq *sqlite3BinaryCompareCollSeq( | |
| 270 Parse *pParse, | |
| 271 Expr *pLeft, | |
| 272 Expr *pRight | |
| 273 ){ | |
| 274 CollSeq *pColl; | |
| 275 assert( pLeft ); | |
| 276 if( pLeft->flags & EP_Collate ){ | |
| 277 pColl = sqlite3ExprCollSeq(pParse, pLeft); | |
| 278 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){ | |
| 279 pColl = sqlite3ExprCollSeq(pParse, pRight); | |
| 280 }else{ | |
| 281 pColl = sqlite3ExprCollSeq(pParse, pLeft); | |
| 282 if( !pColl ){ | |
| 283 pColl = sqlite3ExprCollSeq(pParse, pRight); | |
| 284 } | |
| 285 } | |
| 286 return pColl; | |
| 287 } | |
| 288 | |
| 289 /* | |
| 290 ** Generate code for a comparison operator. | |
| 291 */ | |
| 292 static int codeCompare( | |
| 293 Parse *pParse, /* The parsing (and code generating) context */ | |
| 294 Expr *pLeft, /* The left operand */ | |
| 295 Expr *pRight, /* The right operand */ | |
| 296 int opcode, /* The comparison opcode */ | |
| 297 int in1, int in2, /* Register holding operands */ | |
| 298 int dest, /* Jump here if true. */ | |
| 299 int jumpIfNull /* If true, jump if either operand is NULL */ | |
| 300 ){ | |
| 301 int p5; | |
| 302 int addr; | |
| 303 CollSeq *p4; | |
| 304 | |
| 305 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight); | |
| 306 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull); | |
| 307 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1, | |
| 308 (void*)p4, P4_COLLSEQ); | |
| 309 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5); | |
| 310 return addr; | |
| 311 } | |
| 312 | |
| 313 #if SQLITE_MAX_EXPR_DEPTH>0 | |
| 314 /* | |
| 315 ** Check that argument nHeight is less than or equal to the maximum | |
| 316 ** expression depth allowed. If it is not, leave an error message in | |
| 317 ** pParse. | |
| 318 */ | |
| 319 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){ | |
| 320 int rc = SQLITE_OK; | |
| 321 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH]; | |
| 322 if( nHeight>mxHeight ){ | |
| 323 sqlite3ErrorMsg(pParse, | |
| 324 "Expression tree is too large (maximum depth %d)", mxHeight | |
| 325 ); | |
| 326 rc = SQLITE_ERROR; | |
| 327 } | |
| 328 return rc; | |
| 329 } | |
| 330 | |
| 331 /* The following three functions, heightOfExpr(), heightOfExprList() | |
| 332 ** and heightOfSelect(), are used to determine the maximum height | |
| 333 ** of any expression tree referenced by the structure passed as the | |
| 334 ** first argument. | |
| 335 ** | |
| 336 ** If this maximum height is greater than the current value pointed | |
| 337 ** to by pnHeight, the second parameter, then set *pnHeight to that | |
| 338 ** value. | |
| 339 */ | |
| 340 static void heightOfExpr(Expr *p, int *pnHeight){ | |
| 341 if( p ){ | |
| 342 if( p->nHeight>*pnHeight ){ | |
| 343 *pnHeight = p->nHeight; | |
| 344 } | |
| 345 } | |
| 346 } | |
| 347 static void heightOfExprList(ExprList *p, int *pnHeight){ | |
| 348 if( p ){ | |
| 349 int i; | |
| 350 for(i=0; i<p->nExpr; i++){ | |
| 351 heightOfExpr(p->a[i].pExpr, pnHeight); | |
| 352 } | |
| 353 } | |
| 354 } | |
| 355 static void heightOfSelect(Select *p, int *pnHeight){ | |
| 356 if( p ){ | |
| 357 heightOfExpr(p->pWhere, pnHeight); | |
| 358 heightOfExpr(p->pHaving, pnHeight); | |
| 359 heightOfExpr(p->pLimit, pnHeight); | |
| 360 heightOfExpr(p->pOffset, pnHeight); | |
| 361 heightOfExprList(p->pEList, pnHeight); | |
| 362 heightOfExprList(p->pGroupBy, pnHeight); | |
| 363 heightOfExprList(p->pOrderBy, pnHeight); | |
| 364 heightOfSelect(p->pPrior, pnHeight); | |
| 365 } | |
| 366 } | |
| 367 | |
| 368 /* | |
| 369 ** Set the Expr.nHeight variable in the structure passed as an | |
| 370 ** argument. An expression with no children, Expr.pList or | |
| 371 ** Expr.pSelect member has a height of 1. Any other expression | |
| 372 ** has a height equal to the maximum height of any other | |
| 373 ** referenced Expr plus one. | |
| 374 ** | |
| 375 ** Also propagate EP_Propagate flags up from Expr.x.pList to Expr.flags, | |
| 376 ** if appropriate. | |
| 377 */ | |
| 378 static void exprSetHeight(Expr *p){ | |
| 379 int nHeight = 0; | |
| 380 heightOfExpr(p->pLeft, &nHeight); | |
| 381 heightOfExpr(p->pRight, &nHeight); | |
| 382 if( ExprHasProperty(p, EP_xIsSelect) ){ | |
| 383 heightOfSelect(p->x.pSelect, &nHeight); | |
| 384 }else if( p->x.pList ){ | |
| 385 heightOfExprList(p->x.pList, &nHeight); | |
| 386 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); | |
| 387 } | |
| 388 p->nHeight = nHeight + 1; | |
| 389 } | |
| 390 | |
| 391 /* | |
| 392 ** Set the Expr.nHeight variable using the exprSetHeight() function. If | |
| 393 ** the height is greater than the maximum allowed expression depth, | |
| 394 ** leave an error in pParse. | |
| 395 ** | |
| 396 ** Also propagate all EP_Propagate flags from the Expr.x.pList into | |
| 397 ** Expr.flags. | |
| 398 */ | |
| 399 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ | |
| 400 if( pParse->nErr ) return; | |
| 401 exprSetHeight(p); | |
| 402 sqlite3ExprCheckHeight(pParse, p->nHeight); | |
| 403 } | |
| 404 | |
| 405 /* | |
| 406 ** Return the maximum height of any expression tree referenced | |
| 407 ** by the select statement passed as an argument. | |
| 408 */ | |
| 409 int sqlite3SelectExprHeight(Select *p){ | |
| 410 int nHeight = 0; | |
| 411 heightOfSelect(p, &nHeight); | |
| 412 return nHeight; | |
| 413 } | |
| 414 #else /* ABOVE: Height enforcement enabled. BELOW: Height enforcement off */ | |
| 415 /* | |
| 416 ** Propagate all EP_Propagate flags from the Expr.x.pList into | |
| 417 ** Expr.flags. | |
| 418 */ | |
| 419 void sqlite3ExprSetHeightAndFlags(Parse *pParse, Expr *p){ | |
| 420 if( p && p->x.pList && !ExprHasProperty(p, EP_xIsSelect) ){ | |
| 421 p->flags |= EP_Propagate & sqlite3ExprListFlags(p->x.pList); | |
| 422 } | |
| 423 } | |
| 424 #define exprSetHeight(y) | |
| 425 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */ | |
| 426 | |
| 427 /* | |
| 428 ** This routine is the core allocator for Expr nodes. | |
| 429 ** | |
| 430 ** Construct a new expression node and return a pointer to it. Memory | |
| 431 ** for this node and for the pToken argument is a single allocation | |
| 432 ** obtained from sqlite3DbMalloc(). The calling function | |
| 433 ** is responsible for making sure the node eventually gets freed. | |
| 434 ** | |
| 435 ** If dequote is true, then the token (if it exists) is dequoted. | |
| 436 ** If dequote is false, no dequoting is performed. The deQuote | |
| 437 ** parameter is ignored if pToken is NULL or if the token does not | |
| 438 ** appear to be quoted. If the quotes were of the form "..." (double-quotes) | |
| 439 ** then the EP_DblQuoted flag is set on the expression node. | |
| 440 ** | |
| 441 ** Special case: If op==TK_INTEGER and pToken points to a string that | |
| 442 ** can be translated into a 32-bit integer, then the token is not | |
| 443 ** stored in u.zToken. Instead, the integer values is written | |
| 444 ** into u.iValue and the EP_IntValue flag is set. No extra storage | |
| 445 ** is allocated to hold the integer text and the dequote flag is ignored. | |
| 446 */ | |
| 447 Expr *sqlite3ExprAlloc( | |
| 448 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ | |
| 449 int op, /* Expression opcode */ | |
| 450 const Token *pToken, /* Token argument. Might be NULL */ | |
| 451 int dequote /* True to dequote */ | |
| 452 ){ | |
| 453 Expr *pNew; | |
| 454 int nExtra = 0; | |
| 455 int iValue = 0; | |
| 456 | |
| 457 if( pToken ){ | |
| 458 if( op!=TK_INTEGER || pToken->z==0 | |
| 459 || sqlite3GetInt32(pToken->z, &iValue)==0 ){ | |
| 460 nExtra = pToken->n+1; | |
| 461 assert( iValue>=0 ); | |
| 462 } | |
| 463 } | |
| 464 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra); | |
| 465 if( pNew ){ | |
| 466 pNew->op = (u8)op; | |
| 467 pNew->iAgg = -1; | |
| 468 if( pToken ){ | |
| 469 if( nExtra==0 ){ | |
| 470 pNew->flags |= EP_IntValue; | |
| 471 pNew->u.iValue = iValue; | |
| 472 }else{ | |
| 473 int c; | |
| 474 pNew->u.zToken = (char*)&pNew[1]; | |
| 475 assert( pToken->z!=0 || pToken->n==0 ); | |
| 476 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n); | |
| 477 pNew->u.zToken[pToken->n] = 0; | |
| 478 if( dequote && nExtra>=3 | |
| 479 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){ | |
| 480 sqlite3Dequote(pNew->u.zToken); | |
| 481 if( c=='"' ) pNew->flags |= EP_DblQuoted; | |
| 482 } | |
| 483 } | |
| 484 } | |
| 485 #if SQLITE_MAX_EXPR_DEPTH>0 | |
| 486 pNew->nHeight = 1; | |
| 487 #endif | |
| 488 } | |
| 489 return pNew; | |
| 490 } | |
| 491 | |
| 492 /* | |
| 493 ** Allocate a new expression node from a zero-terminated token that has | |
| 494 ** already been dequoted. | |
| 495 */ | |
| 496 Expr *sqlite3Expr( | |
| 497 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */ | |
| 498 int op, /* Expression opcode */ | |
| 499 const char *zToken /* Token argument. Might be NULL */ | |
| 500 ){ | |
| 501 Token x; | |
| 502 x.z = zToken; | |
| 503 x.n = zToken ? sqlite3Strlen30(zToken) : 0; | |
| 504 return sqlite3ExprAlloc(db, op, &x, 0); | |
| 505 } | |
| 506 | |
| 507 /* | |
| 508 ** Attach subtrees pLeft and pRight to the Expr node pRoot. | |
| 509 ** | |
| 510 ** If pRoot==NULL that means that a memory allocation error has occurred. | |
| 511 ** In that case, delete the subtrees pLeft and pRight. | |
| 512 */ | |
| 513 void sqlite3ExprAttachSubtrees( | |
| 514 sqlite3 *db, | |
| 515 Expr *pRoot, | |
| 516 Expr *pLeft, | |
| 517 Expr *pRight | |
| 518 ){ | |
| 519 if( pRoot==0 ){ | |
| 520 assert( db->mallocFailed ); | |
| 521 sqlite3ExprDelete(db, pLeft); | |
| 522 sqlite3ExprDelete(db, pRight); | |
| 523 }else{ | |
| 524 if( pRight ){ | |
| 525 pRoot->pRight = pRight; | |
| 526 pRoot->flags |= EP_Propagate & pRight->flags; | |
| 527 } | |
| 528 if( pLeft ){ | |
| 529 pRoot->pLeft = pLeft; | |
| 530 pRoot->flags |= EP_Propagate & pLeft->flags; | |
| 531 } | |
| 532 exprSetHeight(pRoot); | |
| 533 } | |
| 534 } | |
| 535 | |
| 536 /* | |
| 537 ** Allocate an Expr node which joins as many as two subtrees. | |
| 538 ** | |
| 539 ** One or both of the subtrees can be NULL. Return a pointer to the new | |
| 540 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed, | |
| 541 ** free the subtrees and return NULL. | |
| 542 */ | |
| 543 Expr *sqlite3PExpr( | |
| 544 Parse *pParse, /* Parsing context */ | |
| 545 int op, /* Expression opcode */ | |
| 546 Expr *pLeft, /* Left operand */ | |
| 547 Expr *pRight, /* Right operand */ | |
| 548 const Token *pToken /* Argument token */ | |
| 549 ){ | |
| 550 Expr *p; | |
| 551 if( op==TK_AND && pParse->nErr==0 ){ | |
| 552 /* Take advantage of short-circuit false optimization for AND */ | |
| 553 p = sqlite3ExprAnd(pParse->db, pLeft, pRight); | |
| 554 }else{ | |
| 555 p = sqlite3ExprAlloc(pParse->db, op & TKFLG_MASK, pToken, 1); | |
| 556 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight); | |
| 557 } | |
| 558 if( p ) { | |
| 559 sqlite3ExprCheckHeight(pParse, p->nHeight); | |
| 560 } | |
| 561 return p; | |
| 562 } | |
| 563 | |
| 564 /* | |
| 565 ** If the expression is always either TRUE or FALSE (respectively), | |
| 566 ** then return 1. If one cannot determine the truth value of the | |
| 567 ** expression at compile-time return 0. | |
| 568 ** | |
| 569 ** This is an optimization. If is OK to return 0 here even if | |
| 570 ** the expression really is always false or false (a false negative). | |
| 571 ** But it is a bug to return 1 if the expression might have different | |
| 572 ** boolean values in different circumstances (a false positive.) | |
| 573 ** | |
| 574 ** Note that if the expression is part of conditional for a | |
| 575 ** LEFT JOIN, then we cannot determine at compile-time whether or not | |
| 576 ** is it true or false, so always return 0. | |
| 577 */ | |
| 578 static int exprAlwaysTrue(Expr *p){ | |
| 579 int v = 0; | |
| 580 if( ExprHasProperty(p, EP_FromJoin) ) return 0; | |
| 581 if( !sqlite3ExprIsInteger(p, &v) ) return 0; | |
| 582 return v!=0; | |
| 583 } | |
| 584 static int exprAlwaysFalse(Expr *p){ | |
| 585 int v = 0; | |
| 586 if( ExprHasProperty(p, EP_FromJoin) ) return 0; | |
| 587 if( !sqlite3ExprIsInteger(p, &v) ) return 0; | |
| 588 return v==0; | |
| 589 } | |
| 590 | |
| 591 /* | |
| 592 ** Join two expressions using an AND operator. If either expression is | |
| 593 ** NULL, then just return the other expression. | |
| 594 ** | |
| 595 ** If one side or the other of the AND is known to be false, then instead | |
| 596 ** of returning an AND expression, just return a constant expression with | |
| 597 ** a value of false. | |
| 598 */ | |
| 599 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){ | |
| 600 if( pLeft==0 ){ | |
| 601 return pRight; | |
| 602 }else if( pRight==0 ){ | |
| 603 return pLeft; | |
| 604 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){ | |
| 605 sqlite3ExprDelete(db, pLeft); | |
| 606 sqlite3ExprDelete(db, pRight); | |
| 607 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0); | |
| 608 }else{ | |
| 609 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0); | |
| 610 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight); | |
| 611 return pNew; | |
| 612 } | |
| 613 } | |
| 614 | |
| 615 /* | |
| 616 ** Construct a new expression node for a function with multiple | |
| 617 ** arguments. | |
| 618 */ | |
| 619 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){ | |
| 620 Expr *pNew; | |
| 621 sqlite3 *db = pParse->db; | |
| 622 assert( pToken ); | |
| 623 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1); | |
| 624 if( pNew==0 ){ | |
| 625 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */ | |
| 626 return 0; | |
| 627 } | |
| 628 pNew->x.pList = pList; | |
| 629 assert( !ExprHasProperty(pNew, EP_xIsSelect) ); | |
| 630 sqlite3ExprSetHeightAndFlags(pParse, pNew); | |
| 631 return pNew; | |
| 632 } | |
| 633 | |
| 634 /* | |
| 635 ** Assign a variable number to an expression that encodes a wildcard | |
| 636 ** in the original SQL statement. | |
| 637 ** | |
| 638 ** Wildcards consisting of a single "?" are assigned the next sequential | |
| 639 ** variable number. | |
| 640 ** | |
| 641 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make | |
| 642 ** sure "nnn" is not too be to avoid a denial of service attack when | |
| 643 ** the SQL statement comes from an external source. | |
| 644 ** | |
| 645 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number | |
| 646 ** as the previous instance of the same wildcard. Or if this is the first | |
| 647 ** instance of the wildcard, the next sequential variable number is | |
| 648 ** assigned. | |
| 649 */ | |
| 650 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){ | |
| 651 sqlite3 *db = pParse->db; | |
| 652 const char *z; | |
| 653 | |
| 654 if( pExpr==0 ) return; | |
| 655 assert( !ExprHasProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) ); | |
| 656 z = pExpr->u.zToken; | |
| 657 assert( z!=0 ); | |
| 658 assert( z[0]!=0 ); | |
| 659 if( z[1]==0 ){ | |
| 660 /* Wildcard of the form "?". Assign the next variable number */ | |
| 661 assert( z[0]=='?' ); | |
| 662 pExpr->iColumn = (ynVar)(++pParse->nVar); | |
| 663 }else{ | |
| 664 ynVar x = 0; | |
| 665 u32 n = sqlite3Strlen30(z); | |
| 666 if( z[0]=='?' ){ | |
| 667 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and | |
| 668 ** use it as the variable number */ | |
| 669 i64 i; | |
| 670 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8); | |
| 671 pExpr->iColumn = x = (ynVar)i; | |
| 672 testcase( i==0 ); | |
| 673 testcase( i==1 ); | |
| 674 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 ); | |
| 675 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ); | |
| 676 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ | |
| 677 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d", | |
| 678 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]); | |
| 679 x = 0; | |
| 680 } | |
| 681 if( i>pParse->nVar ){ | |
| 682 pParse->nVar = (int)i; | |
| 683 } | |
| 684 }else{ | |
| 685 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable | |
| 686 ** number as the prior appearance of the same name, or if the name | |
| 687 ** has never appeared before, reuse the same variable number | |
| 688 */ | |
| 689 ynVar i; | |
| 690 for(i=0; i<pParse->nzVar; i++){ | |
| 691 if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){ | |
| 692 pExpr->iColumn = x = (ynVar)i+1; | |
| 693 break; | |
| 694 } | |
| 695 } | |
| 696 if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar); | |
| 697 } | |
| 698 if( x>0 ){ | |
| 699 if( x>pParse->nzVar ){ | |
| 700 char **a; | |
| 701 a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0])); | |
| 702 if( a==0 ) return; /* Error reported through db->mallocFailed */ | |
| 703 pParse->azVar = a; | |
| 704 memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0])); | |
| 705 pParse->nzVar = x; | |
| 706 } | |
| 707 if( z[0]!='?' || pParse->azVar[x-1]==0 ){ | |
| 708 sqlite3DbFree(db, pParse->azVar[x-1]); | |
| 709 pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n); | |
| 710 } | |
| 711 } | |
| 712 } | |
| 713 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){ | |
| 714 sqlite3ErrorMsg(pParse, "too many SQL variables"); | |
| 715 } | |
| 716 } | |
| 717 | |
| 718 /* | |
| 719 ** Recursively delete an expression tree. | |
| 720 */ | |
| 721 void sqlite3ExprDelete(sqlite3 *db, Expr *p){ | |
| 722 if( p==0 ) return; | |
| 723 /* Sanity check: Assert that the IntValue is non-negative if it exists */ | |
| 724 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 ); | |
| 725 if( !ExprHasProperty(p, EP_TokenOnly) ){ | |
| 726 /* The Expr.x union is never used at the same time as Expr.pRight */ | |
| 727 assert( p->x.pList==0 || p->pRight==0 ); | |
| 728 sqlite3ExprDelete(db, p->pLeft); | |
| 729 sqlite3ExprDelete(db, p->pRight); | |
| 730 if( ExprHasProperty(p, EP_MemToken) ) sqlite3DbFree(db, p->u.zToken); | |
| 731 if( ExprHasProperty(p, EP_xIsSelect) ){ | |
| 732 sqlite3SelectDelete(db, p->x.pSelect); | |
| 733 }else{ | |
| 734 sqlite3ExprListDelete(db, p->x.pList); | |
| 735 } | |
| 736 } | |
| 737 if( !ExprHasProperty(p, EP_Static) ){ | |
| 738 sqlite3DbFree(db, p); | |
| 739 } | |
| 740 } | |
| 741 | |
| 742 /* | |
| 743 ** Return the number of bytes allocated for the expression structure | |
| 744 ** passed as the first argument. This is always one of EXPR_FULLSIZE, | |
| 745 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE. | |
| 746 */ | |
| 747 static int exprStructSize(Expr *p){ | |
| 748 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE; | |
| 749 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE; | |
| 750 return EXPR_FULLSIZE; | |
| 751 } | |
| 752 | |
| 753 /* | |
| 754 ** The dupedExpr*Size() routines each return the number of bytes required | |
| 755 ** to store a copy of an expression or expression tree. They differ in | |
| 756 ** how much of the tree is measured. | |
| 757 ** | |
| 758 ** dupedExprStructSize() Size of only the Expr structure | |
| 759 ** dupedExprNodeSize() Size of Expr + space for token | |
| 760 ** dupedExprSize() Expr + token + subtree components | |
| 761 ** | |
| 762 *************************************************************************** | |
| 763 ** | |
| 764 ** The dupedExprStructSize() function returns two values OR-ed together: | |
| 765 ** (1) the space required for a copy of the Expr structure only and | |
| 766 ** (2) the EP_xxx flags that indicate what the structure size should be. | |
| 767 ** The return values is always one of: | |
| 768 ** | |
| 769 ** EXPR_FULLSIZE | |
| 770 ** EXPR_REDUCEDSIZE | EP_Reduced | |
| 771 ** EXPR_TOKENONLYSIZE | EP_TokenOnly | |
| 772 ** | |
| 773 ** The size of the structure can be found by masking the return value | |
| 774 ** of this routine with 0xfff. The flags can be found by masking the | |
| 775 ** return value with EP_Reduced|EP_TokenOnly. | |
| 776 ** | |
| 777 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size | |
| 778 ** (unreduced) Expr objects as they or originally constructed by the parser. | |
| 779 ** During expression analysis, extra information is computed and moved into | |
| 780 ** later parts of teh Expr object and that extra information might get chopped | |
| 781 ** off if the expression is reduced. Note also that it does not work to | |
| 782 ** make an EXPRDUP_REDUCE copy of a reduced expression. It is only legal | |
| 783 ** to reduce a pristine expression tree from the parser. The implementation | |
| 784 ** of dupedExprStructSize() contain multiple assert() statements that attempt | |
| 785 ** to enforce this constraint. | |
| 786 */ | |
| 787 static int dupedExprStructSize(Expr *p, int flags){ | |
| 788 int nSize; | |
| 789 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */ | |
| 790 assert( EXPR_FULLSIZE<=0xfff ); | |
| 791 assert( (0xfff & (EP_Reduced|EP_TokenOnly))==0 ); | |
| 792 if( 0==(flags&EXPRDUP_REDUCE) ){ | |
| 793 nSize = EXPR_FULLSIZE; | |
| 794 }else{ | |
| 795 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) ); | |
| 796 assert( !ExprHasProperty(p, EP_FromJoin) ); | |
| 797 assert( !ExprHasProperty(p, EP_MemToken) ); | |
| 798 assert( !ExprHasProperty(p, EP_NoReduce) ); | |
| 799 if( p->pLeft || p->x.pList ){ | |
| 800 nSize = EXPR_REDUCEDSIZE | EP_Reduced; | |
| 801 }else{ | |
| 802 assert( p->pRight==0 ); | |
| 803 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly; | |
| 804 } | |
| 805 } | |
| 806 return nSize; | |
| 807 } | |
| 808 | |
| 809 /* | |
| 810 ** This function returns the space in bytes required to store the copy | |
| 811 ** of the Expr structure and a copy of the Expr.u.zToken string (if that | |
| 812 ** string is defined.) | |
| 813 */ | |
| 814 static int dupedExprNodeSize(Expr *p, int flags){ | |
| 815 int nByte = dupedExprStructSize(p, flags) & 0xfff; | |
| 816 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ | |
| 817 nByte += sqlite3Strlen30(p->u.zToken)+1; | |
| 818 } | |
| 819 return ROUND8(nByte); | |
| 820 } | |
| 821 | |
| 822 /* | |
| 823 ** Return the number of bytes required to create a duplicate of the | |
| 824 ** expression passed as the first argument. The second argument is a | |
| 825 ** mask containing EXPRDUP_XXX flags. | |
| 826 ** | |
| 827 ** The value returned includes space to create a copy of the Expr struct | |
| 828 ** itself and the buffer referred to by Expr.u.zToken, if any. | |
| 829 ** | |
| 830 ** If the EXPRDUP_REDUCE flag is set, then the return value includes | |
| 831 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft | |
| 832 ** and Expr.pRight variables (but not for any structures pointed to or | |
| 833 ** descended from the Expr.x.pList or Expr.x.pSelect variables). | |
| 834 */ | |
| 835 static int dupedExprSize(Expr *p, int flags){ | |
| 836 int nByte = 0; | |
| 837 if( p ){ | |
| 838 nByte = dupedExprNodeSize(p, flags); | |
| 839 if( flags&EXPRDUP_REDUCE ){ | |
| 840 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags); | |
| 841 } | |
| 842 } | |
| 843 return nByte; | |
| 844 } | |
| 845 | |
| 846 /* | |
| 847 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer | |
| 848 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough | |
| 849 ** to store the copy of expression p, the copies of p->u.zToken | |
| 850 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions, | |
| 851 ** if any. Before returning, *pzBuffer is set to the first byte past the | |
| 852 ** portion of the buffer copied into by this function. | |
| 853 */ | |
| 854 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){ | |
| 855 Expr *pNew = 0; /* Value to return */ | |
| 856 assert( flags==0 || flags==EXPRDUP_REDUCE ); | |
| 857 if( p ){ | |
| 858 const int isReduced = (flags&EXPRDUP_REDUCE); | |
| 859 u8 *zAlloc; | |
| 860 u32 staticFlag = 0; | |
| 861 | |
| 862 assert( pzBuffer==0 || isReduced ); | |
| 863 | |
| 864 /* Figure out where to write the new Expr structure. */ | |
| 865 if( pzBuffer ){ | |
| 866 zAlloc = *pzBuffer; | |
| 867 staticFlag = EP_Static; | |
| 868 }else{ | |
| 869 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags)); | |
| 870 } | |
| 871 pNew = (Expr *)zAlloc; | |
| 872 | |
| 873 if( pNew ){ | |
| 874 /* Set nNewSize to the size allocated for the structure pointed to | |
| 875 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or | |
| 876 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed | |
| 877 ** by the copy of the p->u.zToken string (if any). | |
| 878 */ | |
| 879 const unsigned nStructSize = dupedExprStructSize(p, flags); | |
| 880 const int nNewSize = nStructSize & 0xfff; | |
| 881 int nToken; | |
| 882 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){ | |
| 883 nToken = sqlite3Strlen30(p->u.zToken) + 1; | |
| 884 }else{ | |
| 885 nToken = 0; | |
| 886 } | |
| 887 if( isReduced ){ | |
| 888 assert( ExprHasProperty(p, EP_Reduced)==0 ); | |
| 889 memcpy(zAlloc, p, nNewSize); | |
| 890 }else{ | |
| 891 u32 nSize = (u32)exprStructSize(p); | |
| 892 memcpy(zAlloc, p, nSize); | |
| 893 if( nSize<EXPR_FULLSIZE ){ | |
| 894 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize); | |
| 895 } | |
| 896 } | |
| 897 | |
| 898 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */ | |
| 899 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static|EP_MemToken); | |
| 900 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly); | |
| 901 pNew->flags |= staticFlag; | |
| 902 | |
| 903 /* Copy the p->u.zToken string, if any. */ | |
| 904 if( nToken ){ | |
| 905 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize]; | |
| 906 memcpy(zToken, p->u.zToken, nToken); | |
| 907 } | |
| 908 | |
| 909 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){ | |
| 910 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */ | |
| 911 if( ExprHasProperty(p, EP_xIsSelect) ){ | |
| 912 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced); | |
| 913 }else{ | |
| 914 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced); | |
| 915 } | |
| 916 } | |
| 917 | |
| 918 /* Fill in pNew->pLeft and pNew->pRight. */ | |
| 919 if( ExprHasProperty(pNew, EP_Reduced|EP_TokenOnly) ){ | |
| 920 zAlloc += dupedExprNodeSize(p, flags); | |
| 921 if( ExprHasProperty(pNew, EP_Reduced) ){ | |
| 922 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc); | |
| 923 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc); | |
| 924 } | |
| 925 if( pzBuffer ){ | |
| 926 *pzBuffer = zAlloc; | |
| 927 } | |
| 928 }else{ | |
| 929 if( !ExprHasProperty(p, EP_TokenOnly) ){ | |
| 930 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0); | |
| 931 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0); | |
| 932 } | |
| 933 } | |
| 934 | |
| 935 } | |
| 936 } | |
| 937 return pNew; | |
| 938 } | |
| 939 | |
| 940 /* | |
| 941 ** Create and return a deep copy of the object passed as the second | |
| 942 ** argument. If an OOM condition is encountered, NULL is returned | |
| 943 ** and the db->mallocFailed flag set. | |
| 944 */ | |
| 945 #ifndef SQLITE_OMIT_CTE | |
| 946 static With *withDup(sqlite3 *db, With *p){ | |
| 947 With *pRet = 0; | |
| 948 if( p ){ | |
| 949 int nByte = sizeof(*p) + sizeof(p->a[0]) * (p->nCte-1); | |
| 950 pRet = sqlite3DbMallocZero(db, nByte); | |
| 951 if( pRet ){ | |
| 952 int i; | |
| 953 pRet->nCte = p->nCte; | |
| 954 for(i=0; i<p->nCte; i++){ | |
| 955 pRet->a[i].pSelect = sqlite3SelectDup(db, p->a[i].pSelect, 0); | |
| 956 pRet->a[i].pCols = sqlite3ExprListDup(db, p->a[i].pCols, 0); | |
| 957 pRet->a[i].zName = sqlite3DbStrDup(db, p->a[i].zName); | |
| 958 } | |
| 959 } | |
| 960 } | |
| 961 return pRet; | |
| 962 } | |
| 963 #else | |
| 964 # define withDup(x,y) 0 | |
| 965 #endif | |
| 966 | |
| 967 /* | |
| 968 ** The following group of routines make deep copies of expressions, | |
| 969 ** expression lists, ID lists, and select statements. The copies can | |
| 970 ** be deleted (by being passed to their respective ...Delete() routines) | |
| 971 ** without effecting the originals. | |
| 972 ** | |
| 973 ** The expression list, ID, and source lists return by sqlite3ExprListDup(), | |
| 974 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded | |
| 975 ** by subsequent calls to sqlite*ListAppend() routines. | |
| 976 ** | |
| 977 ** Any tables that the SrcList might point to are not duplicated. | |
| 978 ** | |
| 979 ** The flags parameter contains a combination of the EXPRDUP_XXX flags. | |
| 980 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a | |
| 981 ** truncated version of the usual Expr structure that will be stored as | |
| 982 ** part of the in-memory representation of the database schema. | |
| 983 */ | |
| 984 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){ | |
| 985 assert( flags==0 || flags==EXPRDUP_REDUCE ); | |
| 986 return exprDup(db, p, flags, 0); | |
| 987 } | |
| 988 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){ | |
| 989 ExprList *pNew; | |
| 990 struct ExprList_item *pItem, *pOldItem; | |
| 991 int i; | |
| 992 if( p==0 ) return 0; | |
| 993 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); | |
| 994 if( pNew==0 ) return 0; | |
| 995 pNew->nExpr = i = p->nExpr; | |
| 996 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){} | |
| 997 pNew->a = pItem = sqlite3DbMallocRaw(db, i*sizeof(p->a[0]) ); | |
| 998 if( pItem==0 ){ | |
| 999 sqlite3DbFree(db, pNew); | |
| 1000 return 0; | |
| 1001 } | |
| 1002 pOldItem = p->a; | |
| 1003 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){ | |
| 1004 Expr *pOldExpr = pOldItem->pExpr; | |
| 1005 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags); | |
| 1006 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName); | |
| 1007 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan); | |
| 1008 pItem->sortOrder = pOldItem->sortOrder; | |
| 1009 pItem->done = 0; | |
| 1010 pItem->bSpanIsTab = pOldItem->bSpanIsTab; | |
| 1011 pItem->u = pOldItem->u; | |
| 1012 } | |
| 1013 return pNew; | |
| 1014 } | |
| 1015 | |
| 1016 /* | |
| 1017 ** If cursors, triggers, views and subqueries are all omitted from | |
| 1018 ** the build, then none of the following routines, except for | |
| 1019 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes | |
| 1020 ** called with a NULL argument. | |
| 1021 */ | |
| 1022 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \ | |
| 1023 || !defined(SQLITE_OMIT_SUBQUERY) | |
| 1024 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){ | |
| 1025 SrcList *pNew; | |
| 1026 int i; | |
| 1027 int nByte; | |
| 1028 if( p==0 ) return 0; | |
| 1029 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0); | |
| 1030 pNew = sqlite3DbMallocRaw(db, nByte ); | |
| 1031 if( pNew==0 ) return 0; | |
| 1032 pNew->nSrc = pNew->nAlloc = p->nSrc; | |
| 1033 for(i=0; i<p->nSrc; i++){ | |
| 1034 struct SrcList_item *pNewItem = &pNew->a[i]; | |
| 1035 struct SrcList_item *pOldItem = &p->a[i]; | |
| 1036 Table *pTab; | |
| 1037 pNewItem->pSchema = pOldItem->pSchema; | |
| 1038 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase); | |
| 1039 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); | |
| 1040 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias); | |
| 1041 pNewItem->fg = pOldItem->fg; | |
| 1042 pNewItem->iCursor = pOldItem->iCursor; | |
| 1043 pNewItem->addrFillSub = pOldItem->addrFillSub; | |
| 1044 pNewItem->regReturn = pOldItem->regReturn; | |
| 1045 if( pNewItem->fg.isIndexedBy ){ | |
| 1046 pNewItem->u1.zIndexedBy = sqlite3DbStrDup(db, pOldItem->u1.zIndexedBy); | |
| 1047 } | |
| 1048 pNewItem->pIBIndex = pOldItem->pIBIndex; | |
| 1049 if( pNewItem->fg.isTabFunc ){ | |
| 1050 pNewItem->u1.pFuncArg = | |
| 1051 sqlite3ExprListDup(db, pOldItem->u1.pFuncArg, flags); | |
| 1052 } | |
| 1053 pTab = pNewItem->pTab = pOldItem->pTab; | |
| 1054 if( pTab ){ | |
| 1055 pTab->nRef++; | |
| 1056 } | |
| 1057 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags); | |
| 1058 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags); | |
| 1059 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing); | |
| 1060 pNewItem->colUsed = pOldItem->colUsed; | |
| 1061 } | |
| 1062 return pNew; | |
| 1063 } | |
| 1064 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){ | |
| 1065 IdList *pNew; | |
| 1066 int i; | |
| 1067 if( p==0 ) return 0; | |
| 1068 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) ); | |
| 1069 if( pNew==0 ) return 0; | |
| 1070 pNew->nId = p->nId; | |
| 1071 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) ); | |
| 1072 if( pNew->a==0 ){ | |
| 1073 sqlite3DbFree(db, pNew); | |
| 1074 return 0; | |
| 1075 } | |
| 1076 /* Note that because the size of the allocation for p->a[] is not | |
| 1077 ** necessarily a power of two, sqlite3IdListAppend() may not be called | |
| 1078 ** on the duplicate created by this function. */ | |
| 1079 for(i=0; i<p->nId; i++){ | |
| 1080 struct IdList_item *pNewItem = &pNew->a[i]; | |
| 1081 struct IdList_item *pOldItem = &p->a[i]; | |
| 1082 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName); | |
| 1083 pNewItem->idx = pOldItem->idx; | |
| 1084 } | |
| 1085 return pNew; | |
| 1086 } | |
| 1087 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ | |
| 1088 Select *pNew, *pPrior; | |
| 1089 if( p==0 ) return 0; | |
| 1090 pNew = sqlite3DbMallocRaw(db, sizeof(*p) ); | |
| 1091 if( pNew==0 ) return 0; | |
| 1092 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags); | |
| 1093 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags); | |
| 1094 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags); | |
| 1095 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags); | |
| 1096 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags); | |
| 1097 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags); | |
| 1098 pNew->op = p->op; | |
| 1099 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags); | |
| 1100 if( pPrior ) pPrior->pNext = pNew; | |
| 1101 pNew->pNext = 0; | |
| 1102 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags); | |
| 1103 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags); | |
| 1104 pNew->iLimit = 0; | |
| 1105 pNew->iOffset = 0; | |
| 1106 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral; | |
| 1107 pNew->addrOpenEphm[0] = -1; | |
| 1108 pNew->addrOpenEphm[1] = -1; | |
| 1109 pNew->nSelectRow = p->nSelectRow; | |
| 1110 pNew->pWith = withDup(db, p->pWith); | |
| 1111 sqlite3SelectSetName(pNew, p->zSelName); | |
| 1112 return pNew; | |
| 1113 } | |
| 1114 #else | |
| 1115 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){ | |
| 1116 assert( p==0 ); | |
| 1117 return 0; | |
| 1118 } | |
| 1119 #endif | |
| 1120 | |
| 1121 | |
| 1122 /* | |
| 1123 ** Add a new element to the end of an expression list. If pList is | |
| 1124 ** initially NULL, then create a new expression list. | |
| 1125 ** | |
| 1126 ** If a memory allocation error occurs, the entire list is freed and | |
| 1127 ** NULL is returned. If non-NULL is returned, then it is guaranteed | |
| 1128 ** that the new entry was successfully appended. | |
| 1129 */ | |
| 1130 ExprList *sqlite3ExprListAppend( | |
| 1131 Parse *pParse, /* Parsing context */ | |
| 1132 ExprList *pList, /* List to which to append. Might be NULL */ | |
| 1133 Expr *pExpr /* Expression to be appended. Might be NULL */ | |
| 1134 ){ | |
| 1135 sqlite3 *db = pParse->db; | |
| 1136 if( pList==0 ){ | |
| 1137 pList = sqlite3DbMallocZero(db, sizeof(ExprList) ); | |
| 1138 if( pList==0 ){ | |
| 1139 goto no_mem; | |
| 1140 } | |
| 1141 pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0])); | |
| 1142 if( pList->a==0 ) goto no_mem; | |
| 1143 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){ | |
| 1144 struct ExprList_item *a; | |
| 1145 assert( pList->nExpr>0 ); | |
| 1146 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0])); | |
| 1147 if( a==0 ){ | |
| 1148 goto no_mem; | |
| 1149 } | |
| 1150 pList->a = a; | |
| 1151 } | |
| 1152 assert( pList->a!=0 ); | |
| 1153 if( 1 ){ | |
| 1154 struct ExprList_item *pItem = &pList->a[pList->nExpr++]; | |
| 1155 memset(pItem, 0, sizeof(*pItem)); | |
| 1156 pItem->pExpr = pExpr; | |
| 1157 } | |
| 1158 return pList; | |
| 1159 | |
| 1160 no_mem: | |
| 1161 /* Avoid leaking memory if malloc has failed. */ | |
| 1162 sqlite3ExprDelete(db, pExpr); | |
| 1163 sqlite3ExprListDelete(db, pList); | |
| 1164 return 0; | |
| 1165 } | |
| 1166 | |
| 1167 /* | |
| 1168 ** Set the sort order for the last element on the given ExprList. | |
| 1169 */ | |
| 1170 void sqlite3ExprListSetSortOrder(ExprList *p, int iSortOrder){ | |
| 1171 if( p==0 ) return; | |
| 1172 assert( SQLITE_SO_UNDEFINED<0 && SQLITE_SO_ASC>=0 && SQLITE_SO_DESC>0 ); | |
| 1173 assert( p->nExpr>0 ); | |
| 1174 if( iSortOrder<0 ){ | |
| 1175 assert( p->a[p->nExpr-1].sortOrder==SQLITE_SO_ASC ); | |
| 1176 return; | |
| 1177 } | |
| 1178 p->a[p->nExpr-1].sortOrder = (u8)iSortOrder; | |
| 1179 } | |
| 1180 | |
| 1181 /* | |
| 1182 ** Set the ExprList.a[].zName element of the most recently added item | |
| 1183 ** on the expression list. | |
| 1184 ** | |
| 1185 ** pList might be NULL following an OOM error. But pName should never be | |
| 1186 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag | |
| 1187 ** is set. | |
| 1188 */ | |
| 1189 void sqlite3ExprListSetName( | |
| 1190 Parse *pParse, /* Parsing context */ | |
| 1191 ExprList *pList, /* List to which to add the span. */ | |
| 1192 Token *pName, /* Name to be added */ | |
| 1193 int dequote /* True to cause the name to be dequoted */ | |
| 1194 ){ | |
| 1195 assert( pList!=0 || pParse->db->mallocFailed!=0 ); | |
| 1196 if( pList ){ | |
| 1197 struct ExprList_item *pItem; | |
| 1198 assert( pList->nExpr>0 ); | |
| 1199 pItem = &pList->a[pList->nExpr-1]; | |
| 1200 assert( pItem->zName==0 ); | |
| 1201 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n); | |
| 1202 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName); | |
| 1203 } | |
| 1204 } | |
| 1205 | |
| 1206 /* | |
| 1207 ** Set the ExprList.a[].zSpan element of the most recently added item | |
| 1208 ** on the expression list. | |
| 1209 ** | |
| 1210 ** pList might be NULL following an OOM error. But pSpan should never be | |
| 1211 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag | |
| 1212 ** is set. | |
| 1213 */ | |
| 1214 void sqlite3ExprListSetSpan( | |
| 1215 Parse *pParse, /* Parsing context */ | |
| 1216 ExprList *pList, /* List to which to add the span. */ | |
| 1217 ExprSpan *pSpan /* The span to be added */ | |
| 1218 ){ | |
| 1219 sqlite3 *db = pParse->db; | |
| 1220 assert( pList!=0 || db->mallocFailed!=0 ); | |
| 1221 if( pList ){ | |
| 1222 struct ExprList_item *pItem = &pList->a[pList->nExpr-1]; | |
| 1223 assert( pList->nExpr>0 ); | |
| 1224 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr ); | |
| 1225 sqlite3DbFree(db, pItem->zSpan); | |
| 1226 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart, | |
| 1227 (int)(pSpan->zEnd - pSpan->zStart)); | |
| 1228 } | |
| 1229 } | |
| 1230 | |
| 1231 /* | |
| 1232 ** If the expression list pEList contains more than iLimit elements, | |
| 1233 ** leave an error message in pParse. | |
| 1234 */ | |
| 1235 void sqlite3ExprListCheckLength( | |
| 1236 Parse *pParse, | |
| 1237 ExprList *pEList, | |
| 1238 const char *zObject | |
| 1239 ){ | |
| 1240 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN]; | |
| 1241 testcase( pEList && pEList->nExpr==mx ); | |
| 1242 testcase( pEList && pEList->nExpr==mx+1 ); | |
| 1243 if( pEList && pEList->nExpr>mx ){ | |
| 1244 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject); | |
| 1245 } | |
| 1246 } | |
| 1247 | |
| 1248 /* | |
| 1249 ** Delete an entire expression list. | |
| 1250 */ | |
| 1251 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){ | |
| 1252 int i; | |
| 1253 struct ExprList_item *pItem; | |
| 1254 if( pList==0 ) return; | |
| 1255 assert( pList->a!=0 || pList->nExpr==0 ); | |
| 1256 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ | |
| 1257 sqlite3ExprDelete(db, pItem->pExpr); | |
| 1258 sqlite3DbFree(db, pItem->zName); | |
| 1259 sqlite3DbFree(db, pItem->zSpan); | |
| 1260 } | |
| 1261 sqlite3DbFree(db, pList->a); | |
| 1262 sqlite3DbFree(db, pList); | |
| 1263 } | |
| 1264 | |
| 1265 /* | |
| 1266 ** Return the bitwise-OR of all Expr.flags fields in the given | |
| 1267 ** ExprList. | |
| 1268 */ | |
| 1269 u32 sqlite3ExprListFlags(const ExprList *pList){ | |
| 1270 int i; | |
| 1271 u32 m = 0; | |
| 1272 if( pList ){ | |
| 1273 for(i=0; i<pList->nExpr; i++){ | |
| 1274 Expr *pExpr = pList->a[i].pExpr; | |
| 1275 if( ALWAYS(pExpr) ) m |= pExpr->flags; | |
| 1276 } | |
| 1277 } | |
| 1278 return m; | |
| 1279 } | |
| 1280 | |
| 1281 /* | |
| 1282 ** These routines are Walker callbacks used to check expressions to | |
| 1283 ** see if they are "constant" for some definition of constant. The | |
| 1284 ** Walker.eCode value determines the type of "constant" we are looking | |
| 1285 ** for. | |
| 1286 ** | |
| 1287 ** These callback routines are used to implement the following: | |
| 1288 ** | |
| 1289 ** sqlite3ExprIsConstant() pWalker->eCode==1 | |
| 1290 ** sqlite3ExprIsConstantNotJoin() pWalker->eCode==2 | |
| 1291 ** sqlite3ExprIsTableConstant() pWalker->eCode==3 | |
| 1292 ** sqlite3ExprIsConstantOrFunction() pWalker->eCode==4 or 5 | |
| 1293 ** | |
| 1294 ** In all cases, the callbacks set Walker.eCode=0 and abort if the expression | |
| 1295 ** is found to not be a constant. | |
| 1296 ** | |
| 1297 ** The sqlite3ExprIsConstantOrFunction() is used for evaluating expressions | |
| 1298 ** in a CREATE TABLE statement. The Walker.eCode value is 5 when parsing | |
| 1299 ** an existing schema and 4 when processing a new statement. A bound | |
| 1300 ** parameter raises an error for new statements, but is silently converted | |
| 1301 ** to NULL for existing schemas. This allows sqlite_master tables that | |
| 1302 ** contain a bound parameter because they were generated by older versions | |
| 1303 ** of SQLite to be parsed by newer versions of SQLite without raising a | |
| 1304 ** malformed schema error. | |
| 1305 */ | |
| 1306 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){ | |
| 1307 | |
| 1308 /* If pWalker->eCode is 2 then any term of the expression that comes from | |
| 1309 ** the ON or USING clauses of a left join disqualifies the expression | |
| 1310 ** from being considered constant. */ | |
| 1311 if( pWalker->eCode==2 && ExprHasProperty(pExpr, EP_FromJoin) ){ | |
| 1312 pWalker->eCode = 0; | |
| 1313 return WRC_Abort; | |
| 1314 } | |
| 1315 | |
| 1316 switch( pExpr->op ){ | |
| 1317 /* Consider functions to be constant if all their arguments are constant | |
| 1318 ** and either pWalker->eCode==4 or 5 or the function has the | |
| 1319 ** SQLITE_FUNC_CONST flag. */ | |
| 1320 case TK_FUNCTION: | |
| 1321 if( pWalker->eCode>=4 || ExprHasProperty(pExpr,EP_ConstFunc) ){ | |
| 1322 return WRC_Continue; | |
| 1323 }else{ | |
| 1324 pWalker->eCode = 0; | |
| 1325 return WRC_Abort; | |
| 1326 } | |
| 1327 case TK_ID: | |
| 1328 case TK_COLUMN: | |
| 1329 case TK_AGG_FUNCTION: | |
| 1330 case TK_AGG_COLUMN: | |
| 1331 testcase( pExpr->op==TK_ID ); | |
| 1332 testcase( pExpr->op==TK_COLUMN ); | |
| 1333 testcase( pExpr->op==TK_AGG_FUNCTION ); | |
| 1334 testcase( pExpr->op==TK_AGG_COLUMN ); | |
| 1335 if( pWalker->eCode==3 && pExpr->iTable==pWalker->u.iCur ){ | |
| 1336 return WRC_Continue; | |
| 1337 }else{ | |
| 1338 pWalker->eCode = 0; | |
| 1339 return WRC_Abort; | |
| 1340 } | |
| 1341 case TK_VARIABLE: | |
| 1342 if( pWalker->eCode==5 ){ | |
| 1343 /* Silently convert bound parameters that appear inside of CREATE | |
| 1344 ** statements into a NULL when parsing the CREATE statement text out | |
| 1345 ** of the sqlite_master table */ | |
| 1346 pExpr->op = TK_NULL; | |
| 1347 }else if( pWalker->eCode==4 ){ | |
| 1348 /* A bound parameter in a CREATE statement that originates from | |
| 1349 ** sqlite3_prepare() causes an error */ | |
| 1350 pWalker->eCode = 0; | |
| 1351 return WRC_Abort; | |
| 1352 } | |
| 1353 /* Fall through */ | |
| 1354 default: | |
| 1355 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */ | |
| 1356 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */ | |
| 1357 return WRC_Continue; | |
| 1358 } | |
| 1359 } | |
| 1360 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){ | |
| 1361 UNUSED_PARAMETER(NotUsed); | |
| 1362 pWalker->eCode = 0; | |
| 1363 return WRC_Abort; | |
| 1364 } | |
| 1365 static int exprIsConst(Expr *p, int initFlag, int iCur){ | |
| 1366 Walker w; | |
| 1367 memset(&w, 0, sizeof(w)); | |
| 1368 w.eCode = initFlag; | |
| 1369 w.xExprCallback = exprNodeIsConstant; | |
| 1370 w.xSelectCallback = selectNodeIsConstant; | |
| 1371 w.u.iCur = iCur; | |
| 1372 sqlite3WalkExpr(&w, p); | |
| 1373 return w.eCode; | |
| 1374 } | |
| 1375 | |
| 1376 /* | |
| 1377 ** Walk an expression tree. Return non-zero if the expression is constant | |
| 1378 ** and 0 if it involves variables or function calls. | |
| 1379 ** | |
| 1380 ** For the purposes of this function, a double-quoted string (ex: "abc") | |
| 1381 ** is considered a variable but a single-quoted string (ex: 'abc') is | |
| 1382 ** a constant. | |
| 1383 */ | |
| 1384 int sqlite3ExprIsConstant(Expr *p){ | |
| 1385 return exprIsConst(p, 1, 0); | |
| 1386 } | |
| 1387 | |
| 1388 /* | |
| 1389 ** Walk an expression tree. Return non-zero if the expression is constant | |
| 1390 ** that does no originate from the ON or USING clauses of a join. | |
| 1391 ** Return 0 if it involves variables or function calls or terms from | |
| 1392 ** an ON or USING clause. | |
| 1393 */ | |
| 1394 int sqlite3ExprIsConstantNotJoin(Expr *p){ | |
| 1395 return exprIsConst(p, 2, 0); | |
| 1396 } | |
| 1397 | |
| 1398 /* | |
| 1399 ** Walk an expression tree. Return non-zero if the expression is constant | |
| 1400 ** for any single row of the table with cursor iCur. In other words, the | |
| 1401 ** expression must not refer to any non-deterministic function nor any | |
| 1402 ** table other than iCur. | |
| 1403 */ | |
| 1404 int sqlite3ExprIsTableConstant(Expr *p, int iCur){ | |
| 1405 return exprIsConst(p, 3, iCur); | |
| 1406 } | |
| 1407 | |
| 1408 /* | |
| 1409 ** Walk an expression tree. Return non-zero if the expression is constant | |
| 1410 ** or a function call with constant arguments. Return and 0 if there | |
| 1411 ** are any variables. | |
| 1412 ** | |
| 1413 ** For the purposes of this function, a double-quoted string (ex: "abc") | |
| 1414 ** is considered a variable but a single-quoted string (ex: 'abc') is | |
| 1415 ** a constant. | |
| 1416 */ | |
| 1417 int sqlite3ExprIsConstantOrFunction(Expr *p, u8 isInit){ | |
| 1418 assert( isInit==0 || isInit==1 ); | |
| 1419 return exprIsConst(p, 4+isInit, 0); | |
| 1420 } | |
| 1421 | |
| 1422 #ifdef SQLITE_ENABLE_CURSOR_HINTS | |
| 1423 /* | |
| 1424 ** Walk an expression tree. Return 1 if the expression contains a | |
| 1425 ** subquery of some kind. Return 0 if there are no subqueries. | |
| 1426 */ | |
| 1427 int sqlite3ExprContainsSubquery(Expr *p){ | |
| 1428 Walker w; | |
| 1429 memset(&w, 0, sizeof(w)); | |
| 1430 w.eCode = 1; | |
| 1431 w.xExprCallback = sqlite3ExprWalkNoop; | |
| 1432 w.xSelectCallback = selectNodeIsConstant; | |
| 1433 sqlite3WalkExpr(&w, p); | |
| 1434 return w.eCode==0; | |
| 1435 } | |
| 1436 #endif | |
| 1437 | |
| 1438 /* | |
| 1439 ** If the expression p codes a constant integer that is small enough | |
| 1440 ** to fit in a 32-bit integer, return 1 and put the value of the integer | |
| 1441 ** in *pValue. If the expression is not an integer or if it is too big | |
| 1442 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged. | |
| 1443 */ | |
| 1444 int sqlite3ExprIsInteger(Expr *p, int *pValue){ | |
| 1445 int rc = 0; | |
| 1446 | |
| 1447 /* If an expression is an integer literal that fits in a signed 32-bit | |
| 1448 ** integer, then the EP_IntValue flag will have already been set */ | |
| 1449 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0 | |
| 1450 || sqlite3GetInt32(p->u.zToken, &rc)==0 ); | |
| 1451 | |
| 1452 if( p->flags & EP_IntValue ){ | |
| 1453 *pValue = p->u.iValue; | |
| 1454 return 1; | |
| 1455 } | |
| 1456 switch( p->op ){ | |
| 1457 case TK_UPLUS: { | |
| 1458 rc = sqlite3ExprIsInteger(p->pLeft, pValue); | |
| 1459 break; | |
| 1460 } | |
| 1461 case TK_UMINUS: { | |
| 1462 int v; | |
| 1463 if( sqlite3ExprIsInteger(p->pLeft, &v) ){ | |
| 1464 assert( v!=(-2147483647-1) ); | |
| 1465 *pValue = -v; | |
| 1466 rc = 1; | |
| 1467 } | |
| 1468 break; | |
| 1469 } | |
| 1470 default: break; | |
| 1471 } | |
| 1472 return rc; | |
| 1473 } | |
| 1474 | |
| 1475 /* | |
| 1476 ** Return FALSE if there is no chance that the expression can be NULL. | |
| 1477 ** | |
| 1478 ** If the expression might be NULL or if the expression is too complex | |
| 1479 ** to tell return TRUE. | |
| 1480 ** | |
| 1481 ** This routine is used as an optimization, to skip OP_IsNull opcodes | |
| 1482 ** when we know that a value cannot be NULL. Hence, a false positive | |
| 1483 ** (returning TRUE when in fact the expression can never be NULL) might | |
| 1484 ** be a small performance hit but is otherwise harmless. On the other | |
| 1485 ** hand, a false negative (returning FALSE when the result could be NULL) | |
| 1486 ** will likely result in an incorrect answer. So when in doubt, return | |
| 1487 ** TRUE. | |
| 1488 */ | |
| 1489 int sqlite3ExprCanBeNull(const Expr *p){ | |
| 1490 u8 op; | |
| 1491 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } | |
| 1492 op = p->op; | |
| 1493 if( op==TK_REGISTER ) op = p->op2; | |
| 1494 switch( op ){ | |
| 1495 case TK_INTEGER: | |
| 1496 case TK_STRING: | |
| 1497 case TK_FLOAT: | |
| 1498 case TK_BLOB: | |
| 1499 return 0; | |
| 1500 case TK_COLUMN: | |
| 1501 assert( p->pTab!=0 ); | |
| 1502 return ExprHasProperty(p, EP_CanBeNull) || | |
| 1503 (p->iColumn>=0 && p->pTab->aCol[p->iColumn].notNull==0); | |
| 1504 default: | |
| 1505 return 1; | |
| 1506 } | |
| 1507 } | |
| 1508 | |
| 1509 /* | |
| 1510 ** Return TRUE if the given expression is a constant which would be | |
| 1511 ** unchanged by OP_Affinity with the affinity given in the second | |
| 1512 ** argument. | |
| 1513 ** | |
| 1514 ** This routine is used to determine if the OP_Affinity operation | |
| 1515 ** can be omitted. When in doubt return FALSE. A false negative | |
| 1516 ** is harmless. A false positive, however, can result in the wrong | |
| 1517 ** answer. | |
| 1518 */ | |
| 1519 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){ | |
| 1520 u8 op; | |
| 1521 if( aff==SQLITE_AFF_BLOB ) return 1; | |
| 1522 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; } | |
| 1523 op = p->op; | |
| 1524 if( op==TK_REGISTER ) op = p->op2; | |
| 1525 switch( op ){ | |
| 1526 case TK_INTEGER: { | |
| 1527 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC; | |
| 1528 } | |
| 1529 case TK_FLOAT: { | |
| 1530 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC; | |
| 1531 } | |
| 1532 case TK_STRING: { | |
| 1533 return aff==SQLITE_AFF_TEXT; | |
| 1534 } | |
| 1535 case TK_BLOB: { | |
| 1536 return 1; | |
| 1537 } | |
| 1538 case TK_COLUMN: { | |
| 1539 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */ | |
| 1540 return p->iColumn<0 | |
| 1541 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC); | |
| 1542 } | |
| 1543 default: { | |
| 1544 return 0; | |
| 1545 } | |
| 1546 } | |
| 1547 } | |
| 1548 | |
| 1549 /* | |
| 1550 ** Return TRUE if the given string is a row-id column name. | |
| 1551 */ | |
| 1552 int sqlite3IsRowid(const char *z){ | |
| 1553 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1; | |
| 1554 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1; | |
| 1555 if( sqlite3StrICmp(z, "OID")==0 ) return 1; | |
| 1556 return 0; | |
| 1557 } | |
| 1558 | |
| 1559 /* | |
| 1560 ** Return true if we are able to the IN operator optimization on a | |
| 1561 ** query of the form | |
| 1562 ** | |
| 1563 ** x IN (SELECT ...) | |
| 1564 ** | |
| 1565 ** Where the SELECT... clause is as specified by the parameter to this | |
| 1566 ** routine. | |
| 1567 ** | |
| 1568 ** The Select object passed in has already been preprocessed and no | |
| 1569 ** errors have been found. | |
| 1570 */ | |
| 1571 #ifndef SQLITE_OMIT_SUBQUERY | |
| 1572 static int isCandidateForInOpt(Select *p){ | |
| 1573 SrcList *pSrc; | |
| 1574 ExprList *pEList; | |
| 1575 Table *pTab; | |
| 1576 if( p==0 ) return 0; /* right-hand side of IN is SELECT */ | |
| 1577 if( p->pPrior ) return 0; /* Not a compound SELECT */ | |
| 1578 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){ | |
| 1579 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct ); | |
| 1580 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate ); | |
| 1581 return 0; /* No DISTINCT keyword and no aggregate functions */ | |
| 1582 } | |
| 1583 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */ | |
| 1584 if( p->pLimit ) return 0; /* Has no LIMIT clause */ | |
| 1585 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */ | |
| 1586 if( p->pWhere ) return 0; /* Has no WHERE clause */ | |
| 1587 pSrc = p->pSrc; | |
| 1588 assert( pSrc!=0 ); | |
| 1589 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */ | |
| 1590 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */ | |
| 1591 pTab = pSrc->a[0].pTab; | |
| 1592 if( NEVER(pTab==0) ) return 0; | |
| 1593 assert( pTab->pSelect==0 ); /* FROM clause is not a view */ | |
| 1594 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */ | |
| 1595 pEList = p->pEList; | |
| 1596 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */ | |
| 1597 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */ | |
| 1598 return 1; | |
| 1599 } | |
| 1600 #endif /* SQLITE_OMIT_SUBQUERY */ | |
| 1601 | |
| 1602 /* | |
| 1603 ** Code an OP_Once instruction and allocate space for its flag. Return the | |
| 1604 ** address of the new instruction. | |
| 1605 */ | |
| 1606 int sqlite3CodeOnce(Parse *pParse){ | |
| 1607 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ | |
| 1608 return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++); | |
| 1609 } | |
| 1610 | |
| 1611 /* | |
| 1612 ** Generate code that checks the left-most column of index table iCur to see if | |
| 1613 ** it contains any NULL entries. Cause the register at regHasNull to be set | |
| 1614 ** to a non-NULL value if iCur contains no NULLs. Cause register regHasNull | |
| 1615 ** to be set to NULL if iCur contains one or more NULL values. | |
| 1616 */ | |
| 1617 static void sqlite3SetHasNullFlag(Vdbe *v, int iCur, int regHasNull){ | |
| 1618 int addr1; | |
| 1619 sqlite3VdbeAddOp2(v, OP_Integer, 0, regHasNull); | |
| 1620 addr1 = sqlite3VdbeAddOp1(v, OP_Rewind, iCur); VdbeCoverage(v); | |
| 1621 sqlite3VdbeAddOp3(v, OP_Column, iCur, 0, regHasNull); | |
| 1622 sqlite3VdbeChangeP5(v, OPFLAG_TYPEOFARG); | |
| 1623 VdbeComment((v, "first_entry_in(%d)", iCur)); | |
| 1624 sqlite3VdbeJumpHere(v, addr1); | |
| 1625 } | |
| 1626 | |
| 1627 | |
| 1628 #ifndef SQLITE_OMIT_SUBQUERY | |
| 1629 /* | |
| 1630 ** The argument is an IN operator with a list (not a subquery) on the | |
| 1631 ** right-hand side. Return TRUE if that list is constant. | |
| 1632 */ | |
| 1633 static int sqlite3InRhsIsConstant(Expr *pIn){ | |
| 1634 Expr *pLHS; | |
| 1635 int res; | |
| 1636 assert( !ExprHasProperty(pIn, EP_xIsSelect) ); | |
| 1637 pLHS = pIn->pLeft; | |
| 1638 pIn->pLeft = 0; | |
| 1639 res = sqlite3ExprIsConstant(pIn); | |
| 1640 pIn->pLeft = pLHS; | |
| 1641 return res; | |
| 1642 } | |
| 1643 #endif | |
| 1644 | |
| 1645 /* | |
| 1646 ** This function is used by the implementation of the IN (...) operator. | |
| 1647 ** The pX parameter is the expression on the RHS of the IN operator, which | |
| 1648 ** might be either a list of expressions or a subquery. | |
| 1649 ** | |
| 1650 ** The job of this routine is to find or create a b-tree object that can | |
| 1651 ** be used either to test for membership in the RHS set or to iterate through | |
| 1652 ** all members of the RHS set, skipping duplicates. | |
| 1653 ** | |
| 1654 ** A cursor is opened on the b-tree object that is the RHS of the IN operator | |
| 1655 ** and pX->iTable is set to the index of that cursor. | |
| 1656 ** | |
| 1657 ** The returned value of this function indicates the b-tree type, as follows: | |
| 1658 ** | |
| 1659 ** IN_INDEX_ROWID - The cursor was opened on a database table. | |
| 1660 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index. | |
| 1661 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index. | |
| 1662 ** IN_INDEX_EPH - The cursor was opened on a specially created and | |
| 1663 ** populated epheremal table. | |
| 1664 ** IN_INDEX_NOOP - No cursor was allocated. The IN operator must be | |
| 1665 ** implemented as a sequence of comparisons. | |
| 1666 ** | |
| 1667 ** An existing b-tree might be used if the RHS expression pX is a simple | |
| 1668 ** subquery such as: | |
| 1669 ** | |
| 1670 ** SELECT <column> FROM <table> | |
| 1671 ** | |
| 1672 ** If the RHS of the IN operator is a list or a more complex subquery, then | |
| 1673 ** an ephemeral table might need to be generated from the RHS and then | |
| 1674 ** pX->iTable made to point to the ephemeral table instead of an | |
| 1675 ** existing table. | |
| 1676 ** | |
| 1677 ** The inFlags parameter must contain exactly one of the bits | |
| 1678 ** IN_INDEX_MEMBERSHIP or IN_INDEX_LOOP. If inFlags contains | |
| 1679 ** IN_INDEX_MEMBERSHIP, then the generated table will be used for a | |
| 1680 ** fast membership test. When the IN_INDEX_LOOP bit is set, the | |
| 1681 ** IN index will be used to loop over all values of the RHS of the | |
| 1682 ** IN operator. | |
| 1683 ** | |
| 1684 ** When IN_INDEX_LOOP is used (and the b-tree will be used to iterate | |
| 1685 ** through the set members) then the b-tree must not contain duplicates. | |
| 1686 ** An epheremal table must be used unless the selected <column> is guaranteed | |
| 1687 ** to be unique - either because it is an INTEGER PRIMARY KEY or it | |
| 1688 ** has a UNIQUE constraint or UNIQUE index. | |
| 1689 ** | |
| 1690 ** When IN_INDEX_MEMBERSHIP is used (and the b-tree will be used | |
| 1691 ** for fast set membership tests) then an epheremal table must | |
| 1692 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can | |
| 1693 ** be found with <column> as its left-most column. | |
| 1694 ** | |
| 1695 ** If the IN_INDEX_NOOP_OK and IN_INDEX_MEMBERSHIP are both set and | |
| 1696 ** if the RHS of the IN operator is a list (not a subquery) then this | |
| 1697 ** routine might decide that creating an ephemeral b-tree for membership | |
| 1698 ** testing is too expensive and return IN_INDEX_NOOP. In that case, the | |
| 1699 ** calling routine should implement the IN operator using a sequence | |
| 1700 ** of Eq or Ne comparison operations. | |
| 1701 ** | |
| 1702 ** When the b-tree is being used for membership tests, the calling function | |
| 1703 ** might need to know whether or not the RHS side of the IN operator | |
| 1704 ** contains a NULL. If prRhsHasNull is not a NULL pointer and | |
| 1705 ** if there is any chance that the (...) might contain a NULL value at | |
| 1706 ** runtime, then a register is allocated and the register number written | |
| 1707 ** to *prRhsHasNull. If there is no chance that the (...) contains a | |
| 1708 ** NULL value, then *prRhsHasNull is left unchanged. | |
| 1709 ** | |
| 1710 ** If a register is allocated and its location stored in *prRhsHasNull, then | |
| 1711 ** the value in that register will be NULL if the b-tree contains one or more | |
| 1712 ** NULL values, and it will be some non-NULL value if the b-tree contains no | |
| 1713 ** NULL values. | |
| 1714 */ | |
| 1715 #ifndef SQLITE_OMIT_SUBQUERY | |
| 1716 int sqlite3FindInIndex(Parse *pParse, Expr *pX, u32 inFlags, int *prRhsHasNull){ | |
| 1717 Select *p; /* SELECT to the right of IN operator */ | |
| 1718 int eType = 0; /* Type of RHS table. IN_INDEX_* */ | |
| 1719 int iTab = pParse->nTab++; /* Cursor of the RHS table */ | |
| 1720 int mustBeUnique; /* True if RHS must be unique */ | |
| 1721 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */ | |
| 1722 | |
| 1723 assert( pX->op==TK_IN ); | |
| 1724 mustBeUnique = (inFlags & IN_INDEX_LOOP)!=0; | |
| 1725 | |
| 1726 /* Check to see if an existing table or index can be used to | |
| 1727 ** satisfy the query. This is preferable to generating a new | |
| 1728 ** ephemeral table. | |
| 1729 */ | |
| 1730 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0); | |
| 1731 if( pParse->nErr==0 && isCandidateForInOpt(p) ){ | |
| 1732 sqlite3 *db = pParse->db; /* Database connection */ | |
| 1733 Table *pTab; /* Table <table>. */ | |
| 1734 Expr *pExpr; /* Expression <column> */ | |
| 1735 i16 iCol; /* Index of column <column> */ | |
| 1736 i16 iDb; /* Database idx for pTab */ | |
| 1737 | |
| 1738 assert( p ); /* Because of isCandidateForInOpt(p) */ | |
| 1739 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */ | |
| 1740 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */ | |
| 1741 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */ | |
| 1742 pTab = p->pSrc->a[0].pTab; | |
| 1743 pExpr = p->pEList->a[0].pExpr; | |
| 1744 iCol = (i16)pExpr->iColumn; | |
| 1745 | |
| 1746 /* Code an OP_Transaction and OP_TableLock for <table>. */ | |
| 1747 iDb = sqlite3SchemaToIndex(db, pTab->pSchema); | |
| 1748 sqlite3CodeVerifySchema(pParse, iDb); | |
| 1749 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName); | |
| 1750 | |
| 1751 /* This function is only called from two places. In both cases the vdbe | |
| 1752 ** has already been allocated. So assume sqlite3GetVdbe() is always | |
| 1753 ** successful here. | |
| 1754 */ | |
| 1755 assert(v); | |
| 1756 if( iCol<0 ){ | |
| 1757 int iAddr = sqlite3CodeOnce(pParse); | |
| 1758 VdbeCoverage(v); | |
| 1759 | |
| 1760 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead); | |
| 1761 eType = IN_INDEX_ROWID; | |
| 1762 | |
| 1763 sqlite3VdbeJumpHere(v, iAddr); | |
| 1764 }else{ | |
| 1765 Index *pIdx; /* Iterator variable */ | |
| 1766 | |
| 1767 /* The collation sequence used by the comparison. If an index is to | |
| 1768 ** be used in place of a temp-table, it must be ordered according | |
| 1769 ** to this collation sequence. */ | |
| 1770 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr); | |
| 1771 | |
| 1772 /* Check that the affinity that will be used to perform the | |
| 1773 ** comparison is the same as the affinity of the column. If | |
| 1774 ** it is not, it is not possible to use any index. | |
| 1775 */ | |
| 1776 int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity); | |
| 1777 | |
| 1778 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){ | |
| 1779 if( (pIdx->aiColumn[0]==iCol) | |
| 1780 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq | |
| 1781 && (!mustBeUnique || (pIdx->nKeyCol==1 && IsUniqueIndex(pIdx))) | |
| 1782 ){ | |
| 1783 int iAddr = sqlite3CodeOnce(pParse); VdbeCoverage(v); | |
| 1784 sqlite3VdbeAddOp3(v, OP_OpenRead, iTab, pIdx->tnum, iDb); | |
| 1785 sqlite3VdbeSetP4KeyInfo(pParse, pIdx); | |
| 1786 VdbeComment((v, "%s", pIdx->zName)); | |
| 1787 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 ); | |
| 1788 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0]; | |
| 1789 | |
| 1790 if( prRhsHasNull && !pTab->aCol[iCol].notNull ){ | |
| 1791 *prRhsHasNull = ++pParse->nMem; | |
| 1792 sqlite3SetHasNullFlag(v, iTab, *prRhsHasNull); | |
| 1793 } | |
| 1794 sqlite3VdbeJumpHere(v, iAddr); | |
| 1795 } | |
| 1796 } | |
| 1797 } | |
| 1798 } | |
| 1799 | |
| 1800 /* If no preexisting index is available for the IN clause | |
| 1801 ** and IN_INDEX_NOOP is an allowed reply | |
| 1802 ** and the RHS of the IN operator is a list, not a subquery | |
| 1803 ** and the RHS is not contant or has two or fewer terms, | |
| 1804 ** then it is not worth creating an ephemeral table to evaluate | |
| 1805 ** the IN operator so return IN_INDEX_NOOP. | |
| 1806 */ | |
| 1807 if( eType==0 | |
| 1808 && (inFlags & IN_INDEX_NOOP_OK) | |
| 1809 && !ExprHasProperty(pX, EP_xIsSelect) | |
| 1810 && (!sqlite3InRhsIsConstant(pX) || pX->x.pList->nExpr<=2) | |
| 1811 ){ | |
| 1812 eType = IN_INDEX_NOOP; | |
| 1813 } | |
| 1814 | |
| 1815 | |
| 1816 if( eType==0 ){ | |
| 1817 /* Could not find an existing table or index to use as the RHS b-tree. | |
| 1818 ** We will have to generate an ephemeral table to do the job. | |
| 1819 */ | |
| 1820 u32 savedNQueryLoop = pParse->nQueryLoop; | |
| 1821 int rMayHaveNull = 0; | |
| 1822 eType = IN_INDEX_EPH; | |
| 1823 if( inFlags & IN_INDEX_LOOP ){ | |
| 1824 pParse->nQueryLoop = 0; | |
| 1825 if( pX->pLeft->iColumn<0 && !ExprHasProperty(pX, EP_xIsSelect) ){ | |
| 1826 eType = IN_INDEX_ROWID; | |
| 1827 } | |
| 1828 }else if( prRhsHasNull ){ | |
| 1829 *prRhsHasNull = rMayHaveNull = ++pParse->nMem; | |
| 1830 } | |
| 1831 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID); | |
| 1832 pParse->nQueryLoop = savedNQueryLoop; | |
| 1833 }else{ | |
| 1834 pX->iTable = iTab; | |
| 1835 } | |
| 1836 return eType; | |
| 1837 } | |
| 1838 #endif | |
| 1839 | |
| 1840 /* | |
| 1841 ** Generate code for scalar subqueries used as a subquery expression, EXISTS, | |
| 1842 ** or IN operators. Examples: | |
| 1843 ** | |
| 1844 ** (SELECT a FROM b) -- subquery | |
| 1845 ** EXISTS (SELECT a FROM b) -- EXISTS subquery | |
| 1846 ** x IN (4,5,11) -- IN operator with list on right-hand side | |
| 1847 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right | |
| 1848 ** | |
| 1849 ** The pExpr parameter describes the expression that contains the IN | |
| 1850 ** operator or subquery. | |
| 1851 ** | |
| 1852 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed | |
| 1853 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference | |
| 1854 ** to some integer key column of a table B-Tree. In this case, use an | |
| 1855 ** intkey B-Tree to store the set of IN(...) values instead of the usual | |
| 1856 ** (slower) variable length keys B-Tree. | |
| 1857 ** | |
| 1858 ** If rMayHaveNull is non-zero, that means that the operation is an IN | |
| 1859 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs. | |
| 1860 ** All this routine does is initialize the register given by rMayHaveNull | |
| 1861 ** to NULL. Calling routines will take care of changing this register | |
| 1862 ** value to non-NULL if the RHS is NULL-free. | |
| 1863 ** | |
| 1864 ** For a SELECT or EXISTS operator, return the register that holds the | |
| 1865 ** result. For IN operators or if an error occurs, the return value is 0. | |
| 1866 */ | |
| 1867 #ifndef SQLITE_OMIT_SUBQUERY | |
| 1868 int sqlite3CodeSubselect( | |
| 1869 Parse *pParse, /* Parsing context */ | |
| 1870 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */ | |
| 1871 int rHasNullFlag, /* Register that records whether NULLs exist in RHS */ | |
| 1872 int isRowid /* If true, LHS of IN operator is a rowid */ | |
| 1873 ){ | |
| 1874 int jmpIfDynamic = -1; /* One-time test address */ | |
| 1875 int rReg = 0; /* Register storing resulting */ | |
| 1876 Vdbe *v = sqlite3GetVdbe(pParse); | |
| 1877 if( NEVER(v==0) ) return 0; | |
| 1878 sqlite3ExprCachePush(pParse); | |
| 1879 | |
| 1880 /* This code must be run in its entirety every time it is encountered | |
| 1881 ** if any of the following is true: | |
| 1882 ** | |
| 1883 ** * The right-hand side is a correlated subquery | |
| 1884 ** * The right-hand side is an expression list containing variables | |
| 1885 ** * We are inside a trigger | |
| 1886 ** | |
| 1887 ** If all of the above are false, then we can run this code just once | |
| 1888 ** save the results, and reuse the same result on subsequent invocations. | |
| 1889 */ | |
| 1890 if( !ExprHasProperty(pExpr, EP_VarSelect) ){ | |
| 1891 jmpIfDynamic = sqlite3CodeOnce(pParse); VdbeCoverage(v); | |
| 1892 } | |
| 1893 | |
| 1894 #ifndef SQLITE_OMIT_EXPLAIN | |
| 1895 if( pParse->explain==2 ){ | |
| 1896 char *zMsg = sqlite3MPrintf(pParse->db, "EXECUTE %s%s SUBQUERY %d", | |
| 1897 jmpIfDynamic>=0?"":"CORRELATED ", | |
| 1898 pExpr->op==TK_IN?"LIST":"SCALAR", | |
| 1899 pParse->iNextSelectId | |
| 1900 ); | |
| 1901 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC); | |
| 1902 } | |
| 1903 #endif | |
| 1904 | |
| 1905 switch( pExpr->op ){ | |
| 1906 case TK_IN: { | |
| 1907 char affinity; /* Affinity of the LHS of the IN */ | |
| 1908 int addr; /* Address of OP_OpenEphemeral instruction */ | |
| 1909 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */ | |
| 1910 KeyInfo *pKeyInfo = 0; /* Key information */ | |
| 1911 | |
| 1912 affinity = sqlite3ExprAffinity(pLeft); | |
| 1913 | |
| 1914 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)' | |
| 1915 ** expression it is handled the same way. An ephemeral table is | |
| 1916 ** filled with single-field index keys representing the results | |
| 1917 ** from the SELECT or the <exprlist>. | |
| 1918 ** | |
| 1919 ** If the 'x' expression is a column value, or the SELECT... | |
| 1920 ** statement returns a column value, then the affinity of that | |
| 1921 ** column is used to build the index keys. If both 'x' and the | |
| 1922 ** SELECT... statement are columns, then numeric affinity is used | |
| 1923 ** if either column has NUMERIC or INTEGER affinity. If neither | |
| 1924 ** 'x' nor the SELECT... statement are columns, then numeric affinity | |
| 1925 ** is used. | |
| 1926 */ | |
| 1927 pExpr->iTable = pParse->nTab++; | |
| 1928 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid); | |
| 1929 pKeyInfo = isRowid ? 0 : sqlite3KeyInfoAlloc(pParse->db, 1, 1); | |
| 1930 | |
| 1931 if( ExprHasProperty(pExpr, EP_xIsSelect) ){ | |
| 1932 /* Case 1: expr IN (SELECT ...) | |
| 1933 ** | |
| 1934 ** Generate code to write the results of the select into the temporary | |
| 1935 ** table allocated and opened above. | |
| 1936 */ | |
| 1937 Select *pSelect = pExpr->x.pSelect; | |
| 1938 SelectDest dest; | |
| 1939 ExprList *pEList; | |
| 1940 | |
| 1941 assert( !isRowid ); | |
| 1942 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable); | |
| 1943 dest.affSdst = (u8)affinity; | |
| 1944 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable ); | |
| 1945 pSelect->iLimit = 0; | |
| 1946 testcase( pSelect->selFlags & SF_Distinct ); | |
| 1947 testcase( pKeyInfo==0 ); /* Caused by OOM in sqlite3KeyInfoAlloc() */ | |
| 1948 if( sqlite3Select(pParse, pSelect, &dest) ){ | |
| 1949 sqlite3KeyInfoUnref(pKeyInfo); | |
| 1950 return 0; | |
| 1951 } | |
| 1952 pEList = pSelect->pEList; | |
| 1953 assert( pKeyInfo!=0 ); /* OOM will cause exit after sqlite3Select() */ | |
| 1954 assert( pEList!=0 ); | |
| 1955 assert( pEList->nExpr>0 ); | |
| 1956 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); | |
| 1957 pKeyInfo->aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft, | |
| 1958 pEList->a[0].pExpr); | |
| 1959 }else if( ALWAYS(pExpr->x.pList!=0) ){ | |
| 1960 /* Case 2: expr IN (exprlist) | |
| 1961 ** | |
| 1962 ** For each expression, build an index key from the evaluation and | |
| 1963 ** store it in the temporary table. If <expr> is a column, then use | |
| 1964 ** that columns affinity when building index keys. If <expr> is not | |
| 1965 ** a column, use numeric affinity. | |
| 1966 */ | |
| 1967 int i; | |
| 1968 ExprList *pList = pExpr->x.pList; | |
| 1969 struct ExprList_item *pItem; | |
| 1970 int r1, r2, r3; | |
| 1971 | |
| 1972 if( !affinity ){ | |
| 1973 affinity = SQLITE_AFF_BLOB; | |
| 1974 } | |
| 1975 if( pKeyInfo ){ | |
| 1976 assert( sqlite3KeyInfoIsWriteable(pKeyInfo) ); | |
| 1977 pKeyInfo->aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft); | |
| 1978 } | |
| 1979 | |
| 1980 /* Loop through each expression in <exprlist>. */ | |
| 1981 r1 = sqlite3GetTempReg(pParse); | |
| 1982 r2 = sqlite3GetTempReg(pParse); | |
| 1983 if( isRowid ) sqlite3VdbeAddOp2(v, OP_Null, 0, r2); | |
| 1984 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){ | |
| 1985 Expr *pE2 = pItem->pExpr; | |
| 1986 int iValToIns; | |
| 1987 | |
| 1988 /* If the expression is not constant then we will need to | |
| 1989 ** disable the test that was generated above that makes sure | |
| 1990 ** this code only executes once. Because for a non-constant | |
| 1991 ** expression we need to rerun this code each time. | |
| 1992 */ | |
| 1993 if( jmpIfDynamic>=0 && !sqlite3ExprIsConstant(pE2) ){ | |
| 1994 sqlite3VdbeChangeToNoop(v, jmpIfDynamic); | |
| 1995 jmpIfDynamic = -1; | |
| 1996 } | |
| 1997 | |
| 1998 /* Evaluate the expression and insert it into the temp table */ | |
| 1999 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){ | |
| 2000 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns); | |
| 2001 }else{ | |
| 2002 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1); | |
| 2003 if( isRowid ){ | |
| 2004 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3, | |
| 2005 sqlite3VdbeCurrentAddr(v)+2); | |
| 2006 VdbeCoverage(v); | |
| 2007 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3); | |
| 2008 }else{ | |
| 2009 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1); | |
| 2010 sqlite3ExprCacheAffinityChange(pParse, r3, 1); | |
| 2011 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2); | |
| 2012 } | |
| 2013 } | |
| 2014 } | |
| 2015 sqlite3ReleaseTempReg(pParse, r1); | |
| 2016 sqlite3ReleaseTempReg(pParse, r2); | |
| 2017 } | |
| 2018 if( pKeyInfo ){ | |
| 2019 sqlite3VdbeChangeP4(v, addr, (void *)pKeyInfo, P4_KEYINFO); | |
| 2020 } | |
| 2021 break; | |
| 2022 } | |
| 2023 | |
| 2024 case TK_EXISTS: | |
| 2025 case TK_SELECT: | |
| 2026 default: { | |
| 2027 /* If this has to be a scalar SELECT. Generate code to put the | |
| 2028 ** value of this select in a memory cell and record the number | |
| 2029 ** of the memory cell in iColumn. If this is an EXISTS, write | |
| 2030 ** an integer 0 (not exists) or 1 (exists) into a memory cell | |
| 2031 ** and record that memory cell in iColumn. | |
| 2032 */ | |
| 2033 Select *pSel; /* SELECT statement to encode */ | |
| 2034 SelectDest dest; /* How to deal with SELECt result */ | |
| 2035 | |
| 2036 testcase( pExpr->op==TK_EXISTS ); | |
| 2037 testcase( pExpr->op==TK_SELECT ); | |
| 2038 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT ); | |
| 2039 | |
| 2040 assert( ExprHasProperty(pExpr, EP_xIsSelect) ); | |
| 2041 pSel = pExpr->x.pSelect; | |
| 2042 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem); | |
| 2043 if( pExpr->op==TK_SELECT ){ | |
| 2044 dest.eDest = SRT_Mem; | |
| 2045 dest.iSdst = dest.iSDParm; | |
| 2046 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm); | |
| 2047 VdbeComment((v, "Init subquery result")); | |
| 2048 }else{ | |
| 2049 dest.eDest = SRT_Exists; | |
| 2050 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm); | |
| 2051 VdbeComment((v, "Init EXISTS result")); | |
| 2052 } | |
| 2053 sqlite3ExprDelete(pParse->db, pSel->pLimit); | |
| 2054 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0, | |
| 2055 &sqlite3IntTokens[1]); | |
| 2056 pSel->iLimit = 0; | |
| 2057 pSel->selFlags &= ~SF_MultiValue; | |
| 2058 if( sqlite3Select(pParse, pSel, &dest) ){ | |
| 2059 return 0; | |
| 2060 } | |
| 2061 rReg = dest.iSDParm; | |
| 2062 ExprSetVVAProperty(pExpr, EP_NoReduce); | |
| 2063 break; | |
| 2064 } | |
| 2065 } | |
| 2066 | |
| 2067 if( rHasNullFlag ){ | |
| 2068 sqlite3SetHasNullFlag(v, pExpr->iTable, rHasNullFlag); | |
| 2069 } | |
| 2070 | |
| 2071 if( jmpIfDynamic>=0 ){ | |
| 2072 sqlite3VdbeJumpHere(v, jmpIfDynamic); | |
| 2073 } | |
| 2074 sqlite3ExprCachePop(pParse); | |
| 2075 | |
| 2076 return rReg; | |
| 2077 } | |
| 2078 #endif /* SQLITE_OMIT_SUBQUERY */ | |
| 2079 | |
| 2080 #ifndef SQLITE_OMIT_SUBQUERY | |
| 2081 /* | |
| 2082 ** Generate code for an IN expression. | |
| 2083 ** | |
| 2084 ** x IN (SELECT ...) | |
| 2085 ** x IN (value, value, ...) | |
| 2086 ** | |
| 2087 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS) | |
| 2088 ** is an array of zero or more values. The expression is true if the LHS is | |
| 2089 ** contained within the RHS. The value of the expression is unknown (NULL) | |
| 2090 ** if the LHS is NULL or if the LHS is not contained within the RHS and the | |
| 2091 ** RHS contains one or more NULL values. | |
| 2092 ** | |
| 2093 ** This routine generates code that jumps to destIfFalse if the LHS is not | |
| 2094 ** contained within the RHS. If due to NULLs we cannot determine if the LHS | |
| 2095 ** is contained in the RHS then jump to destIfNull. If the LHS is contained | |
| 2096 ** within the RHS then fall through. | |
| 2097 */ | |
| 2098 static void sqlite3ExprCodeIN( | |
| 2099 Parse *pParse, /* Parsing and code generating context */ | |
| 2100 Expr *pExpr, /* The IN expression */ | |
| 2101 int destIfFalse, /* Jump here if LHS is not contained in the RHS */ | |
| 2102 int destIfNull /* Jump here if the results are unknown due to NULLs */ | |
| 2103 ){ | |
| 2104 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */ | |
| 2105 char affinity; /* Comparison affinity to use */ | |
| 2106 int eType; /* Type of the RHS */ | |
| 2107 int r1; /* Temporary use register */ | |
| 2108 Vdbe *v; /* Statement under construction */ | |
| 2109 | |
| 2110 /* Compute the RHS. After this step, the table with cursor | |
| 2111 ** pExpr->iTable will contains the values that make up the RHS. | |
| 2112 */ | |
| 2113 v = pParse->pVdbe; | |
| 2114 assert( v!=0 ); /* OOM detected prior to this routine */ | |
| 2115 VdbeNoopComment((v, "begin IN expr")); | |
| 2116 eType = sqlite3FindInIndex(pParse, pExpr, | |
| 2117 IN_INDEX_MEMBERSHIP | IN_INDEX_NOOP_OK, | |
| 2118 destIfFalse==destIfNull ? 0 : &rRhsHasNull); | |
| 2119 | |
| 2120 /* Figure out the affinity to use to create a key from the results | |
| 2121 ** of the expression. affinityStr stores a static string suitable for | |
| 2122 ** P4 of OP_MakeRecord. | |
| 2123 */ | |
| 2124 affinity = comparisonAffinity(pExpr); | |
| 2125 | |
| 2126 /* Code the LHS, the <expr> from "<expr> IN (...)". | |
| 2127 */ | |
| 2128 sqlite3ExprCachePush(pParse); | |
| 2129 r1 = sqlite3GetTempReg(pParse); | |
| 2130 sqlite3ExprCode(pParse, pExpr->pLeft, r1); | |
| 2131 | |
| 2132 /* If sqlite3FindInIndex() did not find or create an index that is | |
| 2133 ** suitable for evaluating the IN operator, then evaluate using a | |
| 2134 ** sequence of comparisons. | |
| 2135 */ | |
| 2136 if( eType==IN_INDEX_NOOP ){ | |
| 2137 ExprList *pList = pExpr->x.pList; | |
| 2138 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pExpr->pLeft); | |
| 2139 int labelOk = sqlite3VdbeMakeLabel(v); | |
| 2140 int r2, regToFree; | |
| 2141 int regCkNull = 0; | |
| 2142 int ii; | |
| 2143 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); | |
| 2144 if( destIfNull!=destIfFalse ){ | |
| 2145 regCkNull = sqlite3GetTempReg(pParse); | |
| 2146 sqlite3VdbeAddOp3(v, OP_BitAnd, r1, r1, regCkNull); | |
| 2147 } | |
| 2148 for(ii=0; ii<pList->nExpr; ii++){ | |
| 2149 r2 = sqlite3ExprCodeTemp(pParse, pList->a[ii].pExpr, ®ToFree); | |
| 2150 if( regCkNull && sqlite3ExprCanBeNull(pList->a[ii].pExpr) ){ | |
| 2151 sqlite3VdbeAddOp3(v, OP_BitAnd, regCkNull, r2, regCkNull); | |
| 2152 } | |
| 2153 if( ii<pList->nExpr-1 || destIfNull!=destIfFalse ){ | |
| 2154 sqlite3VdbeAddOp4(v, OP_Eq, r1, labelOk, r2, | |
| 2155 (void*)pColl, P4_COLLSEQ); | |
| 2156 VdbeCoverageIf(v, ii<pList->nExpr-1); | |
| 2157 VdbeCoverageIf(v, ii==pList->nExpr-1); | |
| 2158 sqlite3VdbeChangeP5(v, affinity); | |
| 2159 }else{ | |
| 2160 assert( destIfNull==destIfFalse ); | |
| 2161 sqlite3VdbeAddOp4(v, OP_Ne, r1, destIfFalse, r2, | |
| 2162 (void*)pColl, P4_COLLSEQ); VdbeCoverage(v); | |
| 2163 sqlite3VdbeChangeP5(v, affinity | SQLITE_JUMPIFNULL); | |
| 2164 } | |
| 2165 sqlite3ReleaseTempReg(pParse, regToFree); | |
| 2166 } | |
| 2167 if( regCkNull ){ | |
| 2168 sqlite3VdbeAddOp2(v, OP_IsNull, regCkNull, destIfNull); VdbeCoverage(v); | |
| 2169 sqlite3VdbeGoto(v, destIfFalse); | |
| 2170 } | |
| 2171 sqlite3VdbeResolveLabel(v, labelOk); | |
| 2172 sqlite3ReleaseTempReg(pParse, regCkNull); | |
| 2173 }else{ | |
| 2174 | |
| 2175 /* If the LHS is NULL, then the result is either false or NULL depending | |
| 2176 ** on whether the RHS is empty or not, respectively. | |
| 2177 */ | |
| 2178 if( sqlite3ExprCanBeNull(pExpr->pLeft) ){ | |
| 2179 if( destIfNull==destIfFalse ){ | |
| 2180 /* Shortcut for the common case where the false and NULL outcomes are | |
| 2181 ** the same. */ | |
| 2182 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull); VdbeCoverage(v); | |
| 2183 }else{ | |
| 2184 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1); VdbeCoverage(v); | |
| 2185 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse); | |
| 2186 VdbeCoverage(v); | |
| 2187 sqlite3VdbeGoto(v, destIfNull); | |
| 2188 sqlite3VdbeJumpHere(v, addr1); | |
| 2189 } | |
| 2190 } | |
| 2191 | |
| 2192 if( eType==IN_INDEX_ROWID ){ | |
| 2193 /* In this case, the RHS is the ROWID of table b-tree | |
| 2194 */ | |
| 2195 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse); VdbeCoverage(v); | |
| 2196 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1); | |
| 2197 VdbeCoverage(v); | |
| 2198 }else{ | |
| 2199 /* In this case, the RHS is an index b-tree. | |
| 2200 */ | |
| 2201 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1); | |
| 2202 | |
| 2203 /* If the set membership test fails, then the result of the | |
| 2204 ** "x IN (...)" expression must be either 0 or NULL. If the set | |
| 2205 ** contains no NULL values, then the result is 0. If the set | |
| 2206 ** contains one or more NULL values, then the result of the | |
| 2207 ** expression is also NULL. | |
| 2208 */ | |
| 2209 assert( destIfFalse!=destIfNull || rRhsHasNull==0 ); | |
| 2210 if( rRhsHasNull==0 ){ | |
| 2211 /* This branch runs if it is known at compile time that the RHS | |
| 2212 ** cannot contain NULL values. This happens as the result | |
| 2213 ** of a "NOT NULL" constraint in the database schema. | |
| 2214 ** | |
| 2215 ** Also run this branch if NULL is equivalent to FALSE | |
| 2216 ** for this particular IN operator. | |
| 2217 */ | |
| 2218 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1); | |
| 2219 VdbeCoverage(v); | |
| 2220 }else{ | |
| 2221 /* In this branch, the RHS of the IN might contain a NULL and | |
| 2222 ** the presence of a NULL on the RHS makes a difference in the | |
| 2223 ** outcome. | |
| 2224 */ | |
| 2225 int addr1; | |
| 2226 | |
| 2227 /* First check to see if the LHS is contained in the RHS. If so, | |
| 2228 ** then the answer is TRUE the presence of NULLs in the RHS does | |
| 2229 ** not matter. If the LHS is not contained in the RHS, then the | |
| 2230 ** answer is NULL if the RHS contains NULLs and the answer is | |
| 2231 ** FALSE if the RHS is NULL-free. | |
| 2232 */ | |
| 2233 addr1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1); | |
| 2234 VdbeCoverage(v); | |
| 2235 sqlite3VdbeAddOp2(v, OP_IsNull, rRhsHasNull, destIfNull); | |
| 2236 VdbeCoverage(v); | |
| 2237 sqlite3VdbeGoto(v, destIfFalse); | |
| 2238 sqlite3VdbeJumpHere(v, addr1); | |
| 2239 } | |
| 2240 } | |
| 2241 } | |
| 2242 sqlite3ReleaseTempReg(pParse, r1); | |
| 2243 sqlite3ExprCachePop(pParse); | |
| 2244 VdbeComment((v, "end IN expr")); | |
| 2245 } | |
| 2246 #endif /* SQLITE_OMIT_SUBQUERY */ | |
| 2247 | |
| 2248 #ifndef SQLITE_OMIT_FLOATING_POINT | |
| 2249 /* | |
| 2250 ** Generate an instruction that will put the floating point | |
| 2251 ** value described by z[0..n-1] into register iMem. | |
| 2252 ** | |
| 2253 ** The z[] string will probably not be zero-terminated. But the | |
| 2254 ** z[n] character is guaranteed to be something that does not look | |
| 2255 ** like the continuation of the number. | |
| 2256 */ | |
| 2257 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){ | |
| 2258 if( ALWAYS(z!=0) ){ | |
| 2259 double value; | |
| 2260 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8); | |
| 2261 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */ | |
| 2262 if( negateFlag ) value = -value; | |
| 2263 sqlite3VdbeAddOp4Dup8(v, OP_Real, 0, iMem, 0, (u8*)&value, P4_REAL); | |
| 2264 } | |
| 2265 } | |
| 2266 #endif | |
| 2267 | |
| 2268 | |
| 2269 /* | |
| 2270 ** Generate an instruction that will put the integer describe by | |
| 2271 ** text z[0..n-1] into register iMem. | |
| 2272 ** | |
| 2273 ** Expr.u.zToken is always UTF8 and zero-terminated. | |
| 2274 */ | |
| 2275 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){ | |
| 2276 Vdbe *v = pParse->pVdbe; | |
| 2277 if( pExpr->flags & EP_IntValue ){ | |
| 2278 int i = pExpr->u.iValue; | |
| 2279 assert( i>=0 ); | |
| 2280 if( negFlag ) i = -i; | |
| 2281 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem); | |
| 2282 }else{ | |
| 2283 int c; | |
| 2284 i64 value; | |
| 2285 const char *z = pExpr->u.zToken; | |
| 2286 assert( z!=0 ); | |
| 2287 c = sqlite3DecOrHexToI64(z, &value); | |
| 2288 if( c==0 || (c==2 && negFlag) ){ | |
| 2289 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; } | |
| 2290 sqlite3VdbeAddOp4Dup8(v, OP_Int64, 0, iMem, 0, (u8*)&value, P4_INT64); | |
| 2291 }else{ | |
| 2292 #ifdef SQLITE_OMIT_FLOATING_POINT | |
| 2293 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z); | |
| 2294 #else | |
| 2295 #ifndef SQLITE_OMIT_HEX_INTEGER | |
| 2296 if( sqlite3_strnicmp(z,"0x",2)==0 ){ | |
| 2297 sqlite3ErrorMsg(pParse, "hex literal too big: %s", z); | |
| 2298 }else | |
| 2299 #endif | |
| 2300 { | |
| 2301 codeReal(v, z, negFlag, iMem); | |
| 2302 } | |
| 2303 #endif | |
| 2304 } | |
| 2305 } | |
| 2306 } | |
| 2307 | |
| 2308 /* | |
| 2309 ** Clear a cache entry. | |
| 2310 */ | |
| 2311 static void cacheEntryClear(Parse *pParse, struct yColCache *p){ | |
| 2312 if( p->tempReg ){ | |
| 2313 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){ | |
| 2314 pParse->aTempReg[pParse->nTempReg++] = p->iReg; | |
| 2315 } | |
| 2316 p->tempReg = 0; | |
| 2317 } | |
| 2318 } | |
| 2319 | |
| 2320 | |
| 2321 /* | |
| 2322 ** Record in the column cache that a particular column from a | |
| 2323 ** particular table is stored in a particular register. | |
| 2324 */ | |
| 2325 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){ | |
| 2326 int i; | |
| 2327 int minLru; | |
| 2328 int idxLru; | |
| 2329 struct yColCache *p; | |
| 2330 | |
| 2331 /* Unless an error has occurred, register numbers are always positive. */ | |
| 2332 assert( iReg>0 || pParse->nErr || pParse->db->mallocFailed ); | |
| 2333 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */ | |
| 2334 | |
| 2335 /* The SQLITE_ColumnCache flag disables the column cache. This is used | |
| 2336 ** for testing only - to verify that SQLite always gets the same answer | |
| 2337 ** with and without the column cache. | |
| 2338 */ | |
| 2339 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return; | |
| 2340 | |
| 2341 /* First replace any existing entry. | |
| 2342 ** | |
| 2343 ** Actually, the way the column cache is currently used, we are guaranteed | |
| 2344 ** that the object will never already be in cache. Verify this guarantee. | |
| 2345 */ | |
| 2346 #ifndef NDEBUG | |
| 2347 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ | |
| 2348 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol ); | |
| 2349 } | |
| 2350 #endif | |
| 2351 | |
| 2352 /* Find an empty slot and replace it */ | |
| 2353 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ | |
| 2354 if( p->iReg==0 ){ | |
| 2355 p->iLevel = pParse->iCacheLevel; | |
| 2356 p->iTable = iTab; | |
| 2357 p->iColumn = iCol; | |
| 2358 p->iReg = iReg; | |
| 2359 p->tempReg = 0; | |
| 2360 p->lru = pParse->iCacheCnt++; | |
| 2361 return; | |
| 2362 } | |
| 2363 } | |
| 2364 | |
| 2365 /* Replace the last recently used */ | |
| 2366 minLru = 0x7fffffff; | |
| 2367 idxLru = -1; | |
| 2368 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ | |
| 2369 if( p->lru<minLru ){ | |
| 2370 idxLru = i; | |
| 2371 minLru = p->lru; | |
| 2372 } | |
| 2373 } | |
| 2374 if( ALWAYS(idxLru>=0) ){ | |
| 2375 p = &pParse->aColCache[idxLru]; | |
| 2376 p->iLevel = pParse->iCacheLevel; | |
| 2377 p->iTable = iTab; | |
| 2378 p->iColumn = iCol; | |
| 2379 p->iReg = iReg; | |
| 2380 p->tempReg = 0; | |
| 2381 p->lru = pParse->iCacheCnt++; | |
| 2382 return; | |
| 2383 } | |
| 2384 } | |
| 2385 | |
| 2386 /* | |
| 2387 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten. | |
| 2388 ** Purge the range of registers from the column cache. | |
| 2389 */ | |
| 2390 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){ | |
| 2391 int i; | |
| 2392 int iLast = iReg + nReg - 1; | |
| 2393 struct yColCache *p; | |
| 2394 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ | |
| 2395 int r = p->iReg; | |
| 2396 if( r>=iReg && r<=iLast ){ | |
| 2397 cacheEntryClear(pParse, p); | |
| 2398 p->iReg = 0; | |
| 2399 } | |
| 2400 } | |
| 2401 } | |
| 2402 | |
| 2403 /* | |
| 2404 ** Remember the current column cache context. Any new entries added | |
| 2405 ** added to the column cache after this call are removed when the | |
| 2406 ** corresponding pop occurs. | |
| 2407 */ | |
| 2408 void sqlite3ExprCachePush(Parse *pParse){ | |
| 2409 pParse->iCacheLevel++; | |
| 2410 #ifdef SQLITE_DEBUG | |
| 2411 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ | |
| 2412 printf("PUSH to %d\n", pParse->iCacheLevel); | |
| 2413 } | |
| 2414 #endif | |
| 2415 } | |
| 2416 | |
| 2417 /* | |
| 2418 ** Remove from the column cache any entries that were added since the | |
| 2419 ** the previous sqlite3ExprCachePush operation. In other words, restore | |
| 2420 ** the cache to the state it was in prior the most recent Push. | |
| 2421 */ | |
| 2422 void sqlite3ExprCachePop(Parse *pParse){ | |
| 2423 int i; | |
| 2424 struct yColCache *p; | |
| 2425 assert( pParse->iCacheLevel>=1 ); | |
| 2426 pParse->iCacheLevel--; | |
| 2427 #ifdef SQLITE_DEBUG | |
| 2428 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ | |
| 2429 printf("POP to %d\n", pParse->iCacheLevel); | |
| 2430 } | |
| 2431 #endif | |
| 2432 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ | |
| 2433 if( p->iReg && p->iLevel>pParse->iCacheLevel ){ | |
| 2434 cacheEntryClear(pParse, p); | |
| 2435 p->iReg = 0; | |
| 2436 } | |
| 2437 } | |
| 2438 } | |
| 2439 | |
| 2440 /* | |
| 2441 ** When a cached column is reused, make sure that its register is | |
| 2442 ** no longer available as a temp register. ticket #3879: that same | |
| 2443 ** register might be in the cache in multiple places, so be sure to | |
| 2444 ** get them all. | |
| 2445 */ | |
| 2446 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){ | |
| 2447 int i; | |
| 2448 struct yColCache *p; | |
| 2449 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ | |
| 2450 if( p->iReg==iReg ){ | |
| 2451 p->tempReg = 0; | |
| 2452 } | |
| 2453 } | |
| 2454 } | |
| 2455 | |
| 2456 /* Generate code that will load into register regOut a value that is | |
| 2457 ** appropriate for the iIdxCol-th column of index pIdx. | |
| 2458 */ | |
| 2459 void sqlite3ExprCodeLoadIndexColumn( | |
| 2460 Parse *pParse, /* The parsing context */ | |
| 2461 Index *pIdx, /* The index whose column is to be loaded */ | |
| 2462 int iTabCur, /* Cursor pointing to a table row */ | |
| 2463 int iIdxCol, /* The column of the index to be loaded */ | |
| 2464 int regOut /* Store the index column value in this register */ | |
| 2465 ){ | |
| 2466 i16 iTabCol = pIdx->aiColumn[iIdxCol]; | |
| 2467 if( iTabCol==XN_EXPR ){ | |
| 2468 assert( pIdx->aColExpr ); | |
| 2469 assert( pIdx->aColExpr->nExpr>iIdxCol ); | |
| 2470 pParse->iSelfTab = iTabCur; | |
| 2471 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[iIdxCol].pExpr, regOut); | |
| 2472 }else{ | |
| 2473 sqlite3ExprCodeGetColumnOfTable(pParse->pVdbe, pIdx->pTable, iTabCur, | |
| 2474 iTabCol, regOut); | |
| 2475 } | |
| 2476 } | |
| 2477 | |
| 2478 /* | |
| 2479 ** Generate code to extract the value of the iCol-th column of a table. | |
| 2480 */ | |
| 2481 void sqlite3ExprCodeGetColumnOfTable( | |
| 2482 Vdbe *v, /* The VDBE under construction */ | |
| 2483 Table *pTab, /* The table containing the value */ | |
| 2484 int iTabCur, /* The table cursor. Or the PK cursor for WITHOUT ROWID */ | |
| 2485 int iCol, /* Index of the column to extract */ | |
| 2486 int regOut /* Extract the value into this register */ | |
| 2487 ){ | |
| 2488 if( iCol<0 || iCol==pTab->iPKey ){ | |
| 2489 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut); | |
| 2490 }else{ | |
| 2491 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column; | |
| 2492 int x = iCol; | |
| 2493 if( !HasRowid(pTab) ){ | |
| 2494 x = sqlite3ColumnOfIndex(sqlite3PrimaryKeyIndex(pTab), iCol); | |
| 2495 } | |
| 2496 sqlite3VdbeAddOp3(v, op, iTabCur, x, regOut); | |
| 2497 } | |
| 2498 if( iCol>=0 ){ | |
| 2499 sqlite3ColumnDefault(v, pTab, iCol, regOut); | |
| 2500 } | |
| 2501 } | |
| 2502 | |
| 2503 /* | |
| 2504 ** Generate code that will extract the iColumn-th column from | |
| 2505 ** table pTab and store the column value in a register. | |
| 2506 ** | |
| 2507 ** An effort is made to store the column value in register iReg. This | |
| 2508 ** is not garanteeed for GetColumn() - the result can be stored in | |
| 2509 ** any register. But the result is guaranteed to land in register iReg | |
| 2510 ** for GetColumnToReg(). | |
| 2511 ** | |
| 2512 ** There must be an open cursor to pTab in iTable when this routine | |
| 2513 ** is called. If iColumn<0 then code is generated that extracts the rowid. | |
| 2514 */ | |
| 2515 int sqlite3ExprCodeGetColumn( | |
| 2516 Parse *pParse, /* Parsing and code generating context */ | |
| 2517 Table *pTab, /* Description of the table we are reading from */ | |
| 2518 int iColumn, /* Index of the table column */ | |
| 2519 int iTable, /* The cursor pointing to the table */ | |
| 2520 int iReg, /* Store results here */ | |
| 2521 u8 p5 /* P5 value for OP_Column + FLAGS */ | |
| 2522 ){ | |
| 2523 Vdbe *v = pParse->pVdbe; | |
| 2524 int i; | |
| 2525 struct yColCache *p; | |
| 2526 | |
| 2527 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ | |
| 2528 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){ | |
| 2529 p->lru = pParse->iCacheCnt++; | |
| 2530 sqlite3ExprCachePinRegister(pParse, p->iReg); | |
| 2531 return p->iReg; | |
| 2532 } | |
| 2533 } | |
| 2534 assert( v!=0 ); | |
| 2535 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg); | |
| 2536 if( p5 ){ | |
| 2537 sqlite3VdbeChangeP5(v, p5); | |
| 2538 }else{ | |
| 2539 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg); | |
| 2540 } | |
| 2541 return iReg; | |
| 2542 } | |
| 2543 void sqlite3ExprCodeGetColumnToReg( | |
| 2544 Parse *pParse, /* Parsing and code generating context */ | |
| 2545 Table *pTab, /* Description of the table we are reading from */ | |
| 2546 int iColumn, /* Index of the table column */ | |
| 2547 int iTable, /* The cursor pointing to the table */ | |
| 2548 int iReg /* Store results here */ | |
| 2549 ){ | |
| 2550 int r1 = sqlite3ExprCodeGetColumn(pParse, pTab, iColumn, iTable, iReg, 0); | |
| 2551 if( r1!=iReg ) sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, r1, iReg); | |
| 2552 } | |
| 2553 | |
| 2554 | |
| 2555 /* | |
| 2556 ** Clear all column cache entries. | |
| 2557 */ | |
| 2558 void sqlite3ExprCacheClear(Parse *pParse){ | |
| 2559 int i; | |
| 2560 struct yColCache *p; | |
| 2561 | |
| 2562 #if SQLITE_DEBUG | |
| 2563 if( pParse->db->flags & SQLITE_VdbeAddopTrace ){ | |
| 2564 printf("CLEAR\n"); | |
| 2565 } | |
| 2566 #endif | |
| 2567 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ | |
| 2568 if( p->iReg ){ | |
| 2569 cacheEntryClear(pParse, p); | |
| 2570 p->iReg = 0; | |
| 2571 } | |
| 2572 } | |
| 2573 } | |
| 2574 | |
| 2575 /* | |
| 2576 ** Record the fact that an affinity change has occurred on iCount | |
| 2577 ** registers starting with iStart. | |
| 2578 */ | |
| 2579 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){ | |
| 2580 sqlite3ExprCacheRemove(pParse, iStart, iCount); | |
| 2581 } | |
| 2582 | |
| 2583 /* | |
| 2584 ** Generate code to move content from registers iFrom...iFrom+nReg-1 | |
| 2585 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date. | |
| 2586 */ | |
| 2587 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){ | |
| 2588 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo ); | |
| 2589 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg); | |
| 2590 sqlite3ExprCacheRemove(pParse, iFrom, nReg); | |
| 2591 } | |
| 2592 | |
| 2593 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST) | |
| 2594 /* | |
| 2595 ** Return true if any register in the range iFrom..iTo (inclusive) | |
| 2596 ** is used as part of the column cache. | |
| 2597 ** | |
| 2598 ** This routine is used within assert() and testcase() macros only | |
| 2599 ** and does not appear in a normal build. | |
| 2600 */ | |
| 2601 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){ | |
| 2602 int i; | |
| 2603 struct yColCache *p; | |
| 2604 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ | |
| 2605 int r = p->iReg; | |
| 2606 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/ | |
| 2607 } | |
| 2608 return 0; | |
| 2609 } | |
| 2610 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */ | |
| 2611 | |
| 2612 /* | |
| 2613 ** Convert an expression node to a TK_REGISTER | |
| 2614 */ | |
| 2615 static void exprToRegister(Expr *p, int iReg){ | |
| 2616 p->op2 = p->op; | |
| 2617 p->op = TK_REGISTER; | |
| 2618 p->iTable = iReg; | |
| 2619 ExprClearProperty(p, EP_Skip); | |
| 2620 } | |
| 2621 | |
| 2622 /* | |
| 2623 ** Generate code into the current Vdbe to evaluate the given | |
| 2624 ** expression. Attempt to store the results in register "target". | |
| 2625 ** Return the register where results are stored. | |
| 2626 ** | |
| 2627 ** With this routine, there is no guarantee that results will | |
| 2628 ** be stored in target. The result might be stored in some other | |
| 2629 ** register if it is convenient to do so. The calling function | |
| 2630 ** must check the return code and move the results to the desired | |
| 2631 ** register. | |
| 2632 */ | |
| 2633 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){ | |
| 2634 Vdbe *v = pParse->pVdbe; /* The VM under construction */ | |
| 2635 int op; /* The opcode being coded */ | |
| 2636 int inReg = target; /* Results stored in register inReg */ | |
| 2637 int regFree1 = 0; /* If non-zero free this temporary register */ | |
| 2638 int regFree2 = 0; /* If non-zero free this temporary register */ | |
| 2639 int r1, r2, r3, r4; /* Various register numbers */ | |
| 2640 sqlite3 *db = pParse->db; /* The database connection */ | |
| 2641 Expr tempX; /* Temporary expression node */ | |
| 2642 | |
| 2643 assert( target>0 && target<=pParse->nMem ); | |
| 2644 if( v==0 ){ | |
| 2645 assert( pParse->db->mallocFailed ); | |
| 2646 return 0; | |
| 2647 } | |
| 2648 | |
| 2649 if( pExpr==0 ){ | |
| 2650 op = TK_NULL; | |
| 2651 }else{ | |
| 2652 op = pExpr->op; | |
| 2653 } | |
| 2654 switch( op ){ | |
| 2655 case TK_AGG_COLUMN: { | |
| 2656 AggInfo *pAggInfo = pExpr->pAggInfo; | |
| 2657 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg]; | |
| 2658 if( !pAggInfo->directMode ){ | |
| 2659 assert( pCol->iMem>0 ); | |
| 2660 inReg = pCol->iMem; | |
| 2661 break; | |
| 2662 }else if( pAggInfo->useSortingIdx ){ | |
| 2663 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab, | |
| 2664 pCol->iSorterColumn, target); | |
| 2665 break; | |
| 2666 } | |
| 2667 /* Otherwise, fall thru into the TK_COLUMN case */ | |
| 2668 } | |
| 2669 case TK_COLUMN: { | |
| 2670 int iTab = pExpr->iTable; | |
| 2671 if( iTab<0 ){ | |
| 2672 if( pParse->ckBase>0 ){ | |
| 2673 /* Generating CHECK constraints or inserting into partial index */ | |
| 2674 inReg = pExpr->iColumn + pParse->ckBase; | |
| 2675 break; | |
| 2676 }else{ | |
| 2677 /* Coding an expression that is part of an index where column names | |
| 2678 ** in the index refer to the table to which the index belongs */ | |
| 2679 iTab = pParse->iSelfTab; | |
| 2680 } | |
| 2681 } | |
| 2682 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab, | |
| 2683 pExpr->iColumn, iTab, target, | |
| 2684 pExpr->op2); | |
| 2685 break; | |
| 2686 } | |
| 2687 case TK_INTEGER: { | |
| 2688 codeInteger(pParse, pExpr, 0, target); | |
| 2689 break; | |
| 2690 } | |
| 2691 #ifndef SQLITE_OMIT_FLOATING_POINT | |
| 2692 case TK_FLOAT: { | |
| 2693 assert( !ExprHasProperty(pExpr, EP_IntValue) ); | |
| 2694 codeReal(v, pExpr->u.zToken, 0, target); | |
| 2695 break; | |
| 2696 } | |
| 2697 #endif | |
| 2698 case TK_STRING: { | |
| 2699 assert( !ExprHasProperty(pExpr, EP_IntValue) ); | |
| 2700 sqlite3VdbeLoadString(v, target, pExpr->u.zToken); | |
| 2701 break; | |
| 2702 } | |
| 2703 case TK_NULL: { | |
| 2704 sqlite3VdbeAddOp2(v, OP_Null, 0, target); | |
| 2705 break; | |
| 2706 } | |
| 2707 #ifndef SQLITE_OMIT_BLOB_LITERAL | |
| 2708 case TK_BLOB: { | |
| 2709 int n; | |
| 2710 const char *z; | |
| 2711 char *zBlob; | |
| 2712 assert( !ExprHasProperty(pExpr, EP_IntValue) ); | |
| 2713 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' ); | |
| 2714 assert( pExpr->u.zToken[1]=='\'' ); | |
| 2715 z = &pExpr->u.zToken[2]; | |
| 2716 n = sqlite3Strlen30(z) - 1; | |
| 2717 assert( z[n]=='\'' ); | |
| 2718 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n); | |
| 2719 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC); | |
| 2720 break; | |
| 2721 } | |
| 2722 #endif | |
| 2723 case TK_VARIABLE: { | |
| 2724 assert( !ExprHasProperty(pExpr, EP_IntValue) ); | |
| 2725 assert( pExpr->u.zToken!=0 ); | |
| 2726 assert( pExpr->u.zToken[0]!=0 ); | |
| 2727 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target); | |
| 2728 if( pExpr->u.zToken[1]!=0 ){ | |
| 2729 assert( pExpr->u.zToken[0]=='?' | |
| 2730 || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 ); | |
| 2731 sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC); | |
| 2732 } | |
| 2733 break; | |
| 2734 } | |
| 2735 case TK_REGISTER: { | |
| 2736 inReg = pExpr->iTable; | |
| 2737 break; | |
| 2738 } | |
| 2739 #ifndef SQLITE_OMIT_CAST | |
| 2740 case TK_CAST: { | |
| 2741 /* Expressions of the form: CAST(pLeft AS token) */ | |
| 2742 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); | |
| 2743 if( inReg!=target ){ | |
| 2744 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target); | |
| 2745 inReg = target; | |
| 2746 } | |
| 2747 sqlite3VdbeAddOp2(v, OP_Cast, target, | |
| 2748 sqlite3AffinityType(pExpr->u.zToken, 0)); | |
| 2749 testcase( usedAsColumnCache(pParse, inReg, inReg) ); | |
| 2750 sqlite3ExprCacheAffinityChange(pParse, inReg, 1); | |
| 2751 break; | |
| 2752 } | |
| 2753 #endif /* SQLITE_OMIT_CAST */ | |
| 2754 case TK_LT: | |
| 2755 case TK_LE: | |
| 2756 case TK_GT: | |
| 2757 case TK_GE: | |
| 2758 case TK_NE: | |
| 2759 case TK_EQ: { | |
| 2760 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); | |
| 2761 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); | |
| 2762 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, | |
| 2763 r1, r2, inReg, SQLITE_STOREP2); | |
| 2764 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); | |
| 2765 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); | |
| 2766 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); | |
| 2767 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); | |
| 2768 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); | |
| 2769 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); | |
| 2770 testcase( regFree1==0 ); | |
| 2771 testcase( regFree2==0 ); | |
| 2772 break; | |
| 2773 } | |
| 2774 case TK_IS: | |
| 2775 case TK_ISNOT: { | |
| 2776 testcase( op==TK_IS ); | |
| 2777 testcase( op==TK_ISNOT ); | |
| 2778 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); | |
| 2779 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); | |
| 2780 op = (op==TK_IS) ? TK_EQ : TK_NE; | |
| 2781 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, | |
| 2782 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ); | |
| 2783 VdbeCoverageIf(v, op==TK_EQ); | |
| 2784 VdbeCoverageIf(v, op==TK_NE); | |
| 2785 testcase( regFree1==0 ); | |
| 2786 testcase( regFree2==0 ); | |
| 2787 break; | |
| 2788 } | |
| 2789 case TK_AND: | |
| 2790 case TK_OR: | |
| 2791 case TK_PLUS: | |
| 2792 case TK_STAR: | |
| 2793 case TK_MINUS: | |
| 2794 case TK_REM: | |
| 2795 case TK_BITAND: | |
| 2796 case TK_BITOR: | |
| 2797 case TK_SLASH: | |
| 2798 case TK_LSHIFT: | |
| 2799 case TK_RSHIFT: | |
| 2800 case TK_CONCAT: { | |
| 2801 assert( TK_AND==OP_And ); testcase( op==TK_AND ); | |
| 2802 assert( TK_OR==OP_Or ); testcase( op==TK_OR ); | |
| 2803 assert( TK_PLUS==OP_Add ); testcase( op==TK_PLUS ); | |
| 2804 assert( TK_MINUS==OP_Subtract ); testcase( op==TK_MINUS ); | |
| 2805 assert( TK_REM==OP_Remainder ); testcase( op==TK_REM ); | |
| 2806 assert( TK_BITAND==OP_BitAnd ); testcase( op==TK_BITAND ); | |
| 2807 assert( TK_BITOR==OP_BitOr ); testcase( op==TK_BITOR ); | |
| 2808 assert( TK_SLASH==OP_Divide ); testcase( op==TK_SLASH ); | |
| 2809 assert( TK_LSHIFT==OP_ShiftLeft ); testcase( op==TK_LSHIFT ); | |
| 2810 assert( TK_RSHIFT==OP_ShiftRight ); testcase( op==TK_RSHIFT ); | |
| 2811 assert( TK_CONCAT==OP_Concat ); testcase( op==TK_CONCAT ); | |
| 2812 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); | |
| 2813 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); | |
| 2814 sqlite3VdbeAddOp3(v, op, r2, r1, target); | |
| 2815 testcase( regFree1==0 ); | |
| 2816 testcase( regFree2==0 ); | |
| 2817 break; | |
| 2818 } | |
| 2819 case TK_UMINUS: { | |
| 2820 Expr *pLeft = pExpr->pLeft; | |
| 2821 assert( pLeft ); | |
| 2822 if( pLeft->op==TK_INTEGER ){ | |
| 2823 codeInteger(pParse, pLeft, 1, target); | |
| 2824 #ifndef SQLITE_OMIT_FLOATING_POINT | |
| 2825 }else if( pLeft->op==TK_FLOAT ){ | |
| 2826 assert( !ExprHasProperty(pExpr, EP_IntValue) ); | |
| 2827 codeReal(v, pLeft->u.zToken, 1, target); | |
| 2828 #endif | |
| 2829 }else{ | |
| 2830 tempX.op = TK_INTEGER; | |
| 2831 tempX.flags = EP_IntValue|EP_TokenOnly; | |
| 2832 tempX.u.iValue = 0; | |
| 2833 r1 = sqlite3ExprCodeTemp(pParse, &tempX, ®Free1); | |
| 2834 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free2); | |
| 2835 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target); | |
| 2836 testcase( regFree2==0 ); | |
| 2837 } | |
| 2838 inReg = target; | |
| 2839 break; | |
| 2840 } | |
| 2841 case TK_BITNOT: | |
| 2842 case TK_NOT: { | |
| 2843 assert( TK_BITNOT==OP_BitNot ); testcase( op==TK_BITNOT ); | |
| 2844 assert( TK_NOT==OP_Not ); testcase( op==TK_NOT ); | |
| 2845 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); | |
| 2846 testcase( regFree1==0 ); | |
| 2847 inReg = target; | |
| 2848 sqlite3VdbeAddOp2(v, op, r1, inReg); | |
| 2849 break; | |
| 2850 } | |
| 2851 case TK_ISNULL: | |
| 2852 case TK_NOTNULL: { | |
| 2853 int addr; | |
| 2854 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); | |
| 2855 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); | |
| 2856 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); | |
| 2857 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); | |
| 2858 testcase( regFree1==0 ); | |
| 2859 addr = sqlite3VdbeAddOp1(v, op, r1); | |
| 2860 VdbeCoverageIf(v, op==TK_ISNULL); | |
| 2861 VdbeCoverageIf(v, op==TK_NOTNULL); | |
| 2862 sqlite3VdbeAddOp2(v, OP_Integer, 0, target); | |
| 2863 sqlite3VdbeJumpHere(v, addr); | |
| 2864 break; | |
| 2865 } | |
| 2866 case TK_AGG_FUNCTION: { | |
| 2867 AggInfo *pInfo = pExpr->pAggInfo; | |
| 2868 if( pInfo==0 ){ | |
| 2869 assert( !ExprHasProperty(pExpr, EP_IntValue) ); | |
| 2870 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken); | |
| 2871 }else{ | |
| 2872 inReg = pInfo->aFunc[pExpr->iAgg].iMem; | |
| 2873 } | |
| 2874 break; | |
| 2875 } | |
| 2876 case TK_FUNCTION: { | |
| 2877 ExprList *pFarg; /* List of function arguments */ | |
| 2878 int nFarg; /* Number of function arguments */ | |
| 2879 FuncDef *pDef; /* The function definition object */ | |
| 2880 int nId; /* Length of the function name in bytes */ | |
| 2881 const char *zId; /* The function name */ | |
| 2882 u32 constMask = 0; /* Mask of function arguments that are constant */ | |
| 2883 int i; /* Loop counter */ | |
| 2884 u8 enc = ENC(db); /* The text encoding used by this database */ | |
| 2885 CollSeq *pColl = 0; /* A collating sequence */ | |
| 2886 | |
| 2887 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); | |
| 2888 if( ExprHasProperty(pExpr, EP_TokenOnly) ){ | |
| 2889 pFarg = 0; | |
| 2890 }else{ | |
| 2891 pFarg = pExpr->x.pList; | |
| 2892 } | |
| 2893 nFarg = pFarg ? pFarg->nExpr : 0; | |
| 2894 assert( !ExprHasProperty(pExpr, EP_IntValue) ); | |
| 2895 zId = pExpr->u.zToken; | |
| 2896 nId = sqlite3Strlen30(zId); | |
| 2897 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0); | |
| 2898 if( pDef==0 || pDef->xFunc==0 ){ | |
| 2899 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId); | |
| 2900 break; | |
| 2901 } | |
| 2902 | |
| 2903 /* Attempt a direct implementation of the built-in COALESCE() and | |
| 2904 ** IFNULL() functions. This avoids unnecessary evaluation of | |
| 2905 ** arguments past the first non-NULL argument. | |
| 2906 */ | |
| 2907 if( pDef->funcFlags & SQLITE_FUNC_COALESCE ){ | |
| 2908 int endCoalesce = sqlite3VdbeMakeLabel(v); | |
| 2909 assert( nFarg>=2 ); | |
| 2910 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target); | |
| 2911 for(i=1; i<nFarg; i++){ | |
| 2912 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce); | |
| 2913 VdbeCoverage(v); | |
| 2914 sqlite3ExprCacheRemove(pParse, target, 1); | |
| 2915 sqlite3ExprCachePush(pParse); | |
| 2916 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target); | |
| 2917 sqlite3ExprCachePop(pParse); | |
| 2918 } | |
| 2919 sqlite3VdbeResolveLabel(v, endCoalesce); | |
| 2920 break; | |
| 2921 } | |
| 2922 | |
| 2923 /* The UNLIKELY() function is a no-op. The result is the value | |
| 2924 ** of the first argument. | |
| 2925 */ | |
| 2926 if( pDef->funcFlags & SQLITE_FUNC_UNLIKELY ){ | |
| 2927 assert( nFarg>=1 ); | |
| 2928 inReg = sqlite3ExprCodeTarget(pParse, pFarg->a[0].pExpr, target); | |
| 2929 break; | |
| 2930 } | |
| 2931 | |
| 2932 for(i=0; i<nFarg; i++){ | |
| 2933 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){ | |
| 2934 testcase( i==31 ); | |
| 2935 constMask |= MASKBIT32(i); | |
| 2936 } | |
| 2937 if( (pDef->funcFlags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){ | |
| 2938 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr); | |
| 2939 } | |
| 2940 } | |
| 2941 if( pFarg ){ | |
| 2942 if( constMask ){ | |
| 2943 r1 = pParse->nMem+1; | |
| 2944 pParse->nMem += nFarg; | |
| 2945 }else{ | |
| 2946 r1 = sqlite3GetTempRange(pParse, nFarg); | |
| 2947 } | |
| 2948 | |
| 2949 /* For length() and typeof() functions with a column argument, | |
| 2950 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG | |
| 2951 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data | |
| 2952 ** loading. | |
| 2953 */ | |
| 2954 if( (pDef->funcFlags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){ | |
| 2955 u8 exprOp; | |
| 2956 assert( nFarg==1 ); | |
| 2957 assert( pFarg->a[0].pExpr!=0 ); | |
| 2958 exprOp = pFarg->a[0].pExpr->op; | |
| 2959 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){ | |
| 2960 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG ); | |
| 2961 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG ); | |
| 2962 testcase( pDef->funcFlags & OPFLAG_LENGTHARG ); | |
| 2963 pFarg->a[0].pExpr->op2 = | |
| 2964 pDef->funcFlags & (OPFLAG_LENGTHARG|OPFLAG_TYPEOFARG); | |
| 2965 } | |
| 2966 } | |
| 2967 | |
| 2968 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */ | |
| 2969 sqlite3ExprCodeExprList(pParse, pFarg, r1, 0, | |
| 2970 SQLITE_ECEL_DUP|SQLITE_ECEL_FACTOR); | |
| 2971 sqlite3ExprCachePop(pParse); /* Ticket 2ea2425d34be */ | |
| 2972 }else{ | |
| 2973 r1 = 0; | |
| 2974 } | |
| 2975 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
| 2976 /* Possibly overload the function if the first argument is | |
| 2977 ** a virtual table column. | |
| 2978 ** | |
| 2979 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the | |
| 2980 ** second argument, not the first, as the argument to test to | |
| 2981 ** see if it is a column in a virtual table. This is done because | |
| 2982 ** the left operand of infix functions (the operand we want to | |
| 2983 ** control overloading) ends up as the second argument to the | |
| 2984 ** function. The expression "A glob B" is equivalent to | |
| 2985 ** "glob(B,A). We want to use the A in "A glob B" to test | |
| 2986 ** for function overloading. But we use the B term in "glob(B,A)". | |
| 2987 */ | |
| 2988 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){ | |
| 2989 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr); | |
| 2990 }else if( nFarg>0 ){ | |
| 2991 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr); | |
| 2992 } | |
| 2993 #endif | |
| 2994 if( pDef->funcFlags & SQLITE_FUNC_NEEDCOLL ){ | |
| 2995 if( !pColl ) pColl = db->pDfltColl; | |
| 2996 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ); | |
| 2997 } | |
| 2998 sqlite3VdbeAddOp4(v, OP_Function0, constMask, r1, target, | |
| 2999 (char*)pDef, P4_FUNCDEF); | |
| 3000 sqlite3VdbeChangeP5(v, (u8)nFarg); | |
| 3001 if( nFarg && constMask==0 ){ | |
| 3002 sqlite3ReleaseTempRange(pParse, r1, nFarg); | |
| 3003 } | |
| 3004 break; | |
| 3005 } | |
| 3006 #ifndef SQLITE_OMIT_SUBQUERY | |
| 3007 case TK_EXISTS: | |
| 3008 case TK_SELECT: { | |
| 3009 testcase( op==TK_EXISTS ); | |
| 3010 testcase( op==TK_SELECT ); | |
| 3011 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0); | |
| 3012 break; | |
| 3013 } | |
| 3014 case TK_IN: { | |
| 3015 int destIfFalse = sqlite3VdbeMakeLabel(v); | |
| 3016 int destIfNull = sqlite3VdbeMakeLabel(v); | |
| 3017 sqlite3VdbeAddOp2(v, OP_Null, 0, target); | |
| 3018 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); | |
| 3019 sqlite3VdbeAddOp2(v, OP_Integer, 1, target); | |
| 3020 sqlite3VdbeResolveLabel(v, destIfFalse); | |
| 3021 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0); | |
| 3022 sqlite3VdbeResolveLabel(v, destIfNull); | |
| 3023 break; | |
| 3024 } | |
| 3025 #endif /* SQLITE_OMIT_SUBQUERY */ | |
| 3026 | |
| 3027 | |
| 3028 /* | |
| 3029 ** x BETWEEN y AND z | |
| 3030 ** | |
| 3031 ** This is equivalent to | |
| 3032 ** | |
| 3033 ** x>=y AND x<=z | |
| 3034 ** | |
| 3035 ** X is stored in pExpr->pLeft. | |
| 3036 ** Y is stored in pExpr->pList->a[0].pExpr. | |
| 3037 ** Z is stored in pExpr->pList->a[1].pExpr. | |
| 3038 */ | |
| 3039 case TK_BETWEEN: { | |
| 3040 Expr *pLeft = pExpr->pLeft; | |
| 3041 struct ExprList_item *pLItem = pExpr->x.pList->a; | |
| 3042 Expr *pRight = pLItem->pExpr; | |
| 3043 | |
| 3044 r1 = sqlite3ExprCodeTemp(pParse, pLeft, ®Free1); | |
| 3045 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); | |
| 3046 testcase( regFree1==0 ); | |
| 3047 testcase( regFree2==0 ); | |
| 3048 r3 = sqlite3GetTempReg(pParse); | |
| 3049 r4 = sqlite3GetTempReg(pParse); | |
| 3050 codeCompare(pParse, pLeft, pRight, OP_Ge, | |
| 3051 r1, r2, r3, SQLITE_STOREP2); VdbeCoverage(v); | |
| 3052 pLItem++; | |
| 3053 pRight = pLItem->pExpr; | |
| 3054 sqlite3ReleaseTempReg(pParse, regFree2); | |
| 3055 r2 = sqlite3ExprCodeTemp(pParse, pRight, ®Free2); | |
| 3056 testcase( regFree2==0 ); | |
| 3057 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2); | |
| 3058 VdbeCoverage(v); | |
| 3059 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target); | |
| 3060 sqlite3ReleaseTempReg(pParse, r3); | |
| 3061 sqlite3ReleaseTempReg(pParse, r4); | |
| 3062 break; | |
| 3063 } | |
| 3064 case TK_COLLATE: | |
| 3065 case TK_UPLUS: { | |
| 3066 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target); | |
| 3067 break; | |
| 3068 } | |
| 3069 | |
| 3070 case TK_TRIGGER: { | |
| 3071 /* If the opcode is TK_TRIGGER, then the expression is a reference | |
| 3072 ** to a column in the new.* or old.* pseudo-tables available to | |
| 3073 ** trigger programs. In this case Expr.iTable is set to 1 for the | |
| 3074 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn | |
| 3075 ** is set to the column of the pseudo-table to read, or to -1 to | |
| 3076 ** read the rowid field. | |
| 3077 ** | |
| 3078 ** The expression is implemented using an OP_Param opcode. The p1 | |
| 3079 ** parameter is set to 0 for an old.rowid reference, or to (i+1) | |
| 3080 ** to reference another column of the old.* pseudo-table, where | |
| 3081 ** i is the index of the column. For a new.rowid reference, p1 is | |
| 3082 ** set to (n+1), where n is the number of columns in each pseudo-table. | |
| 3083 ** For a reference to any other column in the new.* pseudo-table, p1 | |
| 3084 ** is set to (n+2+i), where n and i are as defined previously. For | |
| 3085 ** example, if the table on which triggers are being fired is | |
| 3086 ** declared as: | |
| 3087 ** | |
| 3088 ** CREATE TABLE t1(a, b); | |
| 3089 ** | |
| 3090 ** Then p1 is interpreted as follows: | |
| 3091 ** | |
| 3092 ** p1==0 -> old.rowid p1==3 -> new.rowid | |
| 3093 ** p1==1 -> old.a p1==4 -> new.a | |
| 3094 ** p1==2 -> old.b p1==5 -> new.b | |
| 3095 */ | |
| 3096 Table *pTab = pExpr->pTab; | |
| 3097 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn; | |
| 3098 | |
| 3099 assert( pExpr->iTable==0 || pExpr->iTable==1 ); | |
| 3100 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol ); | |
| 3101 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey ); | |
| 3102 assert( p1>=0 && p1<(pTab->nCol*2+2) ); | |
| 3103 | |
| 3104 sqlite3VdbeAddOp2(v, OP_Param, p1, target); | |
| 3105 VdbeComment((v, "%s.%s -> $%d", | |
| 3106 (pExpr->iTable ? "new" : "old"), | |
| 3107 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName), | |
| 3108 target | |
| 3109 )); | |
| 3110 | |
| 3111 #ifndef SQLITE_OMIT_FLOATING_POINT | |
| 3112 /* If the column has REAL affinity, it may currently be stored as an | |
| 3113 ** integer. Use OP_RealAffinity to make sure it is really real. | |
| 3114 ** | |
| 3115 ** EVIDENCE-OF: R-60985-57662 SQLite will convert the value back to | |
| 3116 ** floating point when extracting it from the record. */ | |
| 3117 if( pExpr->iColumn>=0 | |
| 3118 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL | |
| 3119 ){ | |
| 3120 sqlite3VdbeAddOp1(v, OP_RealAffinity, target); | |
| 3121 } | |
| 3122 #endif | |
| 3123 break; | |
| 3124 } | |
| 3125 | |
| 3126 | |
| 3127 /* | |
| 3128 ** Form A: | |
| 3129 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END | |
| 3130 ** | |
| 3131 ** Form B: | |
| 3132 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END | |
| 3133 ** | |
| 3134 ** Form A is can be transformed into the equivalent form B as follows: | |
| 3135 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ... | |
| 3136 ** WHEN x=eN THEN rN ELSE y END | |
| 3137 ** | |
| 3138 ** X (if it exists) is in pExpr->pLeft. | |
| 3139 ** Y is in the last element of pExpr->x.pList if pExpr->x.pList->nExpr is | |
| 3140 ** odd. The Y is also optional. If the number of elements in x.pList | |
| 3141 ** is even, then Y is omitted and the "otherwise" result is NULL. | |
| 3142 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1]. | |
| 3143 ** | |
| 3144 ** The result of the expression is the Ri for the first matching Ei, | |
| 3145 ** or if there is no matching Ei, the ELSE term Y, or if there is | |
| 3146 ** no ELSE term, NULL. | |
| 3147 */ | |
| 3148 default: assert( op==TK_CASE ); { | |
| 3149 int endLabel; /* GOTO label for end of CASE stmt */ | |
| 3150 int nextCase; /* GOTO label for next WHEN clause */ | |
| 3151 int nExpr; /* 2x number of WHEN terms */ | |
| 3152 int i; /* Loop counter */ | |
| 3153 ExprList *pEList; /* List of WHEN terms */ | |
| 3154 struct ExprList_item *aListelem; /* Array of WHEN terms */ | |
| 3155 Expr opCompare; /* The X==Ei expression */ | |
| 3156 Expr *pX; /* The X expression */ | |
| 3157 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */ | |
| 3158 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; ) | |
| 3159 | |
| 3160 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList ); | |
| 3161 assert(pExpr->x.pList->nExpr > 0); | |
| 3162 pEList = pExpr->x.pList; | |
| 3163 aListelem = pEList->a; | |
| 3164 nExpr = pEList->nExpr; | |
| 3165 endLabel = sqlite3VdbeMakeLabel(v); | |
| 3166 if( (pX = pExpr->pLeft)!=0 ){ | |
| 3167 tempX = *pX; | |
| 3168 testcase( pX->op==TK_COLUMN ); | |
| 3169 exprToRegister(&tempX, sqlite3ExprCodeTemp(pParse, pX, ®Free1)); | |
| 3170 testcase( regFree1==0 ); | |
| 3171 opCompare.op = TK_EQ; | |
| 3172 opCompare.pLeft = &tempX; | |
| 3173 pTest = &opCompare; | |
| 3174 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001: | |
| 3175 ** The value in regFree1 might get SCopy-ed into the file result. | |
| 3176 ** So make sure that the regFree1 register is not reused for other | |
| 3177 ** purposes and possibly overwritten. */ | |
| 3178 regFree1 = 0; | |
| 3179 } | |
| 3180 for(i=0; i<nExpr-1; i=i+2){ | |
| 3181 sqlite3ExprCachePush(pParse); | |
| 3182 if( pX ){ | |
| 3183 assert( pTest!=0 ); | |
| 3184 opCompare.pRight = aListelem[i].pExpr; | |
| 3185 }else{ | |
| 3186 pTest = aListelem[i].pExpr; | |
| 3187 } | |
| 3188 nextCase = sqlite3VdbeMakeLabel(v); | |
| 3189 testcase( pTest->op==TK_COLUMN ); | |
| 3190 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL); | |
| 3191 testcase( aListelem[i+1].pExpr->op==TK_COLUMN ); | |
| 3192 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target); | |
| 3193 sqlite3VdbeGoto(v, endLabel); | |
| 3194 sqlite3ExprCachePop(pParse); | |
| 3195 sqlite3VdbeResolveLabel(v, nextCase); | |
| 3196 } | |
| 3197 if( (nExpr&1)!=0 ){ | |
| 3198 sqlite3ExprCachePush(pParse); | |
| 3199 sqlite3ExprCode(pParse, pEList->a[nExpr-1].pExpr, target); | |
| 3200 sqlite3ExprCachePop(pParse); | |
| 3201 }else{ | |
| 3202 sqlite3VdbeAddOp2(v, OP_Null, 0, target); | |
| 3203 } | |
| 3204 assert( db->mallocFailed || pParse->nErr>0 | |
| 3205 || pParse->iCacheLevel==iCacheLevel ); | |
| 3206 sqlite3VdbeResolveLabel(v, endLabel); | |
| 3207 break; | |
| 3208 } | |
| 3209 #ifndef SQLITE_OMIT_TRIGGER | |
| 3210 case TK_RAISE: { | |
| 3211 assert( pExpr->affinity==OE_Rollback | |
| 3212 || pExpr->affinity==OE_Abort | |
| 3213 || pExpr->affinity==OE_Fail | |
| 3214 || pExpr->affinity==OE_Ignore | |
| 3215 ); | |
| 3216 if( !pParse->pTriggerTab ){ | |
| 3217 sqlite3ErrorMsg(pParse, | |
| 3218 "RAISE() may only be used within a trigger-program"); | |
| 3219 return 0; | |
| 3220 } | |
| 3221 if( pExpr->affinity==OE_Abort ){ | |
| 3222 sqlite3MayAbort(pParse); | |
| 3223 } | |
| 3224 assert( !ExprHasProperty(pExpr, EP_IntValue) ); | |
| 3225 if( pExpr->affinity==OE_Ignore ){ | |
| 3226 sqlite3VdbeAddOp4( | |
| 3227 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0); | |
| 3228 VdbeCoverage(v); | |
| 3229 }else{ | |
| 3230 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER, | |
| 3231 pExpr->affinity, pExpr->u.zToken, 0, 0); | |
| 3232 } | |
| 3233 | |
| 3234 break; | |
| 3235 } | |
| 3236 #endif | |
| 3237 } | |
| 3238 sqlite3ReleaseTempReg(pParse, regFree1); | |
| 3239 sqlite3ReleaseTempReg(pParse, regFree2); | |
| 3240 return inReg; | |
| 3241 } | |
| 3242 | |
| 3243 /* | |
| 3244 ** Factor out the code of the given expression to initialization time. | |
| 3245 */ | |
| 3246 void sqlite3ExprCodeAtInit( | |
| 3247 Parse *pParse, /* Parsing context */ | |
| 3248 Expr *pExpr, /* The expression to code when the VDBE initializes */ | |
| 3249 int regDest, /* Store the value in this register */ | |
| 3250 u8 reusable /* True if this expression is reusable */ | |
| 3251 ){ | |
| 3252 ExprList *p; | |
| 3253 assert( ConstFactorOk(pParse) ); | |
| 3254 p = pParse->pConstExpr; | |
| 3255 pExpr = sqlite3ExprDup(pParse->db, pExpr, 0); | |
| 3256 p = sqlite3ExprListAppend(pParse, p, pExpr); | |
| 3257 if( p ){ | |
| 3258 struct ExprList_item *pItem = &p->a[p->nExpr-1]; | |
| 3259 pItem->u.iConstExprReg = regDest; | |
| 3260 pItem->reusable = reusable; | |
| 3261 } | |
| 3262 pParse->pConstExpr = p; | |
| 3263 } | |
| 3264 | |
| 3265 /* | |
| 3266 ** Generate code to evaluate an expression and store the results | |
| 3267 ** into a register. Return the register number where the results | |
| 3268 ** are stored. | |
| 3269 ** | |
| 3270 ** If the register is a temporary register that can be deallocated, | |
| 3271 ** then write its number into *pReg. If the result register is not | |
| 3272 ** a temporary, then set *pReg to zero. | |
| 3273 ** | |
| 3274 ** If pExpr is a constant, then this routine might generate this | |
| 3275 ** code to fill the register in the initialization section of the | |
| 3276 ** VDBE program, in order to factor it out of the evaluation loop. | |
| 3277 */ | |
| 3278 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){ | |
| 3279 int r2; | |
| 3280 pExpr = sqlite3ExprSkipCollate(pExpr); | |
| 3281 if( ConstFactorOk(pParse) | |
| 3282 && pExpr->op!=TK_REGISTER | |
| 3283 && sqlite3ExprIsConstantNotJoin(pExpr) | |
| 3284 ){ | |
| 3285 ExprList *p = pParse->pConstExpr; | |
| 3286 int i; | |
| 3287 *pReg = 0; | |
| 3288 if( p ){ | |
| 3289 struct ExprList_item *pItem; | |
| 3290 for(pItem=p->a, i=p->nExpr; i>0; pItem++, i--){ | |
| 3291 if( pItem->reusable && sqlite3ExprCompare(pItem->pExpr,pExpr,-1)==0 ){ | |
| 3292 return pItem->u.iConstExprReg; | |
| 3293 } | |
| 3294 } | |
| 3295 } | |
| 3296 r2 = ++pParse->nMem; | |
| 3297 sqlite3ExprCodeAtInit(pParse, pExpr, r2, 1); | |
| 3298 }else{ | |
| 3299 int r1 = sqlite3GetTempReg(pParse); | |
| 3300 r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1); | |
| 3301 if( r2==r1 ){ | |
| 3302 *pReg = r1; | |
| 3303 }else{ | |
| 3304 sqlite3ReleaseTempReg(pParse, r1); | |
| 3305 *pReg = 0; | |
| 3306 } | |
| 3307 } | |
| 3308 return r2; | |
| 3309 } | |
| 3310 | |
| 3311 /* | |
| 3312 ** Generate code that will evaluate expression pExpr and store the | |
| 3313 ** results in register target. The results are guaranteed to appear | |
| 3314 ** in register target. | |
| 3315 */ | |
| 3316 void sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){ | |
| 3317 int inReg; | |
| 3318 | |
| 3319 assert( target>0 && target<=pParse->nMem ); | |
| 3320 if( pExpr && pExpr->op==TK_REGISTER ){ | |
| 3321 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target); | |
| 3322 }else{ | |
| 3323 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target); | |
| 3324 assert( pParse->pVdbe!=0 || pParse->db->mallocFailed ); | |
| 3325 if( inReg!=target && pParse->pVdbe ){ | |
| 3326 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target); | |
| 3327 } | |
| 3328 } | |
| 3329 } | |
| 3330 | |
| 3331 /* | |
| 3332 ** Make a transient copy of expression pExpr and then code it using | |
| 3333 ** sqlite3ExprCode(). This routine works just like sqlite3ExprCode() | |
| 3334 ** except that the input expression is guaranteed to be unchanged. | |
| 3335 */ | |
| 3336 void sqlite3ExprCodeCopy(Parse *pParse, Expr *pExpr, int target){ | |
| 3337 sqlite3 *db = pParse->db; | |
| 3338 pExpr = sqlite3ExprDup(db, pExpr, 0); | |
| 3339 if( !db->mallocFailed ) sqlite3ExprCode(pParse, pExpr, target); | |
| 3340 sqlite3ExprDelete(db, pExpr); | |
| 3341 } | |
| 3342 | |
| 3343 /* | |
| 3344 ** Generate code that will evaluate expression pExpr and store the | |
| 3345 ** results in register target. The results are guaranteed to appear | |
| 3346 ** in register target. If the expression is constant, then this routine | |
| 3347 ** might choose to code the expression at initialization time. | |
| 3348 */ | |
| 3349 void sqlite3ExprCodeFactorable(Parse *pParse, Expr *pExpr, int target){ | |
| 3350 if( pParse->okConstFactor && sqlite3ExprIsConstant(pExpr) ){ | |
| 3351 sqlite3ExprCodeAtInit(pParse, pExpr, target, 0); | |
| 3352 }else{ | |
| 3353 sqlite3ExprCode(pParse, pExpr, target); | |
| 3354 } | |
| 3355 } | |
| 3356 | |
| 3357 /* | |
| 3358 ** Generate code that evaluates the given expression and puts the result | |
| 3359 ** in register target. | |
| 3360 ** | |
| 3361 ** Also make a copy of the expression results into another "cache" register | |
| 3362 ** and modify the expression so that the next time it is evaluated, | |
| 3363 ** the result is a copy of the cache register. | |
| 3364 ** | |
| 3365 ** This routine is used for expressions that are used multiple | |
| 3366 ** times. They are evaluated once and the results of the expression | |
| 3367 ** are reused. | |
| 3368 */ | |
| 3369 void sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){ | |
| 3370 Vdbe *v = pParse->pVdbe; | |
| 3371 int iMem; | |
| 3372 | |
| 3373 assert( target>0 ); | |
| 3374 assert( pExpr->op!=TK_REGISTER ); | |
| 3375 sqlite3ExprCode(pParse, pExpr, target); | |
| 3376 iMem = ++pParse->nMem; | |
| 3377 sqlite3VdbeAddOp2(v, OP_Copy, target, iMem); | |
| 3378 exprToRegister(pExpr, iMem); | |
| 3379 } | |
| 3380 | |
| 3381 /* | |
| 3382 ** Generate code that pushes the value of every element of the given | |
| 3383 ** expression list into a sequence of registers beginning at target. | |
| 3384 ** | |
| 3385 ** Return the number of elements evaluated. | |
| 3386 ** | |
| 3387 ** The SQLITE_ECEL_DUP flag prevents the arguments from being | |
| 3388 ** filled using OP_SCopy. OP_Copy must be used instead. | |
| 3389 ** | |
| 3390 ** The SQLITE_ECEL_FACTOR argument allows constant arguments to be | |
| 3391 ** factored out into initialization code. | |
| 3392 ** | |
| 3393 ** The SQLITE_ECEL_REF flag means that expressions in the list with | |
| 3394 ** ExprList.a[].u.x.iOrderByCol>0 have already been evaluated and stored | |
| 3395 ** in registers at srcReg, and so the value can be copied from there. | |
| 3396 */ | |
| 3397 int sqlite3ExprCodeExprList( | |
| 3398 Parse *pParse, /* Parsing context */ | |
| 3399 ExprList *pList, /* The expression list to be coded */ | |
| 3400 int target, /* Where to write results */ | |
| 3401 int srcReg, /* Source registers if SQLITE_ECEL_REF */ | |
| 3402 u8 flags /* SQLITE_ECEL_* flags */ | |
| 3403 ){ | |
| 3404 struct ExprList_item *pItem; | |
| 3405 int i, j, n; | |
| 3406 u8 copyOp = (flags & SQLITE_ECEL_DUP) ? OP_Copy : OP_SCopy; | |
| 3407 Vdbe *v = pParse->pVdbe; | |
| 3408 assert( pList!=0 ); | |
| 3409 assert( target>0 ); | |
| 3410 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */ | |
| 3411 n = pList->nExpr; | |
| 3412 if( !ConstFactorOk(pParse) ) flags &= ~SQLITE_ECEL_FACTOR; | |
| 3413 for(pItem=pList->a, i=0; i<n; i++, pItem++){ | |
| 3414 Expr *pExpr = pItem->pExpr; | |
| 3415 if( (flags & SQLITE_ECEL_REF)!=0 && (j = pList->a[i].u.x.iOrderByCol)>0 ){ | |
| 3416 sqlite3VdbeAddOp2(v, copyOp, j+srcReg-1, target+i); | |
| 3417 }else if( (flags & SQLITE_ECEL_FACTOR)!=0 && sqlite3ExprIsConstant(pExpr) ){ | |
| 3418 sqlite3ExprCodeAtInit(pParse, pExpr, target+i, 0); | |
| 3419 }else{ | |
| 3420 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i); | |
| 3421 if( inReg!=target+i ){ | |
| 3422 VdbeOp *pOp; | |
| 3423 if( copyOp==OP_Copy | |
| 3424 && (pOp=sqlite3VdbeGetOp(v, -1))->opcode==OP_Copy | |
| 3425 && pOp->p1+pOp->p3+1==inReg | |
| 3426 && pOp->p2+pOp->p3+1==target+i | |
| 3427 ){ | |
| 3428 pOp->p3++; | |
| 3429 }else{ | |
| 3430 sqlite3VdbeAddOp2(v, copyOp, inReg, target+i); | |
| 3431 } | |
| 3432 } | |
| 3433 } | |
| 3434 } | |
| 3435 return n; | |
| 3436 } | |
| 3437 | |
| 3438 /* | |
| 3439 ** Generate code for a BETWEEN operator. | |
| 3440 ** | |
| 3441 ** x BETWEEN y AND z | |
| 3442 ** | |
| 3443 ** The above is equivalent to | |
| 3444 ** | |
| 3445 ** x>=y AND x<=z | |
| 3446 ** | |
| 3447 ** Code it as such, taking care to do the common subexpression | |
| 3448 ** elimination of x. | |
| 3449 */ | |
| 3450 static void exprCodeBetween( | |
| 3451 Parse *pParse, /* Parsing and code generating context */ | |
| 3452 Expr *pExpr, /* The BETWEEN expression */ | |
| 3453 int dest, /* Jump here if the jump is taken */ | |
| 3454 int jumpIfTrue, /* Take the jump if the BETWEEN is true */ | |
| 3455 int jumpIfNull /* Take the jump if the BETWEEN is NULL */ | |
| 3456 ){ | |
| 3457 Expr exprAnd; /* The AND operator in x>=y AND x<=z */ | |
| 3458 Expr compLeft; /* The x>=y term */ | |
| 3459 Expr compRight; /* The x<=z term */ | |
| 3460 Expr exprX; /* The x subexpression */ | |
| 3461 int regFree1 = 0; /* Temporary use register */ | |
| 3462 | |
| 3463 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); | |
| 3464 exprX = *pExpr->pLeft; | |
| 3465 exprAnd.op = TK_AND; | |
| 3466 exprAnd.pLeft = &compLeft; | |
| 3467 exprAnd.pRight = &compRight; | |
| 3468 compLeft.op = TK_GE; | |
| 3469 compLeft.pLeft = &exprX; | |
| 3470 compLeft.pRight = pExpr->x.pList->a[0].pExpr; | |
| 3471 compRight.op = TK_LE; | |
| 3472 compRight.pLeft = &exprX; | |
| 3473 compRight.pRight = pExpr->x.pList->a[1].pExpr; | |
| 3474 exprToRegister(&exprX, sqlite3ExprCodeTemp(pParse, &exprX, ®Free1)); | |
| 3475 if( jumpIfTrue ){ | |
| 3476 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull); | |
| 3477 }else{ | |
| 3478 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull); | |
| 3479 } | |
| 3480 sqlite3ReleaseTempReg(pParse, regFree1); | |
| 3481 | |
| 3482 /* Ensure adequate test coverage */ | |
| 3483 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 ); | |
| 3484 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 ); | |
| 3485 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 ); | |
| 3486 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 ); | |
| 3487 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 ); | |
| 3488 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 ); | |
| 3489 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 ); | |
| 3490 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 ); | |
| 3491 } | |
| 3492 | |
| 3493 /* | |
| 3494 ** Generate code for a boolean expression such that a jump is made | |
| 3495 ** to the label "dest" if the expression is true but execution | |
| 3496 ** continues straight thru if the expression is false. | |
| 3497 ** | |
| 3498 ** If the expression evaluates to NULL (neither true nor false), then | |
| 3499 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL. | |
| 3500 ** | |
| 3501 ** This code depends on the fact that certain token values (ex: TK_EQ) | |
| 3502 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding | |
| 3503 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in | |
| 3504 ** the make process cause these values to align. Assert()s in the code | |
| 3505 ** below verify that the numbers are aligned correctly. | |
| 3506 */ | |
| 3507 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ | |
| 3508 Vdbe *v = pParse->pVdbe; | |
| 3509 int op = 0; | |
| 3510 int regFree1 = 0; | |
| 3511 int regFree2 = 0; | |
| 3512 int r1, r2; | |
| 3513 | |
| 3514 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); | |
| 3515 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ | |
| 3516 if( NEVER(pExpr==0) ) return; /* No way this can happen */ | |
| 3517 op = pExpr->op; | |
| 3518 switch( op ){ | |
| 3519 case TK_AND: { | |
| 3520 int d2 = sqlite3VdbeMakeLabel(v); | |
| 3521 testcase( jumpIfNull==0 ); | |
| 3522 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL); | |
| 3523 sqlite3ExprCachePush(pParse); | |
| 3524 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); | |
| 3525 sqlite3VdbeResolveLabel(v, d2); | |
| 3526 sqlite3ExprCachePop(pParse); | |
| 3527 break; | |
| 3528 } | |
| 3529 case TK_OR: { | |
| 3530 testcase( jumpIfNull==0 ); | |
| 3531 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); | |
| 3532 sqlite3ExprCachePush(pParse); | |
| 3533 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull); | |
| 3534 sqlite3ExprCachePop(pParse); | |
| 3535 break; | |
| 3536 } | |
| 3537 case TK_NOT: { | |
| 3538 testcase( jumpIfNull==0 ); | |
| 3539 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); | |
| 3540 break; | |
| 3541 } | |
| 3542 case TK_LT: | |
| 3543 case TK_LE: | |
| 3544 case TK_GT: | |
| 3545 case TK_GE: | |
| 3546 case TK_NE: | |
| 3547 case TK_EQ: { | |
| 3548 testcase( jumpIfNull==0 ); | |
| 3549 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); | |
| 3550 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); | |
| 3551 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, | |
| 3552 r1, r2, dest, jumpIfNull); | |
| 3553 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); | |
| 3554 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); | |
| 3555 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); | |
| 3556 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); | |
| 3557 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); | |
| 3558 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); | |
| 3559 testcase( regFree1==0 ); | |
| 3560 testcase( regFree2==0 ); | |
| 3561 break; | |
| 3562 } | |
| 3563 case TK_IS: | |
| 3564 case TK_ISNOT: { | |
| 3565 testcase( op==TK_IS ); | |
| 3566 testcase( op==TK_ISNOT ); | |
| 3567 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); | |
| 3568 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); | |
| 3569 op = (op==TK_IS) ? TK_EQ : TK_NE; | |
| 3570 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, | |
| 3571 r1, r2, dest, SQLITE_NULLEQ); | |
| 3572 VdbeCoverageIf(v, op==TK_EQ); | |
| 3573 VdbeCoverageIf(v, op==TK_NE); | |
| 3574 testcase( regFree1==0 ); | |
| 3575 testcase( regFree2==0 ); | |
| 3576 break; | |
| 3577 } | |
| 3578 case TK_ISNULL: | |
| 3579 case TK_NOTNULL: { | |
| 3580 assert( TK_ISNULL==OP_IsNull ); testcase( op==TK_ISNULL ); | |
| 3581 assert( TK_NOTNULL==OP_NotNull ); testcase( op==TK_NOTNULL ); | |
| 3582 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); | |
| 3583 sqlite3VdbeAddOp2(v, op, r1, dest); | |
| 3584 VdbeCoverageIf(v, op==TK_ISNULL); | |
| 3585 VdbeCoverageIf(v, op==TK_NOTNULL); | |
| 3586 testcase( regFree1==0 ); | |
| 3587 break; | |
| 3588 } | |
| 3589 case TK_BETWEEN: { | |
| 3590 testcase( jumpIfNull==0 ); | |
| 3591 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull); | |
| 3592 break; | |
| 3593 } | |
| 3594 #ifndef SQLITE_OMIT_SUBQUERY | |
| 3595 case TK_IN: { | |
| 3596 int destIfFalse = sqlite3VdbeMakeLabel(v); | |
| 3597 int destIfNull = jumpIfNull ? dest : destIfFalse; | |
| 3598 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull); | |
| 3599 sqlite3VdbeGoto(v, dest); | |
| 3600 sqlite3VdbeResolveLabel(v, destIfFalse); | |
| 3601 break; | |
| 3602 } | |
| 3603 #endif | |
| 3604 default: { | |
| 3605 if( exprAlwaysTrue(pExpr) ){ | |
| 3606 sqlite3VdbeGoto(v, dest); | |
| 3607 }else if( exprAlwaysFalse(pExpr) ){ | |
| 3608 /* No-op */ | |
| 3609 }else{ | |
| 3610 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); | |
| 3611 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0); | |
| 3612 VdbeCoverage(v); | |
| 3613 testcase( regFree1==0 ); | |
| 3614 testcase( jumpIfNull==0 ); | |
| 3615 } | |
| 3616 break; | |
| 3617 } | |
| 3618 } | |
| 3619 sqlite3ReleaseTempReg(pParse, regFree1); | |
| 3620 sqlite3ReleaseTempReg(pParse, regFree2); | |
| 3621 } | |
| 3622 | |
| 3623 /* | |
| 3624 ** Generate code for a boolean expression such that a jump is made | |
| 3625 ** to the label "dest" if the expression is false but execution | |
| 3626 ** continues straight thru if the expression is true. | |
| 3627 ** | |
| 3628 ** If the expression evaluates to NULL (neither true nor false) then | |
| 3629 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull | |
| 3630 ** is 0. | |
| 3631 */ | |
| 3632 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){ | |
| 3633 Vdbe *v = pParse->pVdbe; | |
| 3634 int op = 0; | |
| 3635 int regFree1 = 0; | |
| 3636 int regFree2 = 0; | |
| 3637 int r1, r2; | |
| 3638 | |
| 3639 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 ); | |
| 3640 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */ | |
| 3641 if( pExpr==0 ) return; | |
| 3642 | |
| 3643 /* The value of pExpr->op and op are related as follows: | |
| 3644 ** | |
| 3645 ** pExpr->op op | |
| 3646 ** --------- ---------- | |
| 3647 ** TK_ISNULL OP_NotNull | |
| 3648 ** TK_NOTNULL OP_IsNull | |
| 3649 ** TK_NE OP_Eq | |
| 3650 ** TK_EQ OP_Ne | |
| 3651 ** TK_GT OP_Le | |
| 3652 ** TK_LE OP_Gt | |
| 3653 ** TK_GE OP_Lt | |
| 3654 ** TK_LT OP_Ge | |
| 3655 ** | |
| 3656 ** For other values of pExpr->op, op is undefined and unused. | |
| 3657 ** The value of TK_ and OP_ constants are arranged such that we | |
| 3658 ** can compute the mapping above using the following expression. | |
| 3659 ** Assert()s verify that the computation is correct. | |
| 3660 */ | |
| 3661 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1); | |
| 3662 | |
| 3663 /* Verify correct alignment of TK_ and OP_ constants | |
| 3664 */ | |
| 3665 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull ); | |
| 3666 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull ); | |
| 3667 assert( pExpr->op!=TK_NE || op==OP_Eq ); | |
| 3668 assert( pExpr->op!=TK_EQ || op==OP_Ne ); | |
| 3669 assert( pExpr->op!=TK_LT || op==OP_Ge ); | |
| 3670 assert( pExpr->op!=TK_LE || op==OP_Gt ); | |
| 3671 assert( pExpr->op!=TK_GT || op==OP_Le ); | |
| 3672 assert( pExpr->op!=TK_GE || op==OP_Lt ); | |
| 3673 | |
| 3674 switch( pExpr->op ){ | |
| 3675 case TK_AND: { | |
| 3676 testcase( jumpIfNull==0 ); | |
| 3677 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull); | |
| 3678 sqlite3ExprCachePush(pParse); | |
| 3679 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); | |
| 3680 sqlite3ExprCachePop(pParse); | |
| 3681 break; | |
| 3682 } | |
| 3683 case TK_OR: { | |
| 3684 int d2 = sqlite3VdbeMakeLabel(v); | |
| 3685 testcase( jumpIfNull==0 ); | |
| 3686 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL); | |
| 3687 sqlite3ExprCachePush(pParse); | |
| 3688 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull); | |
| 3689 sqlite3VdbeResolveLabel(v, d2); | |
| 3690 sqlite3ExprCachePop(pParse); | |
| 3691 break; | |
| 3692 } | |
| 3693 case TK_NOT: { | |
| 3694 testcase( jumpIfNull==0 ); | |
| 3695 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull); | |
| 3696 break; | |
| 3697 } | |
| 3698 case TK_LT: | |
| 3699 case TK_LE: | |
| 3700 case TK_GT: | |
| 3701 case TK_GE: | |
| 3702 case TK_NE: | |
| 3703 case TK_EQ: { | |
| 3704 testcase( jumpIfNull==0 ); | |
| 3705 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); | |
| 3706 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); | |
| 3707 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, | |
| 3708 r1, r2, dest, jumpIfNull); | |
| 3709 assert(TK_LT==OP_Lt); testcase(op==OP_Lt); VdbeCoverageIf(v,op==OP_Lt); | |
| 3710 assert(TK_LE==OP_Le); testcase(op==OP_Le); VdbeCoverageIf(v,op==OP_Le); | |
| 3711 assert(TK_GT==OP_Gt); testcase(op==OP_Gt); VdbeCoverageIf(v,op==OP_Gt); | |
| 3712 assert(TK_GE==OP_Ge); testcase(op==OP_Ge); VdbeCoverageIf(v,op==OP_Ge); | |
| 3713 assert(TK_EQ==OP_Eq); testcase(op==OP_Eq); VdbeCoverageIf(v,op==OP_Eq); | |
| 3714 assert(TK_NE==OP_Ne); testcase(op==OP_Ne); VdbeCoverageIf(v,op==OP_Ne); | |
| 3715 testcase( regFree1==0 ); | |
| 3716 testcase( regFree2==0 ); | |
| 3717 break; | |
| 3718 } | |
| 3719 case TK_IS: | |
| 3720 case TK_ISNOT: { | |
| 3721 testcase( pExpr->op==TK_IS ); | |
| 3722 testcase( pExpr->op==TK_ISNOT ); | |
| 3723 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); | |
| 3724 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, ®Free2); | |
| 3725 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ; | |
| 3726 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op, | |
| 3727 r1, r2, dest, SQLITE_NULLEQ); | |
| 3728 VdbeCoverageIf(v, op==TK_EQ); | |
| 3729 VdbeCoverageIf(v, op==TK_NE); | |
| 3730 testcase( regFree1==0 ); | |
| 3731 testcase( regFree2==0 ); | |
| 3732 break; | |
| 3733 } | |
| 3734 case TK_ISNULL: | |
| 3735 case TK_NOTNULL: { | |
| 3736 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, ®Free1); | |
| 3737 sqlite3VdbeAddOp2(v, op, r1, dest); | |
| 3738 testcase( op==TK_ISNULL ); VdbeCoverageIf(v, op==TK_ISNULL); | |
| 3739 testcase( op==TK_NOTNULL ); VdbeCoverageIf(v, op==TK_NOTNULL); | |
| 3740 testcase( regFree1==0 ); | |
| 3741 break; | |
| 3742 } | |
| 3743 case TK_BETWEEN: { | |
| 3744 testcase( jumpIfNull==0 ); | |
| 3745 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull); | |
| 3746 break; | |
| 3747 } | |
| 3748 #ifndef SQLITE_OMIT_SUBQUERY | |
| 3749 case TK_IN: { | |
| 3750 if( jumpIfNull ){ | |
| 3751 sqlite3ExprCodeIN(pParse, pExpr, dest, dest); | |
| 3752 }else{ | |
| 3753 int destIfNull = sqlite3VdbeMakeLabel(v); | |
| 3754 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull); | |
| 3755 sqlite3VdbeResolveLabel(v, destIfNull); | |
| 3756 } | |
| 3757 break; | |
| 3758 } | |
| 3759 #endif | |
| 3760 default: { | |
| 3761 if( exprAlwaysFalse(pExpr) ){ | |
| 3762 sqlite3VdbeGoto(v, dest); | |
| 3763 }else if( exprAlwaysTrue(pExpr) ){ | |
| 3764 /* no-op */ | |
| 3765 }else{ | |
| 3766 r1 = sqlite3ExprCodeTemp(pParse, pExpr, ®Free1); | |
| 3767 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0); | |
| 3768 VdbeCoverage(v); | |
| 3769 testcase( regFree1==0 ); | |
| 3770 testcase( jumpIfNull==0 ); | |
| 3771 } | |
| 3772 break; | |
| 3773 } | |
| 3774 } | |
| 3775 sqlite3ReleaseTempReg(pParse, regFree1); | |
| 3776 sqlite3ReleaseTempReg(pParse, regFree2); | |
| 3777 } | |
| 3778 | |
| 3779 /* | |
| 3780 ** Like sqlite3ExprIfFalse() except that a copy is made of pExpr before | |
| 3781 ** code generation, and that copy is deleted after code generation. This | |
| 3782 ** ensures that the original pExpr is unchanged. | |
| 3783 */ | |
| 3784 void sqlite3ExprIfFalseDup(Parse *pParse, Expr *pExpr, int dest,int jumpIfNull){ | |
| 3785 sqlite3 *db = pParse->db; | |
| 3786 Expr *pCopy = sqlite3ExprDup(db, pExpr, 0); | |
| 3787 if( db->mallocFailed==0 ){ | |
| 3788 sqlite3ExprIfFalse(pParse, pCopy, dest, jumpIfNull); | |
| 3789 } | |
| 3790 sqlite3ExprDelete(db, pCopy); | |
| 3791 } | |
| 3792 | |
| 3793 | |
| 3794 /* | |
| 3795 ** Do a deep comparison of two expression trees. Return 0 if the two | |
| 3796 ** expressions are completely identical. Return 1 if they differ only | |
| 3797 ** by a COLLATE operator at the top level. Return 2 if there are differences | |
| 3798 ** other than the top-level COLLATE operator. | |
| 3799 ** | |
| 3800 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed | |
| 3801 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. | |
| 3802 ** | |
| 3803 ** The pA side might be using TK_REGISTER. If that is the case and pB is | |
| 3804 ** not using TK_REGISTER but is otherwise equivalent, then still return 0. | |
| 3805 ** | |
| 3806 ** Sometimes this routine will return 2 even if the two expressions | |
| 3807 ** really are equivalent. If we cannot prove that the expressions are | |
| 3808 ** identical, we return 2 just to be safe. So if this routine | |
| 3809 ** returns 2, then you do not really know for certain if the two | |
| 3810 ** expressions are the same. But if you get a 0 or 1 return, then you | |
| 3811 ** can be sure the expressions are the same. In the places where | |
| 3812 ** this routine is used, it does not hurt to get an extra 2 - that | |
| 3813 ** just might result in some slightly slower code. But returning | |
| 3814 ** an incorrect 0 or 1 could lead to a malfunction. | |
| 3815 */ | |
| 3816 int sqlite3ExprCompare(Expr *pA, Expr *pB, int iTab){ | |
| 3817 u32 combinedFlags; | |
| 3818 if( pA==0 || pB==0 ){ | |
| 3819 return pB==pA ? 0 : 2; | |
| 3820 } | |
| 3821 combinedFlags = pA->flags | pB->flags; | |
| 3822 if( combinedFlags & EP_IntValue ){ | |
| 3823 if( (pA->flags&pB->flags&EP_IntValue)!=0 && pA->u.iValue==pB->u.iValue ){ | |
| 3824 return 0; | |
| 3825 } | |
| 3826 return 2; | |
| 3827 } | |
| 3828 if( pA->op!=pB->op ){ | |
| 3829 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB, iTab)<2 ){ | |
| 3830 return 1; | |
| 3831 } | |
| 3832 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft, iTab)<2 ){ | |
| 3833 return 1; | |
| 3834 } | |
| 3835 return 2; | |
| 3836 } | |
| 3837 if( pA->op!=TK_COLUMN && pA->op!=TK_AGG_COLUMN && pA->u.zToken ){ | |
| 3838 if( pA->op==TK_FUNCTION ){ | |
| 3839 if( sqlite3StrICmp(pA->u.zToken,pB->u.zToken)!=0 ) return 2; | |
| 3840 }else if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){ | |
| 3841 return pA->op==TK_COLLATE ? 1 : 2; | |
| 3842 } | |
| 3843 } | |
| 3844 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2; | |
| 3845 if( ALWAYS((combinedFlags & EP_TokenOnly)==0) ){ | |
| 3846 if( combinedFlags & EP_xIsSelect ) return 2; | |
| 3847 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft, iTab) ) return 2; | |
| 3848 if( sqlite3ExprCompare(pA->pRight, pB->pRight, iTab) ) return 2; | |
| 3849 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList, iTab) ) return 2; | |
| 3850 if( ALWAYS((combinedFlags & EP_Reduced)==0) && pA->op!=TK_STRING ){ | |
| 3851 if( pA->iColumn!=pB->iColumn ) return 2; | |
| 3852 if( pA->iTable!=pB->iTable | |
| 3853 && (pA->iTable!=iTab || NEVER(pB->iTable>=0)) ) return 2; | |
| 3854 } | |
| 3855 } | |
| 3856 return 0; | |
| 3857 } | |
| 3858 | |
| 3859 /* | |
| 3860 ** Compare two ExprList objects. Return 0 if they are identical and | |
| 3861 ** non-zero if they differ in any way. | |
| 3862 ** | |
| 3863 ** If any subelement of pB has Expr.iTable==(-1) then it is allowed | |
| 3864 ** to compare equal to an equivalent element in pA with Expr.iTable==iTab. | |
| 3865 ** | |
| 3866 ** This routine might return non-zero for equivalent ExprLists. The | |
| 3867 ** only consequence will be disabled optimizations. But this routine | |
| 3868 ** must never return 0 if the two ExprList objects are different, or | |
| 3869 ** a malfunction will result. | |
| 3870 ** | |
| 3871 ** Two NULL pointers are considered to be the same. But a NULL pointer | |
| 3872 ** always differs from a non-NULL pointer. | |
| 3873 */ | |
| 3874 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB, int iTab){ | |
| 3875 int i; | |
| 3876 if( pA==0 && pB==0 ) return 0; | |
| 3877 if( pA==0 || pB==0 ) return 1; | |
| 3878 if( pA->nExpr!=pB->nExpr ) return 1; | |
| 3879 for(i=0; i<pA->nExpr; i++){ | |
| 3880 Expr *pExprA = pA->a[i].pExpr; | |
| 3881 Expr *pExprB = pB->a[i].pExpr; | |
| 3882 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1; | |
| 3883 if( sqlite3ExprCompare(pExprA, pExprB, iTab) ) return 1; | |
| 3884 } | |
| 3885 return 0; | |
| 3886 } | |
| 3887 | |
| 3888 /* | |
| 3889 ** Return true if we can prove the pE2 will always be true if pE1 is | |
| 3890 ** true. Return false if we cannot complete the proof or if pE2 might | |
| 3891 ** be false. Examples: | |
| 3892 ** | |
| 3893 ** pE1: x==5 pE2: x==5 Result: true | |
| 3894 ** pE1: x>0 pE2: x==5 Result: false | |
| 3895 ** pE1: x=21 pE2: x=21 OR y=43 Result: true | |
| 3896 ** pE1: x!=123 pE2: x IS NOT NULL Result: true | |
| 3897 ** pE1: x!=?1 pE2: x IS NOT NULL Result: true | |
| 3898 ** pE1: x IS NULL pE2: x IS NOT NULL Result: false | |
| 3899 ** pE1: x IS ?2 pE2: x IS NOT NULL Reuslt: false | |
| 3900 ** | |
| 3901 ** When comparing TK_COLUMN nodes between pE1 and pE2, if pE2 has | |
| 3902 ** Expr.iTable<0 then assume a table number given by iTab. | |
| 3903 ** | |
| 3904 ** When in doubt, return false. Returning true might give a performance | |
| 3905 ** improvement. Returning false might cause a performance reduction, but | |
| 3906 ** it will always give the correct answer and is hence always safe. | |
| 3907 */ | |
| 3908 int sqlite3ExprImpliesExpr(Expr *pE1, Expr *pE2, int iTab){ | |
| 3909 if( sqlite3ExprCompare(pE1, pE2, iTab)==0 ){ | |
| 3910 return 1; | |
| 3911 } | |
| 3912 if( pE2->op==TK_OR | |
| 3913 && (sqlite3ExprImpliesExpr(pE1, pE2->pLeft, iTab) | |
| 3914 || sqlite3ExprImpliesExpr(pE1, pE2->pRight, iTab) ) | |
| 3915 ){ | |
| 3916 return 1; | |
| 3917 } | |
| 3918 if( pE2->op==TK_NOTNULL | |
| 3919 && sqlite3ExprCompare(pE1->pLeft, pE2->pLeft, iTab)==0 | |
| 3920 && (pE1->op!=TK_ISNULL && pE1->op!=TK_IS) | |
| 3921 ){ | |
| 3922 return 1; | |
| 3923 } | |
| 3924 return 0; | |
| 3925 } | |
| 3926 | |
| 3927 /* | |
| 3928 ** An instance of the following structure is used by the tree walker | |
| 3929 ** to count references to table columns in the arguments of an | |
| 3930 ** aggregate function, in order to implement the | |
| 3931 ** sqlite3FunctionThisSrc() routine. | |
| 3932 */ | |
| 3933 struct SrcCount { | |
| 3934 SrcList *pSrc; /* One particular FROM clause in a nested query */ | |
| 3935 int nThis; /* Number of references to columns in pSrcList */ | |
| 3936 int nOther; /* Number of references to columns in other FROM clauses */ | |
| 3937 }; | |
| 3938 | |
| 3939 /* | |
| 3940 ** Count the number of references to columns. | |
| 3941 */ | |
| 3942 static int exprSrcCount(Walker *pWalker, Expr *pExpr){ | |
| 3943 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc() | |
| 3944 ** is always called before sqlite3ExprAnalyzeAggregates() and so the | |
| 3945 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If | |
| 3946 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the | |
| 3947 ** NEVER() will need to be removed. */ | |
| 3948 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){ | |
| 3949 int i; | |
| 3950 struct SrcCount *p = pWalker->u.pSrcCount; | |
| 3951 SrcList *pSrc = p->pSrc; | |
| 3952 int nSrc = pSrc ? pSrc->nSrc : 0; | |
| 3953 for(i=0; i<nSrc; i++){ | |
| 3954 if( pExpr->iTable==pSrc->a[i].iCursor ) break; | |
| 3955 } | |
| 3956 if( i<nSrc ){ | |
| 3957 p->nThis++; | |
| 3958 }else{ | |
| 3959 p->nOther++; | |
| 3960 } | |
| 3961 } | |
| 3962 return WRC_Continue; | |
| 3963 } | |
| 3964 | |
| 3965 /* | |
| 3966 ** Determine if any of the arguments to the pExpr Function reference | |
| 3967 ** pSrcList. Return true if they do. Also return true if the function | |
| 3968 ** has no arguments or has only constant arguments. Return false if pExpr | |
| 3969 ** references columns but not columns of tables found in pSrcList. | |
| 3970 */ | |
| 3971 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){ | |
| 3972 Walker w; | |
| 3973 struct SrcCount cnt; | |
| 3974 assert( pExpr->op==TK_AGG_FUNCTION ); | |
| 3975 memset(&w, 0, sizeof(w)); | |
| 3976 w.xExprCallback = exprSrcCount; | |
| 3977 w.u.pSrcCount = &cnt; | |
| 3978 cnt.pSrc = pSrcList; | |
| 3979 cnt.nThis = 0; | |
| 3980 cnt.nOther = 0; | |
| 3981 sqlite3WalkExprList(&w, pExpr->x.pList); | |
| 3982 return cnt.nThis>0 || cnt.nOther==0; | |
| 3983 } | |
| 3984 | |
| 3985 /* | |
| 3986 ** Add a new element to the pAggInfo->aCol[] array. Return the index of | |
| 3987 ** the new element. Return a negative number if malloc fails. | |
| 3988 */ | |
| 3989 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){ | |
| 3990 int i; | |
| 3991 pInfo->aCol = sqlite3ArrayAllocate( | |
| 3992 db, | |
| 3993 pInfo->aCol, | |
| 3994 sizeof(pInfo->aCol[0]), | |
| 3995 &pInfo->nColumn, | |
| 3996 &i | |
| 3997 ); | |
| 3998 return i; | |
| 3999 } | |
| 4000 | |
| 4001 /* | |
| 4002 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of | |
| 4003 ** the new element. Return a negative number if malloc fails. | |
| 4004 */ | |
| 4005 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){ | |
| 4006 int i; | |
| 4007 pInfo->aFunc = sqlite3ArrayAllocate( | |
| 4008 db, | |
| 4009 pInfo->aFunc, | |
| 4010 sizeof(pInfo->aFunc[0]), | |
| 4011 &pInfo->nFunc, | |
| 4012 &i | |
| 4013 ); | |
| 4014 return i; | |
| 4015 } | |
| 4016 | |
| 4017 /* | |
| 4018 ** This is the xExprCallback for a tree walker. It is used to | |
| 4019 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates | |
| 4020 ** for additional information. | |
| 4021 */ | |
| 4022 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){ | |
| 4023 int i; | |
| 4024 NameContext *pNC = pWalker->u.pNC; | |
| 4025 Parse *pParse = pNC->pParse; | |
| 4026 SrcList *pSrcList = pNC->pSrcList; | |
| 4027 AggInfo *pAggInfo = pNC->pAggInfo; | |
| 4028 | |
| 4029 switch( pExpr->op ){ | |
| 4030 case TK_AGG_COLUMN: | |
| 4031 case TK_COLUMN: { | |
| 4032 testcase( pExpr->op==TK_AGG_COLUMN ); | |
| 4033 testcase( pExpr->op==TK_COLUMN ); | |
| 4034 /* Check to see if the column is in one of the tables in the FROM | |
| 4035 ** clause of the aggregate query */ | |
| 4036 if( ALWAYS(pSrcList!=0) ){ | |
| 4037 struct SrcList_item *pItem = pSrcList->a; | |
| 4038 for(i=0; i<pSrcList->nSrc; i++, pItem++){ | |
| 4039 struct AggInfo_col *pCol; | |
| 4040 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); | |
| 4041 if( pExpr->iTable==pItem->iCursor ){ | |
| 4042 /* If we reach this point, it means that pExpr refers to a table | |
| 4043 ** that is in the FROM clause of the aggregate query. | |
| 4044 ** | |
| 4045 ** Make an entry for the column in pAggInfo->aCol[] if there | |
| 4046 ** is not an entry there already. | |
| 4047 */ | |
| 4048 int k; | |
| 4049 pCol = pAggInfo->aCol; | |
| 4050 for(k=0; k<pAggInfo->nColumn; k++, pCol++){ | |
| 4051 if( pCol->iTable==pExpr->iTable && | |
| 4052 pCol->iColumn==pExpr->iColumn ){ | |
| 4053 break; | |
| 4054 } | |
| 4055 } | |
| 4056 if( (k>=pAggInfo->nColumn) | |
| 4057 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0 | |
| 4058 ){ | |
| 4059 pCol = &pAggInfo->aCol[k]; | |
| 4060 pCol->pTab = pExpr->pTab; | |
| 4061 pCol->iTable = pExpr->iTable; | |
| 4062 pCol->iColumn = pExpr->iColumn; | |
| 4063 pCol->iMem = ++pParse->nMem; | |
| 4064 pCol->iSorterColumn = -1; | |
| 4065 pCol->pExpr = pExpr; | |
| 4066 if( pAggInfo->pGroupBy ){ | |
| 4067 int j, n; | |
| 4068 ExprList *pGB = pAggInfo->pGroupBy; | |
| 4069 struct ExprList_item *pTerm = pGB->a; | |
| 4070 n = pGB->nExpr; | |
| 4071 for(j=0; j<n; j++, pTerm++){ | |
| 4072 Expr *pE = pTerm->pExpr; | |
| 4073 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable && | |
| 4074 pE->iColumn==pExpr->iColumn ){ | |
| 4075 pCol->iSorterColumn = j; | |
| 4076 break; | |
| 4077 } | |
| 4078 } | |
| 4079 } | |
| 4080 if( pCol->iSorterColumn<0 ){ | |
| 4081 pCol->iSorterColumn = pAggInfo->nSortingColumn++; | |
| 4082 } | |
| 4083 } | |
| 4084 /* There is now an entry for pExpr in pAggInfo->aCol[] (either | |
| 4085 ** because it was there before or because we just created it). | |
| 4086 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that | |
| 4087 ** pAggInfo->aCol[] entry. | |
| 4088 */ | |
| 4089 ExprSetVVAProperty(pExpr, EP_NoReduce); | |
| 4090 pExpr->pAggInfo = pAggInfo; | |
| 4091 pExpr->op = TK_AGG_COLUMN; | |
| 4092 pExpr->iAgg = (i16)k; | |
| 4093 break; | |
| 4094 } /* endif pExpr->iTable==pItem->iCursor */ | |
| 4095 } /* end loop over pSrcList */ | |
| 4096 } | |
| 4097 return WRC_Prune; | |
| 4098 } | |
| 4099 case TK_AGG_FUNCTION: { | |
| 4100 if( (pNC->ncFlags & NC_InAggFunc)==0 | |
| 4101 && pWalker->walkerDepth==pExpr->op2 | |
| 4102 ){ | |
| 4103 /* Check to see if pExpr is a duplicate of another aggregate | |
| 4104 ** function that is already in the pAggInfo structure | |
| 4105 */ | |
| 4106 struct AggInfo_func *pItem = pAggInfo->aFunc; | |
| 4107 for(i=0; i<pAggInfo->nFunc; i++, pItem++){ | |
| 4108 if( sqlite3ExprCompare(pItem->pExpr, pExpr, -1)==0 ){ | |
| 4109 break; | |
| 4110 } | |
| 4111 } | |
| 4112 if( i>=pAggInfo->nFunc ){ | |
| 4113 /* pExpr is original. Make a new entry in pAggInfo->aFunc[] | |
| 4114 */ | |
| 4115 u8 enc = ENC(pParse->db); | |
| 4116 i = addAggInfoFunc(pParse->db, pAggInfo); | |
| 4117 if( i>=0 ){ | |
| 4118 assert( !ExprHasProperty(pExpr, EP_xIsSelect) ); | |
| 4119 pItem = &pAggInfo->aFunc[i]; | |
| 4120 pItem->pExpr = pExpr; | |
| 4121 pItem->iMem = ++pParse->nMem; | |
| 4122 assert( !ExprHasProperty(pExpr, EP_IntValue) ); | |
| 4123 pItem->pFunc = sqlite3FindFunction(pParse->db, | |
| 4124 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken), | |
| 4125 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0); | |
| 4126 if( pExpr->flags & EP_Distinct ){ | |
| 4127 pItem->iDistinct = pParse->nTab++; | |
| 4128 }else{ | |
| 4129 pItem->iDistinct = -1; | |
| 4130 } | |
| 4131 } | |
| 4132 } | |
| 4133 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry | |
| 4134 */ | |
| 4135 assert( !ExprHasProperty(pExpr, EP_TokenOnly|EP_Reduced) ); | |
| 4136 ExprSetVVAProperty(pExpr, EP_NoReduce); | |
| 4137 pExpr->iAgg = (i16)i; | |
| 4138 pExpr->pAggInfo = pAggInfo; | |
| 4139 return WRC_Prune; | |
| 4140 }else{ | |
| 4141 return WRC_Continue; | |
| 4142 } | |
| 4143 } | |
| 4144 } | |
| 4145 return WRC_Continue; | |
| 4146 } | |
| 4147 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){ | |
| 4148 UNUSED_PARAMETER(pWalker); | |
| 4149 UNUSED_PARAMETER(pSelect); | |
| 4150 return WRC_Continue; | |
| 4151 } | |
| 4152 | |
| 4153 /* | |
| 4154 ** Analyze the pExpr expression looking for aggregate functions and | |
| 4155 ** for variables that need to be added to AggInfo object that pNC->pAggInfo | |
| 4156 ** points to. Additional entries are made on the AggInfo object as | |
| 4157 ** necessary. | |
| 4158 ** | |
| 4159 ** This routine should only be called after the expression has been | |
| 4160 ** analyzed by sqlite3ResolveExprNames(). | |
| 4161 */ | |
| 4162 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){ | |
| 4163 Walker w; | |
| 4164 memset(&w, 0, sizeof(w)); | |
| 4165 w.xExprCallback = analyzeAggregate; | |
| 4166 w.xSelectCallback = analyzeAggregatesInSelect; | |
| 4167 w.u.pNC = pNC; | |
| 4168 assert( pNC->pSrcList!=0 ); | |
| 4169 sqlite3WalkExpr(&w, pExpr); | |
| 4170 } | |
| 4171 | |
| 4172 /* | |
| 4173 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an | |
| 4174 ** expression list. Return the number of errors. | |
| 4175 ** | |
| 4176 ** If an error is found, the analysis is cut short. | |
| 4177 */ | |
| 4178 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){ | |
| 4179 struct ExprList_item *pItem; | |
| 4180 int i; | |
| 4181 if( pList ){ | |
| 4182 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){ | |
| 4183 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr); | |
| 4184 } | |
| 4185 } | |
| 4186 } | |
| 4187 | |
| 4188 /* | |
| 4189 ** Allocate a single new register for use to hold some intermediate result. | |
| 4190 */ | |
| 4191 int sqlite3GetTempReg(Parse *pParse){ | |
| 4192 if( pParse->nTempReg==0 ){ | |
| 4193 return ++pParse->nMem; | |
| 4194 } | |
| 4195 return pParse->aTempReg[--pParse->nTempReg]; | |
| 4196 } | |
| 4197 | |
| 4198 /* | |
| 4199 ** Deallocate a register, making available for reuse for some other | |
| 4200 ** purpose. | |
| 4201 ** | |
| 4202 ** If a register is currently being used by the column cache, then | |
| 4203 ** the deallocation is deferred until the column cache line that uses | |
| 4204 ** the register becomes stale. | |
| 4205 */ | |
| 4206 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){ | |
| 4207 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){ | |
| 4208 int i; | |
| 4209 struct yColCache *p; | |
| 4210 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){ | |
| 4211 if( p->iReg==iReg ){ | |
| 4212 p->tempReg = 1; | |
| 4213 return; | |
| 4214 } | |
| 4215 } | |
| 4216 pParse->aTempReg[pParse->nTempReg++] = iReg; | |
| 4217 } | |
| 4218 } | |
| 4219 | |
| 4220 /* | |
| 4221 ** Allocate or deallocate a block of nReg consecutive registers | |
| 4222 */ | |
| 4223 int sqlite3GetTempRange(Parse *pParse, int nReg){ | |
| 4224 int i, n; | |
| 4225 i = pParse->iRangeReg; | |
| 4226 n = pParse->nRangeReg; | |
| 4227 if( nReg<=n ){ | |
| 4228 assert( !usedAsColumnCache(pParse, i, i+n-1) ); | |
| 4229 pParse->iRangeReg += nReg; | |
| 4230 pParse->nRangeReg -= nReg; | |
| 4231 }else{ | |
| 4232 i = pParse->nMem+1; | |
| 4233 pParse->nMem += nReg; | |
| 4234 } | |
| 4235 return i; | |
| 4236 } | |
| 4237 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){ | |
| 4238 sqlite3ExprCacheRemove(pParse, iReg, nReg); | |
| 4239 if( nReg>pParse->nRangeReg ){ | |
| 4240 pParse->nRangeReg = nReg; | |
| 4241 pParse->iRangeReg = iReg; | |
| 4242 } | |
| 4243 } | |
| 4244 | |
| 4245 /* | |
| 4246 ** Mark all temporary registers as being unavailable for reuse. | |
| 4247 */ | |
| 4248 void sqlite3ClearTempRegCache(Parse *pParse){ | |
| 4249 pParse->nTempReg = 0; | |
| 4250 pParse->nRangeReg = 0; | |
| 4251 } | |
| OLD | NEW |