OLD | NEW |
| (Empty) |
1 /* | |
2 ** 2011 March 24 | |
3 ** | |
4 ** The author disclaims copyright to this source code. In place of | |
5 ** a legal notice, here is a blessing: | |
6 ** | |
7 ** May you do good and not evil. | |
8 ** May you find forgiveness for yourself and forgive others. | |
9 ** May you share freely, never taking more than you give. | |
10 ** | |
11 ************************************************************************* | |
12 ** | |
13 ** Code for a demonstration virtual table that generates variations | |
14 ** on an input word at increasing edit distances from the original. | |
15 ** | |
16 ** A fuzzer virtual table is created like this: | |
17 ** | |
18 ** CREATE VIRTUAL TABLE f USING fuzzer(<fuzzer-data-table>); | |
19 ** | |
20 ** When it is created, the new fuzzer table must be supplied with the | |
21 ** name of a "fuzzer data table", which must reside in the same database | |
22 ** file as the new fuzzer table. The fuzzer data table contains the various | |
23 ** transformations and their costs that the fuzzer logic uses to generate | |
24 ** variations. | |
25 ** | |
26 ** The fuzzer data table must contain exactly four columns (more precisely, | |
27 ** the statement "SELECT * FROM <fuzzer_data_table>" must return records | |
28 ** that consist of four columns). It does not matter what the columns are | |
29 ** named. | |
30 ** | |
31 ** Each row in the fuzzer data table represents a single character | |
32 ** transformation. The left most column of the row (column 0) contains an | |
33 ** integer value - the identifier of the ruleset to which the transformation | |
34 ** rule belongs (see "MULTIPLE RULE SETS" below). The second column of the | |
35 ** row (column 0) contains the input character or characters. The third | |
36 ** column contains the output character or characters. And the fourth column | |
37 ** contains the integer cost of making the transformation. For example: | |
38 ** | |
39 ** CREATE TABLE f_data(ruleset, cFrom, cTo, Cost); | |
40 ** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, '', 'a', 100); | |
41 ** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'b', '', 87); | |
42 ** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'o', 'oe', 38); | |
43 ** INSERT INTO f_data(ruleset, cFrom, cTo, Cost) VALUES(0, 'oe', 'o', 40); | |
44 ** | |
45 ** The first row inserted into the fuzzer data table by the SQL script | |
46 ** above indicates that the cost of inserting a letter 'a' is 100. (All | |
47 ** costs are integers. We recommend that costs be scaled so that the | |
48 ** average cost is around 100.) The second INSERT statement creates a rule | |
49 ** saying that the cost of deleting a single letter 'b' is 87. The third | |
50 ** and fourth INSERT statements mean that the cost of transforming a | |
51 ** single letter "o" into the two-letter sequence "oe" is 38 and that the | |
52 ** cost of transforming "oe" back into "o" is 40. | |
53 ** | |
54 ** The contents of the fuzzer data table are loaded into main memory when | |
55 ** a fuzzer table is first created, and may be internally reloaded by the | |
56 ** system at any subsequent time. Therefore, the fuzzer data table should be | |
57 ** populated before the fuzzer table is created and not modified thereafter. | |
58 ** If you do need to modify the contents of the fuzzer data table, it is | |
59 ** recommended that the associated fuzzer table be dropped, the fuzzer data | |
60 ** table edited, and the fuzzer table recreated within a single transaction. | |
61 ** Alternatively, the fuzzer data table can be edited then the database | |
62 ** connection can be closed and reopened. | |
63 ** | |
64 ** Once it has been created, the fuzzer table can be queried as follows: | |
65 ** | |
66 ** SELECT word, distance FROM f | |
67 ** WHERE word MATCH 'abcdefg' | |
68 ** AND distance<200; | |
69 ** | |
70 ** This first query outputs the string "abcdefg" and all strings that | |
71 ** can be derived from that string by appling the specified transformations. | |
72 ** The strings are output together with their total transformation cost | |
73 ** (called "distance") and appear in order of increasing cost. No string | |
74 ** is output more than once. If there are multiple ways to transform the | |
75 ** target string into the output string then the lowest cost transform is | |
76 ** the one that is returned. In the example, the search is limited to | |
77 ** strings with a total distance of less than 200. | |
78 ** | |
79 ** The fuzzer is a read-only table. Any attempt to DELETE, INSERT, or | |
80 ** UPDATE on a fuzzer table will throw an error. | |
81 ** | |
82 ** It is important to put some kind of a limit on the fuzzer output. This | |
83 ** can be either in the form of a LIMIT clause at the end of the query, | |
84 ** or better, a "distance<NNN" constraint where NNN is some number. The | |
85 ** running time and memory requirement is exponential in the value of NNN | |
86 ** so you want to make sure that NNN is not too big. A value of NNN that | |
87 ** is about twice the average transformation cost seems to give good results. | |
88 ** | |
89 ** The fuzzer table can be useful for tasks such as spelling correction. | |
90 ** Suppose there is a second table vocabulary(w) where the w column contains | |
91 ** all correctly spelled words. Let $word be a word you want to look up. | |
92 ** | |
93 ** SELECT vocabulary.w FROM f, vocabulary | |
94 ** WHERE f.word MATCH $word | |
95 ** AND f.distance<=200 | |
96 ** AND f.word=vocabulary.w | |
97 ** LIMIT 20 | |
98 ** | |
99 ** The query above gives the 20 closest words to the $word being tested. | |
100 ** (Note that for good performance, the vocubulary.w column should be | |
101 ** indexed.) | |
102 ** | |
103 ** A similar query can be used to find all words in the dictionary that | |
104 ** begin with some prefix $prefix: | |
105 ** | |
106 ** SELECT vocabulary.w FROM f, vocabulary | |
107 ** WHERE f.word MATCH $prefix | |
108 ** AND f.distance<=200 | |
109 ** AND vocabulary.w BETWEEN f.word AND (f.word || x'F7BFBFBF') | |
110 ** LIMIT 50 | |
111 ** | |
112 ** This last query will show up to 50 words out of the vocabulary that | |
113 ** match or nearly match the $prefix. | |
114 ** | |
115 ** MULTIPLE RULE SETS | |
116 ** | |
117 ** Normally, the "ruleset" value associated with all character transformations | |
118 ** in the fuzzer data table is zero. However, if required, the fuzzer table | |
119 ** allows multiple rulesets to be defined. Each query uses only a single | |
120 ** ruleset. This allows, for example, a single fuzzer table to support | |
121 ** multiple languages. | |
122 ** | |
123 ** By default, only the rules from ruleset 0 are used. To specify an | |
124 ** alternative ruleset, a "ruleset = ?" expression must be added to the | |
125 ** WHERE clause of a SELECT, where ? is the identifier of the desired | |
126 ** ruleset. For example: | |
127 ** | |
128 ** SELECT vocabulary.w FROM f, vocabulary | |
129 ** WHERE f.word MATCH $word | |
130 ** AND f.distance<=200 | |
131 ** AND f.word=vocabulary.w | |
132 ** AND f.ruleset=1 -- Specify the ruleset to use here | |
133 ** LIMIT 20 | |
134 ** | |
135 ** If no "ruleset = ?" constraint is specified in the WHERE clause, ruleset | |
136 ** 0 is used. | |
137 ** | |
138 ** LIMITS | |
139 ** | |
140 ** The maximum ruleset number is 2147483647. The maximum length of either | |
141 ** of the strings in the second or third column of the fuzzer data table | |
142 ** is 50 bytes. The maximum cost on a rule is 1000. | |
143 */ | |
144 #include "sqlite3ext.h" | |
145 SQLITE_EXTENSION_INIT1 | |
146 | |
147 /* If SQLITE_DEBUG is not defined, disable assert statements. */ | |
148 #if !defined(NDEBUG) && !defined(SQLITE_DEBUG) | |
149 # define NDEBUG | |
150 #endif | |
151 | |
152 #include <stdlib.h> | |
153 #include <string.h> | |
154 #include <assert.h> | |
155 #include <stdio.h> | |
156 | |
157 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
158 | |
159 /* | |
160 ** Forward declaration of objects used by this implementation | |
161 */ | |
162 typedef struct fuzzer_vtab fuzzer_vtab; | |
163 typedef struct fuzzer_cursor fuzzer_cursor; | |
164 typedef struct fuzzer_rule fuzzer_rule; | |
165 typedef struct fuzzer_seen fuzzer_seen; | |
166 typedef struct fuzzer_stem fuzzer_stem; | |
167 | |
168 /* | |
169 ** Various types. | |
170 ** | |
171 ** fuzzer_cost is the "cost" of an edit operation. | |
172 ** | |
173 ** fuzzer_len is the length of a matching string. | |
174 ** | |
175 ** fuzzer_ruleid is an ruleset identifier. | |
176 */ | |
177 typedef int fuzzer_cost; | |
178 typedef signed char fuzzer_len; | |
179 typedef int fuzzer_ruleid; | |
180 | |
181 /* | |
182 ** Limits | |
183 */ | |
184 #define FUZZER_MX_LENGTH 50 /* Maximum length of a rule string */ | |
185 #define FUZZER_MX_RULEID 2147483647 /* Maximum rule ID */ | |
186 #define FUZZER_MX_COST 1000 /* Maximum single-rule cost */ | |
187 #define FUZZER_MX_OUTPUT_LENGTH 100 /* Maximum length of an output string */ | |
188 | |
189 | |
190 /* | |
191 ** Each transformation rule is stored as an instance of this object. | |
192 ** All rules are kept on a linked list sorted by rCost. | |
193 */ | |
194 struct fuzzer_rule { | |
195 fuzzer_rule *pNext; /* Next rule in order of increasing rCost */ | |
196 char *zFrom; /* Transform from */ | |
197 fuzzer_cost rCost; /* Cost of this transformation */ | |
198 fuzzer_len nFrom, nTo; /* Length of the zFrom and zTo strings */ | |
199 fuzzer_ruleid iRuleset; /* The rule set to which this rule belongs */ | |
200 char zTo[4]; /* Transform to (extra space appended) */ | |
201 }; | |
202 | |
203 /* | |
204 ** A stem object is used to generate variants. It is also used to record | |
205 ** previously generated outputs. | |
206 ** | |
207 ** Every stem is added to a hash table as it is output. Generation of | |
208 ** duplicate stems is suppressed. | |
209 ** | |
210 ** Active stems (those that might generate new outputs) are kepts on a linked | |
211 ** list sorted by increasing cost. The cost is the sum of rBaseCost and | |
212 ** pRule->rCost. | |
213 */ | |
214 struct fuzzer_stem { | |
215 char *zBasis; /* Word being fuzzed */ | |
216 const fuzzer_rule *pRule; /* Current rule to apply */ | |
217 fuzzer_stem *pNext; /* Next stem in rCost order */ | |
218 fuzzer_stem *pHash; /* Next stem with same hash on zBasis */ | |
219 fuzzer_cost rBaseCost; /* Base cost of getting to zBasis */ | |
220 fuzzer_cost rCostX; /* Precomputed rBaseCost + pRule->rCost */ | |
221 fuzzer_len nBasis; /* Length of the zBasis string */ | |
222 fuzzer_len n; /* Apply pRule at this character offset */ | |
223 }; | |
224 | |
225 /* | |
226 ** A fuzzer virtual-table object | |
227 */ | |
228 struct fuzzer_vtab { | |
229 sqlite3_vtab base; /* Base class - must be first */ | |
230 char *zClassName; /* Name of this class. Default: "fuzzer" */ | |
231 fuzzer_rule *pRule; /* All active rules in this fuzzer */ | |
232 int nCursor; /* Number of active cursors */ | |
233 }; | |
234 | |
235 #define FUZZER_HASH 4001 /* Hash table size */ | |
236 #define FUZZER_NQUEUE 20 /* Number of slots on the stem queue */ | |
237 | |
238 /* A fuzzer cursor object */ | |
239 struct fuzzer_cursor { | |
240 sqlite3_vtab_cursor base; /* Base class - must be first */ | |
241 sqlite3_int64 iRowid; /* The rowid of the current word */ | |
242 fuzzer_vtab *pVtab; /* The virtual table this cursor belongs to */ | |
243 fuzzer_cost rLimit; /* Maximum cost of any term */ | |
244 fuzzer_stem *pStem; /* Stem with smallest rCostX */ | |
245 fuzzer_stem *pDone; /* Stems already processed to completion */ | |
246 fuzzer_stem *aQueue[FUZZER_NQUEUE]; /* Queue of stems with higher rCostX */ | |
247 int mxQueue; /* Largest used index in aQueue[] */ | |
248 char *zBuf; /* Temporary use buffer */ | |
249 int nBuf; /* Bytes allocated for zBuf */ | |
250 int nStem; /* Number of stems allocated */ | |
251 int iRuleset; /* Only process rules from this ruleset */ | |
252 fuzzer_rule nullRule; /* Null rule used first */ | |
253 fuzzer_stem *apHash[FUZZER_HASH]; /* Hash of previously generated terms */ | |
254 }; | |
255 | |
256 /* | |
257 ** The two input rule lists are both sorted in order of increasing | |
258 ** cost. Merge them together into a single list, sorted by cost, and | |
259 ** return a pointer to the head of that list. | |
260 */ | |
261 static fuzzer_rule *fuzzerMergeRules(fuzzer_rule *pA, fuzzer_rule *pB){ | |
262 fuzzer_rule head; | |
263 fuzzer_rule *pTail; | |
264 | |
265 pTail = &head; | |
266 while( pA && pB ){ | |
267 if( pA->rCost<=pB->rCost ){ | |
268 pTail->pNext = pA; | |
269 pTail = pA; | |
270 pA = pA->pNext; | |
271 }else{ | |
272 pTail->pNext = pB; | |
273 pTail = pB; | |
274 pB = pB->pNext; | |
275 } | |
276 } | |
277 if( pA==0 ){ | |
278 pTail->pNext = pB; | |
279 }else{ | |
280 pTail->pNext = pA; | |
281 } | |
282 return head.pNext; | |
283 } | |
284 | |
285 /* | |
286 ** Statement pStmt currently points to a row in the fuzzer data table. This | |
287 ** function allocates and populates a fuzzer_rule structure according to | |
288 ** the content of the row. | |
289 ** | |
290 ** If successful, *ppRule is set to point to the new object and SQLITE_OK | |
291 ** is returned. Otherwise, *ppRule is zeroed, *pzErr may be set to point | |
292 ** to an error message and an SQLite error code returned. | |
293 */ | |
294 static int fuzzerLoadOneRule( | |
295 fuzzer_vtab *p, /* Fuzzer virtual table handle */ | |
296 sqlite3_stmt *pStmt, /* Base rule on statements current row */ | |
297 fuzzer_rule **ppRule, /* OUT: New rule object */ | |
298 char **pzErr /* OUT: Error message */ | |
299 ){ | |
300 sqlite3_int64 iRuleset = sqlite3_column_int64(pStmt, 0); | |
301 const char *zFrom = (const char *)sqlite3_column_text(pStmt, 1); | |
302 const char *zTo = (const char *)sqlite3_column_text(pStmt, 2); | |
303 int nCost = sqlite3_column_int(pStmt, 3); | |
304 | |
305 int rc = SQLITE_OK; /* Return code */ | |
306 int nFrom; /* Size of string zFrom, in bytes */ | |
307 int nTo; /* Size of string zTo, in bytes */ | |
308 fuzzer_rule *pRule = 0; /* New rule object to return */ | |
309 | |
310 if( zFrom==0 ) zFrom = ""; | |
311 if( zTo==0 ) zTo = ""; | |
312 nFrom = (int)strlen(zFrom); | |
313 nTo = (int)strlen(zTo); | |
314 | |
315 /* Silently ignore null transformations */ | |
316 if( strcmp(zFrom, zTo)==0 ){ | |
317 *ppRule = 0; | |
318 return SQLITE_OK; | |
319 } | |
320 | |
321 if( nCost<=0 || nCost>FUZZER_MX_COST ){ | |
322 *pzErr = sqlite3_mprintf("%s: cost must be between 1 and %d", | |
323 p->zClassName, FUZZER_MX_COST | |
324 ); | |
325 rc = SQLITE_ERROR; | |
326 }else | |
327 if( nFrom>FUZZER_MX_LENGTH || nTo>FUZZER_MX_LENGTH ){ | |
328 *pzErr = sqlite3_mprintf("%s: maximum string length is %d", | |
329 p->zClassName, FUZZER_MX_LENGTH | |
330 ); | |
331 rc = SQLITE_ERROR; | |
332 }else | |
333 if( iRuleset<0 || iRuleset>FUZZER_MX_RULEID ){ | |
334 *pzErr = sqlite3_mprintf("%s: ruleset must be between 0 and %d", | |
335 p->zClassName, FUZZER_MX_RULEID | |
336 ); | |
337 rc = SQLITE_ERROR; | |
338 }else{ | |
339 | |
340 pRule = sqlite3_malloc( sizeof(*pRule) + nFrom + nTo ); | |
341 if( pRule==0 ){ | |
342 rc = SQLITE_NOMEM; | |
343 }else{ | |
344 memset(pRule, 0, sizeof(*pRule)); | |
345 pRule->zFrom = pRule->zTo; | |
346 pRule->zFrom += nTo + 1; | |
347 pRule->nFrom = nFrom; | |
348 memcpy(pRule->zFrom, zFrom, nFrom+1); | |
349 memcpy(pRule->zTo, zTo, nTo+1); | |
350 pRule->nTo = nTo; | |
351 pRule->rCost = nCost; | |
352 pRule->iRuleset = (int)iRuleset; | |
353 } | |
354 } | |
355 | |
356 *ppRule = pRule; | |
357 return rc; | |
358 } | |
359 | |
360 /* | |
361 ** Load the content of the fuzzer data table into memory. | |
362 */ | |
363 static int fuzzerLoadRules( | |
364 sqlite3 *db, /* Database handle */ | |
365 fuzzer_vtab *p, /* Virtual fuzzer table to configure */ | |
366 const char *zDb, /* Database containing rules data */ | |
367 const char *zData, /* Table containing rules data */ | |
368 char **pzErr /* OUT: Error message */ | |
369 ){ | |
370 int rc = SQLITE_OK; /* Return code */ | |
371 char *zSql; /* SELECT used to read from rules table */ | |
372 fuzzer_rule *pHead = 0; | |
373 | |
374 zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", zDb, zData); | |
375 if( zSql==0 ){ | |
376 rc = SQLITE_NOMEM; | |
377 }else{ | |
378 int rc2; /* finalize() return code */ | |
379 sqlite3_stmt *pStmt = 0; | |
380 rc = sqlite3_prepare_v2(db, zSql, -1, &pStmt, 0); | |
381 if( rc!=SQLITE_OK ){ | |
382 *pzErr = sqlite3_mprintf("%s: %s", p->zClassName, sqlite3_errmsg(db)); | |
383 }else if( sqlite3_column_count(pStmt)!=4 ){ | |
384 *pzErr = sqlite3_mprintf("%s: %s has %d columns, expected 4", | |
385 p->zClassName, zData, sqlite3_column_count(pStmt) | |
386 ); | |
387 rc = SQLITE_ERROR; | |
388 }else{ | |
389 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ | |
390 fuzzer_rule *pRule = 0; | |
391 rc = fuzzerLoadOneRule(p, pStmt, &pRule, pzErr); | |
392 if( pRule ){ | |
393 pRule->pNext = pHead; | |
394 pHead = pRule; | |
395 } | |
396 } | |
397 } | |
398 rc2 = sqlite3_finalize(pStmt); | |
399 if( rc==SQLITE_OK ) rc = rc2; | |
400 } | |
401 sqlite3_free(zSql); | |
402 | |
403 /* All rules are now in a singly linked list starting at pHead. This | |
404 ** block sorts them by cost and then sets fuzzer_vtab.pRule to point to | |
405 ** point to the head of the sorted list. | |
406 */ | |
407 if( rc==SQLITE_OK ){ | |
408 unsigned int i; | |
409 fuzzer_rule *pX; | |
410 fuzzer_rule *a[15]; | |
411 for(i=0; i<sizeof(a)/sizeof(a[0]); i++) a[i] = 0; | |
412 while( (pX = pHead)!=0 ){ | |
413 pHead = pX->pNext; | |
414 pX->pNext = 0; | |
415 for(i=0; a[i] && i<sizeof(a)/sizeof(a[0])-1; i++){ | |
416 pX = fuzzerMergeRules(a[i], pX); | |
417 a[i] = 0; | |
418 } | |
419 a[i] = fuzzerMergeRules(a[i], pX); | |
420 } | |
421 for(pX=a[0], i=1; i<sizeof(a)/sizeof(a[0]); i++){ | |
422 pX = fuzzerMergeRules(a[i], pX); | |
423 } | |
424 p->pRule = fuzzerMergeRules(p->pRule, pX); | |
425 }else{ | |
426 /* An error has occurred. Setting p->pRule to point to the head of the | |
427 ** allocated list ensures that the list will be cleaned up in this case. | |
428 */ | |
429 assert( p->pRule==0 ); | |
430 p->pRule = pHead; | |
431 } | |
432 | |
433 return rc; | |
434 } | |
435 | |
436 /* | |
437 ** This function converts an SQL quoted string into an unquoted string | |
438 ** and returns a pointer to a buffer allocated using sqlite3_malloc() | |
439 ** containing the result. The caller should eventually free this buffer | |
440 ** using sqlite3_free. | |
441 ** | |
442 ** Examples: | |
443 ** | |
444 ** "abc" becomes abc | |
445 ** 'xyz' becomes xyz | |
446 ** [pqr] becomes pqr | |
447 ** `mno` becomes mno | |
448 */ | |
449 static char *fuzzerDequote(const char *zIn){ | |
450 int nIn; /* Size of input string, in bytes */ | |
451 char *zOut; /* Output (dequoted) string */ | |
452 | |
453 nIn = (int)strlen(zIn); | |
454 zOut = sqlite3_malloc(nIn+1); | |
455 if( zOut ){ | |
456 char q = zIn[0]; /* Quote character (if any ) */ | |
457 | |
458 if( q!='[' && q!= '\'' && q!='"' && q!='`' ){ | |
459 memcpy(zOut, zIn, nIn+1); | |
460 }else{ | |
461 int iOut = 0; /* Index of next byte to write to output */ | |
462 int iIn; /* Index of next byte to read from input */ | |
463 | |
464 if( q=='[' ) q = ']'; | |
465 for(iIn=1; iIn<nIn; iIn++){ | |
466 if( zIn[iIn]==q ) iIn++; | |
467 zOut[iOut++] = zIn[iIn]; | |
468 } | |
469 } | |
470 assert( (int)strlen(zOut)<=nIn ); | |
471 } | |
472 return zOut; | |
473 } | |
474 | |
475 /* | |
476 ** xDisconnect/xDestroy method for the fuzzer module. | |
477 */ | |
478 static int fuzzerDisconnect(sqlite3_vtab *pVtab){ | |
479 fuzzer_vtab *p = (fuzzer_vtab*)pVtab; | |
480 assert( p->nCursor==0 ); | |
481 while( p->pRule ){ | |
482 fuzzer_rule *pRule = p->pRule; | |
483 p->pRule = pRule->pNext; | |
484 sqlite3_free(pRule); | |
485 } | |
486 sqlite3_free(p); | |
487 return SQLITE_OK; | |
488 } | |
489 | |
490 /* | |
491 ** xConnect/xCreate method for the fuzzer module. Arguments are: | |
492 ** | |
493 ** argv[0] -> module name ("fuzzer") | |
494 ** argv[1] -> database name | |
495 ** argv[2] -> table name | |
496 ** argv[3] -> fuzzer rule table name | |
497 */ | |
498 static int fuzzerConnect( | |
499 sqlite3 *db, | |
500 void *pAux, | |
501 int argc, const char *const*argv, | |
502 sqlite3_vtab **ppVtab, | |
503 char **pzErr | |
504 ){ | |
505 int rc = SQLITE_OK; /* Return code */ | |
506 fuzzer_vtab *pNew = 0; /* New virtual table */ | |
507 const char *zModule = argv[0]; | |
508 const char *zDb = argv[1]; | |
509 | |
510 if( argc!=4 ){ | |
511 *pzErr = sqlite3_mprintf( | |
512 "%s: wrong number of CREATE VIRTUAL TABLE arguments", zModule | |
513 ); | |
514 rc = SQLITE_ERROR; | |
515 }else{ | |
516 int nModule; /* Length of zModule, in bytes */ | |
517 | |
518 nModule = (int)strlen(zModule); | |
519 pNew = sqlite3_malloc( sizeof(*pNew) + nModule + 1); | |
520 if( pNew==0 ){ | |
521 rc = SQLITE_NOMEM; | |
522 }else{ | |
523 char *zTab; /* Dequoted name of fuzzer data table */ | |
524 | |
525 memset(pNew, 0, sizeof(*pNew)); | |
526 pNew->zClassName = (char*)&pNew[1]; | |
527 memcpy(pNew->zClassName, zModule, nModule+1); | |
528 | |
529 zTab = fuzzerDequote(argv[3]); | |
530 if( zTab==0 ){ | |
531 rc = SQLITE_NOMEM; | |
532 }else{ | |
533 rc = fuzzerLoadRules(db, pNew, zDb, zTab, pzErr); | |
534 sqlite3_free(zTab); | |
535 } | |
536 | |
537 if( rc==SQLITE_OK ){ | |
538 rc = sqlite3_declare_vtab(db, "CREATE TABLE x(word,distance,ruleset)"); | |
539 } | |
540 if( rc!=SQLITE_OK ){ | |
541 fuzzerDisconnect((sqlite3_vtab *)pNew); | |
542 pNew = 0; | |
543 } | |
544 } | |
545 } | |
546 | |
547 *ppVtab = (sqlite3_vtab *)pNew; | |
548 return rc; | |
549 } | |
550 | |
551 /* | |
552 ** Open a new fuzzer cursor. | |
553 */ | |
554 static int fuzzerOpen(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCursor){ | |
555 fuzzer_vtab *p = (fuzzer_vtab*)pVTab; | |
556 fuzzer_cursor *pCur; | |
557 pCur = sqlite3_malloc( sizeof(*pCur) ); | |
558 if( pCur==0 ) return SQLITE_NOMEM; | |
559 memset(pCur, 0, sizeof(*pCur)); | |
560 pCur->pVtab = p; | |
561 *ppCursor = &pCur->base; | |
562 p->nCursor++; | |
563 return SQLITE_OK; | |
564 } | |
565 | |
566 /* | |
567 ** Free all stems in a list. | |
568 */ | |
569 static void fuzzerClearStemList(fuzzer_stem *pStem){ | |
570 while( pStem ){ | |
571 fuzzer_stem *pNext = pStem->pNext; | |
572 sqlite3_free(pStem); | |
573 pStem = pNext; | |
574 } | |
575 } | |
576 | |
577 /* | |
578 ** Free up all the memory allocated by a cursor. Set it rLimit to 0 | |
579 ** to indicate that it is at EOF. | |
580 */ | |
581 static void fuzzerClearCursor(fuzzer_cursor *pCur, int clearHash){ | |
582 int i; | |
583 fuzzerClearStemList(pCur->pStem); | |
584 fuzzerClearStemList(pCur->pDone); | |
585 for(i=0; i<FUZZER_NQUEUE; i++) fuzzerClearStemList(pCur->aQueue[i]); | |
586 pCur->rLimit = (fuzzer_cost)0; | |
587 if( clearHash && pCur->nStem ){ | |
588 pCur->mxQueue = 0; | |
589 pCur->pStem = 0; | |
590 pCur->pDone = 0; | |
591 memset(pCur->aQueue, 0, sizeof(pCur->aQueue)); | |
592 memset(pCur->apHash, 0, sizeof(pCur->apHash)); | |
593 } | |
594 pCur->nStem = 0; | |
595 } | |
596 | |
597 /* | |
598 ** Close a fuzzer cursor. | |
599 */ | |
600 static int fuzzerClose(sqlite3_vtab_cursor *cur){ | |
601 fuzzer_cursor *pCur = (fuzzer_cursor *)cur; | |
602 fuzzerClearCursor(pCur, 0); | |
603 sqlite3_free(pCur->zBuf); | |
604 pCur->pVtab->nCursor--; | |
605 sqlite3_free(pCur); | |
606 return SQLITE_OK; | |
607 } | |
608 | |
609 /* | |
610 ** Compute the current output term for a fuzzer_stem. | |
611 */ | |
612 static int fuzzerRender( | |
613 fuzzer_stem *pStem, /* The stem to be rendered */ | |
614 char **pzBuf, /* Write results into this buffer. realloc if needed */ | |
615 int *pnBuf /* Size of the buffer */ | |
616 ){ | |
617 const fuzzer_rule *pRule = pStem->pRule; | |
618 int n; /* Size of output term without nul-term */ | |
619 char *z; /* Buffer to assemble output term in */ | |
620 | |
621 n = pStem->nBasis + pRule->nTo - pRule->nFrom; | |
622 if( (*pnBuf)<n+1 ){ | |
623 (*pzBuf) = sqlite3_realloc((*pzBuf), n+100); | |
624 if( (*pzBuf)==0 ) return SQLITE_NOMEM; | |
625 (*pnBuf) = n+100; | |
626 } | |
627 n = pStem->n; | |
628 z = *pzBuf; | |
629 if( n<0 ){ | |
630 memcpy(z, pStem->zBasis, pStem->nBasis+1); | |
631 }else{ | |
632 memcpy(z, pStem->zBasis, n); | |
633 memcpy(&z[n], pRule->zTo, pRule->nTo); | |
634 memcpy(&z[n+pRule->nTo], &pStem->zBasis[n+pRule->nFrom], | |
635 pStem->nBasis-n-pRule->nFrom+1); | |
636 } | |
637 | |
638 assert( z[pStem->nBasis + pRule->nTo - pRule->nFrom]==0 ); | |
639 return SQLITE_OK; | |
640 } | |
641 | |
642 /* | |
643 ** Compute a hash on zBasis. | |
644 */ | |
645 static unsigned int fuzzerHash(const char *z){ | |
646 unsigned int h = 0; | |
647 while( *z ){ h = (h<<3) ^ (h>>29) ^ *(z++); } | |
648 return h % FUZZER_HASH; | |
649 } | |
650 | |
651 /* | |
652 ** Current cost of a stem | |
653 */ | |
654 static fuzzer_cost fuzzerCost(fuzzer_stem *pStem){ | |
655 return pStem->rCostX = pStem->rBaseCost + pStem->pRule->rCost; | |
656 } | |
657 | |
658 #if 0 | |
659 /* | |
660 ** Print a description of a fuzzer_stem on stderr. | |
661 */ | |
662 static void fuzzerStemPrint( | |
663 const char *zPrefix, | |
664 fuzzer_stem *pStem, | |
665 const char *zSuffix | |
666 ){ | |
667 if( pStem->n<0 ){ | |
668 fprintf(stderr, "%s[%s](%d)-->self%s", | |
669 zPrefix, | |
670 pStem->zBasis, pStem->rBaseCost, | |
671 zSuffix | |
672 ); | |
673 }else{ | |
674 char *zBuf = 0; | |
675 int nBuf = 0; | |
676 if( fuzzerRender(pStem, &zBuf, &nBuf)!=SQLITE_OK ) return; | |
677 fprintf(stderr, "%s[%s](%d)-->{%s}(%d)%s", | |
678 zPrefix, | |
679 pStem->zBasis, pStem->rBaseCost, zBuf, pStem->, | |
680 zSuffix | |
681 ); | |
682 sqlite3_free(zBuf); | |
683 } | |
684 } | |
685 #endif | |
686 | |
687 /* | |
688 ** Return 1 if the string to which the cursor is point has already | |
689 ** been emitted. Return 0 if not. Return -1 on a memory allocation | |
690 ** failures. | |
691 */ | |
692 static int fuzzerSeen(fuzzer_cursor *pCur, fuzzer_stem *pStem){ | |
693 unsigned int h; | |
694 fuzzer_stem *pLookup; | |
695 | |
696 if( fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){ | |
697 return -1; | |
698 } | |
699 h = fuzzerHash(pCur->zBuf); | |
700 pLookup = pCur->apHash[h]; | |
701 while( pLookup && strcmp(pLookup->zBasis, pCur->zBuf)!=0 ){ | |
702 pLookup = pLookup->pHash; | |
703 } | |
704 return pLookup!=0; | |
705 } | |
706 | |
707 /* | |
708 ** If argument pRule is NULL, this function returns false. | |
709 ** | |
710 ** Otherwise, it returns true if rule pRule should be skipped. A rule | |
711 ** should be skipped if it does not belong to rule-set iRuleset, or if | |
712 ** applying it to stem pStem would create a string longer than | |
713 ** FUZZER_MX_OUTPUT_LENGTH bytes. | |
714 */ | |
715 static int fuzzerSkipRule( | |
716 const fuzzer_rule *pRule, /* Determine whether or not to skip this */ | |
717 fuzzer_stem *pStem, /* Stem rule may be applied to */ | |
718 int iRuleset /* Rule-set used by the current query */ | |
719 ){ | |
720 return pRule && ( | |
721 (pRule->iRuleset!=iRuleset) | |
722 || (pStem->nBasis + pRule->nTo - pRule->nFrom)>FUZZER_MX_OUTPUT_LENGTH | |
723 ); | |
724 } | |
725 | |
726 /* | |
727 ** Advance a fuzzer_stem to its next value. Return 0 if there are | |
728 ** no more values that can be generated by this fuzzer_stem. Return | |
729 ** -1 on a memory allocation failure. | |
730 */ | |
731 static int fuzzerAdvance(fuzzer_cursor *pCur, fuzzer_stem *pStem){ | |
732 const fuzzer_rule *pRule; | |
733 while( (pRule = pStem->pRule)!=0 ){ | |
734 assert( pRule==&pCur->nullRule || pRule->iRuleset==pCur->iRuleset ); | |
735 while( pStem->n < pStem->nBasis - pRule->nFrom ){ | |
736 pStem->n++; | |
737 if( pRule->nFrom==0 | |
738 || memcmp(&pStem->zBasis[pStem->n], pRule->zFrom, pRule->nFrom)==0 | |
739 ){ | |
740 /* Found a rewrite case. Make sure it is not a duplicate */ | |
741 int rc = fuzzerSeen(pCur, pStem); | |
742 if( rc<0 ) return -1; | |
743 if( rc==0 ){ | |
744 fuzzerCost(pStem); | |
745 return 1; | |
746 } | |
747 } | |
748 } | |
749 pStem->n = -1; | |
750 do{ | |
751 pRule = pRule->pNext; | |
752 }while( fuzzerSkipRule(pRule, pStem, pCur->iRuleset) ); | |
753 pStem->pRule = pRule; | |
754 if( pRule && fuzzerCost(pStem)>pCur->rLimit ) pStem->pRule = 0; | |
755 } | |
756 return 0; | |
757 } | |
758 | |
759 /* | |
760 ** The two input stem lists are both sorted in order of increasing | |
761 ** rCostX. Merge them together into a single list, sorted by rCostX, and | |
762 ** return a pointer to the head of that new list. | |
763 */ | |
764 static fuzzer_stem *fuzzerMergeStems(fuzzer_stem *pA, fuzzer_stem *pB){ | |
765 fuzzer_stem head; | |
766 fuzzer_stem *pTail; | |
767 | |
768 pTail = &head; | |
769 while( pA && pB ){ | |
770 if( pA->rCostX<=pB->rCostX ){ | |
771 pTail->pNext = pA; | |
772 pTail = pA; | |
773 pA = pA->pNext; | |
774 }else{ | |
775 pTail->pNext = pB; | |
776 pTail = pB; | |
777 pB = pB->pNext; | |
778 } | |
779 } | |
780 if( pA==0 ){ | |
781 pTail->pNext = pB; | |
782 }else{ | |
783 pTail->pNext = pA; | |
784 } | |
785 return head.pNext; | |
786 } | |
787 | |
788 /* | |
789 ** Load pCur->pStem with the lowest-cost stem. Return a pointer | |
790 ** to the lowest-cost stem. | |
791 */ | |
792 static fuzzer_stem *fuzzerLowestCostStem(fuzzer_cursor *pCur){ | |
793 fuzzer_stem *pBest, *pX; | |
794 int iBest; | |
795 int i; | |
796 | |
797 if( pCur->pStem==0 ){ | |
798 iBest = -1; | |
799 pBest = 0; | |
800 for(i=0; i<=pCur->mxQueue; i++){ | |
801 pX = pCur->aQueue[i]; | |
802 if( pX==0 ) continue; | |
803 if( pBest==0 || pBest->rCostX>pX->rCostX ){ | |
804 pBest = pX; | |
805 iBest = i; | |
806 } | |
807 } | |
808 if( pBest ){ | |
809 pCur->aQueue[iBest] = pBest->pNext; | |
810 pBest->pNext = 0; | |
811 pCur->pStem = pBest; | |
812 } | |
813 } | |
814 return pCur->pStem; | |
815 } | |
816 | |
817 /* | |
818 ** Insert pNew into queue of pending stems. Then find the stem | |
819 ** with the lowest rCostX and move it into pCur->pStem. | |
820 ** list. The insert is done such the pNew is in the correct order | |
821 ** according to fuzzer_stem.zBaseCost+fuzzer_stem.pRule->rCost. | |
822 */ | |
823 static fuzzer_stem *fuzzerInsert(fuzzer_cursor *pCur, fuzzer_stem *pNew){ | |
824 fuzzer_stem *pX; | |
825 int i; | |
826 | |
827 /* If pCur->pStem exists and is greater than pNew, then make pNew | |
828 ** the new pCur->pStem and insert the old pCur->pStem instead. | |
829 */ | |
830 if( (pX = pCur->pStem)!=0 && pX->rCostX>pNew->rCostX ){ | |
831 pNew->pNext = 0; | |
832 pCur->pStem = pNew; | |
833 pNew = pX; | |
834 } | |
835 | |
836 /* Insert the new value */ | |
837 pNew->pNext = 0; | |
838 pX = pNew; | |
839 for(i=0; i<=pCur->mxQueue; i++){ | |
840 if( pCur->aQueue[i] ){ | |
841 pX = fuzzerMergeStems(pX, pCur->aQueue[i]); | |
842 pCur->aQueue[i] = 0; | |
843 }else{ | |
844 pCur->aQueue[i] = pX; | |
845 break; | |
846 } | |
847 } | |
848 if( i>pCur->mxQueue ){ | |
849 if( i<FUZZER_NQUEUE ){ | |
850 pCur->mxQueue = i; | |
851 pCur->aQueue[i] = pX; | |
852 }else{ | |
853 assert( pCur->mxQueue==FUZZER_NQUEUE-1 ); | |
854 pX = fuzzerMergeStems(pX, pCur->aQueue[FUZZER_NQUEUE-1]); | |
855 pCur->aQueue[FUZZER_NQUEUE-1] = pX; | |
856 } | |
857 } | |
858 | |
859 return fuzzerLowestCostStem(pCur); | |
860 } | |
861 | |
862 /* | |
863 ** Allocate a new fuzzer_stem. Add it to the hash table but do not | |
864 ** link it into either the pCur->pStem or pCur->pDone lists. | |
865 */ | |
866 static fuzzer_stem *fuzzerNewStem( | |
867 fuzzer_cursor *pCur, | |
868 const char *zWord, | |
869 fuzzer_cost rBaseCost | |
870 ){ | |
871 fuzzer_stem *pNew; | |
872 fuzzer_rule *pRule; | |
873 unsigned int h; | |
874 | |
875 pNew = sqlite3_malloc( sizeof(*pNew) + (int)strlen(zWord) + 1 ); | |
876 if( pNew==0 ) return 0; | |
877 memset(pNew, 0, sizeof(*pNew)); | |
878 pNew->zBasis = (char*)&pNew[1]; | |
879 pNew->nBasis = (fuzzer_len)strlen(zWord); | |
880 memcpy(pNew->zBasis, zWord, pNew->nBasis+1); | |
881 pRule = pCur->pVtab->pRule; | |
882 while( fuzzerSkipRule(pRule, pNew, pCur->iRuleset) ){ | |
883 pRule = pRule->pNext; | |
884 } | |
885 pNew->pRule = pRule; | |
886 pNew->n = -1; | |
887 pNew->rBaseCost = pNew->rCostX = rBaseCost; | |
888 h = fuzzerHash(pNew->zBasis); | |
889 pNew->pHash = pCur->apHash[h]; | |
890 pCur->apHash[h] = pNew; | |
891 pCur->nStem++; | |
892 return pNew; | |
893 } | |
894 | |
895 | |
896 /* | |
897 ** Advance a cursor to its next row of output | |
898 */ | |
899 static int fuzzerNext(sqlite3_vtab_cursor *cur){ | |
900 fuzzer_cursor *pCur = (fuzzer_cursor*)cur; | |
901 int rc; | |
902 fuzzer_stem *pStem, *pNew; | |
903 | |
904 pCur->iRowid++; | |
905 | |
906 /* Use the element the cursor is currently point to to create | |
907 ** a new stem and insert the new stem into the priority queue. | |
908 */ | |
909 pStem = pCur->pStem; | |
910 if( pStem->rCostX>0 ){ | |
911 rc = fuzzerRender(pStem, &pCur->zBuf, &pCur->nBuf); | |
912 if( rc==SQLITE_NOMEM ) return SQLITE_NOMEM; | |
913 pNew = fuzzerNewStem(pCur, pCur->zBuf, pStem->rCostX); | |
914 if( pNew ){ | |
915 if( fuzzerAdvance(pCur, pNew)==0 ){ | |
916 pNew->pNext = pCur->pDone; | |
917 pCur->pDone = pNew; | |
918 }else{ | |
919 if( fuzzerInsert(pCur, pNew)==pNew ){ | |
920 return SQLITE_OK; | |
921 } | |
922 } | |
923 }else{ | |
924 return SQLITE_NOMEM; | |
925 } | |
926 } | |
927 | |
928 /* Adjust the priority queue so that the first element of the | |
929 ** stem list is the next lowest cost word. | |
930 */ | |
931 while( (pStem = pCur->pStem)!=0 ){ | |
932 int res = fuzzerAdvance(pCur, pStem); | |
933 if( res<0 ){ | |
934 return SQLITE_NOMEM; | |
935 }else if( res>0 ){ | |
936 pCur->pStem = 0; | |
937 pStem = fuzzerInsert(pCur, pStem); | |
938 if( (rc = fuzzerSeen(pCur, pStem))!=0 ){ | |
939 if( rc<0 ) return SQLITE_NOMEM; | |
940 continue; | |
941 } | |
942 return SQLITE_OK; /* New word found */ | |
943 } | |
944 pCur->pStem = 0; | |
945 pStem->pNext = pCur->pDone; | |
946 pCur->pDone = pStem; | |
947 if( fuzzerLowestCostStem(pCur) ){ | |
948 rc = fuzzerSeen(pCur, pCur->pStem); | |
949 if( rc<0 ) return SQLITE_NOMEM; | |
950 if( rc==0 ){ | |
951 return SQLITE_OK; | |
952 } | |
953 } | |
954 } | |
955 | |
956 /* Reach this point only if queue has been exhausted and there is | |
957 ** nothing left to be output. */ | |
958 pCur->rLimit = (fuzzer_cost)0; | |
959 return SQLITE_OK; | |
960 } | |
961 | |
962 /* | |
963 ** Called to "rewind" a cursor back to the beginning so that | |
964 ** it starts its output over again. Always called at least once | |
965 ** prior to any fuzzerColumn, fuzzerRowid, or fuzzerEof call. | |
966 */ | |
967 static int fuzzerFilter( | |
968 sqlite3_vtab_cursor *pVtabCursor, | |
969 int idxNum, const char *idxStr, | |
970 int argc, sqlite3_value **argv | |
971 ){ | |
972 fuzzer_cursor *pCur = (fuzzer_cursor *)pVtabCursor; | |
973 const char *zWord = ""; | |
974 fuzzer_stem *pStem; | |
975 int idx; | |
976 | |
977 fuzzerClearCursor(pCur, 1); | |
978 pCur->rLimit = 2147483647; | |
979 idx = 0; | |
980 if( idxNum & 1 ){ | |
981 zWord = (const char*)sqlite3_value_text(argv[0]); | |
982 idx++; | |
983 } | |
984 if( idxNum & 2 ){ | |
985 pCur->rLimit = (fuzzer_cost)sqlite3_value_int(argv[idx]); | |
986 idx++; | |
987 } | |
988 if( idxNum & 4 ){ | |
989 pCur->iRuleset = (fuzzer_cost)sqlite3_value_int(argv[idx]); | |
990 idx++; | |
991 } | |
992 pCur->nullRule.pNext = pCur->pVtab->pRule; | |
993 pCur->nullRule.rCost = 0; | |
994 pCur->nullRule.nFrom = 0; | |
995 pCur->nullRule.nTo = 0; | |
996 pCur->nullRule.zFrom = ""; | |
997 pCur->iRowid = 1; | |
998 assert( pCur->pStem==0 ); | |
999 | |
1000 /* If the query term is longer than FUZZER_MX_OUTPUT_LENGTH bytes, this | |
1001 ** query will return zero rows. */ | |
1002 if( (int)strlen(zWord)<FUZZER_MX_OUTPUT_LENGTH ){ | |
1003 pCur->pStem = pStem = fuzzerNewStem(pCur, zWord, (fuzzer_cost)0); | |
1004 if( pStem==0 ) return SQLITE_NOMEM; | |
1005 pStem->pRule = &pCur->nullRule; | |
1006 pStem->n = pStem->nBasis; | |
1007 }else{ | |
1008 pCur->rLimit = 0; | |
1009 } | |
1010 | |
1011 return SQLITE_OK; | |
1012 } | |
1013 | |
1014 /* | |
1015 ** Only the word and distance columns have values. All other columns | |
1016 ** return NULL | |
1017 */ | |
1018 static int fuzzerColumn(sqlite3_vtab_cursor *cur, sqlite3_context *ctx, int i){ | |
1019 fuzzer_cursor *pCur = (fuzzer_cursor*)cur; | |
1020 if( i==0 ){ | |
1021 /* the "word" column */ | |
1022 if( fuzzerRender(pCur->pStem, &pCur->zBuf, &pCur->nBuf)==SQLITE_NOMEM ){ | |
1023 return SQLITE_NOMEM; | |
1024 } | |
1025 sqlite3_result_text(ctx, pCur->zBuf, -1, SQLITE_TRANSIENT); | |
1026 }else if( i==1 ){ | |
1027 /* the "distance" column */ | |
1028 sqlite3_result_int(ctx, pCur->pStem->rCostX); | |
1029 }else{ | |
1030 /* All other columns are NULL */ | |
1031 sqlite3_result_null(ctx); | |
1032 } | |
1033 return SQLITE_OK; | |
1034 } | |
1035 | |
1036 /* | |
1037 ** The rowid. | |
1038 */ | |
1039 static int fuzzerRowid(sqlite3_vtab_cursor *cur, sqlite_int64 *pRowid){ | |
1040 fuzzer_cursor *pCur = (fuzzer_cursor*)cur; | |
1041 *pRowid = pCur->iRowid; | |
1042 return SQLITE_OK; | |
1043 } | |
1044 | |
1045 /* | |
1046 ** When the fuzzer_cursor.rLimit value is 0 or less, that is a signal | |
1047 ** that the cursor has nothing more to output. | |
1048 */ | |
1049 static int fuzzerEof(sqlite3_vtab_cursor *cur){ | |
1050 fuzzer_cursor *pCur = (fuzzer_cursor*)cur; | |
1051 return pCur->rLimit<=(fuzzer_cost)0; | |
1052 } | |
1053 | |
1054 /* | |
1055 ** Search for terms of these forms: | |
1056 ** | |
1057 ** (A) word MATCH $str | |
1058 ** (B1) distance < $value | |
1059 ** (B2) distance <= $value | |
1060 ** (C) ruleid == $ruleid | |
1061 ** | |
1062 ** The distance< and distance<= are both treated as distance<=. | |
1063 ** The query plan number is a bit vector: | |
1064 ** | |
1065 ** bit 1: Term of the form (A) found | |
1066 ** bit 2: Term like (B1) or (B2) found | |
1067 ** bit 3: Term like (C) found | |
1068 ** | |
1069 ** If bit-1 is set, $str is always in filter.argv[0]. If bit-2 is set | |
1070 ** then $value is in filter.argv[0] if bit-1 is clear and is in | |
1071 ** filter.argv[1] if bit-1 is set. If bit-3 is set, then $ruleid is | |
1072 ** in filter.argv[0] if bit-1 and bit-2 are both zero, is in | |
1073 ** filter.argv[1] if exactly one of bit-1 and bit-2 are set, and is in | |
1074 ** filter.argv[2] if both bit-1 and bit-2 are set. | |
1075 */ | |
1076 static int fuzzerBestIndex(sqlite3_vtab *tab, sqlite3_index_info *pIdxInfo){ | |
1077 int iPlan = 0; | |
1078 int iDistTerm = -1; | |
1079 int iRulesetTerm = -1; | |
1080 int i; | |
1081 int seenMatch = 0; | |
1082 const struct sqlite3_index_constraint *pConstraint; | |
1083 double rCost = 1e12; | |
1084 | |
1085 pConstraint = pIdxInfo->aConstraint; | |
1086 for(i=0; i<pIdxInfo->nConstraint; i++, pConstraint++){ | |
1087 if( pConstraint->iColumn==0 | |
1088 && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH ){ | |
1089 seenMatch = 1; | |
1090 } | |
1091 if( pConstraint->usable==0 ) continue; | |
1092 if( (iPlan & 1)==0 | |
1093 && pConstraint->iColumn==0 | |
1094 && pConstraint->op==SQLITE_INDEX_CONSTRAINT_MATCH | |
1095 ){ | |
1096 iPlan |= 1; | |
1097 pIdxInfo->aConstraintUsage[i].argvIndex = 1; | |
1098 pIdxInfo->aConstraintUsage[i].omit = 1; | |
1099 rCost /= 1e6; | |
1100 } | |
1101 if( (iPlan & 2)==0 | |
1102 && pConstraint->iColumn==1 | |
1103 && (pConstraint->op==SQLITE_INDEX_CONSTRAINT_LT | |
1104 || pConstraint->op==SQLITE_INDEX_CONSTRAINT_LE) | |
1105 ){ | |
1106 iPlan |= 2; | |
1107 iDistTerm = i; | |
1108 rCost /= 10.0; | |
1109 } | |
1110 if( (iPlan & 4)==0 | |
1111 && pConstraint->iColumn==2 | |
1112 && pConstraint->op==SQLITE_INDEX_CONSTRAINT_EQ | |
1113 ){ | |
1114 iPlan |= 4; | |
1115 pIdxInfo->aConstraintUsage[i].omit = 1; | |
1116 iRulesetTerm = i; | |
1117 rCost /= 10.0; | |
1118 } | |
1119 } | |
1120 if( iPlan & 2 ){ | |
1121 pIdxInfo->aConstraintUsage[iDistTerm].argvIndex = 1+((iPlan&1)!=0); | |
1122 } | |
1123 if( iPlan & 4 ){ | |
1124 int idx = 1; | |
1125 if( iPlan & 1 ) idx++; | |
1126 if( iPlan & 2 ) idx++; | |
1127 pIdxInfo->aConstraintUsage[iRulesetTerm].argvIndex = idx; | |
1128 } | |
1129 pIdxInfo->idxNum = iPlan; | |
1130 if( pIdxInfo->nOrderBy==1 | |
1131 && pIdxInfo->aOrderBy[0].iColumn==1 | |
1132 && pIdxInfo->aOrderBy[0].desc==0 | |
1133 ){ | |
1134 pIdxInfo->orderByConsumed = 1; | |
1135 } | |
1136 if( seenMatch && (iPlan&1)==0 ) rCost = 1e99; | |
1137 pIdxInfo->estimatedCost = rCost; | |
1138 | |
1139 return SQLITE_OK; | |
1140 } | |
1141 | |
1142 /* | |
1143 ** A virtual table module that implements the "fuzzer". | |
1144 */ | |
1145 static sqlite3_module fuzzerModule = { | |
1146 0, /* iVersion */ | |
1147 fuzzerConnect, | |
1148 fuzzerConnect, | |
1149 fuzzerBestIndex, | |
1150 fuzzerDisconnect, | |
1151 fuzzerDisconnect, | |
1152 fuzzerOpen, /* xOpen - open a cursor */ | |
1153 fuzzerClose, /* xClose - close a cursor */ | |
1154 fuzzerFilter, /* xFilter - configure scan constraints */ | |
1155 fuzzerNext, /* xNext - advance a cursor */ | |
1156 fuzzerEof, /* xEof - check for end of scan */ | |
1157 fuzzerColumn, /* xColumn - read data */ | |
1158 fuzzerRowid, /* xRowid - read data */ | |
1159 0, /* xUpdate */ | |
1160 0, /* xBegin */ | |
1161 0, /* xSync */ | |
1162 0, /* xCommit */ | |
1163 0, /* xRollback */ | |
1164 0, /* xFindMethod */ | |
1165 0, /* xRename */ | |
1166 }; | |
1167 | |
1168 #endif /* SQLITE_OMIT_VIRTUALTABLE */ | |
1169 | |
1170 | |
1171 #ifdef _WIN32 | |
1172 __declspec(dllexport) | |
1173 #endif | |
1174 int sqlite3_fuzzer_init( | |
1175 sqlite3 *db, | |
1176 char **pzErrMsg, | |
1177 const sqlite3_api_routines *pApi | |
1178 ){ | |
1179 int rc = SQLITE_OK; | |
1180 SQLITE_EXTENSION_INIT2(pApi); | |
1181 #ifndef SQLITE_OMIT_VIRTUALTABLE | |
1182 rc = sqlite3_create_module(db, "fuzzer", &fuzzerModule, 0); | |
1183 #endif | |
1184 return rc; | |
1185 } | |
OLD | NEW |