OLD | NEW |
| (Empty) |
1 /* | |
2 ** 2007 August 27 | |
3 ** | |
4 ** The author disclaims copyright to this source code. In place of | |
5 ** a legal notice, here is a blessing: | |
6 ** | |
7 ** May you do good and not evil. | |
8 ** May you find forgiveness for yourself and forgive others. | |
9 ** May you share freely, never taking more than you give. | |
10 ** | |
11 ************************************************************************* | |
12 ** | |
13 ** This file contains code used to implement mutexes on Btree objects. | |
14 ** This code really belongs in btree.c. But btree.c is getting too | |
15 ** big and we want to break it down some. This packaged seemed like | |
16 ** a good breakout. | |
17 */ | |
18 #include "btreeInt.h" | |
19 #ifndef SQLITE_OMIT_SHARED_CACHE | |
20 #if SQLITE_THREADSAFE | |
21 | |
22 /* | |
23 ** Obtain the BtShared mutex associated with B-Tree handle p. Also, | |
24 ** set BtShared.db to the database handle associated with p and the | |
25 ** p->locked boolean to true. | |
26 */ | |
27 static void lockBtreeMutex(Btree *p){ | |
28 assert( p->locked==0 ); | |
29 assert( sqlite3_mutex_notheld(p->pBt->mutex) ); | |
30 assert( sqlite3_mutex_held(p->db->mutex) ); | |
31 | |
32 sqlite3_mutex_enter(p->pBt->mutex); | |
33 p->pBt->db = p->db; | |
34 p->locked = 1; | |
35 } | |
36 | |
37 /* | |
38 ** Release the BtShared mutex associated with B-Tree handle p and | |
39 ** clear the p->locked boolean. | |
40 */ | |
41 static void SQLITE_NOINLINE unlockBtreeMutex(Btree *p){ | |
42 BtShared *pBt = p->pBt; | |
43 assert( p->locked==1 ); | |
44 assert( sqlite3_mutex_held(pBt->mutex) ); | |
45 assert( sqlite3_mutex_held(p->db->mutex) ); | |
46 assert( p->db==pBt->db ); | |
47 | |
48 sqlite3_mutex_leave(pBt->mutex); | |
49 p->locked = 0; | |
50 } | |
51 | |
52 /* Forward reference */ | |
53 static void SQLITE_NOINLINE btreeLockCarefully(Btree *p); | |
54 | |
55 /* | |
56 ** Enter a mutex on the given BTree object. | |
57 ** | |
58 ** If the object is not sharable, then no mutex is ever required | |
59 ** and this routine is a no-op. The underlying mutex is non-recursive. | |
60 ** But we keep a reference count in Btree.wantToLock so the behavior | |
61 ** of this interface is recursive. | |
62 ** | |
63 ** To avoid deadlocks, multiple Btrees are locked in the same order | |
64 ** by all database connections. The p->pNext is a list of other | |
65 ** Btrees belonging to the same database connection as the p Btree | |
66 ** which need to be locked after p. If we cannot get a lock on | |
67 ** p, then first unlock all of the others on p->pNext, then wait | |
68 ** for the lock to become available on p, then relock all of the | |
69 ** subsequent Btrees that desire a lock. | |
70 */ | |
71 void sqlite3BtreeEnter(Btree *p){ | |
72 /* Some basic sanity checking on the Btree. The list of Btrees | |
73 ** connected by pNext and pPrev should be in sorted order by | |
74 ** Btree.pBt value. All elements of the list should belong to | |
75 ** the same connection. Only shared Btrees are on the list. */ | |
76 assert( p->pNext==0 || p->pNext->pBt>p->pBt ); | |
77 assert( p->pPrev==0 || p->pPrev->pBt<p->pBt ); | |
78 assert( p->pNext==0 || p->pNext->db==p->db ); | |
79 assert( p->pPrev==0 || p->pPrev->db==p->db ); | |
80 assert( p->sharable || (p->pNext==0 && p->pPrev==0) ); | |
81 | |
82 /* Check for locking consistency */ | |
83 assert( !p->locked || p->wantToLock>0 ); | |
84 assert( p->sharable || p->wantToLock==0 ); | |
85 | |
86 /* We should already hold a lock on the database connection */ | |
87 assert( sqlite3_mutex_held(p->db->mutex) ); | |
88 | |
89 /* Unless the database is sharable and unlocked, then BtShared.db | |
90 ** should already be set correctly. */ | |
91 assert( (p->locked==0 && p->sharable) || p->pBt->db==p->db ); | |
92 | |
93 if( !p->sharable ) return; | |
94 p->wantToLock++; | |
95 if( p->locked ) return; | |
96 btreeLockCarefully(p); | |
97 } | |
98 | |
99 /* This is a helper function for sqlite3BtreeLock(). By moving | |
100 ** complex, but seldom used logic, out of sqlite3BtreeLock() and | |
101 ** into this routine, we avoid unnecessary stack pointer changes | |
102 ** and thus help the sqlite3BtreeLock() routine to run much faster | |
103 ** in the common case. | |
104 */ | |
105 static void SQLITE_NOINLINE btreeLockCarefully(Btree *p){ | |
106 Btree *pLater; | |
107 | |
108 /* In most cases, we should be able to acquire the lock we | |
109 ** want without having to go through the ascending lock | |
110 ** procedure that follows. Just be sure not to block. | |
111 */ | |
112 if( sqlite3_mutex_try(p->pBt->mutex)==SQLITE_OK ){ | |
113 p->pBt->db = p->db; | |
114 p->locked = 1; | |
115 return; | |
116 } | |
117 | |
118 /* To avoid deadlock, first release all locks with a larger | |
119 ** BtShared address. Then acquire our lock. Then reacquire | |
120 ** the other BtShared locks that we used to hold in ascending | |
121 ** order. | |
122 */ | |
123 for(pLater=p->pNext; pLater; pLater=pLater->pNext){ | |
124 assert( pLater->sharable ); | |
125 assert( pLater->pNext==0 || pLater->pNext->pBt>pLater->pBt ); | |
126 assert( !pLater->locked || pLater->wantToLock>0 ); | |
127 if( pLater->locked ){ | |
128 unlockBtreeMutex(pLater); | |
129 } | |
130 } | |
131 lockBtreeMutex(p); | |
132 for(pLater=p->pNext; pLater; pLater=pLater->pNext){ | |
133 if( pLater->wantToLock ){ | |
134 lockBtreeMutex(pLater); | |
135 } | |
136 } | |
137 } | |
138 | |
139 | |
140 /* | |
141 ** Exit the recursive mutex on a Btree. | |
142 */ | |
143 void sqlite3BtreeLeave(Btree *p){ | |
144 assert( sqlite3_mutex_held(p->db->mutex) ); | |
145 if( p->sharable ){ | |
146 assert( p->wantToLock>0 ); | |
147 p->wantToLock--; | |
148 if( p->wantToLock==0 ){ | |
149 unlockBtreeMutex(p); | |
150 } | |
151 } | |
152 } | |
153 | |
154 #ifndef NDEBUG | |
155 /* | |
156 ** Return true if the BtShared mutex is held on the btree, or if the | |
157 ** B-Tree is not marked as sharable. | |
158 ** | |
159 ** This routine is used only from within assert() statements. | |
160 */ | |
161 int sqlite3BtreeHoldsMutex(Btree *p){ | |
162 assert( p->sharable==0 || p->locked==0 || p->wantToLock>0 ); | |
163 assert( p->sharable==0 || p->locked==0 || p->db==p->pBt->db ); | |
164 assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->pBt->mutex) ); | |
165 assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->db->mutex) ); | |
166 | |
167 return (p->sharable==0 || p->locked); | |
168 } | |
169 #endif | |
170 | |
171 | |
172 #ifndef SQLITE_OMIT_INCRBLOB | |
173 /* | |
174 ** Enter and leave a mutex on a Btree given a cursor owned by that | |
175 ** Btree. These entry points are used by incremental I/O and can be | |
176 ** omitted if that module is not used. | |
177 */ | |
178 void sqlite3BtreeEnterCursor(BtCursor *pCur){ | |
179 sqlite3BtreeEnter(pCur->pBtree); | |
180 } | |
181 void sqlite3BtreeLeaveCursor(BtCursor *pCur){ | |
182 sqlite3BtreeLeave(pCur->pBtree); | |
183 } | |
184 #endif /* SQLITE_OMIT_INCRBLOB */ | |
185 | |
186 | |
187 /* | |
188 ** Enter the mutex on every Btree associated with a database | |
189 ** connection. This is needed (for example) prior to parsing | |
190 ** a statement since we will be comparing table and column names | |
191 ** against all schemas and we do not want those schemas being | |
192 ** reset out from under us. | |
193 ** | |
194 ** There is a corresponding leave-all procedures. | |
195 ** | |
196 ** Enter the mutexes in accending order by BtShared pointer address | |
197 ** to avoid the possibility of deadlock when two threads with | |
198 ** two or more btrees in common both try to lock all their btrees | |
199 ** at the same instant. | |
200 */ | |
201 void sqlite3BtreeEnterAll(sqlite3 *db){ | |
202 int i; | |
203 Btree *p; | |
204 assert( sqlite3_mutex_held(db->mutex) ); | |
205 for(i=0; i<db->nDb; i++){ | |
206 p = db->aDb[i].pBt; | |
207 if( p ) sqlite3BtreeEnter(p); | |
208 } | |
209 } | |
210 void sqlite3BtreeLeaveAll(sqlite3 *db){ | |
211 int i; | |
212 Btree *p; | |
213 assert( sqlite3_mutex_held(db->mutex) ); | |
214 for(i=0; i<db->nDb; i++){ | |
215 p = db->aDb[i].pBt; | |
216 if( p ) sqlite3BtreeLeave(p); | |
217 } | |
218 } | |
219 | |
220 /* | |
221 ** Return true if a particular Btree requires a lock. Return FALSE if | |
222 ** no lock is ever required since it is not sharable. | |
223 */ | |
224 int sqlite3BtreeSharable(Btree *p){ | |
225 return p->sharable; | |
226 } | |
227 | |
228 #ifndef NDEBUG | |
229 /* | |
230 ** Return true if the current thread holds the database connection | |
231 ** mutex and all required BtShared mutexes. | |
232 ** | |
233 ** This routine is used inside assert() statements only. | |
234 */ | |
235 int sqlite3BtreeHoldsAllMutexes(sqlite3 *db){ | |
236 int i; | |
237 if( !sqlite3_mutex_held(db->mutex) ){ | |
238 return 0; | |
239 } | |
240 for(i=0; i<db->nDb; i++){ | |
241 Btree *p; | |
242 p = db->aDb[i].pBt; | |
243 if( p && p->sharable && | |
244 (p->wantToLock==0 || !sqlite3_mutex_held(p->pBt->mutex)) ){ | |
245 return 0; | |
246 } | |
247 } | |
248 return 1; | |
249 } | |
250 #endif /* NDEBUG */ | |
251 | |
252 #ifndef NDEBUG | |
253 /* | |
254 ** Return true if the correct mutexes are held for accessing the | |
255 ** db->aDb[iDb].pSchema structure. The mutexes required for schema | |
256 ** access are: | |
257 ** | |
258 ** (1) The mutex on db | |
259 ** (2) if iDb!=1, then the mutex on db->aDb[iDb].pBt. | |
260 ** | |
261 ** If pSchema is not NULL, then iDb is computed from pSchema and | |
262 ** db using sqlite3SchemaToIndex(). | |
263 */ | |
264 int sqlite3SchemaMutexHeld(sqlite3 *db, int iDb, Schema *pSchema){ | |
265 Btree *p; | |
266 assert( db!=0 ); | |
267 if( pSchema ) iDb = sqlite3SchemaToIndex(db, pSchema); | |
268 assert( iDb>=0 && iDb<db->nDb ); | |
269 if( !sqlite3_mutex_held(db->mutex) ) return 0; | |
270 if( iDb==1 ) return 1; | |
271 p = db->aDb[iDb].pBt; | |
272 assert( p!=0 ); | |
273 return p->sharable==0 || p->locked==1; | |
274 } | |
275 #endif /* NDEBUG */ | |
276 | |
277 #else /* SQLITE_THREADSAFE>0 above. SQLITE_THREADSAFE==0 below */ | |
278 /* | |
279 ** The following are special cases for mutex enter routines for use | |
280 ** in single threaded applications that use shared cache. Except for | |
281 ** these two routines, all mutex operations are no-ops in that case and | |
282 ** are null #defines in btree.h. | |
283 ** | |
284 ** If shared cache is disabled, then all btree mutex routines, including | |
285 ** the ones below, are no-ops and are null #defines in btree.h. | |
286 */ | |
287 | |
288 void sqlite3BtreeEnter(Btree *p){ | |
289 p->pBt->db = p->db; | |
290 } | |
291 void sqlite3BtreeEnterAll(sqlite3 *db){ | |
292 int i; | |
293 for(i=0; i<db->nDb; i++){ | |
294 Btree *p = db->aDb[i].pBt; | |
295 if( p ){ | |
296 p->pBt->db = p->db; | |
297 } | |
298 } | |
299 } | |
300 #endif /* if SQLITE_THREADSAFE */ | |
301 #endif /* ifndef SQLITE_OMIT_SHARED_CACHE */ | |
OLD | NEW |