Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(95)

Side by Side Diff: third_party/sqlite/sqlite-src-3100200/src/build.c

Issue 2846743003: [sql] Remove SQLite 3.10.2 reference directory. (Closed)
Patch Set: Created 3 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced. The routines in this file handle the
14 ** following kinds of SQL syntax:
15 **
16 ** CREATE TABLE
17 ** DROP TABLE
18 ** CREATE INDEX
19 ** DROP INDEX
20 ** creating ID lists
21 ** BEGIN TRANSACTION
22 ** COMMIT
23 ** ROLLBACK
24 */
25 #include "sqliteInt.h"
26
27 /*
28 ** This routine is called when a new SQL statement is beginning to
29 ** be parsed. Initialize the pParse structure as needed.
30 */
31 void sqlite3BeginParse(Parse *pParse, int explainFlag){
32 pParse->explain = (u8)explainFlag;
33 pParse->nVar = 0;
34 }
35
36 #ifndef SQLITE_OMIT_SHARED_CACHE
37 /*
38 ** The TableLock structure is only used by the sqlite3TableLock() and
39 ** codeTableLocks() functions.
40 */
41 struct TableLock {
42 int iDb; /* The database containing the table to be locked */
43 int iTab; /* The root page of the table to be locked */
44 u8 isWriteLock; /* True for write lock. False for a read lock */
45 const char *zName; /* Name of the table */
46 };
47
48 /*
49 ** Record the fact that we want to lock a table at run-time.
50 **
51 ** The table to be locked has root page iTab and is found in database iDb.
52 ** A read or a write lock can be taken depending on isWritelock.
53 **
54 ** This routine just records the fact that the lock is desired. The
55 ** code to make the lock occur is generated by a later call to
56 ** codeTableLocks() which occurs during sqlite3FinishCoding().
57 */
58 void sqlite3TableLock(
59 Parse *pParse, /* Parsing context */
60 int iDb, /* Index of the database containing the table to lock */
61 int iTab, /* Root page number of the table to be locked */
62 u8 isWriteLock, /* True for a write lock */
63 const char *zName /* Name of the table to be locked */
64 ){
65 Parse *pToplevel = sqlite3ParseToplevel(pParse);
66 int i;
67 int nBytes;
68 TableLock *p;
69 assert( iDb>=0 );
70
71 for(i=0; i<pToplevel->nTableLock; i++){
72 p = &pToplevel->aTableLock[i];
73 if( p->iDb==iDb && p->iTab==iTab ){
74 p->isWriteLock = (p->isWriteLock || isWriteLock);
75 return;
76 }
77 }
78
79 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
80 pToplevel->aTableLock =
81 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
82 if( pToplevel->aTableLock ){
83 p = &pToplevel->aTableLock[pToplevel->nTableLock++];
84 p->iDb = iDb;
85 p->iTab = iTab;
86 p->isWriteLock = isWriteLock;
87 p->zName = zName;
88 }else{
89 pToplevel->nTableLock = 0;
90 pToplevel->db->mallocFailed = 1;
91 }
92 }
93
94 /*
95 ** Code an OP_TableLock instruction for each table locked by the
96 ** statement (configured by calls to sqlite3TableLock()).
97 */
98 static void codeTableLocks(Parse *pParse){
99 int i;
100 Vdbe *pVdbe;
101
102 pVdbe = sqlite3GetVdbe(pParse);
103 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
104
105 for(i=0; i<pParse->nTableLock; i++){
106 TableLock *p = &pParse->aTableLock[i];
107 int p1 = p->iDb;
108 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
109 p->zName, P4_STATIC);
110 }
111 }
112 #else
113 #define codeTableLocks(x)
114 #endif
115
116 /*
117 ** Return TRUE if the given yDbMask object is empty - if it contains no
118 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero()
119 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
120 */
121 #if SQLITE_MAX_ATTACHED>30
122 int sqlite3DbMaskAllZero(yDbMask m){
123 int i;
124 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
125 return 1;
126 }
127 #endif
128
129 /*
130 ** This routine is called after a single SQL statement has been
131 ** parsed and a VDBE program to execute that statement has been
132 ** prepared. This routine puts the finishing touches on the
133 ** VDBE program and resets the pParse structure for the next
134 ** parse.
135 **
136 ** Note that if an error occurred, it might be the case that
137 ** no VDBE code was generated.
138 */
139 void sqlite3FinishCoding(Parse *pParse){
140 sqlite3 *db;
141 Vdbe *v;
142
143 assert( pParse->pToplevel==0 );
144 db = pParse->db;
145 if( pParse->nested ) return;
146 if( db->mallocFailed || pParse->nErr ){
147 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR;
148 return;
149 }
150
151 /* Begin by generating some termination code at the end of the
152 ** vdbe program
153 */
154 v = sqlite3GetVdbe(pParse);
155 assert( !pParse->isMultiWrite
156 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
157 if( v ){
158 while( sqlite3VdbeDeletePriorOpcode(v, OP_Close) ){}
159 sqlite3VdbeAddOp0(v, OP_Halt);
160
161 #if SQLITE_USER_AUTHENTICATION
162 if( pParse->nTableLock>0 && db->init.busy==0 ){
163 sqlite3UserAuthInit(db);
164 if( db->auth.authLevel<UAUTH_User ){
165 pParse->rc = SQLITE_AUTH_USER;
166 sqlite3ErrorMsg(pParse, "user not authenticated");
167 return;
168 }
169 }
170 #endif
171
172 /* The cookie mask contains one bit for each database file open.
173 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
174 ** set for each database that is used. Generate code to start a
175 ** transaction on each used database and to verify the schema cookie
176 ** on each used database.
177 */
178 if( db->mallocFailed==0
179 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
180 ){
181 int iDb, i;
182 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
183 sqlite3VdbeJumpHere(v, 0);
184 for(iDb=0; iDb<db->nDb; iDb++){
185 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
186 sqlite3VdbeUsesBtree(v, iDb);
187 sqlite3VdbeAddOp4Int(v,
188 OP_Transaction, /* Opcode */
189 iDb, /* P1 */
190 DbMaskTest(pParse->writeMask,iDb), /* P2 */
191 pParse->cookieValue[iDb], /* P3 */
192 db->aDb[iDb].pSchema->iGeneration /* P4 */
193 );
194 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
195 VdbeComment((v,
196 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
197 }
198 #ifndef SQLITE_OMIT_VIRTUALTABLE
199 for(i=0; i<pParse->nVtabLock; i++){
200 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
201 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
202 }
203 pParse->nVtabLock = 0;
204 #endif
205
206 /* Once all the cookies have been verified and transactions opened,
207 ** obtain the required table-locks. This is a no-op unless the
208 ** shared-cache feature is enabled.
209 */
210 codeTableLocks(pParse);
211
212 /* Initialize any AUTOINCREMENT data structures required.
213 */
214 sqlite3AutoincrementBegin(pParse);
215
216 /* Code constant expressions that where factored out of inner loops */
217 if( pParse->pConstExpr ){
218 ExprList *pEL = pParse->pConstExpr;
219 pParse->okConstFactor = 0;
220 for(i=0; i<pEL->nExpr; i++){
221 sqlite3ExprCode(pParse, pEL->a[i].pExpr, pEL->a[i].u.iConstExprReg);
222 }
223 }
224
225 /* Finally, jump back to the beginning of the executable code. */
226 sqlite3VdbeGoto(v, 1);
227 }
228 }
229
230
231 /* Get the VDBE program ready for execution
232 */
233 if( v && pParse->nErr==0 && !db->mallocFailed ){
234 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */
235 /* A minimum of one cursor is required if autoincrement is used
236 * See ticket [a696379c1f08866] */
237 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
238 sqlite3VdbeMakeReady(v, pParse);
239 pParse->rc = SQLITE_DONE;
240 pParse->colNamesSet = 0;
241 }else{
242 pParse->rc = SQLITE_ERROR;
243 }
244 pParse->nTab = 0;
245 pParse->nMem = 0;
246 pParse->nSet = 0;
247 pParse->nVar = 0;
248 DbMaskZero(pParse->cookieMask);
249 }
250
251 /*
252 ** Run the parser and code generator recursively in order to generate
253 ** code for the SQL statement given onto the end of the pParse context
254 ** currently under construction. When the parser is run recursively
255 ** this way, the final OP_Halt is not appended and other initialization
256 ** and finalization steps are omitted because those are handling by the
257 ** outermost parser.
258 **
259 ** Not everything is nestable. This facility is designed to permit
260 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use
261 ** care if you decide to try to use this routine for some other purposes.
262 */
263 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
264 va_list ap;
265 char *zSql;
266 char *zErrMsg = 0;
267 sqlite3 *db = pParse->db;
268 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar))
269 char saveBuf[SAVE_SZ];
270
271 if( pParse->nErr ) return;
272 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
273 va_start(ap, zFormat);
274 zSql = sqlite3VMPrintf(db, zFormat, ap);
275 va_end(ap);
276 if( zSql==0 ){
277 return; /* A malloc must have failed */
278 }
279 pParse->nested++;
280 memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
281 memset(&pParse->nVar, 0, SAVE_SZ);
282 sqlite3RunParser(pParse, zSql, &zErrMsg);
283 sqlite3DbFree(db, zErrMsg);
284 sqlite3DbFree(db, zSql);
285 memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
286 pParse->nested--;
287 }
288
289 #if SQLITE_USER_AUTHENTICATION
290 /*
291 ** Return TRUE if zTable is the name of the system table that stores the
292 ** list of users and their access credentials.
293 */
294 int sqlite3UserAuthTable(const char *zTable){
295 return sqlite3_stricmp(zTable, "sqlite_user")==0;
296 }
297 #endif
298
299 /*
300 ** Locate the in-memory structure that describes a particular database
301 ** table given the name of that table and (optionally) the name of the
302 ** database containing the table. Return NULL if not found.
303 **
304 ** If zDatabase is 0, all databases are searched for the table and the
305 ** first matching table is returned. (No checking for duplicate table
306 ** names is done.) The search order is TEMP first, then MAIN, then any
307 ** auxiliary databases added using the ATTACH command.
308 **
309 ** See also sqlite3LocateTable().
310 */
311 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
312 Table *p = 0;
313 int i;
314
315 /* All mutexes are required for schema access. Make sure we hold them. */
316 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
317 #if SQLITE_USER_AUTHENTICATION
318 /* Only the admin user is allowed to know that the sqlite_user table
319 ** exists */
320 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
321 return 0;
322 }
323 #endif
324 for(i=OMIT_TEMPDB; i<db->nDb; i++){
325 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
326 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
327 assert( sqlite3SchemaMutexHeld(db, j, 0) );
328 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName);
329 if( p ) break;
330 }
331 return p;
332 }
333
334 /*
335 ** Locate the in-memory structure that describes a particular database
336 ** table given the name of that table and (optionally) the name of the
337 ** database containing the table. Return NULL if not found. Also leave an
338 ** error message in pParse->zErrMsg.
339 **
340 ** The difference between this routine and sqlite3FindTable() is that this
341 ** routine leaves an error message in pParse->zErrMsg where
342 ** sqlite3FindTable() does not.
343 */
344 Table *sqlite3LocateTable(
345 Parse *pParse, /* context in which to report errors */
346 int isView, /* True if looking for a VIEW rather than a TABLE */
347 const char *zName, /* Name of the table we are looking for */
348 const char *zDbase /* Name of the database. Might be NULL */
349 ){
350 Table *p;
351
352 /* Read the database schema. If an error occurs, leave an error message
353 ** and code in pParse and return NULL. */
354 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
355 return 0;
356 }
357
358 p = sqlite3FindTable(pParse->db, zName, zDbase);
359 if( p==0 ){
360 const char *zMsg = isView ? "no such view" : "no such table";
361 #ifndef SQLITE_OMIT_VIRTUALTABLE
362 if( sqlite3FindDbName(pParse->db, zDbase)<1 ){
363 /* If zName is the not the name of a table in the schema created using
364 ** CREATE, then check to see if it is the name of an virtual table that
365 ** can be an eponymous virtual table. */
366 Module *pMod = (Module*)sqlite3HashFind(&pParse->db->aModule, zName);
367 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
368 return pMod->pEpoTab;
369 }
370 }
371 #endif
372 if( zDbase ){
373 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
374 }else{
375 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
376 }
377 pParse->checkSchema = 1;
378 }
379
380 return p;
381 }
382
383 /*
384 ** Locate the table identified by *p.
385 **
386 ** This is a wrapper around sqlite3LocateTable(). The difference between
387 ** sqlite3LocateTable() and this function is that this function restricts
388 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
389 ** non-NULL if it is part of a view or trigger program definition. See
390 ** sqlite3FixSrcList() for details.
391 */
392 Table *sqlite3LocateTableItem(
393 Parse *pParse,
394 int isView,
395 struct SrcList_item *p
396 ){
397 const char *zDb;
398 assert( p->pSchema==0 || p->zDatabase==0 );
399 if( p->pSchema ){
400 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
401 zDb = pParse->db->aDb[iDb].zName;
402 }else{
403 zDb = p->zDatabase;
404 }
405 return sqlite3LocateTable(pParse, isView, p->zName, zDb);
406 }
407
408 /*
409 ** Locate the in-memory structure that describes
410 ** a particular index given the name of that index
411 ** and the name of the database that contains the index.
412 ** Return NULL if not found.
413 **
414 ** If zDatabase is 0, all databases are searched for the
415 ** table and the first matching index is returned. (No checking
416 ** for duplicate index names is done.) The search order is
417 ** TEMP first, then MAIN, then any auxiliary databases added
418 ** using the ATTACH command.
419 */
420 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
421 Index *p = 0;
422 int i;
423 /* All mutexes are required for schema access. Make sure we hold them. */
424 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
425 for(i=OMIT_TEMPDB; i<db->nDb; i++){
426 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
427 Schema *pSchema = db->aDb[j].pSchema;
428 assert( pSchema );
429 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
430 assert( sqlite3SchemaMutexHeld(db, j, 0) );
431 p = sqlite3HashFind(&pSchema->idxHash, zName);
432 if( p ) break;
433 }
434 return p;
435 }
436
437 /*
438 ** Reclaim the memory used by an index
439 */
440 static void freeIndex(sqlite3 *db, Index *p){
441 #ifndef SQLITE_OMIT_ANALYZE
442 sqlite3DeleteIndexSamples(db, p);
443 #endif
444 sqlite3ExprDelete(db, p->pPartIdxWhere);
445 sqlite3ExprListDelete(db, p->aColExpr);
446 sqlite3DbFree(db, p->zColAff);
447 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
448 #ifdef SQLITE_ENABLE_STAT3_OR_STAT4
449 sqlite3_free(p->aiRowEst);
450 #endif
451 sqlite3DbFree(db, p);
452 }
453
454 /*
455 ** For the index called zIdxName which is found in the database iDb,
456 ** unlike that index from its Table then remove the index from
457 ** the index hash table and free all memory structures associated
458 ** with the index.
459 */
460 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
461 Index *pIndex;
462 Hash *pHash;
463
464 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
465 pHash = &db->aDb[iDb].pSchema->idxHash;
466 pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
467 if( ALWAYS(pIndex) ){
468 if( pIndex->pTable->pIndex==pIndex ){
469 pIndex->pTable->pIndex = pIndex->pNext;
470 }else{
471 Index *p;
472 /* Justification of ALWAYS(); The index must be on the list of
473 ** indices. */
474 p = pIndex->pTable->pIndex;
475 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
476 if( ALWAYS(p && p->pNext==pIndex) ){
477 p->pNext = pIndex->pNext;
478 }
479 }
480 freeIndex(db, pIndex);
481 }
482 db->flags |= SQLITE_InternChanges;
483 }
484
485 /*
486 ** Look through the list of open database files in db->aDb[] and if
487 ** any have been closed, remove them from the list. Reallocate the
488 ** db->aDb[] structure to a smaller size, if possible.
489 **
490 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
491 ** are never candidates for being collapsed.
492 */
493 void sqlite3CollapseDatabaseArray(sqlite3 *db){
494 int i, j;
495 for(i=j=2; i<db->nDb; i++){
496 struct Db *pDb = &db->aDb[i];
497 if( pDb->pBt==0 ){
498 sqlite3DbFree(db, pDb->zName);
499 pDb->zName = 0;
500 continue;
501 }
502 if( j<i ){
503 db->aDb[j] = db->aDb[i];
504 }
505 j++;
506 }
507 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
508 db->nDb = j;
509 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
510 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
511 sqlite3DbFree(db, db->aDb);
512 db->aDb = db->aDbStatic;
513 }
514 }
515
516 /*
517 ** Reset the schema for the database at index iDb. Also reset the
518 ** TEMP schema.
519 */
520 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
521 Db *pDb;
522 assert( iDb<db->nDb );
523
524 /* Case 1: Reset the single schema identified by iDb */
525 pDb = &db->aDb[iDb];
526 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
527 assert( pDb->pSchema!=0 );
528 sqlite3SchemaClear(pDb->pSchema);
529
530 /* If any database other than TEMP is reset, then also reset TEMP
531 ** since TEMP might be holding triggers that reference tables in the
532 ** other database.
533 */
534 if( iDb!=1 ){
535 pDb = &db->aDb[1];
536 assert( pDb->pSchema!=0 );
537 sqlite3SchemaClear(pDb->pSchema);
538 }
539 return;
540 }
541
542 /*
543 ** Erase all schema information from all attached databases (including
544 ** "main" and "temp") for a single database connection.
545 */
546 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
547 int i;
548 sqlite3BtreeEnterAll(db);
549 for(i=0; i<db->nDb; i++){
550 Db *pDb = &db->aDb[i];
551 if( pDb->pSchema ){
552 sqlite3SchemaClear(pDb->pSchema);
553 }
554 }
555 db->flags &= ~SQLITE_InternChanges;
556 sqlite3VtabUnlockList(db);
557 sqlite3BtreeLeaveAll(db);
558 sqlite3CollapseDatabaseArray(db);
559 }
560
561 /*
562 ** This routine is called when a commit occurs.
563 */
564 void sqlite3CommitInternalChanges(sqlite3 *db){
565 db->flags &= ~SQLITE_InternChanges;
566 }
567
568 /*
569 ** Delete memory allocated for the column names of a table or view (the
570 ** Table.aCol[] array).
571 */
572 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
573 int i;
574 Column *pCol;
575 assert( pTable!=0 );
576 if( (pCol = pTable->aCol)!=0 ){
577 for(i=0; i<pTable->nCol; i++, pCol++){
578 sqlite3DbFree(db, pCol->zName);
579 sqlite3ExprDelete(db, pCol->pDflt);
580 sqlite3DbFree(db, pCol->zDflt);
581 sqlite3DbFree(db, pCol->zType);
582 sqlite3DbFree(db, pCol->zColl);
583 }
584 sqlite3DbFree(db, pTable->aCol);
585 }
586 }
587
588 /*
589 ** Remove the memory data structures associated with the given
590 ** Table. No changes are made to disk by this routine.
591 **
592 ** This routine just deletes the data structure. It does not unlink
593 ** the table data structure from the hash table. But it does destroy
594 ** memory structures of the indices and foreign keys associated with
595 ** the table.
596 **
597 ** The db parameter is optional. It is needed if the Table object
598 ** contains lookaside memory. (Table objects in the schema do not use
599 ** lookaside memory, but some ephemeral Table objects do.) Or the
600 ** db parameter can be used with db->pnBytesFreed to measure the memory
601 ** used by the Table object.
602 */
603 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
604 Index *pIndex, *pNext;
605 TESTONLY( int nLookaside; ) /* Used to verify lookaside not used for schema */
606
607 assert( !pTable || pTable->nRef>0 );
608
609 /* Do not delete the table until the reference count reaches zero. */
610 if( !pTable ) return;
611 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return;
612
613 /* Record the number of outstanding lookaside allocations in schema Tables
614 ** prior to doing any free() operations. Since schema Tables do not use
615 ** lookaside, this number should not change. */
616 TESTONLY( nLookaside = (db && (pTable->tabFlags & TF_Ephemeral)==0) ?
617 db->lookaside.nOut : 0 );
618
619 /* Delete all indices associated with this table. */
620 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
621 pNext = pIndex->pNext;
622 assert( pIndex->pSchema==pTable->pSchema );
623 if( !db || db->pnBytesFreed==0 ){
624 char *zName = pIndex->zName;
625 TESTONLY ( Index *pOld = ) sqlite3HashInsert(
626 &pIndex->pSchema->idxHash, zName, 0
627 );
628 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
629 assert( pOld==pIndex || pOld==0 );
630 }
631 freeIndex(db, pIndex);
632 }
633
634 /* Delete any foreign keys attached to this table. */
635 sqlite3FkDelete(db, pTable);
636
637 /* Delete the Table structure itself.
638 */
639 sqlite3DeleteColumnNames(db, pTable);
640 sqlite3DbFree(db, pTable->zName);
641 sqlite3DbFree(db, pTable->zColAff);
642 sqlite3SelectDelete(db, pTable->pSelect);
643 sqlite3ExprListDelete(db, pTable->pCheck);
644 #ifndef SQLITE_OMIT_VIRTUALTABLE
645 sqlite3VtabClear(db, pTable);
646 #endif
647 sqlite3DbFree(db, pTable);
648
649 /* Verify that no lookaside memory was used by schema tables */
650 assert( nLookaside==0 || nLookaside==db->lookaside.nOut );
651 }
652
653 /*
654 ** Unlink the given table from the hash tables and the delete the
655 ** table structure with all its indices and foreign keys.
656 */
657 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
658 Table *p;
659 Db *pDb;
660
661 assert( db!=0 );
662 assert( iDb>=0 && iDb<db->nDb );
663 assert( zTabName );
664 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
665 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */
666 pDb = &db->aDb[iDb];
667 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
668 sqlite3DeleteTable(db, p);
669 db->flags |= SQLITE_InternChanges;
670 }
671
672 /*
673 ** Given a token, return a string that consists of the text of that
674 ** token. Space to hold the returned string
675 ** is obtained from sqliteMalloc() and must be freed by the calling
676 ** function.
677 **
678 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that
679 ** surround the body of the token are removed.
680 **
681 ** Tokens are often just pointers into the original SQL text and so
682 ** are not \000 terminated and are not persistent. The returned string
683 ** is \000 terminated and is persistent.
684 */
685 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
686 char *zName;
687 if( pName ){
688 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
689 sqlite3Dequote(zName);
690 }else{
691 zName = 0;
692 }
693 return zName;
694 }
695
696 /*
697 ** Open the sqlite_master table stored in database number iDb for
698 ** writing. The table is opened using cursor 0.
699 */
700 void sqlite3OpenMasterTable(Parse *p, int iDb){
701 Vdbe *v = sqlite3GetVdbe(p);
702 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
703 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, MASTER_ROOT, iDb, 5);
704 if( p->nTab==0 ){
705 p->nTab = 1;
706 }
707 }
708
709 /*
710 ** Parameter zName points to a nul-terminated buffer containing the name
711 ** of a database ("main", "temp" or the name of an attached db). This
712 ** function returns the index of the named database in db->aDb[], or
713 ** -1 if the named db cannot be found.
714 */
715 int sqlite3FindDbName(sqlite3 *db, const char *zName){
716 int i = -1; /* Database number */
717 if( zName ){
718 Db *pDb;
719 int n = sqlite3Strlen30(zName);
720 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
721 if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) &&
722 0==sqlite3StrICmp(pDb->zName, zName) ){
723 break;
724 }
725 }
726 }
727 return i;
728 }
729
730 /*
731 ** The token *pName contains the name of a database (either "main" or
732 ** "temp" or the name of an attached db). This routine returns the
733 ** index of the named database in db->aDb[], or -1 if the named db
734 ** does not exist.
735 */
736 int sqlite3FindDb(sqlite3 *db, Token *pName){
737 int i; /* Database number */
738 char *zName; /* Name we are searching for */
739 zName = sqlite3NameFromToken(db, pName);
740 i = sqlite3FindDbName(db, zName);
741 sqlite3DbFree(db, zName);
742 return i;
743 }
744
745 /* The table or view or trigger name is passed to this routine via tokens
746 ** pName1 and pName2. If the table name was fully qualified, for example:
747 **
748 ** CREATE TABLE xxx.yyy (...);
749 **
750 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
751 ** the table name is not fully qualified, i.e.:
752 **
753 ** CREATE TABLE yyy(...);
754 **
755 ** Then pName1 is set to "yyy" and pName2 is "".
756 **
757 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
758 ** pName2) that stores the unqualified table name. The index of the
759 ** database "xxx" is returned.
760 */
761 int sqlite3TwoPartName(
762 Parse *pParse, /* Parsing and code generating context */
763 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
764 Token *pName2, /* The "yyy" in the name "xxx.yyy" */
765 Token **pUnqual /* Write the unqualified object name here */
766 ){
767 int iDb; /* Database holding the object */
768 sqlite3 *db = pParse->db;
769
770 if( ALWAYS(pName2!=0) && pName2->n>0 ){
771 if( db->init.busy ) {
772 sqlite3ErrorMsg(pParse, "corrupt database");
773 return -1;
774 }
775 *pUnqual = pName2;
776 iDb = sqlite3FindDb(db, pName1);
777 if( iDb<0 ){
778 sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
779 return -1;
780 }
781 }else{
782 assert( db->init.iDb==0 || db->init.busy );
783 iDb = db->init.iDb;
784 *pUnqual = pName1;
785 }
786 return iDb;
787 }
788
789 /*
790 ** This routine is used to check if the UTF-8 string zName is a legal
791 ** unqualified name for a new schema object (table, index, view or
792 ** trigger). All names are legal except those that begin with the string
793 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
794 ** is reserved for internal use.
795 */
796 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
797 if( !pParse->db->init.busy && pParse->nested==0
798 && (pParse->db->flags & SQLITE_WriteSchema)==0
799 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
800 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
801 return SQLITE_ERROR;
802 }
803 return SQLITE_OK;
804 }
805
806 /*
807 ** Return the PRIMARY KEY index of a table
808 */
809 Index *sqlite3PrimaryKeyIndex(Table *pTab){
810 Index *p;
811 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
812 return p;
813 }
814
815 /*
816 ** Return the column of index pIdx that corresponds to table
817 ** column iCol. Return -1 if not found.
818 */
819 i16 sqlite3ColumnOfIndex(Index *pIdx, i16 iCol){
820 int i;
821 for(i=0; i<pIdx->nColumn; i++){
822 if( iCol==pIdx->aiColumn[i] ) return i;
823 }
824 return -1;
825 }
826
827 /*
828 ** Begin constructing a new table representation in memory. This is
829 ** the first of several action routines that get called in response
830 ** to a CREATE TABLE statement. In particular, this routine is called
831 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
832 ** flag is true if the table should be stored in the auxiliary database
833 ** file instead of in the main database file. This is normally the case
834 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
835 ** CREATE and TABLE.
836 **
837 ** The new table record is initialized and put in pParse->pNewTable.
838 ** As more of the CREATE TABLE statement is parsed, additional action
839 ** routines will be called to add more information to this record.
840 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
841 ** is called to complete the construction of the new table record.
842 */
843 void sqlite3StartTable(
844 Parse *pParse, /* Parser context */
845 Token *pName1, /* First part of the name of the table or view */
846 Token *pName2, /* Second part of the name of the table or view */
847 int isTemp, /* True if this is a TEMP table */
848 int isView, /* True if this is a VIEW */
849 int isVirtual, /* True if this is a VIRTUAL table */
850 int noErr /* Do nothing if table already exists */
851 ){
852 Table *pTable;
853 char *zName = 0; /* The name of the new table */
854 sqlite3 *db = pParse->db;
855 Vdbe *v;
856 int iDb; /* Database number to create the table in */
857 Token *pName; /* Unqualified name of the table to create */
858
859 /* The table or view name to create is passed to this routine via tokens
860 ** pName1 and pName2. If the table name was fully qualified, for example:
861 **
862 ** CREATE TABLE xxx.yyy (...);
863 **
864 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
865 ** the table name is not fully qualified, i.e.:
866 **
867 ** CREATE TABLE yyy(...);
868 **
869 ** Then pName1 is set to "yyy" and pName2 is "".
870 **
871 ** The call below sets the pName pointer to point at the token (pName1 or
872 ** pName2) that stores the unqualified table name. The variable iDb is
873 ** set to the index of the database that the table or view is to be
874 ** created in.
875 */
876 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
877 if( iDb<0 ) return;
878 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
879 /* If creating a temp table, the name may not be qualified. Unless
880 ** the database name is "temp" anyway. */
881 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
882 return;
883 }
884 if( !OMIT_TEMPDB && isTemp ) iDb = 1;
885
886 pParse->sNameToken = *pName;
887 zName = sqlite3NameFromToken(db, pName);
888 if( zName==0 ) return;
889 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
890 goto begin_table_error;
891 }
892 if( db->init.iDb==1 ) isTemp = 1;
893 #ifndef SQLITE_OMIT_AUTHORIZATION
894 assert( (isTemp & 1)==isTemp );
895 {
896 int code;
897 char *zDb = db->aDb[iDb].zName;
898 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
899 goto begin_table_error;
900 }
901 if( isView ){
902 if( !OMIT_TEMPDB && isTemp ){
903 code = SQLITE_CREATE_TEMP_VIEW;
904 }else{
905 code = SQLITE_CREATE_VIEW;
906 }
907 }else{
908 if( !OMIT_TEMPDB && isTemp ){
909 code = SQLITE_CREATE_TEMP_TABLE;
910 }else{
911 code = SQLITE_CREATE_TABLE;
912 }
913 }
914 if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
915 goto begin_table_error;
916 }
917 }
918 #endif
919
920 /* Make sure the new table name does not collide with an existing
921 ** index or table name in the same database. Issue an error message if
922 ** it does. The exception is if the statement being parsed was passed
923 ** to an sqlite3_declare_vtab() call. In that case only the column names
924 ** and types will be used, so there is no need to test for namespace
925 ** collisions.
926 */
927 if( !IN_DECLARE_VTAB ){
928 char *zDb = db->aDb[iDb].zName;
929 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
930 goto begin_table_error;
931 }
932 pTable = sqlite3FindTable(db, zName, zDb);
933 if( pTable ){
934 if( !noErr ){
935 sqlite3ErrorMsg(pParse, "table %T already exists", pName);
936 }else{
937 assert( !db->init.busy || CORRUPT_DB );
938 sqlite3CodeVerifySchema(pParse, iDb);
939 }
940 goto begin_table_error;
941 }
942 if( sqlite3FindIndex(db, zName, zDb)!=0 ){
943 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
944 goto begin_table_error;
945 }
946 }
947
948 pTable = sqlite3DbMallocZero(db, sizeof(Table));
949 if( pTable==0 ){
950 db->mallocFailed = 1;
951 pParse->rc = SQLITE_NOMEM;
952 pParse->nErr++;
953 goto begin_table_error;
954 }
955 pTable->zName = zName;
956 pTable->iPKey = -1;
957 pTable->pSchema = db->aDb[iDb].pSchema;
958 pTable->nRef = 1;
959 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
960 assert( pParse->pNewTable==0 );
961 pParse->pNewTable = pTable;
962
963 /* If this is the magic sqlite_sequence table used by autoincrement,
964 ** then record a pointer to this table in the main database structure
965 ** so that INSERT can find the table easily.
966 */
967 #ifndef SQLITE_OMIT_AUTOINCREMENT
968 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
969 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
970 pTable->pSchema->pSeqTab = pTable;
971 }
972 #endif
973
974 /* Begin generating the code that will insert the table record into
975 ** the SQLITE_MASTER table. Note in particular that we must go ahead
976 ** and allocate the record number for the table entry now. Before any
977 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
978 ** indices to be created and the table record must come before the
979 ** indices. Hence, the record number for the table must be allocated
980 ** now.
981 */
982 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
983 int addr1;
984 int fileFormat;
985 int reg1, reg2, reg3;
986 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
987 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
988 sqlite3BeginWriteOperation(pParse, 1, iDb);
989
990 #ifndef SQLITE_OMIT_VIRTUALTABLE
991 if( isVirtual ){
992 sqlite3VdbeAddOp0(v, OP_VBegin);
993 }
994 #endif
995
996 /* If the file format and encoding in the database have not been set,
997 ** set them now.
998 */
999 reg1 = pParse->regRowid = ++pParse->nMem;
1000 reg2 = pParse->regRoot = ++pParse->nMem;
1001 reg3 = ++pParse->nMem;
1002 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
1003 sqlite3VdbeUsesBtree(v, iDb);
1004 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
1005 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
1006 1 : SQLITE_MAX_FILE_FORMAT;
1007 sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
1008 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3);
1009 sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
1010 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3);
1011 sqlite3VdbeJumpHere(v, addr1);
1012
1013 /* This just creates a place-holder record in the sqlite_master table.
1014 ** The record created does not contain anything yet. It will be replaced
1015 ** by the real entry in code generated at sqlite3EndTable().
1016 **
1017 ** The rowid for the new entry is left in register pParse->regRowid.
1018 ** The root page number of the new table is left in reg pParse->regRoot.
1019 ** The rowid and root page number values are needed by the code that
1020 ** sqlite3EndTable will generate.
1021 */
1022 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1023 if( isView || isVirtual ){
1024 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
1025 }else
1026 #endif
1027 {
1028 pParse->addrCrTab = sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
1029 }
1030 sqlite3OpenMasterTable(pParse, iDb);
1031 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1032 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
1033 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1034 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1035 sqlite3VdbeAddOp0(v, OP_Close);
1036 }
1037
1038 /* Normal (non-error) return. */
1039 return;
1040
1041 /* If an error occurs, we jump here */
1042 begin_table_error:
1043 sqlite3DbFree(db, zName);
1044 return;
1045 }
1046
1047 /* Set properties of a table column based on the (magical)
1048 ** name of the column.
1049 */
1050 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1051 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
1052 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){
1053 pCol->colFlags |= COLFLAG_HIDDEN;
1054 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
1055 pTab->tabFlags |= TF_OOOHidden;
1056 }
1057 }
1058 #endif
1059
1060
1061 /*
1062 ** Add a new column to the table currently being constructed.
1063 **
1064 ** The parser calls this routine once for each column declaration
1065 ** in a CREATE TABLE statement. sqlite3StartTable() gets called
1066 ** first to get things going. Then this routine is called for each
1067 ** column.
1068 */
1069 void sqlite3AddColumn(Parse *pParse, Token *pName){
1070 Table *p;
1071 int i;
1072 char *z;
1073 Column *pCol;
1074 sqlite3 *db = pParse->db;
1075 if( (p = pParse->pNewTable)==0 ) return;
1076 #if SQLITE_MAX_COLUMN
1077 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1078 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1079 return;
1080 }
1081 #endif
1082 z = sqlite3NameFromToken(db, pName);
1083 if( z==0 ) return;
1084 for(i=0; i<p->nCol; i++){
1085 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){
1086 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1087 sqlite3DbFree(db, z);
1088 return;
1089 }
1090 }
1091 if( (p->nCol & 0x7)==0 ){
1092 Column *aNew;
1093 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
1094 if( aNew==0 ){
1095 sqlite3DbFree(db, z);
1096 return;
1097 }
1098 p->aCol = aNew;
1099 }
1100 pCol = &p->aCol[p->nCol];
1101 memset(pCol, 0, sizeof(p->aCol[0]));
1102 pCol->zName = z;
1103 sqlite3ColumnPropertiesFromName(p, pCol);
1104
1105 /* If there is no type specified, columns have the default affinity
1106 ** 'BLOB'. If there is a type specified, then sqlite3AddColumnType() will
1107 ** be called next to set pCol->affinity correctly.
1108 */
1109 pCol->affinity = SQLITE_AFF_BLOB;
1110 pCol->szEst = 1;
1111 p->nCol++;
1112 }
1113
1114 /*
1115 ** This routine is called by the parser while in the middle of
1116 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
1117 ** been seen on a column. This routine sets the notNull flag on
1118 ** the column currently under construction.
1119 */
1120 void sqlite3AddNotNull(Parse *pParse, int onError){
1121 Table *p;
1122 p = pParse->pNewTable;
1123 if( p==0 || NEVER(p->nCol<1) ) return;
1124 p->aCol[p->nCol-1].notNull = (u8)onError;
1125 }
1126
1127 /*
1128 ** Scan the column type name zType (length nType) and return the
1129 ** associated affinity type.
1130 **
1131 ** This routine does a case-independent search of zType for the
1132 ** substrings in the following table. If one of the substrings is
1133 ** found, the corresponding affinity is returned. If zType contains
1134 ** more than one of the substrings, entries toward the top of
1135 ** the table take priority. For example, if zType is 'BLOBINT',
1136 ** SQLITE_AFF_INTEGER is returned.
1137 **
1138 ** Substring | Affinity
1139 ** --------------------------------
1140 ** 'INT' | SQLITE_AFF_INTEGER
1141 ** 'CHAR' | SQLITE_AFF_TEXT
1142 ** 'CLOB' | SQLITE_AFF_TEXT
1143 ** 'TEXT' | SQLITE_AFF_TEXT
1144 ** 'BLOB' | SQLITE_AFF_BLOB
1145 ** 'REAL' | SQLITE_AFF_REAL
1146 ** 'FLOA' | SQLITE_AFF_REAL
1147 ** 'DOUB' | SQLITE_AFF_REAL
1148 **
1149 ** If none of the substrings in the above table are found,
1150 ** SQLITE_AFF_NUMERIC is returned.
1151 */
1152 char sqlite3AffinityType(const char *zIn, u8 *pszEst){
1153 u32 h = 0;
1154 char aff = SQLITE_AFF_NUMERIC;
1155 const char *zChar = 0;
1156
1157 if( zIn==0 ) return aff;
1158 while( zIn[0] ){
1159 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1160 zIn++;
1161 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
1162 aff = SQLITE_AFF_TEXT;
1163 zChar = zIn;
1164 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
1165 aff = SQLITE_AFF_TEXT;
1166 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
1167 aff = SQLITE_AFF_TEXT;
1168 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
1169 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1170 aff = SQLITE_AFF_BLOB;
1171 if( zIn[0]=='(' ) zChar = zIn;
1172 #ifndef SQLITE_OMIT_FLOATING_POINT
1173 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
1174 && aff==SQLITE_AFF_NUMERIC ){
1175 aff = SQLITE_AFF_REAL;
1176 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
1177 && aff==SQLITE_AFF_NUMERIC ){
1178 aff = SQLITE_AFF_REAL;
1179 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
1180 && aff==SQLITE_AFF_NUMERIC ){
1181 aff = SQLITE_AFF_REAL;
1182 #endif
1183 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
1184 aff = SQLITE_AFF_INTEGER;
1185 break;
1186 }
1187 }
1188
1189 /* If pszEst is not NULL, store an estimate of the field size. The
1190 ** estimate is scaled so that the size of an integer is 1. */
1191 if( pszEst ){
1192 *pszEst = 1; /* default size is approx 4 bytes */
1193 if( aff<SQLITE_AFF_NUMERIC ){
1194 if( zChar ){
1195 while( zChar[0] ){
1196 if( sqlite3Isdigit(zChar[0]) ){
1197 int v = 0;
1198 sqlite3GetInt32(zChar, &v);
1199 v = v/4 + 1;
1200 if( v>255 ) v = 255;
1201 *pszEst = v; /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1202 break;
1203 }
1204 zChar++;
1205 }
1206 }else{
1207 *pszEst = 5; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/
1208 }
1209 }
1210 }
1211 return aff;
1212 }
1213
1214 /*
1215 ** This routine is called by the parser while in the middle of
1216 ** parsing a CREATE TABLE statement. The pFirst token is the first
1217 ** token in the sequence of tokens that describe the type of the
1218 ** column currently under construction. pLast is the last token
1219 ** in the sequence. Use this information to construct a string
1220 ** that contains the typename of the column and store that string
1221 ** in zType.
1222 */
1223 void sqlite3AddColumnType(Parse *pParse, Token *pType){
1224 Table *p;
1225 Column *pCol;
1226
1227 p = pParse->pNewTable;
1228 if( p==0 || NEVER(p->nCol<1) ) return;
1229 pCol = &p->aCol[p->nCol-1];
1230 assert( pCol->zType==0 || CORRUPT_DB );
1231 sqlite3DbFree(pParse->db, pCol->zType);
1232 pCol->zType = sqlite3NameFromToken(pParse->db, pType);
1233 pCol->affinity = sqlite3AffinityType(pCol->zType, &pCol->szEst);
1234 }
1235
1236 /*
1237 ** The expression is the default value for the most recently added column
1238 ** of the table currently under construction.
1239 **
1240 ** Default value expressions must be constant. Raise an exception if this
1241 ** is not the case.
1242 **
1243 ** This routine is called by the parser while in the middle of
1244 ** parsing a CREATE TABLE statement.
1245 */
1246 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
1247 Table *p;
1248 Column *pCol;
1249 sqlite3 *db = pParse->db;
1250 p = pParse->pNewTable;
1251 if( p!=0 ){
1252 pCol = &(p->aCol[p->nCol-1]);
1253 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr, db->init.busy) ){
1254 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1255 pCol->zName);
1256 }else{
1257 /* A copy of pExpr is used instead of the original, as pExpr contains
1258 ** tokens that point to volatile memory. The 'span' of the expression
1259 ** is required by pragma table_info.
1260 */
1261 sqlite3ExprDelete(db, pCol->pDflt);
1262 pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE);
1263 sqlite3DbFree(db, pCol->zDflt);
1264 pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1265 (int)(pSpan->zEnd - pSpan->zStart));
1266 }
1267 }
1268 sqlite3ExprDelete(db, pSpan->pExpr);
1269 }
1270
1271 /*
1272 ** Backwards Compatibility Hack:
1273 **
1274 ** Historical versions of SQLite accepted strings as column names in
1275 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example:
1276 **
1277 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1278 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1279 **
1280 ** This is goofy. But to preserve backwards compatibility we continue to
1281 ** accept it. This routine does the necessary conversion. It converts
1282 ** the expression given in its argument from a TK_STRING into a TK_ID
1283 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1284 ** If the epxression is anything other than TK_STRING, the expression is
1285 ** unchanged.
1286 */
1287 static void sqlite3StringToId(Expr *p){
1288 if( p->op==TK_STRING ){
1289 p->op = TK_ID;
1290 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
1291 p->pLeft->op = TK_ID;
1292 }
1293 }
1294
1295 /*
1296 ** Designate the PRIMARY KEY for the table. pList is a list of names
1297 ** of columns that form the primary key. If pList is NULL, then the
1298 ** most recently added column of the table is the primary key.
1299 **
1300 ** A table can have at most one primary key. If the table already has
1301 ** a primary key (and this is the second primary key) then create an
1302 ** error.
1303 **
1304 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1305 ** then we will try to use that column as the rowid. Set the Table.iPKey
1306 ** field of the table under construction to be the index of the
1307 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
1308 ** no INTEGER PRIMARY KEY.
1309 **
1310 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1311 ** index for the key. No index is created for INTEGER PRIMARY KEYs.
1312 */
1313 void sqlite3AddPrimaryKey(
1314 Parse *pParse, /* Parsing context */
1315 ExprList *pList, /* List of field names to be indexed */
1316 int onError, /* What to do with a uniqueness conflict */
1317 int autoInc, /* True if the AUTOINCREMENT keyword is present */
1318 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1319 ){
1320 Table *pTab = pParse->pNewTable;
1321 char *zType = 0;
1322 int iCol = -1, i;
1323 int nTerm;
1324 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
1325 if( pTab->tabFlags & TF_HasPrimaryKey ){
1326 sqlite3ErrorMsg(pParse,
1327 "table \"%s\" has more than one primary key", pTab->zName);
1328 goto primary_key_exit;
1329 }
1330 pTab->tabFlags |= TF_HasPrimaryKey;
1331 if( pList==0 ){
1332 iCol = pTab->nCol - 1;
1333 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY;
1334 zType = pTab->aCol[iCol].zType;
1335 nTerm = 1;
1336 }else{
1337 nTerm = pList->nExpr;
1338 for(i=0; i<nTerm; i++){
1339 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1340 assert( pCExpr!=0 );
1341 sqlite3StringToId(pCExpr);
1342 if( pCExpr->op==TK_ID ){
1343 const char *zCName = pCExpr->u.zToken;
1344 for(iCol=0; iCol<pTab->nCol; iCol++){
1345 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){
1346 pTab->aCol[iCol].colFlags |= COLFLAG_PRIMKEY;
1347 zType = pTab->aCol[iCol].zType;
1348 break;
1349 }
1350 }
1351 }
1352 }
1353 }
1354 if( nTerm==1
1355 && zType && sqlite3StrICmp(zType, "INTEGER")==0
1356 && sortOrder!=SQLITE_SO_DESC
1357 ){
1358 pTab->iPKey = iCol;
1359 pTab->keyConf = (u8)onError;
1360 assert( autoInc==0 || autoInc==1 );
1361 pTab->tabFlags |= autoInc*TF_Autoincrement;
1362 if( pList ) pParse->iPkSortOrder = pList->a[0].sortOrder;
1363 }else if( autoInc ){
1364 #ifndef SQLITE_OMIT_AUTOINCREMENT
1365 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1366 "INTEGER PRIMARY KEY");
1367 #endif
1368 }else{
1369 Index *p;
1370 p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1371 0, sortOrder, 0);
1372 if( p ){
1373 p->idxType = SQLITE_IDXTYPE_PRIMARYKEY;
1374 }
1375 pList = 0;
1376 }
1377
1378 primary_key_exit:
1379 sqlite3ExprListDelete(pParse->db, pList);
1380 return;
1381 }
1382
1383 /*
1384 ** Add a new CHECK constraint to the table currently under construction.
1385 */
1386 void sqlite3AddCheckConstraint(
1387 Parse *pParse, /* Parsing context */
1388 Expr *pCheckExpr /* The check expression */
1389 ){
1390 #ifndef SQLITE_OMIT_CHECK
1391 Table *pTab = pParse->pNewTable;
1392 sqlite3 *db = pParse->db;
1393 if( pTab && !IN_DECLARE_VTAB
1394 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1395 ){
1396 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1397 if( pParse->constraintName.n ){
1398 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1399 }
1400 }else
1401 #endif
1402 {
1403 sqlite3ExprDelete(pParse->db, pCheckExpr);
1404 }
1405 }
1406
1407 /*
1408 ** Set the collation function of the most recently parsed table column
1409 ** to the CollSeq given.
1410 */
1411 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1412 Table *p;
1413 int i;
1414 char *zColl; /* Dequoted name of collation sequence */
1415 sqlite3 *db;
1416
1417 if( (p = pParse->pNewTable)==0 ) return;
1418 i = p->nCol-1;
1419 db = pParse->db;
1420 zColl = sqlite3NameFromToken(db, pToken);
1421 if( !zColl ) return;
1422
1423 if( sqlite3LocateCollSeq(pParse, zColl) ){
1424 Index *pIdx;
1425 sqlite3DbFree(db, p->aCol[i].zColl);
1426 p->aCol[i].zColl = zColl;
1427
1428 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1429 ** then an index may have been created on this column before the
1430 ** collation type was added. Correct this if it is the case.
1431 */
1432 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1433 assert( pIdx->nKeyCol==1 );
1434 if( pIdx->aiColumn[0]==i ){
1435 pIdx->azColl[0] = p->aCol[i].zColl;
1436 }
1437 }
1438 }else{
1439 sqlite3DbFree(db, zColl);
1440 }
1441 }
1442
1443 /*
1444 ** This function returns the collation sequence for database native text
1445 ** encoding identified by the string zName, length nName.
1446 **
1447 ** If the requested collation sequence is not available, or not available
1448 ** in the database native encoding, the collation factory is invoked to
1449 ** request it. If the collation factory does not supply such a sequence,
1450 ** and the sequence is available in another text encoding, then that is
1451 ** returned instead.
1452 **
1453 ** If no versions of the requested collations sequence are available, or
1454 ** another error occurs, NULL is returned and an error message written into
1455 ** pParse.
1456 **
1457 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine
1458 ** invokes the collation factory if the named collation cannot be found
1459 ** and generates an error message.
1460 **
1461 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1462 */
1463 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1464 sqlite3 *db = pParse->db;
1465 u8 enc = ENC(db);
1466 u8 initbusy = db->init.busy;
1467 CollSeq *pColl;
1468
1469 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1470 if( !initbusy && (!pColl || !pColl->xCmp) ){
1471 pColl = sqlite3GetCollSeq(pParse, enc, pColl, zName);
1472 }
1473
1474 return pColl;
1475 }
1476
1477
1478 /*
1479 ** Generate code that will increment the schema cookie.
1480 **
1481 ** The schema cookie is used to determine when the schema for the
1482 ** database changes. After each schema change, the cookie value
1483 ** changes. When a process first reads the schema it records the
1484 ** cookie. Thereafter, whenever it goes to access the database,
1485 ** it checks the cookie to make sure the schema has not changed
1486 ** since it was last read.
1487 **
1488 ** This plan is not completely bullet-proof. It is possible for
1489 ** the schema to change multiple times and for the cookie to be
1490 ** set back to prior value. But schema changes are infrequent
1491 ** and the probability of hitting the same cookie value is only
1492 ** 1 chance in 2^32. So we're safe enough.
1493 */
1494 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1495 int r1 = sqlite3GetTempReg(pParse);
1496 sqlite3 *db = pParse->db;
1497 Vdbe *v = pParse->pVdbe;
1498 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1499 sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
1500 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1);
1501 sqlite3ReleaseTempReg(pParse, r1);
1502 }
1503
1504 /*
1505 ** Measure the number of characters needed to output the given
1506 ** identifier. The number returned includes any quotes used
1507 ** but does not include the null terminator.
1508 **
1509 ** The estimate is conservative. It might be larger that what is
1510 ** really needed.
1511 */
1512 static int identLength(const char *z){
1513 int n;
1514 for(n=0; *z; n++, z++){
1515 if( *z=='"' ){ n++; }
1516 }
1517 return n + 2;
1518 }
1519
1520 /*
1521 ** The first parameter is a pointer to an output buffer. The second
1522 ** parameter is a pointer to an integer that contains the offset at
1523 ** which to write into the output buffer. This function copies the
1524 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1525 ** to the specified offset in the buffer and updates *pIdx to refer
1526 ** to the first byte after the last byte written before returning.
1527 **
1528 ** If the string zSignedIdent consists entirely of alpha-numeric
1529 ** characters, does not begin with a digit and is not an SQL keyword,
1530 ** then it is copied to the output buffer exactly as it is. Otherwise,
1531 ** it is quoted using double-quotes.
1532 */
1533 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1534 unsigned char *zIdent = (unsigned char*)zSignedIdent;
1535 int i, j, needQuote;
1536 i = *pIdx;
1537
1538 for(j=0; zIdent[j]; j++){
1539 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1540 }
1541 needQuote = sqlite3Isdigit(zIdent[0])
1542 || sqlite3KeywordCode(zIdent, j)!=TK_ID
1543 || zIdent[j]!=0
1544 || j==0;
1545
1546 if( needQuote ) z[i++] = '"';
1547 for(j=0; zIdent[j]; j++){
1548 z[i++] = zIdent[j];
1549 if( zIdent[j]=='"' ) z[i++] = '"';
1550 }
1551 if( needQuote ) z[i++] = '"';
1552 z[i] = 0;
1553 *pIdx = i;
1554 }
1555
1556 /*
1557 ** Generate a CREATE TABLE statement appropriate for the given
1558 ** table. Memory to hold the text of the statement is obtained
1559 ** from sqliteMalloc() and must be freed by the calling function.
1560 */
1561 static char *createTableStmt(sqlite3 *db, Table *p){
1562 int i, k, n;
1563 char *zStmt;
1564 char *zSep, *zSep2, *zEnd;
1565 Column *pCol;
1566 n = 0;
1567 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1568 n += identLength(pCol->zName) + 5;
1569 }
1570 n += identLength(p->zName);
1571 if( n<50 ){
1572 zSep = "";
1573 zSep2 = ",";
1574 zEnd = ")";
1575 }else{
1576 zSep = "\n ";
1577 zSep2 = ",\n ";
1578 zEnd = "\n)";
1579 }
1580 n += 35 + 6*p->nCol;
1581 zStmt = sqlite3DbMallocRaw(0, n);
1582 if( zStmt==0 ){
1583 db->mallocFailed = 1;
1584 return 0;
1585 }
1586 sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1587 k = sqlite3Strlen30(zStmt);
1588 identPut(zStmt, &k, p->zName);
1589 zStmt[k++] = '(';
1590 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1591 static const char * const azType[] = {
1592 /* SQLITE_AFF_BLOB */ "",
1593 /* SQLITE_AFF_TEXT */ " TEXT",
1594 /* SQLITE_AFF_NUMERIC */ " NUM",
1595 /* SQLITE_AFF_INTEGER */ " INT",
1596 /* SQLITE_AFF_REAL */ " REAL"
1597 };
1598 int len;
1599 const char *zType;
1600
1601 sqlite3_snprintf(n-k, &zStmt[k], zSep);
1602 k += sqlite3Strlen30(&zStmt[k]);
1603 zSep = zSep2;
1604 identPut(zStmt, &k, pCol->zName);
1605 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
1606 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
1607 testcase( pCol->affinity==SQLITE_AFF_BLOB );
1608 testcase( pCol->affinity==SQLITE_AFF_TEXT );
1609 testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1610 testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1611 testcase( pCol->affinity==SQLITE_AFF_REAL );
1612
1613 zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
1614 len = sqlite3Strlen30(zType);
1615 assert( pCol->affinity==SQLITE_AFF_BLOB
1616 || pCol->affinity==sqlite3AffinityType(zType, 0) );
1617 memcpy(&zStmt[k], zType, len);
1618 k += len;
1619 assert( k<=n );
1620 }
1621 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1622 return zStmt;
1623 }
1624
1625 /*
1626 ** Resize an Index object to hold N columns total. Return SQLITE_OK
1627 ** on success and SQLITE_NOMEM on an OOM error.
1628 */
1629 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
1630 char *zExtra;
1631 int nByte;
1632 if( pIdx->nColumn>=N ) return SQLITE_OK;
1633 assert( pIdx->isResized==0 );
1634 nByte = (sizeof(char*) + sizeof(i16) + 1)*N;
1635 zExtra = sqlite3DbMallocZero(db, nByte);
1636 if( zExtra==0 ) return SQLITE_NOMEM;
1637 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
1638 pIdx->azColl = (const char**)zExtra;
1639 zExtra += sizeof(char*)*N;
1640 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
1641 pIdx->aiColumn = (i16*)zExtra;
1642 zExtra += sizeof(i16)*N;
1643 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
1644 pIdx->aSortOrder = (u8*)zExtra;
1645 pIdx->nColumn = N;
1646 pIdx->isResized = 1;
1647 return SQLITE_OK;
1648 }
1649
1650 /*
1651 ** Estimate the total row width for a table.
1652 */
1653 static void estimateTableWidth(Table *pTab){
1654 unsigned wTable = 0;
1655 const Column *pTabCol;
1656 int i;
1657 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
1658 wTable += pTabCol->szEst;
1659 }
1660 if( pTab->iPKey<0 ) wTable++;
1661 pTab->szTabRow = sqlite3LogEst(wTable*4);
1662 }
1663
1664 /*
1665 ** Estimate the average size of a row for an index.
1666 */
1667 static void estimateIndexWidth(Index *pIdx){
1668 unsigned wIndex = 0;
1669 int i;
1670 const Column *aCol = pIdx->pTable->aCol;
1671 for(i=0; i<pIdx->nColumn; i++){
1672 i16 x = pIdx->aiColumn[i];
1673 assert( x<pIdx->pTable->nCol );
1674 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
1675 }
1676 pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
1677 }
1678
1679 /* Return true if value x is found any of the first nCol entries of aiCol[]
1680 */
1681 static int hasColumn(const i16 *aiCol, int nCol, int x){
1682 while( nCol-- > 0 ) if( x==*(aiCol++) ) return 1;
1683 return 0;
1684 }
1685
1686 /*
1687 ** This routine runs at the end of parsing a CREATE TABLE statement that
1688 ** has a WITHOUT ROWID clause. The job of this routine is to convert both
1689 ** internal schema data structures and the generated VDBE code so that they
1690 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
1691 ** Changes include:
1692 **
1693 ** (1) Convert the OP_CreateTable into an OP_CreateIndex. There is
1694 ** no rowid btree for a WITHOUT ROWID. Instead, the canonical
1695 ** data storage is a covering index btree.
1696 ** (2) Bypass the creation of the sqlite_master table entry
1697 ** for the PRIMARY KEY as the primary key index is now
1698 ** identified by the sqlite_master table entry of the table itself.
1699 ** (3) Set the Index.tnum of the PRIMARY KEY Index object in the
1700 ** schema to the rootpage from the main table.
1701 ** (4) Set all columns of the PRIMARY KEY schema object to be NOT NULL.
1702 ** (5) Add all table columns to the PRIMARY KEY Index object
1703 ** so that the PRIMARY KEY is a covering index. The surplus
1704 ** columns are part of KeyInfo.nXField and are not used for
1705 ** sorting or lookup or uniqueness checks.
1706 ** (6) Replace the rowid tail on all automatically generated UNIQUE
1707 ** indices with the PRIMARY KEY columns.
1708 */
1709 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
1710 Index *pIdx;
1711 Index *pPk;
1712 int nPk;
1713 int i, j;
1714 sqlite3 *db = pParse->db;
1715 Vdbe *v = pParse->pVdbe;
1716
1717 /* Convert the OP_CreateTable opcode that would normally create the
1718 ** root-page for the table into an OP_CreateIndex opcode. The index
1719 ** created will become the PRIMARY KEY index.
1720 */
1721 if( pParse->addrCrTab ){
1722 assert( v );
1723 sqlite3VdbeChangeOpcode(v, pParse->addrCrTab, OP_CreateIndex);
1724 }
1725
1726 /* Locate the PRIMARY KEY index. Or, if this table was originally
1727 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
1728 */
1729 if( pTab->iPKey>=0 ){
1730 ExprList *pList;
1731 Token ipkToken;
1732 ipkToken.z = pTab->aCol[pTab->iPKey].zName;
1733 ipkToken.n = sqlite3Strlen30(ipkToken.z);
1734 pList = sqlite3ExprListAppend(pParse, 0,
1735 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
1736 if( pList==0 ) return;
1737 pList->a[0].sortOrder = pParse->iPkSortOrder;
1738 assert( pParse->pNewTable==pTab );
1739 pPk = sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0);
1740 if( pPk==0 ) return;
1741 pPk->idxType = SQLITE_IDXTYPE_PRIMARYKEY;
1742 pTab->iPKey = -1;
1743 }else{
1744 pPk = sqlite3PrimaryKeyIndex(pTab);
1745
1746 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_master
1747 ** table entry. This is only required if currently generating VDBE
1748 ** code for a CREATE TABLE (not when parsing one as part of reading
1749 ** a database schema). */
1750 if( v ){
1751 assert( db->init.busy==0 );
1752 sqlite3VdbeChangeOpcode(v, pPk->tnum, OP_Goto);
1753 }
1754
1755 /*
1756 ** Remove all redundant columns from the PRIMARY KEY. For example, change
1757 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later
1758 ** code assumes the PRIMARY KEY contains no repeated columns.
1759 */
1760 for(i=j=1; i<pPk->nKeyCol; i++){
1761 if( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) ){
1762 pPk->nColumn--;
1763 }else{
1764 pPk->aiColumn[j++] = pPk->aiColumn[i];
1765 }
1766 }
1767 pPk->nKeyCol = j;
1768 }
1769 pPk->isCovering = 1;
1770 assert( pPk!=0 );
1771 nPk = pPk->nKeyCol;
1772
1773 /* Make sure every column of the PRIMARY KEY is NOT NULL. (Except,
1774 ** do not enforce this for imposter tables.) */
1775 if( !db->init.imposterTable ){
1776 for(i=0; i<nPk; i++){
1777 pTab->aCol[pPk->aiColumn[i]].notNull = OE_Abort;
1778 }
1779 pPk->uniqNotNull = 1;
1780 }
1781
1782 /* The root page of the PRIMARY KEY is the table root page */
1783 pPk->tnum = pTab->tnum;
1784
1785 /* Update the in-memory representation of all UNIQUE indices by converting
1786 ** the final rowid column into one or more columns of the PRIMARY KEY.
1787 */
1788 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1789 int n;
1790 if( IsPrimaryKeyIndex(pIdx) ) continue;
1791 for(i=n=0; i<nPk; i++){
1792 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ) n++;
1793 }
1794 if( n==0 ){
1795 /* This index is a superset of the primary key */
1796 pIdx->nColumn = pIdx->nKeyCol;
1797 continue;
1798 }
1799 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
1800 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
1801 if( !hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) ){
1802 pIdx->aiColumn[j] = pPk->aiColumn[i];
1803 pIdx->azColl[j] = pPk->azColl[i];
1804 j++;
1805 }
1806 }
1807 assert( pIdx->nColumn>=pIdx->nKeyCol+n );
1808 assert( pIdx->nColumn>=j );
1809 }
1810
1811 /* Add all table columns to the PRIMARY KEY index
1812 */
1813 if( nPk<pTab->nCol ){
1814 if( resizeIndexObject(db, pPk, pTab->nCol) ) return;
1815 for(i=0, j=nPk; i<pTab->nCol; i++){
1816 if( !hasColumn(pPk->aiColumn, j, i) ){
1817 assert( j<pPk->nColumn );
1818 pPk->aiColumn[j] = i;
1819 pPk->azColl[j] = sqlite3StrBINARY;
1820 j++;
1821 }
1822 }
1823 assert( pPk->nColumn==j );
1824 assert( pTab->nCol==j );
1825 }else{
1826 pPk->nColumn = pTab->nCol;
1827 }
1828 }
1829
1830 /*
1831 ** This routine is called to report the final ")" that terminates
1832 ** a CREATE TABLE statement.
1833 **
1834 ** The table structure that other action routines have been building
1835 ** is added to the internal hash tables, assuming no errors have
1836 ** occurred.
1837 **
1838 ** An entry for the table is made in the master table on disk, unless
1839 ** this is a temporary table or db->init.busy==1. When db->init.busy==1
1840 ** it means we are reading the sqlite_master table because we just
1841 ** connected to the database or because the sqlite_master table has
1842 ** recently changed, so the entry for this table already exists in
1843 ** the sqlite_master table. We do not want to create it again.
1844 **
1845 ** If the pSelect argument is not NULL, it means that this routine
1846 ** was called to create a table generated from a
1847 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of
1848 ** the new table will match the result set of the SELECT.
1849 */
1850 void sqlite3EndTable(
1851 Parse *pParse, /* Parse context */
1852 Token *pCons, /* The ',' token after the last column defn. */
1853 Token *pEnd, /* The ')' before options in the CREATE TABLE */
1854 u8 tabOpts, /* Extra table options. Usually 0. */
1855 Select *pSelect /* Select from a "CREATE ... AS SELECT" */
1856 ){
1857 Table *p; /* The new table */
1858 sqlite3 *db = pParse->db; /* The database connection */
1859 int iDb; /* Database in which the table lives */
1860 Index *pIdx; /* An implied index of the table */
1861
1862 if( pEnd==0 && pSelect==0 ){
1863 return;
1864 }
1865 assert( !db->mallocFailed );
1866 p = pParse->pNewTable;
1867 if( p==0 ) return;
1868
1869 assert( !db->init.busy || !pSelect );
1870
1871 /* If the db->init.busy is 1 it means we are reading the SQL off the
1872 ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1873 ** So do not write to the disk again. Extract the root page number
1874 ** for the table from the db->init.newTnum field. (The page number
1875 ** should have been put there by the sqliteOpenCb routine.)
1876 */
1877 if( db->init.busy ){
1878 p->tnum = db->init.newTnum;
1879 }
1880
1881 /* Special processing for WITHOUT ROWID Tables */
1882 if( tabOpts & TF_WithoutRowid ){
1883 if( (p->tabFlags & TF_Autoincrement) ){
1884 sqlite3ErrorMsg(pParse,
1885 "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
1886 return;
1887 }
1888 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
1889 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
1890 }else{
1891 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
1892 convertToWithoutRowidTable(pParse, p);
1893 }
1894 }
1895
1896 iDb = sqlite3SchemaToIndex(db, p->pSchema);
1897
1898 #ifndef SQLITE_OMIT_CHECK
1899 /* Resolve names in all CHECK constraint expressions.
1900 */
1901 if( p->pCheck ){
1902 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
1903 }
1904 #endif /* !defined(SQLITE_OMIT_CHECK) */
1905
1906 /* Estimate the average row size for the table and for all implied indices */
1907 estimateTableWidth(p);
1908 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1909 estimateIndexWidth(pIdx);
1910 }
1911
1912 /* If not initializing, then create a record for the new table
1913 ** in the SQLITE_MASTER table of the database.
1914 **
1915 ** If this is a TEMPORARY table, write the entry into the auxiliary
1916 ** file instead of into the main database file.
1917 */
1918 if( !db->init.busy ){
1919 int n;
1920 Vdbe *v;
1921 char *zType; /* "view" or "table" */
1922 char *zType2; /* "VIEW" or "TABLE" */
1923 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
1924
1925 v = sqlite3GetVdbe(pParse);
1926 if( NEVER(v==0) ) return;
1927
1928 sqlite3VdbeAddOp1(v, OP_Close, 0);
1929
1930 /*
1931 ** Initialize zType for the new view or table.
1932 */
1933 if( p->pSelect==0 ){
1934 /* A regular table */
1935 zType = "table";
1936 zType2 = "TABLE";
1937 #ifndef SQLITE_OMIT_VIEW
1938 }else{
1939 /* A view */
1940 zType = "view";
1941 zType2 = "VIEW";
1942 #endif
1943 }
1944
1945 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1946 ** statement to populate the new table. The root-page number for the
1947 ** new table is in register pParse->regRoot.
1948 **
1949 ** Once the SELECT has been coded by sqlite3Select(), it is in a
1950 ** suitable state to query for the column names and types to be used
1951 ** by the new table.
1952 **
1953 ** A shared-cache write-lock is not required to write to the new table,
1954 ** as a schema-lock must have already been obtained to create it. Since
1955 ** a schema-lock excludes all other database users, the write-lock would
1956 ** be redundant.
1957 */
1958 if( pSelect ){
1959 SelectDest dest; /* Where the SELECT should store results */
1960 int regYield; /* Register holding co-routine entry-point */
1961 int addrTop; /* Top of the co-routine */
1962 int regRec; /* A record to be insert into the new table */
1963 int regRowid; /* Rowid of the next row to insert */
1964 int addrInsLoop; /* Top of the loop for inserting rows */
1965 Table *pSelTab; /* A table that describes the SELECT results */
1966
1967 regYield = ++pParse->nMem;
1968 regRec = ++pParse->nMem;
1969 regRowid = ++pParse->nMem;
1970 assert(pParse->nTab==1);
1971 sqlite3MayAbort(pParse);
1972 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1973 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
1974 pParse->nTab = 2;
1975 addrTop = sqlite3VdbeCurrentAddr(v) + 1;
1976 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
1977 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
1978 sqlite3Select(pParse, pSelect, &dest);
1979 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
1980 sqlite3VdbeJumpHere(v, addrTop - 1);
1981 if( pParse->nErr ) return;
1982 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
1983 if( pSelTab==0 ) return;
1984 assert( p->aCol==0 );
1985 p->nCol = pSelTab->nCol;
1986 p->aCol = pSelTab->aCol;
1987 pSelTab->nCol = 0;
1988 pSelTab->aCol = 0;
1989 sqlite3DeleteTable(db, pSelTab);
1990 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
1991 VdbeCoverage(v);
1992 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
1993 sqlite3TableAffinity(v, p, 0);
1994 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
1995 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
1996 sqlite3VdbeGoto(v, addrInsLoop);
1997 sqlite3VdbeJumpHere(v, addrInsLoop);
1998 sqlite3VdbeAddOp1(v, OP_Close, 1);
1999 }
2000
2001 /* Compute the complete text of the CREATE statement */
2002 if( pSelect ){
2003 zStmt = createTableStmt(db, p);
2004 }else{
2005 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
2006 n = (int)(pEnd2->z - pParse->sNameToken.z);
2007 if( pEnd2->z[0]!=';' ) n += pEnd2->n;
2008 zStmt = sqlite3MPrintf(db,
2009 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
2010 );
2011 }
2012
2013 /* A slot for the record has already been allocated in the
2014 ** SQLITE_MASTER table. We just need to update that slot with all
2015 ** the information we've collected.
2016 */
2017 sqlite3NestedParse(pParse,
2018 "UPDATE %Q.%s "
2019 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
2020 "WHERE rowid=#%d",
2021 db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
2022 zType,
2023 p->zName,
2024 p->zName,
2025 pParse->regRoot,
2026 zStmt,
2027 pParse->regRowid
2028 );
2029 sqlite3DbFree(db, zStmt);
2030 sqlite3ChangeCookie(pParse, iDb);
2031
2032 #ifndef SQLITE_OMIT_AUTOINCREMENT
2033 /* Check to see if we need to create an sqlite_sequence table for
2034 ** keeping track of autoincrement keys.
2035 */
2036 if( p->tabFlags & TF_Autoincrement ){
2037 Db *pDb = &db->aDb[iDb];
2038 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2039 if( pDb->pSchema->pSeqTab==0 ){
2040 sqlite3NestedParse(pParse,
2041 "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2042 pDb->zName
2043 );
2044 }
2045 }
2046 #endif
2047
2048 /* Reparse everything to update our internal data structures */
2049 sqlite3VdbeAddParseSchemaOp(v, iDb,
2050 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName));
2051 }
2052
2053
2054 /* Add the table to the in-memory representation of the database.
2055 */
2056 if( db->init.busy ){
2057 Table *pOld;
2058 Schema *pSchema = p->pSchema;
2059 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2060 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2061 if( pOld ){
2062 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
2063 db->mallocFailed = 1;
2064 return;
2065 }
2066 pParse->pNewTable = 0;
2067 db->flags |= SQLITE_InternChanges;
2068
2069 #ifndef SQLITE_OMIT_ALTERTABLE
2070 if( !p->pSelect ){
2071 const char *zName = (const char *)pParse->sNameToken.z;
2072 int nName;
2073 assert( !pSelect && pCons && pEnd );
2074 if( pCons->z==0 ){
2075 pCons = pEnd;
2076 }
2077 nName = (int)((const char *)pCons->z - zName);
2078 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
2079 }
2080 #endif
2081 }
2082 }
2083
2084 #ifndef SQLITE_OMIT_VIEW
2085 /*
2086 ** The parser calls this routine in order to create a new VIEW
2087 */
2088 void sqlite3CreateView(
2089 Parse *pParse, /* The parsing context */
2090 Token *pBegin, /* The CREATE token that begins the statement */
2091 Token *pName1, /* The token that holds the name of the view */
2092 Token *pName2, /* The token that holds the name of the view */
2093 ExprList *pCNames, /* Optional list of view column names */
2094 Select *pSelect, /* A SELECT statement that will become the new view */
2095 int isTemp, /* TRUE for a TEMPORARY view */
2096 int noErr /* Suppress error messages if VIEW already exists */
2097 ){
2098 Table *p;
2099 int n;
2100 const char *z;
2101 Token sEnd;
2102 DbFixer sFix;
2103 Token *pName = 0;
2104 int iDb;
2105 sqlite3 *db = pParse->db;
2106
2107 if( pParse->nVar>0 ){
2108 sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2109 goto create_view_fail;
2110 }
2111 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2112 p = pParse->pNewTable;
2113 if( p==0 || pParse->nErr ) goto create_view_fail;
2114 sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2115 iDb = sqlite3SchemaToIndex(db, p->pSchema);
2116 sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2117 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
2118
2119 /* Make a copy of the entire SELECT statement that defines the view.
2120 ** This will force all the Expr.token.z values to be dynamically
2121 ** allocated rather than point to the input string - which means that
2122 ** they will persist after the current sqlite3_exec() call returns.
2123 */
2124 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
2125 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
2126 if( db->mallocFailed ) goto create_view_fail;
2127
2128 /* Locate the end of the CREATE VIEW statement. Make sEnd point to
2129 ** the end.
2130 */
2131 sEnd = pParse->sLastToken;
2132 assert( sEnd.z[0]!=0 );
2133 if( sEnd.z[0]!=';' ){
2134 sEnd.z += sEnd.n;
2135 }
2136 sEnd.n = 0;
2137 n = (int)(sEnd.z - pBegin->z);
2138 assert( n>0 );
2139 z = pBegin->z;
2140 while( sqlite3Isspace(z[n-1]) ){ n--; }
2141 sEnd.z = &z[n-1];
2142 sEnd.n = 1;
2143
2144 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
2145 sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
2146
2147 create_view_fail:
2148 sqlite3SelectDelete(db, pSelect);
2149 sqlite3ExprListDelete(db, pCNames);
2150 return;
2151 }
2152 #endif /* SQLITE_OMIT_VIEW */
2153
2154 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2155 /*
2156 ** The Table structure pTable is really a VIEW. Fill in the names of
2157 ** the columns of the view in the pTable structure. Return the number
2158 ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
2159 */
2160 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
2161 Table *pSelTab; /* A fake table from which we get the result set */
2162 Select *pSel; /* Copy of the SELECT that implements the view */
2163 int nErr = 0; /* Number of errors encountered */
2164 int n; /* Temporarily holds the number of cursors assigned */
2165 sqlite3 *db = pParse->db; /* Database connection for malloc errors */
2166 sqlite3_xauth xAuth; /* Saved xAuth pointer */
2167 u8 bEnabledLA; /* Saved db->lookaside.bEnabled state */
2168
2169 assert( pTable );
2170
2171 #ifndef SQLITE_OMIT_VIRTUALTABLE
2172 if( sqlite3VtabCallConnect(pParse, pTable) ){
2173 return SQLITE_ERROR;
2174 }
2175 if( IsVirtual(pTable) ) return 0;
2176 #endif
2177
2178 #ifndef SQLITE_OMIT_VIEW
2179 /* A positive nCol means the columns names for this view are
2180 ** already known.
2181 */
2182 if( pTable->nCol>0 ) return 0;
2183
2184 /* A negative nCol is a special marker meaning that we are currently
2185 ** trying to compute the column names. If we enter this routine with
2186 ** a negative nCol, it means two or more views form a loop, like this:
2187 **
2188 ** CREATE VIEW one AS SELECT * FROM two;
2189 ** CREATE VIEW two AS SELECT * FROM one;
2190 **
2191 ** Actually, the error above is now caught prior to reaching this point.
2192 ** But the following test is still important as it does come up
2193 ** in the following:
2194 **
2195 ** CREATE TABLE main.ex1(a);
2196 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
2197 ** SELECT * FROM temp.ex1;
2198 */
2199 if( pTable->nCol<0 ){
2200 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
2201 return 1;
2202 }
2203 assert( pTable->nCol>=0 );
2204
2205 /* If we get this far, it means we need to compute the table names.
2206 ** Note that the call to sqlite3ResultSetOfSelect() will expand any
2207 ** "*" elements in the results set of the view and will assign cursors
2208 ** to the elements of the FROM clause. But we do not want these changes
2209 ** to be permanent. So the computation is done on a copy of the SELECT
2210 ** statement that defines the view.
2211 */
2212 assert( pTable->pSelect );
2213 bEnabledLA = db->lookaside.bEnabled;
2214 if( pTable->pCheck ){
2215 db->lookaside.bEnabled = 0;
2216 sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
2217 &pTable->nCol, &pTable->aCol);
2218 }else{
2219 pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
2220 if( pSel ){
2221 n = pParse->nTab;
2222 sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
2223 pTable->nCol = -1;
2224 db->lookaside.bEnabled = 0;
2225 #ifndef SQLITE_OMIT_AUTHORIZATION
2226 xAuth = db->xAuth;
2227 db->xAuth = 0;
2228 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2229 db->xAuth = xAuth;
2230 #else
2231 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
2232 #endif
2233 pParse->nTab = n;
2234 if( pSelTab ){
2235 assert( pTable->aCol==0 );
2236 pTable->nCol = pSelTab->nCol;
2237 pTable->aCol = pSelTab->aCol;
2238 pSelTab->nCol = 0;
2239 pSelTab->aCol = 0;
2240 sqlite3DeleteTable(db, pSelTab);
2241 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
2242 }else{
2243 pTable->nCol = 0;
2244 nErr++;
2245 }
2246 sqlite3SelectDelete(db, pSel);
2247 } else {
2248 nErr++;
2249 }
2250 }
2251 db->lookaside.bEnabled = bEnabledLA;
2252 pTable->pSchema->schemaFlags |= DB_UnresetViews;
2253 #endif /* SQLITE_OMIT_VIEW */
2254 return nErr;
2255 }
2256 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
2257
2258 #ifndef SQLITE_OMIT_VIEW
2259 /*
2260 ** Clear the column names from every VIEW in database idx.
2261 */
2262 static void sqliteViewResetAll(sqlite3 *db, int idx){
2263 HashElem *i;
2264 assert( sqlite3SchemaMutexHeld(db, idx, 0) );
2265 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
2266 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
2267 Table *pTab = sqliteHashData(i);
2268 if( pTab->pSelect ){
2269 sqlite3DeleteColumnNames(db, pTab);
2270 pTab->aCol = 0;
2271 pTab->nCol = 0;
2272 }
2273 }
2274 DbClearProperty(db, idx, DB_UnresetViews);
2275 }
2276 #else
2277 # define sqliteViewResetAll(A,B)
2278 #endif /* SQLITE_OMIT_VIEW */
2279
2280 /*
2281 ** This function is called by the VDBE to adjust the internal schema
2282 ** used by SQLite when the btree layer moves a table root page. The
2283 ** root-page of a table or index in database iDb has changed from iFrom
2284 ** to iTo.
2285 **
2286 ** Ticket #1728: The symbol table might still contain information
2287 ** on tables and/or indices that are the process of being deleted.
2288 ** If you are unlucky, one of those deleted indices or tables might
2289 ** have the same rootpage number as the real table or index that is
2290 ** being moved. So we cannot stop searching after the first match
2291 ** because the first match might be for one of the deleted indices
2292 ** or tables and not the table/index that is actually being moved.
2293 ** We must continue looping until all tables and indices with
2294 ** rootpage==iFrom have been converted to have a rootpage of iTo
2295 ** in order to be certain that we got the right one.
2296 */
2297 #ifndef SQLITE_OMIT_AUTOVACUUM
2298 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
2299 HashElem *pElem;
2300 Hash *pHash;
2301 Db *pDb;
2302
2303 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2304 pDb = &db->aDb[iDb];
2305 pHash = &pDb->pSchema->tblHash;
2306 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2307 Table *pTab = sqliteHashData(pElem);
2308 if( pTab->tnum==iFrom ){
2309 pTab->tnum = iTo;
2310 }
2311 }
2312 pHash = &pDb->pSchema->idxHash;
2313 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2314 Index *pIdx = sqliteHashData(pElem);
2315 if( pIdx->tnum==iFrom ){
2316 pIdx->tnum = iTo;
2317 }
2318 }
2319 }
2320 #endif
2321
2322 /*
2323 ** Write code to erase the table with root-page iTable from database iDb.
2324 ** Also write code to modify the sqlite_master table and internal schema
2325 ** if a root-page of another table is moved by the btree-layer whilst
2326 ** erasing iTable (this can happen with an auto-vacuum database).
2327 */
2328 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
2329 Vdbe *v = sqlite3GetVdbe(pParse);
2330 int r1 = sqlite3GetTempReg(pParse);
2331 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
2332 sqlite3MayAbort(pParse);
2333 #ifndef SQLITE_OMIT_AUTOVACUUM
2334 /* OP_Destroy stores an in integer r1. If this integer
2335 ** is non-zero, then it is the root page number of a table moved to
2336 ** location iTable. The following code modifies the sqlite_master table to
2337 ** reflect this.
2338 **
2339 ** The "#NNN" in the SQL is a special constant that means whatever value
2340 ** is in register NNN. See grammar rules associated with the TK_REGISTER
2341 ** token for additional information.
2342 */
2343 sqlite3NestedParse(pParse,
2344 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
2345 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
2346 #endif
2347 sqlite3ReleaseTempReg(pParse, r1);
2348 }
2349
2350 /*
2351 ** Write VDBE code to erase table pTab and all associated indices on disk.
2352 ** Code to update the sqlite_master tables and internal schema definitions
2353 ** in case a root-page belonging to another table is moved by the btree layer
2354 ** is also added (this can happen with an auto-vacuum database).
2355 */
2356 static void destroyTable(Parse *pParse, Table *pTab){
2357 #ifdef SQLITE_OMIT_AUTOVACUUM
2358 Index *pIdx;
2359 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2360 destroyRootPage(pParse, pTab->tnum, iDb);
2361 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2362 destroyRootPage(pParse, pIdx->tnum, iDb);
2363 }
2364 #else
2365 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
2366 ** is not defined), then it is important to call OP_Destroy on the
2367 ** table and index root-pages in order, starting with the numerically
2368 ** largest root-page number. This guarantees that none of the root-pages
2369 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
2370 ** following were coded:
2371 **
2372 ** OP_Destroy 4 0
2373 ** ...
2374 ** OP_Destroy 5 0
2375 **
2376 ** and root page 5 happened to be the largest root-page number in the
2377 ** database, then root page 5 would be moved to page 4 by the
2378 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
2379 ** a free-list page.
2380 */
2381 int iTab = pTab->tnum;
2382 int iDestroyed = 0;
2383
2384 while( 1 ){
2385 Index *pIdx;
2386 int iLargest = 0;
2387
2388 if( iDestroyed==0 || iTab<iDestroyed ){
2389 iLargest = iTab;
2390 }
2391 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2392 int iIdx = pIdx->tnum;
2393 assert( pIdx->pSchema==pTab->pSchema );
2394 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
2395 iLargest = iIdx;
2396 }
2397 }
2398 if( iLargest==0 ){
2399 return;
2400 }else{
2401 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2402 assert( iDb>=0 && iDb<pParse->db->nDb );
2403 destroyRootPage(pParse, iLargest, iDb);
2404 iDestroyed = iLargest;
2405 }
2406 }
2407 #endif
2408 }
2409
2410 /*
2411 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
2412 ** after a DROP INDEX or DROP TABLE command.
2413 */
2414 static void sqlite3ClearStatTables(
2415 Parse *pParse, /* The parsing context */
2416 int iDb, /* The database number */
2417 const char *zType, /* "idx" or "tbl" */
2418 const char *zName /* Name of index or table */
2419 ){
2420 int i;
2421 const char *zDbName = pParse->db->aDb[iDb].zName;
2422 for(i=1; i<=4; i++){
2423 char zTab[24];
2424 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
2425 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
2426 sqlite3NestedParse(pParse,
2427 "DELETE FROM %Q.%s WHERE %s=%Q",
2428 zDbName, zTab, zType, zName
2429 );
2430 }
2431 }
2432 }
2433
2434 /*
2435 ** Generate code to drop a table.
2436 */
2437 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
2438 Vdbe *v;
2439 sqlite3 *db = pParse->db;
2440 Trigger *pTrigger;
2441 Db *pDb = &db->aDb[iDb];
2442
2443 v = sqlite3GetVdbe(pParse);
2444 assert( v!=0 );
2445 sqlite3BeginWriteOperation(pParse, 1, iDb);
2446
2447 #ifndef SQLITE_OMIT_VIRTUALTABLE
2448 if( IsVirtual(pTab) ){
2449 sqlite3VdbeAddOp0(v, OP_VBegin);
2450 }
2451 #endif
2452
2453 /* Drop all triggers associated with the table being dropped. Code
2454 ** is generated to remove entries from sqlite_master and/or
2455 ** sqlite_temp_master if required.
2456 */
2457 pTrigger = sqlite3TriggerList(pParse, pTab);
2458 while( pTrigger ){
2459 assert( pTrigger->pSchema==pTab->pSchema ||
2460 pTrigger->pSchema==db->aDb[1].pSchema );
2461 sqlite3DropTriggerPtr(pParse, pTrigger);
2462 pTrigger = pTrigger->pNext;
2463 }
2464
2465 #ifndef SQLITE_OMIT_AUTOINCREMENT
2466 /* Remove any entries of the sqlite_sequence table associated with
2467 ** the table being dropped. This is done before the table is dropped
2468 ** at the btree level, in case the sqlite_sequence table needs to
2469 ** move as a result of the drop (can happen in auto-vacuum mode).
2470 */
2471 if( pTab->tabFlags & TF_Autoincrement ){
2472 sqlite3NestedParse(pParse,
2473 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2474 pDb->zName, pTab->zName
2475 );
2476 }
2477 #endif
2478
2479 /* Drop all SQLITE_MASTER table and index entries that refer to the
2480 ** table. The program name loops through the master table and deletes
2481 ** every row that refers to a table of the same name as the one being
2482 ** dropped. Triggers are handled separately because a trigger can be
2483 ** created in the temp database that refers to a table in another
2484 ** database.
2485 */
2486 sqlite3NestedParse(pParse,
2487 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2488 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
2489 if( !isView && !IsVirtual(pTab) ){
2490 destroyTable(pParse, pTab);
2491 }
2492
2493 /* Remove the table entry from SQLite's internal schema and modify
2494 ** the schema cookie.
2495 */
2496 if( IsVirtual(pTab) ){
2497 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2498 }
2499 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2500 sqlite3ChangeCookie(pParse, iDb);
2501 sqliteViewResetAll(db, iDb);
2502 }
2503
2504 /*
2505 ** This routine is called to do the work of a DROP TABLE statement.
2506 ** pName is the name of the table to be dropped.
2507 */
2508 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
2509 Table *pTab;
2510 Vdbe *v;
2511 sqlite3 *db = pParse->db;
2512 int iDb;
2513
2514 if( db->mallocFailed ){
2515 goto exit_drop_table;
2516 }
2517 assert( pParse->nErr==0 );
2518 assert( pName->nSrc==1 );
2519 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
2520 if( noErr ) db->suppressErr++;
2521 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
2522 if( noErr ) db->suppressErr--;
2523
2524 if( pTab==0 ){
2525 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2526 goto exit_drop_table;
2527 }
2528 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2529 assert( iDb>=0 && iDb<db->nDb );
2530
2531 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2532 ** it is initialized.
2533 */
2534 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
2535 goto exit_drop_table;
2536 }
2537 #ifndef SQLITE_OMIT_AUTHORIZATION
2538 {
2539 int code;
2540 const char *zTab = SCHEMA_TABLE(iDb);
2541 const char *zDb = db->aDb[iDb].zName;
2542 const char *zArg2 = 0;
2543 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2544 goto exit_drop_table;
2545 }
2546 if( isView ){
2547 if( !OMIT_TEMPDB && iDb==1 ){
2548 code = SQLITE_DROP_TEMP_VIEW;
2549 }else{
2550 code = SQLITE_DROP_VIEW;
2551 }
2552 #ifndef SQLITE_OMIT_VIRTUALTABLE
2553 }else if( IsVirtual(pTab) ){
2554 code = SQLITE_DROP_VTABLE;
2555 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
2556 #endif
2557 }else{
2558 if( !OMIT_TEMPDB && iDb==1 ){
2559 code = SQLITE_DROP_TEMP_TABLE;
2560 }else{
2561 code = SQLITE_DROP_TABLE;
2562 }
2563 }
2564 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2565 goto exit_drop_table;
2566 }
2567 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2568 goto exit_drop_table;
2569 }
2570 }
2571 #endif
2572 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2573 && sqlite3StrNICmp(pTab->zName, "sqlite_stat", 11)!=0 ){
2574 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2575 goto exit_drop_table;
2576 }
2577
2578 #ifndef SQLITE_OMIT_VIEW
2579 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2580 ** on a table.
2581 */
2582 if( isView && pTab->pSelect==0 ){
2583 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2584 goto exit_drop_table;
2585 }
2586 if( !isView && pTab->pSelect ){
2587 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2588 goto exit_drop_table;
2589 }
2590 #endif
2591
2592 /* Generate code to remove the table from the master table
2593 ** on disk.
2594 */
2595 v = sqlite3GetVdbe(pParse);
2596 if( v ){
2597 sqlite3BeginWriteOperation(pParse, 1, iDb);
2598 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
2599 sqlite3FkDropTable(pParse, pName, pTab);
2600 sqlite3CodeDropTable(pParse, pTab, iDb, isView);
2601 }
2602
2603 exit_drop_table:
2604 sqlite3SrcListDelete(db, pName);
2605 }
2606
2607 /*
2608 ** This routine is called to create a new foreign key on the table
2609 ** currently under construction. pFromCol determines which columns
2610 ** in the current table point to the foreign key. If pFromCol==0 then
2611 ** connect the key to the last column inserted. pTo is the name of
2612 ** the table referred to (a.k.a the "parent" table). pToCol is a list
2613 ** of tables in the parent pTo table. flags contains all
2614 ** information about the conflict resolution algorithms specified
2615 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2616 **
2617 ** An FKey structure is created and added to the table currently
2618 ** under construction in the pParse->pNewTable field.
2619 **
2620 ** The foreign key is set for IMMEDIATE processing. A subsequent call
2621 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2622 */
2623 void sqlite3CreateForeignKey(
2624 Parse *pParse, /* Parsing context */
2625 ExprList *pFromCol, /* Columns in this table that point to other table */
2626 Token *pTo, /* Name of the other table */
2627 ExprList *pToCol, /* Columns in the other table */
2628 int flags /* Conflict resolution algorithms. */
2629 ){
2630 sqlite3 *db = pParse->db;
2631 #ifndef SQLITE_OMIT_FOREIGN_KEY
2632 FKey *pFKey = 0;
2633 FKey *pNextTo;
2634 Table *p = pParse->pNewTable;
2635 int nByte;
2636 int i;
2637 int nCol;
2638 char *z;
2639
2640 assert( pTo!=0 );
2641 if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2642 if( pFromCol==0 ){
2643 int iCol = p->nCol-1;
2644 if( NEVER(iCol<0) ) goto fk_end;
2645 if( pToCol && pToCol->nExpr!=1 ){
2646 sqlite3ErrorMsg(pParse, "foreign key on %s"
2647 " should reference only one column of table %T",
2648 p->aCol[iCol].zName, pTo);
2649 goto fk_end;
2650 }
2651 nCol = 1;
2652 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2653 sqlite3ErrorMsg(pParse,
2654 "number of columns in foreign key does not match the number of "
2655 "columns in the referenced table");
2656 goto fk_end;
2657 }else{
2658 nCol = pFromCol->nExpr;
2659 }
2660 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2661 if( pToCol ){
2662 for(i=0; i<pToCol->nExpr; i++){
2663 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2664 }
2665 }
2666 pFKey = sqlite3DbMallocZero(db, nByte );
2667 if( pFKey==0 ){
2668 goto fk_end;
2669 }
2670 pFKey->pFrom = p;
2671 pFKey->pNextFrom = p->pFKey;
2672 z = (char*)&pFKey->aCol[nCol];
2673 pFKey->zTo = z;
2674 memcpy(z, pTo->z, pTo->n);
2675 z[pTo->n] = 0;
2676 sqlite3Dequote(z);
2677 z += pTo->n+1;
2678 pFKey->nCol = nCol;
2679 if( pFromCol==0 ){
2680 pFKey->aCol[0].iFrom = p->nCol-1;
2681 }else{
2682 for(i=0; i<nCol; i++){
2683 int j;
2684 for(j=0; j<p->nCol; j++){
2685 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2686 pFKey->aCol[i].iFrom = j;
2687 break;
2688 }
2689 }
2690 if( j>=p->nCol ){
2691 sqlite3ErrorMsg(pParse,
2692 "unknown column \"%s\" in foreign key definition",
2693 pFromCol->a[i].zName);
2694 goto fk_end;
2695 }
2696 }
2697 }
2698 if( pToCol ){
2699 for(i=0; i<nCol; i++){
2700 int n = sqlite3Strlen30(pToCol->a[i].zName);
2701 pFKey->aCol[i].zCol = z;
2702 memcpy(z, pToCol->a[i].zName, n);
2703 z[n] = 0;
2704 z += n+1;
2705 }
2706 }
2707 pFKey->isDeferred = 0;
2708 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */
2709 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */
2710
2711 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
2712 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2713 pFKey->zTo, (void *)pFKey
2714 );
2715 if( pNextTo==pFKey ){
2716 db->mallocFailed = 1;
2717 goto fk_end;
2718 }
2719 if( pNextTo ){
2720 assert( pNextTo->pPrevTo==0 );
2721 pFKey->pNextTo = pNextTo;
2722 pNextTo->pPrevTo = pFKey;
2723 }
2724
2725 /* Link the foreign key to the table as the last step.
2726 */
2727 p->pFKey = pFKey;
2728 pFKey = 0;
2729
2730 fk_end:
2731 sqlite3DbFree(db, pFKey);
2732 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2733 sqlite3ExprListDelete(db, pFromCol);
2734 sqlite3ExprListDelete(db, pToCol);
2735 }
2736
2737 /*
2738 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2739 ** clause is seen as part of a foreign key definition. The isDeferred
2740 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2741 ** The behavior of the most recently created foreign key is adjusted
2742 ** accordingly.
2743 */
2744 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2745 #ifndef SQLITE_OMIT_FOREIGN_KEY
2746 Table *pTab;
2747 FKey *pFKey;
2748 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2749 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
2750 pFKey->isDeferred = (u8)isDeferred;
2751 #endif
2752 }
2753
2754 /*
2755 ** Generate code that will erase and refill index *pIdx. This is
2756 ** used to initialize a newly created index or to recompute the
2757 ** content of an index in response to a REINDEX command.
2758 **
2759 ** if memRootPage is not negative, it means that the index is newly
2760 ** created. The register specified by memRootPage contains the
2761 ** root page number of the index. If memRootPage is negative, then
2762 ** the index already exists and must be cleared before being refilled and
2763 ** the root page number of the index is taken from pIndex->tnum.
2764 */
2765 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2766 Table *pTab = pIndex->pTable; /* The table that is indexed */
2767 int iTab = pParse->nTab++; /* Btree cursor used for pTab */
2768 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */
2769 int iSorter; /* Cursor opened by OpenSorter (if in use) */
2770 int addr1; /* Address of top of loop */
2771 int addr2; /* Address to jump to for next iteration */
2772 int tnum; /* Root page of index */
2773 int iPartIdxLabel; /* Jump to this label to skip a row */
2774 Vdbe *v; /* Generate code into this virtual machine */
2775 KeyInfo *pKey; /* KeyInfo for index */
2776 int regRecord; /* Register holding assembled index record */
2777 sqlite3 *db = pParse->db; /* The database connection */
2778 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2779
2780 #ifndef SQLITE_OMIT_AUTHORIZATION
2781 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2782 db->aDb[iDb].zName ) ){
2783 return;
2784 }
2785 #endif
2786
2787 /* Require a write-lock on the table to perform this operation */
2788 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2789
2790 v = sqlite3GetVdbe(pParse);
2791 if( v==0 ) return;
2792 if( memRootPage>=0 ){
2793 tnum = memRootPage;
2794 }else{
2795 tnum = pIndex->tnum;
2796 }
2797 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
2798
2799 /* Open the sorter cursor if we are to use one. */
2800 iSorter = pParse->nTab++;
2801 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
2802 sqlite3KeyInfoRef(pKey), P4_KEYINFO);
2803
2804 /* Open the table. Loop through all rows of the table, inserting index
2805 ** records into the sorter. */
2806 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2807 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
2808 regRecord = sqlite3GetTempReg(pParse);
2809
2810 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
2811 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
2812 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
2813 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
2814 sqlite3VdbeJumpHere(v, addr1);
2815 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2816 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2817 (char *)pKey, P4_KEYINFO);
2818 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
2819
2820 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
2821 assert( pKey!=0 || db->mallocFailed || pParse->nErr );
2822 if( IsUniqueIndex(pIndex) && pKey!=0 ){
2823 int j2 = sqlite3VdbeCurrentAddr(v) + 3;
2824 sqlite3VdbeGoto(v, j2);
2825 addr2 = sqlite3VdbeCurrentAddr(v);
2826 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
2827 pIndex->nKeyCol); VdbeCoverage(v);
2828 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
2829 }else{
2830 addr2 = sqlite3VdbeCurrentAddr(v);
2831 }
2832 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
2833 sqlite3VdbeAddOp3(v, OP_Last, iIdx, 0, -1);
2834 sqlite3VdbeAddOp3(v, OP_IdxInsert, iIdx, regRecord, 0);
2835 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2836 sqlite3ReleaseTempReg(pParse, regRecord);
2837 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
2838 sqlite3VdbeJumpHere(v, addr1);
2839
2840 sqlite3VdbeAddOp1(v, OP_Close, iTab);
2841 sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2842 sqlite3VdbeAddOp1(v, OP_Close, iSorter);
2843 }
2844
2845 /*
2846 ** Allocate heap space to hold an Index object with nCol columns.
2847 **
2848 ** Increase the allocation size to provide an extra nExtra bytes
2849 ** of 8-byte aligned space after the Index object and return a
2850 ** pointer to this extra space in *ppExtra.
2851 */
2852 Index *sqlite3AllocateIndexObject(
2853 sqlite3 *db, /* Database connection */
2854 i16 nCol, /* Total number of columns in the index */
2855 int nExtra, /* Number of bytes of extra space to alloc */
2856 char **ppExtra /* Pointer to the "extra" space */
2857 ){
2858 Index *p; /* Allocated index object */
2859 int nByte; /* Bytes of space for Index object + arrays */
2860
2861 nByte = ROUND8(sizeof(Index)) + /* Index structure */
2862 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */
2863 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */
2864 sizeof(i16)*nCol + /* Index.aiColumn */
2865 sizeof(u8)*nCol); /* Index.aSortOrder */
2866 p = sqlite3DbMallocZero(db, nByte + nExtra);
2867 if( p ){
2868 char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
2869 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
2870 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
2871 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol;
2872 p->aSortOrder = (u8*)pExtra;
2873 p->nColumn = nCol;
2874 p->nKeyCol = nCol - 1;
2875 *ppExtra = ((char*)p) + nByte;
2876 }
2877 return p;
2878 }
2879
2880 /*
2881 ** Create a new index for an SQL table. pName1.pName2 is the name of the index
2882 ** and pTblList is the name of the table that is to be indexed. Both will
2883 ** be NULL for a primary key or an index that is created to satisfy a
2884 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
2885 ** as the table to be indexed. pParse->pNewTable is a table that is
2886 ** currently being constructed by a CREATE TABLE statement.
2887 **
2888 ** pList is a list of columns to be indexed. pList will be NULL if this
2889 ** is a primary key or unique-constraint on the most recent column added
2890 ** to the table currently under construction.
2891 **
2892 ** If the index is created successfully, return a pointer to the new Index
2893 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index
2894 ** as the tables primary key (Index.idxType==SQLITE_IDXTYPE_PRIMARYKEY)
2895 */
2896 Index *sqlite3CreateIndex(
2897 Parse *pParse, /* All information about this parse */
2898 Token *pName1, /* First part of index name. May be NULL */
2899 Token *pName2, /* Second part of index name. May be NULL */
2900 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2901 ExprList *pList, /* A list of columns to be indexed */
2902 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2903 Token *pStart, /* The CREATE token that begins this statement */
2904 Expr *pPIWhere, /* WHERE clause for partial indices */
2905 int sortOrder, /* Sort order of primary key when pList==NULL */
2906 int ifNotExist /* Omit error if index already exists */
2907 ){
2908 Index *pRet = 0; /* Pointer to return */
2909 Table *pTab = 0; /* Table to be indexed */
2910 Index *pIndex = 0; /* The index to be created */
2911 char *zName = 0; /* Name of the index */
2912 int nName; /* Number of characters in zName */
2913 int i, j;
2914 DbFixer sFix; /* For assigning database names to pTable */
2915 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
2916 sqlite3 *db = pParse->db;
2917 Db *pDb; /* The specific table containing the indexed database */
2918 int iDb; /* Index of the database that is being written */
2919 Token *pName = 0; /* Unqualified name of the index to create */
2920 struct ExprList_item *pListItem; /* For looping over pList */
2921 int nExtra = 0; /* Space allocated for zExtra[] */
2922 int nExtraCol; /* Number of extra columns needed */
2923 char *zExtra = 0; /* Extra space after the Index object */
2924 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */
2925
2926 if( db->mallocFailed || IN_DECLARE_VTAB || pParse->nErr>0 ){
2927 goto exit_create_index;
2928 }
2929 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2930 goto exit_create_index;
2931 }
2932
2933 /*
2934 ** Find the table that is to be indexed. Return early if not found.
2935 */
2936 if( pTblName!=0 ){
2937
2938 /* Use the two-part index name to determine the database
2939 ** to search for the table. 'Fix' the table name to this db
2940 ** before looking up the table.
2941 */
2942 assert( pName1 && pName2 );
2943 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2944 if( iDb<0 ) goto exit_create_index;
2945 assert( pName && pName->z );
2946
2947 #ifndef SQLITE_OMIT_TEMPDB
2948 /* If the index name was unqualified, check if the table
2949 ** is a temp table. If so, set the database to 1. Do not do this
2950 ** if initialising a database schema.
2951 */
2952 if( !db->init.busy ){
2953 pTab = sqlite3SrcListLookup(pParse, pTblName);
2954 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2955 iDb = 1;
2956 }
2957 }
2958 #endif
2959
2960 sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
2961 if( sqlite3FixSrcList(&sFix, pTblName) ){
2962 /* Because the parser constructs pTblName from a single identifier,
2963 ** sqlite3FixSrcList can never fail. */
2964 assert(0);
2965 }
2966 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
2967 assert( db->mallocFailed==0 || pTab==0 );
2968 if( pTab==0 ) goto exit_create_index;
2969 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
2970 sqlite3ErrorMsg(pParse,
2971 "cannot create a TEMP index on non-TEMP table \"%s\"",
2972 pTab->zName);
2973 goto exit_create_index;
2974 }
2975 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
2976 }else{
2977 assert( pName==0 );
2978 assert( pStart==0 );
2979 pTab = pParse->pNewTable;
2980 if( !pTab ) goto exit_create_index;
2981 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2982 }
2983 pDb = &db->aDb[iDb];
2984
2985 assert( pTab!=0 );
2986 assert( pParse->nErr==0 );
2987 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2988 && db->init.busy==0
2989 #if SQLITE_USER_AUTHENTICATION
2990 && sqlite3UserAuthTable(pTab->zName)==0
2991 #endif
2992 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){
2993 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
2994 goto exit_create_index;
2995 }
2996 #ifndef SQLITE_OMIT_VIEW
2997 if( pTab->pSelect ){
2998 sqlite3ErrorMsg(pParse, "views may not be indexed");
2999 goto exit_create_index;
3000 }
3001 #endif
3002 #ifndef SQLITE_OMIT_VIRTUALTABLE
3003 if( IsVirtual(pTab) ){
3004 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
3005 goto exit_create_index;
3006 }
3007 #endif
3008
3009 /*
3010 ** Find the name of the index. Make sure there is not already another
3011 ** index or table with the same name.
3012 **
3013 ** Exception: If we are reading the names of permanent indices from the
3014 ** sqlite_master table (because some other process changed the schema) and
3015 ** one of the index names collides with the name of a temporary table or
3016 ** index, then we will continue to process this index.
3017 **
3018 ** If pName==0 it means that we are
3019 ** dealing with a primary key or UNIQUE constraint. We have to invent our
3020 ** own name.
3021 */
3022 if( pName ){
3023 zName = sqlite3NameFromToken(db, pName);
3024 if( zName==0 ) goto exit_create_index;
3025 assert( pName->z!=0 );
3026 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
3027 goto exit_create_index;
3028 }
3029 if( !db->init.busy ){
3030 if( sqlite3FindTable(db, zName, 0)!=0 ){
3031 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
3032 goto exit_create_index;
3033 }
3034 }
3035 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
3036 if( !ifNotExist ){
3037 sqlite3ErrorMsg(pParse, "index %s already exists", zName);
3038 }else{
3039 assert( !db->init.busy );
3040 sqlite3CodeVerifySchema(pParse, iDb);
3041 }
3042 goto exit_create_index;
3043 }
3044 }else{
3045 int n;
3046 Index *pLoop;
3047 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
3048 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
3049 if( zName==0 ){
3050 goto exit_create_index;
3051 }
3052 }
3053
3054 /* Check for authorization to create an index.
3055 */
3056 #ifndef SQLITE_OMIT_AUTHORIZATION
3057 {
3058 const char *zDb = pDb->zName;
3059 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
3060 goto exit_create_index;
3061 }
3062 i = SQLITE_CREATE_INDEX;
3063 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
3064 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
3065 goto exit_create_index;
3066 }
3067 }
3068 #endif
3069
3070 /* If pList==0, it means this routine was called to make a primary
3071 ** key out of the last column added to the table under construction.
3072 ** So create a fake list to simulate this.
3073 */
3074 if( pList==0 ){
3075 Token prevCol;
3076 prevCol.z = pTab->aCol[pTab->nCol-1].zName;
3077 prevCol.n = sqlite3Strlen30(prevCol.z);
3078 pList = sqlite3ExprListAppend(pParse, 0,
3079 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
3080 if( pList==0 ) goto exit_create_index;
3081 assert( pList->nExpr==1 );
3082 sqlite3ExprListSetSortOrder(pList, sortOrder);
3083 }else{
3084 sqlite3ExprListCheckLength(pParse, pList, "index");
3085 }
3086
3087 /* Figure out how many bytes of space are required to store explicitly
3088 ** specified collation sequence names.
3089 */
3090 for(i=0; i<pList->nExpr; i++){
3091 Expr *pExpr = pList->a[i].pExpr;
3092 assert( pExpr!=0 );
3093 if( pExpr->op==TK_COLLATE ){
3094 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
3095 }
3096 }
3097
3098 /*
3099 ** Allocate the index structure.
3100 */
3101 nName = sqlite3Strlen30(zName);
3102 nExtraCol = pPk ? pPk->nKeyCol : 1;
3103 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
3104 nName + nExtra + 1, &zExtra);
3105 if( db->mallocFailed ){
3106 goto exit_create_index;
3107 }
3108 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
3109 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
3110 pIndex->zName = zExtra;
3111 zExtra += nName + 1;
3112 memcpy(pIndex->zName, zName, nName+1);
3113 pIndex->pTable = pTab;
3114 pIndex->onError = (u8)onError;
3115 pIndex->uniqNotNull = onError!=OE_None;
3116 pIndex->idxType = pName ? SQLITE_IDXTYPE_APPDEF : SQLITE_IDXTYPE_UNIQUE;
3117 pIndex->pSchema = db->aDb[iDb].pSchema;
3118 pIndex->nKeyCol = pList->nExpr;
3119 if( pPIWhere ){
3120 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
3121 pIndex->pPartIdxWhere = pPIWhere;
3122 pPIWhere = 0;
3123 }
3124 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3125
3126 /* Check to see if we should honor DESC requests on index columns
3127 */
3128 if( pDb->pSchema->file_format>=4 ){
3129 sortOrderMask = -1; /* Honor DESC */
3130 }else{
3131 sortOrderMask = 0; /* Ignore DESC */
3132 }
3133
3134 /* Analyze the list of expressions that form the terms of the index and
3135 ** report any errors. In the common case where the expression is exactly
3136 ** a table column, store that column in aiColumn[]. For general expressions,
3137 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
3138 **
3139 ** TODO: Issue a warning if two or more columns of the index are identical.
3140 ** TODO: Issue a warning if the table primary key is used as part of the
3141 ** index key.
3142 */
3143 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
3144 Expr *pCExpr; /* The i-th index expression */
3145 int requestedSortOrder; /* ASC or DESC on the i-th expression */
3146 const char *zColl; /* Collation sequence name */
3147
3148 sqlite3StringToId(pListItem->pExpr);
3149 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
3150 if( pParse->nErr ) goto exit_create_index;
3151 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
3152 if( pCExpr->op!=TK_COLUMN ){
3153 if( pTab==pParse->pNewTable ){
3154 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
3155 "UNIQUE constraints");
3156 goto exit_create_index;
3157 }
3158 if( pIndex->aColExpr==0 ){
3159 ExprList *pCopy = sqlite3ExprListDup(db, pList, 0);
3160 pIndex->aColExpr = pCopy;
3161 if( !db->mallocFailed ){
3162 assert( pCopy!=0 );
3163 pListItem = &pCopy->a[i];
3164 }
3165 }
3166 j = XN_EXPR;
3167 pIndex->aiColumn[i] = XN_EXPR;
3168 pIndex->uniqNotNull = 0;
3169 }else{
3170 j = pCExpr->iColumn;
3171 assert( j<=0x7fff );
3172 if( j<0 ){
3173 j = pTab->iPKey;
3174 }else if( pTab->aCol[j].notNull==0 ){
3175 pIndex->uniqNotNull = 0;
3176 }
3177 pIndex->aiColumn[i] = (i16)j;
3178 }
3179 zColl = 0;
3180 if( pListItem->pExpr->op==TK_COLLATE ){
3181 int nColl;
3182 zColl = pListItem->pExpr->u.zToken;
3183 nColl = sqlite3Strlen30(zColl) + 1;
3184 assert( nExtra>=nColl );
3185 memcpy(zExtra, zColl, nColl);
3186 zColl = zExtra;
3187 zExtra += nColl;
3188 nExtra -= nColl;
3189 }else if( j>=0 ){
3190 zColl = pTab->aCol[j].zColl;
3191 }
3192 if( !zColl ) zColl = sqlite3StrBINARY;
3193 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
3194 goto exit_create_index;
3195 }
3196 pIndex->azColl[i] = zColl;
3197 requestedSortOrder = pListItem->sortOrder & sortOrderMask;
3198 pIndex->aSortOrder[i] = (u8)requestedSortOrder;
3199 }
3200
3201 /* Append the table key to the end of the index. For WITHOUT ROWID
3202 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For
3203 ** normal tables (when pPk==0) this will be the rowid.
3204 */
3205 if( pPk ){
3206 for(j=0; j<pPk->nKeyCol; j++){
3207 int x = pPk->aiColumn[j];
3208 assert( x>=0 );
3209 if( hasColumn(pIndex->aiColumn, pIndex->nKeyCol, x) ){
3210 pIndex->nColumn--;
3211 }else{
3212 pIndex->aiColumn[i] = x;
3213 pIndex->azColl[i] = pPk->azColl[j];
3214 pIndex->aSortOrder[i] = pPk->aSortOrder[j];
3215 i++;
3216 }
3217 }
3218 assert( i==pIndex->nColumn );
3219 }else{
3220 pIndex->aiColumn[i] = XN_ROWID;
3221 pIndex->azColl[i] = sqlite3StrBINARY;
3222 }
3223 sqlite3DefaultRowEst(pIndex);
3224 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
3225
3226 if( pTab==pParse->pNewTable ){
3227 /* This routine has been called to create an automatic index as a
3228 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
3229 ** a PRIMARY KEY or UNIQUE clause following the column definitions.
3230 ** i.e. one of:
3231 **
3232 ** CREATE TABLE t(x PRIMARY KEY, y);
3233 ** CREATE TABLE t(x, y, UNIQUE(x, y));
3234 **
3235 ** Either way, check to see if the table already has such an index. If
3236 ** so, don't bother creating this one. This only applies to
3237 ** automatically created indices. Users can do as they wish with
3238 ** explicit indices.
3239 **
3240 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
3241 ** (and thus suppressing the second one) even if they have different
3242 ** sort orders.
3243 **
3244 ** If there are different collating sequences or if the columns of
3245 ** the constraint occur in different orders, then the constraints are
3246 ** considered distinct and both result in separate indices.
3247 */
3248 Index *pIdx;
3249 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3250 int k;
3251 assert( IsUniqueIndex(pIdx) );
3252 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
3253 assert( IsUniqueIndex(pIndex) );
3254
3255 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
3256 for(k=0; k<pIdx->nKeyCol; k++){
3257 const char *z1;
3258 const char *z2;
3259 assert( pIdx->aiColumn[k]>=0 );
3260 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
3261 z1 = pIdx->azColl[k];
3262 z2 = pIndex->azColl[k];
3263 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
3264 }
3265 if( k==pIdx->nKeyCol ){
3266 if( pIdx->onError!=pIndex->onError ){
3267 /* This constraint creates the same index as a previous
3268 ** constraint specified somewhere in the CREATE TABLE statement.
3269 ** However the ON CONFLICT clauses are different. If both this
3270 ** constraint and the previous equivalent constraint have explicit
3271 ** ON CONFLICT clauses this is an error. Otherwise, use the
3272 ** explicitly specified behavior for the index.
3273 */
3274 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
3275 sqlite3ErrorMsg(pParse,
3276 "conflicting ON CONFLICT clauses specified", 0);
3277 }
3278 if( pIdx->onError==OE_Default ){
3279 pIdx->onError = pIndex->onError;
3280 }
3281 }
3282 pRet = pIdx;
3283 goto exit_create_index;
3284 }
3285 }
3286 }
3287
3288 /* Link the new Index structure to its table and to the other
3289 ** in-memory database structures.
3290 */
3291 assert( pParse->nErr==0 );
3292 if( db->init.busy ){
3293 Index *p;
3294 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
3295 p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
3296 pIndex->zName, pIndex);
3297 if( p ){
3298 assert( p==pIndex ); /* Malloc must have failed */
3299 db->mallocFailed = 1;
3300 goto exit_create_index;
3301 }
3302 db->flags |= SQLITE_InternChanges;
3303 if( pTblName!=0 ){
3304 pIndex->tnum = db->init.newTnum;
3305 }
3306 }
3307
3308 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
3309 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
3310 ** emit code to allocate the index rootpage on disk and make an entry for
3311 ** the index in the sqlite_master table and populate the index with
3312 ** content. But, do not do this if we are simply reading the sqlite_master
3313 ** table to parse the schema, or if this index is the PRIMARY KEY index
3314 ** of a WITHOUT ROWID table.
3315 **
3316 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
3317 ** or UNIQUE index in a CREATE TABLE statement. Since the table
3318 ** has just been created, it contains no data and the index initialization
3319 ** step can be skipped.
3320 */
3321 else if( HasRowid(pTab) || pTblName!=0 ){
3322 Vdbe *v;
3323 char *zStmt;
3324 int iMem = ++pParse->nMem;
3325
3326 v = sqlite3GetVdbe(pParse);
3327 if( v==0 ) goto exit_create_index;
3328
3329 sqlite3BeginWriteOperation(pParse, 1, iDb);
3330
3331 /* Create the rootpage for the index using CreateIndex. But before
3332 ** doing so, code a Noop instruction and store its address in
3333 ** Index.tnum. This is required in case this index is actually a
3334 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
3335 ** that case the convertToWithoutRowidTable() routine will replace
3336 ** the Noop with a Goto to jump over the VDBE code generated below. */
3337 pIndex->tnum = sqlite3VdbeAddOp0(v, OP_Noop);
3338 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
3339
3340 /* Gather the complete text of the CREATE INDEX statement into
3341 ** the zStmt variable
3342 */
3343 if( pStart ){
3344 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
3345 if( pName->z[n-1]==';' ) n--;
3346 /* A named index with an explicit CREATE INDEX statement */
3347 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
3348 onError==OE_None ? "" : " UNIQUE", n, pName->z);
3349 }else{
3350 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
3351 /* zStmt = sqlite3MPrintf(""); */
3352 zStmt = 0;
3353 }
3354
3355 /* Add an entry in sqlite_master for this index
3356 */
3357 sqlite3NestedParse(pParse,
3358 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
3359 db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
3360 pIndex->zName,
3361 pTab->zName,
3362 iMem,
3363 zStmt
3364 );
3365 sqlite3DbFree(db, zStmt);
3366
3367 /* Fill the index with data and reparse the schema. Code an OP_Expire
3368 ** to invalidate all pre-compiled statements.
3369 */
3370 if( pTblName ){
3371 sqlite3RefillIndex(pParse, pIndex, iMem);
3372 sqlite3ChangeCookie(pParse, iDb);
3373 sqlite3VdbeAddParseSchemaOp(v, iDb,
3374 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
3375 sqlite3VdbeAddOp1(v, OP_Expire, 0);
3376 }
3377
3378 sqlite3VdbeJumpHere(v, pIndex->tnum);
3379 }
3380
3381 /* When adding an index to the list of indices for a table, make
3382 ** sure all indices labeled OE_Replace come after all those labeled
3383 ** OE_Ignore. This is necessary for the correct constraint check
3384 ** processing (in sqlite3GenerateConstraintChecks()) as part of
3385 ** UPDATE and INSERT statements.
3386 */
3387 if( db->init.busy || pTblName==0 ){
3388 if( onError!=OE_Replace || pTab->pIndex==0
3389 || pTab->pIndex->onError==OE_Replace){
3390 pIndex->pNext = pTab->pIndex;
3391 pTab->pIndex = pIndex;
3392 }else{
3393 Index *pOther = pTab->pIndex;
3394 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
3395 pOther = pOther->pNext;
3396 }
3397 pIndex->pNext = pOther->pNext;
3398 pOther->pNext = pIndex;
3399 }
3400 pRet = pIndex;
3401 pIndex = 0;
3402 }
3403
3404 /* Clean up before exiting */
3405 exit_create_index:
3406 if( pIndex ) freeIndex(db, pIndex);
3407 sqlite3ExprDelete(db, pPIWhere);
3408 sqlite3ExprListDelete(db, pList);
3409 sqlite3SrcListDelete(db, pTblName);
3410 sqlite3DbFree(db, zName);
3411 return pRet;
3412 }
3413
3414 /*
3415 ** Fill the Index.aiRowEst[] array with default information - information
3416 ** to be used when we have not run the ANALYZE command.
3417 **
3418 ** aiRowEst[0] is supposed to contain the number of elements in the index.
3419 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
3420 ** number of rows in the table that match any particular value of the
3421 ** first column of the index. aiRowEst[2] is an estimate of the number
3422 ** of rows that match any particular combination of the first 2 columns
3423 ** of the index. And so forth. It must always be the case that
3424 *
3425 ** aiRowEst[N]<=aiRowEst[N-1]
3426 ** aiRowEst[N]>=1
3427 **
3428 ** Apart from that, we have little to go on besides intuition as to
3429 ** how aiRowEst[] should be initialized. The numbers generated here
3430 ** are based on typical values found in actual indices.
3431 */
3432 void sqlite3DefaultRowEst(Index *pIdx){
3433 /* 10, 9, 8, 7, 6 */
3434 LogEst aVal[] = { 33, 32, 30, 28, 26 };
3435 LogEst *a = pIdx->aiRowLogEst;
3436 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
3437 int i;
3438
3439 /* Set the first entry (number of rows in the index) to the estimated
3440 ** number of rows in the table. Or 10, if the estimated number of rows
3441 ** in the table is less than that. */
3442 a[0] = pIdx->pTable->nRowLogEst;
3443 if( a[0]<33 ) a[0] = 33; assert( 33==sqlite3LogEst(10) );
3444
3445 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
3446 ** 6 and each subsequent value (if any) is 5. */
3447 memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
3448 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
3449 a[i] = 23; assert( 23==sqlite3LogEst(5) );
3450 }
3451
3452 assert( 0==sqlite3LogEst(1) );
3453 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
3454 }
3455
3456 /*
3457 ** This routine will drop an existing named index. This routine
3458 ** implements the DROP INDEX statement.
3459 */
3460 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
3461 Index *pIndex;
3462 Vdbe *v;
3463 sqlite3 *db = pParse->db;
3464 int iDb;
3465
3466 assert( pParse->nErr==0 ); /* Never called with prior errors */
3467 if( db->mallocFailed ){
3468 goto exit_drop_index;
3469 }
3470 assert( pName->nSrc==1 );
3471 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3472 goto exit_drop_index;
3473 }
3474 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
3475 if( pIndex==0 ){
3476 if( !ifExists ){
3477 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
3478 }else{
3479 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3480 }
3481 pParse->checkSchema = 1;
3482 goto exit_drop_index;
3483 }
3484 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
3485 sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
3486 "or PRIMARY KEY constraint cannot be dropped", 0);
3487 goto exit_drop_index;
3488 }
3489 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3490 #ifndef SQLITE_OMIT_AUTHORIZATION
3491 {
3492 int code = SQLITE_DROP_INDEX;
3493 Table *pTab = pIndex->pTable;
3494 const char *zDb = db->aDb[iDb].zName;
3495 const char *zTab = SCHEMA_TABLE(iDb);
3496 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
3497 goto exit_drop_index;
3498 }
3499 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
3500 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
3501 goto exit_drop_index;
3502 }
3503 }
3504 #endif
3505
3506 /* Generate code to remove the index and from the master table */
3507 v = sqlite3GetVdbe(pParse);
3508 if( v ){
3509 sqlite3BeginWriteOperation(pParse, 1, iDb);
3510 sqlite3NestedParse(pParse,
3511 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
3512 db->aDb[iDb].zName, SCHEMA_TABLE(iDb), pIndex->zName
3513 );
3514 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
3515 sqlite3ChangeCookie(pParse, iDb);
3516 destroyRootPage(pParse, pIndex->tnum, iDb);
3517 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
3518 }
3519
3520 exit_drop_index:
3521 sqlite3SrcListDelete(db, pName);
3522 }
3523
3524 /*
3525 ** pArray is a pointer to an array of objects. Each object in the
3526 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
3527 ** to extend the array so that there is space for a new object at the end.
3528 **
3529 ** When this function is called, *pnEntry contains the current size of
3530 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
3531 ** in total).
3532 **
3533 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
3534 ** space allocated for the new object is zeroed, *pnEntry updated to
3535 ** reflect the new size of the array and a pointer to the new allocation
3536 ** returned. *pIdx is set to the index of the new array entry in this case.
3537 **
3538 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
3539 ** unchanged and a copy of pArray returned.
3540 */
3541 void *sqlite3ArrayAllocate(
3542 sqlite3 *db, /* Connection to notify of malloc failures */
3543 void *pArray, /* Array of objects. Might be reallocated */
3544 int szEntry, /* Size of each object in the array */
3545 int *pnEntry, /* Number of objects currently in use */
3546 int *pIdx /* Write the index of a new slot here */
3547 ){
3548 char *z;
3549 int n = *pnEntry;
3550 if( (n & (n-1))==0 ){
3551 int sz = (n==0) ? 1 : 2*n;
3552 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
3553 if( pNew==0 ){
3554 *pIdx = -1;
3555 return pArray;
3556 }
3557 pArray = pNew;
3558 }
3559 z = (char*)pArray;
3560 memset(&z[n * szEntry], 0, szEntry);
3561 *pIdx = n;
3562 ++*pnEntry;
3563 return pArray;
3564 }
3565
3566 /*
3567 ** Append a new element to the given IdList. Create a new IdList if
3568 ** need be.
3569 **
3570 ** A new IdList is returned, or NULL if malloc() fails.
3571 */
3572 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
3573 int i;
3574 if( pList==0 ){
3575 pList = sqlite3DbMallocZero(db, sizeof(IdList) );
3576 if( pList==0 ) return 0;
3577 }
3578 pList->a = sqlite3ArrayAllocate(
3579 db,
3580 pList->a,
3581 sizeof(pList->a[0]),
3582 &pList->nId,
3583 &i
3584 );
3585 if( i<0 ){
3586 sqlite3IdListDelete(db, pList);
3587 return 0;
3588 }
3589 pList->a[i].zName = sqlite3NameFromToken(db, pToken);
3590 return pList;
3591 }
3592
3593 /*
3594 ** Delete an IdList.
3595 */
3596 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
3597 int i;
3598 if( pList==0 ) return;
3599 for(i=0; i<pList->nId; i++){
3600 sqlite3DbFree(db, pList->a[i].zName);
3601 }
3602 sqlite3DbFree(db, pList->a);
3603 sqlite3DbFree(db, pList);
3604 }
3605
3606 /*
3607 ** Return the index in pList of the identifier named zId. Return -1
3608 ** if not found.
3609 */
3610 int sqlite3IdListIndex(IdList *pList, const char *zName){
3611 int i;
3612 if( pList==0 ) return -1;
3613 for(i=0; i<pList->nId; i++){
3614 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3615 }
3616 return -1;
3617 }
3618
3619 /*
3620 ** Expand the space allocated for the given SrcList object by
3621 ** creating nExtra new slots beginning at iStart. iStart is zero based.
3622 ** New slots are zeroed.
3623 **
3624 ** For example, suppose a SrcList initially contains two entries: A,B.
3625 ** To append 3 new entries onto the end, do this:
3626 **
3627 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3628 **
3629 ** After the call above it would contain: A, B, nil, nil, nil.
3630 ** If the iStart argument had been 1 instead of 2, then the result
3631 ** would have been: A, nil, nil, nil, B. To prepend the new slots,
3632 ** the iStart value would be 0. The result then would
3633 ** be: nil, nil, nil, A, B.
3634 **
3635 ** If a memory allocation fails the SrcList is unchanged. The
3636 ** db->mallocFailed flag will be set to true.
3637 */
3638 SrcList *sqlite3SrcListEnlarge(
3639 sqlite3 *db, /* Database connection to notify of OOM errors */
3640 SrcList *pSrc, /* The SrcList to be enlarged */
3641 int nExtra, /* Number of new slots to add to pSrc->a[] */
3642 int iStart /* Index in pSrc->a[] of first new slot */
3643 ){
3644 int i;
3645
3646 /* Sanity checking on calling parameters */
3647 assert( iStart>=0 );
3648 assert( nExtra>=1 );
3649 assert( pSrc!=0 );
3650 assert( iStart<=pSrc->nSrc );
3651
3652 /* Allocate additional space if needed */
3653 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
3654 SrcList *pNew;
3655 int nAlloc = pSrc->nSrc+nExtra;
3656 int nGot;
3657 pNew = sqlite3DbRealloc(db, pSrc,
3658 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3659 if( pNew==0 ){
3660 assert( db->mallocFailed );
3661 return pSrc;
3662 }
3663 pSrc = pNew;
3664 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3665 pSrc->nAlloc = nGot;
3666 }
3667
3668 /* Move existing slots that come after the newly inserted slots
3669 ** out of the way */
3670 for(i=pSrc->nSrc-1; i>=iStart; i--){
3671 pSrc->a[i+nExtra] = pSrc->a[i];
3672 }
3673 pSrc->nSrc += nExtra;
3674
3675 /* Zero the newly allocated slots */
3676 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3677 for(i=iStart; i<iStart+nExtra; i++){
3678 pSrc->a[i].iCursor = -1;
3679 }
3680
3681 /* Return a pointer to the enlarged SrcList */
3682 return pSrc;
3683 }
3684
3685
3686 /*
3687 ** Append a new table name to the given SrcList. Create a new SrcList if
3688 ** need be. A new entry is created in the SrcList even if pTable is NULL.
3689 **
3690 ** A SrcList is returned, or NULL if there is an OOM error. The returned
3691 ** SrcList might be the same as the SrcList that was input or it might be
3692 ** a new one. If an OOM error does occurs, then the prior value of pList
3693 ** that is input to this routine is automatically freed.
3694 **
3695 ** If pDatabase is not null, it means that the table has an optional
3696 ** database name prefix. Like this: "database.table". The pDatabase
3697 ** points to the table name and the pTable points to the database name.
3698 ** The SrcList.a[].zName field is filled with the table name which might
3699 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3700 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3701 ** or with NULL if no database is specified.
3702 **
3703 ** In other words, if call like this:
3704 **
3705 ** sqlite3SrcListAppend(D,A,B,0);
3706 **
3707 ** Then B is a table name and the database name is unspecified. If called
3708 ** like this:
3709 **
3710 ** sqlite3SrcListAppend(D,A,B,C);
3711 **
3712 ** Then C is the table name and B is the database name. If C is defined
3713 ** then so is B. In other words, we never have a case where:
3714 **
3715 ** sqlite3SrcListAppend(D,A,0,C);
3716 **
3717 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted
3718 ** before being added to the SrcList.
3719 */
3720 SrcList *sqlite3SrcListAppend(
3721 sqlite3 *db, /* Connection to notify of malloc failures */
3722 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
3723 Token *pTable, /* Table to append */
3724 Token *pDatabase /* Database of the table */
3725 ){
3726 struct SrcList_item *pItem;
3727 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */
3728 if( pList==0 ){
3729 pList = sqlite3DbMallocZero(db, sizeof(SrcList) );
3730 if( pList==0 ) return 0;
3731 pList->nAlloc = 1;
3732 }
3733 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3734 if( db->mallocFailed ){
3735 sqlite3SrcListDelete(db, pList);
3736 return 0;
3737 }
3738 pItem = &pList->a[pList->nSrc-1];
3739 if( pDatabase && pDatabase->z==0 ){
3740 pDatabase = 0;
3741 }
3742 if( pDatabase ){
3743 Token *pTemp = pDatabase;
3744 pDatabase = pTable;
3745 pTable = pTemp;
3746 }
3747 pItem->zName = sqlite3NameFromToken(db, pTable);
3748 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
3749 return pList;
3750 }
3751
3752 /*
3753 ** Assign VdbeCursor index numbers to all tables in a SrcList
3754 */
3755 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3756 int i;
3757 struct SrcList_item *pItem;
3758 assert(pList || pParse->db->mallocFailed );
3759 if( pList ){
3760 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3761 if( pItem->iCursor>=0 ) break;
3762 pItem->iCursor = pParse->nTab++;
3763 if( pItem->pSelect ){
3764 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3765 }
3766 }
3767 }
3768 }
3769
3770 /*
3771 ** Delete an entire SrcList including all its substructure.
3772 */
3773 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3774 int i;
3775 struct SrcList_item *pItem;
3776 if( pList==0 ) return;
3777 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3778 sqlite3DbFree(db, pItem->zDatabase);
3779 sqlite3DbFree(db, pItem->zName);
3780 sqlite3DbFree(db, pItem->zAlias);
3781 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
3782 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
3783 sqlite3DeleteTable(db, pItem->pTab);
3784 sqlite3SelectDelete(db, pItem->pSelect);
3785 sqlite3ExprDelete(db, pItem->pOn);
3786 sqlite3IdListDelete(db, pItem->pUsing);
3787 }
3788 sqlite3DbFree(db, pList);
3789 }
3790
3791 /*
3792 ** This routine is called by the parser to add a new term to the
3793 ** end of a growing FROM clause. The "p" parameter is the part of
3794 ** the FROM clause that has already been constructed. "p" is NULL
3795 ** if this is the first term of the FROM clause. pTable and pDatabase
3796 ** are the name of the table and database named in the FROM clause term.
3797 ** pDatabase is NULL if the database name qualifier is missing - the
3798 ** usual case. If the term has an alias, then pAlias points to the
3799 ** alias token. If the term is a subquery, then pSubquery is the
3800 ** SELECT statement that the subquery encodes. The pTable and
3801 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing
3802 ** parameters are the content of the ON and USING clauses.
3803 **
3804 ** Return a new SrcList which encodes is the FROM with the new
3805 ** term added.
3806 */
3807 SrcList *sqlite3SrcListAppendFromTerm(
3808 Parse *pParse, /* Parsing context */
3809 SrcList *p, /* The left part of the FROM clause already seen */
3810 Token *pTable, /* Name of the table to add to the FROM clause */
3811 Token *pDatabase, /* Name of the database containing pTable */
3812 Token *pAlias, /* The right-hand side of the AS subexpression */
3813 Select *pSubquery, /* A subquery used in place of a table name */
3814 Expr *pOn, /* The ON clause of a join */
3815 IdList *pUsing /* The USING clause of a join */
3816 ){
3817 struct SrcList_item *pItem;
3818 sqlite3 *db = pParse->db;
3819 if( !p && (pOn || pUsing) ){
3820 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
3821 (pOn ? "ON" : "USING")
3822 );
3823 goto append_from_error;
3824 }
3825 p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3826 if( p==0 || NEVER(p->nSrc==0) ){
3827 goto append_from_error;
3828 }
3829 pItem = &p->a[p->nSrc-1];
3830 assert( pAlias!=0 );
3831 if( pAlias->n ){
3832 pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3833 }
3834 pItem->pSelect = pSubquery;
3835 pItem->pOn = pOn;
3836 pItem->pUsing = pUsing;
3837 return p;
3838
3839 append_from_error:
3840 assert( p==0 );
3841 sqlite3ExprDelete(db, pOn);
3842 sqlite3IdListDelete(db, pUsing);
3843 sqlite3SelectDelete(db, pSubquery);
3844 return 0;
3845 }
3846
3847 /*
3848 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3849 ** element of the source-list passed as the second argument.
3850 */
3851 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
3852 assert( pIndexedBy!=0 );
3853 if( p && ALWAYS(p->nSrc>0) ){
3854 struct SrcList_item *pItem = &p->a[p->nSrc-1];
3855 assert( pItem->fg.notIndexed==0 );
3856 assert( pItem->fg.isIndexedBy==0 );
3857 assert( pItem->fg.isTabFunc==0 );
3858 if( pIndexedBy->n==1 && !pIndexedBy->z ){
3859 /* A "NOT INDEXED" clause was supplied. See parse.y
3860 ** construct "indexed_opt" for details. */
3861 pItem->fg.notIndexed = 1;
3862 }else{
3863 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
3864 pItem->fg.isIndexedBy = (pItem->u1.zIndexedBy!=0);
3865 }
3866 }
3867 }
3868
3869 /*
3870 ** Add the list of function arguments to the SrcList entry for a
3871 ** table-valued-function.
3872 */
3873 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
3874 if( p ){
3875 struct SrcList_item *pItem = &p->a[p->nSrc-1];
3876 assert( pItem->fg.notIndexed==0 );
3877 assert( pItem->fg.isIndexedBy==0 );
3878 assert( pItem->fg.isTabFunc==0 );
3879 pItem->u1.pFuncArg = pList;
3880 pItem->fg.isTabFunc = 1;
3881 }else{
3882 sqlite3ExprListDelete(pParse->db, pList);
3883 }
3884 }
3885
3886 /*
3887 ** When building up a FROM clause in the parser, the join operator
3888 ** is initially attached to the left operand. But the code generator
3889 ** expects the join operator to be on the right operand. This routine
3890 ** Shifts all join operators from left to right for an entire FROM
3891 ** clause.
3892 **
3893 ** Example: Suppose the join is like this:
3894 **
3895 ** A natural cross join B
3896 **
3897 ** The operator is "natural cross join". The A and B operands are stored
3898 ** in p->a[0] and p->a[1], respectively. The parser initially stores the
3899 ** operator with A. This routine shifts that operator over to B.
3900 */
3901 void sqlite3SrcListShiftJoinType(SrcList *p){
3902 if( p ){
3903 int i;
3904 for(i=p->nSrc-1; i>0; i--){
3905 p->a[i].fg.jointype = p->a[i-1].fg.jointype;
3906 }
3907 p->a[0].fg.jointype = 0;
3908 }
3909 }
3910
3911 /*
3912 ** Begin a transaction
3913 */
3914 void sqlite3BeginTransaction(Parse *pParse, int type){
3915 sqlite3 *db;
3916 Vdbe *v;
3917 int i;
3918
3919 assert( pParse!=0 );
3920 db = pParse->db;
3921 assert( db!=0 );
3922 /* if( db->aDb[0].pBt==0 ) return; */
3923 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
3924 return;
3925 }
3926 v = sqlite3GetVdbe(pParse);
3927 if( !v ) return;
3928 if( type!=TK_DEFERRED ){
3929 for(i=0; i<db->nDb; i++){
3930 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3931 sqlite3VdbeUsesBtree(v, i);
3932 }
3933 }
3934 sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
3935 }
3936
3937 /*
3938 ** Commit a transaction
3939 */
3940 void sqlite3CommitTransaction(Parse *pParse){
3941 Vdbe *v;
3942
3943 assert( pParse!=0 );
3944 assert( pParse->db!=0 );
3945 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
3946 return;
3947 }
3948 v = sqlite3GetVdbe(pParse);
3949 if( v ){
3950 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
3951 }
3952 }
3953
3954 /*
3955 ** Rollback a transaction
3956 */
3957 void sqlite3RollbackTransaction(Parse *pParse){
3958 Vdbe *v;
3959
3960 assert( pParse!=0 );
3961 assert( pParse->db!=0 );
3962 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
3963 return;
3964 }
3965 v = sqlite3GetVdbe(pParse);
3966 if( v ){
3967 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
3968 }
3969 }
3970
3971 /*
3972 ** This function is called by the parser when it parses a command to create,
3973 ** release or rollback an SQL savepoint.
3974 */
3975 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
3976 char *zName = sqlite3NameFromToken(pParse->db, pName);
3977 if( zName ){
3978 Vdbe *v = sqlite3GetVdbe(pParse);
3979 #ifndef SQLITE_OMIT_AUTHORIZATION
3980 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
3981 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
3982 #endif
3983 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
3984 sqlite3DbFree(pParse->db, zName);
3985 return;
3986 }
3987 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
3988 }
3989 }
3990
3991 /*
3992 ** Make sure the TEMP database is open and available for use. Return
3993 ** the number of errors. Leave any error messages in the pParse structure.
3994 */
3995 int sqlite3OpenTempDatabase(Parse *pParse){
3996 sqlite3 *db = pParse->db;
3997 if( db->aDb[1].pBt==0 && !pParse->explain ){
3998 int rc;
3999 Btree *pBt;
4000 static const int flags =
4001 SQLITE_OPEN_READWRITE |
4002 SQLITE_OPEN_CREATE |
4003 SQLITE_OPEN_EXCLUSIVE |
4004 SQLITE_OPEN_DELETEONCLOSE |
4005 SQLITE_OPEN_TEMP_DB;
4006
4007 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
4008 if( rc!=SQLITE_OK ){
4009 sqlite3ErrorMsg(pParse, "unable to open a temporary database "
4010 "file for storing temporary tables");
4011 pParse->rc = rc;
4012 return 1;
4013 }
4014 db->aDb[1].pBt = pBt;
4015 assert( db->aDb[1].pSchema );
4016 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
4017 db->mallocFailed = 1;
4018 return 1;
4019 }
4020 }
4021 return 0;
4022 }
4023
4024 /*
4025 ** Record the fact that the schema cookie will need to be verified
4026 ** for database iDb. The code to actually verify the schema cookie
4027 ** will occur at the end of the top-level VDBE and will be generated
4028 ** later, by sqlite3FinishCoding().
4029 */
4030 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
4031 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4032 sqlite3 *db = pToplevel->db;
4033
4034 assert( iDb>=0 && iDb<db->nDb );
4035 assert( db->aDb[iDb].pBt!=0 || iDb==1 );
4036 assert( iDb<SQLITE_MAX_ATTACHED+2 );
4037 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
4038 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
4039 DbMaskSet(pToplevel->cookieMask, iDb);
4040 pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
4041 if( !OMIT_TEMPDB && iDb==1 ){
4042 sqlite3OpenTempDatabase(pToplevel);
4043 }
4044 }
4045 }
4046
4047 /*
4048 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
4049 ** attached database. Otherwise, invoke it for the database named zDb only.
4050 */
4051 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
4052 sqlite3 *db = pParse->db;
4053 int i;
4054 for(i=0; i<db->nDb; i++){
4055 Db *pDb = &db->aDb[i];
4056 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){
4057 sqlite3CodeVerifySchema(pParse, i);
4058 }
4059 }
4060 }
4061
4062 /*
4063 ** Generate VDBE code that prepares for doing an operation that
4064 ** might change the database.
4065 **
4066 ** This routine starts a new transaction if we are not already within
4067 ** a transaction. If we are already within a transaction, then a checkpoint
4068 ** is set if the setStatement parameter is true. A checkpoint should
4069 ** be set for operations that might fail (due to a constraint) part of
4070 ** the way through and which will need to undo some writes without having to
4071 ** rollback the whole transaction. For operations where all constraints
4072 ** can be checked before any changes are made to the database, it is never
4073 ** necessary to undo a write and the checkpoint should not be set.
4074 */
4075 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
4076 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4077 sqlite3CodeVerifySchema(pParse, iDb);
4078 DbMaskSet(pToplevel->writeMask, iDb);
4079 pToplevel->isMultiWrite |= setStatement;
4080 }
4081
4082 /*
4083 ** Indicate that the statement currently under construction might write
4084 ** more than one entry (example: deleting one row then inserting another,
4085 ** inserting multiple rows in a table, or inserting a row and index entries.)
4086 ** If an abort occurs after some of these writes have completed, then it will
4087 ** be necessary to undo the completed writes.
4088 */
4089 void sqlite3MultiWrite(Parse *pParse){
4090 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4091 pToplevel->isMultiWrite = 1;
4092 }
4093
4094 /*
4095 ** The code generator calls this routine if is discovers that it is
4096 ** possible to abort a statement prior to completion. In order to
4097 ** perform this abort without corrupting the database, we need to make
4098 ** sure that the statement is protected by a statement transaction.
4099 **
4100 ** Technically, we only need to set the mayAbort flag if the
4101 ** isMultiWrite flag was previously set. There is a time dependency
4102 ** such that the abort must occur after the multiwrite. This makes
4103 ** some statements involving the REPLACE conflict resolution algorithm
4104 ** go a little faster. But taking advantage of this time dependency
4105 ** makes it more difficult to prove that the code is correct (in
4106 ** particular, it prevents us from writing an effective
4107 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
4108 ** to take the safe route and skip the optimization.
4109 */
4110 void sqlite3MayAbort(Parse *pParse){
4111 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4112 pToplevel->mayAbort = 1;
4113 }
4114
4115 /*
4116 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
4117 ** error. The onError parameter determines which (if any) of the statement
4118 ** and/or current transaction is rolled back.
4119 */
4120 void sqlite3HaltConstraint(
4121 Parse *pParse, /* Parsing context */
4122 int errCode, /* extended error code */
4123 int onError, /* Constraint type */
4124 char *p4, /* Error message */
4125 i8 p4type, /* P4_STATIC or P4_TRANSIENT */
4126 u8 p5Errmsg /* P5_ErrMsg type */
4127 ){
4128 Vdbe *v = sqlite3GetVdbe(pParse);
4129 assert( (errCode&0xff)==SQLITE_CONSTRAINT );
4130 if( onError==OE_Abort ){
4131 sqlite3MayAbort(pParse);
4132 }
4133 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
4134 if( p5Errmsg ) sqlite3VdbeChangeP5(v, p5Errmsg);
4135 }
4136
4137 /*
4138 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
4139 */
4140 void sqlite3UniqueConstraint(
4141 Parse *pParse, /* Parsing context */
4142 int onError, /* Constraint type */
4143 Index *pIdx /* The index that triggers the constraint */
4144 ){
4145 char *zErr;
4146 int j;
4147 StrAccum errMsg;
4148 Table *pTab = pIdx->pTable;
4149
4150 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0, 200);
4151 if( pIdx->aColExpr ){
4152 sqlite3XPrintf(&errMsg, 0, "index '%q'", pIdx->zName);
4153 }else{
4154 for(j=0; j<pIdx->nKeyCol; j++){
4155 char *zCol;
4156 assert( pIdx->aiColumn[j]>=0 );
4157 zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
4158 if( j ) sqlite3StrAccumAppend(&errMsg, ", ", 2);
4159 sqlite3XPrintf(&errMsg, 0, "%s.%s", pTab->zName, zCol);
4160 }
4161 }
4162 zErr = sqlite3StrAccumFinish(&errMsg);
4163 sqlite3HaltConstraint(pParse,
4164 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
4165 : SQLITE_CONSTRAINT_UNIQUE,
4166 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
4167 }
4168
4169
4170 /*
4171 ** Code an OP_Halt due to non-unique rowid.
4172 */
4173 void sqlite3RowidConstraint(
4174 Parse *pParse, /* Parsing context */
4175 int onError, /* Conflict resolution algorithm */
4176 Table *pTab /* The table with the non-unique rowid */
4177 ){
4178 char *zMsg;
4179 int rc;
4180 if( pTab->iPKey>=0 ){
4181 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
4182 pTab->aCol[pTab->iPKey].zName);
4183 rc = SQLITE_CONSTRAINT_PRIMARYKEY;
4184 }else{
4185 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
4186 rc = SQLITE_CONSTRAINT_ROWID;
4187 }
4188 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
4189 P5_ConstraintUnique);
4190 }
4191
4192 /*
4193 ** Check to see if pIndex uses the collating sequence pColl. Return
4194 ** true if it does and false if it does not.
4195 */
4196 #ifndef SQLITE_OMIT_REINDEX
4197 static int collationMatch(const char *zColl, Index *pIndex){
4198 int i;
4199 assert( zColl!=0 );
4200 for(i=0; i<pIndex->nColumn; i++){
4201 const char *z = pIndex->azColl[i];
4202 assert( z!=0 || pIndex->aiColumn[i]<0 );
4203 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
4204 return 1;
4205 }
4206 }
4207 return 0;
4208 }
4209 #endif
4210
4211 /*
4212 ** Recompute all indices of pTab that use the collating sequence pColl.
4213 ** If pColl==0 then recompute all indices of pTab.
4214 */
4215 #ifndef SQLITE_OMIT_REINDEX
4216 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
4217 Index *pIndex; /* An index associated with pTab */
4218
4219 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
4220 if( zColl==0 || collationMatch(zColl, pIndex) ){
4221 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4222 sqlite3BeginWriteOperation(pParse, 0, iDb);
4223 sqlite3RefillIndex(pParse, pIndex, -1);
4224 }
4225 }
4226 }
4227 #endif
4228
4229 /*
4230 ** Recompute all indices of all tables in all databases where the
4231 ** indices use the collating sequence pColl. If pColl==0 then recompute
4232 ** all indices everywhere.
4233 */
4234 #ifndef SQLITE_OMIT_REINDEX
4235 static void reindexDatabases(Parse *pParse, char const *zColl){
4236 Db *pDb; /* A single database */
4237 int iDb; /* The database index number */
4238 sqlite3 *db = pParse->db; /* The database connection */
4239 HashElem *k; /* For looping over tables in pDb */
4240 Table *pTab; /* A table in the database */
4241
4242 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */
4243 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
4244 assert( pDb!=0 );
4245 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){
4246 pTab = (Table*)sqliteHashData(k);
4247 reindexTable(pParse, pTab, zColl);
4248 }
4249 }
4250 }
4251 #endif
4252
4253 /*
4254 ** Generate code for the REINDEX command.
4255 **
4256 ** REINDEX -- 1
4257 ** REINDEX <collation> -- 2
4258 ** REINDEX ?<database>.?<tablename> -- 3
4259 ** REINDEX ?<database>.?<indexname> -- 4
4260 **
4261 ** Form 1 causes all indices in all attached databases to be rebuilt.
4262 ** Form 2 rebuilds all indices in all databases that use the named
4263 ** collating function. Forms 3 and 4 rebuild the named index or all
4264 ** indices associated with the named table.
4265 */
4266 #ifndef SQLITE_OMIT_REINDEX
4267 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
4268 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
4269 char *z; /* Name of a table or index */
4270 const char *zDb; /* Name of the database */
4271 Table *pTab; /* A table in the database */
4272 Index *pIndex; /* An index associated with pTab */
4273 int iDb; /* The database index number */
4274 sqlite3 *db = pParse->db; /* The database connection */
4275 Token *pObjName; /* Name of the table or index to be reindexed */
4276
4277 /* Read the database schema. If an error occurs, leave an error message
4278 ** and code in pParse and return NULL. */
4279 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4280 return;
4281 }
4282
4283 if( pName1==0 ){
4284 reindexDatabases(pParse, 0);
4285 return;
4286 }else if( NEVER(pName2==0) || pName2->z==0 ){
4287 char *zColl;
4288 assert( pName1->z );
4289 zColl = sqlite3NameFromToken(pParse->db, pName1);
4290 if( !zColl ) return;
4291 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
4292 if( pColl ){
4293 reindexDatabases(pParse, zColl);
4294 sqlite3DbFree(db, zColl);
4295 return;
4296 }
4297 sqlite3DbFree(db, zColl);
4298 }
4299 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
4300 if( iDb<0 ) return;
4301 z = sqlite3NameFromToken(db, pObjName);
4302 if( z==0 ) return;
4303 zDb = db->aDb[iDb].zName;
4304 pTab = sqlite3FindTable(db, z, zDb);
4305 if( pTab ){
4306 reindexTable(pParse, pTab, 0);
4307 sqlite3DbFree(db, z);
4308 return;
4309 }
4310 pIndex = sqlite3FindIndex(db, z, zDb);
4311 sqlite3DbFree(db, z);
4312 if( pIndex ){
4313 sqlite3BeginWriteOperation(pParse, 0, iDb);
4314 sqlite3RefillIndex(pParse, pIndex, -1);
4315 return;
4316 }
4317 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
4318 }
4319 #endif
4320
4321 /*
4322 ** Return a KeyInfo structure that is appropriate for the given Index.
4323 **
4324 ** The KeyInfo structure for an index is cached in the Index object.
4325 ** So there might be multiple references to the returned pointer. The
4326 ** caller should not try to modify the KeyInfo object.
4327 **
4328 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
4329 ** when it has finished using it.
4330 */
4331 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
4332 int i;
4333 int nCol = pIdx->nColumn;
4334 int nKey = pIdx->nKeyCol;
4335 KeyInfo *pKey;
4336 if( pParse->nErr ) return 0;
4337 if( pIdx->uniqNotNull ){
4338 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
4339 }else{
4340 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
4341 }
4342 if( pKey ){
4343 assert( sqlite3KeyInfoIsWriteable(pKey) );
4344 for(i=0; i<nCol; i++){
4345 const char *zColl = pIdx->azColl[i];
4346 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
4347 sqlite3LocateCollSeq(pParse, zColl);
4348 pKey->aSortOrder[i] = pIdx->aSortOrder[i];
4349 }
4350 if( pParse->nErr ){
4351 sqlite3KeyInfoUnref(pKey);
4352 pKey = 0;
4353 }
4354 }
4355 return pKey;
4356 }
4357
4358 #ifndef SQLITE_OMIT_CTE
4359 /*
4360 ** This routine is invoked once per CTE by the parser while parsing a
4361 ** WITH clause.
4362 */
4363 With *sqlite3WithAdd(
4364 Parse *pParse, /* Parsing context */
4365 With *pWith, /* Existing WITH clause, or NULL */
4366 Token *pName, /* Name of the common-table */
4367 ExprList *pArglist, /* Optional column name list for the table */
4368 Select *pQuery /* Query used to initialize the table */
4369 ){
4370 sqlite3 *db = pParse->db;
4371 With *pNew;
4372 char *zName;
4373
4374 /* Check that the CTE name is unique within this WITH clause. If
4375 ** not, store an error in the Parse structure. */
4376 zName = sqlite3NameFromToken(pParse->db, pName);
4377 if( zName && pWith ){
4378 int i;
4379 for(i=0; i<pWith->nCte; i++){
4380 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
4381 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
4382 }
4383 }
4384 }
4385
4386 if( pWith ){
4387 int nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
4388 pNew = sqlite3DbRealloc(db, pWith, nByte);
4389 }else{
4390 pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
4391 }
4392 assert( zName!=0 || pNew==0 );
4393 assert( db->mallocFailed==0 || pNew==0 );
4394
4395 if( pNew==0 ){
4396 sqlite3ExprListDelete(db, pArglist);
4397 sqlite3SelectDelete(db, pQuery);
4398 sqlite3DbFree(db, zName);
4399 pNew = pWith;
4400 }else{
4401 pNew->a[pNew->nCte].pSelect = pQuery;
4402 pNew->a[pNew->nCte].pCols = pArglist;
4403 pNew->a[pNew->nCte].zName = zName;
4404 pNew->a[pNew->nCte].zCteErr = 0;
4405 pNew->nCte++;
4406 }
4407
4408 return pNew;
4409 }
4410
4411 /*
4412 ** Free the contents of the With object passed as the second argument.
4413 */
4414 void sqlite3WithDelete(sqlite3 *db, With *pWith){
4415 if( pWith ){
4416 int i;
4417 for(i=0; i<pWith->nCte; i++){
4418 struct Cte *pCte = &pWith->a[i];
4419 sqlite3ExprListDelete(db, pCte->pCols);
4420 sqlite3SelectDelete(db, pCte->pSelect);
4421 sqlite3DbFree(db, pCte->zName);
4422 }
4423 sqlite3DbFree(db, pWith);
4424 }
4425 }
4426 #endif /* !defined(SQLITE_OMIT_CTE) */
OLDNEW
« no previous file with comments | « third_party/sqlite/sqlite-src-3100200/src/btreeInt.h ('k') | third_party/sqlite/sqlite-src-3100200/src/callback.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698