Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(2)

Side by Side Diff: third_party/sqlite/sqlite-src-3100200/src/date.c

Issue 2846743003: [sql] Remove SQLite 3.10.2 reference directory. (Closed)
Patch Set: Created 3 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 ** 2003 October 31
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains the C functions that implement date and time
13 ** functions for SQLite.
14 **
15 ** There is only one exported symbol in this file - the function
16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
17 ** All other code has file scope.
18 **
19 ** SQLite processes all times and dates as julian day numbers. The
20 ** dates and times are stored as the number of days since noon
21 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian
22 ** calendar system.
23 **
24 ** 1970-01-01 00:00:00 is JD 2440587.5
25 ** 2000-01-01 00:00:00 is JD 2451544.5
26 **
27 ** This implementation requires years to be expressed as a 4-digit number
28 ** which means that only dates between 0000-01-01 and 9999-12-31 can
29 ** be represented, even though julian day numbers allow a much wider
30 ** range of dates.
31 **
32 ** The Gregorian calendar system is used for all dates and times,
33 ** even those that predate the Gregorian calendar. Historians usually
34 ** use the julian calendar for dates prior to 1582-10-15 and for some
35 ** dates afterwards, depending on locale. Beware of this difference.
36 **
37 ** The conversion algorithms are implemented based on descriptions
38 ** in the following text:
39 **
40 ** Jean Meeus
41 ** Astronomical Algorithms, 2nd Edition, 1998
42 ** ISBM 0-943396-61-1
43 ** Willmann-Bell, Inc
44 ** Richmond, Virginia (USA)
45 */
46 #include "sqliteInt.h"
47 #include <stdlib.h>
48 #include <assert.h>
49 #include <time.h>
50
51 #ifndef SQLITE_OMIT_DATETIME_FUNCS
52
53
54 /*
55 ** A structure for holding a single date and time.
56 */
57 typedef struct DateTime DateTime;
58 struct DateTime {
59 sqlite3_int64 iJD; /* The julian day number times 86400000 */
60 int Y, M, D; /* Year, month, and day */
61 int h, m; /* Hour and minutes */
62 int tz; /* Timezone offset in minutes */
63 double s; /* Seconds */
64 char validYMD; /* True (1) if Y,M,D are valid */
65 char validHMS; /* True (1) if h,m,s are valid */
66 char validJD; /* True (1) if iJD is valid */
67 char validTZ; /* True (1) if tz is valid */
68 char tzSet; /* Timezone was set explicitly */
69 };
70
71
72 /*
73 ** Convert zDate into one or more integers. Additional arguments
74 ** come in groups of 5 as follows:
75 **
76 ** N number of digits in the integer
77 ** min minimum allowed value of the integer
78 ** max maximum allowed value of the integer
79 ** nextC first character after the integer
80 ** pVal where to write the integers value.
81 **
82 ** Conversions continue until one with nextC==0 is encountered.
83 ** The function returns the number of successful conversions.
84 */
85 static int getDigits(const char *zDate, ...){
86 va_list ap;
87 int val;
88 int N;
89 int min;
90 int max;
91 int nextC;
92 int *pVal;
93 int cnt = 0;
94 va_start(ap, zDate);
95 do{
96 N = va_arg(ap, int);
97 min = va_arg(ap, int);
98 max = va_arg(ap, int);
99 nextC = va_arg(ap, int);
100 pVal = va_arg(ap, int*);
101 val = 0;
102 while( N-- ){
103 if( !sqlite3Isdigit(*zDate) ){
104 goto end_getDigits;
105 }
106 val = val*10 + *zDate - '0';
107 zDate++;
108 }
109 if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){
110 goto end_getDigits;
111 }
112 *pVal = val;
113 zDate++;
114 cnt++;
115 }while( nextC );
116 end_getDigits:
117 va_end(ap);
118 return cnt;
119 }
120
121 /*
122 ** Parse a timezone extension on the end of a date-time.
123 ** The extension is of the form:
124 **
125 ** (+/-)HH:MM
126 **
127 ** Or the "zulu" notation:
128 **
129 ** Z
130 **
131 ** If the parse is successful, write the number of minutes
132 ** of change in p->tz and return 0. If a parser error occurs,
133 ** return non-zero.
134 **
135 ** A missing specifier is not considered an error.
136 */
137 static int parseTimezone(const char *zDate, DateTime *p){
138 int sgn = 0;
139 int nHr, nMn;
140 int c;
141 while( sqlite3Isspace(*zDate) ){ zDate++; }
142 p->tz = 0;
143 c = *zDate;
144 if( c=='-' ){
145 sgn = -1;
146 }else if( c=='+' ){
147 sgn = +1;
148 }else if( c=='Z' || c=='z' ){
149 zDate++;
150 goto zulu_time;
151 }else{
152 return c!=0;
153 }
154 zDate++;
155 if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){
156 return 1;
157 }
158 zDate += 5;
159 p->tz = sgn*(nMn + nHr*60);
160 zulu_time:
161 while( sqlite3Isspace(*zDate) ){ zDate++; }
162 p->tzSet = 1;
163 return *zDate!=0;
164 }
165
166 /*
167 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
168 ** The HH, MM, and SS must each be exactly 2 digits. The
169 ** fractional seconds FFFF can be one or more digits.
170 **
171 ** Return 1 if there is a parsing error and 0 on success.
172 */
173 static int parseHhMmSs(const char *zDate, DateTime *p){
174 int h, m, s;
175 double ms = 0.0;
176 if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){
177 return 1;
178 }
179 zDate += 5;
180 if( *zDate==':' ){
181 zDate++;
182 if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){
183 return 1;
184 }
185 zDate += 2;
186 if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){
187 double rScale = 1.0;
188 zDate++;
189 while( sqlite3Isdigit(*zDate) ){
190 ms = ms*10.0 + *zDate - '0';
191 rScale *= 10.0;
192 zDate++;
193 }
194 ms /= rScale;
195 }
196 }else{
197 s = 0;
198 }
199 p->validJD = 0;
200 p->validHMS = 1;
201 p->h = h;
202 p->m = m;
203 p->s = s + ms;
204 if( parseTimezone(zDate, p) ) return 1;
205 p->validTZ = (p->tz!=0)?1:0;
206 return 0;
207 }
208
209 /*
210 ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume
211 ** that the YYYY-MM-DD is according to the Gregorian calendar.
212 **
213 ** Reference: Meeus page 61
214 */
215 static void computeJD(DateTime *p){
216 int Y, M, D, A, B, X1, X2;
217
218 if( p->validJD ) return;
219 if( p->validYMD ){
220 Y = p->Y;
221 M = p->M;
222 D = p->D;
223 }else{
224 Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */
225 M = 1;
226 D = 1;
227 }
228 if( M<=2 ){
229 Y--;
230 M += 12;
231 }
232 A = Y/100;
233 B = 2 - A + (A/4);
234 X1 = 36525*(Y+4716)/100;
235 X2 = 306001*(M+1)/10000;
236 p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000);
237 p->validJD = 1;
238 if( p->validHMS ){
239 p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000);
240 if( p->validTZ ){
241 p->iJD -= p->tz*60000;
242 p->validYMD = 0;
243 p->validHMS = 0;
244 p->validTZ = 0;
245 }
246 }
247 }
248
249 /*
250 ** Parse dates of the form
251 **
252 ** YYYY-MM-DD HH:MM:SS.FFF
253 ** YYYY-MM-DD HH:MM:SS
254 ** YYYY-MM-DD HH:MM
255 ** YYYY-MM-DD
256 **
257 ** Write the result into the DateTime structure and return 0
258 ** on success and 1 if the input string is not a well-formed
259 ** date.
260 */
261 static int parseYyyyMmDd(const char *zDate, DateTime *p){
262 int Y, M, D, neg;
263
264 if( zDate[0]=='-' ){
265 zDate++;
266 neg = 1;
267 }else{
268 neg = 0;
269 }
270 if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){
271 return 1;
272 }
273 zDate += 10;
274 while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; }
275 if( parseHhMmSs(zDate, p)==0 ){
276 /* We got the time */
277 }else if( *zDate==0 ){
278 p->validHMS = 0;
279 }else{
280 return 1;
281 }
282 p->validJD = 0;
283 p->validYMD = 1;
284 p->Y = neg ? -Y : Y;
285 p->M = M;
286 p->D = D;
287 if( p->validTZ ){
288 computeJD(p);
289 }
290 return 0;
291 }
292
293 /*
294 ** Set the time to the current time reported by the VFS.
295 **
296 ** Return the number of errors.
297 */
298 static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){
299 p->iJD = sqlite3StmtCurrentTime(context);
300 if( p->iJD>0 ){
301 p->validJD = 1;
302 return 0;
303 }else{
304 return 1;
305 }
306 }
307
308 /*
309 ** Attempt to parse the given string into a julian day number. Return
310 ** the number of errors.
311 **
312 ** The following are acceptable forms for the input string:
313 **
314 ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM
315 ** DDDD.DD
316 ** now
317 **
318 ** In the first form, the +/-HH:MM is always optional. The fractional
319 ** seconds extension (the ".FFF") is optional. The seconds portion
320 ** (":SS.FFF") is option. The year and date can be omitted as long
321 ** as there is a time string. The time string can be omitted as long
322 ** as there is a year and date.
323 */
324 static int parseDateOrTime(
325 sqlite3_context *context,
326 const char *zDate,
327 DateTime *p
328 ){
329 double r;
330 if( parseYyyyMmDd(zDate,p)==0 ){
331 return 0;
332 }else if( parseHhMmSs(zDate, p)==0 ){
333 return 0;
334 }else if( sqlite3StrICmp(zDate,"now")==0){
335 return setDateTimeToCurrent(context, p);
336 }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8) ){
337 p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5);
338 p->validJD = 1;
339 return 0;
340 }
341 return 1;
342 }
343
344 /*
345 ** Compute the Year, Month, and Day from the julian day number.
346 */
347 static void computeYMD(DateTime *p){
348 int Z, A, B, C, D, E, X1;
349 if( p->validYMD ) return;
350 if( !p->validJD ){
351 p->Y = 2000;
352 p->M = 1;
353 p->D = 1;
354 }else{
355 Z = (int)((p->iJD + 43200000)/86400000);
356 A = (int)((Z - 1867216.25)/36524.25);
357 A = Z + 1 + A - (A/4);
358 B = A + 1524;
359 C = (int)((B - 122.1)/365.25);
360 D = (36525*(C&32767))/100;
361 E = (int)((B-D)/30.6001);
362 X1 = (int)(30.6001*E);
363 p->D = B - D - X1;
364 p->M = E<14 ? E-1 : E-13;
365 p->Y = p->M>2 ? C - 4716 : C - 4715;
366 }
367 p->validYMD = 1;
368 }
369
370 /*
371 ** Compute the Hour, Minute, and Seconds from the julian day number.
372 */
373 static void computeHMS(DateTime *p){
374 int s;
375 if( p->validHMS ) return;
376 computeJD(p);
377 s = (int)((p->iJD + 43200000) % 86400000);
378 p->s = s/1000.0;
379 s = (int)p->s;
380 p->s -= s;
381 p->h = s/3600;
382 s -= p->h*3600;
383 p->m = s/60;
384 p->s += s - p->m*60;
385 p->validHMS = 1;
386 }
387
388 /*
389 ** Compute both YMD and HMS
390 */
391 static void computeYMD_HMS(DateTime *p){
392 computeYMD(p);
393 computeHMS(p);
394 }
395
396 /*
397 ** Clear the YMD and HMS and the TZ
398 */
399 static void clearYMD_HMS_TZ(DateTime *p){
400 p->validYMD = 0;
401 p->validHMS = 0;
402 p->validTZ = 0;
403 }
404
405 /*
406 ** On recent Windows platforms, the localtime_s() function is available
407 ** as part of the "Secure CRT". It is essentially equivalent to
408 ** localtime_r() available under most POSIX platforms, except that the
409 ** order of the parameters is reversed.
410 **
411 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx.
412 **
413 ** If the user has not indicated to use localtime_r() or localtime_s()
414 ** already, check for an MSVC build environment that provides
415 ** localtime_s().
416 */
417 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S \
418 && defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE)
419 #undef HAVE_LOCALTIME_S
420 #define HAVE_LOCALTIME_S 1
421 #endif
422
423 #ifndef SQLITE_OMIT_LOCALTIME
424 /*
425 ** The following routine implements the rough equivalent of localtime_r()
426 ** using whatever operating-system specific localtime facility that
427 ** is available. This routine returns 0 on success and
428 ** non-zero on any kind of error.
429 **
430 ** If the sqlite3GlobalConfig.bLocaltimeFault variable is true then this
431 ** routine will always fail.
432 **
433 ** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C
434 ** library function localtime_r() is used to assist in the calculation of
435 ** local time.
436 */
437 static int osLocaltime(time_t *t, struct tm *pTm){
438 int rc;
439 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S
440 struct tm *pX;
441 #if SQLITE_THREADSAFE>0
442 sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER);
443 #endif
444 sqlite3_mutex_enter(mutex);
445 pX = localtime(t);
446 #ifndef SQLITE_OMIT_BUILTIN_TEST
447 if( sqlite3GlobalConfig.bLocaltimeFault ) pX = 0;
448 #endif
449 if( pX ) *pTm = *pX;
450 sqlite3_mutex_leave(mutex);
451 rc = pX==0;
452 #else
453 #ifndef SQLITE_OMIT_BUILTIN_TEST
454 if( sqlite3GlobalConfig.bLocaltimeFault ) return 1;
455 #endif
456 #if HAVE_LOCALTIME_R
457 rc = localtime_r(t, pTm)==0;
458 #else
459 rc = localtime_s(pTm, t);
460 #endif /* HAVE_LOCALTIME_R */
461 #endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */
462 return rc;
463 }
464 #endif /* SQLITE_OMIT_LOCALTIME */
465
466
467 #ifndef SQLITE_OMIT_LOCALTIME
468 /*
469 ** Compute the difference (in milliseconds) between localtime and UTC
470 ** (a.k.a. GMT) for the time value p where p is in UTC. If no error occurs,
471 ** return this value and set *pRc to SQLITE_OK.
472 **
473 ** Or, if an error does occur, set *pRc to SQLITE_ERROR. The returned value
474 ** is undefined in this case.
475 */
476 static sqlite3_int64 localtimeOffset(
477 DateTime *p, /* Date at which to calculate offset */
478 sqlite3_context *pCtx, /* Write error here if one occurs */
479 int *pRc /* OUT: Error code. SQLITE_OK or ERROR */
480 ){
481 DateTime x, y;
482 time_t t;
483 struct tm sLocal;
484
485 /* Initialize the contents of sLocal to avoid a compiler warning. */
486 memset(&sLocal, 0, sizeof(sLocal));
487
488 x = *p;
489 computeYMD_HMS(&x);
490 if( x.Y<1971 || x.Y>=2038 ){
491 /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only
492 ** works for years between 1970 and 2037. For dates outside this range,
493 ** SQLite attempts to map the year into an equivalent year within this
494 ** range, do the calculation, then map the year back.
495 */
496 x.Y = 2000;
497 x.M = 1;
498 x.D = 1;
499 x.h = 0;
500 x.m = 0;
501 x.s = 0.0;
502 } else {
503 int s = (int)(x.s + 0.5);
504 x.s = s;
505 }
506 x.tz = 0;
507 x.validJD = 0;
508 computeJD(&x);
509 t = (time_t)(x.iJD/1000 - 21086676*(i64)10000);
510 if( osLocaltime(&t, &sLocal) ){
511 sqlite3_result_error(pCtx, "local time unavailable", -1);
512 *pRc = SQLITE_ERROR;
513 return 0;
514 }
515 y.Y = sLocal.tm_year + 1900;
516 y.M = sLocal.tm_mon + 1;
517 y.D = sLocal.tm_mday;
518 y.h = sLocal.tm_hour;
519 y.m = sLocal.tm_min;
520 y.s = sLocal.tm_sec;
521 y.validYMD = 1;
522 y.validHMS = 1;
523 y.validJD = 0;
524 y.validTZ = 0;
525 computeJD(&y);
526 *pRc = SQLITE_OK;
527 return y.iJD - x.iJD;
528 }
529 #endif /* SQLITE_OMIT_LOCALTIME */
530
531 /*
532 ** Process a modifier to a date-time stamp. The modifiers are
533 ** as follows:
534 **
535 ** NNN days
536 ** NNN hours
537 ** NNN minutes
538 ** NNN.NNNN seconds
539 ** NNN months
540 ** NNN years
541 ** start of month
542 ** start of year
543 ** start of week
544 ** start of day
545 ** weekday N
546 ** unixepoch
547 ** localtime
548 ** utc
549 **
550 ** Return 0 on success and 1 if there is any kind of error. If the error
551 ** is in a system call (i.e. localtime()), then an error message is written
552 ** to context pCtx. If the error is an unrecognized modifier, no error is
553 ** written to pCtx.
554 */
555 static int parseModifier(sqlite3_context *pCtx, const char *zMod, DateTime *p){
556 int rc = 1;
557 int n;
558 double r;
559 char *z, zBuf[30];
560 z = zBuf;
561 for(n=0; n<ArraySize(zBuf)-1 && zMod[n]; n++){
562 z[n] = (char)sqlite3UpperToLower[(u8)zMod[n]];
563 }
564 z[n] = 0;
565 switch( z[0] ){
566 #ifndef SQLITE_OMIT_LOCALTIME
567 case 'l': {
568 /* localtime
569 **
570 ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
571 ** show local time.
572 */
573 if( strcmp(z, "localtime")==0 ){
574 computeJD(p);
575 p->iJD += localtimeOffset(p, pCtx, &rc);
576 clearYMD_HMS_TZ(p);
577 }
578 break;
579 }
580 #endif
581 case 'u': {
582 /*
583 ** unixepoch
584 **
585 ** Treat the current value of p->iJD as the number of
586 ** seconds since 1970. Convert to a real julian day number.
587 */
588 if( strcmp(z, "unixepoch")==0 && p->validJD ){
589 p->iJD = (p->iJD + 43200)/86400 + 21086676*(i64)10000000;
590 clearYMD_HMS_TZ(p);
591 rc = 0;
592 }
593 #ifndef SQLITE_OMIT_LOCALTIME
594 else if( strcmp(z, "utc")==0 ){
595 if( p->tzSet==0 ){
596 sqlite3_int64 c1;
597 computeJD(p);
598 c1 = localtimeOffset(p, pCtx, &rc);
599 if( rc==SQLITE_OK ){
600 p->iJD -= c1;
601 clearYMD_HMS_TZ(p);
602 p->iJD += c1 - localtimeOffset(p, pCtx, &rc);
603 }
604 p->tzSet = 1;
605 }else{
606 rc = SQLITE_OK;
607 }
608 }
609 #endif
610 break;
611 }
612 case 'w': {
613 /*
614 ** weekday N
615 **
616 ** Move the date to the same time on the next occurrence of
617 ** weekday N where 0==Sunday, 1==Monday, and so forth. If the
618 ** date is already on the appropriate weekday, this is a no-op.
619 */
620 if( strncmp(z, "weekday ", 8)==0
621 && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8)
622 && (n=(int)r)==r && n>=0 && r<7 ){
623 sqlite3_int64 Z;
624 computeYMD_HMS(p);
625 p->validTZ = 0;
626 p->validJD = 0;
627 computeJD(p);
628 Z = ((p->iJD + 129600000)/86400000) % 7;
629 if( Z>n ) Z -= 7;
630 p->iJD += (n - Z)*86400000;
631 clearYMD_HMS_TZ(p);
632 rc = 0;
633 }
634 break;
635 }
636 case 's': {
637 /*
638 ** start of TTTTT
639 **
640 ** Move the date backwards to the beginning of the current day,
641 ** or month or year.
642 */
643 if( strncmp(z, "start of ", 9)!=0 ) break;
644 z += 9;
645 computeYMD(p);
646 p->validHMS = 1;
647 p->h = p->m = 0;
648 p->s = 0.0;
649 p->validTZ = 0;
650 p->validJD = 0;
651 if( strcmp(z,"month")==0 ){
652 p->D = 1;
653 rc = 0;
654 }else if( strcmp(z,"year")==0 ){
655 computeYMD(p);
656 p->M = 1;
657 p->D = 1;
658 rc = 0;
659 }else if( strcmp(z,"day")==0 ){
660 rc = 0;
661 }
662 break;
663 }
664 case '+':
665 case '-':
666 case '0':
667 case '1':
668 case '2':
669 case '3':
670 case '4':
671 case '5':
672 case '6':
673 case '7':
674 case '8':
675 case '9': {
676 double rRounder;
677 for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){}
678 if( !sqlite3AtoF(z, &r, n, SQLITE_UTF8) ){
679 rc = 1;
680 break;
681 }
682 if( z[n]==':' ){
683 /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
684 ** specified number of hours, minutes, seconds, and fractional seconds
685 ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be
686 ** omitted.
687 */
688 const char *z2 = z;
689 DateTime tx;
690 sqlite3_int64 day;
691 if( !sqlite3Isdigit(*z2) ) z2++;
692 memset(&tx, 0, sizeof(tx));
693 if( parseHhMmSs(z2, &tx) ) break;
694 computeJD(&tx);
695 tx.iJD -= 43200000;
696 day = tx.iJD/86400000;
697 tx.iJD -= day*86400000;
698 if( z[0]=='-' ) tx.iJD = -tx.iJD;
699 computeJD(p);
700 clearYMD_HMS_TZ(p);
701 p->iJD += tx.iJD;
702 rc = 0;
703 break;
704 }
705 z += n;
706 while( sqlite3Isspace(*z) ) z++;
707 n = sqlite3Strlen30(z);
708 if( n>10 || n<3 ) break;
709 if( z[n-1]=='s' ){ z[n-1] = 0; n--; }
710 computeJD(p);
711 rc = 0;
712 rRounder = r<0 ? -0.5 : +0.5;
713 if( n==3 && strcmp(z,"day")==0 ){
714 p->iJD += (sqlite3_int64)(r*86400000.0 + rRounder);
715 }else if( n==4 && strcmp(z,"hour")==0 ){
716 p->iJD += (sqlite3_int64)(r*(86400000.0/24.0) + rRounder);
717 }else if( n==6 && strcmp(z,"minute")==0 ){
718 p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0)) + rRounder);
719 }else if( n==6 && strcmp(z,"second")==0 ){
720 p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0*60.0)) + rRounder);
721 }else if( n==5 && strcmp(z,"month")==0 ){
722 int x, y;
723 computeYMD_HMS(p);
724 p->M += (int)r;
725 x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12;
726 p->Y += x;
727 p->M -= x*12;
728 p->validJD = 0;
729 computeJD(p);
730 y = (int)r;
731 if( y!=r ){
732 p->iJD += (sqlite3_int64)((r - y)*30.0*86400000.0 + rRounder);
733 }
734 }else if( n==4 && strcmp(z,"year")==0 ){
735 int y = (int)r;
736 computeYMD_HMS(p);
737 p->Y += y;
738 p->validJD = 0;
739 computeJD(p);
740 if( y!=r ){
741 p->iJD += (sqlite3_int64)((r - y)*365.0*86400000.0 + rRounder);
742 }
743 }else{
744 rc = 1;
745 }
746 clearYMD_HMS_TZ(p);
747 break;
748 }
749 default: {
750 break;
751 }
752 }
753 return rc;
754 }
755
756 /*
757 ** Process time function arguments. argv[0] is a date-time stamp.
758 ** argv[1] and following are modifiers. Parse them all and write
759 ** the resulting time into the DateTime structure p. Return 0
760 ** on success and 1 if there are any errors.
761 **
762 ** If there are zero parameters (if even argv[0] is undefined)
763 ** then assume a default value of "now" for argv[0].
764 */
765 static int isDate(
766 sqlite3_context *context,
767 int argc,
768 sqlite3_value **argv,
769 DateTime *p
770 ){
771 int i;
772 const unsigned char *z;
773 int eType;
774 memset(p, 0, sizeof(*p));
775 if( argc==0 ){
776 return setDateTimeToCurrent(context, p);
777 }
778 if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT
779 || eType==SQLITE_INTEGER ){
780 p->iJD = (sqlite3_int64)(sqlite3_value_double(argv[0])*86400000.0 + 0.5);
781 p->validJD = 1;
782 }else{
783 z = sqlite3_value_text(argv[0]);
784 if( !z || parseDateOrTime(context, (char*)z, p) ){
785 return 1;
786 }
787 }
788 for(i=1; i<argc; i++){
789 z = sqlite3_value_text(argv[i]);
790 if( z==0 || parseModifier(context, (char*)z, p) ) return 1;
791 }
792 return 0;
793 }
794
795
796 /*
797 ** The following routines implement the various date and time functions
798 ** of SQLite.
799 */
800
801 /*
802 ** julianday( TIMESTRING, MOD, MOD, ...)
803 **
804 ** Return the julian day number of the date specified in the arguments
805 */
806 static void juliandayFunc(
807 sqlite3_context *context,
808 int argc,
809 sqlite3_value **argv
810 ){
811 DateTime x;
812 if( isDate(context, argc, argv, &x)==0 ){
813 computeJD(&x);
814 sqlite3_result_double(context, x.iJD/86400000.0);
815 }
816 }
817
818 /*
819 ** datetime( TIMESTRING, MOD, MOD, ...)
820 **
821 ** Return YYYY-MM-DD HH:MM:SS
822 */
823 static void datetimeFunc(
824 sqlite3_context *context,
825 int argc,
826 sqlite3_value **argv
827 ){
828 DateTime x;
829 if( isDate(context, argc, argv, &x)==0 ){
830 char zBuf[100];
831 computeYMD_HMS(&x);
832 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d",
833 x.Y, x.M, x.D, x.h, x.m, (int)(x.s));
834 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
835 }
836 }
837
838 /*
839 ** time( TIMESTRING, MOD, MOD, ...)
840 **
841 ** Return HH:MM:SS
842 */
843 static void timeFunc(
844 sqlite3_context *context,
845 int argc,
846 sqlite3_value **argv
847 ){
848 DateTime x;
849 if( isDate(context, argc, argv, &x)==0 ){
850 char zBuf[100];
851 computeHMS(&x);
852 sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s);
853 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
854 }
855 }
856
857 /*
858 ** date( TIMESTRING, MOD, MOD, ...)
859 **
860 ** Return YYYY-MM-DD
861 */
862 static void dateFunc(
863 sqlite3_context *context,
864 int argc,
865 sqlite3_value **argv
866 ){
867 DateTime x;
868 if( isDate(context, argc, argv, &x)==0 ){
869 char zBuf[100];
870 computeYMD(&x);
871 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D);
872 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
873 }
874 }
875
876 /*
877 ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
878 **
879 ** Return a string described by FORMAT. Conversions as follows:
880 **
881 ** %d day of month
882 ** %f ** fractional seconds SS.SSS
883 ** %H hour 00-24
884 ** %j day of year 000-366
885 ** %J ** julian day number
886 ** %m month 01-12
887 ** %M minute 00-59
888 ** %s seconds since 1970-01-01
889 ** %S seconds 00-59
890 ** %w day of week 0-6 sunday==0
891 ** %W week of year 00-53
892 ** %Y year 0000-9999
893 ** %% %
894 */
895 static void strftimeFunc(
896 sqlite3_context *context,
897 int argc,
898 sqlite3_value **argv
899 ){
900 DateTime x;
901 u64 n;
902 size_t i,j;
903 char *z;
904 sqlite3 *db;
905 const char *zFmt;
906 char zBuf[100];
907 if( argc==0 ) return;
908 zFmt = (const char*)sqlite3_value_text(argv[0]);
909 if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return;
910 db = sqlite3_context_db_handle(context);
911 for(i=0, n=1; zFmt[i]; i++, n++){
912 if( zFmt[i]=='%' ){
913 switch( zFmt[i+1] ){
914 case 'd':
915 case 'H':
916 case 'm':
917 case 'M':
918 case 'S':
919 case 'W':
920 n++;
921 /* fall thru */
922 case 'w':
923 case '%':
924 break;
925 case 'f':
926 n += 8;
927 break;
928 case 'j':
929 n += 3;
930 break;
931 case 'Y':
932 n += 8;
933 break;
934 case 's':
935 case 'J':
936 n += 50;
937 break;
938 default:
939 return; /* ERROR. return a NULL */
940 }
941 i++;
942 }
943 }
944 testcase( n==sizeof(zBuf)-1 );
945 testcase( n==sizeof(zBuf) );
946 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
947 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] );
948 if( n<sizeof(zBuf) ){
949 z = zBuf;
950 }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){
951 sqlite3_result_error_toobig(context);
952 return;
953 }else{
954 z = sqlite3DbMallocRaw(db, (int)n);
955 if( z==0 ){
956 sqlite3_result_error_nomem(context);
957 return;
958 }
959 }
960 computeJD(&x);
961 computeYMD_HMS(&x);
962 for(i=j=0; zFmt[i]; i++){
963 if( zFmt[i]!='%' ){
964 z[j++] = zFmt[i];
965 }else{
966 i++;
967 switch( zFmt[i] ){
968 case 'd': sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break;
969 case 'f': {
970 double s = x.s;
971 if( s>59.999 ) s = 59.999;
972 sqlite3_snprintf(7, &z[j],"%06.3f", s);
973 j += sqlite3Strlen30(&z[j]);
974 break;
975 }
976 case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break;
977 case 'W': /* Fall thru */
978 case 'j': {
979 int nDay; /* Number of days since 1st day of year */
980 DateTime y = x;
981 y.validJD = 0;
982 y.M = 1;
983 y.D = 1;
984 computeJD(&y);
985 nDay = (int)((x.iJD-y.iJD+43200000)/86400000);
986 if( zFmt[i]=='W' ){
987 int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */
988 wd = (int)(((x.iJD+43200000)/86400000)%7);
989 sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7);
990 j += 2;
991 }else{
992 sqlite3_snprintf(4, &z[j],"%03d",nDay+1);
993 j += 3;
994 }
995 break;
996 }
997 case 'J': {
998 sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0);
999 j+=sqlite3Strlen30(&z[j]);
1000 break;
1001 }
1002 case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break;
1003 case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break;
1004 case 's': {
1005 sqlite3_snprintf(30,&z[j],"%lld",
1006 (i64)(x.iJD/1000 - 21086676*(i64)10000));
1007 j += sqlite3Strlen30(&z[j]);
1008 break;
1009 }
1010 case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break;
1011 case 'w': {
1012 z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0';
1013 break;
1014 }
1015 case 'Y': {
1016 sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]);
1017 break;
1018 }
1019 default: z[j++] = '%'; break;
1020 }
1021 }
1022 }
1023 z[j] = 0;
1024 sqlite3_result_text(context, z, -1,
1025 z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC);
1026 }
1027
1028 /*
1029 ** current_time()
1030 **
1031 ** This function returns the same value as time('now').
1032 */
1033 static void ctimeFunc(
1034 sqlite3_context *context,
1035 int NotUsed,
1036 sqlite3_value **NotUsed2
1037 ){
1038 UNUSED_PARAMETER2(NotUsed, NotUsed2);
1039 timeFunc(context, 0, 0);
1040 }
1041
1042 /*
1043 ** current_date()
1044 **
1045 ** This function returns the same value as date('now').
1046 */
1047 static void cdateFunc(
1048 sqlite3_context *context,
1049 int NotUsed,
1050 sqlite3_value **NotUsed2
1051 ){
1052 UNUSED_PARAMETER2(NotUsed, NotUsed2);
1053 dateFunc(context, 0, 0);
1054 }
1055
1056 /*
1057 ** current_timestamp()
1058 **
1059 ** This function returns the same value as datetime('now').
1060 */
1061 static void ctimestampFunc(
1062 sqlite3_context *context,
1063 int NotUsed,
1064 sqlite3_value **NotUsed2
1065 ){
1066 UNUSED_PARAMETER2(NotUsed, NotUsed2);
1067 datetimeFunc(context, 0, 0);
1068 }
1069 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
1070
1071 #ifdef SQLITE_OMIT_DATETIME_FUNCS
1072 /*
1073 ** If the library is compiled to omit the full-scale date and time
1074 ** handling (to get a smaller binary), the following minimal version
1075 ** of the functions current_time(), current_date() and current_timestamp()
1076 ** are included instead. This is to support column declarations that
1077 ** include "DEFAULT CURRENT_TIME" etc.
1078 **
1079 ** This function uses the C-library functions time(), gmtime()
1080 ** and strftime(). The format string to pass to strftime() is supplied
1081 ** as the user-data for the function.
1082 */
1083 static void currentTimeFunc(
1084 sqlite3_context *context,
1085 int argc,
1086 sqlite3_value **argv
1087 ){
1088 time_t t;
1089 char *zFormat = (char *)sqlite3_user_data(context);
1090 sqlite3 *db;
1091 sqlite3_int64 iT;
1092 struct tm *pTm;
1093 struct tm sNow;
1094 char zBuf[20];
1095
1096 UNUSED_PARAMETER(argc);
1097 UNUSED_PARAMETER(argv);
1098
1099 iT = sqlite3StmtCurrentTime(context);
1100 if( iT<=0 ) return;
1101 t = iT/1000 - 10000*(sqlite3_int64)21086676;
1102 #if HAVE_GMTIME_R
1103 pTm = gmtime_r(&t, &sNow);
1104 #else
1105 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
1106 pTm = gmtime(&t);
1107 if( pTm ) memcpy(&sNow, pTm, sizeof(sNow));
1108 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER));
1109 #endif
1110 if( pTm ){
1111 strftime(zBuf, 20, zFormat, &sNow);
1112 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT);
1113 }
1114 }
1115 #endif
1116
1117 /*
1118 ** This function registered all of the above C functions as SQL
1119 ** functions. This should be the only routine in this file with
1120 ** external linkage.
1121 */
1122 void sqlite3RegisterDateTimeFunctions(void){
1123 static SQLITE_WSD FuncDef aDateTimeFuncs[] = {
1124 #ifndef SQLITE_OMIT_DATETIME_FUNCS
1125 DFUNCTION(julianday, -1, 0, 0, juliandayFunc ),
1126 DFUNCTION(date, -1, 0, 0, dateFunc ),
1127 DFUNCTION(time, -1, 0, 0, timeFunc ),
1128 DFUNCTION(datetime, -1, 0, 0, datetimeFunc ),
1129 DFUNCTION(strftime, -1, 0, 0, strftimeFunc ),
1130 DFUNCTION(current_time, 0, 0, 0, ctimeFunc ),
1131 DFUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc),
1132 DFUNCTION(current_date, 0, 0, 0, cdateFunc ),
1133 #else
1134 STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc),
1135 STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc),
1136 STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc),
1137 #endif
1138 };
1139 int i;
1140 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
1141 FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aDateTimeFuncs);
1142
1143 for(i=0; i<ArraySize(aDateTimeFuncs); i++){
1144 sqlite3FuncDefInsert(pHash, &aFunc[i]);
1145 }
1146 }
OLDNEW
« no previous file with comments | « third_party/sqlite/sqlite-src-3100200/src/ctime.c ('k') | third_party/sqlite/sqlite-src-3100200/src/dbstat.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698