OLD | NEW |
| (Empty) |
1 /* | |
2 ** 2009 Oct 23 | |
3 ** | |
4 ** The author disclaims copyright to this source code. In place of | |
5 ** a legal notice, here is a blessing: | |
6 ** | |
7 ** May you do good and not evil. | |
8 ** May you find forgiveness for yourself and forgive others. | |
9 ** May you share freely, never taking more than you give. | |
10 ** | |
11 ****************************************************************************** | |
12 ** | |
13 ** This file is part of the SQLite FTS3 extension module. Specifically, | |
14 ** this file contains code to insert, update and delete rows from FTS3 | |
15 ** tables. It also contains code to merge FTS3 b-tree segments. Some | |
16 ** of the sub-routines used to merge segments are also used by the query | |
17 ** code in fts3.c. | |
18 */ | |
19 | |
20 #include "fts3Int.h" | |
21 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) | |
22 | |
23 #include <string.h> | |
24 #include <assert.h> | |
25 #include <stdlib.h> | |
26 | |
27 | |
28 #define FTS_MAX_APPENDABLE_HEIGHT 16 | |
29 | |
30 /* | |
31 ** When full-text index nodes are loaded from disk, the buffer that they | |
32 ** are loaded into has the following number of bytes of padding at the end | |
33 ** of it. i.e. if a full-text index node is 900 bytes in size, then a buffer | |
34 ** of 920 bytes is allocated for it. | |
35 ** | |
36 ** This means that if we have a pointer into a buffer containing node data, | |
37 ** it is always safe to read up to two varints from it without risking an | |
38 ** overread, even if the node data is corrupted. | |
39 */ | |
40 #define FTS3_NODE_PADDING (FTS3_VARINT_MAX*2) | |
41 | |
42 /* | |
43 ** Under certain circumstances, b-tree nodes (doclists) can be loaded into | |
44 ** memory incrementally instead of all at once. This can be a big performance | |
45 ** win (reduced IO and CPU) if SQLite stops calling the virtual table xNext() | |
46 ** method before retrieving all query results (as may happen, for example, | |
47 ** if a query has a LIMIT clause). | |
48 ** | |
49 ** Incremental loading is used for b-tree nodes FTS3_NODE_CHUNK_THRESHOLD | |
50 ** bytes and larger. Nodes are loaded in chunks of FTS3_NODE_CHUNKSIZE bytes. | |
51 ** The code is written so that the hard lower-limit for each of these values | |
52 ** is 1. Clearly such small values would be inefficient, but can be useful | |
53 ** for testing purposes. | |
54 ** | |
55 ** If this module is built with SQLITE_TEST defined, these constants may | |
56 ** be overridden at runtime for testing purposes. File fts3_test.c contains | |
57 ** a Tcl interface to read and write the values. | |
58 */ | |
59 #ifdef SQLITE_TEST | |
60 int test_fts3_node_chunksize = (4*1024); | |
61 int test_fts3_node_chunk_threshold = (4*1024)*4; | |
62 # define FTS3_NODE_CHUNKSIZE test_fts3_node_chunksize | |
63 # define FTS3_NODE_CHUNK_THRESHOLD test_fts3_node_chunk_threshold | |
64 #else | |
65 # define FTS3_NODE_CHUNKSIZE (4*1024) | |
66 # define FTS3_NODE_CHUNK_THRESHOLD (FTS3_NODE_CHUNKSIZE*4) | |
67 #endif | |
68 | |
69 /* | |
70 ** The two values that may be meaningfully bound to the :1 parameter in | |
71 ** statements SQL_REPLACE_STAT and SQL_SELECT_STAT. | |
72 */ | |
73 #define FTS_STAT_DOCTOTAL 0 | |
74 #define FTS_STAT_INCRMERGEHINT 1 | |
75 #define FTS_STAT_AUTOINCRMERGE 2 | |
76 | |
77 /* | |
78 ** If FTS_LOG_MERGES is defined, call sqlite3_log() to report each automatic | |
79 ** and incremental merge operation that takes place. This is used for | |
80 ** debugging FTS only, it should not usually be turned on in production | |
81 ** systems. | |
82 */ | |
83 #ifdef FTS3_LOG_MERGES | |
84 static void fts3LogMerge(int nMerge, sqlite3_int64 iAbsLevel){ | |
85 sqlite3_log(SQLITE_OK, "%d-way merge from level %d", nMerge, (int)iAbsLevel); | |
86 } | |
87 #else | |
88 #define fts3LogMerge(x, y) | |
89 #endif | |
90 | |
91 | |
92 typedef struct PendingList PendingList; | |
93 typedef struct SegmentNode SegmentNode; | |
94 typedef struct SegmentWriter SegmentWriter; | |
95 | |
96 /* | |
97 ** An instance of the following data structure is used to build doclists | |
98 ** incrementally. See function fts3PendingListAppend() for details. | |
99 */ | |
100 struct PendingList { | |
101 int nData; | |
102 char *aData; | |
103 int nSpace; | |
104 sqlite3_int64 iLastDocid; | |
105 sqlite3_int64 iLastCol; | |
106 sqlite3_int64 iLastPos; | |
107 }; | |
108 | |
109 | |
110 /* | |
111 ** Each cursor has a (possibly empty) linked list of the following objects. | |
112 */ | |
113 struct Fts3DeferredToken { | |
114 Fts3PhraseToken *pToken; /* Pointer to corresponding expr token */ | |
115 int iCol; /* Column token must occur in */ | |
116 Fts3DeferredToken *pNext; /* Next in list of deferred tokens */ | |
117 PendingList *pList; /* Doclist is assembled here */ | |
118 }; | |
119 | |
120 /* | |
121 ** An instance of this structure is used to iterate through the terms on | |
122 ** a contiguous set of segment b-tree leaf nodes. Although the details of | |
123 ** this structure are only manipulated by code in this file, opaque handles | |
124 ** of type Fts3SegReader* are also used by code in fts3.c to iterate through | |
125 ** terms when querying the full-text index. See functions: | |
126 ** | |
127 ** sqlite3Fts3SegReaderNew() | |
128 ** sqlite3Fts3SegReaderFree() | |
129 ** sqlite3Fts3SegReaderIterate() | |
130 ** | |
131 ** Methods used to manipulate Fts3SegReader structures: | |
132 ** | |
133 ** fts3SegReaderNext() | |
134 ** fts3SegReaderFirstDocid() | |
135 ** fts3SegReaderNextDocid() | |
136 */ | |
137 struct Fts3SegReader { | |
138 int iIdx; /* Index within level, or 0x7FFFFFFF for PT */ | |
139 u8 bLookup; /* True for a lookup only */ | |
140 u8 rootOnly; /* True for a root-only reader */ | |
141 | |
142 sqlite3_int64 iStartBlock; /* Rowid of first leaf block to traverse */ | |
143 sqlite3_int64 iLeafEndBlock; /* Rowid of final leaf block to traverse */ | |
144 sqlite3_int64 iEndBlock; /* Rowid of final block in segment (or 0) */ | |
145 sqlite3_int64 iCurrentBlock; /* Current leaf block (or 0) */ | |
146 | |
147 char *aNode; /* Pointer to node data (or NULL) */ | |
148 int nNode; /* Size of buffer at aNode (or 0) */ | |
149 int nPopulate; /* If >0, bytes of buffer aNode[] loaded */ | |
150 sqlite3_blob *pBlob; /* If not NULL, blob handle to read node */ | |
151 | |
152 Fts3HashElem **ppNextElem; | |
153 | |
154 /* Variables set by fts3SegReaderNext(). These may be read directly | |
155 ** by the caller. They are valid from the time SegmentReaderNew() returns | |
156 ** until SegmentReaderNext() returns something other than SQLITE_OK | |
157 ** (i.e. SQLITE_DONE). | |
158 */ | |
159 int nTerm; /* Number of bytes in current term */ | |
160 char *zTerm; /* Pointer to current term */ | |
161 int nTermAlloc; /* Allocated size of zTerm buffer */ | |
162 char *aDoclist; /* Pointer to doclist of current entry */ | |
163 int nDoclist; /* Size of doclist in current entry */ | |
164 | |
165 /* The following variables are used by fts3SegReaderNextDocid() to iterate | |
166 ** through the current doclist (aDoclist/nDoclist). | |
167 */ | |
168 char *pOffsetList; | |
169 int nOffsetList; /* For descending pending seg-readers only */ | |
170 sqlite3_int64 iDocid; | |
171 }; | |
172 | |
173 #define fts3SegReaderIsPending(p) ((p)->ppNextElem!=0) | |
174 #define fts3SegReaderIsRootOnly(p) ((p)->rootOnly!=0) | |
175 | |
176 /* | |
177 ** An instance of this structure is used to create a segment b-tree in the | |
178 ** database. The internal details of this type are only accessed by the | |
179 ** following functions: | |
180 ** | |
181 ** fts3SegWriterAdd() | |
182 ** fts3SegWriterFlush() | |
183 ** fts3SegWriterFree() | |
184 */ | |
185 struct SegmentWriter { | |
186 SegmentNode *pTree; /* Pointer to interior tree structure */ | |
187 sqlite3_int64 iFirst; /* First slot in %_segments written */ | |
188 sqlite3_int64 iFree; /* Next free slot in %_segments */ | |
189 char *zTerm; /* Pointer to previous term buffer */ | |
190 int nTerm; /* Number of bytes in zTerm */ | |
191 int nMalloc; /* Size of malloc'd buffer at zMalloc */ | |
192 char *zMalloc; /* Malloc'd space (possibly) used for zTerm */ | |
193 int nSize; /* Size of allocation at aData */ | |
194 int nData; /* Bytes of data in aData */ | |
195 char *aData; /* Pointer to block from malloc() */ | |
196 i64 nLeafData; /* Number of bytes of leaf data written */ | |
197 }; | |
198 | |
199 /* | |
200 ** Type SegmentNode is used by the following three functions to create | |
201 ** the interior part of the segment b+-tree structures (everything except | |
202 ** the leaf nodes). These functions and type are only ever used by code | |
203 ** within the fts3SegWriterXXX() family of functions described above. | |
204 ** | |
205 ** fts3NodeAddTerm() | |
206 ** fts3NodeWrite() | |
207 ** fts3NodeFree() | |
208 ** | |
209 ** When a b+tree is written to the database (either as a result of a merge | |
210 ** or the pending-terms table being flushed), leaves are written into the | |
211 ** database file as soon as they are completely populated. The interior of | |
212 ** the tree is assembled in memory and written out only once all leaves have | |
213 ** been populated and stored. This is Ok, as the b+-tree fanout is usually | |
214 ** very large, meaning that the interior of the tree consumes relatively | |
215 ** little memory. | |
216 */ | |
217 struct SegmentNode { | |
218 SegmentNode *pParent; /* Parent node (or NULL for root node) */ | |
219 SegmentNode *pRight; /* Pointer to right-sibling */ | |
220 SegmentNode *pLeftmost; /* Pointer to left-most node of this depth */ | |
221 int nEntry; /* Number of terms written to node so far */ | |
222 char *zTerm; /* Pointer to previous term buffer */ | |
223 int nTerm; /* Number of bytes in zTerm */ | |
224 int nMalloc; /* Size of malloc'd buffer at zMalloc */ | |
225 char *zMalloc; /* Malloc'd space (possibly) used for zTerm */ | |
226 int nData; /* Bytes of valid data so far */ | |
227 char *aData; /* Node data */ | |
228 }; | |
229 | |
230 /* | |
231 ** Valid values for the second argument to fts3SqlStmt(). | |
232 */ | |
233 #define SQL_DELETE_CONTENT 0 | |
234 #define SQL_IS_EMPTY 1 | |
235 #define SQL_DELETE_ALL_CONTENT 2 | |
236 #define SQL_DELETE_ALL_SEGMENTS 3 | |
237 #define SQL_DELETE_ALL_SEGDIR 4 | |
238 #define SQL_DELETE_ALL_DOCSIZE 5 | |
239 #define SQL_DELETE_ALL_STAT 6 | |
240 #define SQL_SELECT_CONTENT_BY_ROWID 7 | |
241 #define SQL_NEXT_SEGMENT_INDEX 8 | |
242 #define SQL_INSERT_SEGMENTS 9 | |
243 #define SQL_NEXT_SEGMENTS_ID 10 | |
244 #define SQL_INSERT_SEGDIR 11 | |
245 #define SQL_SELECT_LEVEL 12 | |
246 #define SQL_SELECT_LEVEL_RANGE 13 | |
247 #define SQL_SELECT_LEVEL_COUNT 14 | |
248 #define SQL_SELECT_SEGDIR_MAX_LEVEL 15 | |
249 #define SQL_DELETE_SEGDIR_LEVEL 16 | |
250 #define SQL_DELETE_SEGMENTS_RANGE 17 | |
251 #define SQL_CONTENT_INSERT 18 | |
252 #define SQL_DELETE_DOCSIZE 19 | |
253 #define SQL_REPLACE_DOCSIZE 20 | |
254 #define SQL_SELECT_DOCSIZE 21 | |
255 #define SQL_SELECT_STAT 22 | |
256 #define SQL_REPLACE_STAT 23 | |
257 | |
258 #define SQL_SELECT_ALL_PREFIX_LEVEL 24 | |
259 #define SQL_DELETE_ALL_TERMS_SEGDIR 25 | |
260 #define SQL_DELETE_SEGDIR_RANGE 26 | |
261 #define SQL_SELECT_ALL_LANGID 27 | |
262 #define SQL_FIND_MERGE_LEVEL 28 | |
263 #define SQL_MAX_LEAF_NODE_ESTIMATE 29 | |
264 #define SQL_DELETE_SEGDIR_ENTRY 30 | |
265 #define SQL_SHIFT_SEGDIR_ENTRY 31 | |
266 #define SQL_SELECT_SEGDIR 32 | |
267 #define SQL_CHOMP_SEGDIR 33 | |
268 #define SQL_SEGMENT_IS_APPENDABLE 34 | |
269 #define SQL_SELECT_INDEXES 35 | |
270 #define SQL_SELECT_MXLEVEL 36 | |
271 | |
272 #define SQL_SELECT_LEVEL_RANGE2 37 | |
273 #define SQL_UPDATE_LEVEL_IDX 38 | |
274 #define SQL_UPDATE_LEVEL 39 | |
275 | |
276 /* | |
277 ** This function is used to obtain an SQLite prepared statement handle | |
278 ** for the statement identified by the second argument. If successful, | |
279 ** *pp is set to the requested statement handle and SQLITE_OK returned. | |
280 ** Otherwise, an SQLite error code is returned and *pp is set to 0. | |
281 ** | |
282 ** If argument apVal is not NULL, then it must point to an array with | |
283 ** at least as many entries as the requested statement has bound | |
284 ** parameters. The values are bound to the statements parameters before | |
285 ** returning. | |
286 */ | |
287 static int fts3SqlStmt( | |
288 Fts3Table *p, /* Virtual table handle */ | |
289 int eStmt, /* One of the SQL_XXX constants above */ | |
290 sqlite3_stmt **pp, /* OUT: Statement handle */ | |
291 sqlite3_value **apVal /* Values to bind to statement */ | |
292 ){ | |
293 const char *azSql[] = { | |
294 /* 0 */ "DELETE FROM %Q.'%q_content' WHERE rowid = ?", | |
295 /* 1 */ "SELECT NOT EXISTS(SELECT docid FROM %Q.'%q_content' WHERE rowid!=?)", | |
296 /* 2 */ "DELETE FROM %Q.'%q_content'", | |
297 /* 3 */ "DELETE FROM %Q.'%q_segments'", | |
298 /* 4 */ "DELETE FROM %Q.'%q_segdir'", | |
299 /* 5 */ "DELETE FROM %Q.'%q_docsize'", | |
300 /* 6 */ "DELETE FROM %Q.'%q_stat'", | |
301 /* 7 */ "SELECT %s WHERE rowid=?", | |
302 /* 8 */ "SELECT (SELECT max(idx) FROM %Q.'%q_segdir' WHERE level = ?) + 1", | |
303 /* 9 */ "REPLACE INTO %Q.'%q_segments'(blockid, block) VALUES(?, ?)", | |
304 /* 10 */ "SELECT coalesce((SELECT max(blockid) FROM %Q.'%q_segments') + 1, 1)", | |
305 /* 11 */ "REPLACE INTO %Q.'%q_segdir' VALUES(?,?,?,?,?,?)", | |
306 | |
307 /* Return segments in order from oldest to newest.*/ | |
308 /* 12 */ "SELECT idx, start_block, leaves_end_block, end_block, root " | |
309 "FROM %Q.'%q_segdir' WHERE level = ? ORDER BY idx ASC", | |
310 /* 13 */ "SELECT idx, start_block, leaves_end_block, end_block, root " | |
311 "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?" | |
312 "ORDER BY level DESC, idx ASC", | |
313 | |
314 /* 14 */ "SELECT count(*) FROM %Q.'%q_segdir' WHERE level = ?", | |
315 /* 15 */ "SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?", | |
316 | |
317 /* 16 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ?", | |
318 /* 17 */ "DELETE FROM %Q.'%q_segments' WHERE blockid BETWEEN ? AND ?", | |
319 /* 18 */ "INSERT INTO %Q.'%q_content' VALUES(%s)", | |
320 /* 19 */ "DELETE FROM %Q.'%q_docsize' WHERE docid = ?", | |
321 /* 20 */ "REPLACE INTO %Q.'%q_docsize' VALUES(?,?)", | |
322 /* 21 */ "SELECT size FROM %Q.'%q_docsize' WHERE docid=?", | |
323 /* 22 */ "SELECT value FROM %Q.'%q_stat' WHERE id=?", | |
324 /* 23 */ "REPLACE INTO %Q.'%q_stat' VALUES(?,?)", | |
325 /* 24 */ "", | |
326 /* 25 */ "", | |
327 | |
328 /* 26 */ "DELETE FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?", | |
329 /* 27 */ "SELECT ? UNION SELECT level / (1024 * ?) FROM %Q.'%q_segdir'", | |
330 | |
331 /* This statement is used to determine which level to read the input from | |
332 ** when performing an incremental merge. It returns the absolute level number | |
333 ** of the oldest level in the db that contains at least ? segments. Or, | |
334 ** if no level in the FTS index contains more than ? segments, the statement | |
335 ** returns zero rows. */ | |
336 /* 28 */ "SELECT level FROM %Q.'%q_segdir' GROUP BY level HAVING count(*)>=?" | |
337 " ORDER BY (level %% 1024) ASC LIMIT 1", | |
338 | |
339 /* Estimate the upper limit on the number of leaf nodes in a new segment | |
340 ** created by merging the oldest :2 segments from absolute level :1. See | |
341 ** function sqlite3Fts3Incrmerge() for details. */ | |
342 /* 29 */ "SELECT 2 * total(1 + leaves_end_block - start_block) " | |
343 " FROM %Q.'%q_segdir' WHERE level = ? AND idx < ?", | |
344 | |
345 /* SQL_DELETE_SEGDIR_ENTRY | |
346 ** Delete the %_segdir entry on absolute level :1 with index :2. */ | |
347 /* 30 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?", | |
348 | |
349 /* SQL_SHIFT_SEGDIR_ENTRY | |
350 ** Modify the idx value for the segment with idx=:3 on absolute level :2 | |
351 ** to :1. */ | |
352 /* 31 */ "UPDATE %Q.'%q_segdir' SET idx = ? WHERE level=? AND idx=?", | |
353 | |
354 /* SQL_SELECT_SEGDIR | |
355 ** Read a single entry from the %_segdir table. The entry from absolute | |
356 ** level :1 with index value :2. */ | |
357 /* 32 */ "SELECT idx, start_block, leaves_end_block, end_block, root " | |
358 "FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?", | |
359 | |
360 /* SQL_CHOMP_SEGDIR | |
361 ** Update the start_block (:1) and root (:2) fields of the %_segdir | |
362 ** entry located on absolute level :3 with index :4. */ | |
363 /* 33 */ "UPDATE %Q.'%q_segdir' SET start_block = ?, root = ?" | |
364 "WHERE level = ? AND idx = ?", | |
365 | |
366 /* SQL_SEGMENT_IS_APPENDABLE | |
367 ** Return a single row if the segment with end_block=? is appendable. Or | |
368 ** no rows otherwise. */ | |
369 /* 34 */ "SELECT 1 FROM %Q.'%q_segments' WHERE blockid=? AND block IS NULL", | |
370 | |
371 /* SQL_SELECT_INDEXES | |
372 ** Return the list of valid segment indexes for absolute level ? */ | |
373 /* 35 */ "SELECT idx FROM %Q.'%q_segdir' WHERE level=? ORDER BY 1 ASC", | |
374 | |
375 /* SQL_SELECT_MXLEVEL | |
376 ** Return the largest relative level in the FTS index or indexes. */ | |
377 /* 36 */ "SELECT max( level %% 1024 ) FROM %Q.'%q_segdir'", | |
378 | |
379 /* Return segments in order from oldest to newest.*/ | |
380 /* 37 */ "SELECT level, idx, end_block " | |
381 "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? " | |
382 "ORDER BY level DESC, idx ASC", | |
383 | |
384 /* Update statements used while promoting segments */ | |
385 /* 38 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=-1,idx=? " | |
386 "WHERE level=? AND idx=?", | |
387 /* 39 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=? WHERE level=-1" | |
388 | |
389 }; | |
390 int rc = SQLITE_OK; | |
391 sqlite3_stmt *pStmt; | |
392 | |
393 assert( SizeofArray(azSql)==SizeofArray(p->aStmt) ); | |
394 assert( eStmt<SizeofArray(azSql) && eStmt>=0 ); | |
395 | |
396 pStmt = p->aStmt[eStmt]; | |
397 if( !pStmt ){ | |
398 char *zSql; | |
399 if( eStmt==SQL_CONTENT_INSERT ){ | |
400 zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName, p->zWriteExprlist); | |
401 }else if( eStmt==SQL_SELECT_CONTENT_BY_ROWID ){ | |
402 zSql = sqlite3_mprintf(azSql[eStmt], p->zReadExprlist); | |
403 }else{ | |
404 zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName); | |
405 } | |
406 if( !zSql ){ | |
407 rc = SQLITE_NOMEM; | |
408 }else{ | |
409 rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, NULL); | |
410 sqlite3_free(zSql); | |
411 assert( rc==SQLITE_OK || pStmt==0 ); | |
412 p->aStmt[eStmt] = pStmt; | |
413 } | |
414 } | |
415 if( apVal ){ | |
416 int i; | |
417 int nParam = sqlite3_bind_parameter_count(pStmt); | |
418 for(i=0; rc==SQLITE_OK && i<nParam; i++){ | |
419 rc = sqlite3_bind_value(pStmt, i+1, apVal[i]); | |
420 } | |
421 } | |
422 *pp = pStmt; | |
423 return rc; | |
424 } | |
425 | |
426 | |
427 static int fts3SelectDocsize( | |
428 Fts3Table *pTab, /* FTS3 table handle */ | |
429 sqlite3_int64 iDocid, /* Docid to bind for SQL_SELECT_DOCSIZE */ | |
430 sqlite3_stmt **ppStmt /* OUT: Statement handle */ | |
431 ){ | |
432 sqlite3_stmt *pStmt = 0; /* Statement requested from fts3SqlStmt() */ | |
433 int rc; /* Return code */ | |
434 | |
435 rc = fts3SqlStmt(pTab, SQL_SELECT_DOCSIZE, &pStmt, 0); | |
436 if( rc==SQLITE_OK ){ | |
437 sqlite3_bind_int64(pStmt, 1, iDocid); | |
438 rc = sqlite3_step(pStmt); | |
439 if( rc!=SQLITE_ROW || sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB ){ | |
440 rc = sqlite3_reset(pStmt); | |
441 if( rc==SQLITE_OK ) rc = FTS_CORRUPT_VTAB; | |
442 pStmt = 0; | |
443 }else{ | |
444 rc = SQLITE_OK; | |
445 } | |
446 } | |
447 | |
448 *ppStmt = pStmt; | |
449 return rc; | |
450 } | |
451 | |
452 int sqlite3Fts3SelectDoctotal( | |
453 Fts3Table *pTab, /* Fts3 table handle */ | |
454 sqlite3_stmt **ppStmt /* OUT: Statement handle */ | |
455 ){ | |
456 sqlite3_stmt *pStmt = 0; | |
457 int rc; | |
458 rc = fts3SqlStmt(pTab, SQL_SELECT_STAT, &pStmt, 0); | |
459 if( rc==SQLITE_OK ){ | |
460 sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL); | |
461 if( sqlite3_step(pStmt)!=SQLITE_ROW | |
462 || sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB | |
463 ){ | |
464 rc = sqlite3_reset(pStmt); | |
465 if( rc==SQLITE_OK ) rc = FTS_CORRUPT_VTAB; | |
466 pStmt = 0; | |
467 } | |
468 } | |
469 *ppStmt = pStmt; | |
470 return rc; | |
471 } | |
472 | |
473 int sqlite3Fts3SelectDocsize( | |
474 Fts3Table *pTab, /* Fts3 table handle */ | |
475 sqlite3_int64 iDocid, /* Docid to read size data for */ | |
476 sqlite3_stmt **ppStmt /* OUT: Statement handle */ | |
477 ){ | |
478 return fts3SelectDocsize(pTab, iDocid, ppStmt); | |
479 } | |
480 | |
481 /* | |
482 ** Similar to fts3SqlStmt(). Except, after binding the parameters in | |
483 ** array apVal[] to the SQL statement identified by eStmt, the statement | |
484 ** is executed. | |
485 ** | |
486 ** Returns SQLITE_OK if the statement is successfully executed, or an | |
487 ** SQLite error code otherwise. | |
488 */ | |
489 static void fts3SqlExec( | |
490 int *pRC, /* Result code */ | |
491 Fts3Table *p, /* The FTS3 table */ | |
492 int eStmt, /* Index of statement to evaluate */ | |
493 sqlite3_value **apVal /* Parameters to bind */ | |
494 ){ | |
495 sqlite3_stmt *pStmt; | |
496 int rc; | |
497 if( *pRC ) return; | |
498 rc = fts3SqlStmt(p, eStmt, &pStmt, apVal); | |
499 if( rc==SQLITE_OK ){ | |
500 sqlite3_step(pStmt); | |
501 rc = sqlite3_reset(pStmt); | |
502 } | |
503 *pRC = rc; | |
504 } | |
505 | |
506 | |
507 /* | |
508 ** This function ensures that the caller has obtained an exclusive | |
509 ** shared-cache table-lock on the %_segdir table. This is required before | |
510 ** writing data to the fts3 table. If this lock is not acquired first, then | |
511 ** the caller may end up attempting to take this lock as part of committing | |
512 ** a transaction, causing SQLite to return SQLITE_LOCKED or | |
513 ** LOCKED_SHAREDCACHEto a COMMIT command. | |
514 ** | |
515 ** It is best to avoid this because if FTS3 returns any error when | |
516 ** committing a transaction, the whole transaction will be rolled back. | |
517 ** And this is not what users expect when they get SQLITE_LOCKED_SHAREDCACHE. | |
518 ** It can still happen if the user locks the underlying tables directly | |
519 ** instead of accessing them via FTS. | |
520 */ | |
521 static int fts3Writelock(Fts3Table *p){ | |
522 int rc = SQLITE_OK; | |
523 | |
524 if( p->nPendingData==0 ){ | |
525 sqlite3_stmt *pStmt; | |
526 rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pStmt, 0); | |
527 if( rc==SQLITE_OK ){ | |
528 sqlite3_bind_null(pStmt, 1); | |
529 sqlite3_step(pStmt); | |
530 rc = sqlite3_reset(pStmt); | |
531 } | |
532 } | |
533 | |
534 return rc; | |
535 } | |
536 | |
537 /* | |
538 ** FTS maintains a separate indexes for each language-id (a 32-bit integer). | |
539 ** Within each language id, a separate index is maintained to store the | |
540 ** document terms, and each configured prefix size (configured the FTS | |
541 ** "prefix=" option). And each index consists of multiple levels ("relative | |
542 ** levels"). | |
543 ** | |
544 ** All three of these values (the language id, the specific index and the | |
545 ** level within the index) are encoded in 64-bit integer values stored | |
546 ** in the %_segdir table on disk. This function is used to convert three | |
547 ** separate component values into the single 64-bit integer value that | |
548 ** can be used to query the %_segdir table. | |
549 ** | |
550 ** Specifically, each language-id/index combination is allocated 1024 | |
551 ** 64-bit integer level values ("absolute levels"). The main terms index | |
552 ** for language-id 0 is allocate values 0-1023. The first prefix index | |
553 ** (if any) for language-id 0 is allocated values 1024-2047. And so on. | |
554 ** Language 1 indexes are allocated immediately following language 0. | |
555 ** | |
556 ** So, for a system with nPrefix prefix indexes configured, the block of | |
557 ** absolute levels that corresponds to language-id iLangid and index | |
558 ** iIndex starts at absolute level ((iLangid * (nPrefix+1) + iIndex) * 1024). | |
559 */ | |
560 static sqlite3_int64 getAbsoluteLevel( | |
561 Fts3Table *p, /* FTS3 table handle */ | |
562 int iLangid, /* Language id */ | |
563 int iIndex, /* Index in p->aIndex[] */ | |
564 int iLevel /* Level of segments */ | |
565 ){ | |
566 sqlite3_int64 iBase; /* First absolute level for iLangid/iIndex */ | |
567 assert( iLangid>=0 ); | |
568 assert( p->nIndex>0 ); | |
569 assert( iIndex>=0 && iIndex<p->nIndex ); | |
570 | |
571 iBase = ((sqlite3_int64)iLangid * p->nIndex + iIndex) * FTS3_SEGDIR_MAXLEVEL; | |
572 return iBase + iLevel; | |
573 } | |
574 | |
575 /* | |
576 ** Set *ppStmt to a statement handle that may be used to iterate through | |
577 ** all rows in the %_segdir table, from oldest to newest. If successful, | |
578 ** return SQLITE_OK. If an error occurs while preparing the statement, | |
579 ** return an SQLite error code. | |
580 ** | |
581 ** There is only ever one instance of this SQL statement compiled for | |
582 ** each FTS3 table. | |
583 ** | |
584 ** The statement returns the following columns from the %_segdir table: | |
585 ** | |
586 ** 0: idx | |
587 ** 1: start_block | |
588 ** 2: leaves_end_block | |
589 ** 3: end_block | |
590 ** 4: root | |
591 */ | |
592 int sqlite3Fts3AllSegdirs( | |
593 Fts3Table *p, /* FTS3 table */ | |
594 int iLangid, /* Language being queried */ | |
595 int iIndex, /* Index for p->aIndex[] */ | |
596 int iLevel, /* Level to select (relative level) */ | |
597 sqlite3_stmt **ppStmt /* OUT: Compiled statement */ | |
598 ){ | |
599 int rc; | |
600 sqlite3_stmt *pStmt = 0; | |
601 | |
602 assert( iLevel==FTS3_SEGCURSOR_ALL || iLevel>=0 ); | |
603 assert( iLevel<FTS3_SEGDIR_MAXLEVEL ); | |
604 assert( iIndex>=0 && iIndex<p->nIndex ); | |
605 | |
606 if( iLevel<0 ){ | |
607 /* "SELECT * FROM %_segdir WHERE level BETWEEN ? AND ? ORDER BY ..." */ | |
608 rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE, &pStmt, 0); | |
609 if( rc==SQLITE_OK ){ | |
610 sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0)); | |
611 sqlite3_bind_int64(pStmt, 2, | |
612 getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1) | |
613 ); | |
614 } | |
615 }else{ | |
616 /* "SELECT * FROM %_segdir WHERE level = ? ORDER BY ..." */ | |
617 rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0); | |
618 if( rc==SQLITE_OK ){ | |
619 sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex,iLevel)); | |
620 } | |
621 } | |
622 *ppStmt = pStmt; | |
623 return rc; | |
624 } | |
625 | |
626 | |
627 /* | |
628 ** Append a single varint to a PendingList buffer. SQLITE_OK is returned | |
629 ** if successful, or an SQLite error code otherwise. | |
630 ** | |
631 ** This function also serves to allocate the PendingList structure itself. | |
632 ** For example, to create a new PendingList structure containing two | |
633 ** varints: | |
634 ** | |
635 ** PendingList *p = 0; | |
636 ** fts3PendingListAppendVarint(&p, 1); | |
637 ** fts3PendingListAppendVarint(&p, 2); | |
638 */ | |
639 static int fts3PendingListAppendVarint( | |
640 PendingList **pp, /* IN/OUT: Pointer to PendingList struct */ | |
641 sqlite3_int64 i /* Value to append to data */ | |
642 ){ | |
643 PendingList *p = *pp; | |
644 | |
645 /* Allocate or grow the PendingList as required. */ | |
646 if( !p ){ | |
647 p = sqlite3_malloc(sizeof(*p) + 100); | |
648 if( !p ){ | |
649 return SQLITE_NOMEM; | |
650 } | |
651 p->nSpace = 100; | |
652 p->aData = (char *)&p[1]; | |
653 p->nData = 0; | |
654 } | |
655 else if( p->nData+FTS3_VARINT_MAX+1>p->nSpace ){ | |
656 int nNew = p->nSpace * 2; | |
657 p = sqlite3_realloc(p, sizeof(*p) + nNew); | |
658 if( !p ){ | |
659 sqlite3_free(*pp); | |
660 *pp = 0; | |
661 return SQLITE_NOMEM; | |
662 } | |
663 p->nSpace = nNew; | |
664 p->aData = (char *)&p[1]; | |
665 } | |
666 | |
667 /* Append the new serialized varint to the end of the list. */ | |
668 p->nData += sqlite3Fts3PutVarint(&p->aData[p->nData], i); | |
669 p->aData[p->nData] = '\0'; | |
670 *pp = p; | |
671 return SQLITE_OK; | |
672 } | |
673 | |
674 /* | |
675 ** Add a docid/column/position entry to a PendingList structure. Non-zero | |
676 ** is returned if the structure is sqlite3_realloced as part of adding | |
677 ** the entry. Otherwise, zero. | |
678 ** | |
679 ** If an OOM error occurs, *pRc is set to SQLITE_NOMEM before returning. | |
680 ** Zero is always returned in this case. Otherwise, if no OOM error occurs, | |
681 ** it is set to SQLITE_OK. | |
682 */ | |
683 static int fts3PendingListAppend( | |
684 PendingList **pp, /* IN/OUT: PendingList structure */ | |
685 sqlite3_int64 iDocid, /* Docid for entry to add */ | |
686 sqlite3_int64 iCol, /* Column for entry to add */ | |
687 sqlite3_int64 iPos, /* Position of term for entry to add */ | |
688 int *pRc /* OUT: Return code */ | |
689 ){ | |
690 PendingList *p = *pp; | |
691 int rc = SQLITE_OK; | |
692 | |
693 assert( !p || p->iLastDocid<=iDocid ); | |
694 | |
695 if( !p || p->iLastDocid!=iDocid ){ | |
696 sqlite3_int64 iDelta = iDocid - (p ? p->iLastDocid : 0); | |
697 if( p ){ | |
698 assert( p->nData<p->nSpace ); | |
699 assert( p->aData[p->nData]==0 ); | |
700 p->nData++; | |
701 } | |
702 if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iDelta)) ){ | |
703 goto pendinglistappend_out; | |
704 } | |
705 p->iLastCol = -1; | |
706 p->iLastPos = 0; | |
707 p->iLastDocid = iDocid; | |
708 } | |
709 if( iCol>0 && p->iLastCol!=iCol ){ | |
710 if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, 1)) | |
711 || SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iCol)) | |
712 ){ | |
713 goto pendinglistappend_out; | |
714 } | |
715 p->iLastCol = iCol; | |
716 p->iLastPos = 0; | |
717 } | |
718 if( iCol>=0 ){ | |
719 assert( iPos>p->iLastPos || (iPos==0 && p->iLastPos==0) ); | |
720 rc = fts3PendingListAppendVarint(&p, 2+iPos-p->iLastPos); | |
721 if( rc==SQLITE_OK ){ | |
722 p->iLastPos = iPos; | |
723 } | |
724 } | |
725 | |
726 pendinglistappend_out: | |
727 *pRc = rc; | |
728 if( p!=*pp ){ | |
729 *pp = p; | |
730 return 1; | |
731 } | |
732 return 0; | |
733 } | |
734 | |
735 /* | |
736 ** Free a PendingList object allocated by fts3PendingListAppend(). | |
737 */ | |
738 static void fts3PendingListDelete(PendingList *pList){ | |
739 sqlite3_free(pList); | |
740 } | |
741 | |
742 /* | |
743 ** Add an entry to one of the pending-terms hash tables. | |
744 */ | |
745 static int fts3PendingTermsAddOne( | |
746 Fts3Table *p, | |
747 int iCol, | |
748 int iPos, | |
749 Fts3Hash *pHash, /* Pending terms hash table to add entry to */ | |
750 const char *zToken, | |
751 int nToken | |
752 ){ | |
753 PendingList *pList; | |
754 int rc = SQLITE_OK; | |
755 | |
756 pList = (PendingList *)fts3HashFind(pHash, zToken, nToken); | |
757 if( pList ){ | |
758 p->nPendingData -= (pList->nData + nToken + sizeof(Fts3HashElem)); | |
759 } | |
760 if( fts3PendingListAppend(&pList, p->iPrevDocid, iCol, iPos, &rc) ){ | |
761 if( pList==fts3HashInsert(pHash, zToken, nToken, pList) ){ | |
762 /* Malloc failed while inserting the new entry. This can only | |
763 ** happen if there was no previous entry for this token. | |
764 */ | |
765 assert( 0==fts3HashFind(pHash, zToken, nToken) ); | |
766 sqlite3_free(pList); | |
767 rc = SQLITE_NOMEM; | |
768 } | |
769 } | |
770 if( rc==SQLITE_OK ){ | |
771 p->nPendingData += (pList->nData + nToken + sizeof(Fts3HashElem)); | |
772 } | |
773 return rc; | |
774 } | |
775 | |
776 /* | |
777 ** Tokenize the nul-terminated string zText and add all tokens to the | |
778 ** pending-terms hash-table. The docid used is that currently stored in | |
779 ** p->iPrevDocid, and the column is specified by argument iCol. | |
780 ** | |
781 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code. | |
782 */ | |
783 static int fts3PendingTermsAdd( | |
784 Fts3Table *p, /* Table into which text will be inserted */ | |
785 int iLangid, /* Language id to use */ | |
786 const char *zText, /* Text of document to be inserted */ | |
787 int iCol, /* Column into which text is being inserted */ | |
788 u32 *pnWord /* IN/OUT: Incr. by number tokens inserted */ | |
789 ){ | |
790 int rc; | |
791 int iStart = 0; | |
792 int iEnd = 0; | |
793 int iPos = 0; | |
794 int nWord = 0; | |
795 | |
796 char const *zToken; | |
797 int nToken = 0; | |
798 | |
799 sqlite3_tokenizer *pTokenizer = p->pTokenizer; | |
800 sqlite3_tokenizer_module const *pModule = pTokenizer->pModule; | |
801 sqlite3_tokenizer_cursor *pCsr; | |
802 int (*xNext)(sqlite3_tokenizer_cursor *pCursor, | |
803 const char**,int*,int*,int*,int*); | |
804 | |
805 assert( pTokenizer && pModule ); | |
806 | |
807 /* If the user has inserted a NULL value, this function may be called with | |
808 ** zText==0. In this case, add zero token entries to the hash table and | |
809 ** return early. */ | |
810 if( zText==0 ){ | |
811 *pnWord = 0; | |
812 return SQLITE_OK; | |
813 } | |
814 | |
815 rc = sqlite3Fts3OpenTokenizer(pTokenizer, iLangid, zText, -1, &pCsr); | |
816 if( rc!=SQLITE_OK ){ | |
817 return rc; | |
818 } | |
819 | |
820 xNext = pModule->xNext; | |
821 while( SQLITE_OK==rc | |
822 && SQLITE_OK==(rc = xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos)) | |
823 ){ | |
824 int i; | |
825 if( iPos>=nWord ) nWord = iPos+1; | |
826 | |
827 /* Positions cannot be negative; we use -1 as a terminator internally. | |
828 ** Tokens must have a non-zero length. | |
829 */ | |
830 if( iPos<0 || !zToken || nToken<=0 ){ | |
831 rc = SQLITE_ERROR; | |
832 break; | |
833 } | |
834 | |
835 /* Add the term to the terms index */ | |
836 rc = fts3PendingTermsAddOne( | |
837 p, iCol, iPos, &p->aIndex[0].hPending, zToken, nToken | |
838 ); | |
839 | |
840 /* Add the term to each of the prefix indexes that it is not too | |
841 ** short for. */ | |
842 for(i=1; rc==SQLITE_OK && i<p->nIndex; i++){ | |
843 struct Fts3Index *pIndex = &p->aIndex[i]; | |
844 if( nToken<pIndex->nPrefix ) continue; | |
845 rc = fts3PendingTermsAddOne( | |
846 p, iCol, iPos, &pIndex->hPending, zToken, pIndex->nPrefix | |
847 ); | |
848 } | |
849 } | |
850 | |
851 pModule->xClose(pCsr); | |
852 *pnWord += nWord; | |
853 return (rc==SQLITE_DONE ? SQLITE_OK : rc); | |
854 } | |
855 | |
856 /* | |
857 ** Calling this function indicates that subsequent calls to | |
858 ** fts3PendingTermsAdd() are to add term/position-list pairs for the | |
859 ** contents of the document with docid iDocid. | |
860 */ | |
861 static int fts3PendingTermsDocid( | |
862 Fts3Table *p, /* Full-text table handle */ | |
863 int bDelete, /* True if this op is a delete */ | |
864 int iLangid, /* Language id of row being written */ | |
865 sqlite_int64 iDocid /* Docid of row being written */ | |
866 ){ | |
867 assert( iLangid>=0 ); | |
868 assert( bDelete==1 || bDelete==0 ); | |
869 | |
870 /* TODO(shess) Explore whether partially flushing the buffer on | |
871 ** forced-flush would provide better performance. I suspect that if | |
872 ** we ordered the doclists by size and flushed the largest until the | |
873 ** buffer was half empty, that would let the less frequent terms | |
874 ** generate longer doclists. | |
875 */ | |
876 if( iDocid<p->iPrevDocid | |
877 || (iDocid==p->iPrevDocid && p->bPrevDelete==0) | |
878 || p->iPrevLangid!=iLangid | |
879 || p->nPendingData>p->nMaxPendingData | |
880 ){ | |
881 int rc = sqlite3Fts3PendingTermsFlush(p); | |
882 if( rc!=SQLITE_OK ) return rc; | |
883 } | |
884 p->iPrevDocid = iDocid; | |
885 p->iPrevLangid = iLangid; | |
886 p->bPrevDelete = bDelete; | |
887 return SQLITE_OK; | |
888 } | |
889 | |
890 /* | |
891 ** Discard the contents of the pending-terms hash tables. | |
892 */ | |
893 void sqlite3Fts3PendingTermsClear(Fts3Table *p){ | |
894 int i; | |
895 for(i=0; i<p->nIndex; i++){ | |
896 Fts3HashElem *pElem; | |
897 Fts3Hash *pHash = &p->aIndex[i].hPending; | |
898 for(pElem=fts3HashFirst(pHash); pElem; pElem=fts3HashNext(pElem)){ | |
899 PendingList *pList = (PendingList *)fts3HashData(pElem); | |
900 fts3PendingListDelete(pList); | |
901 } | |
902 fts3HashClear(pHash); | |
903 } | |
904 p->nPendingData = 0; | |
905 } | |
906 | |
907 /* | |
908 ** This function is called by the xUpdate() method as part of an INSERT | |
909 ** operation. It adds entries for each term in the new record to the | |
910 ** pendingTerms hash table. | |
911 ** | |
912 ** Argument apVal is the same as the similarly named argument passed to | |
913 ** fts3InsertData(). Parameter iDocid is the docid of the new row. | |
914 */ | |
915 static int fts3InsertTerms( | |
916 Fts3Table *p, | |
917 int iLangid, | |
918 sqlite3_value **apVal, | |
919 u32 *aSz | |
920 ){ | |
921 int i; /* Iterator variable */ | |
922 for(i=2; i<p->nColumn+2; i++){ | |
923 int iCol = i-2; | |
924 if( p->abNotindexed[iCol]==0 ){ | |
925 const char *zText = (const char *)sqlite3_value_text(apVal[i]); | |
926 int rc = fts3PendingTermsAdd(p, iLangid, zText, iCol, &aSz[iCol]); | |
927 if( rc!=SQLITE_OK ){ | |
928 return rc; | |
929 } | |
930 aSz[p->nColumn] += sqlite3_value_bytes(apVal[i]); | |
931 } | |
932 } | |
933 return SQLITE_OK; | |
934 } | |
935 | |
936 /* | |
937 ** This function is called by the xUpdate() method for an INSERT operation. | |
938 ** The apVal parameter is passed a copy of the apVal argument passed by | |
939 ** SQLite to the xUpdate() method. i.e: | |
940 ** | |
941 ** apVal[0] Not used for INSERT. | |
942 ** apVal[1] rowid | |
943 ** apVal[2] Left-most user-defined column | |
944 ** ... | |
945 ** apVal[p->nColumn+1] Right-most user-defined column | |
946 ** apVal[p->nColumn+2] Hidden column with same name as table | |
947 ** apVal[p->nColumn+3] Hidden "docid" column (alias for rowid) | |
948 ** apVal[p->nColumn+4] Hidden languageid column | |
949 */ | |
950 static int fts3InsertData( | |
951 Fts3Table *p, /* Full-text table */ | |
952 sqlite3_value **apVal, /* Array of values to insert */ | |
953 sqlite3_int64 *piDocid /* OUT: Docid for row just inserted */ | |
954 ){ | |
955 int rc; /* Return code */ | |
956 sqlite3_stmt *pContentInsert; /* INSERT INTO %_content VALUES(...) */ | |
957 | |
958 if( p->zContentTbl ){ | |
959 sqlite3_value *pRowid = apVal[p->nColumn+3]; | |
960 if( sqlite3_value_type(pRowid)==SQLITE_NULL ){ | |
961 pRowid = apVal[1]; | |
962 } | |
963 if( sqlite3_value_type(pRowid)!=SQLITE_INTEGER ){ | |
964 return SQLITE_CONSTRAINT; | |
965 } | |
966 *piDocid = sqlite3_value_int64(pRowid); | |
967 return SQLITE_OK; | |
968 } | |
969 | |
970 /* Locate the statement handle used to insert data into the %_content | |
971 ** table. The SQL for this statement is: | |
972 ** | |
973 ** INSERT INTO %_content VALUES(?, ?, ?, ...) | |
974 ** | |
975 ** The statement features N '?' variables, where N is the number of user | |
976 ** defined columns in the FTS3 table, plus one for the docid field. | |
977 */ | |
978 rc = fts3SqlStmt(p, SQL_CONTENT_INSERT, &pContentInsert, &apVal[1]); | |
979 if( rc==SQLITE_OK && p->zLanguageid ){ | |
980 rc = sqlite3_bind_int( | |
981 pContentInsert, p->nColumn+2, | |
982 sqlite3_value_int(apVal[p->nColumn+4]) | |
983 ); | |
984 } | |
985 if( rc!=SQLITE_OK ) return rc; | |
986 | |
987 /* There is a quirk here. The users INSERT statement may have specified | |
988 ** a value for the "rowid" field, for the "docid" field, or for both. | |
989 ** Which is a problem, since "rowid" and "docid" are aliases for the | |
990 ** same value. For example: | |
991 ** | |
992 ** INSERT INTO fts3tbl(rowid, docid) VALUES(1, 2); | |
993 ** | |
994 ** In FTS3, this is an error. It is an error to specify non-NULL values | |
995 ** for both docid and some other rowid alias. | |
996 */ | |
997 if( SQLITE_NULL!=sqlite3_value_type(apVal[3+p->nColumn]) ){ | |
998 if( SQLITE_NULL==sqlite3_value_type(apVal[0]) | |
999 && SQLITE_NULL!=sqlite3_value_type(apVal[1]) | |
1000 ){ | |
1001 /* A rowid/docid conflict. */ | |
1002 return SQLITE_ERROR; | |
1003 } | |
1004 rc = sqlite3_bind_value(pContentInsert, 1, apVal[3+p->nColumn]); | |
1005 if( rc!=SQLITE_OK ) return rc; | |
1006 } | |
1007 | |
1008 /* Execute the statement to insert the record. Set *piDocid to the | |
1009 ** new docid value. | |
1010 */ | |
1011 sqlite3_step(pContentInsert); | |
1012 rc = sqlite3_reset(pContentInsert); | |
1013 | |
1014 *piDocid = sqlite3_last_insert_rowid(p->db); | |
1015 return rc; | |
1016 } | |
1017 | |
1018 | |
1019 | |
1020 /* | |
1021 ** Remove all data from the FTS3 table. Clear the hash table containing | |
1022 ** pending terms. | |
1023 */ | |
1024 static int fts3DeleteAll(Fts3Table *p, int bContent){ | |
1025 int rc = SQLITE_OK; /* Return code */ | |
1026 | |
1027 /* Discard the contents of the pending-terms hash table. */ | |
1028 sqlite3Fts3PendingTermsClear(p); | |
1029 | |
1030 /* Delete everything from the shadow tables. Except, leave %_content as | |
1031 ** is if bContent is false. */ | |
1032 assert( p->zContentTbl==0 || bContent==0 ); | |
1033 if( bContent ) fts3SqlExec(&rc, p, SQL_DELETE_ALL_CONTENT, 0); | |
1034 fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGMENTS, 0); | |
1035 fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGDIR, 0); | |
1036 if( p->bHasDocsize ){ | |
1037 fts3SqlExec(&rc, p, SQL_DELETE_ALL_DOCSIZE, 0); | |
1038 } | |
1039 if( p->bHasStat ){ | |
1040 fts3SqlExec(&rc, p, SQL_DELETE_ALL_STAT, 0); | |
1041 } | |
1042 return rc; | |
1043 } | |
1044 | |
1045 /* | |
1046 ** | |
1047 */ | |
1048 static int langidFromSelect(Fts3Table *p, sqlite3_stmt *pSelect){ | |
1049 int iLangid = 0; | |
1050 if( p->zLanguageid ) iLangid = sqlite3_column_int(pSelect, p->nColumn+1); | |
1051 return iLangid; | |
1052 } | |
1053 | |
1054 /* | |
1055 ** The first element in the apVal[] array is assumed to contain the docid | |
1056 ** (an integer) of a row about to be deleted. Remove all terms from the | |
1057 ** full-text index. | |
1058 */ | |
1059 static void fts3DeleteTerms( | |
1060 int *pRC, /* Result code */ | |
1061 Fts3Table *p, /* The FTS table to delete from */ | |
1062 sqlite3_value *pRowid, /* The docid to be deleted */ | |
1063 u32 *aSz, /* Sizes of deleted document written here */ | |
1064 int *pbFound /* OUT: Set to true if row really does exist */ | |
1065 ){ | |
1066 int rc; | |
1067 sqlite3_stmt *pSelect; | |
1068 | |
1069 assert( *pbFound==0 ); | |
1070 if( *pRC ) return; | |
1071 rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pSelect, &pRowid); | |
1072 if( rc==SQLITE_OK ){ | |
1073 if( SQLITE_ROW==sqlite3_step(pSelect) ){ | |
1074 int i; | |
1075 int iLangid = langidFromSelect(p, pSelect); | |
1076 i64 iDocid = sqlite3_column_int64(pSelect, 0); | |
1077 rc = fts3PendingTermsDocid(p, 1, iLangid, iDocid); | |
1078 for(i=1; rc==SQLITE_OK && i<=p->nColumn; i++){ | |
1079 int iCol = i-1; | |
1080 if( p->abNotindexed[iCol]==0 ){ | |
1081 const char *zText = (const char *)sqlite3_column_text(pSelect, i); | |
1082 rc = fts3PendingTermsAdd(p, iLangid, zText, -1, &aSz[iCol]); | |
1083 aSz[p->nColumn] += sqlite3_column_bytes(pSelect, i); | |
1084 } | |
1085 } | |
1086 if( rc!=SQLITE_OK ){ | |
1087 sqlite3_reset(pSelect); | |
1088 *pRC = rc; | |
1089 return; | |
1090 } | |
1091 *pbFound = 1; | |
1092 } | |
1093 rc = sqlite3_reset(pSelect); | |
1094 }else{ | |
1095 sqlite3_reset(pSelect); | |
1096 } | |
1097 *pRC = rc; | |
1098 } | |
1099 | |
1100 /* | |
1101 ** Forward declaration to account for the circular dependency between | |
1102 ** functions fts3SegmentMerge() and fts3AllocateSegdirIdx(). | |
1103 */ | |
1104 static int fts3SegmentMerge(Fts3Table *, int, int, int); | |
1105 | |
1106 /* | |
1107 ** This function allocates a new level iLevel index in the segdir table. | |
1108 ** Usually, indexes are allocated within a level sequentially starting | |
1109 ** with 0, so the allocated index is one greater than the value returned | |
1110 ** by: | |
1111 ** | |
1112 ** SELECT max(idx) FROM %_segdir WHERE level = :iLevel | |
1113 ** | |
1114 ** However, if there are already FTS3_MERGE_COUNT indexes at the requested | |
1115 ** level, they are merged into a single level (iLevel+1) segment and the | |
1116 ** allocated index is 0. | |
1117 ** | |
1118 ** If successful, *piIdx is set to the allocated index slot and SQLITE_OK | |
1119 ** returned. Otherwise, an SQLite error code is returned. | |
1120 */ | |
1121 static int fts3AllocateSegdirIdx( | |
1122 Fts3Table *p, | |
1123 int iLangid, /* Language id */ | |
1124 int iIndex, /* Index for p->aIndex */ | |
1125 int iLevel, | |
1126 int *piIdx | |
1127 ){ | |
1128 int rc; /* Return Code */ | |
1129 sqlite3_stmt *pNextIdx; /* Query for next idx at level iLevel */ | |
1130 int iNext = 0; /* Result of query pNextIdx */ | |
1131 | |
1132 assert( iLangid>=0 ); | |
1133 assert( p->nIndex>=1 ); | |
1134 | |
1135 /* Set variable iNext to the next available segdir index at level iLevel. */ | |
1136 rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pNextIdx, 0); | |
1137 if( rc==SQLITE_OK ){ | |
1138 sqlite3_bind_int64( | |
1139 pNextIdx, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel) | |
1140 ); | |
1141 if( SQLITE_ROW==sqlite3_step(pNextIdx) ){ | |
1142 iNext = sqlite3_column_int(pNextIdx, 0); | |
1143 } | |
1144 rc = sqlite3_reset(pNextIdx); | |
1145 } | |
1146 | |
1147 if( rc==SQLITE_OK ){ | |
1148 /* If iNext is FTS3_MERGE_COUNT, indicating that level iLevel is already | |
1149 ** full, merge all segments in level iLevel into a single iLevel+1 | |
1150 ** segment and allocate (newly freed) index 0 at level iLevel. Otherwise, | |
1151 ** if iNext is less than FTS3_MERGE_COUNT, allocate index iNext. | |
1152 */ | |
1153 if( iNext>=FTS3_MERGE_COUNT ){ | |
1154 fts3LogMerge(16, getAbsoluteLevel(p, iLangid, iIndex, iLevel)); | |
1155 rc = fts3SegmentMerge(p, iLangid, iIndex, iLevel); | |
1156 *piIdx = 0; | |
1157 }else{ | |
1158 *piIdx = iNext; | |
1159 } | |
1160 } | |
1161 | |
1162 return rc; | |
1163 } | |
1164 | |
1165 /* | |
1166 ** The %_segments table is declared as follows: | |
1167 ** | |
1168 ** CREATE TABLE %_segments(blockid INTEGER PRIMARY KEY, block BLOB) | |
1169 ** | |
1170 ** This function reads data from a single row of the %_segments table. The | |
1171 ** specific row is identified by the iBlockid parameter. If paBlob is not | |
1172 ** NULL, then a buffer is allocated using sqlite3_malloc() and populated | |
1173 ** with the contents of the blob stored in the "block" column of the | |
1174 ** identified table row is. Whether or not paBlob is NULL, *pnBlob is set | |
1175 ** to the size of the blob in bytes before returning. | |
1176 ** | |
1177 ** If an error occurs, or the table does not contain the specified row, | |
1178 ** an SQLite error code is returned. Otherwise, SQLITE_OK is returned. If | |
1179 ** paBlob is non-NULL, then it is the responsibility of the caller to | |
1180 ** eventually free the returned buffer. | |
1181 ** | |
1182 ** This function may leave an open sqlite3_blob* handle in the | |
1183 ** Fts3Table.pSegments variable. This handle is reused by subsequent calls | |
1184 ** to this function. The handle may be closed by calling the | |
1185 ** sqlite3Fts3SegmentsClose() function. Reusing a blob handle is a handy | |
1186 ** performance improvement, but the blob handle should always be closed | |
1187 ** before control is returned to the user (to prevent a lock being held | |
1188 ** on the database file for longer than necessary). Thus, any virtual table | |
1189 ** method (xFilter etc.) that may directly or indirectly call this function | |
1190 ** must call sqlite3Fts3SegmentsClose() before returning. | |
1191 */ | |
1192 int sqlite3Fts3ReadBlock( | |
1193 Fts3Table *p, /* FTS3 table handle */ | |
1194 sqlite3_int64 iBlockid, /* Access the row with blockid=$iBlockid */ | |
1195 char **paBlob, /* OUT: Blob data in malloc'd buffer */ | |
1196 int *pnBlob, /* OUT: Size of blob data */ | |
1197 int *pnLoad /* OUT: Bytes actually loaded */ | |
1198 ){ | |
1199 int rc; /* Return code */ | |
1200 | |
1201 /* pnBlob must be non-NULL. paBlob may be NULL or non-NULL. */ | |
1202 assert( pnBlob ); | |
1203 | |
1204 if( p->pSegments ){ | |
1205 rc = sqlite3_blob_reopen(p->pSegments, iBlockid); | |
1206 }else{ | |
1207 if( 0==p->zSegmentsTbl ){ | |
1208 p->zSegmentsTbl = sqlite3_mprintf("%s_segments", p->zName); | |
1209 if( 0==p->zSegmentsTbl ) return SQLITE_NOMEM; | |
1210 } | |
1211 rc = sqlite3_blob_open( | |
1212 p->db, p->zDb, p->zSegmentsTbl, "block", iBlockid, 0, &p->pSegments | |
1213 ); | |
1214 } | |
1215 | |
1216 if( rc==SQLITE_OK ){ | |
1217 int nByte = sqlite3_blob_bytes(p->pSegments); | |
1218 *pnBlob = nByte; | |
1219 if( paBlob ){ | |
1220 char *aByte = sqlite3_malloc(nByte + FTS3_NODE_PADDING); | |
1221 if( !aByte ){ | |
1222 rc = SQLITE_NOMEM; | |
1223 }else{ | |
1224 if( pnLoad && nByte>(FTS3_NODE_CHUNK_THRESHOLD) ){ | |
1225 nByte = FTS3_NODE_CHUNKSIZE; | |
1226 *pnLoad = nByte; | |
1227 } | |
1228 rc = sqlite3_blob_read(p->pSegments, aByte, nByte, 0); | |
1229 memset(&aByte[nByte], 0, FTS3_NODE_PADDING); | |
1230 if( rc!=SQLITE_OK ){ | |
1231 sqlite3_free(aByte); | |
1232 aByte = 0; | |
1233 } | |
1234 } | |
1235 *paBlob = aByte; | |
1236 } | |
1237 } | |
1238 | |
1239 return rc; | |
1240 } | |
1241 | |
1242 /* | |
1243 ** Close the blob handle at p->pSegments, if it is open. See comments above | |
1244 ** the sqlite3Fts3ReadBlock() function for details. | |
1245 */ | |
1246 void sqlite3Fts3SegmentsClose(Fts3Table *p){ | |
1247 sqlite3_blob_close(p->pSegments); | |
1248 p->pSegments = 0; | |
1249 } | |
1250 | |
1251 static int fts3SegReaderIncrRead(Fts3SegReader *pReader){ | |
1252 int nRead; /* Number of bytes to read */ | |
1253 int rc; /* Return code */ | |
1254 | |
1255 nRead = MIN(pReader->nNode - pReader->nPopulate, FTS3_NODE_CHUNKSIZE); | |
1256 rc = sqlite3_blob_read( | |
1257 pReader->pBlob, | |
1258 &pReader->aNode[pReader->nPopulate], | |
1259 nRead, | |
1260 pReader->nPopulate | |
1261 ); | |
1262 | |
1263 if( rc==SQLITE_OK ){ | |
1264 pReader->nPopulate += nRead; | |
1265 memset(&pReader->aNode[pReader->nPopulate], 0, FTS3_NODE_PADDING); | |
1266 if( pReader->nPopulate==pReader->nNode ){ | |
1267 sqlite3_blob_close(pReader->pBlob); | |
1268 pReader->pBlob = 0; | |
1269 pReader->nPopulate = 0; | |
1270 } | |
1271 } | |
1272 return rc; | |
1273 } | |
1274 | |
1275 static int fts3SegReaderRequire(Fts3SegReader *pReader, char *pFrom, int nByte){ | |
1276 int rc = SQLITE_OK; | |
1277 assert( !pReader->pBlob | |
1278 || (pFrom>=pReader->aNode && pFrom<&pReader->aNode[pReader->nNode]) | |
1279 ); | |
1280 while( pReader->pBlob && rc==SQLITE_OK | |
1281 && (pFrom - pReader->aNode + nByte)>pReader->nPopulate | |
1282 ){ | |
1283 rc = fts3SegReaderIncrRead(pReader); | |
1284 } | |
1285 return rc; | |
1286 } | |
1287 | |
1288 /* | |
1289 ** Set an Fts3SegReader cursor to point at EOF. | |
1290 */ | |
1291 static void fts3SegReaderSetEof(Fts3SegReader *pSeg){ | |
1292 if( !fts3SegReaderIsRootOnly(pSeg) ){ | |
1293 sqlite3_free(pSeg->aNode); | |
1294 sqlite3_blob_close(pSeg->pBlob); | |
1295 pSeg->pBlob = 0; | |
1296 } | |
1297 pSeg->aNode = 0; | |
1298 } | |
1299 | |
1300 /* | |
1301 ** Move the iterator passed as the first argument to the next term in the | |
1302 ** segment. If successful, SQLITE_OK is returned. If there is no next term, | |
1303 ** SQLITE_DONE. Otherwise, an SQLite error code. | |
1304 */ | |
1305 static int fts3SegReaderNext( | |
1306 Fts3Table *p, | |
1307 Fts3SegReader *pReader, | |
1308 int bIncr | |
1309 ){ | |
1310 int rc; /* Return code of various sub-routines */ | |
1311 char *pNext; /* Cursor variable */ | |
1312 int nPrefix; /* Number of bytes in term prefix */ | |
1313 int nSuffix; /* Number of bytes in term suffix */ | |
1314 | |
1315 if( !pReader->aDoclist ){ | |
1316 pNext = pReader->aNode; | |
1317 }else{ | |
1318 pNext = &pReader->aDoclist[pReader->nDoclist]; | |
1319 } | |
1320 | |
1321 if( !pNext || pNext>=&pReader->aNode[pReader->nNode] ){ | |
1322 | |
1323 if( fts3SegReaderIsPending(pReader) ){ | |
1324 Fts3HashElem *pElem = *(pReader->ppNextElem); | |
1325 sqlite3_free(pReader->aNode); | |
1326 pReader->aNode = 0; | |
1327 if( pElem ){ | |
1328 char *aCopy; | |
1329 PendingList *pList = (PendingList *)fts3HashData(pElem); | |
1330 int nCopy = pList->nData+1; | |
1331 pReader->zTerm = (char *)fts3HashKey(pElem); | |
1332 pReader->nTerm = fts3HashKeysize(pElem); | |
1333 aCopy = (char*)sqlite3_malloc(nCopy); | |
1334 if( !aCopy ) return SQLITE_NOMEM; | |
1335 memcpy(aCopy, pList->aData, nCopy); | |
1336 pReader->nNode = pReader->nDoclist = nCopy; | |
1337 pReader->aNode = pReader->aDoclist = aCopy; | |
1338 pReader->ppNextElem++; | |
1339 assert( pReader->aNode ); | |
1340 } | |
1341 return SQLITE_OK; | |
1342 } | |
1343 | |
1344 fts3SegReaderSetEof(pReader); | |
1345 | |
1346 /* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf | |
1347 ** blocks have already been traversed. */ | |
1348 assert( pReader->iCurrentBlock<=pReader->iLeafEndBlock ); | |
1349 if( pReader->iCurrentBlock>=pReader->iLeafEndBlock ){ | |
1350 return SQLITE_OK; | |
1351 } | |
1352 | |
1353 rc = sqlite3Fts3ReadBlock( | |
1354 p, ++pReader->iCurrentBlock, &pReader->aNode, &pReader->nNode, | |
1355 (bIncr ? &pReader->nPopulate : 0) | |
1356 ); | |
1357 if( rc!=SQLITE_OK ) return rc; | |
1358 assert( pReader->pBlob==0 ); | |
1359 if( bIncr && pReader->nPopulate<pReader->nNode ){ | |
1360 pReader->pBlob = p->pSegments; | |
1361 p->pSegments = 0; | |
1362 } | |
1363 pNext = pReader->aNode; | |
1364 } | |
1365 | |
1366 assert( !fts3SegReaderIsPending(pReader) ); | |
1367 | |
1368 rc = fts3SegReaderRequire(pReader, pNext, FTS3_VARINT_MAX*2); | |
1369 if( rc!=SQLITE_OK ) return rc; | |
1370 | |
1371 /* Because of the FTS3_NODE_PADDING bytes of padding, the following is | |
1372 ** safe (no risk of overread) even if the node data is corrupted. */ | |
1373 pNext += fts3GetVarint32(pNext, &nPrefix); | |
1374 pNext += fts3GetVarint32(pNext, &nSuffix); | |
1375 if( nPrefix<0 || nSuffix<=0 | |
1376 || &pNext[nSuffix]>&pReader->aNode[pReader->nNode] | |
1377 ){ | |
1378 return FTS_CORRUPT_VTAB; | |
1379 } | |
1380 | |
1381 if( nPrefix+nSuffix>pReader->nTermAlloc ){ | |
1382 int nNew = (nPrefix+nSuffix)*2; | |
1383 char *zNew = sqlite3_realloc(pReader->zTerm, nNew); | |
1384 if( !zNew ){ | |
1385 return SQLITE_NOMEM; | |
1386 } | |
1387 pReader->zTerm = zNew; | |
1388 pReader->nTermAlloc = nNew; | |
1389 } | |
1390 | |
1391 rc = fts3SegReaderRequire(pReader, pNext, nSuffix+FTS3_VARINT_MAX); | |
1392 if( rc!=SQLITE_OK ) return rc; | |
1393 | |
1394 memcpy(&pReader->zTerm[nPrefix], pNext, nSuffix); | |
1395 pReader->nTerm = nPrefix+nSuffix; | |
1396 pNext += nSuffix; | |
1397 pNext += fts3GetVarint32(pNext, &pReader->nDoclist); | |
1398 pReader->aDoclist = pNext; | |
1399 pReader->pOffsetList = 0; | |
1400 | |
1401 /* Check that the doclist does not appear to extend past the end of the | |
1402 ** b-tree node. And that the final byte of the doclist is 0x00. If either | |
1403 ** of these statements is untrue, then the data structure is corrupt. | |
1404 */ | |
1405 if( &pReader->aDoclist[pReader->nDoclist]>&pReader->aNode[pReader->nNode] | |
1406 || (pReader->nPopulate==0 && pReader->aDoclist[pReader->nDoclist-1]) | |
1407 ){ | |
1408 return FTS_CORRUPT_VTAB; | |
1409 } | |
1410 return SQLITE_OK; | |
1411 } | |
1412 | |
1413 /* | |
1414 ** Set the SegReader to point to the first docid in the doclist associated | |
1415 ** with the current term. | |
1416 */ | |
1417 static int fts3SegReaderFirstDocid(Fts3Table *pTab, Fts3SegReader *pReader){ | |
1418 int rc = SQLITE_OK; | |
1419 assert( pReader->aDoclist ); | |
1420 assert( !pReader->pOffsetList ); | |
1421 if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){ | |
1422 u8 bEof = 0; | |
1423 pReader->iDocid = 0; | |
1424 pReader->nOffsetList = 0; | |
1425 sqlite3Fts3DoclistPrev(0, | |
1426 pReader->aDoclist, pReader->nDoclist, &pReader->pOffsetList, | |
1427 &pReader->iDocid, &pReader->nOffsetList, &bEof | |
1428 ); | |
1429 }else{ | |
1430 rc = fts3SegReaderRequire(pReader, pReader->aDoclist, FTS3_VARINT_MAX); | |
1431 if( rc==SQLITE_OK ){ | |
1432 int n = sqlite3Fts3GetVarint(pReader->aDoclist, &pReader->iDocid); | |
1433 pReader->pOffsetList = &pReader->aDoclist[n]; | |
1434 } | |
1435 } | |
1436 return rc; | |
1437 } | |
1438 | |
1439 /* | |
1440 ** Advance the SegReader to point to the next docid in the doclist | |
1441 ** associated with the current term. | |
1442 ** | |
1443 ** If arguments ppOffsetList and pnOffsetList are not NULL, then | |
1444 ** *ppOffsetList is set to point to the first column-offset list | |
1445 ** in the doclist entry (i.e. immediately past the docid varint). | |
1446 ** *pnOffsetList is set to the length of the set of column-offset | |
1447 ** lists, not including the nul-terminator byte. For example: | |
1448 */ | |
1449 static int fts3SegReaderNextDocid( | |
1450 Fts3Table *pTab, | |
1451 Fts3SegReader *pReader, /* Reader to advance to next docid */ | |
1452 char **ppOffsetList, /* OUT: Pointer to current position-list */ | |
1453 int *pnOffsetList /* OUT: Length of *ppOffsetList in bytes */ | |
1454 ){ | |
1455 int rc = SQLITE_OK; | |
1456 char *p = pReader->pOffsetList; | |
1457 char c = 0; | |
1458 | |
1459 assert( p ); | |
1460 | |
1461 if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){ | |
1462 /* A pending-terms seg-reader for an FTS4 table that uses order=desc. | |
1463 ** Pending-terms doclists are always built up in ascending order, so | |
1464 ** we have to iterate through them backwards here. */ | |
1465 u8 bEof = 0; | |
1466 if( ppOffsetList ){ | |
1467 *ppOffsetList = pReader->pOffsetList; | |
1468 *pnOffsetList = pReader->nOffsetList - 1; | |
1469 } | |
1470 sqlite3Fts3DoclistPrev(0, | |
1471 pReader->aDoclist, pReader->nDoclist, &p, &pReader->iDocid, | |
1472 &pReader->nOffsetList, &bEof | |
1473 ); | |
1474 if( bEof ){ | |
1475 pReader->pOffsetList = 0; | |
1476 }else{ | |
1477 pReader->pOffsetList = p; | |
1478 } | |
1479 }else{ | |
1480 char *pEnd = &pReader->aDoclist[pReader->nDoclist]; | |
1481 | |
1482 /* Pointer p currently points at the first byte of an offset list. The | |
1483 ** following block advances it to point one byte past the end of | |
1484 ** the same offset list. */ | |
1485 while( 1 ){ | |
1486 | |
1487 /* The following line of code (and the "p++" below the while() loop) is | |
1488 ** normally all that is required to move pointer p to the desired | |
1489 ** position. The exception is if this node is being loaded from disk | |
1490 ** incrementally and pointer "p" now points to the first byte past | |
1491 ** the populated part of pReader->aNode[]. | |
1492 */ | |
1493 while( *p | c ) c = *p++ & 0x80; | |
1494 assert( *p==0 ); | |
1495 | |
1496 if( pReader->pBlob==0 || p<&pReader->aNode[pReader->nPopulate] ) break; | |
1497 rc = fts3SegReaderIncrRead(pReader); | |
1498 if( rc!=SQLITE_OK ) return rc; | |
1499 } | |
1500 p++; | |
1501 | |
1502 /* If required, populate the output variables with a pointer to and the | |
1503 ** size of the previous offset-list. | |
1504 */ | |
1505 if( ppOffsetList ){ | |
1506 *ppOffsetList = pReader->pOffsetList; | |
1507 *pnOffsetList = (int)(p - pReader->pOffsetList - 1); | |
1508 } | |
1509 | |
1510 /* List may have been edited in place by fts3EvalNearTrim() */ | |
1511 while( p<pEnd && *p==0 ) p++; | |
1512 | |
1513 /* If there are no more entries in the doclist, set pOffsetList to | |
1514 ** NULL. Otherwise, set Fts3SegReader.iDocid to the next docid and | |
1515 ** Fts3SegReader.pOffsetList to point to the next offset list before | |
1516 ** returning. | |
1517 */ | |
1518 if( p>=pEnd ){ | |
1519 pReader->pOffsetList = 0; | |
1520 }else{ | |
1521 rc = fts3SegReaderRequire(pReader, p, FTS3_VARINT_MAX); | |
1522 if( rc==SQLITE_OK ){ | |
1523 sqlite3_int64 iDelta; | |
1524 pReader->pOffsetList = p + sqlite3Fts3GetVarint(p, &iDelta); | |
1525 if( pTab->bDescIdx ){ | |
1526 pReader->iDocid -= iDelta; | |
1527 }else{ | |
1528 pReader->iDocid += iDelta; | |
1529 } | |
1530 } | |
1531 } | |
1532 } | |
1533 | |
1534 return SQLITE_OK; | |
1535 } | |
1536 | |
1537 | |
1538 int sqlite3Fts3MsrOvfl( | |
1539 Fts3Cursor *pCsr, | |
1540 Fts3MultiSegReader *pMsr, | |
1541 int *pnOvfl | |
1542 ){ | |
1543 Fts3Table *p = (Fts3Table*)pCsr->base.pVtab; | |
1544 int nOvfl = 0; | |
1545 int ii; | |
1546 int rc = SQLITE_OK; | |
1547 int pgsz = p->nPgsz; | |
1548 | |
1549 assert( p->bFts4 ); | |
1550 assert( pgsz>0 ); | |
1551 | |
1552 for(ii=0; rc==SQLITE_OK && ii<pMsr->nSegment; ii++){ | |
1553 Fts3SegReader *pReader = pMsr->apSegment[ii]; | |
1554 if( !fts3SegReaderIsPending(pReader) | |
1555 && !fts3SegReaderIsRootOnly(pReader) | |
1556 ){ | |
1557 sqlite3_int64 jj; | |
1558 for(jj=pReader->iStartBlock; jj<=pReader->iLeafEndBlock; jj++){ | |
1559 int nBlob; | |
1560 rc = sqlite3Fts3ReadBlock(p, jj, 0, &nBlob, 0); | |
1561 if( rc!=SQLITE_OK ) break; | |
1562 if( (nBlob+35)>pgsz ){ | |
1563 nOvfl += (nBlob + 34)/pgsz; | |
1564 } | |
1565 } | |
1566 } | |
1567 } | |
1568 *pnOvfl = nOvfl; | |
1569 return rc; | |
1570 } | |
1571 | |
1572 /* | |
1573 ** Free all allocations associated with the iterator passed as the | |
1574 ** second argument. | |
1575 */ | |
1576 void sqlite3Fts3SegReaderFree(Fts3SegReader *pReader){ | |
1577 if( pReader ){ | |
1578 if( !fts3SegReaderIsPending(pReader) ){ | |
1579 sqlite3_free(pReader->zTerm); | |
1580 } | |
1581 if( !fts3SegReaderIsRootOnly(pReader) ){ | |
1582 sqlite3_free(pReader->aNode); | |
1583 } | |
1584 sqlite3_blob_close(pReader->pBlob); | |
1585 } | |
1586 sqlite3_free(pReader); | |
1587 } | |
1588 | |
1589 /* | |
1590 ** Allocate a new SegReader object. | |
1591 */ | |
1592 int sqlite3Fts3SegReaderNew( | |
1593 int iAge, /* Segment "age". */ | |
1594 int bLookup, /* True for a lookup only */ | |
1595 sqlite3_int64 iStartLeaf, /* First leaf to traverse */ | |
1596 sqlite3_int64 iEndLeaf, /* Final leaf to traverse */ | |
1597 sqlite3_int64 iEndBlock, /* Final block of segment */ | |
1598 const char *zRoot, /* Buffer containing root node */ | |
1599 int nRoot, /* Size of buffer containing root node */ | |
1600 Fts3SegReader **ppReader /* OUT: Allocated Fts3SegReader */ | |
1601 ){ | |
1602 Fts3SegReader *pReader; /* Newly allocated SegReader object */ | |
1603 int nExtra = 0; /* Bytes to allocate segment root node */ | |
1604 | |
1605 assert( iStartLeaf<=iEndLeaf ); | |
1606 if( iStartLeaf==0 ){ | |
1607 nExtra = nRoot + FTS3_NODE_PADDING; | |
1608 } | |
1609 | |
1610 pReader = (Fts3SegReader *)sqlite3_malloc(sizeof(Fts3SegReader) + nExtra); | |
1611 if( !pReader ){ | |
1612 return SQLITE_NOMEM; | |
1613 } | |
1614 memset(pReader, 0, sizeof(Fts3SegReader)); | |
1615 pReader->iIdx = iAge; | |
1616 pReader->bLookup = bLookup!=0; | |
1617 pReader->iStartBlock = iStartLeaf; | |
1618 pReader->iLeafEndBlock = iEndLeaf; | |
1619 pReader->iEndBlock = iEndBlock; | |
1620 | |
1621 if( nExtra ){ | |
1622 /* The entire segment is stored in the root node. */ | |
1623 pReader->aNode = (char *)&pReader[1]; | |
1624 pReader->rootOnly = 1; | |
1625 pReader->nNode = nRoot; | |
1626 memcpy(pReader->aNode, zRoot, nRoot); | |
1627 memset(&pReader->aNode[nRoot], 0, FTS3_NODE_PADDING); | |
1628 }else{ | |
1629 pReader->iCurrentBlock = iStartLeaf-1; | |
1630 } | |
1631 *ppReader = pReader; | |
1632 return SQLITE_OK; | |
1633 } | |
1634 | |
1635 /* | |
1636 ** This is a comparison function used as a qsort() callback when sorting | |
1637 ** an array of pending terms by term. This occurs as part of flushing | |
1638 ** the contents of the pending-terms hash table to the database. | |
1639 */ | |
1640 static int SQLITE_CDECL fts3CompareElemByTerm( | |
1641 const void *lhs, | |
1642 const void *rhs | |
1643 ){ | |
1644 char *z1 = fts3HashKey(*(Fts3HashElem **)lhs); | |
1645 char *z2 = fts3HashKey(*(Fts3HashElem **)rhs); | |
1646 int n1 = fts3HashKeysize(*(Fts3HashElem **)lhs); | |
1647 int n2 = fts3HashKeysize(*(Fts3HashElem **)rhs); | |
1648 | |
1649 int n = (n1<n2 ? n1 : n2); | |
1650 int c = memcmp(z1, z2, n); | |
1651 if( c==0 ){ | |
1652 c = n1 - n2; | |
1653 } | |
1654 return c; | |
1655 } | |
1656 | |
1657 /* | |
1658 ** This function is used to allocate an Fts3SegReader that iterates through | |
1659 ** a subset of the terms stored in the Fts3Table.pendingTerms array. | |
1660 ** | |
1661 ** If the isPrefixIter parameter is zero, then the returned SegReader iterates | |
1662 ** through each term in the pending-terms table. Or, if isPrefixIter is | |
1663 ** non-zero, it iterates through each term and its prefixes. For example, if | |
1664 ** the pending terms hash table contains the terms "sqlite", "mysql" and | |
1665 ** "firebird", then the iterator visits the following 'terms' (in the order | |
1666 ** shown): | |
1667 ** | |
1668 ** f fi fir fire fireb firebi firebir firebird | |
1669 ** m my mys mysq mysql | |
1670 ** s sq sql sqli sqlit sqlite | |
1671 ** | |
1672 ** Whereas if isPrefixIter is zero, the terms visited are: | |
1673 ** | |
1674 ** firebird mysql sqlite | |
1675 */ | |
1676 int sqlite3Fts3SegReaderPending( | |
1677 Fts3Table *p, /* Virtual table handle */ | |
1678 int iIndex, /* Index for p->aIndex */ | |
1679 const char *zTerm, /* Term to search for */ | |
1680 int nTerm, /* Size of buffer zTerm */ | |
1681 int bPrefix, /* True for a prefix iterator */ | |
1682 Fts3SegReader **ppReader /* OUT: SegReader for pending-terms */ | |
1683 ){ | |
1684 Fts3SegReader *pReader = 0; /* Fts3SegReader object to return */ | |
1685 Fts3HashElem *pE; /* Iterator variable */ | |
1686 Fts3HashElem **aElem = 0; /* Array of term hash entries to scan */ | |
1687 int nElem = 0; /* Size of array at aElem */ | |
1688 int rc = SQLITE_OK; /* Return Code */ | |
1689 Fts3Hash *pHash; | |
1690 | |
1691 pHash = &p->aIndex[iIndex].hPending; | |
1692 if( bPrefix ){ | |
1693 int nAlloc = 0; /* Size of allocated array at aElem */ | |
1694 | |
1695 for(pE=fts3HashFirst(pHash); pE; pE=fts3HashNext(pE)){ | |
1696 char *zKey = (char *)fts3HashKey(pE); | |
1697 int nKey = fts3HashKeysize(pE); | |
1698 if( nTerm==0 || (nKey>=nTerm && 0==memcmp(zKey, zTerm, nTerm)) ){ | |
1699 if( nElem==nAlloc ){ | |
1700 Fts3HashElem **aElem2; | |
1701 nAlloc += 16; | |
1702 aElem2 = (Fts3HashElem **)sqlite3_realloc( | |
1703 aElem, nAlloc*sizeof(Fts3HashElem *) | |
1704 ); | |
1705 if( !aElem2 ){ | |
1706 rc = SQLITE_NOMEM; | |
1707 nElem = 0; | |
1708 break; | |
1709 } | |
1710 aElem = aElem2; | |
1711 } | |
1712 | |
1713 aElem[nElem++] = pE; | |
1714 } | |
1715 } | |
1716 | |
1717 /* If more than one term matches the prefix, sort the Fts3HashElem | |
1718 ** objects in term order using qsort(). This uses the same comparison | |
1719 ** callback as is used when flushing terms to disk. | |
1720 */ | |
1721 if( nElem>1 ){ | |
1722 qsort(aElem, nElem, sizeof(Fts3HashElem *), fts3CompareElemByTerm); | |
1723 } | |
1724 | |
1725 }else{ | |
1726 /* The query is a simple term lookup that matches at most one term in | |
1727 ** the index. All that is required is a straight hash-lookup. | |
1728 ** | |
1729 ** Because the stack address of pE may be accessed via the aElem pointer | |
1730 ** below, the "Fts3HashElem *pE" must be declared so that it is valid | |
1731 ** within this entire function, not just this "else{...}" block. | |
1732 */ | |
1733 pE = fts3HashFindElem(pHash, zTerm, nTerm); | |
1734 if( pE ){ | |
1735 aElem = &pE; | |
1736 nElem = 1; | |
1737 } | |
1738 } | |
1739 | |
1740 if( nElem>0 ){ | |
1741 int nByte = sizeof(Fts3SegReader) + (nElem+1)*sizeof(Fts3HashElem *); | |
1742 pReader = (Fts3SegReader *)sqlite3_malloc(nByte); | |
1743 if( !pReader ){ | |
1744 rc = SQLITE_NOMEM; | |
1745 }else{ | |
1746 memset(pReader, 0, nByte); | |
1747 pReader->iIdx = 0x7FFFFFFF; | |
1748 pReader->ppNextElem = (Fts3HashElem **)&pReader[1]; | |
1749 memcpy(pReader->ppNextElem, aElem, nElem*sizeof(Fts3HashElem *)); | |
1750 } | |
1751 } | |
1752 | |
1753 if( bPrefix ){ | |
1754 sqlite3_free(aElem); | |
1755 } | |
1756 *ppReader = pReader; | |
1757 return rc; | |
1758 } | |
1759 | |
1760 /* | |
1761 ** Compare the entries pointed to by two Fts3SegReader structures. | |
1762 ** Comparison is as follows: | |
1763 ** | |
1764 ** 1) EOF is greater than not EOF. | |
1765 ** | |
1766 ** 2) The current terms (if any) are compared using memcmp(). If one | |
1767 ** term is a prefix of another, the longer term is considered the | |
1768 ** larger. | |
1769 ** | |
1770 ** 3) By segment age. An older segment is considered larger. | |
1771 */ | |
1772 static int fts3SegReaderCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){ | |
1773 int rc; | |
1774 if( pLhs->aNode && pRhs->aNode ){ | |
1775 int rc2 = pLhs->nTerm - pRhs->nTerm; | |
1776 if( rc2<0 ){ | |
1777 rc = memcmp(pLhs->zTerm, pRhs->zTerm, pLhs->nTerm); | |
1778 }else{ | |
1779 rc = memcmp(pLhs->zTerm, pRhs->zTerm, pRhs->nTerm); | |
1780 } | |
1781 if( rc==0 ){ | |
1782 rc = rc2; | |
1783 } | |
1784 }else{ | |
1785 rc = (pLhs->aNode==0) - (pRhs->aNode==0); | |
1786 } | |
1787 if( rc==0 ){ | |
1788 rc = pRhs->iIdx - pLhs->iIdx; | |
1789 } | |
1790 assert( rc!=0 ); | |
1791 return rc; | |
1792 } | |
1793 | |
1794 /* | |
1795 ** A different comparison function for SegReader structures. In this | |
1796 ** version, it is assumed that each SegReader points to an entry in | |
1797 ** a doclist for identical terms. Comparison is made as follows: | |
1798 ** | |
1799 ** 1) EOF (end of doclist in this case) is greater than not EOF. | |
1800 ** | |
1801 ** 2) By current docid. | |
1802 ** | |
1803 ** 3) By segment age. An older segment is considered larger. | |
1804 */ | |
1805 static int fts3SegReaderDoclistCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){ | |
1806 int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0); | |
1807 if( rc==0 ){ | |
1808 if( pLhs->iDocid==pRhs->iDocid ){ | |
1809 rc = pRhs->iIdx - pLhs->iIdx; | |
1810 }else{ | |
1811 rc = (pLhs->iDocid > pRhs->iDocid) ? 1 : -1; | |
1812 } | |
1813 } | |
1814 assert( pLhs->aNode && pRhs->aNode ); | |
1815 return rc; | |
1816 } | |
1817 static int fts3SegReaderDoclistCmpRev(Fts3SegReader *pLhs, Fts3SegReader *pRhs){ | |
1818 int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0); | |
1819 if( rc==0 ){ | |
1820 if( pLhs->iDocid==pRhs->iDocid ){ | |
1821 rc = pRhs->iIdx - pLhs->iIdx; | |
1822 }else{ | |
1823 rc = (pLhs->iDocid < pRhs->iDocid) ? 1 : -1; | |
1824 } | |
1825 } | |
1826 assert( pLhs->aNode && pRhs->aNode ); | |
1827 return rc; | |
1828 } | |
1829 | |
1830 /* | |
1831 ** Compare the term that the Fts3SegReader object passed as the first argument | |
1832 ** points to with the term specified by arguments zTerm and nTerm. | |
1833 ** | |
1834 ** If the pSeg iterator is already at EOF, return 0. Otherwise, return | |
1835 ** -ve if the pSeg term is less than zTerm/nTerm, 0 if the two terms are | |
1836 ** equal, or +ve if the pSeg term is greater than zTerm/nTerm. | |
1837 */ | |
1838 static int fts3SegReaderTermCmp( | |
1839 Fts3SegReader *pSeg, /* Segment reader object */ | |
1840 const char *zTerm, /* Term to compare to */ | |
1841 int nTerm /* Size of term zTerm in bytes */ | |
1842 ){ | |
1843 int res = 0; | |
1844 if( pSeg->aNode ){ | |
1845 if( pSeg->nTerm>nTerm ){ | |
1846 res = memcmp(pSeg->zTerm, zTerm, nTerm); | |
1847 }else{ | |
1848 res = memcmp(pSeg->zTerm, zTerm, pSeg->nTerm); | |
1849 } | |
1850 if( res==0 ){ | |
1851 res = pSeg->nTerm-nTerm; | |
1852 } | |
1853 } | |
1854 return res; | |
1855 } | |
1856 | |
1857 /* | |
1858 ** Argument apSegment is an array of nSegment elements. It is known that | |
1859 ** the final (nSegment-nSuspect) members are already in sorted order | |
1860 ** (according to the comparison function provided). This function shuffles | |
1861 ** the array around until all entries are in sorted order. | |
1862 */ | |
1863 static void fts3SegReaderSort( | |
1864 Fts3SegReader **apSegment, /* Array to sort entries of */ | |
1865 int nSegment, /* Size of apSegment array */ | |
1866 int nSuspect, /* Unsorted entry count */ | |
1867 int (*xCmp)(Fts3SegReader *, Fts3SegReader *) /* Comparison function */ | |
1868 ){ | |
1869 int i; /* Iterator variable */ | |
1870 | |
1871 assert( nSuspect<=nSegment ); | |
1872 | |
1873 if( nSuspect==nSegment ) nSuspect--; | |
1874 for(i=nSuspect-1; i>=0; i--){ | |
1875 int j; | |
1876 for(j=i; j<(nSegment-1); j++){ | |
1877 Fts3SegReader *pTmp; | |
1878 if( xCmp(apSegment[j], apSegment[j+1])<0 ) break; | |
1879 pTmp = apSegment[j+1]; | |
1880 apSegment[j+1] = apSegment[j]; | |
1881 apSegment[j] = pTmp; | |
1882 } | |
1883 } | |
1884 | |
1885 #ifndef NDEBUG | |
1886 /* Check that the list really is sorted now. */ | |
1887 for(i=0; i<(nSuspect-1); i++){ | |
1888 assert( xCmp(apSegment[i], apSegment[i+1])<0 ); | |
1889 } | |
1890 #endif | |
1891 } | |
1892 | |
1893 /* | |
1894 ** Insert a record into the %_segments table. | |
1895 */ | |
1896 static int fts3WriteSegment( | |
1897 Fts3Table *p, /* Virtual table handle */ | |
1898 sqlite3_int64 iBlock, /* Block id for new block */ | |
1899 char *z, /* Pointer to buffer containing block data */ | |
1900 int n /* Size of buffer z in bytes */ | |
1901 ){ | |
1902 sqlite3_stmt *pStmt; | |
1903 int rc = fts3SqlStmt(p, SQL_INSERT_SEGMENTS, &pStmt, 0); | |
1904 if( rc==SQLITE_OK ){ | |
1905 sqlite3_bind_int64(pStmt, 1, iBlock); | |
1906 sqlite3_bind_blob(pStmt, 2, z, n, SQLITE_STATIC); | |
1907 sqlite3_step(pStmt); | |
1908 rc = sqlite3_reset(pStmt); | |
1909 } | |
1910 return rc; | |
1911 } | |
1912 | |
1913 /* | |
1914 ** Find the largest relative level number in the table. If successful, set | |
1915 ** *pnMax to this value and return SQLITE_OK. Otherwise, if an error occurs, | |
1916 ** set *pnMax to zero and return an SQLite error code. | |
1917 */ | |
1918 int sqlite3Fts3MaxLevel(Fts3Table *p, int *pnMax){ | |
1919 int rc; | |
1920 int mxLevel = 0; | |
1921 sqlite3_stmt *pStmt = 0; | |
1922 | |
1923 rc = fts3SqlStmt(p, SQL_SELECT_MXLEVEL, &pStmt, 0); | |
1924 if( rc==SQLITE_OK ){ | |
1925 if( SQLITE_ROW==sqlite3_step(pStmt) ){ | |
1926 mxLevel = sqlite3_column_int(pStmt, 0); | |
1927 } | |
1928 rc = sqlite3_reset(pStmt); | |
1929 } | |
1930 *pnMax = mxLevel; | |
1931 return rc; | |
1932 } | |
1933 | |
1934 /* | |
1935 ** Insert a record into the %_segdir table. | |
1936 */ | |
1937 static int fts3WriteSegdir( | |
1938 Fts3Table *p, /* Virtual table handle */ | |
1939 sqlite3_int64 iLevel, /* Value for "level" field (absolute level) */ | |
1940 int iIdx, /* Value for "idx" field */ | |
1941 sqlite3_int64 iStartBlock, /* Value for "start_block" field */ | |
1942 sqlite3_int64 iLeafEndBlock, /* Value for "leaves_end_block" field */ | |
1943 sqlite3_int64 iEndBlock, /* Value for "end_block" field */ | |
1944 sqlite3_int64 nLeafData, /* Bytes of leaf data in segment */ | |
1945 char *zRoot, /* Blob value for "root" field */ | |
1946 int nRoot /* Number of bytes in buffer zRoot */ | |
1947 ){ | |
1948 sqlite3_stmt *pStmt; | |
1949 int rc = fts3SqlStmt(p, SQL_INSERT_SEGDIR, &pStmt, 0); | |
1950 if( rc==SQLITE_OK ){ | |
1951 sqlite3_bind_int64(pStmt, 1, iLevel); | |
1952 sqlite3_bind_int(pStmt, 2, iIdx); | |
1953 sqlite3_bind_int64(pStmt, 3, iStartBlock); | |
1954 sqlite3_bind_int64(pStmt, 4, iLeafEndBlock); | |
1955 if( nLeafData==0 ){ | |
1956 sqlite3_bind_int64(pStmt, 5, iEndBlock); | |
1957 }else{ | |
1958 char *zEnd = sqlite3_mprintf("%lld %lld", iEndBlock, nLeafData); | |
1959 if( !zEnd ) return SQLITE_NOMEM; | |
1960 sqlite3_bind_text(pStmt, 5, zEnd, -1, sqlite3_free); | |
1961 } | |
1962 sqlite3_bind_blob(pStmt, 6, zRoot, nRoot, SQLITE_STATIC); | |
1963 sqlite3_step(pStmt); | |
1964 rc = sqlite3_reset(pStmt); | |
1965 } | |
1966 return rc; | |
1967 } | |
1968 | |
1969 /* | |
1970 ** Return the size of the common prefix (if any) shared by zPrev and | |
1971 ** zNext, in bytes. For example, | |
1972 ** | |
1973 ** fts3PrefixCompress("abc", 3, "abcdef", 6) // returns 3 | |
1974 ** fts3PrefixCompress("abX", 3, "abcdef", 6) // returns 2 | |
1975 ** fts3PrefixCompress("abX", 3, "Xbcdef", 6) // returns 0 | |
1976 */ | |
1977 static int fts3PrefixCompress( | |
1978 const char *zPrev, /* Buffer containing previous term */ | |
1979 int nPrev, /* Size of buffer zPrev in bytes */ | |
1980 const char *zNext, /* Buffer containing next term */ | |
1981 int nNext /* Size of buffer zNext in bytes */ | |
1982 ){ | |
1983 int n; | |
1984 UNUSED_PARAMETER(nNext); | |
1985 for(n=0; n<nPrev && zPrev[n]==zNext[n]; n++); | |
1986 return n; | |
1987 } | |
1988 | |
1989 /* | |
1990 ** Add term zTerm to the SegmentNode. It is guaranteed that zTerm is larger | |
1991 ** (according to memcmp) than the previous term. | |
1992 */ | |
1993 static int fts3NodeAddTerm( | |
1994 Fts3Table *p, /* Virtual table handle */ | |
1995 SegmentNode **ppTree, /* IN/OUT: SegmentNode handle */ | |
1996 int isCopyTerm, /* True if zTerm/nTerm is transient */ | |
1997 const char *zTerm, /* Pointer to buffer containing term */ | |
1998 int nTerm /* Size of term in bytes */ | |
1999 ){ | |
2000 SegmentNode *pTree = *ppTree; | |
2001 int rc; | |
2002 SegmentNode *pNew; | |
2003 | |
2004 /* First try to append the term to the current node. Return early if | |
2005 ** this is possible. | |
2006 */ | |
2007 if( pTree ){ | |
2008 int nData = pTree->nData; /* Current size of node in bytes */ | |
2009 int nReq = nData; /* Required space after adding zTerm */ | |
2010 int nPrefix; /* Number of bytes of prefix compression */ | |
2011 int nSuffix; /* Suffix length */ | |
2012 | |
2013 nPrefix = fts3PrefixCompress(pTree->zTerm, pTree->nTerm, zTerm, nTerm); | |
2014 nSuffix = nTerm-nPrefix; | |
2015 | |
2016 nReq += sqlite3Fts3VarintLen(nPrefix)+sqlite3Fts3VarintLen(nSuffix)+nSuffix; | |
2017 if( nReq<=p->nNodeSize || !pTree->zTerm ){ | |
2018 | |
2019 if( nReq>p->nNodeSize ){ | |
2020 /* An unusual case: this is the first term to be added to the node | |
2021 ** and the static node buffer (p->nNodeSize bytes) is not large | |
2022 ** enough. Use a separately malloced buffer instead This wastes | |
2023 ** p->nNodeSize bytes, but since this scenario only comes about when | |
2024 ** the database contain two terms that share a prefix of almost 2KB, | |
2025 ** this is not expected to be a serious problem. | |
2026 */ | |
2027 assert( pTree->aData==(char *)&pTree[1] ); | |
2028 pTree->aData = (char *)sqlite3_malloc(nReq); | |
2029 if( !pTree->aData ){ | |
2030 return SQLITE_NOMEM; | |
2031 } | |
2032 } | |
2033 | |
2034 if( pTree->zTerm ){ | |
2035 /* There is no prefix-length field for first term in a node */ | |
2036 nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nPrefix); | |
2037 } | |
2038 | |
2039 nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nSuffix); | |
2040 memcpy(&pTree->aData[nData], &zTerm[nPrefix], nSuffix); | |
2041 pTree->nData = nData + nSuffix; | |
2042 pTree->nEntry++; | |
2043 | |
2044 if( isCopyTerm ){ | |
2045 if( pTree->nMalloc<nTerm ){ | |
2046 char *zNew = sqlite3_realloc(pTree->zMalloc, nTerm*2); | |
2047 if( !zNew ){ | |
2048 return SQLITE_NOMEM; | |
2049 } | |
2050 pTree->nMalloc = nTerm*2; | |
2051 pTree->zMalloc = zNew; | |
2052 } | |
2053 pTree->zTerm = pTree->zMalloc; | |
2054 memcpy(pTree->zTerm, zTerm, nTerm); | |
2055 pTree->nTerm = nTerm; | |
2056 }else{ | |
2057 pTree->zTerm = (char *)zTerm; | |
2058 pTree->nTerm = nTerm; | |
2059 } | |
2060 return SQLITE_OK; | |
2061 } | |
2062 } | |
2063 | |
2064 /* If control flows to here, it was not possible to append zTerm to the | |
2065 ** current node. Create a new node (a right-sibling of the current node). | |
2066 ** If this is the first node in the tree, the term is added to it. | |
2067 ** | |
2068 ** Otherwise, the term is not added to the new node, it is left empty for | |
2069 ** now. Instead, the term is inserted into the parent of pTree. If pTree | |
2070 ** has no parent, one is created here. | |
2071 */ | |
2072 pNew = (SegmentNode *)sqlite3_malloc(sizeof(SegmentNode) + p->nNodeSize); | |
2073 if( !pNew ){ | |
2074 return SQLITE_NOMEM; | |
2075 } | |
2076 memset(pNew, 0, sizeof(SegmentNode)); | |
2077 pNew->nData = 1 + FTS3_VARINT_MAX; | |
2078 pNew->aData = (char *)&pNew[1]; | |
2079 | |
2080 if( pTree ){ | |
2081 SegmentNode *pParent = pTree->pParent; | |
2082 rc = fts3NodeAddTerm(p, &pParent, isCopyTerm, zTerm, nTerm); | |
2083 if( pTree->pParent==0 ){ | |
2084 pTree->pParent = pParent; | |
2085 } | |
2086 pTree->pRight = pNew; | |
2087 pNew->pLeftmost = pTree->pLeftmost; | |
2088 pNew->pParent = pParent; | |
2089 pNew->zMalloc = pTree->zMalloc; | |
2090 pNew->nMalloc = pTree->nMalloc; | |
2091 pTree->zMalloc = 0; | |
2092 }else{ | |
2093 pNew->pLeftmost = pNew; | |
2094 rc = fts3NodeAddTerm(p, &pNew, isCopyTerm, zTerm, nTerm); | |
2095 } | |
2096 | |
2097 *ppTree = pNew; | |
2098 return rc; | |
2099 } | |
2100 | |
2101 /* | |
2102 ** Helper function for fts3NodeWrite(). | |
2103 */ | |
2104 static int fts3TreeFinishNode( | |
2105 SegmentNode *pTree, | |
2106 int iHeight, | |
2107 sqlite3_int64 iLeftChild | |
2108 ){ | |
2109 int nStart; | |
2110 assert( iHeight>=1 && iHeight<128 ); | |
2111 nStart = FTS3_VARINT_MAX - sqlite3Fts3VarintLen(iLeftChild); | |
2112 pTree->aData[nStart] = (char)iHeight; | |
2113 sqlite3Fts3PutVarint(&pTree->aData[nStart+1], iLeftChild); | |
2114 return nStart; | |
2115 } | |
2116 | |
2117 /* | |
2118 ** Write the buffer for the segment node pTree and all of its peers to the | |
2119 ** database. Then call this function recursively to write the parent of | |
2120 ** pTree and its peers to the database. | |
2121 ** | |
2122 ** Except, if pTree is a root node, do not write it to the database. Instead, | |
2123 ** set output variables *paRoot and *pnRoot to contain the root node. | |
2124 ** | |
2125 ** If successful, SQLITE_OK is returned and output variable *piLast is | |
2126 ** set to the largest blockid written to the database (or zero if no | |
2127 ** blocks were written to the db). Otherwise, an SQLite error code is | |
2128 ** returned. | |
2129 */ | |
2130 static int fts3NodeWrite( | |
2131 Fts3Table *p, /* Virtual table handle */ | |
2132 SegmentNode *pTree, /* SegmentNode handle */ | |
2133 int iHeight, /* Height of this node in tree */ | |
2134 sqlite3_int64 iLeaf, /* Block id of first leaf node */ | |
2135 sqlite3_int64 iFree, /* Block id of next free slot in %_segments */ | |
2136 sqlite3_int64 *piLast, /* OUT: Block id of last entry written */ | |
2137 char **paRoot, /* OUT: Data for root node */ | |
2138 int *pnRoot /* OUT: Size of root node in bytes */ | |
2139 ){ | |
2140 int rc = SQLITE_OK; | |
2141 | |
2142 if( !pTree->pParent ){ | |
2143 /* Root node of the tree. */ | |
2144 int nStart = fts3TreeFinishNode(pTree, iHeight, iLeaf); | |
2145 *piLast = iFree-1; | |
2146 *pnRoot = pTree->nData - nStart; | |
2147 *paRoot = &pTree->aData[nStart]; | |
2148 }else{ | |
2149 SegmentNode *pIter; | |
2150 sqlite3_int64 iNextFree = iFree; | |
2151 sqlite3_int64 iNextLeaf = iLeaf; | |
2152 for(pIter=pTree->pLeftmost; pIter && rc==SQLITE_OK; pIter=pIter->pRight){ | |
2153 int nStart = fts3TreeFinishNode(pIter, iHeight, iNextLeaf); | |
2154 int nWrite = pIter->nData - nStart; | |
2155 | |
2156 rc = fts3WriteSegment(p, iNextFree, &pIter->aData[nStart], nWrite); | |
2157 iNextFree++; | |
2158 iNextLeaf += (pIter->nEntry+1); | |
2159 } | |
2160 if( rc==SQLITE_OK ){ | |
2161 assert( iNextLeaf==iFree ); | |
2162 rc = fts3NodeWrite( | |
2163 p, pTree->pParent, iHeight+1, iFree, iNextFree, piLast, paRoot, pnRoot | |
2164 ); | |
2165 } | |
2166 } | |
2167 | |
2168 return rc; | |
2169 } | |
2170 | |
2171 /* | |
2172 ** Free all memory allocations associated with the tree pTree. | |
2173 */ | |
2174 static void fts3NodeFree(SegmentNode *pTree){ | |
2175 if( pTree ){ | |
2176 SegmentNode *p = pTree->pLeftmost; | |
2177 fts3NodeFree(p->pParent); | |
2178 while( p ){ | |
2179 SegmentNode *pRight = p->pRight; | |
2180 if( p->aData!=(char *)&p[1] ){ | |
2181 sqlite3_free(p->aData); | |
2182 } | |
2183 assert( pRight==0 || p->zMalloc==0 ); | |
2184 sqlite3_free(p->zMalloc); | |
2185 sqlite3_free(p); | |
2186 p = pRight; | |
2187 } | |
2188 } | |
2189 } | |
2190 | |
2191 /* | |
2192 ** Add a term to the segment being constructed by the SegmentWriter object | |
2193 ** *ppWriter. When adding the first term to a segment, *ppWriter should | |
2194 ** be passed NULL. This function will allocate a new SegmentWriter object | |
2195 ** and return it via the input/output variable *ppWriter in this case. | |
2196 ** | |
2197 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code. | |
2198 */ | |
2199 static int fts3SegWriterAdd( | |
2200 Fts3Table *p, /* Virtual table handle */ | |
2201 SegmentWriter **ppWriter, /* IN/OUT: SegmentWriter handle */ | |
2202 int isCopyTerm, /* True if buffer zTerm must be copied */ | |
2203 const char *zTerm, /* Pointer to buffer containing term */ | |
2204 int nTerm, /* Size of term in bytes */ | |
2205 const char *aDoclist, /* Pointer to buffer containing doclist */ | |
2206 int nDoclist /* Size of doclist in bytes */ | |
2207 ){ | |
2208 int nPrefix; /* Size of term prefix in bytes */ | |
2209 int nSuffix; /* Size of term suffix in bytes */ | |
2210 int nReq; /* Number of bytes required on leaf page */ | |
2211 int nData; | |
2212 SegmentWriter *pWriter = *ppWriter; | |
2213 | |
2214 if( !pWriter ){ | |
2215 int rc; | |
2216 sqlite3_stmt *pStmt; | |
2217 | |
2218 /* Allocate the SegmentWriter structure */ | |
2219 pWriter = (SegmentWriter *)sqlite3_malloc(sizeof(SegmentWriter)); | |
2220 if( !pWriter ) return SQLITE_NOMEM; | |
2221 memset(pWriter, 0, sizeof(SegmentWriter)); | |
2222 *ppWriter = pWriter; | |
2223 | |
2224 /* Allocate a buffer in which to accumulate data */ | |
2225 pWriter->aData = (char *)sqlite3_malloc(p->nNodeSize); | |
2226 if( !pWriter->aData ) return SQLITE_NOMEM; | |
2227 pWriter->nSize = p->nNodeSize; | |
2228 | |
2229 /* Find the next free blockid in the %_segments table */ | |
2230 rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pStmt, 0); | |
2231 if( rc!=SQLITE_OK ) return rc; | |
2232 if( SQLITE_ROW==sqlite3_step(pStmt) ){ | |
2233 pWriter->iFree = sqlite3_column_int64(pStmt, 0); | |
2234 pWriter->iFirst = pWriter->iFree; | |
2235 } | |
2236 rc = sqlite3_reset(pStmt); | |
2237 if( rc!=SQLITE_OK ) return rc; | |
2238 } | |
2239 nData = pWriter->nData; | |
2240 | |
2241 nPrefix = fts3PrefixCompress(pWriter->zTerm, pWriter->nTerm, zTerm, nTerm); | |
2242 nSuffix = nTerm-nPrefix; | |
2243 | |
2244 /* Figure out how many bytes are required by this new entry */ | |
2245 nReq = sqlite3Fts3VarintLen(nPrefix) + /* varint containing prefix size */ | |
2246 sqlite3Fts3VarintLen(nSuffix) + /* varint containing suffix size */ | |
2247 nSuffix + /* Term suffix */ | |
2248 sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */ | |
2249 nDoclist; /* Doclist data */ | |
2250 | |
2251 if( nData>0 && nData+nReq>p->nNodeSize ){ | |
2252 int rc; | |
2253 | |
2254 /* The current leaf node is full. Write it out to the database. */ | |
2255 rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, nData); | |
2256 if( rc!=SQLITE_OK ) return rc; | |
2257 p->nLeafAdd++; | |
2258 | |
2259 /* Add the current term to the interior node tree. The term added to | |
2260 ** the interior tree must: | |
2261 ** | |
2262 ** a) be greater than the largest term on the leaf node just written | |
2263 ** to the database (still available in pWriter->zTerm), and | |
2264 ** | |
2265 ** b) be less than or equal to the term about to be added to the new | |
2266 ** leaf node (zTerm/nTerm). | |
2267 ** | |
2268 ** In other words, it must be the prefix of zTerm 1 byte longer than | |
2269 ** the common prefix (if any) of zTerm and pWriter->zTerm. | |
2270 */ | |
2271 assert( nPrefix<nTerm ); | |
2272 rc = fts3NodeAddTerm(p, &pWriter->pTree, isCopyTerm, zTerm, nPrefix+1); | |
2273 if( rc!=SQLITE_OK ) return rc; | |
2274 | |
2275 nData = 0; | |
2276 pWriter->nTerm = 0; | |
2277 | |
2278 nPrefix = 0; | |
2279 nSuffix = nTerm; | |
2280 nReq = 1 + /* varint containing prefix size */ | |
2281 sqlite3Fts3VarintLen(nTerm) + /* varint containing suffix size */ | |
2282 nTerm + /* Term suffix */ | |
2283 sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */ | |
2284 nDoclist; /* Doclist data */ | |
2285 } | |
2286 | |
2287 /* Increase the total number of bytes written to account for the new entry. */ | |
2288 pWriter->nLeafData += nReq; | |
2289 | |
2290 /* If the buffer currently allocated is too small for this entry, realloc | |
2291 ** the buffer to make it large enough. | |
2292 */ | |
2293 if( nReq>pWriter->nSize ){ | |
2294 char *aNew = sqlite3_realloc(pWriter->aData, nReq); | |
2295 if( !aNew ) return SQLITE_NOMEM; | |
2296 pWriter->aData = aNew; | |
2297 pWriter->nSize = nReq; | |
2298 } | |
2299 assert( nData+nReq<=pWriter->nSize ); | |
2300 | |
2301 /* Append the prefix-compressed term and doclist to the buffer. */ | |
2302 nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nPrefix); | |
2303 nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nSuffix); | |
2304 memcpy(&pWriter->aData[nData], &zTerm[nPrefix], nSuffix); | |
2305 nData += nSuffix; | |
2306 nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nDoclist); | |
2307 memcpy(&pWriter->aData[nData], aDoclist, nDoclist); | |
2308 pWriter->nData = nData + nDoclist; | |
2309 | |
2310 /* Save the current term so that it can be used to prefix-compress the next. | |
2311 ** If the isCopyTerm parameter is true, then the buffer pointed to by | |
2312 ** zTerm is transient, so take a copy of the term data. Otherwise, just | |
2313 ** store a copy of the pointer. | |
2314 */ | |
2315 if( isCopyTerm ){ | |
2316 if( nTerm>pWriter->nMalloc ){ | |
2317 char *zNew = sqlite3_realloc(pWriter->zMalloc, nTerm*2); | |
2318 if( !zNew ){ | |
2319 return SQLITE_NOMEM; | |
2320 } | |
2321 pWriter->nMalloc = nTerm*2; | |
2322 pWriter->zMalloc = zNew; | |
2323 pWriter->zTerm = zNew; | |
2324 } | |
2325 assert( pWriter->zTerm==pWriter->zMalloc ); | |
2326 memcpy(pWriter->zTerm, zTerm, nTerm); | |
2327 }else{ | |
2328 pWriter->zTerm = (char *)zTerm; | |
2329 } | |
2330 pWriter->nTerm = nTerm; | |
2331 | |
2332 return SQLITE_OK; | |
2333 } | |
2334 | |
2335 /* | |
2336 ** Flush all data associated with the SegmentWriter object pWriter to the | |
2337 ** database. This function must be called after all terms have been added | |
2338 ** to the segment using fts3SegWriterAdd(). If successful, SQLITE_OK is | |
2339 ** returned. Otherwise, an SQLite error code. | |
2340 */ | |
2341 static int fts3SegWriterFlush( | |
2342 Fts3Table *p, /* Virtual table handle */ | |
2343 SegmentWriter *pWriter, /* SegmentWriter to flush to the db */ | |
2344 sqlite3_int64 iLevel, /* Value for 'level' column of %_segdir */ | |
2345 int iIdx /* Value for 'idx' column of %_segdir */ | |
2346 ){ | |
2347 int rc; /* Return code */ | |
2348 if( pWriter->pTree ){ | |
2349 sqlite3_int64 iLast = 0; /* Largest block id written to database */ | |
2350 sqlite3_int64 iLastLeaf; /* Largest leaf block id written to db */ | |
2351 char *zRoot = NULL; /* Pointer to buffer containing root node */ | |
2352 int nRoot = 0; /* Size of buffer zRoot */ | |
2353 | |
2354 iLastLeaf = pWriter->iFree; | |
2355 rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, pWriter->nData); | |
2356 if( rc==SQLITE_OK ){ | |
2357 rc = fts3NodeWrite(p, pWriter->pTree, 1, | |
2358 pWriter->iFirst, pWriter->iFree, &iLast, &zRoot, &nRoot); | |
2359 } | |
2360 if( rc==SQLITE_OK ){ | |
2361 rc = fts3WriteSegdir(p, iLevel, iIdx, | |
2362 pWriter->iFirst, iLastLeaf, iLast, pWriter->nLeafData, zRoot, nRoot); | |
2363 } | |
2364 }else{ | |
2365 /* The entire tree fits on the root node. Write it to the segdir table. */ | |
2366 rc = fts3WriteSegdir(p, iLevel, iIdx, | |
2367 0, 0, 0, pWriter->nLeafData, pWriter->aData, pWriter->nData); | |
2368 } | |
2369 p->nLeafAdd++; | |
2370 return rc; | |
2371 } | |
2372 | |
2373 /* | |
2374 ** Release all memory held by the SegmentWriter object passed as the | |
2375 ** first argument. | |
2376 */ | |
2377 static void fts3SegWriterFree(SegmentWriter *pWriter){ | |
2378 if( pWriter ){ | |
2379 sqlite3_free(pWriter->aData); | |
2380 sqlite3_free(pWriter->zMalloc); | |
2381 fts3NodeFree(pWriter->pTree); | |
2382 sqlite3_free(pWriter); | |
2383 } | |
2384 } | |
2385 | |
2386 /* | |
2387 ** The first value in the apVal[] array is assumed to contain an integer. | |
2388 ** This function tests if there exist any documents with docid values that | |
2389 ** are different from that integer. i.e. if deleting the document with docid | |
2390 ** pRowid would mean the FTS3 table were empty. | |
2391 ** | |
2392 ** If successful, *pisEmpty is set to true if the table is empty except for | |
2393 ** document pRowid, or false otherwise, and SQLITE_OK is returned. If an | |
2394 ** error occurs, an SQLite error code is returned. | |
2395 */ | |
2396 static int fts3IsEmpty(Fts3Table *p, sqlite3_value *pRowid, int *pisEmpty){ | |
2397 sqlite3_stmt *pStmt; | |
2398 int rc; | |
2399 if( p->zContentTbl ){ | |
2400 /* If using the content=xxx option, assume the table is never empty */ | |
2401 *pisEmpty = 0; | |
2402 rc = SQLITE_OK; | |
2403 }else{ | |
2404 rc = fts3SqlStmt(p, SQL_IS_EMPTY, &pStmt, &pRowid); | |
2405 if( rc==SQLITE_OK ){ | |
2406 if( SQLITE_ROW==sqlite3_step(pStmt) ){ | |
2407 *pisEmpty = sqlite3_column_int(pStmt, 0); | |
2408 } | |
2409 rc = sqlite3_reset(pStmt); | |
2410 } | |
2411 } | |
2412 return rc; | |
2413 } | |
2414 | |
2415 /* | |
2416 ** Set *pnMax to the largest segment level in the database for the index | |
2417 ** iIndex. | |
2418 ** | |
2419 ** Segment levels are stored in the 'level' column of the %_segdir table. | |
2420 ** | |
2421 ** Return SQLITE_OK if successful, or an SQLite error code if not. | |
2422 */ | |
2423 static int fts3SegmentMaxLevel( | |
2424 Fts3Table *p, | |
2425 int iLangid, | |
2426 int iIndex, | |
2427 sqlite3_int64 *pnMax | |
2428 ){ | |
2429 sqlite3_stmt *pStmt; | |
2430 int rc; | |
2431 assert( iIndex>=0 && iIndex<p->nIndex ); | |
2432 | |
2433 /* Set pStmt to the compiled version of: | |
2434 ** | |
2435 ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? | |
2436 ** | |
2437 ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR). | |
2438 */ | |
2439 rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0); | |
2440 if( rc!=SQLITE_OK ) return rc; | |
2441 sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0)); | |
2442 sqlite3_bind_int64(pStmt, 2, | |
2443 getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1) | |
2444 ); | |
2445 if( SQLITE_ROW==sqlite3_step(pStmt) ){ | |
2446 *pnMax = sqlite3_column_int64(pStmt, 0); | |
2447 } | |
2448 return sqlite3_reset(pStmt); | |
2449 } | |
2450 | |
2451 /* | |
2452 ** iAbsLevel is an absolute level that may be assumed to exist within | |
2453 ** the database. This function checks if it is the largest level number | |
2454 ** within its index. Assuming no error occurs, *pbMax is set to 1 if | |
2455 ** iAbsLevel is indeed the largest level, or 0 otherwise, and SQLITE_OK | |
2456 ** is returned. If an error occurs, an error code is returned and the | |
2457 ** final value of *pbMax is undefined. | |
2458 */ | |
2459 static int fts3SegmentIsMaxLevel(Fts3Table *p, i64 iAbsLevel, int *pbMax){ | |
2460 | |
2461 /* Set pStmt to the compiled version of: | |
2462 ** | |
2463 ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? | |
2464 ** | |
2465 ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR). | |
2466 */ | |
2467 sqlite3_stmt *pStmt; | |
2468 int rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0); | |
2469 if( rc!=SQLITE_OK ) return rc; | |
2470 sqlite3_bind_int64(pStmt, 1, iAbsLevel+1); | |
2471 sqlite3_bind_int64(pStmt, 2, | |
2472 ((iAbsLevel/FTS3_SEGDIR_MAXLEVEL)+1) * FTS3_SEGDIR_MAXLEVEL | |
2473 ); | |
2474 | |
2475 *pbMax = 0; | |
2476 if( SQLITE_ROW==sqlite3_step(pStmt) ){ | |
2477 *pbMax = sqlite3_column_type(pStmt, 0)==SQLITE_NULL; | |
2478 } | |
2479 return sqlite3_reset(pStmt); | |
2480 } | |
2481 | |
2482 /* | |
2483 ** Delete all entries in the %_segments table associated with the segment | |
2484 ** opened with seg-reader pSeg. This function does not affect the contents | |
2485 ** of the %_segdir table. | |
2486 */ | |
2487 static int fts3DeleteSegment( | |
2488 Fts3Table *p, /* FTS table handle */ | |
2489 Fts3SegReader *pSeg /* Segment to delete */ | |
2490 ){ | |
2491 int rc = SQLITE_OK; /* Return code */ | |
2492 if( pSeg->iStartBlock ){ | |
2493 sqlite3_stmt *pDelete; /* SQL statement to delete rows */ | |
2494 rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDelete, 0); | |
2495 if( rc==SQLITE_OK ){ | |
2496 sqlite3_bind_int64(pDelete, 1, pSeg->iStartBlock); | |
2497 sqlite3_bind_int64(pDelete, 2, pSeg->iEndBlock); | |
2498 sqlite3_step(pDelete); | |
2499 rc = sqlite3_reset(pDelete); | |
2500 } | |
2501 } | |
2502 return rc; | |
2503 } | |
2504 | |
2505 /* | |
2506 ** This function is used after merging multiple segments into a single large | |
2507 ** segment to delete the old, now redundant, segment b-trees. Specifically, | |
2508 ** it: | |
2509 ** | |
2510 ** 1) Deletes all %_segments entries for the segments associated with | |
2511 ** each of the SegReader objects in the array passed as the third | |
2512 ** argument, and | |
2513 ** | |
2514 ** 2) deletes all %_segdir entries with level iLevel, or all %_segdir | |
2515 ** entries regardless of level if (iLevel<0). | |
2516 ** | |
2517 ** SQLITE_OK is returned if successful, otherwise an SQLite error code. | |
2518 */ | |
2519 static int fts3DeleteSegdir( | |
2520 Fts3Table *p, /* Virtual table handle */ | |
2521 int iLangid, /* Language id */ | |
2522 int iIndex, /* Index for p->aIndex */ | |
2523 int iLevel, /* Level of %_segdir entries to delete */ | |
2524 Fts3SegReader **apSegment, /* Array of SegReader objects */ | |
2525 int nReader /* Size of array apSegment */ | |
2526 ){ | |
2527 int rc = SQLITE_OK; /* Return Code */ | |
2528 int i; /* Iterator variable */ | |
2529 sqlite3_stmt *pDelete = 0; /* SQL statement to delete rows */ | |
2530 | |
2531 for(i=0; rc==SQLITE_OK && i<nReader; i++){ | |
2532 rc = fts3DeleteSegment(p, apSegment[i]); | |
2533 } | |
2534 if( rc!=SQLITE_OK ){ | |
2535 return rc; | |
2536 } | |
2537 | |
2538 assert( iLevel>=0 || iLevel==FTS3_SEGCURSOR_ALL ); | |
2539 if( iLevel==FTS3_SEGCURSOR_ALL ){ | |
2540 rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_RANGE, &pDelete, 0); | |
2541 if( rc==SQLITE_OK ){ | |
2542 sqlite3_bind_int64(pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, 0)); | |
2543 sqlite3_bind_int64(pDelete, 2, | |
2544 getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1) | |
2545 ); | |
2546 } | |
2547 }else{ | |
2548 rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pDelete, 0); | |
2549 if( rc==SQLITE_OK ){ | |
2550 sqlite3_bind_int64( | |
2551 pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel) | |
2552 ); | |
2553 } | |
2554 } | |
2555 | |
2556 if( rc==SQLITE_OK ){ | |
2557 sqlite3_step(pDelete); | |
2558 rc = sqlite3_reset(pDelete); | |
2559 } | |
2560 | |
2561 return rc; | |
2562 } | |
2563 | |
2564 /* | |
2565 ** When this function is called, buffer *ppList (size *pnList bytes) contains | |
2566 ** a position list that may (or may not) feature multiple columns. This | |
2567 ** function adjusts the pointer *ppList and the length *pnList so that they | |
2568 ** identify the subset of the position list that corresponds to column iCol. | |
2569 ** | |
2570 ** If there are no entries in the input position list for column iCol, then | |
2571 ** *pnList is set to zero before returning. | |
2572 ** | |
2573 ** If parameter bZero is non-zero, then any part of the input list following | |
2574 ** the end of the output list is zeroed before returning. | |
2575 */ | |
2576 static void fts3ColumnFilter( | |
2577 int iCol, /* Column to filter on */ | |
2578 int bZero, /* Zero out anything following *ppList */ | |
2579 char **ppList, /* IN/OUT: Pointer to position list */ | |
2580 int *pnList /* IN/OUT: Size of buffer *ppList in bytes */ | |
2581 ){ | |
2582 char *pList = *ppList; | |
2583 int nList = *pnList; | |
2584 char *pEnd = &pList[nList]; | |
2585 int iCurrent = 0; | |
2586 char *p = pList; | |
2587 | |
2588 assert( iCol>=0 ); | |
2589 while( 1 ){ | |
2590 char c = 0; | |
2591 while( p<pEnd && (c | *p)&0xFE ) c = *p++ & 0x80; | |
2592 | |
2593 if( iCol==iCurrent ){ | |
2594 nList = (int)(p - pList); | |
2595 break; | |
2596 } | |
2597 | |
2598 nList -= (int)(p - pList); | |
2599 pList = p; | |
2600 if( nList==0 ){ | |
2601 break; | |
2602 } | |
2603 p = &pList[1]; | |
2604 p += fts3GetVarint32(p, &iCurrent); | |
2605 } | |
2606 | |
2607 if( bZero && &pList[nList]!=pEnd ){ | |
2608 memset(&pList[nList], 0, pEnd - &pList[nList]); | |
2609 } | |
2610 *ppList = pList; | |
2611 *pnList = nList; | |
2612 } | |
2613 | |
2614 /* | |
2615 ** Cache data in the Fts3MultiSegReader.aBuffer[] buffer (overwriting any | |
2616 ** existing data). Grow the buffer if required. | |
2617 ** | |
2618 ** If successful, return SQLITE_OK. Otherwise, if an OOM error is encountered | |
2619 ** trying to resize the buffer, return SQLITE_NOMEM. | |
2620 */ | |
2621 static int fts3MsrBufferData( | |
2622 Fts3MultiSegReader *pMsr, /* Multi-segment-reader handle */ | |
2623 char *pList, | |
2624 int nList | |
2625 ){ | |
2626 if( nList>pMsr->nBuffer ){ | |
2627 char *pNew; | |
2628 pMsr->nBuffer = nList*2; | |
2629 pNew = (char *)sqlite3_realloc(pMsr->aBuffer, pMsr->nBuffer); | |
2630 if( !pNew ) return SQLITE_NOMEM; | |
2631 pMsr->aBuffer = pNew; | |
2632 } | |
2633 | |
2634 memcpy(pMsr->aBuffer, pList, nList); | |
2635 return SQLITE_OK; | |
2636 } | |
2637 | |
2638 int sqlite3Fts3MsrIncrNext( | |
2639 Fts3Table *p, /* Virtual table handle */ | |
2640 Fts3MultiSegReader *pMsr, /* Multi-segment-reader handle */ | |
2641 sqlite3_int64 *piDocid, /* OUT: Docid value */ | |
2642 char **paPoslist, /* OUT: Pointer to position list */ | |
2643 int *pnPoslist /* OUT: Size of position list in bytes */ | |
2644 ){ | |
2645 int nMerge = pMsr->nAdvance; | |
2646 Fts3SegReader **apSegment = pMsr->apSegment; | |
2647 int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = ( | |
2648 p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp | |
2649 ); | |
2650 | |
2651 if( nMerge==0 ){ | |
2652 *paPoslist = 0; | |
2653 return SQLITE_OK; | |
2654 } | |
2655 | |
2656 while( 1 ){ | |
2657 Fts3SegReader *pSeg; | |
2658 pSeg = pMsr->apSegment[0]; | |
2659 | |
2660 if( pSeg->pOffsetList==0 ){ | |
2661 *paPoslist = 0; | |
2662 break; | |
2663 }else{ | |
2664 int rc; | |
2665 char *pList; | |
2666 int nList; | |
2667 int j; | |
2668 sqlite3_int64 iDocid = apSegment[0]->iDocid; | |
2669 | |
2670 rc = fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList); | |
2671 j = 1; | |
2672 while( rc==SQLITE_OK | |
2673 && j<nMerge | |
2674 && apSegment[j]->pOffsetList | |
2675 && apSegment[j]->iDocid==iDocid | |
2676 ){ | |
2677 rc = fts3SegReaderNextDocid(p, apSegment[j], 0, 0); | |
2678 j++; | |
2679 } | |
2680 if( rc!=SQLITE_OK ) return rc; | |
2681 fts3SegReaderSort(pMsr->apSegment, nMerge, j, xCmp); | |
2682 | |
2683 if( nList>0 && fts3SegReaderIsPending(apSegment[0]) ){ | |
2684 rc = fts3MsrBufferData(pMsr, pList, nList+1); | |
2685 if( rc!=SQLITE_OK ) return rc; | |
2686 assert( (pMsr->aBuffer[nList] & 0xFE)==0x00 ); | |
2687 pList = pMsr->aBuffer; | |
2688 } | |
2689 | |
2690 if( pMsr->iColFilter>=0 ){ | |
2691 fts3ColumnFilter(pMsr->iColFilter, 1, &pList, &nList); | |
2692 } | |
2693 | |
2694 if( nList>0 ){ | |
2695 *paPoslist = pList; | |
2696 *piDocid = iDocid; | |
2697 *pnPoslist = nList; | |
2698 break; | |
2699 } | |
2700 } | |
2701 } | |
2702 | |
2703 return SQLITE_OK; | |
2704 } | |
2705 | |
2706 static int fts3SegReaderStart( | |
2707 Fts3Table *p, /* Virtual table handle */ | |
2708 Fts3MultiSegReader *pCsr, /* Cursor object */ | |
2709 const char *zTerm, /* Term searched for (or NULL) */ | |
2710 int nTerm /* Length of zTerm in bytes */ | |
2711 ){ | |
2712 int i; | |
2713 int nSeg = pCsr->nSegment; | |
2714 | |
2715 /* If the Fts3SegFilter defines a specific term (or term prefix) to search | |
2716 ** for, then advance each segment iterator until it points to a term of | |
2717 ** equal or greater value than the specified term. This prevents many | |
2718 ** unnecessary merge/sort operations for the case where single segment | |
2719 ** b-tree leaf nodes contain more than one term. | |
2720 */ | |
2721 for(i=0; pCsr->bRestart==0 && i<pCsr->nSegment; i++){ | |
2722 int res = 0; | |
2723 Fts3SegReader *pSeg = pCsr->apSegment[i]; | |
2724 do { | |
2725 int rc = fts3SegReaderNext(p, pSeg, 0); | |
2726 if( rc!=SQLITE_OK ) return rc; | |
2727 }while( zTerm && (res = fts3SegReaderTermCmp(pSeg, zTerm, nTerm))<0 ); | |
2728 | |
2729 if( pSeg->bLookup && res!=0 ){ | |
2730 fts3SegReaderSetEof(pSeg); | |
2731 } | |
2732 } | |
2733 fts3SegReaderSort(pCsr->apSegment, nSeg, nSeg, fts3SegReaderCmp); | |
2734 | |
2735 return SQLITE_OK; | |
2736 } | |
2737 | |
2738 int sqlite3Fts3SegReaderStart( | |
2739 Fts3Table *p, /* Virtual table handle */ | |
2740 Fts3MultiSegReader *pCsr, /* Cursor object */ | |
2741 Fts3SegFilter *pFilter /* Restrictions on range of iteration */ | |
2742 ){ | |
2743 pCsr->pFilter = pFilter; | |
2744 return fts3SegReaderStart(p, pCsr, pFilter->zTerm, pFilter->nTerm); | |
2745 } | |
2746 | |
2747 int sqlite3Fts3MsrIncrStart( | |
2748 Fts3Table *p, /* Virtual table handle */ | |
2749 Fts3MultiSegReader *pCsr, /* Cursor object */ | |
2750 int iCol, /* Column to match on. */ | |
2751 const char *zTerm, /* Term to iterate through a doclist for */ | |
2752 int nTerm /* Number of bytes in zTerm */ | |
2753 ){ | |
2754 int i; | |
2755 int rc; | |
2756 int nSegment = pCsr->nSegment; | |
2757 int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = ( | |
2758 p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp | |
2759 ); | |
2760 | |
2761 assert( pCsr->pFilter==0 ); | |
2762 assert( zTerm && nTerm>0 ); | |
2763 | |
2764 /* Advance each segment iterator until it points to the term zTerm/nTerm. */ | |
2765 rc = fts3SegReaderStart(p, pCsr, zTerm, nTerm); | |
2766 if( rc!=SQLITE_OK ) return rc; | |
2767 | |
2768 /* Determine how many of the segments actually point to zTerm/nTerm. */ | |
2769 for(i=0; i<nSegment; i++){ | |
2770 Fts3SegReader *pSeg = pCsr->apSegment[i]; | |
2771 if( !pSeg->aNode || fts3SegReaderTermCmp(pSeg, zTerm, nTerm) ){ | |
2772 break; | |
2773 } | |
2774 } | |
2775 pCsr->nAdvance = i; | |
2776 | |
2777 /* Advance each of the segments to point to the first docid. */ | |
2778 for(i=0; i<pCsr->nAdvance; i++){ | |
2779 rc = fts3SegReaderFirstDocid(p, pCsr->apSegment[i]); | |
2780 if( rc!=SQLITE_OK ) return rc; | |
2781 } | |
2782 fts3SegReaderSort(pCsr->apSegment, i, i, xCmp); | |
2783 | |
2784 assert( iCol<0 || iCol<p->nColumn ); | |
2785 pCsr->iColFilter = iCol; | |
2786 | |
2787 return SQLITE_OK; | |
2788 } | |
2789 | |
2790 /* | |
2791 ** This function is called on a MultiSegReader that has been started using | |
2792 ** sqlite3Fts3MsrIncrStart(). One or more calls to MsrIncrNext() may also | |
2793 ** have been made. Calling this function puts the MultiSegReader in such | |
2794 ** a state that if the next two calls are: | |
2795 ** | |
2796 ** sqlite3Fts3SegReaderStart() | |
2797 ** sqlite3Fts3SegReaderStep() | |
2798 ** | |
2799 ** then the entire doclist for the term is available in | |
2800 ** MultiSegReader.aDoclist/nDoclist. | |
2801 */ | |
2802 int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr){ | |
2803 int i; /* Used to iterate through segment-readers */ | |
2804 | |
2805 assert( pCsr->zTerm==0 ); | |
2806 assert( pCsr->nTerm==0 ); | |
2807 assert( pCsr->aDoclist==0 ); | |
2808 assert( pCsr->nDoclist==0 ); | |
2809 | |
2810 pCsr->nAdvance = 0; | |
2811 pCsr->bRestart = 1; | |
2812 for(i=0; i<pCsr->nSegment; i++){ | |
2813 pCsr->apSegment[i]->pOffsetList = 0; | |
2814 pCsr->apSegment[i]->nOffsetList = 0; | |
2815 pCsr->apSegment[i]->iDocid = 0; | |
2816 } | |
2817 | |
2818 return SQLITE_OK; | |
2819 } | |
2820 | |
2821 | |
2822 int sqlite3Fts3SegReaderStep( | |
2823 Fts3Table *p, /* Virtual table handle */ | |
2824 Fts3MultiSegReader *pCsr /* Cursor object */ | |
2825 ){ | |
2826 int rc = SQLITE_OK; | |
2827 | |
2828 int isIgnoreEmpty = (pCsr->pFilter->flags & FTS3_SEGMENT_IGNORE_EMPTY); | |
2829 int isRequirePos = (pCsr->pFilter->flags & FTS3_SEGMENT_REQUIRE_POS); | |
2830 int isColFilter = (pCsr->pFilter->flags & FTS3_SEGMENT_COLUMN_FILTER); | |
2831 int isPrefix = (pCsr->pFilter->flags & FTS3_SEGMENT_PREFIX); | |
2832 int isScan = (pCsr->pFilter->flags & FTS3_SEGMENT_SCAN); | |
2833 int isFirst = (pCsr->pFilter->flags & FTS3_SEGMENT_FIRST); | |
2834 | |
2835 Fts3SegReader **apSegment = pCsr->apSegment; | |
2836 int nSegment = pCsr->nSegment; | |
2837 Fts3SegFilter *pFilter = pCsr->pFilter; | |
2838 int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = ( | |
2839 p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp | |
2840 ); | |
2841 | |
2842 if( pCsr->nSegment==0 ) return SQLITE_OK; | |
2843 | |
2844 do { | |
2845 int nMerge; | |
2846 int i; | |
2847 | |
2848 /* Advance the first pCsr->nAdvance entries in the apSegment[] array | |
2849 ** forward. Then sort the list in order of current term again. | |
2850 */ | |
2851 for(i=0; i<pCsr->nAdvance; i++){ | |
2852 Fts3SegReader *pSeg = apSegment[i]; | |
2853 if( pSeg->bLookup ){ | |
2854 fts3SegReaderSetEof(pSeg); | |
2855 }else{ | |
2856 rc = fts3SegReaderNext(p, pSeg, 0); | |
2857 } | |
2858 if( rc!=SQLITE_OK ) return rc; | |
2859 } | |
2860 fts3SegReaderSort(apSegment, nSegment, pCsr->nAdvance, fts3SegReaderCmp); | |
2861 pCsr->nAdvance = 0; | |
2862 | |
2863 /* If all the seg-readers are at EOF, we're finished. return SQLITE_OK. */ | |
2864 assert( rc==SQLITE_OK ); | |
2865 if( apSegment[0]->aNode==0 ) break; | |
2866 | |
2867 pCsr->nTerm = apSegment[0]->nTerm; | |
2868 pCsr->zTerm = apSegment[0]->zTerm; | |
2869 | |
2870 /* If this is a prefix-search, and if the term that apSegment[0] points | |
2871 ** to does not share a suffix with pFilter->zTerm/nTerm, then all | |
2872 ** required callbacks have been made. In this case exit early. | |
2873 ** | |
2874 ** Similarly, if this is a search for an exact match, and the first term | |
2875 ** of segment apSegment[0] is not a match, exit early. | |
2876 */ | |
2877 if( pFilter->zTerm && !isScan ){ | |
2878 if( pCsr->nTerm<pFilter->nTerm | |
2879 || (!isPrefix && pCsr->nTerm>pFilter->nTerm) | |
2880 || memcmp(pCsr->zTerm, pFilter->zTerm, pFilter->nTerm) | |
2881 ){ | |
2882 break; | |
2883 } | |
2884 } | |
2885 | |
2886 nMerge = 1; | |
2887 while( nMerge<nSegment | |
2888 && apSegment[nMerge]->aNode | |
2889 && apSegment[nMerge]->nTerm==pCsr->nTerm | |
2890 && 0==memcmp(pCsr->zTerm, apSegment[nMerge]->zTerm, pCsr->nTerm) | |
2891 ){ | |
2892 nMerge++; | |
2893 } | |
2894 | |
2895 assert( isIgnoreEmpty || (isRequirePos && !isColFilter) ); | |
2896 if( nMerge==1 | |
2897 && !isIgnoreEmpty | |
2898 && !isFirst | |
2899 && (p->bDescIdx==0 || fts3SegReaderIsPending(apSegment[0])==0) | |
2900 ){ | |
2901 pCsr->nDoclist = apSegment[0]->nDoclist; | |
2902 if( fts3SegReaderIsPending(apSegment[0]) ){ | |
2903 rc = fts3MsrBufferData(pCsr, apSegment[0]->aDoclist, pCsr->nDoclist); | |
2904 pCsr->aDoclist = pCsr->aBuffer; | |
2905 }else{ | |
2906 pCsr->aDoclist = apSegment[0]->aDoclist; | |
2907 } | |
2908 if( rc==SQLITE_OK ) rc = SQLITE_ROW; | |
2909 }else{ | |
2910 int nDoclist = 0; /* Size of doclist */ | |
2911 sqlite3_int64 iPrev = 0; /* Previous docid stored in doclist */ | |
2912 | |
2913 /* The current term of the first nMerge entries in the array | |
2914 ** of Fts3SegReader objects is the same. The doclists must be merged | |
2915 ** and a single term returned with the merged doclist. | |
2916 */ | |
2917 for(i=0; i<nMerge; i++){ | |
2918 fts3SegReaderFirstDocid(p, apSegment[i]); | |
2919 } | |
2920 fts3SegReaderSort(apSegment, nMerge, nMerge, xCmp); | |
2921 while( apSegment[0]->pOffsetList ){ | |
2922 int j; /* Number of segments that share a docid */ | |
2923 char *pList = 0; | |
2924 int nList = 0; | |
2925 int nByte; | |
2926 sqlite3_int64 iDocid = apSegment[0]->iDocid; | |
2927 fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList); | |
2928 j = 1; | |
2929 while( j<nMerge | |
2930 && apSegment[j]->pOffsetList | |
2931 && apSegment[j]->iDocid==iDocid | |
2932 ){ | |
2933 fts3SegReaderNextDocid(p, apSegment[j], 0, 0); | |
2934 j++; | |
2935 } | |
2936 | |
2937 if( isColFilter ){ | |
2938 fts3ColumnFilter(pFilter->iCol, 0, &pList, &nList); | |
2939 } | |
2940 | |
2941 if( !isIgnoreEmpty || nList>0 ){ | |
2942 | |
2943 /* Calculate the 'docid' delta value to write into the merged | |
2944 ** doclist. */ | |
2945 sqlite3_int64 iDelta; | |
2946 if( p->bDescIdx && nDoclist>0 ){ | |
2947 iDelta = iPrev - iDocid; | |
2948 }else{ | |
2949 iDelta = iDocid - iPrev; | |
2950 } | |
2951 assert( iDelta>0 || (nDoclist==0 && iDelta==iDocid) ); | |
2952 assert( nDoclist>0 || iDelta==iDocid ); | |
2953 | |
2954 nByte = sqlite3Fts3VarintLen(iDelta) + (isRequirePos?nList+1:0); | |
2955 if( nDoclist+nByte>pCsr->nBuffer ){ | |
2956 char *aNew; | |
2957 pCsr->nBuffer = (nDoclist+nByte)*2; | |
2958 aNew = sqlite3_realloc(pCsr->aBuffer, pCsr->nBuffer); | |
2959 if( !aNew ){ | |
2960 return SQLITE_NOMEM; | |
2961 } | |
2962 pCsr->aBuffer = aNew; | |
2963 } | |
2964 | |
2965 if( isFirst ){ | |
2966 char *a = &pCsr->aBuffer[nDoclist]; | |
2967 int nWrite; | |
2968 | |
2969 nWrite = sqlite3Fts3FirstFilter(iDelta, pList, nList, a); | |
2970 if( nWrite ){ | |
2971 iPrev = iDocid; | |
2972 nDoclist += nWrite; | |
2973 } | |
2974 }else{ | |
2975 nDoclist += sqlite3Fts3PutVarint(&pCsr->aBuffer[nDoclist], iDelta); | |
2976 iPrev = iDocid; | |
2977 if( isRequirePos ){ | |
2978 memcpy(&pCsr->aBuffer[nDoclist], pList, nList); | |
2979 nDoclist += nList; | |
2980 pCsr->aBuffer[nDoclist++] = '\0'; | |
2981 } | |
2982 } | |
2983 } | |
2984 | |
2985 fts3SegReaderSort(apSegment, nMerge, j, xCmp); | |
2986 } | |
2987 if( nDoclist>0 ){ | |
2988 pCsr->aDoclist = pCsr->aBuffer; | |
2989 pCsr->nDoclist = nDoclist; | |
2990 rc = SQLITE_ROW; | |
2991 } | |
2992 } | |
2993 pCsr->nAdvance = nMerge; | |
2994 }while( rc==SQLITE_OK ); | |
2995 | |
2996 return rc; | |
2997 } | |
2998 | |
2999 | |
3000 void sqlite3Fts3SegReaderFinish( | |
3001 Fts3MultiSegReader *pCsr /* Cursor object */ | |
3002 ){ | |
3003 if( pCsr ){ | |
3004 int i; | |
3005 for(i=0; i<pCsr->nSegment; i++){ | |
3006 sqlite3Fts3SegReaderFree(pCsr->apSegment[i]); | |
3007 } | |
3008 sqlite3_free(pCsr->apSegment); | |
3009 sqlite3_free(pCsr->aBuffer); | |
3010 | |
3011 pCsr->nSegment = 0; | |
3012 pCsr->apSegment = 0; | |
3013 pCsr->aBuffer = 0; | |
3014 } | |
3015 } | |
3016 | |
3017 /* | |
3018 ** Decode the "end_block" field, selected by column iCol of the SELECT | |
3019 ** statement passed as the first argument. | |
3020 ** | |
3021 ** The "end_block" field may contain either an integer, or a text field | |
3022 ** containing the text representation of two non-negative integers separated | |
3023 ** by one or more space (0x20) characters. In the first case, set *piEndBlock | |
3024 ** to the integer value and *pnByte to zero before returning. In the second, | |
3025 ** set *piEndBlock to the first value and *pnByte to the second. | |
3026 */ | |
3027 static void fts3ReadEndBlockField( | |
3028 sqlite3_stmt *pStmt, | |
3029 int iCol, | |
3030 i64 *piEndBlock, | |
3031 i64 *pnByte | |
3032 ){ | |
3033 const unsigned char *zText = sqlite3_column_text(pStmt, iCol); | |
3034 if( zText ){ | |
3035 int i; | |
3036 int iMul = 1; | |
3037 i64 iVal = 0; | |
3038 for(i=0; zText[i]>='0' && zText[i]<='9'; i++){ | |
3039 iVal = iVal*10 + (zText[i] - '0'); | |
3040 } | |
3041 *piEndBlock = iVal; | |
3042 while( zText[i]==' ' ) i++; | |
3043 iVal = 0; | |
3044 if( zText[i]=='-' ){ | |
3045 i++; | |
3046 iMul = -1; | |
3047 } | |
3048 for(/* no-op */; zText[i]>='0' && zText[i]<='9'; i++){ | |
3049 iVal = iVal*10 + (zText[i] - '0'); | |
3050 } | |
3051 *pnByte = (iVal * (i64)iMul); | |
3052 } | |
3053 } | |
3054 | |
3055 | |
3056 /* | |
3057 ** A segment of size nByte bytes has just been written to absolute level | |
3058 ** iAbsLevel. Promote any segments that should be promoted as a result. | |
3059 */ | |
3060 static int fts3PromoteSegments( | |
3061 Fts3Table *p, /* FTS table handle */ | |
3062 sqlite3_int64 iAbsLevel, /* Absolute level just updated */ | |
3063 sqlite3_int64 nByte /* Size of new segment at iAbsLevel */ | |
3064 ){ | |
3065 int rc = SQLITE_OK; | |
3066 sqlite3_stmt *pRange; | |
3067 | |
3068 rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE2, &pRange, 0); | |
3069 | |
3070 if( rc==SQLITE_OK ){ | |
3071 int bOk = 0; | |
3072 i64 iLast = (iAbsLevel/FTS3_SEGDIR_MAXLEVEL + 1) * FTS3_SEGDIR_MAXLEVEL - 1; | |
3073 i64 nLimit = (nByte*3)/2; | |
3074 | |
3075 /* Loop through all entries in the %_segdir table corresponding to | |
3076 ** segments in this index on levels greater than iAbsLevel. If there is | |
3077 ** at least one such segment, and it is possible to determine that all | |
3078 ** such segments are smaller than nLimit bytes in size, they will be | |
3079 ** promoted to level iAbsLevel. */ | |
3080 sqlite3_bind_int64(pRange, 1, iAbsLevel+1); | |
3081 sqlite3_bind_int64(pRange, 2, iLast); | |
3082 while( SQLITE_ROW==sqlite3_step(pRange) ){ | |
3083 i64 nSize = 0, dummy; | |
3084 fts3ReadEndBlockField(pRange, 2, &dummy, &nSize); | |
3085 if( nSize<=0 || nSize>nLimit ){ | |
3086 /* If nSize==0, then the %_segdir.end_block field does not not | |
3087 ** contain a size value. This happens if it was written by an | |
3088 ** old version of FTS. In this case it is not possible to determine | |
3089 ** the size of the segment, and so segment promotion does not | |
3090 ** take place. */ | |
3091 bOk = 0; | |
3092 break; | |
3093 } | |
3094 bOk = 1; | |
3095 } | |
3096 rc = sqlite3_reset(pRange); | |
3097 | |
3098 if( bOk ){ | |
3099 int iIdx = 0; | |
3100 sqlite3_stmt *pUpdate1 = 0; | |
3101 sqlite3_stmt *pUpdate2 = 0; | |
3102 | |
3103 if( rc==SQLITE_OK ){ | |
3104 rc = fts3SqlStmt(p, SQL_UPDATE_LEVEL_IDX, &pUpdate1, 0); | |
3105 } | |
3106 if( rc==SQLITE_OK ){ | |
3107 rc = fts3SqlStmt(p, SQL_UPDATE_LEVEL, &pUpdate2, 0); | |
3108 } | |
3109 | |
3110 if( rc==SQLITE_OK ){ | |
3111 | |
3112 /* Loop through all %_segdir entries for segments in this index with | |
3113 ** levels equal to or greater than iAbsLevel. As each entry is visited, | |
3114 ** updated it to set (level = -1) and (idx = N), where N is 0 for the | |
3115 ** oldest segment in the range, 1 for the next oldest, and so on. | |
3116 ** | |
3117 ** In other words, move all segments being promoted to level -1, | |
3118 ** setting the "idx" fields as appropriate to keep them in the same | |
3119 ** order. The contents of level -1 (which is never used, except | |
3120 ** transiently here), will be moved back to level iAbsLevel below. */ | |
3121 sqlite3_bind_int64(pRange, 1, iAbsLevel); | |
3122 while( SQLITE_ROW==sqlite3_step(pRange) ){ | |
3123 sqlite3_bind_int(pUpdate1, 1, iIdx++); | |
3124 sqlite3_bind_int(pUpdate1, 2, sqlite3_column_int(pRange, 0)); | |
3125 sqlite3_bind_int(pUpdate1, 3, sqlite3_column_int(pRange, 1)); | |
3126 sqlite3_step(pUpdate1); | |
3127 rc = sqlite3_reset(pUpdate1); | |
3128 if( rc!=SQLITE_OK ){ | |
3129 sqlite3_reset(pRange); | |
3130 break; | |
3131 } | |
3132 } | |
3133 } | |
3134 if( rc==SQLITE_OK ){ | |
3135 rc = sqlite3_reset(pRange); | |
3136 } | |
3137 | |
3138 /* Move level -1 to level iAbsLevel */ | |
3139 if( rc==SQLITE_OK ){ | |
3140 sqlite3_bind_int64(pUpdate2, 1, iAbsLevel); | |
3141 sqlite3_step(pUpdate2); | |
3142 rc = sqlite3_reset(pUpdate2); | |
3143 } | |
3144 } | |
3145 } | |
3146 | |
3147 | |
3148 return rc; | |
3149 } | |
3150 | |
3151 /* | |
3152 ** Merge all level iLevel segments in the database into a single | |
3153 ** iLevel+1 segment. Or, if iLevel<0, merge all segments into a | |
3154 ** single segment with a level equal to the numerically largest level | |
3155 ** currently present in the database. | |
3156 ** | |
3157 ** If this function is called with iLevel<0, but there is only one | |
3158 ** segment in the database, SQLITE_DONE is returned immediately. | |
3159 ** Otherwise, if successful, SQLITE_OK is returned. If an error occurs, | |
3160 ** an SQLite error code is returned. | |
3161 */ | |
3162 static int fts3SegmentMerge( | |
3163 Fts3Table *p, | |
3164 int iLangid, /* Language id to merge */ | |
3165 int iIndex, /* Index in p->aIndex[] to merge */ | |
3166 int iLevel /* Level to merge */ | |
3167 ){ | |
3168 int rc; /* Return code */ | |
3169 int iIdx = 0; /* Index of new segment */ | |
3170 sqlite3_int64 iNewLevel = 0; /* Level/index to create new segment at */ | |
3171 SegmentWriter *pWriter = 0; /* Used to write the new, merged, segment */ | |
3172 Fts3SegFilter filter; /* Segment term filter condition */ | |
3173 Fts3MultiSegReader csr; /* Cursor to iterate through level(s) */ | |
3174 int bIgnoreEmpty = 0; /* True to ignore empty segments */ | |
3175 i64 iMaxLevel = 0; /* Max level number for this index/langid */ | |
3176 | |
3177 assert( iLevel==FTS3_SEGCURSOR_ALL | |
3178 || iLevel==FTS3_SEGCURSOR_PENDING | |
3179 || iLevel>=0 | |
3180 ); | |
3181 assert( iLevel<FTS3_SEGDIR_MAXLEVEL ); | |
3182 assert( iIndex>=0 && iIndex<p->nIndex ); | |
3183 | |
3184 rc = sqlite3Fts3SegReaderCursor(p, iLangid, iIndex, iLevel, 0, 0, 1, 0, &csr); | |
3185 if( rc!=SQLITE_OK || csr.nSegment==0 ) goto finished; | |
3186 | |
3187 if( iLevel!=FTS3_SEGCURSOR_PENDING ){ | |
3188 rc = fts3SegmentMaxLevel(p, iLangid, iIndex, &iMaxLevel); | |
3189 if( rc!=SQLITE_OK ) goto finished; | |
3190 } | |
3191 | |
3192 if( iLevel==FTS3_SEGCURSOR_ALL ){ | |
3193 /* This call is to merge all segments in the database to a single | |
3194 ** segment. The level of the new segment is equal to the numerically | |
3195 ** greatest segment level currently present in the database for this | |
3196 ** index. The idx of the new segment is always 0. */ | |
3197 if( csr.nSegment==1 ){ | |
3198 rc = SQLITE_DONE; | |
3199 goto finished; | |
3200 } | |
3201 iNewLevel = iMaxLevel; | |
3202 bIgnoreEmpty = 1; | |
3203 | |
3204 }else{ | |
3205 /* This call is to merge all segments at level iLevel. find the next | |
3206 ** available segment index at level iLevel+1. The call to | |
3207 ** fts3AllocateSegdirIdx() will merge the segments at level iLevel+1 to | |
3208 ** a single iLevel+2 segment if necessary. */ | |
3209 assert( FTS3_SEGCURSOR_PENDING==-1 ); | |
3210 iNewLevel = getAbsoluteLevel(p, iLangid, iIndex, iLevel+1); | |
3211 rc = fts3AllocateSegdirIdx(p, iLangid, iIndex, iLevel+1, &iIdx); | |
3212 bIgnoreEmpty = (iLevel!=FTS3_SEGCURSOR_PENDING) && (iNewLevel>iMaxLevel); | |
3213 } | |
3214 if( rc!=SQLITE_OK ) goto finished; | |
3215 | |
3216 assert( csr.nSegment>0 ); | |
3217 assert( iNewLevel>=getAbsoluteLevel(p, iLangid, iIndex, 0) ); | |
3218 assert( iNewLevel<getAbsoluteLevel(p, iLangid, iIndex,FTS3_SEGDIR_MAXLEVEL) ); | |
3219 | |
3220 memset(&filter, 0, sizeof(Fts3SegFilter)); | |
3221 filter.flags = FTS3_SEGMENT_REQUIRE_POS; | |
3222 filter.flags |= (bIgnoreEmpty ? FTS3_SEGMENT_IGNORE_EMPTY : 0); | |
3223 | |
3224 rc = sqlite3Fts3SegReaderStart(p, &csr, &filter); | |
3225 while( SQLITE_OK==rc ){ | |
3226 rc = sqlite3Fts3SegReaderStep(p, &csr); | |
3227 if( rc!=SQLITE_ROW ) break; | |
3228 rc = fts3SegWriterAdd(p, &pWriter, 1, | |
3229 csr.zTerm, csr.nTerm, csr.aDoclist, csr.nDoclist); | |
3230 } | |
3231 if( rc!=SQLITE_OK ) goto finished; | |
3232 assert( pWriter || bIgnoreEmpty ); | |
3233 | |
3234 if( iLevel!=FTS3_SEGCURSOR_PENDING ){ | |
3235 rc = fts3DeleteSegdir( | |
3236 p, iLangid, iIndex, iLevel, csr.apSegment, csr.nSegment | |
3237 ); | |
3238 if( rc!=SQLITE_OK ) goto finished; | |
3239 } | |
3240 if( pWriter ){ | |
3241 rc = fts3SegWriterFlush(p, pWriter, iNewLevel, iIdx); | |
3242 if( rc==SQLITE_OK ){ | |
3243 if( iLevel==FTS3_SEGCURSOR_PENDING || iNewLevel<iMaxLevel ){ | |
3244 rc = fts3PromoteSegments(p, iNewLevel, pWriter->nLeafData); | |
3245 } | |
3246 } | |
3247 } | |
3248 | |
3249 finished: | |
3250 fts3SegWriterFree(pWriter); | |
3251 sqlite3Fts3SegReaderFinish(&csr); | |
3252 return rc; | |
3253 } | |
3254 | |
3255 | |
3256 /* | |
3257 ** Flush the contents of pendingTerms to level 0 segments. | |
3258 */ | |
3259 int sqlite3Fts3PendingTermsFlush(Fts3Table *p){ | |
3260 int rc = SQLITE_OK; | |
3261 int i; | |
3262 | |
3263 for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){ | |
3264 rc = fts3SegmentMerge(p, p->iPrevLangid, i, FTS3_SEGCURSOR_PENDING); | |
3265 if( rc==SQLITE_DONE ) rc = SQLITE_OK; | |
3266 } | |
3267 sqlite3Fts3PendingTermsClear(p); | |
3268 | |
3269 /* Determine the auto-incr-merge setting if unknown. If enabled, | |
3270 ** estimate the number of leaf blocks of content to be written | |
3271 */ | |
3272 if( rc==SQLITE_OK && p->bHasStat | |
3273 && p->nAutoincrmerge==0xff && p->nLeafAdd>0 | |
3274 ){ | |
3275 sqlite3_stmt *pStmt = 0; | |
3276 rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0); | |
3277 if( rc==SQLITE_OK ){ | |
3278 sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE); | |
3279 rc = sqlite3_step(pStmt); | |
3280 if( rc==SQLITE_ROW ){ | |
3281 p->nAutoincrmerge = sqlite3_column_int(pStmt, 0); | |
3282 if( p->nAutoincrmerge==1 ) p->nAutoincrmerge = 8; | |
3283 }else if( rc==SQLITE_DONE ){ | |
3284 p->nAutoincrmerge = 0; | |
3285 } | |
3286 rc = sqlite3_reset(pStmt); | |
3287 } | |
3288 } | |
3289 return rc; | |
3290 } | |
3291 | |
3292 /* | |
3293 ** Encode N integers as varints into a blob. | |
3294 */ | |
3295 static void fts3EncodeIntArray( | |
3296 int N, /* The number of integers to encode */ | |
3297 u32 *a, /* The integer values */ | |
3298 char *zBuf, /* Write the BLOB here */ | |
3299 int *pNBuf /* Write number of bytes if zBuf[] used here */ | |
3300 ){ | |
3301 int i, j; | |
3302 for(i=j=0; i<N; i++){ | |
3303 j += sqlite3Fts3PutVarint(&zBuf[j], (sqlite3_int64)a[i]); | |
3304 } | |
3305 *pNBuf = j; | |
3306 } | |
3307 | |
3308 /* | |
3309 ** Decode a blob of varints into N integers | |
3310 */ | |
3311 static void fts3DecodeIntArray( | |
3312 int N, /* The number of integers to decode */ | |
3313 u32 *a, /* Write the integer values */ | |
3314 const char *zBuf, /* The BLOB containing the varints */ | |
3315 int nBuf /* size of the BLOB */ | |
3316 ){ | |
3317 int i, j; | |
3318 UNUSED_PARAMETER(nBuf); | |
3319 for(i=j=0; i<N; i++){ | |
3320 sqlite3_int64 x; | |
3321 j += sqlite3Fts3GetVarint(&zBuf[j], &x); | |
3322 assert(j<=nBuf); | |
3323 a[i] = (u32)(x & 0xffffffff); | |
3324 } | |
3325 } | |
3326 | |
3327 /* | |
3328 ** Insert the sizes (in tokens) for each column of the document | |
3329 ** with docid equal to p->iPrevDocid. The sizes are encoded as | |
3330 ** a blob of varints. | |
3331 */ | |
3332 static void fts3InsertDocsize( | |
3333 int *pRC, /* Result code */ | |
3334 Fts3Table *p, /* Table into which to insert */ | |
3335 u32 *aSz /* Sizes of each column, in tokens */ | |
3336 ){ | |
3337 char *pBlob; /* The BLOB encoding of the document size */ | |
3338 int nBlob; /* Number of bytes in the BLOB */ | |
3339 sqlite3_stmt *pStmt; /* Statement used to insert the encoding */ | |
3340 int rc; /* Result code from subfunctions */ | |
3341 | |
3342 if( *pRC ) return; | |
3343 pBlob = sqlite3_malloc( 10*p->nColumn ); | |
3344 if( pBlob==0 ){ | |
3345 *pRC = SQLITE_NOMEM; | |
3346 return; | |
3347 } | |
3348 fts3EncodeIntArray(p->nColumn, aSz, pBlob, &nBlob); | |
3349 rc = fts3SqlStmt(p, SQL_REPLACE_DOCSIZE, &pStmt, 0); | |
3350 if( rc ){ | |
3351 sqlite3_free(pBlob); | |
3352 *pRC = rc; | |
3353 return; | |
3354 } | |
3355 sqlite3_bind_int64(pStmt, 1, p->iPrevDocid); | |
3356 sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, sqlite3_free); | |
3357 sqlite3_step(pStmt); | |
3358 *pRC = sqlite3_reset(pStmt); | |
3359 } | |
3360 | |
3361 /* | |
3362 ** Record 0 of the %_stat table contains a blob consisting of N varints, | |
3363 ** where N is the number of user defined columns in the fts3 table plus | |
3364 ** two. If nCol is the number of user defined columns, then values of the | |
3365 ** varints are set as follows: | |
3366 ** | |
3367 ** Varint 0: Total number of rows in the table. | |
3368 ** | |
3369 ** Varint 1..nCol: For each column, the total number of tokens stored in | |
3370 ** the column for all rows of the table. | |
3371 ** | |
3372 ** Varint 1+nCol: The total size, in bytes, of all text values in all | |
3373 ** columns of all rows of the table. | |
3374 ** | |
3375 */ | |
3376 static void fts3UpdateDocTotals( | |
3377 int *pRC, /* The result code */ | |
3378 Fts3Table *p, /* Table being updated */ | |
3379 u32 *aSzIns, /* Size increases */ | |
3380 u32 *aSzDel, /* Size decreases */ | |
3381 int nChng /* Change in the number of documents */ | |
3382 ){ | |
3383 char *pBlob; /* Storage for BLOB written into %_stat */ | |
3384 int nBlob; /* Size of BLOB written into %_stat */ | |
3385 u32 *a; /* Array of integers that becomes the BLOB */ | |
3386 sqlite3_stmt *pStmt; /* Statement for reading and writing */ | |
3387 int i; /* Loop counter */ | |
3388 int rc; /* Result code from subfunctions */ | |
3389 | |
3390 const int nStat = p->nColumn+2; | |
3391 | |
3392 if( *pRC ) return; | |
3393 a = sqlite3_malloc( (sizeof(u32)+10)*nStat ); | |
3394 if( a==0 ){ | |
3395 *pRC = SQLITE_NOMEM; | |
3396 return; | |
3397 } | |
3398 pBlob = (char*)&a[nStat]; | |
3399 rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0); | |
3400 if( rc ){ | |
3401 sqlite3_free(a); | |
3402 *pRC = rc; | |
3403 return; | |
3404 } | |
3405 sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL); | |
3406 if( sqlite3_step(pStmt)==SQLITE_ROW ){ | |
3407 fts3DecodeIntArray(nStat, a, | |
3408 sqlite3_column_blob(pStmt, 0), | |
3409 sqlite3_column_bytes(pStmt, 0)); | |
3410 }else{ | |
3411 memset(a, 0, sizeof(u32)*(nStat) ); | |
3412 } | |
3413 rc = sqlite3_reset(pStmt); | |
3414 if( rc!=SQLITE_OK ){ | |
3415 sqlite3_free(a); | |
3416 *pRC = rc; | |
3417 return; | |
3418 } | |
3419 if( nChng<0 && a[0]<(u32)(-nChng) ){ | |
3420 a[0] = 0; | |
3421 }else{ | |
3422 a[0] += nChng; | |
3423 } | |
3424 for(i=0; i<p->nColumn+1; i++){ | |
3425 u32 x = a[i+1]; | |
3426 if( x+aSzIns[i] < aSzDel[i] ){ | |
3427 x = 0; | |
3428 }else{ | |
3429 x = x + aSzIns[i] - aSzDel[i]; | |
3430 } | |
3431 a[i+1] = x; | |
3432 } | |
3433 fts3EncodeIntArray(nStat, a, pBlob, &nBlob); | |
3434 rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0); | |
3435 if( rc ){ | |
3436 sqlite3_free(a); | |
3437 *pRC = rc; | |
3438 return; | |
3439 } | |
3440 sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL); | |
3441 sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, SQLITE_STATIC); | |
3442 sqlite3_step(pStmt); | |
3443 *pRC = sqlite3_reset(pStmt); | |
3444 sqlite3_free(a); | |
3445 } | |
3446 | |
3447 /* | |
3448 ** Merge the entire database so that there is one segment for each | |
3449 ** iIndex/iLangid combination. | |
3450 */ | |
3451 static int fts3DoOptimize(Fts3Table *p, int bReturnDone){ | |
3452 int bSeenDone = 0; | |
3453 int rc; | |
3454 sqlite3_stmt *pAllLangid = 0; | |
3455 | |
3456 rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0); | |
3457 if( rc==SQLITE_OK ){ | |
3458 int rc2; | |
3459 sqlite3_bind_int(pAllLangid, 1, p->iPrevLangid); | |
3460 sqlite3_bind_int(pAllLangid, 2, p->nIndex); | |
3461 while( sqlite3_step(pAllLangid)==SQLITE_ROW ){ | |
3462 int i; | |
3463 int iLangid = sqlite3_column_int(pAllLangid, 0); | |
3464 for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){ | |
3465 rc = fts3SegmentMerge(p, iLangid, i, FTS3_SEGCURSOR_ALL); | |
3466 if( rc==SQLITE_DONE ){ | |
3467 bSeenDone = 1; | |
3468 rc = SQLITE_OK; | |
3469 } | |
3470 } | |
3471 } | |
3472 rc2 = sqlite3_reset(pAllLangid); | |
3473 if( rc==SQLITE_OK ) rc = rc2; | |
3474 } | |
3475 | |
3476 sqlite3Fts3SegmentsClose(p); | |
3477 sqlite3Fts3PendingTermsClear(p); | |
3478 | |
3479 return (rc==SQLITE_OK && bReturnDone && bSeenDone) ? SQLITE_DONE : rc; | |
3480 } | |
3481 | |
3482 /* | |
3483 ** This function is called when the user executes the following statement: | |
3484 ** | |
3485 ** INSERT INTO <tbl>(<tbl>) VALUES('rebuild'); | |
3486 ** | |
3487 ** The entire FTS index is discarded and rebuilt. If the table is one | |
3488 ** created using the content=xxx option, then the new index is based on | |
3489 ** the current contents of the xxx table. Otherwise, it is rebuilt based | |
3490 ** on the contents of the %_content table. | |
3491 */ | |
3492 static int fts3DoRebuild(Fts3Table *p){ | |
3493 int rc; /* Return Code */ | |
3494 | |
3495 rc = fts3DeleteAll(p, 0); | |
3496 if( rc==SQLITE_OK ){ | |
3497 u32 *aSz = 0; | |
3498 u32 *aSzIns = 0; | |
3499 u32 *aSzDel = 0; | |
3500 sqlite3_stmt *pStmt = 0; | |
3501 int nEntry = 0; | |
3502 | |
3503 /* Compose and prepare an SQL statement to loop through the content table */ | |
3504 char *zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist); | |
3505 if( !zSql ){ | |
3506 rc = SQLITE_NOMEM; | |
3507 }else{ | |
3508 rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); | |
3509 sqlite3_free(zSql); | |
3510 } | |
3511 | |
3512 if( rc==SQLITE_OK ){ | |
3513 int nByte = sizeof(u32) * (p->nColumn+1)*3; | |
3514 aSz = (u32 *)sqlite3_malloc(nByte); | |
3515 if( aSz==0 ){ | |
3516 rc = SQLITE_NOMEM; | |
3517 }else{ | |
3518 memset(aSz, 0, nByte); | |
3519 aSzIns = &aSz[p->nColumn+1]; | |
3520 aSzDel = &aSzIns[p->nColumn+1]; | |
3521 } | |
3522 } | |
3523 | |
3524 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ | |
3525 int iCol; | |
3526 int iLangid = langidFromSelect(p, pStmt); | |
3527 rc = fts3PendingTermsDocid(p, 0, iLangid, sqlite3_column_int64(pStmt, 0)); | |
3528 memset(aSz, 0, sizeof(aSz[0]) * (p->nColumn+1)); | |
3529 for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){ | |
3530 if( p->abNotindexed[iCol]==0 ){ | |
3531 const char *z = (const char *) sqlite3_column_text(pStmt, iCol+1); | |
3532 rc = fts3PendingTermsAdd(p, iLangid, z, iCol, &aSz[iCol]); | |
3533 aSz[p->nColumn] += sqlite3_column_bytes(pStmt, iCol+1); | |
3534 } | |
3535 } | |
3536 if( p->bHasDocsize ){ | |
3537 fts3InsertDocsize(&rc, p, aSz); | |
3538 } | |
3539 if( rc!=SQLITE_OK ){ | |
3540 sqlite3_finalize(pStmt); | |
3541 pStmt = 0; | |
3542 }else{ | |
3543 nEntry++; | |
3544 for(iCol=0; iCol<=p->nColumn; iCol++){ | |
3545 aSzIns[iCol] += aSz[iCol]; | |
3546 } | |
3547 } | |
3548 } | |
3549 if( p->bFts4 ){ | |
3550 fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nEntry); | |
3551 } | |
3552 sqlite3_free(aSz); | |
3553 | |
3554 if( pStmt ){ | |
3555 int rc2 = sqlite3_finalize(pStmt); | |
3556 if( rc==SQLITE_OK ){ | |
3557 rc = rc2; | |
3558 } | |
3559 } | |
3560 } | |
3561 | |
3562 return rc; | |
3563 } | |
3564 | |
3565 | |
3566 /* | |
3567 ** This function opens a cursor used to read the input data for an | |
3568 ** incremental merge operation. Specifically, it opens a cursor to scan | |
3569 ** the oldest nSeg segments (idx=0 through idx=(nSeg-1)) in absolute | |
3570 ** level iAbsLevel. | |
3571 */ | |
3572 static int fts3IncrmergeCsr( | |
3573 Fts3Table *p, /* FTS3 table handle */ | |
3574 sqlite3_int64 iAbsLevel, /* Absolute level to open */ | |
3575 int nSeg, /* Number of segments to merge */ | |
3576 Fts3MultiSegReader *pCsr /* Cursor object to populate */ | |
3577 ){ | |
3578 int rc; /* Return Code */ | |
3579 sqlite3_stmt *pStmt = 0; /* Statement used to read %_segdir entry */ | |
3580 int nByte; /* Bytes allocated at pCsr->apSegment[] */ | |
3581 | |
3582 /* Allocate space for the Fts3MultiSegReader.aCsr[] array */ | |
3583 memset(pCsr, 0, sizeof(*pCsr)); | |
3584 nByte = sizeof(Fts3SegReader *) * nSeg; | |
3585 pCsr->apSegment = (Fts3SegReader **)sqlite3_malloc(nByte); | |
3586 | |
3587 if( pCsr->apSegment==0 ){ | |
3588 rc = SQLITE_NOMEM; | |
3589 }else{ | |
3590 memset(pCsr->apSegment, 0, nByte); | |
3591 rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0); | |
3592 } | |
3593 if( rc==SQLITE_OK ){ | |
3594 int i; | |
3595 int rc2; | |
3596 sqlite3_bind_int64(pStmt, 1, iAbsLevel); | |
3597 assert( pCsr->nSegment==0 ); | |
3598 for(i=0; rc==SQLITE_OK && sqlite3_step(pStmt)==SQLITE_ROW && i<nSeg; i++){ | |
3599 rc = sqlite3Fts3SegReaderNew(i, 0, | |
3600 sqlite3_column_int64(pStmt, 1), /* segdir.start_block */ | |
3601 sqlite3_column_int64(pStmt, 2), /* segdir.leaves_end_block */ | |
3602 sqlite3_column_int64(pStmt, 3), /* segdir.end_block */ | |
3603 sqlite3_column_blob(pStmt, 4), /* segdir.root */ | |
3604 sqlite3_column_bytes(pStmt, 4), /* segdir.root */ | |
3605 &pCsr->apSegment[i] | |
3606 ); | |
3607 pCsr->nSegment++; | |
3608 } | |
3609 rc2 = sqlite3_reset(pStmt); | |
3610 if( rc==SQLITE_OK ) rc = rc2; | |
3611 } | |
3612 | |
3613 return rc; | |
3614 } | |
3615 | |
3616 typedef struct IncrmergeWriter IncrmergeWriter; | |
3617 typedef struct NodeWriter NodeWriter; | |
3618 typedef struct Blob Blob; | |
3619 typedef struct NodeReader NodeReader; | |
3620 | |
3621 /* | |
3622 ** An instance of the following structure is used as a dynamic buffer | |
3623 ** to build up nodes or other blobs of data in. | |
3624 ** | |
3625 ** The function blobGrowBuffer() is used to extend the allocation. | |
3626 */ | |
3627 struct Blob { | |
3628 char *a; /* Pointer to allocation */ | |
3629 int n; /* Number of valid bytes of data in a[] */ | |
3630 int nAlloc; /* Allocated size of a[] (nAlloc>=n) */ | |
3631 }; | |
3632 | |
3633 /* | |
3634 ** This structure is used to build up buffers containing segment b-tree | |
3635 ** nodes (blocks). | |
3636 */ | |
3637 struct NodeWriter { | |
3638 sqlite3_int64 iBlock; /* Current block id */ | |
3639 Blob key; /* Last key written to the current block */ | |
3640 Blob block; /* Current block image */ | |
3641 }; | |
3642 | |
3643 /* | |
3644 ** An object of this type contains the state required to create or append | |
3645 ** to an appendable b-tree segment. | |
3646 */ | |
3647 struct IncrmergeWriter { | |
3648 int nLeafEst; /* Space allocated for leaf blocks */ | |
3649 int nWork; /* Number of leaf pages flushed */ | |
3650 sqlite3_int64 iAbsLevel; /* Absolute level of input segments */ | |
3651 int iIdx; /* Index of *output* segment in iAbsLevel+1 */ | |
3652 sqlite3_int64 iStart; /* Block number of first allocated block */ | |
3653 sqlite3_int64 iEnd; /* Block number of last allocated block */ | |
3654 sqlite3_int64 nLeafData; /* Bytes of leaf page data so far */ | |
3655 u8 bNoLeafData; /* If true, store 0 for segment size */ | |
3656 NodeWriter aNodeWriter[FTS_MAX_APPENDABLE_HEIGHT]; | |
3657 }; | |
3658 | |
3659 /* | |
3660 ** An object of the following type is used to read data from a single | |
3661 ** FTS segment node. See the following functions: | |
3662 ** | |
3663 ** nodeReaderInit() | |
3664 ** nodeReaderNext() | |
3665 ** nodeReaderRelease() | |
3666 */ | |
3667 struct NodeReader { | |
3668 const char *aNode; | |
3669 int nNode; | |
3670 int iOff; /* Current offset within aNode[] */ | |
3671 | |
3672 /* Output variables. Containing the current node entry. */ | |
3673 sqlite3_int64 iChild; /* Pointer to child node */ | |
3674 Blob term; /* Current term */ | |
3675 const char *aDoclist; /* Pointer to doclist */ | |
3676 int nDoclist; /* Size of doclist in bytes */ | |
3677 }; | |
3678 | |
3679 /* | |
3680 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op. | |
3681 ** Otherwise, if the allocation at pBlob->a is not already at least nMin | |
3682 ** bytes in size, extend (realloc) it to be so. | |
3683 ** | |
3684 ** If an OOM error occurs, set *pRc to SQLITE_NOMEM and leave pBlob->a | |
3685 ** unmodified. Otherwise, if the allocation succeeds, update pBlob->nAlloc | |
3686 ** to reflect the new size of the pBlob->a[] buffer. | |
3687 */ | |
3688 static void blobGrowBuffer(Blob *pBlob, int nMin, int *pRc){ | |
3689 if( *pRc==SQLITE_OK && nMin>pBlob->nAlloc ){ | |
3690 int nAlloc = nMin; | |
3691 char *a = (char *)sqlite3_realloc(pBlob->a, nAlloc); | |
3692 if( a ){ | |
3693 pBlob->nAlloc = nAlloc; | |
3694 pBlob->a = a; | |
3695 }else{ | |
3696 *pRc = SQLITE_NOMEM; | |
3697 } | |
3698 } | |
3699 } | |
3700 | |
3701 /* | |
3702 ** Attempt to advance the node-reader object passed as the first argument to | |
3703 ** the next entry on the node. | |
3704 ** | |
3705 ** Return an error code if an error occurs (SQLITE_NOMEM is possible). | |
3706 ** Otherwise return SQLITE_OK. If there is no next entry on the node | |
3707 ** (e.g. because the current entry is the last) set NodeReader->aNode to | |
3708 ** NULL to indicate EOF. Otherwise, populate the NodeReader structure output | |
3709 ** variables for the new entry. | |
3710 */ | |
3711 static int nodeReaderNext(NodeReader *p){ | |
3712 int bFirst = (p->term.n==0); /* True for first term on the node */ | |
3713 int nPrefix = 0; /* Bytes to copy from previous term */ | |
3714 int nSuffix = 0; /* Bytes to append to the prefix */ | |
3715 int rc = SQLITE_OK; /* Return code */ | |
3716 | |
3717 assert( p->aNode ); | |
3718 if( p->iChild && bFirst==0 ) p->iChild++; | |
3719 if( p->iOff>=p->nNode ){ | |
3720 /* EOF */ | |
3721 p->aNode = 0; | |
3722 }else{ | |
3723 if( bFirst==0 ){ | |
3724 p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nPrefix); | |
3725 } | |
3726 p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nSuffix); | |
3727 | |
3728 blobGrowBuffer(&p->term, nPrefix+nSuffix, &rc); | |
3729 if( rc==SQLITE_OK ){ | |
3730 memcpy(&p->term.a[nPrefix], &p->aNode[p->iOff], nSuffix); | |
3731 p->term.n = nPrefix+nSuffix; | |
3732 p->iOff += nSuffix; | |
3733 if( p->iChild==0 ){ | |
3734 p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &p->nDoclist); | |
3735 p->aDoclist = &p->aNode[p->iOff]; | |
3736 p->iOff += p->nDoclist; | |
3737 } | |
3738 } | |
3739 } | |
3740 | |
3741 assert( p->iOff<=p->nNode ); | |
3742 | |
3743 return rc; | |
3744 } | |
3745 | |
3746 /* | |
3747 ** Release all dynamic resources held by node-reader object *p. | |
3748 */ | |
3749 static void nodeReaderRelease(NodeReader *p){ | |
3750 sqlite3_free(p->term.a); | |
3751 } | |
3752 | |
3753 /* | |
3754 ** Initialize a node-reader object to read the node in buffer aNode/nNode. | |
3755 ** | |
3756 ** If successful, SQLITE_OK is returned and the NodeReader object set to | |
3757 ** point to the first entry on the node (if any). Otherwise, an SQLite | |
3758 ** error code is returned. | |
3759 */ | |
3760 static int nodeReaderInit(NodeReader *p, const char *aNode, int nNode){ | |
3761 memset(p, 0, sizeof(NodeReader)); | |
3762 p->aNode = aNode; | |
3763 p->nNode = nNode; | |
3764 | |
3765 /* Figure out if this is a leaf or an internal node. */ | |
3766 if( p->aNode[0] ){ | |
3767 /* An internal node. */ | |
3768 p->iOff = 1 + sqlite3Fts3GetVarint(&p->aNode[1], &p->iChild); | |
3769 }else{ | |
3770 p->iOff = 1; | |
3771 } | |
3772 | |
3773 return nodeReaderNext(p); | |
3774 } | |
3775 | |
3776 /* | |
3777 ** This function is called while writing an FTS segment each time a leaf o | |
3778 ** node is finished and written to disk. The key (zTerm/nTerm) is guaranteed | |
3779 ** to be greater than the largest key on the node just written, but smaller | |
3780 ** than or equal to the first key that will be written to the next leaf | |
3781 ** node. | |
3782 ** | |
3783 ** The block id of the leaf node just written to disk may be found in | |
3784 ** (pWriter->aNodeWriter[0].iBlock) when this function is called. | |
3785 */ | |
3786 static int fts3IncrmergePush( | |
3787 Fts3Table *p, /* Fts3 table handle */ | |
3788 IncrmergeWriter *pWriter, /* Writer object */ | |
3789 const char *zTerm, /* Term to write to internal node */ | |
3790 int nTerm /* Bytes at zTerm */ | |
3791 ){ | |
3792 sqlite3_int64 iPtr = pWriter->aNodeWriter[0].iBlock; | |
3793 int iLayer; | |
3794 | |
3795 assert( nTerm>0 ); | |
3796 for(iLayer=1; ALWAYS(iLayer<FTS_MAX_APPENDABLE_HEIGHT); iLayer++){ | |
3797 sqlite3_int64 iNextPtr = 0; | |
3798 NodeWriter *pNode = &pWriter->aNodeWriter[iLayer]; | |
3799 int rc = SQLITE_OK; | |
3800 int nPrefix; | |
3801 int nSuffix; | |
3802 int nSpace; | |
3803 | |
3804 /* Figure out how much space the key will consume if it is written to | |
3805 ** the current node of layer iLayer. Due to the prefix compression, | |
3806 ** the space required changes depending on which node the key is to | |
3807 ** be added to. */ | |
3808 nPrefix = fts3PrefixCompress(pNode->key.a, pNode->key.n, zTerm, nTerm); | |
3809 nSuffix = nTerm - nPrefix; | |
3810 nSpace = sqlite3Fts3VarintLen(nPrefix); | |
3811 nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix; | |
3812 | |
3813 if( pNode->key.n==0 || (pNode->block.n + nSpace)<=p->nNodeSize ){ | |
3814 /* If the current node of layer iLayer contains zero keys, or if adding | |
3815 ** the key to it will not cause it to grow to larger than nNodeSize | |
3816 ** bytes in size, write the key here. */ | |
3817 | |
3818 Blob *pBlk = &pNode->block; | |
3819 if( pBlk->n==0 ){ | |
3820 blobGrowBuffer(pBlk, p->nNodeSize, &rc); | |
3821 if( rc==SQLITE_OK ){ | |
3822 pBlk->a[0] = (char)iLayer; | |
3823 pBlk->n = 1 + sqlite3Fts3PutVarint(&pBlk->a[1], iPtr); | |
3824 } | |
3825 } | |
3826 blobGrowBuffer(pBlk, pBlk->n + nSpace, &rc); | |
3827 blobGrowBuffer(&pNode->key, nTerm, &rc); | |
3828 | |
3829 if( rc==SQLITE_OK ){ | |
3830 if( pNode->key.n ){ | |
3831 pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nPrefix); | |
3832 } | |
3833 pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nSuffix); | |
3834 memcpy(&pBlk->a[pBlk->n], &zTerm[nPrefix], nSuffix); | |
3835 pBlk->n += nSuffix; | |
3836 | |
3837 memcpy(pNode->key.a, zTerm, nTerm); | |
3838 pNode->key.n = nTerm; | |
3839 } | |
3840 }else{ | |
3841 /* Otherwise, flush the current node of layer iLayer to disk. | |
3842 ** Then allocate a new, empty sibling node. The key will be written | |
3843 ** into the parent of this node. */ | |
3844 rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n); | |
3845 | |
3846 assert( pNode->block.nAlloc>=p->nNodeSize ); | |
3847 pNode->block.a[0] = (char)iLayer; | |
3848 pNode->block.n = 1 + sqlite3Fts3PutVarint(&pNode->block.a[1], iPtr+1); | |
3849 | |
3850 iNextPtr = pNode->iBlock; | |
3851 pNode->iBlock++; | |
3852 pNode->key.n = 0; | |
3853 } | |
3854 | |
3855 if( rc!=SQLITE_OK || iNextPtr==0 ) return rc; | |
3856 iPtr = iNextPtr; | |
3857 } | |
3858 | |
3859 assert( 0 ); | |
3860 return 0; | |
3861 } | |
3862 | |
3863 /* | |
3864 ** Append a term and (optionally) doclist to the FTS segment node currently | |
3865 ** stored in blob *pNode. The node need not contain any terms, but the | |
3866 ** header must be written before this function is called. | |
3867 ** | |
3868 ** A node header is a single 0x00 byte for a leaf node, or a height varint | |
3869 ** followed by the left-hand-child varint for an internal node. | |
3870 ** | |
3871 ** The term to be appended is passed via arguments zTerm/nTerm. For a | |
3872 ** leaf node, the doclist is passed as aDoclist/nDoclist. For an internal | |
3873 ** node, both aDoclist and nDoclist must be passed 0. | |
3874 ** | |
3875 ** If the size of the value in blob pPrev is zero, then this is the first | |
3876 ** term written to the node. Otherwise, pPrev contains a copy of the | |
3877 ** previous term. Before this function returns, it is updated to contain a | |
3878 ** copy of zTerm/nTerm. | |
3879 ** | |
3880 ** It is assumed that the buffer associated with pNode is already large | |
3881 ** enough to accommodate the new entry. The buffer associated with pPrev | |
3882 ** is extended by this function if requrired. | |
3883 ** | |
3884 ** If an error (i.e. OOM condition) occurs, an SQLite error code is | |
3885 ** returned. Otherwise, SQLITE_OK. | |
3886 */ | |
3887 static int fts3AppendToNode( | |
3888 Blob *pNode, /* Current node image to append to */ | |
3889 Blob *pPrev, /* Buffer containing previous term written */ | |
3890 const char *zTerm, /* New term to write */ | |
3891 int nTerm, /* Size of zTerm in bytes */ | |
3892 const char *aDoclist, /* Doclist (or NULL) to write */ | |
3893 int nDoclist /* Size of aDoclist in bytes */ | |
3894 ){ | |
3895 int rc = SQLITE_OK; /* Return code */ | |
3896 int bFirst = (pPrev->n==0); /* True if this is the first term written */ | |
3897 int nPrefix; /* Size of term prefix in bytes */ | |
3898 int nSuffix; /* Size of term suffix in bytes */ | |
3899 | |
3900 /* Node must have already been started. There must be a doclist for a | |
3901 ** leaf node, and there must not be a doclist for an internal node. */ | |
3902 assert( pNode->n>0 ); | |
3903 assert( (pNode->a[0]=='\0')==(aDoclist!=0) ); | |
3904 | |
3905 blobGrowBuffer(pPrev, nTerm, &rc); | |
3906 if( rc!=SQLITE_OK ) return rc; | |
3907 | |
3908 nPrefix = fts3PrefixCompress(pPrev->a, pPrev->n, zTerm, nTerm); | |
3909 nSuffix = nTerm - nPrefix; | |
3910 memcpy(pPrev->a, zTerm, nTerm); | |
3911 pPrev->n = nTerm; | |
3912 | |
3913 if( bFirst==0 ){ | |
3914 pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nPrefix); | |
3915 } | |
3916 pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nSuffix); | |
3917 memcpy(&pNode->a[pNode->n], &zTerm[nPrefix], nSuffix); | |
3918 pNode->n += nSuffix; | |
3919 | |
3920 if( aDoclist ){ | |
3921 pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nDoclist); | |
3922 memcpy(&pNode->a[pNode->n], aDoclist, nDoclist); | |
3923 pNode->n += nDoclist; | |
3924 } | |
3925 | |
3926 assert( pNode->n<=pNode->nAlloc ); | |
3927 | |
3928 return SQLITE_OK; | |
3929 } | |
3930 | |
3931 /* | |
3932 ** Append the current term and doclist pointed to by cursor pCsr to the | |
3933 ** appendable b-tree segment opened for writing by pWriter. | |
3934 ** | |
3935 ** Return SQLITE_OK if successful, or an SQLite error code otherwise. | |
3936 */ | |
3937 static int fts3IncrmergeAppend( | |
3938 Fts3Table *p, /* Fts3 table handle */ | |
3939 IncrmergeWriter *pWriter, /* Writer object */ | |
3940 Fts3MultiSegReader *pCsr /* Cursor containing term and doclist */ | |
3941 ){ | |
3942 const char *zTerm = pCsr->zTerm; | |
3943 int nTerm = pCsr->nTerm; | |
3944 const char *aDoclist = pCsr->aDoclist; | |
3945 int nDoclist = pCsr->nDoclist; | |
3946 int rc = SQLITE_OK; /* Return code */ | |
3947 int nSpace; /* Total space in bytes required on leaf */ | |
3948 int nPrefix; /* Size of prefix shared with previous term */ | |
3949 int nSuffix; /* Size of suffix (nTerm - nPrefix) */ | |
3950 NodeWriter *pLeaf; /* Object used to write leaf nodes */ | |
3951 | |
3952 pLeaf = &pWriter->aNodeWriter[0]; | |
3953 nPrefix = fts3PrefixCompress(pLeaf->key.a, pLeaf->key.n, zTerm, nTerm); | |
3954 nSuffix = nTerm - nPrefix; | |
3955 | |
3956 nSpace = sqlite3Fts3VarintLen(nPrefix); | |
3957 nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix; | |
3958 nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist; | |
3959 | |
3960 /* If the current block is not empty, and if adding this term/doclist | |
3961 ** to the current block would make it larger than Fts3Table.nNodeSize | |
3962 ** bytes, write this block out to the database. */ | |
3963 if( pLeaf->block.n>0 && (pLeaf->block.n + nSpace)>p->nNodeSize ){ | |
3964 rc = fts3WriteSegment(p, pLeaf->iBlock, pLeaf->block.a, pLeaf->block.n); | |
3965 pWriter->nWork++; | |
3966 | |
3967 /* Add the current term to the parent node. The term added to the | |
3968 ** parent must: | |
3969 ** | |
3970 ** a) be greater than the largest term on the leaf node just written | |
3971 ** to the database (still available in pLeaf->key), and | |
3972 ** | |
3973 ** b) be less than or equal to the term about to be added to the new | |
3974 ** leaf node (zTerm/nTerm). | |
3975 ** | |
3976 ** In other words, it must be the prefix of zTerm 1 byte longer than | |
3977 ** the common prefix (if any) of zTerm and pWriter->zTerm. | |
3978 */ | |
3979 if( rc==SQLITE_OK ){ | |
3980 rc = fts3IncrmergePush(p, pWriter, zTerm, nPrefix+1); | |
3981 } | |
3982 | |
3983 /* Advance to the next output block */ | |
3984 pLeaf->iBlock++; | |
3985 pLeaf->key.n = 0; | |
3986 pLeaf->block.n = 0; | |
3987 | |
3988 nSuffix = nTerm; | |
3989 nSpace = 1; | |
3990 nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix; | |
3991 nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist; | |
3992 } | |
3993 | |
3994 pWriter->nLeafData += nSpace; | |
3995 blobGrowBuffer(&pLeaf->block, pLeaf->block.n + nSpace, &rc); | |
3996 if( rc==SQLITE_OK ){ | |
3997 if( pLeaf->block.n==0 ){ | |
3998 pLeaf->block.n = 1; | |
3999 pLeaf->block.a[0] = '\0'; | |
4000 } | |
4001 rc = fts3AppendToNode( | |
4002 &pLeaf->block, &pLeaf->key, zTerm, nTerm, aDoclist, nDoclist | |
4003 ); | |
4004 } | |
4005 | |
4006 return rc; | |
4007 } | |
4008 | |
4009 /* | |
4010 ** This function is called to release all dynamic resources held by the | |
4011 ** merge-writer object pWriter, and if no error has occurred, to flush | |
4012 ** all outstanding node buffers held by pWriter to disk. | |
4013 ** | |
4014 ** If *pRc is not SQLITE_OK when this function is called, then no attempt | |
4015 ** is made to write any data to disk. Instead, this function serves only | |
4016 ** to release outstanding resources. | |
4017 ** | |
4018 ** Otherwise, if *pRc is initially SQLITE_OK and an error occurs while | |
4019 ** flushing buffers to disk, *pRc is set to an SQLite error code before | |
4020 ** returning. | |
4021 */ | |
4022 static void fts3IncrmergeRelease( | |
4023 Fts3Table *p, /* FTS3 table handle */ | |
4024 IncrmergeWriter *pWriter, /* Merge-writer object */ | |
4025 int *pRc /* IN/OUT: Error code */ | |
4026 ){ | |
4027 int i; /* Used to iterate through non-root layers */ | |
4028 int iRoot; /* Index of root in pWriter->aNodeWriter */ | |
4029 NodeWriter *pRoot; /* NodeWriter for root node */ | |
4030 int rc = *pRc; /* Error code */ | |
4031 | |
4032 /* Set iRoot to the index in pWriter->aNodeWriter[] of the output segment | |
4033 ** root node. If the segment fits entirely on a single leaf node, iRoot | |
4034 ** will be set to 0. If the root node is the parent of the leaves, iRoot | |
4035 ** will be 1. And so on. */ | |
4036 for(iRoot=FTS_MAX_APPENDABLE_HEIGHT-1; iRoot>=0; iRoot--){ | |
4037 NodeWriter *pNode = &pWriter->aNodeWriter[iRoot]; | |
4038 if( pNode->block.n>0 ) break; | |
4039 assert( *pRc || pNode->block.nAlloc==0 ); | |
4040 assert( *pRc || pNode->key.nAlloc==0 ); | |
4041 sqlite3_free(pNode->block.a); | |
4042 sqlite3_free(pNode->key.a); | |
4043 } | |
4044 | |
4045 /* Empty output segment. This is a no-op. */ | |
4046 if( iRoot<0 ) return; | |
4047 | |
4048 /* The entire output segment fits on a single node. Normally, this means | |
4049 ** the node would be stored as a blob in the "root" column of the %_segdir | |
4050 ** table. However, this is not permitted in this case. The problem is that | |
4051 ** space has already been reserved in the %_segments table, and so the | |
4052 ** start_block and end_block fields of the %_segdir table must be populated. | |
4053 ** And, by design or by accident, released versions of FTS cannot handle | |
4054 ** segments that fit entirely on the root node with start_block!=0. | |
4055 ** | |
4056 ** Instead, create a synthetic root node that contains nothing but a | |
4057 ** pointer to the single content node. So that the segment consists of a | |
4058 ** single leaf and a single interior (root) node. | |
4059 ** | |
4060 ** Todo: Better might be to defer allocating space in the %_segments | |
4061 ** table until we are sure it is needed. | |
4062 */ | |
4063 if( iRoot==0 ){ | |
4064 Blob *pBlock = &pWriter->aNodeWriter[1].block; | |
4065 blobGrowBuffer(pBlock, 1 + FTS3_VARINT_MAX, &rc); | |
4066 if( rc==SQLITE_OK ){ | |
4067 pBlock->a[0] = 0x01; | |
4068 pBlock->n = 1 + sqlite3Fts3PutVarint( | |
4069 &pBlock->a[1], pWriter->aNodeWriter[0].iBlock | |
4070 ); | |
4071 } | |
4072 iRoot = 1; | |
4073 } | |
4074 pRoot = &pWriter->aNodeWriter[iRoot]; | |
4075 | |
4076 /* Flush all currently outstanding nodes to disk. */ | |
4077 for(i=0; i<iRoot; i++){ | |
4078 NodeWriter *pNode = &pWriter->aNodeWriter[i]; | |
4079 if( pNode->block.n>0 && rc==SQLITE_OK ){ | |
4080 rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n); | |
4081 } | |
4082 sqlite3_free(pNode->block.a); | |
4083 sqlite3_free(pNode->key.a); | |
4084 } | |
4085 | |
4086 /* Write the %_segdir record. */ | |
4087 if( rc==SQLITE_OK ){ | |
4088 rc = fts3WriteSegdir(p, | |
4089 pWriter->iAbsLevel+1, /* level */ | |
4090 pWriter->iIdx, /* idx */ | |
4091 pWriter->iStart, /* start_block */ | |
4092 pWriter->aNodeWriter[0].iBlock, /* leaves_end_block */ | |
4093 pWriter->iEnd, /* end_block */ | |
4094 (pWriter->bNoLeafData==0 ? pWriter->nLeafData : 0), /* end_block */ | |
4095 pRoot->block.a, pRoot->block.n /* root */ | |
4096 ); | |
4097 } | |
4098 sqlite3_free(pRoot->block.a); | |
4099 sqlite3_free(pRoot->key.a); | |
4100 | |
4101 *pRc = rc; | |
4102 } | |
4103 | |
4104 /* | |
4105 ** Compare the term in buffer zLhs (size in bytes nLhs) with that in | |
4106 ** zRhs (size in bytes nRhs) using memcmp. If one term is a prefix of | |
4107 ** the other, it is considered to be smaller than the other. | |
4108 ** | |
4109 ** Return -ve if zLhs is smaller than zRhs, 0 if it is equal, or +ve | |
4110 ** if it is greater. | |
4111 */ | |
4112 static int fts3TermCmp( | |
4113 const char *zLhs, int nLhs, /* LHS of comparison */ | |
4114 const char *zRhs, int nRhs /* RHS of comparison */ | |
4115 ){ | |
4116 int nCmp = MIN(nLhs, nRhs); | |
4117 int res; | |
4118 | |
4119 res = memcmp(zLhs, zRhs, nCmp); | |
4120 if( res==0 ) res = nLhs - nRhs; | |
4121 | |
4122 return res; | |
4123 } | |
4124 | |
4125 | |
4126 /* | |
4127 ** Query to see if the entry in the %_segments table with blockid iEnd is | |
4128 ** NULL. If no error occurs and the entry is NULL, set *pbRes 1 before | |
4129 ** returning. Otherwise, set *pbRes to 0. | |
4130 ** | |
4131 ** Or, if an error occurs while querying the database, return an SQLite | |
4132 ** error code. The final value of *pbRes is undefined in this case. | |
4133 ** | |
4134 ** This is used to test if a segment is an "appendable" segment. If it | |
4135 ** is, then a NULL entry has been inserted into the %_segments table | |
4136 ** with blockid %_segdir.end_block. | |
4137 */ | |
4138 static int fts3IsAppendable(Fts3Table *p, sqlite3_int64 iEnd, int *pbRes){ | |
4139 int bRes = 0; /* Result to set *pbRes to */ | |
4140 sqlite3_stmt *pCheck = 0; /* Statement to query database with */ | |
4141 int rc; /* Return code */ | |
4142 | |
4143 rc = fts3SqlStmt(p, SQL_SEGMENT_IS_APPENDABLE, &pCheck, 0); | |
4144 if( rc==SQLITE_OK ){ | |
4145 sqlite3_bind_int64(pCheck, 1, iEnd); | |
4146 if( SQLITE_ROW==sqlite3_step(pCheck) ) bRes = 1; | |
4147 rc = sqlite3_reset(pCheck); | |
4148 } | |
4149 | |
4150 *pbRes = bRes; | |
4151 return rc; | |
4152 } | |
4153 | |
4154 /* | |
4155 ** This function is called when initializing an incremental-merge operation. | |
4156 ** It checks if the existing segment with index value iIdx at absolute level | |
4157 ** (iAbsLevel+1) can be appended to by the incremental merge. If it can, the | |
4158 ** merge-writer object *pWriter is initialized to write to it. | |
4159 ** | |
4160 ** An existing segment can be appended to by an incremental merge if: | |
4161 ** | |
4162 ** * It was initially created as an appendable segment (with all required | |
4163 ** space pre-allocated), and | |
4164 ** | |
4165 ** * The first key read from the input (arguments zKey and nKey) is | |
4166 ** greater than the largest key currently stored in the potential | |
4167 ** output segment. | |
4168 */ | |
4169 static int fts3IncrmergeLoad( | |
4170 Fts3Table *p, /* Fts3 table handle */ | |
4171 sqlite3_int64 iAbsLevel, /* Absolute level of input segments */ | |
4172 int iIdx, /* Index of candidate output segment */ | |
4173 const char *zKey, /* First key to write */ | |
4174 int nKey, /* Number of bytes in nKey */ | |
4175 IncrmergeWriter *pWriter /* Populate this object */ | |
4176 ){ | |
4177 int rc; /* Return code */ | |
4178 sqlite3_stmt *pSelect = 0; /* SELECT to read %_segdir entry */ | |
4179 | |
4180 rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pSelect, 0); | |
4181 if( rc==SQLITE_OK ){ | |
4182 sqlite3_int64 iStart = 0; /* Value of %_segdir.start_block */ | |
4183 sqlite3_int64 iLeafEnd = 0; /* Value of %_segdir.leaves_end_block */ | |
4184 sqlite3_int64 iEnd = 0; /* Value of %_segdir.end_block */ | |
4185 const char *aRoot = 0; /* Pointer to %_segdir.root buffer */ | |
4186 int nRoot = 0; /* Size of aRoot[] in bytes */ | |
4187 int rc2; /* Return code from sqlite3_reset() */ | |
4188 int bAppendable = 0; /* Set to true if segment is appendable */ | |
4189 | |
4190 /* Read the %_segdir entry for index iIdx absolute level (iAbsLevel+1) */ | |
4191 sqlite3_bind_int64(pSelect, 1, iAbsLevel+1); | |
4192 sqlite3_bind_int(pSelect, 2, iIdx); | |
4193 if( sqlite3_step(pSelect)==SQLITE_ROW ){ | |
4194 iStart = sqlite3_column_int64(pSelect, 1); | |
4195 iLeafEnd = sqlite3_column_int64(pSelect, 2); | |
4196 fts3ReadEndBlockField(pSelect, 3, &iEnd, &pWriter->nLeafData); | |
4197 if( pWriter->nLeafData<0 ){ | |
4198 pWriter->nLeafData = pWriter->nLeafData * -1; | |
4199 } | |
4200 pWriter->bNoLeafData = (pWriter->nLeafData==0); | |
4201 nRoot = sqlite3_column_bytes(pSelect, 4); | |
4202 aRoot = sqlite3_column_blob(pSelect, 4); | |
4203 }else{ | |
4204 return sqlite3_reset(pSelect); | |
4205 } | |
4206 | |
4207 /* Check for the zero-length marker in the %_segments table */ | |
4208 rc = fts3IsAppendable(p, iEnd, &bAppendable); | |
4209 | |
4210 /* Check that zKey/nKey is larger than the largest key the candidate */ | |
4211 if( rc==SQLITE_OK && bAppendable ){ | |
4212 char *aLeaf = 0; | |
4213 int nLeaf = 0; | |
4214 | |
4215 rc = sqlite3Fts3ReadBlock(p, iLeafEnd, &aLeaf, &nLeaf, 0); | |
4216 if( rc==SQLITE_OK ){ | |
4217 NodeReader reader; | |
4218 for(rc = nodeReaderInit(&reader, aLeaf, nLeaf); | |
4219 rc==SQLITE_OK && reader.aNode; | |
4220 rc = nodeReaderNext(&reader) | |
4221 ){ | |
4222 assert( reader.aNode ); | |
4223 } | |
4224 if( fts3TermCmp(zKey, nKey, reader.term.a, reader.term.n)<=0 ){ | |
4225 bAppendable = 0; | |
4226 } | |
4227 nodeReaderRelease(&reader); | |
4228 } | |
4229 sqlite3_free(aLeaf); | |
4230 } | |
4231 | |
4232 if( rc==SQLITE_OK && bAppendable ){ | |
4233 /* It is possible to append to this segment. Set up the IncrmergeWriter | |
4234 ** object to do so. */ | |
4235 int i; | |
4236 int nHeight = (int)aRoot[0]; | |
4237 NodeWriter *pNode; | |
4238 | |
4239 pWriter->nLeafEst = (int)((iEnd - iStart) + 1)/FTS_MAX_APPENDABLE_HEIGHT; | |
4240 pWriter->iStart = iStart; | |
4241 pWriter->iEnd = iEnd; | |
4242 pWriter->iAbsLevel = iAbsLevel; | |
4243 pWriter->iIdx = iIdx; | |
4244 | |
4245 for(i=nHeight+1; i<FTS_MAX_APPENDABLE_HEIGHT; i++){ | |
4246 pWriter->aNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst; | |
4247 } | |
4248 | |
4249 pNode = &pWriter->aNodeWriter[nHeight]; | |
4250 pNode->iBlock = pWriter->iStart + pWriter->nLeafEst*nHeight; | |
4251 blobGrowBuffer(&pNode->block, MAX(nRoot, p->nNodeSize), &rc); | |
4252 if( rc==SQLITE_OK ){ | |
4253 memcpy(pNode->block.a, aRoot, nRoot); | |
4254 pNode->block.n = nRoot; | |
4255 } | |
4256 | |
4257 for(i=nHeight; i>=0 && rc==SQLITE_OK; i--){ | |
4258 NodeReader reader; | |
4259 pNode = &pWriter->aNodeWriter[i]; | |
4260 | |
4261 rc = nodeReaderInit(&reader, pNode->block.a, pNode->block.n); | |
4262 while( reader.aNode && rc==SQLITE_OK ) rc = nodeReaderNext(&reader); | |
4263 blobGrowBuffer(&pNode->key, reader.term.n, &rc); | |
4264 if( rc==SQLITE_OK ){ | |
4265 memcpy(pNode->key.a, reader.term.a, reader.term.n); | |
4266 pNode->key.n = reader.term.n; | |
4267 if( i>0 ){ | |
4268 char *aBlock = 0; | |
4269 int nBlock = 0; | |
4270 pNode = &pWriter->aNodeWriter[i-1]; | |
4271 pNode->iBlock = reader.iChild; | |
4272 rc = sqlite3Fts3ReadBlock(p, reader.iChild, &aBlock, &nBlock, 0); | |
4273 blobGrowBuffer(&pNode->block, MAX(nBlock, p->nNodeSize), &rc); | |
4274 if( rc==SQLITE_OK ){ | |
4275 memcpy(pNode->block.a, aBlock, nBlock); | |
4276 pNode->block.n = nBlock; | |
4277 } | |
4278 sqlite3_free(aBlock); | |
4279 } | |
4280 } | |
4281 nodeReaderRelease(&reader); | |
4282 } | |
4283 } | |
4284 | |
4285 rc2 = sqlite3_reset(pSelect); | |
4286 if( rc==SQLITE_OK ) rc = rc2; | |
4287 } | |
4288 | |
4289 return rc; | |
4290 } | |
4291 | |
4292 /* | |
4293 ** Determine the largest segment index value that exists within absolute | |
4294 ** level iAbsLevel+1. If no error occurs, set *piIdx to this value plus | |
4295 ** one before returning SQLITE_OK. Or, if there are no segments at all | |
4296 ** within level iAbsLevel, set *piIdx to zero. | |
4297 ** | |
4298 ** If an error occurs, return an SQLite error code. The final value of | |
4299 ** *piIdx is undefined in this case. | |
4300 */ | |
4301 static int fts3IncrmergeOutputIdx( | |
4302 Fts3Table *p, /* FTS Table handle */ | |
4303 sqlite3_int64 iAbsLevel, /* Absolute index of input segments */ | |
4304 int *piIdx /* OUT: Next free index at iAbsLevel+1 */ | |
4305 ){ | |
4306 int rc; | |
4307 sqlite3_stmt *pOutputIdx = 0; /* SQL used to find output index */ | |
4308 | |
4309 rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pOutputIdx, 0); | |
4310 if( rc==SQLITE_OK ){ | |
4311 sqlite3_bind_int64(pOutputIdx, 1, iAbsLevel+1); | |
4312 sqlite3_step(pOutputIdx); | |
4313 *piIdx = sqlite3_column_int(pOutputIdx, 0); | |
4314 rc = sqlite3_reset(pOutputIdx); | |
4315 } | |
4316 | |
4317 return rc; | |
4318 } | |
4319 | |
4320 /* | |
4321 ** Allocate an appendable output segment on absolute level iAbsLevel+1 | |
4322 ** with idx value iIdx. | |
4323 ** | |
4324 ** In the %_segdir table, a segment is defined by the values in three | |
4325 ** columns: | |
4326 ** | |
4327 ** start_block | |
4328 ** leaves_end_block | |
4329 ** end_block | |
4330 ** | |
4331 ** When an appendable segment is allocated, it is estimated that the | |
4332 ** maximum number of leaf blocks that may be required is the sum of the | |
4333 ** number of leaf blocks consumed by the input segments, plus the number | |
4334 ** of input segments, multiplied by two. This value is stored in stack | |
4335 ** variable nLeafEst. | |
4336 ** | |
4337 ** A total of 16*nLeafEst blocks are allocated when an appendable segment | |
4338 ** is created ((1 + end_block - start_block)==16*nLeafEst). The contiguous | |
4339 ** array of leaf nodes starts at the first block allocated. The array | |
4340 ** of interior nodes that are parents of the leaf nodes start at block | |
4341 ** (start_block + (1 + end_block - start_block) / 16). And so on. | |
4342 ** | |
4343 ** In the actual code below, the value "16" is replaced with the | |
4344 ** pre-processor macro FTS_MAX_APPENDABLE_HEIGHT. | |
4345 */ | |
4346 static int fts3IncrmergeWriter( | |
4347 Fts3Table *p, /* Fts3 table handle */ | |
4348 sqlite3_int64 iAbsLevel, /* Absolute level of input segments */ | |
4349 int iIdx, /* Index of new output segment */ | |
4350 Fts3MultiSegReader *pCsr, /* Cursor that data will be read from */ | |
4351 IncrmergeWriter *pWriter /* Populate this object */ | |
4352 ){ | |
4353 int rc; /* Return Code */ | |
4354 int i; /* Iterator variable */ | |
4355 int nLeafEst = 0; /* Blocks allocated for leaf nodes */ | |
4356 sqlite3_stmt *pLeafEst = 0; /* SQL used to determine nLeafEst */ | |
4357 sqlite3_stmt *pFirstBlock = 0; /* SQL used to determine first block */ | |
4358 | |
4359 /* Calculate nLeafEst. */ | |
4360 rc = fts3SqlStmt(p, SQL_MAX_LEAF_NODE_ESTIMATE, &pLeafEst, 0); | |
4361 if( rc==SQLITE_OK ){ | |
4362 sqlite3_bind_int64(pLeafEst, 1, iAbsLevel); | |
4363 sqlite3_bind_int64(pLeafEst, 2, pCsr->nSegment); | |
4364 if( SQLITE_ROW==sqlite3_step(pLeafEst) ){ | |
4365 nLeafEst = sqlite3_column_int(pLeafEst, 0); | |
4366 } | |
4367 rc = sqlite3_reset(pLeafEst); | |
4368 } | |
4369 if( rc!=SQLITE_OK ) return rc; | |
4370 | |
4371 /* Calculate the first block to use in the output segment */ | |
4372 rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pFirstBlock, 0); | |
4373 if( rc==SQLITE_OK ){ | |
4374 if( SQLITE_ROW==sqlite3_step(pFirstBlock) ){ | |
4375 pWriter->iStart = sqlite3_column_int64(pFirstBlock, 0); | |
4376 pWriter->iEnd = pWriter->iStart - 1; | |
4377 pWriter->iEnd += nLeafEst * FTS_MAX_APPENDABLE_HEIGHT; | |
4378 } | |
4379 rc = sqlite3_reset(pFirstBlock); | |
4380 } | |
4381 if( rc!=SQLITE_OK ) return rc; | |
4382 | |
4383 /* Insert the marker in the %_segments table to make sure nobody tries | |
4384 ** to steal the space just allocated. This is also used to identify | |
4385 ** appendable segments. */ | |
4386 rc = fts3WriteSegment(p, pWriter->iEnd, 0, 0); | |
4387 if( rc!=SQLITE_OK ) return rc; | |
4388 | |
4389 pWriter->iAbsLevel = iAbsLevel; | |
4390 pWriter->nLeafEst = nLeafEst; | |
4391 pWriter->iIdx = iIdx; | |
4392 | |
4393 /* Set up the array of NodeWriter objects */ | |
4394 for(i=0; i<FTS_MAX_APPENDABLE_HEIGHT; i++){ | |
4395 pWriter->aNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst; | |
4396 } | |
4397 return SQLITE_OK; | |
4398 } | |
4399 | |
4400 /* | |
4401 ** Remove an entry from the %_segdir table. This involves running the | |
4402 ** following two statements: | |
4403 ** | |
4404 ** DELETE FROM %_segdir WHERE level = :iAbsLevel AND idx = :iIdx | |
4405 ** UPDATE %_segdir SET idx = idx - 1 WHERE level = :iAbsLevel AND idx > :iIdx | |
4406 ** | |
4407 ** The DELETE statement removes the specific %_segdir level. The UPDATE | |
4408 ** statement ensures that the remaining segments have contiguously allocated | |
4409 ** idx values. | |
4410 */ | |
4411 static int fts3RemoveSegdirEntry( | |
4412 Fts3Table *p, /* FTS3 table handle */ | |
4413 sqlite3_int64 iAbsLevel, /* Absolute level to delete from */ | |
4414 int iIdx /* Index of %_segdir entry to delete */ | |
4415 ){ | |
4416 int rc; /* Return code */ | |
4417 sqlite3_stmt *pDelete = 0; /* DELETE statement */ | |
4418 | |
4419 rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_ENTRY, &pDelete, 0); | |
4420 if( rc==SQLITE_OK ){ | |
4421 sqlite3_bind_int64(pDelete, 1, iAbsLevel); | |
4422 sqlite3_bind_int(pDelete, 2, iIdx); | |
4423 sqlite3_step(pDelete); | |
4424 rc = sqlite3_reset(pDelete); | |
4425 } | |
4426 | |
4427 return rc; | |
4428 } | |
4429 | |
4430 /* | |
4431 ** One or more segments have just been removed from absolute level iAbsLevel. | |
4432 ** Update the 'idx' values of the remaining segments in the level so that | |
4433 ** the idx values are a contiguous sequence starting from 0. | |
4434 */ | |
4435 static int fts3RepackSegdirLevel( | |
4436 Fts3Table *p, /* FTS3 table handle */ | |
4437 sqlite3_int64 iAbsLevel /* Absolute level to repack */ | |
4438 ){ | |
4439 int rc; /* Return code */ | |
4440 int *aIdx = 0; /* Array of remaining idx values */ | |
4441 int nIdx = 0; /* Valid entries in aIdx[] */ | |
4442 int nAlloc = 0; /* Allocated size of aIdx[] */ | |
4443 int i; /* Iterator variable */ | |
4444 sqlite3_stmt *pSelect = 0; /* Select statement to read idx values */ | |
4445 sqlite3_stmt *pUpdate = 0; /* Update statement to modify idx values */ | |
4446 | |
4447 rc = fts3SqlStmt(p, SQL_SELECT_INDEXES, &pSelect, 0); | |
4448 if( rc==SQLITE_OK ){ | |
4449 int rc2; | |
4450 sqlite3_bind_int64(pSelect, 1, iAbsLevel); | |
4451 while( SQLITE_ROW==sqlite3_step(pSelect) ){ | |
4452 if( nIdx>=nAlloc ){ | |
4453 int *aNew; | |
4454 nAlloc += 16; | |
4455 aNew = sqlite3_realloc(aIdx, nAlloc*sizeof(int)); | |
4456 if( !aNew ){ | |
4457 rc = SQLITE_NOMEM; | |
4458 break; | |
4459 } | |
4460 aIdx = aNew; | |
4461 } | |
4462 aIdx[nIdx++] = sqlite3_column_int(pSelect, 0); | |
4463 } | |
4464 rc2 = sqlite3_reset(pSelect); | |
4465 if( rc==SQLITE_OK ) rc = rc2; | |
4466 } | |
4467 | |
4468 if( rc==SQLITE_OK ){ | |
4469 rc = fts3SqlStmt(p, SQL_SHIFT_SEGDIR_ENTRY, &pUpdate, 0); | |
4470 } | |
4471 if( rc==SQLITE_OK ){ | |
4472 sqlite3_bind_int64(pUpdate, 2, iAbsLevel); | |
4473 } | |
4474 | |
4475 assert( p->bIgnoreSavepoint==0 ); | |
4476 p->bIgnoreSavepoint = 1; | |
4477 for(i=0; rc==SQLITE_OK && i<nIdx; i++){ | |
4478 if( aIdx[i]!=i ){ | |
4479 sqlite3_bind_int(pUpdate, 3, aIdx[i]); | |
4480 sqlite3_bind_int(pUpdate, 1, i); | |
4481 sqlite3_step(pUpdate); | |
4482 rc = sqlite3_reset(pUpdate); | |
4483 } | |
4484 } | |
4485 p->bIgnoreSavepoint = 0; | |
4486 | |
4487 sqlite3_free(aIdx); | |
4488 return rc; | |
4489 } | |
4490 | |
4491 static void fts3StartNode(Blob *pNode, int iHeight, sqlite3_int64 iChild){ | |
4492 pNode->a[0] = (char)iHeight; | |
4493 if( iChild ){ | |
4494 assert( pNode->nAlloc>=1+sqlite3Fts3VarintLen(iChild) ); | |
4495 pNode->n = 1 + sqlite3Fts3PutVarint(&pNode->a[1], iChild); | |
4496 }else{ | |
4497 assert( pNode->nAlloc>=1 ); | |
4498 pNode->n = 1; | |
4499 } | |
4500 } | |
4501 | |
4502 /* | |
4503 ** The first two arguments are a pointer to and the size of a segment b-tree | |
4504 ** node. The node may be a leaf or an internal node. | |
4505 ** | |
4506 ** This function creates a new node image in blob object *pNew by copying | |
4507 ** all terms that are greater than or equal to zTerm/nTerm (for leaf nodes) | |
4508 ** or greater than zTerm/nTerm (for internal nodes) from aNode/nNode. | |
4509 */ | |
4510 static int fts3TruncateNode( | |
4511 const char *aNode, /* Current node image */ | |
4512 int nNode, /* Size of aNode in bytes */ | |
4513 Blob *pNew, /* OUT: Write new node image here */ | |
4514 const char *zTerm, /* Omit all terms smaller than this */ | |
4515 int nTerm, /* Size of zTerm in bytes */ | |
4516 sqlite3_int64 *piBlock /* OUT: Block number in next layer down */ | |
4517 ){ | |
4518 NodeReader reader; /* Reader object */ | |
4519 Blob prev = {0, 0, 0}; /* Previous term written to new node */ | |
4520 int rc = SQLITE_OK; /* Return code */ | |
4521 int bLeaf = aNode[0]=='\0'; /* True for a leaf node */ | |
4522 | |
4523 /* Allocate required output space */ | |
4524 blobGrowBuffer(pNew, nNode, &rc); | |
4525 if( rc!=SQLITE_OK ) return rc; | |
4526 pNew->n = 0; | |
4527 | |
4528 /* Populate new node buffer */ | |
4529 for(rc = nodeReaderInit(&reader, aNode, nNode); | |
4530 rc==SQLITE_OK && reader.aNode; | |
4531 rc = nodeReaderNext(&reader) | |
4532 ){ | |
4533 if( pNew->n==0 ){ | |
4534 int res = fts3TermCmp(reader.term.a, reader.term.n, zTerm, nTerm); | |
4535 if( res<0 || (bLeaf==0 && res==0) ) continue; | |
4536 fts3StartNode(pNew, (int)aNode[0], reader.iChild); | |
4537 *piBlock = reader.iChild; | |
4538 } | |
4539 rc = fts3AppendToNode( | |
4540 pNew, &prev, reader.term.a, reader.term.n, | |
4541 reader.aDoclist, reader.nDoclist | |
4542 ); | |
4543 if( rc!=SQLITE_OK ) break; | |
4544 } | |
4545 if( pNew->n==0 ){ | |
4546 fts3StartNode(pNew, (int)aNode[0], reader.iChild); | |
4547 *piBlock = reader.iChild; | |
4548 } | |
4549 assert( pNew->n<=pNew->nAlloc ); | |
4550 | |
4551 nodeReaderRelease(&reader); | |
4552 sqlite3_free(prev.a); | |
4553 return rc; | |
4554 } | |
4555 | |
4556 /* | |
4557 ** Remove all terms smaller than zTerm/nTerm from segment iIdx in absolute | |
4558 ** level iAbsLevel. This may involve deleting entries from the %_segments | |
4559 ** table, and modifying existing entries in both the %_segments and %_segdir | |
4560 ** tables. | |
4561 ** | |
4562 ** SQLITE_OK is returned if the segment is updated successfully. Or an | |
4563 ** SQLite error code otherwise. | |
4564 */ | |
4565 static int fts3TruncateSegment( | |
4566 Fts3Table *p, /* FTS3 table handle */ | |
4567 sqlite3_int64 iAbsLevel, /* Absolute level of segment to modify */ | |
4568 int iIdx, /* Index within level of segment to modify */ | |
4569 const char *zTerm, /* Remove terms smaller than this */ | |
4570 int nTerm /* Number of bytes in buffer zTerm */ | |
4571 ){ | |
4572 int rc = SQLITE_OK; /* Return code */ | |
4573 Blob root = {0,0,0}; /* New root page image */ | |
4574 Blob block = {0,0,0}; /* Buffer used for any other block */ | |
4575 sqlite3_int64 iBlock = 0; /* Block id */ | |
4576 sqlite3_int64 iNewStart = 0; /* New value for iStartBlock */ | |
4577 sqlite3_int64 iOldStart = 0; /* Old value for iStartBlock */ | |
4578 sqlite3_stmt *pFetch = 0; /* Statement used to fetch segdir */ | |
4579 | |
4580 rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pFetch, 0); | |
4581 if( rc==SQLITE_OK ){ | |
4582 int rc2; /* sqlite3_reset() return code */ | |
4583 sqlite3_bind_int64(pFetch, 1, iAbsLevel); | |
4584 sqlite3_bind_int(pFetch, 2, iIdx); | |
4585 if( SQLITE_ROW==sqlite3_step(pFetch) ){ | |
4586 const char *aRoot = sqlite3_column_blob(pFetch, 4); | |
4587 int nRoot = sqlite3_column_bytes(pFetch, 4); | |
4588 iOldStart = sqlite3_column_int64(pFetch, 1); | |
4589 rc = fts3TruncateNode(aRoot, nRoot, &root, zTerm, nTerm, &iBlock); | |
4590 } | |
4591 rc2 = sqlite3_reset(pFetch); | |
4592 if( rc==SQLITE_OK ) rc = rc2; | |
4593 } | |
4594 | |
4595 while( rc==SQLITE_OK && iBlock ){ | |
4596 char *aBlock = 0; | |
4597 int nBlock = 0; | |
4598 iNewStart = iBlock; | |
4599 | |
4600 rc = sqlite3Fts3ReadBlock(p, iBlock, &aBlock, &nBlock, 0); | |
4601 if( rc==SQLITE_OK ){ | |
4602 rc = fts3TruncateNode(aBlock, nBlock, &block, zTerm, nTerm, &iBlock); | |
4603 } | |
4604 if( rc==SQLITE_OK ){ | |
4605 rc = fts3WriteSegment(p, iNewStart, block.a, block.n); | |
4606 } | |
4607 sqlite3_free(aBlock); | |
4608 } | |
4609 | |
4610 /* Variable iNewStart now contains the first valid leaf node. */ | |
4611 if( rc==SQLITE_OK && iNewStart ){ | |
4612 sqlite3_stmt *pDel = 0; | |
4613 rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDel, 0); | |
4614 if( rc==SQLITE_OK ){ | |
4615 sqlite3_bind_int64(pDel, 1, iOldStart); | |
4616 sqlite3_bind_int64(pDel, 2, iNewStart-1); | |
4617 sqlite3_step(pDel); | |
4618 rc = sqlite3_reset(pDel); | |
4619 } | |
4620 } | |
4621 | |
4622 if( rc==SQLITE_OK ){ | |
4623 sqlite3_stmt *pChomp = 0; | |
4624 rc = fts3SqlStmt(p, SQL_CHOMP_SEGDIR, &pChomp, 0); | |
4625 if( rc==SQLITE_OK ){ | |
4626 sqlite3_bind_int64(pChomp, 1, iNewStart); | |
4627 sqlite3_bind_blob(pChomp, 2, root.a, root.n, SQLITE_STATIC); | |
4628 sqlite3_bind_int64(pChomp, 3, iAbsLevel); | |
4629 sqlite3_bind_int(pChomp, 4, iIdx); | |
4630 sqlite3_step(pChomp); | |
4631 rc = sqlite3_reset(pChomp); | |
4632 } | |
4633 } | |
4634 | |
4635 sqlite3_free(root.a); | |
4636 sqlite3_free(block.a); | |
4637 return rc; | |
4638 } | |
4639 | |
4640 /* | |
4641 ** This function is called after an incrmental-merge operation has run to | |
4642 ** merge (or partially merge) two or more segments from absolute level | |
4643 ** iAbsLevel. | |
4644 ** | |
4645 ** Each input segment is either removed from the db completely (if all of | |
4646 ** its data was copied to the output segment by the incrmerge operation) | |
4647 ** or modified in place so that it no longer contains those entries that | |
4648 ** have been duplicated in the output segment. | |
4649 */ | |
4650 static int fts3IncrmergeChomp( | |
4651 Fts3Table *p, /* FTS table handle */ | |
4652 sqlite3_int64 iAbsLevel, /* Absolute level containing segments */ | |
4653 Fts3MultiSegReader *pCsr, /* Chomp all segments opened by this cursor */ | |
4654 int *pnRem /* Number of segments not deleted */ | |
4655 ){ | |
4656 int i; | |
4657 int nRem = 0; | |
4658 int rc = SQLITE_OK; | |
4659 | |
4660 for(i=pCsr->nSegment-1; i>=0 && rc==SQLITE_OK; i--){ | |
4661 Fts3SegReader *pSeg = 0; | |
4662 int j; | |
4663 | |
4664 /* Find the Fts3SegReader object with Fts3SegReader.iIdx==i. It is hiding | |
4665 ** somewhere in the pCsr->apSegment[] array. */ | |
4666 for(j=0; ALWAYS(j<pCsr->nSegment); j++){ | |
4667 pSeg = pCsr->apSegment[j]; | |
4668 if( pSeg->iIdx==i ) break; | |
4669 } | |
4670 assert( j<pCsr->nSegment && pSeg->iIdx==i ); | |
4671 | |
4672 if( pSeg->aNode==0 ){ | |
4673 /* Seg-reader is at EOF. Remove the entire input segment. */ | |
4674 rc = fts3DeleteSegment(p, pSeg); | |
4675 if( rc==SQLITE_OK ){ | |
4676 rc = fts3RemoveSegdirEntry(p, iAbsLevel, pSeg->iIdx); | |
4677 } | |
4678 *pnRem = 0; | |
4679 }else{ | |
4680 /* The incremental merge did not copy all the data from this | |
4681 ** segment to the upper level. The segment is modified in place | |
4682 ** so that it contains no keys smaller than zTerm/nTerm. */ | |
4683 const char *zTerm = pSeg->zTerm; | |
4684 int nTerm = pSeg->nTerm; | |
4685 rc = fts3TruncateSegment(p, iAbsLevel, pSeg->iIdx, zTerm, nTerm); | |
4686 nRem++; | |
4687 } | |
4688 } | |
4689 | |
4690 if( rc==SQLITE_OK && nRem!=pCsr->nSegment ){ | |
4691 rc = fts3RepackSegdirLevel(p, iAbsLevel); | |
4692 } | |
4693 | |
4694 *pnRem = nRem; | |
4695 return rc; | |
4696 } | |
4697 | |
4698 /* | |
4699 ** Store an incr-merge hint in the database. | |
4700 */ | |
4701 static int fts3IncrmergeHintStore(Fts3Table *p, Blob *pHint){ | |
4702 sqlite3_stmt *pReplace = 0; | |
4703 int rc; /* Return code */ | |
4704 | |
4705 rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pReplace, 0); | |
4706 if( rc==SQLITE_OK ){ | |
4707 sqlite3_bind_int(pReplace, 1, FTS_STAT_INCRMERGEHINT); | |
4708 sqlite3_bind_blob(pReplace, 2, pHint->a, pHint->n, SQLITE_STATIC); | |
4709 sqlite3_step(pReplace); | |
4710 rc = sqlite3_reset(pReplace); | |
4711 } | |
4712 | |
4713 return rc; | |
4714 } | |
4715 | |
4716 /* | |
4717 ** Load an incr-merge hint from the database. The incr-merge hint, if one | |
4718 ** exists, is stored in the rowid==1 row of the %_stat table. | |
4719 ** | |
4720 ** If successful, populate blob *pHint with the value read from the %_stat | |
4721 ** table and return SQLITE_OK. Otherwise, if an error occurs, return an | |
4722 ** SQLite error code. | |
4723 */ | |
4724 static int fts3IncrmergeHintLoad(Fts3Table *p, Blob *pHint){ | |
4725 sqlite3_stmt *pSelect = 0; | |
4726 int rc; | |
4727 | |
4728 pHint->n = 0; | |
4729 rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pSelect, 0); | |
4730 if( rc==SQLITE_OK ){ | |
4731 int rc2; | |
4732 sqlite3_bind_int(pSelect, 1, FTS_STAT_INCRMERGEHINT); | |
4733 if( SQLITE_ROW==sqlite3_step(pSelect) ){ | |
4734 const char *aHint = sqlite3_column_blob(pSelect, 0); | |
4735 int nHint = sqlite3_column_bytes(pSelect, 0); | |
4736 if( aHint ){ | |
4737 blobGrowBuffer(pHint, nHint, &rc); | |
4738 if( rc==SQLITE_OK ){ | |
4739 memcpy(pHint->a, aHint, nHint); | |
4740 pHint->n = nHint; | |
4741 } | |
4742 } | |
4743 } | |
4744 rc2 = sqlite3_reset(pSelect); | |
4745 if( rc==SQLITE_OK ) rc = rc2; | |
4746 } | |
4747 | |
4748 return rc; | |
4749 } | |
4750 | |
4751 /* | |
4752 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op. | |
4753 ** Otherwise, append an entry to the hint stored in blob *pHint. Each entry | |
4754 ** consists of two varints, the absolute level number of the input segments | |
4755 ** and the number of input segments. | |
4756 ** | |
4757 ** If successful, leave *pRc set to SQLITE_OK and return. If an error occurs, | |
4758 ** set *pRc to an SQLite error code before returning. | |
4759 */ | |
4760 static void fts3IncrmergeHintPush( | |
4761 Blob *pHint, /* Hint blob to append to */ | |
4762 i64 iAbsLevel, /* First varint to store in hint */ | |
4763 int nInput, /* Second varint to store in hint */ | |
4764 int *pRc /* IN/OUT: Error code */ | |
4765 ){ | |
4766 blobGrowBuffer(pHint, pHint->n + 2*FTS3_VARINT_MAX, pRc); | |
4767 if( *pRc==SQLITE_OK ){ | |
4768 pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], iAbsLevel); | |
4769 pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], (i64)nInput); | |
4770 } | |
4771 } | |
4772 | |
4773 /* | |
4774 ** Read the last entry (most recently pushed) from the hint blob *pHint | |
4775 ** and then remove the entry. Write the two values read to *piAbsLevel and | |
4776 ** *pnInput before returning. | |
4777 ** | |
4778 ** If no error occurs, return SQLITE_OK. If the hint blob in *pHint does | |
4779 ** not contain at least two valid varints, return SQLITE_CORRUPT_VTAB. | |
4780 */ | |
4781 static int fts3IncrmergeHintPop(Blob *pHint, i64 *piAbsLevel, int *pnInput){ | |
4782 const int nHint = pHint->n; | |
4783 int i; | |
4784 | |
4785 i = pHint->n-2; | |
4786 while( i>0 && (pHint->a[i-1] & 0x80) ) i--; | |
4787 while( i>0 && (pHint->a[i-1] & 0x80) ) i--; | |
4788 | |
4789 pHint->n = i; | |
4790 i += sqlite3Fts3GetVarint(&pHint->a[i], piAbsLevel); | |
4791 i += fts3GetVarint32(&pHint->a[i], pnInput); | |
4792 if( i!=nHint ) return FTS_CORRUPT_VTAB; | |
4793 | |
4794 return SQLITE_OK; | |
4795 } | |
4796 | |
4797 | |
4798 /* | |
4799 ** Attempt an incremental merge that writes nMerge leaf blocks. | |
4800 ** | |
4801 ** Incremental merges happen nMin segments at a time. The segments | |
4802 ** to be merged are the nMin oldest segments (the ones with the smallest | |
4803 ** values for the _segdir.idx field) in the highest level that contains | |
4804 ** at least nMin segments. Multiple merges might occur in an attempt to | |
4805 ** write the quota of nMerge leaf blocks. | |
4806 */ | |
4807 int sqlite3Fts3Incrmerge(Fts3Table *p, int nMerge, int nMin){ | |
4808 int rc; /* Return code */ | |
4809 int nRem = nMerge; /* Number of leaf pages yet to be written */ | |
4810 Fts3MultiSegReader *pCsr; /* Cursor used to read input data */ | |
4811 Fts3SegFilter *pFilter; /* Filter used with cursor pCsr */ | |
4812 IncrmergeWriter *pWriter; /* Writer object */ | |
4813 int nSeg = 0; /* Number of input segments */ | |
4814 sqlite3_int64 iAbsLevel = 0; /* Absolute level number to work on */ | |
4815 Blob hint = {0, 0, 0}; /* Hint read from %_stat table */ | |
4816 int bDirtyHint = 0; /* True if blob 'hint' has been modified */ | |
4817 | |
4818 /* Allocate space for the cursor, filter and writer objects */ | |
4819 const int nAlloc = sizeof(*pCsr) + sizeof(*pFilter) + sizeof(*pWriter); | |
4820 pWriter = (IncrmergeWriter *)sqlite3_malloc(nAlloc); | |
4821 if( !pWriter ) return SQLITE_NOMEM; | |
4822 pFilter = (Fts3SegFilter *)&pWriter[1]; | |
4823 pCsr = (Fts3MultiSegReader *)&pFilter[1]; | |
4824 | |
4825 rc = fts3IncrmergeHintLoad(p, &hint); | |
4826 while( rc==SQLITE_OK && nRem>0 ){ | |
4827 const i64 nMod = FTS3_SEGDIR_MAXLEVEL * p->nIndex; | |
4828 sqlite3_stmt *pFindLevel = 0; /* SQL used to determine iAbsLevel */ | |
4829 int bUseHint = 0; /* True if attempting to append */ | |
4830 int iIdx = 0; /* Largest idx in level (iAbsLevel+1) */ | |
4831 | |
4832 /* Search the %_segdir table for the absolute level with the smallest | |
4833 ** relative level number that contains at least nMin segments, if any. | |
4834 ** If one is found, set iAbsLevel to the absolute level number and | |
4835 ** nSeg to nMin. If no level with at least nMin segments can be found, | |
4836 ** set nSeg to -1. | |
4837 */ | |
4838 rc = fts3SqlStmt(p, SQL_FIND_MERGE_LEVEL, &pFindLevel, 0); | |
4839 sqlite3_bind_int(pFindLevel, 1, nMin); | |
4840 if( sqlite3_step(pFindLevel)==SQLITE_ROW ){ | |
4841 iAbsLevel = sqlite3_column_int64(pFindLevel, 0); | |
4842 nSeg = nMin; | |
4843 }else{ | |
4844 nSeg = -1; | |
4845 } | |
4846 rc = sqlite3_reset(pFindLevel); | |
4847 | |
4848 /* If the hint read from the %_stat table is not empty, check if the | |
4849 ** last entry in it specifies a relative level smaller than or equal | |
4850 ** to the level identified by the block above (if any). If so, this | |
4851 ** iteration of the loop will work on merging at the hinted level. | |
4852 */ | |
4853 if( rc==SQLITE_OK && hint.n ){ | |
4854 int nHint = hint.n; | |
4855 sqlite3_int64 iHintAbsLevel = 0; /* Hint level */ | |
4856 int nHintSeg = 0; /* Hint number of segments */ | |
4857 | |
4858 rc = fts3IncrmergeHintPop(&hint, &iHintAbsLevel, &nHintSeg); | |
4859 if( nSeg<0 || (iAbsLevel % nMod) >= (iHintAbsLevel % nMod) ){ | |
4860 iAbsLevel = iHintAbsLevel; | |
4861 nSeg = nHintSeg; | |
4862 bUseHint = 1; | |
4863 bDirtyHint = 1; | |
4864 }else{ | |
4865 /* This undoes the effect of the HintPop() above - so that no entry | |
4866 ** is removed from the hint blob. */ | |
4867 hint.n = nHint; | |
4868 } | |
4869 } | |
4870 | |
4871 /* If nSeg is less that zero, then there is no level with at least | |
4872 ** nMin segments and no hint in the %_stat table. No work to do. | |
4873 ** Exit early in this case. */ | |
4874 if( nSeg<0 ) break; | |
4875 | |
4876 /* Open a cursor to iterate through the contents of the oldest nSeg | |
4877 ** indexes of absolute level iAbsLevel. If this cursor is opened using | |
4878 ** the 'hint' parameters, it is possible that there are less than nSeg | |
4879 ** segments available in level iAbsLevel. In this case, no work is | |
4880 ** done on iAbsLevel - fall through to the next iteration of the loop | |
4881 ** to start work on some other level. */ | |
4882 memset(pWriter, 0, nAlloc); | |
4883 pFilter->flags = FTS3_SEGMENT_REQUIRE_POS; | |
4884 | |
4885 if( rc==SQLITE_OK ){ | |
4886 rc = fts3IncrmergeOutputIdx(p, iAbsLevel, &iIdx); | |
4887 assert( bUseHint==1 || bUseHint==0 ); | |
4888 if( iIdx==0 || (bUseHint && iIdx==1) ){ | |
4889 int bIgnore = 0; | |
4890 rc = fts3SegmentIsMaxLevel(p, iAbsLevel+1, &bIgnore); | |
4891 if( bIgnore ){ | |
4892 pFilter->flags |= FTS3_SEGMENT_IGNORE_EMPTY; | |
4893 } | |
4894 } | |
4895 } | |
4896 | |
4897 if( rc==SQLITE_OK ){ | |
4898 rc = fts3IncrmergeCsr(p, iAbsLevel, nSeg, pCsr); | |
4899 } | |
4900 if( SQLITE_OK==rc && pCsr->nSegment==nSeg | |
4901 && SQLITE_OK==(rc = sqlite3Fts3SegReaderStart(p, pCsr, pFilter)) | |
4902 && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pCsr)) | |
4903 ){ | |
4904 if( bUseHint && iIdx>0 ){ | |
4905 const char *zKey = pCsr->zTerm; | |
4906 int nKey = pCsr->nTerm; | |
4907 rc = fts3IncrmergeLoad(p, iAbsLevel, iIdx-1, zKey, nKey, pWriter); | |
4908 }else{ | |
4909 rc = fts3IncrmergeWriter(p, iAbsLevel, iIdx, pCsr, pWriter); | |
4910 } | |
4911 | |
4912 if( rc==SQLITE_OK && pWriter->nLeafEst ){ | |
4913 fts3LogMerge(nSeg, iAbsLevel); | |
4914 do { | |
4915 rc = fts3IncrmergeAppend(p, pWriter, pCsr); | |
4916 if( rc==SQLITE_OK ) rc = sqlite3Fts3SegReaderStep(p, pCsr); | |
4917 if( pWriter->nWork>=nRem && rc==SQLITE_ROW ) rc = SQLITE_OK; | |
4918 }while( rc==SQLITE_ROW ); | |
4919 | |
4920 /* Update or delete the input segments */ | |
4921 if( rc==SQLITE_OK ){ | |
4922 nRem -= (1 + pWriter->nWork); | |
4923 rc = fts3IncrmergeChomp(p, iAbsLevel, pCsr, &nSeg); | |
4924 if( nSeg!=0 ){ | |
4925 bDirtyHint = 1; | |
4926 fts3IncrmergeHintPush(&hint, iAbsLevel, nSeg, &rc); | |
4927 } | |
4928 } | |
4929 } | |
4930 | |
4931 if( nSeg!=0 ){ | |
4932 pWriter->nLeafData = pWriter->nLeafData * -1; | |
4933 } | |
4934 fts3IncrmergeRelease(p, pWriter, &rc); | |
4935 if( nSeg==0 && pWriter->bNoLeafData==0 ){ | |
4936 fts3PromoteSegments(p, iAbsLevel+1, pWriter->nLeafData); | |
4937 } | |
4938 } | |
4939 | |
4940 sqlite3Fts3SegReaderFinish(pCsr); | |
4941 } | |
4942 | |
4943 /* Write the hint values into the %_stat table for the next incr-merger */ | |
4944 if( bDirtyHint && rc==SQLITE_OK ){ | |
4945 rc = fts3IncrmergeHintStore(p, &hint); | |
4946 } | |
4947 | |
4948 sqlite3_free(pWriter); | |
4949 sqlite3_free(hint.a); | |
4950 return rc; | |
4951 } | |
4952 | |
4953 /* | |
4954 ** Convert the text beginning at *pz into an integer and return | |
4955 ** its value. Advance *pz to point to the first character past | |
4956 ** the integer. | |
4957 */ | |
4958 static int fts3Getint(const char **pz){ | |
4959 const char *z = *pz; | |
4960 int i = 0; | |
4961 while( (*z)>='0' && (*z)<='9' ) i = 10*i + *(z++) - '0'; | |
4962 *pz = z; | |
4963 return i; | |
4964 } | |
4965 | |
4966 /* | |
4967 ** Process statements of the form: | |
4968 ** | |
4969 ** INSERT INTO table(table) VALUES('merge=A,B'); | |
4970 ** | |
4971 ** A and B are integers that decode to be the number of leaf pages | |
4972 ** written for the merge, and the minimum number of segments on a level | |
4973 ** before it will be selected for a merge, respectively. | |
4974 */ | |
4975 static int fts3DoIncrmerge( | |
4976 Fts3Table *p, /* FTS3 table handle */ | |
4977 const char *zParam /* Nul-terminated string containing "A,B" */ | |
4978 ){ | |
4979 int rc; | |
4980 int nMin = (FTS3_MERGE_COUNT / 2); | |
4981 int nMerge = 0; | |
4982 const char *z = zParam; | |
4983 | |
4984 /* Read the first integer value */ | |
4985 nMerge = fts3Getint(&z); | |
4986 | |
4987 /* If the first integer value is followed by a ',', read the second | |
4988 ** integer value. */ | |
4989 if( z[0]==',' && z[1]!='\0' ){ | |
4990 z++; | |
4991 nMin = fts3Getint(&z); | |
4992 } | |
4993 | |
4994 if( z[0]!='\0' || nMin<2 ){ | |
4995 rc = SQLITE_ERROR; | |
4996 }else{ | |
4997 rc = SQLITE_OK; | |
4998 if( !p->bHasStat ){ | |
4999 assert( p->bFts4==0 ); | |
5000 sqlite3Fts3CreateStatTable(&rc, p); | |
5001 } | |
5002 if( rc==SQLITE_OK ){ | |
5003 rc = sqlite3Fts3Incrmerge(p, nMerge, nMin); | |
5004 } | |
5005 sqlite3Fts3SegmentsClose(p); | |
5006 } | |
5007 return rc; | |
5008 } | |
5009 | |
5010 /* | |
5011 ** Process statements of the form: | |
5012 ** | |
5013 ** INSERT INTO table(table) VALUES('automerge=X'); | |
5014 ** | |
5015 ** where X is an integer. X==0 means to turn automerge off. X!=0 means | |
5016 ** turn it on. The setting is persistent. | |
5017 */ | |
5018 static int fts3DoAutoincrmerge( | |
5019 Fts3Table *p, /* FTS3 table handle */ | |
5020 const char *zParam /* Nul-terminated string containing boolean */ | |
5021 ){ | |
5022 int rc = SQLITE_OK; | |
5023 sqlite3_stmt *pStmt = 0; | |
5024 p->nAutoincrmerge = fts3Getint(&zParam); | |
5025 if( p->nAutoincrmerge==1 || p->nAutoincrmerge>FTS3_MERGE_COUNT ){ | |
5026 p->nAutoincrmerge = 8; | |
5027 } | |
5028 if( !p->bHasStat ){ | |
5029 assert( p->bFts4==0 ); | |
5030 sqlite3Fts3CreateStatTable(&rc, p); | |
5031 if( rc ) return rc; | |
5032 } | |
5033 rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0); | |
5034 if( rc ) return rc; | |
5035 sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE); | |
5036 sqlite3_bind_int(pStmt, 2, p->nAutoincrmerge); | |
5037 sqlite3_step(pStmt); | |
5038 rc = sqlite3_reset(pStmt); | |
5039 return rc; | |
5040 } | |
5041 | |
5042 /* | |
5043 ** Return a 64-bit checksum for the FTS index entry specified by the | |
5044 ** arguments to this function. | |
5045 */ | |
5046 static u64 fts3ChecksumEntry( | |
5047 const char *zTerm, /* Pointer to buffer containing term */ | |
5048 int nTerm, /* Size of zTerm in bytes */ | |
5049 int iLangid, /* Language id for current row */ | |
5050 int iIndex, /* Index (0..Fts3Table.nIndex-1) */ | |
5051 i64 iDocid, /* Docid for current row. */ | |
5052 int iCol, /* Column number */ | |
5053 int iPos /* Position */ | |
5054 ){ | |
5055 int i; | |
5056 u64 ret = (u64)iDocid; | |
5057 | |
5058 ret += (ret<<3) + iLangid; | |
5059 ret += (ret<<3) + iIndex; | |
5060 ret += (ret<<3) + iCol; | |
5061 ret += (ret<<3) + iPos; | |
5062 for(i=0; i<nTerm; i++) ret += (ret<<3) + zTerm[i]; | |
5063 | |
5064 return ret; | |
5065 } | |
5066 | |
5067 /* | |
5068 ** Return a checksum of all entries in the FTS index that correspond to | |
5069 ** language id iLangid. The checksum is calculated by XORing the checksums | |
5070 ** of each individual entry (see fts3ChecksumEntry()) together. | |
5071 ** | |
5072 ** If successful, the checksum value is returned and *pRc set to SQLITE_OK. | |
5073 ** Otherwise, if an error occurs, *pRc is set to an SQLite error code. The | |
5074 ** return value is undefined in this case. | |
5075 */ | |
5076 static u64 fts3ChecksumIndex( | |
5077 Fts3Table *p, /* FTS3 table handle */ | |
5078 int iLangid, /* Language id to return cksum for */ | |
5079 int iIndex, /* Index to cksum (0..p->nIndex-1) */ | |
5080 int *pRc /* OUT: Return code */ | |
5081 ){ | |
5082 Fts3SegFilter filter; | |
5083 Fts3MultiSegReader csr; | |
5084 int rc; | |
5085 u64 cksum = 0; | |
5086 | |
5087 assert( *pRc==SQLITE_OK ); | |
5088 | |
5089 memset(&filter, 0, sizeof(filter)); | |
5090 memset(&csr, 0, sizeof(csr)); | |
5091 filter.flags = FTS3_SEGMENT_REQUIRE_POS|FTS3_SEGMENT_IGNORE_EMPTY; | |
5092 filter.flags |= FTS3_SEGMENT_SCAN; | |
5093 | |
5094 rc = sqlite3Fts3SegReaderCursor( | |
5095 p, iLangid, iIndex, FTS3_SEGCURSOR_ALL, 0, 0, 0, 1,&csr | |
5096 ); | |
5097 if( rc==SQLITE_OK ){ | |
5098 rc = sqlite3Fts3SegReaderStart(p, &csr, &filter); | |
5099 } | |
5100 | |
5101 if( rc==SQLITE_OK ){ | |
5102 while( SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, &csr)) ){ | |
5103 char *pCsr = csr.aDoclist; | |
5104 char *pEnd = &pCsr[csr.nDoclist]; | |
5105 | |
5106 i64 iDocid = 0; | |
5107 i64 iCol = 0; | |
5108 i64 iPos = 0; | |
5109 | |
5110 pCsr += sqlite3Fts3GetVarint(pCsr, &iDocid); | |
5111 while( pCsr<pEnd ){ | |
5112 i64 iVal = 0; | |
5113 pCsr += sqlite3Fts3GetVarint(pCsr, &iVal); | |
5114 if( pCsr<pEnd ){ | |
5115 if( iVal==0 || iVal==1 ){ | |
5116 iCol = 0; | |
5117 iPos = 0; | |
5118 if( iVal ){ | |
5119 pCsr += sqlite3Fts3GetVarint(pCsr, &iCol); | |
5120 }else{ | |
5121 pCsr += sqlite3Fts3GetVarint(pCsr, &iVal); | |
5122 iDocid += iVal; | |
5123 } | |
5124 }else{ | |
5125 iPos += (iVal - 2); | |
5126 cksum = cksum ^ fts3ChecksumEntry( | |
5127 csr.zTerm, csr.nTerm, iLangid, iIndex, iDocid, | |
5128 (int)iCol, (int)iPos | |
5129 ); | |
5130 } | |
5131 } | |
5132 } | |
5133 } | |
5134 } | |
5135 sqlite3Fts3SegReaderFinish(&csr); | |
5136 | |
5137 *pRc = rc; | |
5138 return cksum; | |
5139 } | |
5140 | |
5141 /* | |
5142 ** Check if the contents of the FTS index match the current contents of the | |
5143 ** content table. If no error occurs and the contents do match, set *pbOk | |
5144 ** to true and return SQLITE_OK. Or if the contents do not match, set *pbOk | |
5145 ** to false before returning. | |
5146 ** | |
5147 ** If an error occurs (e.g. an OOM or IO error), return an SQLite error | |
5148 ** code. The final value of *pbOk is undefined in this case. | |
5149 */ | |
5150 static int fts3IntegrityCheck(Fts3Table *p, int *pbOk){ | |
5151 int rc = SQLITE_OK; /* Return code */ | |
5152 u64 cksum1 = 0; /* Checksum based on FTS index contents */ | |
5153 u64 cksum2 = 0; /* Checksum based on %_content contents */ | |
5154 sqlite3_stmt *pAllLangid = 0; /* Statement to return all language-ids */ | |
5155 | |
5156 /* This block calculates the checksum according to the FTS index. */ | |
5157 rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0); | |
5158 if( rc==SQLITE_OK ){ | |
5159 int rc2; | |
5160 sqlite3_bind_int(pAllLangid, 1, p->iPrevLangid); | |
5161 sqlite3_bind_int(pAllLangid, 2, p->nIndex); | |
5162 while( rc==SQLITE_OK && sqlite3_step(pAllLangid)==SQLITE_ROW ){ | |
5163 int iLangid = sqlite3_column_int(pAllLangid, 0); | |
5164 int i; | |
5165 for(i=0; i<p->nIndex; i++){ | |
5166 cksum1 = cksum1 ^ fts3ChecksumIndex(p, iLangid, i, &rc); | |
5167 } | |
5168 } | |
5169 rc2 = sqlite3_reset(pAllLangid); | |
5170 if( rc==SQLITE_OK ) rc = rc2; | |
5171 } | |
5172 | |
5173 /* This block calculates the checksum according to the %_content table */ | |
5174 if( rc==SQLITE_OK ){ | |
5175 sqlite3_tokenizer_module const *pModule = p->pTokenizer->pModule; | |
5176 sqlite3_stmt *pStmt = 0; | |
5177 char *zSql; | |
5178 | |
5179 zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist); | |
5180 if( !zSql ){ | |
5181 rc = SQLITE_NOMEM; | |
5182 }else{ | |
5183 rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); | |
5184 sqlite3_free(zSql); | |
5185 } | |
5186 | |
5187 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){ | |
5188 i64 iDocid = sqlite3_column_int64(pStmt, 0); | |
5189 int iLang = langidFromSelect(p, pStmt); | |
5190 int iCol; | |
5191 | |
5192 for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){ | |
5193 if( p->abNotindexed[iCol]==0 ){ | |
5194 const char *zText = (const char *)sqlite3_column_text(pStmt, iCol+1); | |
5195 int nText = sqlite3_column_bytes(pStmt, iCol+1); | |
5196 sqlite3_tokenizer_cursor *pT = 0; | |
5197 | |
5198 rc = sqlite3Fts3OpenTokenizer(p->pTokenizer, iLang, zText, nText,&pT); | |
5199 while( rc==SQLITE_OK ){ | |
5200 char const *zToken; /* Buffer containing token */ | |
5201 int nToken = 0; /* Number of bytes in token */ | |
5202 int iDum1 = 0, iDum2 = 0; /* Dummy variables */ | |
5203 int iPos = 0; /* Position of token in zText */ | |
5204 | |
5205 rc = pModule->xNext(pT, &zToken, &nToken, &iDum1, &iDum2, &iPos); | |
5206 if( rc==SQLITE_OK ){ | |
5207 int i; | |
5208 cksum2 = cksum2 ^ fts3ChecksumEntry( | |
5209 zToken, nToken, iLang, 0, iDocid, iCol, iPos | |
5210 ); | |
5211 for(i=1; i<p->nIndex; i++){ | |
5212 if( p->aIndex[i].nPrefix<=nToken ){ | |
5213 cksum2 = cksum2 ^ fts3ChecksumEntry( | |
5214 zToken, p->aIndex[i].nPrefix, iLang, i, iDocid, iCol, iPos | |
5215 ); | |
5216 } | |
5217 } | |
5218 } | |
5219 } | |
5220 if( pT ) pModule->xClose(pT); | |
5221 if( rc==SQLITE_DONE ) rc = SQLITE_OK; | |
5222 } | |
5223 } | |
5224 } | |
5225 | |
5226 sqlite3_finalize(pStmt); | |
5227 } | |
5228 | |
5229 *pbOk = (cksum1==cksum2); | |
5230 return rc; | |
5231 } | |
5232 | |
5233 /* | |
5234 ** Run the integrity-check. If no error occurs and the current contents of | |
5235 ** the FTS index are correct, return SQLITE_OK. Or, if the contents of the | |
5236 ** FTS index are incorrect, return SQLITE_CORRUPT_VTAB. | |
5237 ** | |
5238 ** Or, if an error (e.g. an OOM or IO error) occurs, return an SQLite | |
5239 ** error code. | |
5240 ** | |
5241 ** The integrity-check works as follows. For each token and indexed token | |
5242 ** prefix in the document set, a 64-bit checksum is calculated (by code | |
5243 ** in fts3ChecksumEntry()) based on the following: | |
5244 ** | |
5245 ** + The index number (0 for the main index, 1 for the first prefix | |
5246 ** index etc.), | |
5247 ** + The token (or token prefix) text itself, | |
5248 ** + The language-id of the row it appears in, | |
5249 ** + The docid of the row it appears in, | |
5250 ** + The column it appears in, and | |
5251 ** + The tokens position within that column. | |
5252 ** | |
5253 ** The checksums for all entries in the index are XORed together to create | |
5254 ** a single checksum for the entire index. | |
5255 ** | |
5256 ** The integrity-check code calculates the same checksum in two ways: | |
5257 ** | |
5258 ** 1. By scanning the contents of the FTS index, and | |
5259 ** 2. By scanning and tokenizing the content table. | |
5260 ** | |
5261 ** If the two checksums are identical, the integrity-check is deemed to have | |
5262 ** passed. | |
5263 */ | |
5264 static int fts3DoIntegrityCheck( | |
5265 Fts3Table *p /* FTS3 table handle */ | |
5266 ){ | |
5267 int rc; | |
5268 int bOk = 0; | |
5269 rc = fts3IntegrityCheck(p, &bOk); | |
5270 if( rc==SQLITE_OK && bOk==0 ) rc = FTS_CORRUPT_VTAB; | |
5271 return rc; | |
5272 } | |
5273 | |
5274 /* | |
5275 ** Handle a 'special' INSERT of the form: | |
5276 ** | |
5277 ** "INSERT INTO tbl(tbl) VALUES(<expr>)" | |
5278 ** | |
5279 ** Argument pVal contains the result of <expr>. Currently the only | |
5280 ** meaningful value to insert is the text 'optimize'. | |
5281 */ | |
5282 static int fts3SpecialInsert(Fts3Table *p, sqlite3_value *pVal){ | |
5283 int rc; /* Return Code */ | |
5284 const char *zVal = (const char *)sqlite3_value_text(pVal); | |
5285 int nVal = sqlite3_value_bytes(pVal); | |
5286 | |
5287 if( !zVal ){ | |
5288 return SQLITE_NOMEM; | |
5289 }else if( nVal==8 && 0==sqlite3_strnicmp(zVal, "optimize", 8) ){ | |
5290 rc = fts3DoOptimize(p, 0); | |
5291 }else if( nVal==7 && 0==sqlite3_strnicmp(zVal, "rebuild", 7) ){ | |
5292 rc = fts3DoRebuild(p); | |
5293 }else if( nVal==15 && 0==sqlite3_strnicmp(zVal, "integrity-check", 15) ){ | |
5294 rc = fts3DoIntegrityCheck(p); | |
5295 }else if( nVal>6 && 0==sqlite3_strnicmp(zVal, "merge=", 6) ){ | |
5296 rc = fts3DoIncrmerge(p, &zVal[6]); | |
5297 }else if( nVal>10 && 0==sqlite3_strnicmp(zVal, "automerge=", 10) ){ | |
5298 rc = fts3DoAutoincrmerge(p, &zVal[10]); | |
5299 #ifdef SQLITE_TEST | |
5300 }else if( nVal>9 && 0==sqlite3_strnicmp(zVal, "nodesize=", 9) ){ | |
5301 p->nNodeSize = atoi(&zVal[9]); | |
5302 rc = SQLITE_OK; | |
5303 }else if( nVal>11 && 0==sqlite3_strnicmp(zVal, "maxpending=", 9) ){ | |
5304 p->nMaxPendingData = atoi(&zVal[11]); | |
5305 rc = SQLITE_OK; | |
5306 }else if( nVal>21 && 0==sqlite3_strnicmp(zVal, "test-no-incr-doclist=", 21) ){ | |
5307 p->bNoIncrDoclist = atoi(&zVal[21]); | |
5308 rc = SQLITE_OK; | |
5309 #endif | |
5310 }else{ | |
5311 rc = SQLITE_ERROR; | |
5312 } | |
5313 | |
5314 return rc; | |
5315 } | |
5316 | |
5317 #ifndef SQLITE_DISABLE_FTS4_DEFERRED | |
5318 /* | |
5319 ** Delete all cached deferred doclists. Deferred doclists are cached | |
5320 ** (allocated) by the sqlite3Fts3CacheDeferredDoclists() function. | |
5321 */ | |
5322 void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *pCsr){ | |
5323 Fts3DeferredToken *pDef; | |
5324 for(pDef=pCsr->pDeferred; pDef; pDef=pDef->pNext){ | |
5325 fts3PendingListDelete(pDef->pList); | |
5326 pDef->pList = 0; | |
5327 } | |
5328 } | |
5329 | |
5330 /* | |
5331 ** Free all entries in the pCsr->pDeffered list. Entries are added to | |
5332 ** this list using sqlite3Fts3DeferToken(). | |
5333 */ | |
5334 void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *pCsr){ | |
5335 Fts3DeferredToken *pDef; | |
5336 Fts3DeferredToken *pNext; | |
5337 for(pDef=pCsr->pDeferred; pDef; pDef=pNext){ | |
5338 pNext = pDef->pNext; | |
5339 fts3PendingListDelete(pDef->pList); | |
5340 sqlite3_free(pDef); | |
5341 } | |
5342 pCsr->pDeferred = 0; | |
5343 } | |
5344 | |
5345 /* | |
5346 ** Generate deferred-doclists for all tokens in the pCsr->pDeferred list | |
5347 ** based on the row that pCsr currently points to. | |
5348 ** | |
5349 ** A deferred-doclist is like any other doclist with position information | |
5350 ** included, except that it only contains entries for a single row of the | |
5351 ** table, not for all rows. | |
5352 */ | |
5353 int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *pCsr){ | |
5354 int rc = SQLITE_OK; /* Return code */ | |
5355 if( pCsr->pDeferred ){ | |
5356 int i; /* Used to iterate through table columns */ | |
5357 sqlite3_int64 iDocid; /* Docid of the row pCsr points to */ | |
5358 Fts3DeferredToken *pDef; /* Used to iterate through deferred tokens */ | |
5359 | |
5360 Fts3Table *p = (Fts3Table *)pCsr->base.pVtab; | |
5361 sqlite3_tokenizer *pT = p->pTokenizer; | |
5362 sqlite3_tokenizer_module const *pModule = pT->pModule; | |
5363 | |
5364 assert( pCsr->isRequireSeek==0 ); | |
5365 iDocid = sqlite3_column_int64(pCsr->pStmt, 0); | |
5366 | |
5367 for(i=0; i<p->nColumn && rc==SQLITE_OK; i++){ | |
5368 if( p->abNotindexed[i]==0 ){ | |
5369 const char *zText = (const char *)sqlite3_column_text(pCsr->pStmt, i+1); | |
5370 sqlite3_tokenizer_cursor *pTC = 0; | |
5371 | |
5372 rc = sqlite3Fts3OpenTokenizer(pT, pCsr->iLangid, zText, -1, &pTC); | |
5373 while( rc==SQLITE_OK ){ | |
5374 char const *zToken; /* Buffer containing token */ | |
5375 int nToken = 0; /* Number of bytes in token */ | |
5376 int iDum1 = 0, iDum2 = 0; /* Dummy variables */ | |
5377 int iPos = 0; /* Position of token in zText */ | |
5378 | |
5379 rc = pModule->xNext(pTC, &zToken, &nToken, &iDum1, &iDum2, &iPos); | |
5380 for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){ | |
5381 Fts3PhraseToken *pPT = pDef->pToken; | |
5382 if( (pDef->iCol>=p->nColumn || pDef->iCol==i) | |
5383 && (pPT->bFirst==0 || iPos==0) | |
5384 && (pPT->n==nToken || (pPT->isPrefix && pPT->n<nToken)) | |
5385 && (0==memcmp(zToken, pPT->z, pPT->n)) | |
5386 ){ | |
5387 fts3PendingListAppend(&pDef->pList, iDocid, i, iPos, &rc); | |
5388 } | |
5389 } | |
5390 } | |
5391 if( pTC ) pModule->xClose(pTC); | |
5392 if( rc==SQLITE_DONE ) rc = SQLITE_OK; | |
5393 } | |
5394 } | |
5395 | |
5396 for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){ | |
5397 if( pDef->pList ){ | |
5398 rc = fts3PendingListAppendVarint(&pDef->pList, 0); | |
5399 } | |
5400 } | |
5401 } | |
5402 | |
5403 return rc; | |
5404 } | |
5405 | |
5406 int sqlite3Fts3DeferredTokenList( | |
5407 Fts3DeferredToken *p, | |
5408 char **ppData, | |
5409 int *pnData | |
5410 ){ | |
5411 char *pRet; | |
5412 int nSkip; | |
5413 sqlite3_int64 dummy; | |
5414 | |
5415 *ppData = 0; | |
5416 *pnData = 0; | |
5417 | |
5418 if( p->pList==0 ){ | |
5419 return SQLITE_OK; | |
5420 } | |
5421 | |
5422 pRet = (char *)sqlite3_malloc(p->pList->nData); | |
5423 if( !pRet ) return SQLITE_NOMEM; | |
5424 | |
5425 nSkip = sqlite3Fts3GetVarint(p->pList->aData, &dummy); | |
5426 *pnData = p->pList->nData - nSkip; | |
5427 *ppData = pRet; | |
5428 | |
5429 memcpy(pRet, &p->pList->aData[nSkip], *pnData); | |
5430 return SQLITE_OK; | |
5431 } | |
5432 | |
5433 /* | |
5434 ** Add an entry for token pToken to the pCsr->pDeferred list. | |
5435 */ | |
5436 int sqlite3Fts3DeferToken( | |
5437 Fts3Cursor *pCsr, /* Fts3 table cursor */ | |
5438 Fts3PhraseToken *pToken, /* Token to defer */ | |
5439 int iCol /* Column that token must appear in (or -1) */ | |
5440 ){ | |
5441 Fts3DeferredToken *pDeferred; | |
5442 pDeferred = sqlite3_malloc(sizeof(*pDeferred)); | |
5443 if( !pDeferred ){ | |
5444 return SQLITE_NOMEM; | |
5445 } | |
5446 memset(pDeferred, 0, sizeof(*pDeferred)); | |
5447 pDeferred->pToken = pToken; | |
5448 pDeferred->pNext = pCsr->pDeferred; | |
5449 pDeferred->iCol = iCol; | |
5450 pCsr->pDeferred = pDeferred; | |
5451 | |
5452 assert( pToken->pDeferred==0 ); | |
5453 pToken->pDeferred = pDeferred; | |
5454 | |
5455 return SQLITE_OK; | |
5456 } | |
5457 #endif | |
5458 | |
5459 /* | |
5460 ** SQLite value pRowid contains the rowid of a row that may or may not be | |
5461 ** present in the FTS3 table. If it is, delete it and adjust the contents | |
5462 ** of subsiduary data structures accordingly. | |
5463 */ | |
5464 static int fts3DeleteByRowid( | |
5465 Fts3Table *p, | |
5466 sqlite3_value *pRowid, | |
5467 int *pnChng, /* IN/OUT: Decrement if row is deleted */ | |
5468 u32 *aSzDel | |
5469 ){ | |
5470 int rc = SQLITE_OK; /* Return code */ | |
5471 int bFound = 0; /* True if *pRowid really is in the table */ | |
5472 | |
5473 fts3DeleteTerms(&rc, p, pRowid, aSzDel, &bFound); | |
5474 if( bFound && rc==SQLITE_OK ){ | |
5475 int isEmpty = 0; /* Deleting *pRowid leaves the table empty */ | |
5476 rc = fts3IsEmpty(p, pRowid, &isEmpty); | |
5477 if( rc==SQLITE_OK ){ | |
5478 if( isEmpty ){ | |
5479 /* Deleting this row means the whole table is empty. In this case | |
5480 ** delete the contents of all three tables and throw away any | |
5481 ** data in the pendingTerms hash table. */ | |
5482 rc = fts3DeleteAll(p, 1); | |
5483 *pnChng = 0; | |
5484 memset(aSzDel, 0, sizeof(u32) * (p->nColumn+1) * 2); | |
5485 }else{ | |
5486 *pnChng = *pnChng - 1; | |
5487 if( p->zContentTbl==0 ){ | |
5488 fts3SqlExec(&rc, p, SQL_DELETE_CONTENT, &pRowid); | |
5489 } | |
5490 if( p->bHasDocsize ){ | |
5491 fts3SqlExec(&rc, p, SQL_DELETE_DOCSIZE, &pRowid); | |
5492 } | |
5493 } | |
5494 } | |
5495 } | |
5496 | |
5497 return rc; | |
5498 } | |
5499 | |
5500 /* | |
5501 ** This function does the work for the xUpdate method of FTS3 virtual | |
5502 ** tables. The schema of the virtual table being: | |
5503 ** | |
5504 ** CREATE TABLE <table name>( | |
5505 ** <user columns>, | |
5506 ** <table name> HIDDEN, | |
5507 ** docid HIDDEN, | |
5508 ** <langid> HIDDEN | |
5509 ** ); | |
5510 ** | |
5511 ** | |
5512 */ | |
5513 int sqlite3Fts3UpdateMethod( | |
5514 sqlite3_vtab *pVtab, /* FTS3 vtab object */ | |
5515 int nArg, /* Size of argument array */ | |
5516 sqlite3_value **apVal, /* Array of arguments */ | |
5517 sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */ | |
5518 ){ | |
5519 Fts3Table *p = (Fts3Table *)pVtab; | |
5520 int rc = SQLITE_OK; /* Return Code */ | |
5521 int isRemove = 0; /* True for an UPDATE or DELETE */ | |
5522 u32 *aSzIns = 0; /* Sizes of inserted documents */ | |
5523 u32 *aSzDel = 0; /* Sizes of deleted documents */ | |
5524 int nChng = 0; /* Net change in number of documents */ | |
5525 int bInsertDone = 0; | |
5526 | |
5527 /* At this point it must be known if the %_stat table exists or not. | |
5528 ** So bHasStat may not be 2. */ | |
5529 assert( p->bHasStat==0 || p->bHasStat==1 ); | |
5530 | |
5531 assert( p->pSegments==0 ); | |
5532 assert( | |
5533 nArg==1 /* DELETE operations */ | |
5534 || nArg==(2 + p->nColumn + 3) /* INSERT or UPDATE operations */ | |
5535 ); | |
5536 | |
5537 /* Check for a "special" INSERT operation. One of the form: | |
5538 ** | |
5539 ** INSERT INTO xyz(xyz) VALUES('command'); | |
5540 */ | |
5541 if( nArg>1 | |
5542 && sqlite3_value_type(apVal[0])==SQLITE_NULL | |
5543 && sqlite3_value_type(apVal[p->nColumn+2])!=SQLITE_NULL | |
5544 ){ | |
5545 rc = fts3SpecialInsert(p, apVal[p->nColumn+2]); | |
5546 goto update_out; | |
5547 } | |
5548 | |
5549 if( nArg>1 && sqlite3_value_int(apVal[2 + p->nColumn + 2])<0 ){ | |
5550 rc = SQLITE_CONSTRAINT; | |
5551 goto update_out; | |
5552 } | |
5553 | |
5554 /* Allocate space to hold the change in document sizes */ | |
5555 aSzDel = sqlite3_malloc( sizeof(aSzDel[0])*(p->nColumn+1)*2 ); | |
5556 if( aSzDel==0 ){ | |
5557 rc = SQLITE_NOMEM; | |
5558 goto update_out; | |
5559 } | |
5560 aSzIns = &aSzDel[p->nColumn+1]; | |
5561 memset(aSzDel, 0, sizeof(aSzDel[0])*(p->nColumn+1)*2); | |
5562 | |
5563 rc = fts3Writelock(p); | |
5564 if( rc!=SQLITE_OK ) goto update_out; | |
5565 | |
5566 /* If this is an INSERT operation, or an UPDATE that modifies the rowid | |
5567 ** value, then this operation requires constraint handling. | |
5568 ** | |
5569 ** If the on-conflict mode is REPLACE, this means that the existing row | |
5570 ** should be deleted from the database before inserting the new row. Or, | |
5571 ** if the on-conflict mode is other than REPLACE, then this method must | |
5572 ** detect the conflict and return SQLITE_CONSTRAINT before beginning to | |
5573 ** modify the database file. | |
5574 */ | |
5575 if( nArg>1 && p->zContentTbl==0 ){ | |
5576 /* Find the value object that holds the new rowid value. */ | |
5577 sqlite3_value *pNewRowid = apVal[3+p->nColumn]; | |
5578 if( sqlite3_value_type(pNewRowid)==SQLITE_NULL ){ | |
5579 pNewRowid = apVal[1]; | |
5580 } | |
5581 | |
5582 if( sqlite3_value_type(pNewRowid)!=SQLITE_NULL && ( | |
5583 sqlite3_value_type(apVal[0])==SQLITE_NULL | |
5584 || sqlite3_value_int64(apVal[0])!=sqlite3_value_int64(pNewRowid) | |
5585 )){ | |
5586 /* The new rowid is not NULL (in this case the rowid will be | |
5587 ** automatically assigned and there is no chance of a conflict), and | |
5588 ** the statement is either an INSERT or an UPDATE that modifies the | |
5589 ** rowid column. So if the conflict mode is REPLACE, then delete any | |
5590 ** existing row with rowid=pNewRowid. | |
5591 ** | |
5592 ** Or, if the conflict mode is not REPLACE, insert the new record into | |
5593 ** the %_content table. If we hit the duplicate rowid constraint (or any | |
5594 ** other error) while doing so, return immediately. | |
5595 ** | |
5596 ** This branch may also run if pNewRowid contains a value that cannot | |
5597 ** be losslessly converted to an integer. In this case, the eventual | |
5598 ** call to fts3InsertData() (either just below or further on in this | |
5599 ** function) will return SQLITE_MISMATCH. If fts3DeleteByRowid is | |
5600 ** invoked, it will delete zero rows (since no row will have | |
5601 ** docid=$pNewRowid if $pNewRowid is not an integer value). | |
5602 */ | |
5603 if( sqlite3_vtab_on_conflict(p->db)==SQLITE_REPLACE ){ | |
5604 rc = fts3DeleteByRowid(p, pNewRowid, &nChng, aSzDel); | |
5605 }else{ | |
5606 rc = fts3InsertData(p, apVal, pRowid); | |
5607 bInsertDone = 1; | |
5608 } | |
5609 } | |
5610 } | |
5611 if( rc!=SQLITE_OK ){ | |
5612 goto update_out; | |
5613 } | |
5614 | |
5615 /* If this is a DELETE or UPDATE operation, remove the old record. */ | |
5616 if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){ | |
5617 assert( sqlite3_value_type(apVal[0])==SQLITE_INTEGER ); | |
5618 rc = fts3DeleteByRowid(p, apVal[0], &nChng, aSzDel); | |
5619 isRemove = 1; | |
5620 } | |
5621 | |
5622 /* If this is an INSERT or UPDATE operation, insert the new record. */ | |
5623 if( nArg>1 && rc==SQLITE_OK ){ | |
5624 int iLangid = sqlite3_value_int(apVal[2 + p->nColumn + 2]); | |
5625 if( bInsertDone==0 ){ | |
5626 rc = fts3InsertData(p, apVal, pRowid); | |
5627 if( rc==SQLITE_CONSTRAINT && p->zContentTbl==0 ){ | |
5628 rc = FTS_CORRUPT_VTAB; | |
5629 } | |
5630 } | |
5631 if( rc==SQLITE_OK && (!isRemove || *pRowid!=p->iPrevDocid ) ){ | |
5632 rc = fts3PendingTermsDocid(p, 0, iLangid, *pRowid); | |
5633 } | |
5634 if( rc==SQLITE_OK ){ | |
5635 assert( p->iPrevDocid==*pRowid ); | |
5636 rc = fts3InsertTerms(p, iLangid, apVal, aSzIns); | |
5637 } | |
5638 if( p->bHasDocsize ){ | |
5639 fts3InsertDocsize(&rc, p, aSzIns); | |
5640 } | |
5641 nChng++; | |
5642 } | |
5643 | |
5644 if( p->bFts4 ){ | |
5645 fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nChng); | |
5646 } | |
5647 | |
5648 update_out: | |
5649 sqlite3_free(aSzDel); | |
5650 sqlite3Fts3SegmentsClose(p); | |
5651 return rc; | |
5652 } | |
5653 | |
5654 /* | |
5655 ** Flush any data in the pending-terms hash table to disk. If successful, | |
5656 ** merge all segments in the database (including the new segment, if | |
5657 ** there was any data to flush) into a single segment. | |
5658 */ | |
5659 int sqlite3Fts3Optimize(Fts3Table *p){ | |
5660 int rc; | |
5661 rc = sqlite3_exec(p->db, "SAVEPOINT fts3", 0, 0, 0); | |
5662 if( rc==SQLITE_OK ){ | |
5663 rc = fts3DoOptimize(p, 1); | |
5664 if( rc==SQLITE_OK || rc==SQLITE_DONE ){ | |
5665 int rc2 = sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0); | |
5666 if( rc2!=SQLITE_OK ) rc = rc2; | |
5667 }else{ | |
5668 sqlite3_exec(p->db, "ROLLBACK TO fts3", 0, 0, 0); | |
5669 sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0); | |
5670 } | |
5671 } | |
5672 sqlite3Fts3SegmentsClose(p); | |
5673 return rc; | |
5674 } | |
5675 | |
5676 #endif | |
OLD | NEW |