| OLD | NEW |
| (Empty) |
| 1 /* | |
| 2 ** 2003 October 31 | |
| 3 ** | |
| 4 ** The author disclaims copyright to this source code. In place of | |
| 5 ** a legal notice, here is a blessing: | |
| 6 ** | |
| 7 ** May you do good and not evil. | |
| 8 ** May you find forgiveness for yourself and forgive others. | |
| 9 ** May you share freely, never taking more than you give. | |
| 10 ** | |
| 11 ************************************************************************* | |
| 12 ** This file contains the C functions that implement date and time | |
| 13 ** functions for SQLite. | |
| 14 ** | |
| 15 ** There is only one exported symbol in this file - the function | |
| 16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file. | |
| 17 ** All other code has file scope. | |
| 18 ** | |
| 19 ** SQLite processes all times and dates as julian day numbers. The | |
| 20 ** dates and times are stored as the number of days since noon | |
| 21 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian | |
| 22 ** calendar system. | |
| 23 ** | |
| 24 ** 1970-01-01 00:00:00 is JD 2440587.5 | |
| 25 ** 2000-01-01 00:00:00 is JD 2451544.5 | |
| 26 ** | |
| 27 ** This implementation requires years to be expressed as a 4-digit number | |
| 28 ** which means that only dates between 0000-01-01 and 9999-12-31 can | |
| 29 ** be represented, even though julian day numbers allow a much wider | |
| 30 ** range of dates. | |
| 31 ** | |
| 32 ** The Gregorian calendar system is used for all dates and times, | |
| 33 ** even those that predate the Gregorian calendar. Historians usually | |
| 34 ** use the julian calendar for dates prior to 1582-10-15 and for some | |
| 35 ** dates afterwards, depending on locale. Beware of this difference. | |
| 36 ** | |
| 37 ** The conversion algorithms are implemented based on descriptions | |
| 38 ** in the following text: | |
| 39 ** | |
| 40 ** Jean Meeus | |
| 41 ** Astronomical Algorithms, 2nd Edition, 1998 | |
| 42 ** ISBM 0-943396-61-1 | |
| 43 ** Willmann-Bell, Inc | |
| 44 ** Richmond, Virginia (USA) | |
| 45 */ | |
| 46 #include "sqliteInt.h" | |
| 47 #include <stdlib.h> | |
| 48 #include <assert.h> | |
| 49 #include <time.h> | |
| 50 | |
| 51 #ifndef SQLITE_OMIT_DATETIME_FUNCS | |
| 52 | |
| 53 | |
| 54 /* | |
| 55 ** A structure for holding a single date and time. | |
| 56 */ | |
| 57 typedef struct DateTime DateTime; | |
| 58 struct DateTime { | |
| 59 sqlite3_int64 iJD; /* The julian day number times 86400000 */ | |
| 60 int Y, M, D; /* Year, month, and day */ | |
| 61 int h, m; /* Hour and minutes */ | |
| 62 int tz; /* Timezone offset in minutes */ | |
| 63 double s; /* Seconds */ | |
| 64 char validYMD; /* True (1) if Y,M,D are valid */ | |
| 65 char validHMS; /* True (1) if h,m,s are valid */ | |
| 66 char validJD; /* True (1) if iJD is valid */ | |
| 67 char validTZ; /* True (1) if tz is valid */ | |
| 68 char tzSet; /* Timezone was set explicitly */ | |
| 69 }; | |
| 70 | |
| 71 | |
| 72 /* | |
| 73 ** Convert zDate into one or more integers. Additional arguments | |
| 74 ** come in groups of 5 as follows: | |
| 75 ** | |
| 76 ** N number of digits in the integer | |
| 77 ** min minimum allowed value of the integer | |
| 78 ** max maximum allowed value of the integer | |
| 79 ** nextC first character after the integer | |
| 80 ** pVal where to write the integers value. | |
| 81 ** | |
| 82 ** Conversions continue until one with nextC==0 is encountered. | |
| 83 ** The function returns the number of successful conversions. | |
| 84 */ | |
| 85 static int getDigits(const char *zDate, ...){ | |
| 86 va_list ap; | |
| 87 int val; | |
| 88 int N; | |
| 89 int min; | |
| 90 int max; | |
| 91 int nextC; | |
| 92 int *pVal; | |
| 93 int cnt = 0; | |
| 94 va_start(ap, zDate); | |
| 95 do{ | |
| 96 N = va_arg(ap, int); | |
| 97 min = va_arg(ap, int); | |
| 98 max = va_arg(ap, int); | |
| 99 nextC = va_arg(ap, int); | |
| 100 pVal = va_arg(ap, int*); | |
| 101 val = 0; | |
| 102 while( N-- ){ | |
| 103 if( !sqlite3Isdigit(*zDate) ){ | |
| 104 goto end_getDigits; | |
| 105 } | |
| 106 val = val*10 + *zDate - '0'; | |
| 107 zDate++; | |
| 108 } | |
| 109 if( val<min || val>max || (nextC!=0 && nextC!=*zDate) ){ | |
| 110 goto end_getDigits; | |
| 111 } | |
| 112 *pVal = val; | |
| 113 zDate++; | |
| 114 cnt++; | |
| 115 }while( nextC ); | |
| 116 end_getDigits: | |
| 117 va_end(ap); | |
| 118 return cnt; | |
| 119 } | |
| 120 | |
| 121 /* | |
| 122 ** Parse a timezone extension on the end of a date-time. | |
| 123 ** The extension is of the form: | |
| 124 ** | |
| 125 ** (+/-)HH:MM | |
| 126 ** | |
| 127 ** Or the "zulu" notation: | |
| 128 ** | |
| 129 ** Z | |
| 130 ** | |
| 131 ** If the parse is successful, write the number of minutes | |
| 132 ** of change in p->tz and return 0. If a parser error occurs, | |
| 133 ** return non-zero. | |
| 134 ** | |
| 135 ** A missing specifier is not considered an error. | |
| 136 */ | |
| 137 static int parseTimezone(const char *zDate, DateTime *p){ | |
| 138 int sgn = 0; | |
| 139 int nHr, nMn; | |
| 140 int c; | |
| 141 while( sqlite3Isspace(*zDate) ){ zDate++; } | |
| 142 p->tz = 0; | |
| 143 c = *zDate; | |
| 144 if( c=='-' ){ | |
| 145 sgn = -1; | |
| 146 }else if( c=='+' ){ | |
| 147 sgn = +1; | |
| 148 }else if( c=='Z' || c=='z' ){ | |
| 149 zDate++; | |
| 150 goto zulu_time; | |
| 151 }else{ | |
| 152 return c!=0; | |
| 153 } | |
| 154 zDate++; | |
| 155 if( getDigits(zDate, 2, 0, 14, ':', &nHr, 2, 0, 59, 0, &nMn)!=2 ){ | |
| 156 return 1; | |
| 157 } | |
| 158 zDate += 5; | |
| 159 p->tz = sgn*(nMn + nHr*60); | |
| 160 zulu_time: | |
| 161 while( sqlite3Isspace(*zDate) ){ zDate++; } | |
| 162 p->tzSet = 1; | |
| 163 return *zDate!=0; | |
| 164 } | |
| 165 | |
| 166 /* | |
| 167 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF. | |
| 168 ** The HH, MM, and SS must each be exactly 2 digits. The | |
| 169 ** fractional seconds FFFF can be one or more digits. | |
| 170 ** | |
| 171 ** Return 1 if there is a parsing error and 0 on success. | |
| 172 */ | |
| 173 static int parseHhMmSs(const char *zDate, DateTime *p){ | |
| 174 int h, m, s; | |
| 175 double ms = 0.0; | |
| 176 if( getDigits(zDate, 2, 0, 24, ':', &h, 2, 0, 59, 0, &m)!=2 ){ | |
| 177 return 1; | |
| 178 } | |
| 179 zDate += 5; | |
| 180 if( *zDate==':' ){ | |
| 181 zDate++; | |
| 182 if( getDigits(zDate, 2, 0, 59, 0, &s)!=1 ){ | |
| 183 return 1; | |
| 184 } | |
| 185 zDate += 2; | |
| 186 if( *zDate=='.' && sqlite3Isdigit(zDate[1]) ){ | |
| 187 double rScale = 1.0; | |
| 188 zDate++; | |
| 189 while( sqlite3Isdigit(*zDate) ){ | |
| 190 ms = ms*10.0 + *zDate - '0'; | |
| 191 rScale *= 10.0; | |
| 192 zDate++; | |
| 193 } | |
| 194 ms /= rScale; | |
| 195 } | |
| 196 }else{ | |
| 197 s = 0; | |
| 198 } | |
| 199 p->validJD = 0; | |
| 200 p->validHMS = 1; | |
| 201 p->h = h; | |
| 202 p->m = m; | |
| 203 p->s = s + ms; | |
| 204 if( parseTimezone(zDate, p) ) return 1; | |
| 205 p->validTZ = (p->tz!=0)?1:0; | |
| 206 return 0; | |
| 207 } | |
| 208 | |
| 209 /* | |
| 210 ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume | |
| 211 ** that the YYYY-MM-DD is according to the Gregorian calendar. | |
| 212 ** | |
| 213 ** Reference: Meeus page 61 | |
| 214 */ | |
| 215 static void computeJD(DateTime *p){ | |
| 216 int Y, M, D, A, B, X1, X2; | |
| 217 | |
| 218 if( p->validJD ) return; | |
| 219 if( p->validYMD ){ | |
| 220 Y = p->Y; | |
| 221 M = p->M; | |
| 222 D = p->D; | |
| 223 }else{ | |
| 224 Y = 2000; /* If no YMD specified, assume 2000-Jan-01 */ | |
| 225 M = 1; | |
| 226 D = 1; | |
| 227 } | |
| 228 if( M<=2 ){ | |
| 229 Y--; | |
| 230 M += 12; | |
| 231 } | |
| 232 A = Y/100; | |
| 233 B = 2 - A + (A/4); | |
| 234 X1 = 36525*(Y+4716)/100; | |
| 235 X2 = 306001*(M+1)/10000; | |
| 236 p->iJD = (sqlite3_int64)((X1 + X2 + D + B - 1524.5 ) * 86400000); | |
| 237 p->validJD = 1; | |
| 238 if( p->validHMS ){ | |
| 239 p->iJD += p->h*3600000 + p->m*60000 + (sqlite3_int64)(p->s*1000); | |
| 240 if( p->validTZ ){ | |
| 241 p->iJD -= p->tz*60000; | |
| 242 p->validYMD = 0; | |
| 243 p->validHMS = 0; | |
| 244 p->validTZ = 0; | |
| 245 } | |
| 246 } | |
| 247 } | |
| 248 | |
| 249 /* | |
| 250 ** Parse dates of the form | |
| 251 ** | |
| 252 ** YYYY-MM-DD HH:MM:SS.FFF | |
| 253 ** YYYY-MM-DD HH:MM:SS | |
| 254 ** YYYY-MM-DD HH:MM | |
| 255 ** YYYY-MM-DD | |
| 256 ** | |
| 257 ** Write the result into the DateTime structure and return 0 | |
| 258 ** on success and 1 if the input string is not a well-formed | |
| 259 ** date. | |
| 260 */ | |
| 261 static int parseYyyyMmDd(const char *zDate, DateTime *p){ | |
| 262 int Y, M, D, neg; | |
| 263 | |
| 264 if( zDate[0]=='-' ){ | |
| 265 zDate++; | |
| 266 neg = 1; | |
| 267 }else{ | |
| 268 neg = 0; | |
| 269 } | |
| 270 if( getDigits(zDate,4,0,9999,'-',&Y,2,1,12,'-',&M,2,1,31,0,&D)!=3 ){ | |
| 271 return 1; | |
| 272 } | |
| 273 zDate += 10; | |
| 274 while( sqlite3Isspace(*zDate) || 'T'==*(u8*)zDate ){ zDate++; } | |
| 275 if( parseHhMmSs(zDate, p)==0 ){ | |
| 276 /* We got the time */ | |
| 277 }else if( *zDate==0 ){ | |
| 278 p->validHMS = 0; | |
| 279 }else{ | |
| 280 return 1; | |
| 281 } | |
| 282 p->validJD = 0; | |
| 283 p->validYMD = 1; | |
| 284 p->Y = neg ? -Y : Y; | |
| 285 p->M = M; | |
| 286 p->D = D; | |
| 287 if( p->validTZ ){ | |
| 288 computeJD(p); | |
| 289 } | |
| 290 return 0; | |
| 291 } | |
| 292 | |
| 293 /* | |
| 294 ** Set the time to the current time reported by the VFS. | |
| 295 ** | |
| 296 ** Return the number of errors. | |
| 297 */ | |
| 298 static int setDateTimeToCurrent(sqlite3_context *context, DateTime *p){ | |
| 299 p->iJD = sqlite3StmtCurrentTime(context); | |
| 300 if( p->iJD>0 ){ | |
| 301 p->validJD = 1; | |
| 302 return 0; | |
| 303 }else{ | |
| 304 return 1; | |
| 305 } | |
| 306 } | |
| 307 | |
| 308 /* | |
| 309 ** Attempt to parse the given string into a julian day number. Return | |
| 310 ** the number of errors. | |
| 311 ** | |
| 312 ** The following are acceptable forms for the input string: | |
| 313 ** | |
| 314 ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM | |
| 315 ** DDDD.DD | |
| 316 ** now | |
| 317 ** | |
| 318 ** In the first form, the +/-HH:MM is always optional. The fractional | |
| 319 ** seconds extension (the ".FFF") is optional. The seconds portion | |
| 320 ** (":SS.FFF") is option. The year and date can be omitted as long | |
| 321 ** as there is a time string. The time string can be omitted as long | |
| 322 ** as there is a year and date. | |
| 323 */ | |
| 324 static int parseDateOrTime( | |
| 325 sqlite3_context *context, | |
| 326 const char *zDate, | |
| 327 DateTime *p | |
| 328 ){ | |
| 329 double r; | |
| 330 if( parseYyyyMmDd(zDate,p)==0 ){ | |
| 331 return 0; | |
| 332 }else if( parseHhMmSs(zDate, p)==0 ){ | |
| 333 return 0; | |
| 334 }else if( sqlite3StrICmp(zDate,"now")==0){ | |
| 335 return setDateTimeToCurrent(context, p); | |
| 336 }else if( sqlite3AtoF(zDate, &r, sqlite3Strlen30(zDate), SQLITE_UTF8) ){ | |
| 337 p->iJD = (sqlite3_int64)(r*86400000.0 + 0.5); | |
| 338 p->validJD = 1; | |
| 339 return 0; | |
| 340 } | |
| 341 return 1; | |
| 342 } | |
| 343 | |
| 344 /* | |
| 345 ** Compute the Year, Month, and Day from the julian day number. | |
| 346 */ | |
| 347 static void computeYMD(DateTime *p){ | |
| 348 int Z, A, B, C, D, E, X1; | |
| 349 if( p->validYMD ) return; | |
| 350 if( !p->validJD ){ | |
| 351 p->Y = 2000; | |
| 352 p->M = 1; | |
| 353 p->D = 1; | |
| 354 }else{ | |
| 355 Z = (int)((p->iJD + 43200000)/86400000); | |
| 356 A = (int)((Z - 1867216.25)/36524.25); | |
| 357 A = Z + 1 + A - (A/4); | |
| 358 B = A + 1524; | |
| 359 C = (int)((B - 122.1)/365.25); | |
| 360 D = (36525*(C&32767))/100; | |
| 361 E = (int)((B-D)/30.6001); | |
| 362 X1 = (int)(30.6001*E); | |
| 363 p->D = B - D - X1; | |
| 364 p->M = E<14 ? E-1 : E-13; | |
| 365 p->Y = p->M>2 ? C - 4716 : C - 4715; | |
| 366 } | |
| 367 p->validYMD = 1; | |
| 368 } | |
| 369 | |
| 370 /* | |
| 371 ** Compute the Hour, Minute, and Seconds from the julian day number. | |
| 372 */ | |
| 373 static void computeHMS(DateTime *p){ | |
| 374 int s; | |
| 375 if( p->validHMS ) return; | |
| 376 computeJD(p); | |
| 377 s = (int)((p->iJD + 43200000) % 86400000); | |
| 378 p->s = s/1000.0; | |
| 379 s = (int)p->s; | |
| 380 p->s -= s; | |
| 381 p->h = s/3600; | |
| 382 s -= p->h*3600; | |
| 383 p->m = s/60; | |
| 384 p->s += s - p->m*60; | |
| 385 p->validHMS = 1; | |
| 386 } | |
| 387 | |
| 388 /* | |
| 389 ** Compute both YMD and HMS | |
| 390 */ | |
| 391 static void computeYMD_HMS(DateTime *p){ | |
| 392 computeYMD(p); | |
| 393 computeHMS(p); | |
| 394 } | |
| 395 | |
| 396 /* | |
| 397 ** Clear the YMD and HMS and the TZ | |
| 398 */ | |
| 399 static void clearYMD_HMS_TZ(DateTime *p){ | |
| 400 p->validYMD = 0; | |
| 401 p->validHMS = 0; | |
| 402 p->validTZ = 0; | |
| 403 } | |
| 404 | |
| 405 /* | |
| 406 ** On recent Windows platforms, the localtime_s() function is available | |
| 407 ** as part of the "Secure CRT". It is essentially equivalent to | |
| 408 ** localtime_r() available under most POSIX platforms, except that the | |
| 409 ** order of the parameters is reversed. | |
| 410 ** | |
| 411 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx. | |
| 412 ** | |
| 413 ** If the user has not indicated to use localtime_r() or localtime_s() | |
| 414 ** already, check for an MSVC build environment that provides | |
| 415 ** localtime_s(). | |
| 416 */ | |
| 417 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S \ | |
| 418 && defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE) | |
| 419 #undef HAVE_LOCALTIME_S | |
| 420 #define HAVE_LOCALTIME_S 1 | |
| 421 #endif | |
| 422 | |
| 423 #ifndef SQLITE_OMIT_LOCALTIME | |
| 424 /* | |
| 425 ** The following routine implements the rough equivalent of localtime_r() | |
| 426 ** using whatever operating-system specific localtime facility that | |
| 427 ** is available. This routine returns 0 on success and | |
| 428 ** non-zero on any kind of error. | |
| 429 ** | |
| 430 ** If the sqlite3GlobalConfig.bLocaltimeFault variable is true then this | |
| 431 ** routine will always fail. | |
| 432 ** | |
| 433 ** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C | |
| 434 ** library function localtime_r() is used to assist in the calculation of | |
| 435 ** local time. | |
| 436 */ | |
| 437 static int osLocaltime(time_t *t, struct tm *pTm){ | |
| 438 int rc; | |
| 439 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S | |
| 440 struct tm *pX; | |
| 441 #if SQLITE_THREADSAFE>0 | |
| 442 sqlite3_mutex *mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER); | |
| 443 #endif | |
| 444 sqlite3_mutex_enter(mutex); | |
| 445 pX = localtime(t); | |
| 446 #ifndef SQLITE_OMIT_BUILTIN_TEST | |
| 447 if( sqlite3GlobalConfig.bLocaltimeFault ) pX = 0; | |
| 448 #endif | |
| 449 if( pX ) *pTm = *pX; | |
| 450 sqlite3_mutex_leave(mutex); | |
| 451 rc = pX==0; | |
| 452 #else | |
| 453 #ifndef SQLITE_OMIT_BUILTIN_TEST | |
| 454 if( sqlite3GlobalConfig.bLocaltimeFault ) return 1; | |
| 455 #endif | |
| 456 #if HAVE_LOCALTIME_R | |
| 457 rc = localtime_r(t, pTm)==0; | |
| 458 #else | |
| 459 rc = localtime_s(pTm, t); | |
| 460 #endif /* HAVE_LOCALTIME_R */ | |
| 461 #endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */ | |
| 462 return rc; | |
| 463 } | |
| 464 #endif /* SQLITE_OMIT_LOCALTIME */ | |
| 465 | |
| 466 | |
| 467 #ifndef SQLITE_OMIT_LOCALTIME | |
| 468 /* | |
| 469 ** Compute the difference (in milliseconds) between localtime and UTC | |
| 470 ** (a.k.a. GMT) for the time value p where p is in UTC. If no error occurs, | |
| 471 ** return this value and set *pRc to SQLITE_OK. | |
| 472 ** | |
| 473 ** Or, if an error does occur, set *pRc to SQLITE_ERROR. The returned value | |
| 474 ** is undefined in this case. | |
| 475 */ | |
| 476 static sqlite3_int64 localtimeOffset( | |
| 477 DateTime *p, /* Date at which to calculate offset */ | |
| 478 sqlite3_context *pCtx, /* Write error here if one occurs */ | |
| 479 int *pRc /* OUT: Error code. SQLITE_OK or ERROR */ | |
| 480 ){ | |
| 481 DateTime x, y; | |
| 482 time_t t; | |
| 483 struct tm sLocal; | |
| 484 | |
| 485 /* Initialize the contents of sLocal to avoid a compiler warning. */ | |
| 486 memset(&sLocal, 0, sizeof(sLocal)); | |
| 487 | |
| 488 x = *p; | |
| 489 computeYMD_HMS(&x); | |
| 490 if( x.Y<1971 || x.Y>=2038 ){ | |
| 491 /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only | |
| 492 ** works for years between 1970 and 2037. For dates outside this range, | |
| 493 ** SQLite attempts to map the year into an equivalent year within this | |
| 494 ** range, do the calculation, then map the year back. | |
| 495 */ | |
| 496 x.Y = 2000; | |
| 497 x.M = 1; | |
| 498 x.D = 1; | |
| 499 x.h = 0; | |
| 500 x.m = 0; | |
| 501 x.s = 0.0; | |
| 502 } else { | |
| 503 int s = (int)(x.s + 0.5); | |
| 504 x.s = s; | |
| 505 } | |
| 506 x.tz = 0; | |
| 507 x.validJD = 0; | |
| 508 computeJD(&x); | |
| 509 t = (time_t)(x.iJD/1000 - 21086676*(i64)10000); | |
| 510 if( osLocaltime(&t, &sLocal) ){ | |
| 511 sqlite3_result_error(pCtx, "local time unavailable", -1); | |
| 512 *pRc = SQLITE_ERROR; | |
| 513 return 0; | |
| 514 } | |
| 515 y.Y = sLocal.tm_year + 1900; | |
| 516 y.M = sLocal.tm_mon + 1; | |
| 517 y.D = sLocal.tm_mday; | |
| 518 y.h = sLocal.tm_hour; | |
| 519 y.m = sLocal.tm_min; | |
| 520 y.s = sLocal.tm_sec; | |
| 521 y.validYMD = 1; | |
| 522 y.validHMS = 1; | |
| 523 y.validJD = 0; | |
| 524 y.validTZ = 0; | |
| 525 computeJD(&y); | |
| 526 *pRc = SQLITE_OK; | |
| 527 return y.iJD - x.iJD; | |
| 528 } | |
| 529 #endif /* SQLITE_OMIT_LOCALTIME */ | |
| 530 | |
| 531 /* | |
| 532 ** Process a modifier to a date-time stamp. The modifiers are | |
| 533 ** as follows: | |
| 534 ** | |
| 535 ** NNN days | |
| 536 ** NNN hours | |
| 537 ** NNN minutes | |
| 538 ** NNN.NNNN seconds | |
| 539 ** NNN months | |
| 540 ** NNN years | |
| 541 ** start of month | |
| 542 ** start of year | |
| 543 ** start of week | |
| 544 ** start of day | |
| 545 ** weekday N | |
| 546 ** unixepoch | |
| 547 ** localtime | |
| 548 ** utc | |
| 549 ** | |
| 550 ** Return 0 on success and 1 if there is any kind of error. If the error | |
| 551 ** is in a system call (i.e. localtime()), then an error message is written | |
| 552 ** to context pCtx. If the error is an unrecognized modifier, no error is | |
| 553 ** written to pCtx. | |
| 554 */ | |
| 555 static int parseModifier(sqlite3_context *pCtx, const char *zMod, DateTime *p){ | |
| 556 int rc = 1; | |
| 557 int n; | |
| 558 double r; | |
| 559 char *z, zBuf[30]; | |
| 560 z = zBuf; | |
| 561 for(n=0; n<ArraySize(zBuf)-1 && zMod[n]; n++){ | |
| 562 z[n] = (char)sqlite3UpperToLower[(u8)zMod[n]]; | |
| 563 } | |
| 564 z[n] = 0; | |
| 565 switch( z[0] ){ | |
| 566 #ifndef SQLITE_OMIT_LOCALTIME | |
| 567 case 'l': { | |
| 568 /* localtime | |
| 569 ** | |
| 570 ** Assuming the current time value is UTC (a.k.a. GMT), shift it to | |
| 571 ** show local time. | |
| 572 */ | |
| 573 if( strcmp(z, "localtime")==0 ){ | |
| 574 computeJD(p); | |
| 575 p->iJD += localtimeOffset(p, pCtx, &rc); | |
| 576 clearYMD_HMS_TZ(p); | |
| 577 } | |
| 578 break; | |
| 579 } | |
| 580 #endif | |
| 581 case 'u': { | |
| 582 /* | |
| 583 ** unixepoch | |
| 584 ** | |
| 585 ** Treat the current value of p->iJD as the number of | |
| 586 ** seconds since 1970. Convert to a real julian day number. | |
| 587 */ | |
| 588 if( strcmp(z, "unixepoch")==0 && p->validJD ){ | |
| 589 p->iJD = (p->iJD + 43200)/86400 + 21086676*(i64)10000000; | |
| 590 clearYMD_HMS_TZ(p); | |
| 591 rc = 0; | |
| 592 } | |
| 593 #ifndef SQLITE_OMIT_LOCALTIME | |
| 594 else if( strcmp(z, "utc")==0 ){ | |
| 595 if( p->tzSet==0 ){ | |
| 596 sqlite3_int64 c1; | |
| 597 computeJD(p); | |
| 598 c1 = localtimeOffset(p, pCtx, &rc); | |
| 599 if( rc==SQLITE_OK ){ | |
| 600 p->iJD -= c1; | |
| 601 clearYMD_HMS_TZ(p); | |
| 602 p->iJD += c1 - localtimeOffset(p, pCtx, &rc); | |
| 603 } | |
| 604 p->tzSet = 1; | |
| 605 }else{ | |
| 606 rc = SQLITE_OK; | |
| 607 } | |
| 608 } | |
| 609 #endif | |
| 610 break; | |
| 611 } | |
| 612 case 'w': { | |
| 613 /* | |
| 614 ** weekday N | |
| 615 ** | |
| 616 ** Move the date to the same time on the next occurrence of | |
| 617 ** weekday N where 0==Sunday, 1==Monday, and so forth. If the | |
| 618 ** date is already on the appropriate weekday, this is a no-op. | |
| 619 */ | |
| 620 if( strncmp(z, "weekday ", 8)==0 | |
| 621 && sqlite3AtoF(&z[8], &r, sqlite3Strlen30(&z[8]), SQLITE_UTF8) | |
| 622 && (n=(int)r)==r && n>=0 && r<7 ){ | |
| 623 sqlite3_int64 Z; | |
| 624 computeYMD_HMS(p); | |
| 625 p->validTZ = 0; | |
| 626 p->validJD = 0; | |
| 627 computeJD(p); | |
| 628 Z = ((p->iJD + 129600000)/86400000) % 7; | |
| 629 if( Z>n ) Z -= 7; | |
| 630 p->iJD += (n - Z)*86400000; | |
| 631 clearYMD_HMS_TZ(p); | |
| 632 rc = 0; | |
| 633 } | |
| 634 break; | |
| 635 } | |
| 636 case 's': { | |
| 637 /* | |
| 638 ** start of TTTTT | |
| 639 ** | |
| 640 ** Move the date backwards to the beginning of the current day, | |
| 641 ** or month or year. | |
| 642 */ | |
| 643 if( strncmp(z, "start of ", 9)!=0 ) break; | |
| 644 z += 9; | |
| 645 computeYMD(p); | |
| 646 p->validHMS = 1; | |
| 647 p->h = p->m = 0; | |
| 648 p->s = 0.0; | |
| 649 p->validTZ = 0; | |
| 650 p->validJD = 0; | |
| 651 if( strcmp(z,"month")==0 ){ | |
| 652 p->D = 1; | |
| 653 rc = 0; | |
| 654 }else if( strcmp(z,"year")==0 ){ | |
| 655 computeYMD(p); | |
| 656 p->M = 1; | |
| 657 p->D = 1; | |
| 658 rc = 0; | |
| 659 }else if( strcmp(z,"day")==0 ){ | |
| 660 rc = 0; | |
| 661 } | |
| 662 break; | |
| 663 } | |
| 664 case '+': | |
| 665 case '-': | |
| 666 case '0': | |
| 667 case '1': | |
| 668 case '2': | |
| 669 case '3': | |
| 670 case '4': | |
| 671 case '5': | |
| 672 case '6': | |
| 673 case '7': | |
| 674 case '8': | |
| 675 case '9': { | |
| 676 double rRounder; | |
| 677 for(n=1; z[n] && z[n]!=':' && !sqlite3Isspace(z[n]); n++){} | |
| 678 if( !sqlite3AtoF(z, &r, n, SQLITE_UTF8) ){ | |
| 679 rc = 1; | |
| 680 break; | |
| 681 } | |
| 682 if( z[n]==':' ){ | |
| 683 /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the | |
| 684 ** specified number of hours, minutes, seconds, and fractional seconds | |
| 685 ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be | |
| 686 ** omitted. | |
| 687 */ | |
| 688 const char *z2 = z; | |
| 689 DateTime tx; | |
| 690 sqlite3_int64 day; | |
| 691 if( !sqlite3Isdigit(*z2) ) z2++; | |
| 692 memset(&tx, 0, sizeof(tx)); | |
| 693 if( parseHhMmSs(z2, &tx) ) break; | |
| 694 computeJD(&tx); | |
| 695 tx.iJD -= 43200000; | |
| 696 day = tx.iJD/86400000; | |
| 697 tx.iJD -= day*86400000; | |
| 698 if( z[0]=='-' ) tx.iJD = -tx.iJD; | |
| 699 computeJD(p); | |
| 700 clearYMD_HMS_TZ(p); | |
| 701 p->iJD += tx.iJD; | |
| 702 rc = 0; | |
| 703 break; | |
| 704 } | |
| 705 z += n; | |
| 706 while( sqlite3Isspace(*z) ) z++; | |
| 707 n = sqlite3Strlen30(z); | |
| 708 if( n>10 || n<3 ) break; | |
| 709 if( z[n-1]=='s' ){ z[n-1] = 0; n--; } | |
| 710 computeJD(p); | |
| 711 rc = 0; | |
| 712 rRounder = r<0 ? -0.5 : +0.5; | |
| 713 if( n==3 && strcmp(z,"day")==0 ){ | |
| 714 p->iJD += (sqlite3_int64)(r*86400000.0 + rRounder); | |
| 715 }else if( n==4 && strcmp(z,"hour")==0 ){ | |
| 716 p->iJD += (sqlite3_int64)(r*(86400000.0/24.0) + rRounder); | |
| 717 }else if( n==6 && strcmp(z,"minute")==0 ){ | |
| 718 p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0)) + rRounder); | |
| 719 }else if( n==6 && strcmp(z,"second")==0 ){ | |
| 720 p->iJD += (sqlite3_int64)(r*(86400000.0/(24.0*60.0*60.0)) + rRounder); | |
| 721 }else if( n==5 && strcmp(z,"month")==0 ){ | |
| 722 int x, y; | |
| 723 computeYMD_HMS(p); | |
| 724 p->M += (int)r; | |
| 725 x = p->M>0 ? (p->M-1)/12 : (p->M-12)/12; | |
| 726 p->Y += x; | |
| 727 p->M -= x*12; | |
| 728 p->validJD = 0; | |
| 729 computeJD(p); | |
| 730 y = (int)r; | |
| 731 if( y!=r ){ | |
| 732 p->iJD += (sqlite3_int64)((r - y)*30.0*86400000.0 + rRounder); | |
| 733 } | |
| 734 }else if( n==4 && strcmp(z,"year")==0 ){ | |
| 735 int y = (int)r; | |
| 736 computeYMD_HMS(p); | |
| 737 p->Y += y; | |
| 738 p->validJD = 0; | |
| 739 computeJD(p); | |
| 740 if( y!=r ){ | |
| 741 p->iJD += (sqlite3_int64)((r - y)*365.0*86400000.0 + rRounder); | |
| 742 } | |
| 743 }else{ | |
| 744 rc = 1; | |
| 745 } | |
| 746 clearYMD_HMS_TZ(p); | |
| 747 break; | |
| 748 } | |
| 749 default: { | |
| 750 break; | |
| 751 } | |
| 752 } | |
| 753 return rc; | |
| 754 } | |
| 755 | |
| 756 /* | |
| 757 ** Process time function arguments. argv[0] is a date-time stamp. | |
| 758 ** argv[1] and following are modifiers. Parse them all and write | |
| 759 ** the resulting time into the DateTime structure p. Return 0 | |
| 760 ** on success and 1 if there are any errors. | |
| 761 ** | |
| 762 ** If there are zero parameters (if even argv[0] is undefined) | |
| 763 ** then assume a default value of "now" for argv[0]. | |
| 764 */ | |
| 765 static int isDate( | |
| 766 sqlite3_context *context, | |
| 767 int argc, | |
| 768 sqlite3_value **argv, | |
| 769 DateTime *p | |
| 770 ){ | |
| 771 int i; | |
| 772 const unsigned char *z; | |
| 773 int eType; | |
| 774 memset(p, 0, sizeof(*p)); | |
| 775 if( argc==0 ){ | |
| 776 return setDateTimeToCurrent(context, p); | |
| 777 } | |
| 778 if( (eType = sqlite3_value_type(argv[0]))==SQLITE_FLOAT | |
| 779 || eType==SQLITE_INTEGER ){ | |
| 780 p->iJD = (sqlite3_int64)(sqlite3_value_double(argv[0])*86400000.0 + 0.5); | |
| 781 p->validJD = 1; | |
| 782 }else{ | |
| 783 z = sqlite3_value_text(argv[0]); | |
| 784 if( !z || parseDateOrTime(context, (char*)z, p) ){ | |
| 785 return 1; | |
| 786 } | |
| 787 } | |
| 788 for(i=1; i<argc; i++){ | |
| 789 z = sqlite3_value_text(argv[i]); | |
| 790 if( z==0 || parseModifier(context, (char*)z, p) ) return 1; | |
| 791 } | |
| 792 return 0; | |
| 793 } | |
| 794 | |
| 795 | |
| 796 /* | |
| 797 ** The following routines implement the various date and time functions | |
| 798 ** of SQLite. | |
| 799 */ | |
| 800 | |
| 801 /* | |
| 802 ** julianday( TIMESTRING, MOD, MOD, ...) | |
| 803 ** | |
| 804 ** Return the julian day number of the date specified in the arguments | |
| 805 */ | |
| 806 static void juliandayFunc( | |
| 807 sqlite3_context *context, | |
| 808 int argc, | |
| 809 sqlite3_value **argv | |
| 810 ){ | |
| 811 DateTime x; | |
| 812 if( isDate(context, argc, argv, &x)==0 ){ | |
| 813 computeJD(&x); | |
| 814 sqlite3_result_double(context, x.iJD/86400000.0); | |
| 815 } | |
| 816 } | |
| 817 | |
| 818 /* | |
| 819 ** datetime( TIMESTRING, MOD, MOD, ...) | |
| 820 ** | |
| 821 ** Return YYYY-MM-DD HH:MM:SS | |
| 822 */ | |
| 823 static void datetimeFunc( | |
| 824 sqlite3_context *context, | |
| 825 int argc, | |
| 826 sqlite3_value **argv | |
| 827 ){ | |
| 828 DateTime x; | |
| 829 if( isDate(context, argc, argv, &x)==0 ){ | |
| 830 char zBuf[100]; | |
| 831 computeYMD_HMS(&x); | |
| 832 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d %02d:%02d:%02d", | |
| 833 x.Y, x.M, x.D, x.h, x.m, (int)(x.s)); | |
| 834 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); | |
| 835 } | |
| 836 } | |
| 837 | |
| 838 /* | |
| 839 ** time( TIMESTRING, MOD, MOD, ...) | |
| 840 ** | |
| 841 ** Return HH:MM:SS | |
| 842 */ | |
| 843 static void timeFunc( | |
| 844 sqlite3_context *context, | |
| 845 int argc, | |
| 846 sqlite3_value **argv | |
| 847 ){ | |
| 848 DateTime x; | |
| 849 if( isDate(context, argc, argv, &x)==0 ){ | |
| 850 char zBuf[100]; | |
| 851 computeHMS(&x); | |
| 852 sqlite3_snprintf(sizeof(zBuf), zBuf, "%02d:%02d:%02d", x.h, x.m, (int)x.s); | |
| 853 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); | |
| 854 } | |
| 855 } | |
| 856 | |
| 857 /* | |
| 858 ** date( TIMESTRING, MOD, MOD, ...) | |
| 859 ** | |
| 860 ** Return YYYY-MM-DD | |
| 861 */ | |
| 862 static void dateFunc( | |
| 863 sqlite3_context *context, | |
| 864 int argc, | |
| 865 sqlite3_value **argv | |
| 866 ){ | |
| 867 DateTime x; | |
| 868 if( isDate(context, argc, argv, &x)==0 ){ | |
| 869 char zBuf[100]; | |
| 870 computeYMD(&x); | |
| 871 sqlite3_snprintf(sizeof(zBuf), zBuf, "%04d-%02d-%02d", x.Y, x.M, x.D); | |
| 872 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); | |
| 873 } | |
| 874 } | |
| 875 | |
| 876 /* | |
| 877 ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...) | |
| 878 ** | |
| 879 ** Return a string described by FORMAT. Conversions as follows: | |
| 880 ** | |
| 881 ** %d day of month | |
| 882 ** %f ** fractional seconds SS.SSS | |
| 883 ** %H hour 00-24 | |
| 884 ** %j day of year 000-366 | |
| 885 ** %J ** julian day number | |
| 886 ** %m month 01-12 | |
| 887 ** %M minute 00-59 | |
| 888 ** %s seconds since 1970-01-01 | |
| 889 ** %S seconds 00-59 | |
| 890 ** %w day of week 0-6 sunday==0 | |
| 891 ** %W week of year 00-53 | |
| 892 ** %Y year 0000-9999 | |
| 893 ** %% % | |
| 894 */ | |
| 895 static void strftimeFunc( | |
| 896 sqlite3_context *context, | |
| 897 int argc, | |
| 898 sqlite3_value **argv | |
| 899 ){ | |
| 900 DateTime x; | |
| 901 u64 n; | |
| 902 size_t i,j; | |
| 903 char *z; | |
| 904 sqlite3 *db; | |
| 905 const char *zFmt; | |
| 906 char zBuf[100]; | |
| 907 if( argc==0 ) return; | |
| 908 zFmt = (const char*)sqlite3_value_text(argv[0]); | |
| 909 if( zFmt==0 || isDate(context, argc-1, argv+1, &x) ) return; | |
| 910 db = sqlite3_context_db_handle(context); | |
| 911 for(i=0, n=1; zFmt[i]; i++, n++){ | |
| 912 if( zFmt[i]=='%' ){ | |
| 913 switch( zFmt[i+1] ){ | |
| 914 case 'd': | |
| 915 case 'H': | |
| 916 case 'm': | |
| 917 case 'M': | |
| 918 case 'S': | |
| 919 case 'W': | |
| 920 n++; | |
| 921 /* fall thru */ | |
| 922 case 'w': | |
| 923 case '%': | |
| 924 break; | |
| 925 case 'f': | |
| 926 n += 8; | |
| 927 break; | |
| 928 case 'j': | |
| 929 n += 3; | |
| 930 break; | |
| 931 case 'Y': | |
| 932 n += 8; | |
| 933 break; | |
| 934 case 's': | |
| 935 case 'J': | |
| 936 n += 50; | |
| 937 break; | |
| 938 default: | |
| 939 return; /* ERROR. return a NULL */ | |
| 940 } | |
| 941 i++; | |
| 942 } | |
| 943 } | |
| 944 testcase( n==sizeof(zBuf)-1 ); | |
| 945 testcase( n==sizeof(zBuf) ); | |
| 946 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH]+1 ); | |
| 947 testcase( n==(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ); | |
| 948 if( n<sizeof(zBuf) ){ | |
| 949 z = zBuf; | |
| 950 }else if( n>(u64)db->aLimit[SQLITE_LIMIT_LENGTH] ){ | |
| 951 sqlite3_result_error_toobig(context); | |
| 952 return; | |
| 953 }else{ | |
| 954 z = sqlite3DbMallocRaw(db, (int)n); | |
| 955 if( z==0 ){ | |
| 956 sqlite3_result_error_nomem(context); | |
| 957 return; | |
| 958 } | |
| 959 } | |
| 960 computeJD(&x); | |
| 961 computeYMD_HMS(&x); | |
| 962 for(i=j=0; zFmt[i]; i++){ | |
| 963 if( zFmt[i]!='%' ){ | |
| 964 z[j++] = zFmt[i]; | |
| 965 }else{ | |
| 966 i++; | |
| 967 switch( zFmt[i] ){ | |
| 968 case 'd': sqlite3_snprintf(3, &z[j],"%02d",x.D); j+=2; break; | |
| 969 case 'f': { | |
| 970 double s = x.s; | |
| 971 if( s>59.999 ) s = 59.999; | |
| 972 sqlite3_snprintf(7, &z[j],"%06.3f", s); | |
| 973 j += sqlite3Strlen30(&z[j]); | |
| 974 break; | |
| 975 } | |
| 976 case 'H': sqlite3_snprintf(3, &z[j],"%02d",x.h); j+=2; break; | |
| 977 case 'W': /* Fall thru */ | |
| 978 case 'j': { | |
| 979 int nDay; /* Number of days since 1st day of year */ | |
| 980 DateTime y = x; | |
| 981 y.validJD = 0; | |
| 982 y.M = 1; | |
| 983 y.D = 1; | |
| 984 computeJD(&y); | |
| 985 nDay = (int)((x.iJD-y.iJD+43200000)/86400000); | |
| 986 if( zFmt[i]=='W' ){ | |
| 987 int wd; /* 0=Monday, 1=Tuesday, ... 6=Sunday */ | |
| 988 wd = (int)(((x.iJD+43200000)/86400000)%7); | |
| 989 sqlite3_snprintf(3, &z[j],"%02d",(nDay+7-wd)/7); | |
| 990 j += 2; | |
| 991 }else{ | |
| 992 sqlite3_snprintf(4, &z[j],"%03d",nDay+1); | |
| 993 j += 3; | |
| 994 } | |
| 995 break; | |
| 996 } | |
| 997 case 'J': { | |
| 998 sqlite3_snprintf(20, &z[j],"%.16g",x.iJD/86400000.0); | |
| 999 j+=sqlite3Strlen30(&z[j]); | |
| 1000 break; | |
| 1001 } | |
| 1002 case 'm': sqlite3_snprintf(3, &z[j],"%02d",x.M); j+=2; break; | |
| 1003 case 'M': sqlite3_snprintf(3, &z[j],"%02d",x.m); j+=2; break; | |
| 1004 case 's': { | |
| 1005 sqlite3_snprintf(30,&z[j],"%lld", | |
| 1006 (i64)(x.iJD/1000 - 21086676*(i64)10000)); | |
| 1007 j += sqlite3Strlen30(&z[j]); | |
| 1008 break; | |
| 1009 } | |
| 1010 case 'S': sqlite3_snprintf(3,&z[j],"%02d",(int)x.s); j+=2; break; | |
| 1011 case 'w': { | |
| 1012 z[j++] = (char)(((x.iJD+129600000)/86400000) % 7) + '0'; | |
| 1013 break; | |
| 1014 } | |
| 1015 case 'Y': { | |
| 1016 sqlite3_snprintf(5,&z[j],"%04d",x.Y); j+=sqlite3Strlen30(&z[j]); | |
| 1017 break; | |
| 1018 } | |
| 1019 default: z[j++] = '%'; break; | |
| 1020 } | |
| 1021 } | |
| 1022 } | |
| 1023 z[j] = 0; | |
| 1024 sqlite3_result_text(context, z, -1, | |
| 1025 z==zBuf ? SQLITE_TRANSIENT : SQLITE_DYNAMIC); | |
| 1026 } | |
| 1027 | |
| 1028 /* | |
| 1029 ** current_time() | |
| 1030 ** | |
| 1031 ** This function returns the same value as time('now'). | |
| 1032 */ | |
| 1033 static void ctimeFunc( | |
| 1034 sqlite3_context *context, | |
| 1035 int NotUsed, | |
| 1036 sqlite3_value **NotUsed2 | |
| 1037 ){ | |
| 1038 UNUSED_PARAMETER2(NotUsed, NotUsed2); | |
| 1039 timeFunc(context, 0, 0); | |
| 1040 } | |
| 1041 | |
| 1042 /* | |
| 1043 ** current_date() | |
| 1044 ** | |
| 1045 ** This function returns the same value as date('now'). | |
| 1046 */ | |
| 1047 static void cdateFunc( | |
| 1048 sqlite3_context *context, | |
| 1049 int NotUsed, | |
| 1050 sqlite3_value **NotUsed2 | |
| 1051 ){ | |
| 1052 UNUSED_PARAMETER2(NotUsed, NotUsed2); | |
| 1053 dateFunc(context, 0, 0); | |
| 1054 } | |
| 1055 | |
| 1056 /* | |
| 1057 ** current_timestamp() | |
| 1058 ** | |
| 1059 ** This function returns the same value as datetime('now'). | |
| 1060 */ | |
| 1061 static void ctimestampFunc( | |
| 1062 sqlite3_context *context, | |
| 1063 int NotUsed, | |
| 1064 sqlite3_value **NotUsed2 | |
| 1065 ){ | |
| 1066 UNUSED_PARAMETER2(NotUsed, NotUsed2); | |
| 1067 datetimeFunc(context, 0, 0); | |
| 1068 } | |
| 1069 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */ | |
| 1070 | |
| 1071 #ifdef SQLITE_OMIT_DATETIME_FUNCS | |
| 1072 /* | |
| 1073 ** If the library is compiled to omit the full-scale date and time | |
| 1074 ** handling (to get a smaller binary), the following minimal version | |
| 1075 ** of the functions current_time(), current_date() and current_timestamp() | |
| 1076 ** are included instead. This is to support column declarations that | |
| 1077 ** include "DEFAULT CURRENT_TIME" etc. | |
| 1078 ** | |
| 1079 ** This function uses the C-library functions time(), gmtime() | |
| 1080 ** and strftime(). The format string to pass to strftime() is supplied | |
| 1081 ** as the user-data for the function. | |
| 1082 */ | |
| 1083 static void currentTimeFunc( | |
| 1084 sqlite3_context *context, | |
| 1085 int argc, | |
| 1086 sqlite3_value **argv | |
| 1087 ){ | |
| 1088 time_t t; | |
| 1089 char *zFormat = (char *)sqlite3_user_data(context); | |
| 1090 sqlite3 *db; | |
| 1091 sqlite3_int64 iT; | |
| 1092 struct tm *pTm; | |
| 1093 struct tm sNow; | |
| 1094 char zBuf[20]; | |
| 1095 | |
| 1096 UNUSED_PARAMETER(argc); | |
| 1097 UNUSED_PARAMETER(argv); | |
| 1098 | |
| 1099 iT = sqlite3StmtCurrentTime(context); | |
| 1100 if( iT<=0 ) return; | |
| 1101 t = iT/1000 - 10000*(sqlite3_int64)21086676; | |
| 1102 #if HAVE_GMTIME_R | |
| 1103 pTm = gmtime_r(&t, &sNow); | |
| 1104 #else | |
| 1105 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); | |
| 1106 pTm = gmtime(&t); | |
| 1107 if( pTm ) memcpy(&sNow, pTm, sizeof(sNow)); | |
| 1108 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MASTER)); | |
| 1109 #endif | |
| 1110 if( pTm ){ | |
| 1111 strftime(zBuf, 20, zFormat, &sNow); | |
| 1112 sqlite3_result_text(context, zBuf, -1, SQLITE_TRANSIENT); | |
| 1113 } | |
| 1114 } | |
| 1115 #endif | |
| 1116 | |
| 1117 /* | |
| 1118 ** This function registered all of the above C functions as SQL | |
| 1119 ** functions. This should be the only routine in this file with | |
| 1120 ** external linkage. | |
| 1121 */ | |
| 1122 void sqlite3RegisterDateTimeFunctions(void){ | |
| 1123 static SQLITE_WSD FuncDef aDateTimeFuncs[] = { | |
| 1124 #ifndef SQLITE_OMIT_DATETIME_FUNCS | |
| 1125 DFUNCTION(julianday, -1, 0, 0, juliandayFunc ), | |
| 1126 DFUNCTION(date, -1, 0, 0, dateFunc ), | |
| 1127 DFUNCTION(time, -1, 0, 0, timeFunc ), | |
| 1128 DFUNCTION(datetime, -1, 0, 0, datetimeFunc ), | |
| 1129 DFUNCTION(strftime, -1, 0, 0, strftimeFunc ), | |
| 1130 DFUNCTION(current_time, 0, 0, 0, ctimeFunc ), | |
| 1131 DFUNCTION(current_timestamp, 0, 0, 0, ctimestampFunc), | |
| 1132 DFUNCTION(current_date, 0, 0, 0, cdateFunc ), | |
| 1133 #else | |
| 1134 STR_FUNCTION(current_time, 0, "%H:%M:%S", 0, currentTimeFunc), | |
| 1135 STR_FUNCTION(current_date, 0, "%Y-%m-%d", 0, currentTimeFunc), | |
| 1136 STR_FUNCTION(current_timestamp, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc), | |
| 1137 #endif | |
| 1138 }; | |
| 1139 int i; | |
| 1140 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions); | |
| 1141 FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aDateTimeFuncs); | |
| 1142 | |
| 1143 for(i=0; i<ArraySize(aDateTimeFuncs); i++){ | |
| 1144 sqlite3FuncDefInsert(pHash, &aFunc[i]); | |
| 1145 } | |
| 1146 } | |
| OLD | NEW |