OLD | NEW |
| (Empty) |
1 /* | |
2 ** 2008 February 16 | |
3 ** | |
4 ** The author disclaims copyright to this source code. In place of | |
5 ** a legal notice, here is a blessing: | |
6 ** | |
7 ** May you do good and not evil. | |
8 ** May you find forgiveness for yourself and forgive others. | |
9 ** May you share freely, never taking more than you give. | |
10 ** | |
11 ************************************************************************* | |
12 ** This file implements an object that represents a fixed-length | |
13 ** bitmap. Bits are numbered starting with 1. | |
14 ** | |
15 ** A bitmap is used to record which pages of a database file have been | |
16 ** journalled during a transaction, or which pages have the "dont-write" | |
17 ** property. Usually only a few pages are meet either condition. | |
18 ** So the bitmap is usually sparse and has low cardinality. | |
19 ** But sometimes (for example when during a DROP of a large table) most | |
20 ** or all of the pages in a database can get journalled. In those cases, | |
21 ** the bitmap becomes dense with high cardinality. The algorithm needs | |
22 ** to handle both cases well. | |
23 ** | |
24 ** The size of the bitmap is fixed when the object is created. | |
25 ** | |
26 ** All bits are clear when the bitmap is created. Individual bits | |
27 ** may be set or cleared one at a time. | |
28 ** | |
29 ** Test operations are about 100 times more common that set operations. | |
30 ** Clear operations are exceedingly rare. There are usually between | |
31 ** 5 and 500 set operations per Bitvec object, though the number of sets can | |
32 ** sometimes grow into tens of thousands or larger. The size of the | |
33 ** Bitvec object is the number of pages in the database file at the | |
34 ** start of a transaction, and is thus usually less than a few thousand, | |
35 ** but can be as large as 2 billion for a really big database. | |
36 */ | |
37 #include "sqliteInt.h" | |
38 | |
39 /* Size of the Bitvec structure in bytes. */ | |
40 #define BITVEC_SZ 512 | |
41 | |
42 /* Round the union size down to the nearest pointer boundary, since that's how | |
43 ** it will be aligned within the Bitvec struct. */ | |
44 #define BITVEC_USIZE \ | |
45 (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*)) | |
46 | |
47 /* Type of the array "element" for the bitmap representation. | |
48 ** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE. | |
49 ** Setting this to the "natural word" size of your CPU may improve | |
50 ** performance. */ | |
51 #define BITVEC_TELEM u8 | |
52 /* Size, in bits, of the bitmap element. */ | |
53 #define BITVEC_SZELEM 8 | |
54 /* Number of elements in a bitmap array. */ | |
55 #define BITVEC_NELEM (BITVEC_USIZE/sizeof(BITVEC_TELEM)) | |
56 /* Number of bits in the bitmap array. */ | |
57 #define BITVEC_NBIT (BITVEC_NELEM*BITVEC_SZELEM) | |
58 | |
59 /* Number of u32 values in hash table. */ | |
60 #define BITVEC_NINT (BITVEC_USIZE/sizeof(u32)) | |
61 /* Maximum number of entries in hash table before | |
62 ** sub-dividing and re-hashing. */ | |
63 #define BITVEC_MXHASH (BITVEC_NINT/2) | |
64 /* Hashing function for the aHash representation. | |
65 ** Empirical testing showed that the *37 multiplier | |
66 ** (an arbitrary prime)in the hash function provided | |
67 ** no fewer collisions than the no-op *1. */ | |
68 #define BITVEC_HASH(X) (((X)*1)%BITVEC_NINT) | |
69 | |
70 #define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *)) | |
71 | |
72 | |
73 /* | |
74 ** A bitmap is an instance of the following structure. | |
75 ** | |
76 ** This bitmap records the existence of zero or more bits | |
77 ** with values between 1 and iSize, inclusive. | |
78 ** | |
79 ** There are three possible representations of the bitmap. | |
80 ** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight | |
81 ** bitmap. The least significant bit is bit 1. | |
82 ** | |
83 ** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is | |
84 ** a hash table that will hold up to BITVEC_MXHASH distinct values. | |
85 ** | |
86 ** Otherwise, the value i is redirected into one of BITVEC_NPTR | |
87 ** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap | |
88 ** handles up to iDivisor separate values of i. apSub[0] holds | |
89 ** values between 1 and iDivisor. apSub[1] holds values between | |
90 ** iDivisor+1 and 2*iDivisor. apSub[N] holds values between | |
91 ** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized | |
92 ** to hold deal with values between 1 and iDivisor. | |
93 */ | |
94 struct Bitvec { | |
95 u32 iSize; /* Maximum bit index. Max iSize is 4,294,967,296. */ | |
96 u32 nSet; /* Number of bits that are set - only valid for aHash | |
97 ** element. Max is BITVEC_NINT. For BITVEC_SZ of 512, | |
98 ** this would be 125. */ | |
99 u32 iDivisor; /* Number of bits handled by each apSub[] entry. */ | |
100 /* Should >=0 for apSub element. */ | |
101 /* Max iDivisor is max(u32) / BITVEC_NPTR + 1. */ | |
102 /* For a BITVEC_SZ of 512, this would be 34,359,739. */ | |
103 union { | |
104 BITVEC_TELEM aBitmap[BITVEC_NELEM]; /* Bitmap representation */ | |
105 u32 aHash[BITVEC_NINT]; /* Hash table representation */ | |
106 Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */ | |
107 } u; | |
108 }; | |
109 | |
110 /* | |
111 ** Create a new bitmap object able to handle bits between 0 and iSize, | |
112 ** inclusive. Return a pointer to the new object. Return NULL if | |
113 ** malloc fails. | |
114 */ | |
115 Bitvec *sqlite3BitvecCreate(u32 iSize){ | |
116 Bitvec *p; | |
117 assert( sizeof(*p)==BITVEC_SZ ); | |
118 p = sqlite3MallocZero( sizeof(*p) ); | |
119 if( p ){ | |
120 p->iSize = iSize; | |
121 } | |
122 return p; | |
123 } | |
124 | |
125 /* | |
126 ** Check to see if the i-th bit is set. Return true or false. | |
127 ** If p is NULL (if the bitmap has not been created) or if | |
128 ** i is out of range, then return false. | |
129 */ | |
130 int sqlite3BitvecTestNotNull(Bitvec *p, u32 i){ | |
131 assert( p!=0 ); | |
132 i--; | |
133 if( i>=p->iSize ) return 0; | |
134 while( p->iDivisor ){ | |
135 u32 bin = i/p->iDivisor; | |
136 i = i%p->iDivisor; | |
137 p = p->u.apSub[bin]; | |
138 if (!p) { | |
139 return 0; | |
140 } | |
141 } | |
142 if( p->iSize<=BITVEC_NBIT ){ | |
143 return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0; | |
144 } else{ | |
145 u32 h = BITVEC_HASH(i++); | |
146 while( p->u.aHash[h] ){ | |
147 if( p->u.aHash[h]==i ) return 1; | |
148 h = (h+1) % BITVEC_NINT; | |
149 } | |
150 return 0; | |
151 } | |
152 } | |
153 int sqlite3BitvecTest(Bitvec *p, u32 i){ | |
154 return p!=0 && sqlite3BitvecTestNotNull(p,i); | |
155 } | |
156 | |
157 /* | |
158 ** Set the i-th bit. Return 0 on success and an error code if | |
159 ** anything goes wrong. | |
160 ** | |
161 ** This routine might cause sub-bitmaps to be allocated. Failing | |
162 ** to get the memory needed to hold the sub-bitmap is the only | |
163 ** that can go wrong with an insert, assuming p and i are valid. | |
164 ** | |
165 ** The calling function must ensure that p is a valid Bitvec object | |
166 ** and that the value for "i" is within range of the Bitvec object. | |
167 ** Otherwise the behavior is undefined. | |
168 */ | |
169 int sqlite3BitvecSet(Bitvec *p, u32 i){ | |
170 u32 h; | |
171 if( p==0 ) return SQLITE_OK; | |
172 assert( i>0 ); | |
173 assert( i<=p->iSize ); | |
174 i--; | |
175 while((p->iSize > BITVEC_NBIT) && p->iDivisor) { | |
176 u32 bin = i/p->iDivisor; | |
177 i = i%p->iDivisor; | |
178 if( p->u.apSub[bin]==0 ){ | |
179 p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor ); | |
180 if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM; | |
181 } | |
182 p = p->u.apSub[bin]; | |
183 } | |
184 if( p->iSize<=BITVEC_NBIT ){ | |
185 p->u.aBitmap[i/BITVEC_SZELEM] |= 1 << (i&(BITVEC_SZELEM-1)); | |
186 return SQLITE_OK; | |
187 } | |
188 h = BITVEC_HASH(i++); | |
189 /* if there wasn't a hash collision, and this doesn't */ | |
190 /* completely fill the hash, then just add it without */ | |
191 /* worring about sub-dividing and re-hashing. */ | |
192 if( !p->u.aHash[h] ){ | |
193 if (p->nSet<(BITVEC_NINT-1)) { | |
194 goto bitvec_set_end; | |
195 } else { | |
196 goto bitvec_set_rehash; | |
197 } | |
198 } | |
199 /* there was a collision, check to see if it's already */ | |
200 /* in hash, if not, try to find a spot for it */ | |
201 do { | |
202 if( p->u.aHash[h]==i ) return SQLITE_OK; | |
203 h++; | |
204 if( h>=BITVEC_NINT ) h = 0; | |
205 } while( p->u.aHash[h] ); | |
206 /* we didn't find it in the hash. h points to the first */ | |
207 /* available free spot. check to see if this is going to */ | |
208 /* make our hash too "full". */ | |
209 bitvec_set_rehash: | |
210 if( p->nSet>=BITVEC_MXHASH ){ | |
211 unsigned int j; | |
212 int rc; | |
213 u32 *aiValues = sqlite3StackAllocRaw(0, sizeof(p->u.aHash)); | |
214 if( aiValues==0 ){ | |
215 return SQLITE_NOMEM; | |
216 }else{ | |
217 memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash)); | |
218 memset(p->u.apSub, 0, sizeof(p->u.apSub)); | |
219 p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR; | |
220 rc = sqlite3BitvecSet(p, i); | |
221 for(j=0; j<BITVEC_NINT; j++){ | |
222 if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]); | |
223 } | |
224 sqlite3StackFree(0, aiValues); | |
225 return rc; | |
226 } | |
227 } | |
228 bitvec_set_end: | |
229 p->nSet++; | |
230 p->u.aHash[h] = i; | |
231 return SQLITE_OK; | |
232 } | |
233 | |
234 /* | |
235 ** Clear the i-th bit. | |
236 ** | |
237 ** pBuf must be a pointer to at least BITVEC_SZ bytes of temporary storage | |
238 ** that BitvecClear can use to rebuilt its hash table. | |
239 */ | |
240 void sqlite3BitvecClear(Bitvec *p, u32 i, void *pBuf){ | |
241 if( p==0 ) return; | |
242 assert( i>0 ); | |
243 i--; | |
244 while( p->iDivisor ){ | |
245 u32 bin = i/p->iDivisor; | |
246 i = i%p->iDivisor; | |
247 p = p->u.apSub[bin]; | |
248 if (!p) { | |
249 return; | |
250 } | |
251 } | |
252 if( p->iSize<=BITVEC_NBIT ){ | |
253 p->u.aBitmap[i/BITVEC_SZELEM] &= ~(1 << (i&(BITVEC_SZELEM-1))); | |
254 }else{ | |
255 unsigned int j; | |
256 u32 *aiValues = pBuf; | |
257 memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash)); | |
258 memset(p->u.aHash, 0, sizeof(p->u.aHash)); | |
259 p->nSet = 0; | |
260 for(j=0; j<BITVEC_NINT; j++){ | |
261 if( aiValues[j] && aiValues[j]!=(i+1) ){ | |
262 u32 h = BITVEC_HASH(aiValues[j]-1); | |
263 p->nSet++; | |
264 while( p->u.aHash[h] ){ | |
265 h++; | |
266 if( h>=BITVEC_NINT ) h = 0; | |
267 } | |
268 p->u.aHash[h] = aiValues[j]; | |
269 } | |
270 } | |
271 } | |
272 } | |
273 | |
274 /* | |
275 ** Destroy a bitmap object. Reclaim all memory used. | |
276 */ | |
277 void sqlite3BitvecDestroy(Bitvec *p){ | |
278 if( p==0 ) return; | |
279 if( p->iDivisor ){ | |
280 unsigned int i; | |
281 for(i=0; i<BITVEC_NPTR; i++){ | |
282 sqlite3BitvecDestroy(p->u.apSub[i]); | |
283 } | |
284 } | |
285 sqlite3_free(p); | |
286 } | |
287 | |
288 /* | |
289 ** Return the value of the iSize parameter specified when Bitvec *p | |
290 ** was created. | |
291 */ | |
292 u32 sqlite3BitvecSize(Bitvec *p){ | |
293 return p->iSize; | |
294 } | |
295 | |
296 #ifndef SQLITE_OMIT_BUILTIN_TEST | |
297 /* | |
298 ** Let V[] be an array of unsigned characters sufficient to hold | |
299 ** up to N bits. Let I be an integer between 0 and N. 0<=I<N. | |
300 ** Then the following macros can be used to set, clear, or test | |
301 ** individual bits within V. | |
302 */ | |
303 #define SETBIT(V,I) V[I>>3] |= (1<<(I&7)) | |
304 #define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7)) | |
305 #define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0 | |
306 | |
307 /* | |
308 ** This routine runs an extensive test of the Bitvec code. | |
309 ** | |
310 ** The input is an array of integers that acts as a program | |
311 ** to test the Bitvec. The integers are opcodes followed | |
312 ** by 0, 1, or 3 operands, depending on the opcode. Another | |
313 ** opcode follows immediately after the last operand. | |
314 ** | |
315 ** There are 6 opcodes numbered from 0 through 5. 0 is the | |
316 ** "halt" opcode and causes the test to end. | |
317 ** | |
318 ** 0 Halt and return the number of errors | |
319 ** 1 N S X Set N bits beginning with S and incrementing by X | |
320 ** 2 N S X Clear N bits beginning with S and incrementing by X | |
321 ** 3 N Set N randomly chosen bits | |
322 ** 4 N Clear N randomly chosen bits | |
323 ** 5 N S X Set N bits from S increment X in array only, not in bitvec | |
324 ** | |
325 ** The opcodes 1 through 4 perform set and clear operations are performed | |
326 ** on both a Bitvec object and on a linear array of bits obtained from malloc. | |
327 ** Opcode 5 works on the linear array only, not on the Bitvec. | |
328 ** Opcode 5 is used to deliberately induce a fault in order to | |
329 ** confirm that error detection works. | |
330 ** | |
331 ** At the conclusion of the test the linear array is compared | |
332 ** against the Bitvec object. If there are any differences, | |
333 ** an error is returned. If they are the same, zero is returned. | |
334 ** | |
335 ** If a memory allocation error occurs, return -1. | |
336 */ | |
337 int sqlite3BitvecBuiltinTest(int sz, int *aOp){ | |
338 Bitvec *pBitvec = 0; | |
339 unsigned char *pV = 0; | |
340 int rc = -1; | |
341 int i, nx, pc, op; | |
342 void *pTmpSpace; | |
343 | |
344 /* Allocate the Bitvec to be tested and a linear array of | |
345 ** bits to act as the reference */ | |
346 pBitvec = sqlite3BitvecCreate( sz ); | |
347 pV = sqlite3MallocZero( (sz+7)/8 + 1 ); | |
348 pTmpSpace = sqlite3_malloc64(BITVEC_SZ); | |
349 if( pBitvec==0 || pV==0 || pTmpSpace==0 ) goto bitvec_end; | |
350 | |
351 /* NULL pBitvec tests */ | |
352 sqlite3BitvecSet(0, 1); | |
353 sqlite3BitvecClear(0, 1, pTmpSpace); | |
354 | |
355 /* Run the program */ | |
356 pc = 0; | |
357 while( (op = aOp[pc])!=0 ){ | |
358 switch( op ){ | |
359 case 1: | |
360 case 2: | |
361 case 5: { | |
362 nx = 4; | |
363 i = aOp[pc+2] - 1; | |
364 aOp[pc+2] += aOp[pc+3]; | |
365 break; | |
366 } | |
367 case 3: | |
368 case 4: | |
369 default: { | |
370 nx = 2; | |
371 sqlite3_randomness(sizeof(i), &i); | |
372 break; | |
373 } | |
374 } | |
375 if( (--aOp[pc+1]) > 0 ) nx = 0; | |
376 pc += nx; | |
377 i = (i & 0x7fffffff)%sz; | |
378 if( (op & 1)!=0 ){ | |
379 SETBIT(pV, (i+1)); | |
380 if( op!=5 ){ | |
381 if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end; | |
382 } | |
383 }else{ | |
384 CLEARBIT(pV, (i+1)); | |
385 sqlite3BitvecClear(pBitvec, i+1, pTmpSpace); | |
386 } | |
387 } | |
388 | |
389 /* Test to make sure the linear array exactly matches the | |
390 ** Bitvec object. Start with the assumption that they do | |
391 ** match (rc==0). Change rc to non-zero if a discrepancy | |
392 ** is found. | |
393 */ | |
394 rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1) | |
395 + sqlite3BitvecTest(pBitvec, 0) | |
396 + (sqlite3BitvecSize(pBitvec) - sz); | |
397 for(i=1; i<=sz; i++){ | |
398 if( (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){ | |
399 rc = i; | |
400 break; | |
401 } | |
402 } | |
403 | |
404 /* Free allocated structure */ | |
405 bitvec_end: | |
406 sqlite3_free(pTmpSpace); | |
407 sqlite3_free(pV); | |
408 sqlite3BitvecDestroy(pBitvec); | |
409 return rc; | |
410 } | |
411 #endif /* SQLITE_OMIT_BUILTIN_TEST */ | |
OLD | NEW |