Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(5)

Side by Side Diff: third_party/sqlite/sqlite-src-3100200/ext/fts3/fts3_write.c

Issue 2846743003: [sql] Remove SQLite 3.10.2 reference directory. (Closed)
Patch Set: Created 3 years, 7 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 /*
2 ** 2009 Oct 23
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 ******************************************************************************
12 **
13 ** This file is part of the SQLite FTS3 extension module. Specifically,
14 ** this file contains code to insert, update and delete rows from FTS3
15 ** tables. It also contains code to merge FTS3 b-tree segments. Some
16 ** of the sub-routines used to merge segments are also used by the query
17 ** code in fts3.c.
18 */
19
20 #include "fts3Int.h"
21 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3)
22
23 #include <string.h>
24 #include <assert.h>
25 #include <stdlib.h>
26
27
28 #define FTS_MAX_APPENDABLE_HEIGHT 16
29
30 /*
31 ** When full-text index nodes are loaded from disk, the buffer that they
32 ** are loaded into has the following number of bytes of padding at the end
33 ** of it. i.e. if a full-text index node is 900 bytes in size, then a buffer
34 ** of 920 bytes is allocated for it.
35 **
36 ** This means that if we have a pointer into a buffer containing node data,
37 ** it is always safe to read up to two varints from it without risking an
38 ** overread, even if the node data is corrupted.
39 */
40 #define FTS3_NODE_PADDING (FTS3_VARINT_MAX*2)
41
42 /*
43 ** Under certain circumstances, b-tree nodes (doclists) can be loaded into
44 ** memory incrementally instead of all at once. This can be a big performance
45 ** win (reduced IO and CPU) if SQLite stops calling the virtual table xNext()
46 ** method before retrieving all query results (as may happen, for example,
47 ** if a query has a LIMIT clause).
48 **
49 ** Incremental loading is used for b-tree nodes FTS3_NODE_CHUNK_THRESHOLD
50 ** bytes and larger. Nodes are loaded in chunks of FTS3_NODE_CHUNKSIZE bytes.
51 ** The code is written so that the hard lower-limit for each of these values
52 ** is 1. Clearly such small values would be inefficient, but can be useful
53 ** for testing purposes.
54 **
55 ** If this module is built with SQLITE_TEST defined, these constants may
56 ** be overridden at runtime for testing purposes. File fts3_test.c contains
57 ** a Tcl interface to read and write the values.
58 */
59 #ifdef SQLITE_TEST
60 int test_fts3_node_chunksize = (4*1024);
61 int test_fts3_node_chunk_threshold = (4*1024)*4;
62 # define FTS3_NODE_CHUNKSIZE test_fts3_node_chunksize
63 # define FTS3_NODE_CHUNK_THRESHOLD test_fts3_node_chunk_threshold
64 #else
65 # define FTS3_NODE_CHUNKSIZE (4*1024)
66 # define FTS3_NODE_CHUNK_THRESHOLD (FTS3_NODE_CHUNKSIZE*4)
67 #endif
68
69 /*
70 ** The two values that may be meaningfully bound to the :1 parameter in
71 ** statements SQL_REPLACE_STAT and SQL_SELECT_STAT.
72 */
73 #define FTS_STAT_DOCTOTAL 0
74 #define FTS_STAT_INCRMERGEHINT 1
75 #define FTS_STAT_AUTOINCRMERGE 2
76
77 /*
78 ** If FTS_LOG_MERGES is defined, call sqlite3_log() to report each automatic
79 ** and incremental merge operation that takes place. This is used for
80 ** debugging FTS only, it should not usually be turned on in production
81 ** systems.
82 */
83 #ifdef FTS3_LOG_MERGES
84 static void fts3LogMerge(int nMerge, sqlite3_int64 iAbsLevel){
85 sqlite3_log(SQLITE_OK, "%d-way merge from level %d", nMerge, (int)iAbsLevel);
86 }
87 #else
88 #define fts3LogMerge(x, y)
89 #endif
90
91
92 typedef struct PendingList PendingList;
93 typedef struct SegmentNode SegmentNode;
94 typedef struct SegmentWriter SegmentWriter;
95
96 /*
97 ** An instance of the following data structure is used to build doclists
98 ** incrementally. See function fts3PendingListAppend() for details.
99 */
100 struct PendingList {
101 int nData;
102 char *aData;
103 int nSpace;
104 sqlite3_int64 iLastDocid;
105 sqlite3_int64 iLastCol;
106 sqlite3_int64 iLastPos;
107 };
108
109
110 /*
111 ** Each cursor has a (possibly empty) linked list of the following objects.
112 */
113 struct Fts3DeferredToken {
114 Fts3PhraseToken *pToken; /* Pointer to corresponding expr token */
115 int iCol; /* Column token must occur in */
116 Fts3DeferredToken *pNext; /* Next in list of deferred tokens */
117 PendingList *pList; /* Doclist is assembled here */
118 };
119
120 /*
121 ** An instance of this structure is used to iterate through the terms on
122 ** a contiguous set of segment b-tree leaf nodes. Although the details of
123 ** this structure are only manipulated by code in this file, opaque handles
124 ** of type Fts3SegReader* are also used by code in fts3.c to iterate through
125 ** terms when querying the full-text index. See functions:
126 **
127 ** sqlite3Fts3SegReaderNew()
128 ** sqlite3Fts3SegReaderFree()
129 ** sqlite3Fts3SegReaderIterate()
130 **
131 ** Methods used to manipulate Fts3SegReader structures:
132 **
133 ** fts3SegReaderNext()
134 ** fts3SegReaderFirstDocid()
135 ** fts3SegReaderNextDocid()
136 */
137 struct Fts3SegReader {
138 int iIdx; /* Index within level, or 0x7FFFFFFF for PT */
139 u8 bLookup; /* True for a lookup only */
140 u8 rootOnly; /* True for a root-only reader */
141
142 sqlite3_int64 iStartBlock; /* Rowid of first leaf block to traverse */
143 sqlite3_int64 iLeafEndBlock; /* Rowid of final leaf block to traverse */
144 sqlite3_int64 iEndBlock; /* Rowid of final block in segment (or 0) */
145 sqlite3_int64 iCurrentBlock; /* Current leaf block (or 0) */
146
147 char *aNode; /* Pointer to node data (or NULL) */
148 int nNode; /* Size of buffer at aNode (or 0) */
149 int nPopulate; /* If >0, bytes of buffer aNode[] loaded */
150 sqlite3_blob *pBlob; /* If not NULL, blob handle to read node */
151
152 Fts3HashElem **ppNextElem;
153
154 /* Variables set by fts3SegReaderNext(). These may be read directly
155 ** by the caller. They are valid from the time SegmentReaderNew() returns
156 ** until SegmentReaderNext() returns something other than SQLITE_OK
157 ** (i.e. SQLITE_DONE).
158 */
159 int nTerm; /* Number of bytes in current term */
160 char *zTerm; /* Pointer to current term */
161 int nTermAlloc; /* Allocated size of zTerm buffer */
162 char *aDoclist; /* Pointer to doclist of current entry */
163 int nDoclist; /* Size of doclist in current entry */
164
165 /* The following variables are used by fts3SegReaderNextDocid() to iterate
166 ** through the current doclist (aDoclist/nDoclist).
167 */
168 char *pOffsetList;
169 int nOffsetList; /* For descending pending seg-readers only */
170 sqlite3_int64 iDocid;
171 };
172
173 #define fts3SegReaderIsPending(p) ((p)->ppNextElem!=0)
174 #define fts3SegReaderIsRootOnly(p) ((p)->rootOnly!=0)
175
176 /*
177 ** An instance of this structure is used to create a segment b-tree in the
178 ** database. The internal details of this type are only accessed by the
179 ** following functions:
180 **
181 ** fts3SegWriterAdd()
182 ** fts3SegWriterFlush()
183 ** fts3SegWriterFree()
184 */
185 struct SegmentWriter {
186 SegmentNode *pTree; /* Pointer to interior tree structure */
187 sqlite3_int64 iFirst; /* First slot in %_segments written */
188 sqlite3_int64 iFree; /* Next free slot in %_segments */
189 char *zTerm; /* Pointer to previous term buffer */
190 int nTerm; /* Number of bytes in zTerm */
191 int nMalloc; /* Size of malloc'd buffer at zMalloc */
192 char *zMalloc; /* Malloc'd space (possibly) used for zTerm */
193 int nSize; /* Size of allocation at aData */
194 int nData; /* Bytes of data in aData */
195 char *aData; /* Pointer to block from malloc() */
196 i64 nLeafData; /* Number of bytes of leaf data written */
197 };
198
199 /*
200 ** Type SegmentNode is used by the following three functions to create
201 ** the interior part of the segment b+-tree structures (everything except
202 ** the leaf nodes). These functions and type are only ever used by code
203 ** within the fts3SegWriterXXX() family of functions described above.
204 **
205 ** fts3NodeAddTerm()
206 ** fts3NodeWrite()
207 ** fts3NodeFree()
208 **
209 ** When a b+tree is written to the database (either as a result of a merge
210 ** or the pending-terms table being flushed), leaves are written into the
211 ** database file as soon as they are completely populated. The interior of
212 ** the tree is assembled in memory and written out only once all leaves have
213 ** been populated and stored. This is Ok, as the b+-tree fanout is usually
214 ** very large, meaning that the interior of the tree consumes relatively
215 ** little memory.
216 */
217 struct SegmentNode {
218 SegmentNode *pParent; /* Parent node (or NULL for root node) */
219 SegmentNode *pRight; /* Pointer to right-sibling */
220 SegmentNode *pLeftmost; /* Pointer to left-most node of this depth */
221 int nEntry; /* Number of terms written to node so far */
222 char *zTerm; /* Pointer to previous term buffer */
223 int nTerm; /* Number of bytes in zTerm */
224 int nMalloc; /* Size of malloc'd buffer at zMalloc */
225 char *zMalloc; /* Malloc'd space (possibly) used for zTerm */
226 int nData; /* Bytes of valid data so far */
227 char *aData; /* Node data */
228 };
229
230 /*
231 ** Valid values for the second argument to fts3SqlStmt().
232 */
233 #define SQL_DELETE_CONTENT 0
234 #define SQL_IS_EMPTY 1
235 #define SQL_DELETE_ALL_CONTENT 2
236 #define SQL_DELETE_ALL_SEGMENTS 3
237 #define SQL_DELETE_ALL_SEGDIR 4
238 #define SQL_DELETE_ALL_DOCSIZE 5
239 #define SQL_DELETE_ALL_STAT 6
240 #define SQL_SELECT_CONTENT_BY_ROWID 7
241 #define SQL_NEXT_SEGMENT_INDEX 8
242 #define SQL_INSERT_SEGMENTS 9
243 #define SQL_NEXT_SEGMENTS_ID 10
244 #define SQL_INSERT_SEGDIR 11
245 #define SQL_SELECT_LEVEL 12
246 #define SQL_SELECT_LEVEL_RANGE 13
247 #define SQL_SELECT_LEVEL_COUNT 14
248 #define SQL_SELECT_SEGDIR_MAX_LEVEL 15
249 #define SQL_DELETE_SEGDIR_LEVEL 16
250 #define SQL_DELETE_SEGMENTS_RANGE 17
251 #define SQL_CONTENT_INSERT 18
252 #define SQL_DELETE_DOCSIZE 19
253 #define SQL_REPLACE_DOCSIZE 20
254 #define SQL_SELECT_DOCSIZE 21
255 #define SQL_SELECT_STAT 22
256 #define SQL_REPLACE_STAT 23
257
258 #define SQL_SELECT_ALL_PREFIX_LEVEL 24
259 #define SQL_DELETE_ALL_TERMS_SEGDIR 25
260 #define SQL_DELETE_SEGDIR_RANGE 26
261 #define SQL_SELECT_ALL_LANGID 27
262 #define SQL_FIND_MERGE_LEVEL 28
263 #define SQL_MAX_LEAF_NODE_ESTIMATE 29
264 #define SQL_DELETE_SEGDIR_ENTRY 30
265 #define SQL_SHIFT_SEGDIR_ENTRY 31
266 #define SQL_SELECT_SEGDIR 32
267 #define SQL_CHOMP_SEGDIR 33
268 #define SQL_SEGMENT_IS_APPENDABLE 34
269 #define SQL_SELECT_INDEXES 35
270 #define SQL_SELECT_MXLEVEL 36
271
272 #define SQL_SELECT_LEVEL_RANGE2 37
273 #define SQL_UPDATE_LEVEL_IDX 38
274 #define SQL_UPDATE_LEVEL 39
275
276 /*
277 ** This function is used to obtain an SQLite prepared statement handle
278 ** for the statement identified by the second argument. If successful,
279 ** *pp is set to the requested statement handle and SQLITE_OK returned.
280 ** Otherwise, an SQLite error code is returned and *pp is set to 0.
281 **
282 ** If argument apVal is not NULL, then it must point to an array with
283 ** at least as many entries as the requested statement has bound
284 ** parameters. The values are bound to the statements parameters before
285 ** returning.
286 */
287 static int fts3SqlStmt(
288 Fts3Table *p, /* Virtual table handle */
289 int eStmt, /* One of the SQL_XXX constants above */
290 sqlite3_stmt **pp, /* OUT: Statement handle */
291 sqlite3_value **apVal /* Values to bind to statement */
292 ){
293 const char *azSql[] = {
294 /* 0 */ "DELETE FROM %Q.'%q_content' WHERE rowid = ?",
295 /* 1 */ "SELECT NOT EXISTS(SELECT docid FROM %Q.'%q_content' WHERE rowid!=?)",
296 /* 2 */ "DELETE FROM %Q.'%q_content'",
297 /* 3 */ "DELETE FROM %Q.'%q_segments'",
298 /* 4 */ "DELETE FROM %Q.'%q_segdir'",
299 /* 5 */ "DELETE FROM %Q.'%q_docsize'",
300 /* 6 */ "DELETE FROM %Q.'%q_stat'",
301 /* 7 */ "SELECT %s WHERE rowid=?",
302 /* 8 */ "SELECT (SELECT max(idx) FROM %Q.'%q_segdir' WHERE level = ?) + 1",
303 /* 9 */ "REPLACE INTO %Q.'%q_segments'(blockid, block) VALUES(?, ?)",
304 /* 10 */ "SELECT coalesce((SELECT max(blockid) FROM %Q.'%q_segments') + 1, 1)",
305 /* 11 */ "REPLACE INTO %Q.'%q_segdir' VALUES(?,?,?,?,?,?)",
306
307 /* Return segments in order from oldest to newest.*/
308 /* 12 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
309 "FROM %Q.'%q_segdir' WHERE level = ? ORDER BY idx ASC",
310 /* 13 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
311 "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?"
312 "ORDER BY level DESC, idx ASC",
313
314 /* 14 */ "SELECT count(*) FROM %Q.'%q_segdir' WHERE level = ?",
315 /* 15 */ "SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?",
316
317 /* 16 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ?",
318 /* 17 */ "DELETE FROM %Q.'%q_segments' WHERE blockid BETWEEN ? AND ?",
319 /* 18 */ "INSERT INTO %Q.'%q_content' VALUES(%s)",
320 /* 19 */ "DELETE FROM %Q.'%q_docsize' WHERE docid = ?",
321 /* 20 */ "REPLACE INTO %Q.'%q_docsize' VALUES(?,?)",
322 /* 21 */ "SELECT size FROM %Q.'%q_docsize' WHERE docid=?",
323 /* 22 */ "SELECT value FROM %Q.'%q_stat' WHERE id=?",
324 /* 23 */ "REPLACE INTO %Q.'%q_stat' VALUES(?,?)",
325 /* 24 */ "",
326 /* 25 */ "",
327
328 /* 26 */ "DELETE FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?",
329 /* 27 */ "SELECT ? UNION SELECT level / (1024 * ?) FROM %Q.'%q_segdir'",
330
331 /* This statement is used to determine which level to read the input from
332 ** when performing an incremental merge. It returns the absolute level number
333 ** of the oldest level in the db that contains at least ? segments. Or,
334 ** if no level in the FTS index contains more than ? segments, the statement
335 ** returns zero rows. */
336 /* 28 */ "SELECT level FROM %Q.'%q_segdir' GROUP BY level HAVING count(*)>=?"
337 " ORDER BY (level %% 1024) ASC LIMIT 1",
338
339 /* Estimate the upper limit on the number of leaf nodes in a new segment
340 ** created by merging the oldest :2 segments from absolute level :1. See
341 ** function sqlite3Fts3Incrmerge() for details. */
342 /* 29 */ "SELECT 2 * total(1 + leaves_end_block - start_block) "
343 " FROM %Q.'%q_segdir' WHERE level = ? AND idx < ?",
344
345 /* SQL_DELETE_SEGDIR_ENTRY
346 ** Delete the %_segdir entry on absolute level :1 with index :2. */
347 /* 30 */ "DELETE FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?",
348
349 /* SQL_SHIFT_SEGDIR_ENTRY
350 ** Modify the idx value for the segment with idx=:3 on absolute level :2
351 ** to :1. */
352 /* 31 */ "UPDATE %Q.'%q_segdir' SET idx = ? WHERE level=? AND idx=?",
353
354 /* SQL_SELECT_SEGDIR
355 ** Read a single entry from the %_segdir table. The entry from absolute
356 ** level :1 with index value :2. */
357 /* 32 */ "SELECT idx, start_block, leaves_end_block, end_block, root "
358 "FROM %Q.'%q_segdir' WHERE level = ? AND idx = ?",
359
360 /* SQL_CHOMP_SEGDIR
361 ** Update the start_block (:1) and root (:2) fields of the %_segdir
362 ** entry located on absolute level :3 with index :4. */
363 /* 33 */ "UPDATE %Q.'%q_segdir' SET start_block = ?, root = ?"
364 "WHERE level = ? AND idx = ?",
365
366 /* SQL_SEGMENT_IS_APPENDABLE
367 ** Return a single row if the segment with end_block=? is appendable. Or
368 ** no rows otherwise. */
369 /* 34 */ "SELECT 1 FROM %Q.'%q_segments' WHERE blockid=? AND block IS NULL",
370
371 /* SQL_SELECT_INDEXES
372 ** Return the list of valid segment indexes for absolute level ? */
373 /* 35 */ "SELECT idx FROM %Q.'%q_segdir' WHERE level=? ORDER BY 1 ASC",
374
375 /* SQL_SELECT_MXLEVEL
376 ** Return the largest relative level in the FTS index or indexes. */
377 /* 36 */ "SELECT max( level %% 1024 ) FROM %Q.'%q_segdir'",
378
379 /* Return segments in order from oldest to newest.*/
380 /* 37 */ "SELECT level, idx, end_block "
381 "FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ? "
382 "ORDER BY level DESC, idx ASC",
383
384 /* Update statements used while promoting segments */
385 /* 38 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=-1,idx=? "
386 "WHERE level=? AND idx=?",
387 /* 39 */ "UPDATE OR FAIL %Q.'%q_segdir' SET level=? WHERE level=-1"
388
389 };
390 int rc = SQLITE_OK;
391 sqlite3_stmt *pStmt;
392
393 assert( SizeofArray(azSql)==SizeofArray(p->aStmt) );
394 assert( eStmt<SizeofArray(azSql) && eStmt>=0 );
395
396 pStmt = p->aStmt[eStmt];
397 if( !pStmt ){
398 char *zSql;
399 if( eStmt==SQL_CONTENT_INSERT ){
400 zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName, p->zWriteExprlist);
401 }else if( eStmt==SQL_SELECT_CONTENT_BY_ROWID ){
402 zSql = sqlite3_mprintf(azSql[eStmt], p->zReadExprlist);
403 }else{
404 zSql = sqlite3_mprintf(azSql[eStmt], p->zDb, p->zName);
405 }
406 if( !zSql ){
407 rc = SQLITE_NOMEM;
408 }else{
409 rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, NULL);
410 sqlite3_free(zSql);
411 assert( rc==SQLITE_OK || pStmt==0 );
412 p->aStmt[eStmt] = pStmt;
413 }
414 }
415 if( apVal ){
416 int i;
417 int nParam = sqlite3_bind_parameter_count(pStmt);
418 for(i=0; rc==SQLITE_OK && i<nParam; i++){
419 rc = sqlite3_bind_value(pStmt, i+1, apVal[i]);
420 }
421 }
422 *pp = pStmt;
423 return rc;
424 }
425
426
427 static int fts3SelectDocsize(
428 Fts3Table *pTab, /* FTS3 table handle */
429 sqlite3_int64 iDocid, /* Docid to bind for SQL_SELECT_DOCSIZE */
430 sqlite3_stmt **ppStmt /* OUT: Statement handle */
431 ){
432 sqlite3_stmt *pStmt = 0; /* Statement requested from fts3SqlStmt() */
433 int rc; /* Return code */
434
435 rc = fts3SqlStmt(pTab, SQL_SELECT_DOCSIZE, &pStmt, 0);
436 if( rc==SQLITE_OK ){
437 sqlite3_bind_int64(pStmt, 1, iDocid);
438 rc = sqlite3_step(pStmt);
439 if( rc!=SQLITE_ROW || sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB ){
440 rc = sqlite3_reset(pStmt);
441 if( rc==SQLITE_OK ) rc = FTS_CORRUPT_VTAB;
442 pStmt = 0;
443 }else{
444 rc = SQLITE_OK;
445 }
446 }
447
448 *ppStmt = pStmt;
449 return rc;
450 }
451
452 int sqlite3Fts3SelectDoctotal(
453 Fts3Table *pTab, /* Fts3 table handle */
454 sqlite3_stmt **ppStmt /* OUT: Statement handle */
455 ){
456 sqlite3_stmt *pStmt = 0;
457 int rc;
458 rc = fts3SqlStmt(pTab, SQL_SELECT_STAT, &pStmt, 0);
459 if( rc==SQLITE_OK ){
460 sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL);
461 if( sqlite3_step(pStmt)!=SQLITE_ROW
462 || sqlite3_column_type(pStmt, 0)!=SQLITE_BLOB
463 ){
464 rc = sqlite3_reset(pStmt);
465 if( rc==SQLITE_OK ) rc = FTS_CORRUPT_VTAB;
466 pStmt = 0;
467 }
468 }
469 *ppStmt = pStmt;
470 return rc;
471 }
472
473 int sqlite3Fts3SelectDocsize(
474 Fts3Table *pTab, /* Fts3 table handle */
475 sqlite3_int64 iDocid, /* Docid to read size data for */
476 sqlite3_stmt **ppStmt /* OUT: Statement handle */
477 ){
478 return fts3SelectDocsize(pTab, iDocid, ppStmt);
479 }
480
481 /*
482 ** Similar to fts3SqlStmt(). Except, after binding the parameters in
483 ** array apVal[] to the SQL statement identified by eStmt, the statement
484 ** is executed.
485 **
486 ** Returns SQLITE_OK if the statement is successfully executed, or an
487 ** SQLite error code otherwise.
488 */
489 static void fts3SqlExec(
490 int *pRC, /* Result code */
491 Fts3Table *p, /* The FTS3 table */
492 int eStmt, /* Index of statement to evaluate */
493 sqlite3_value **apVal /* Parameters to bind */
494 ){
495 sqlite3_stmt *pStmt;
496 int rc;
497 if( *pRC ) return;
498 rc = fts3SqlStmt(p, eStmt, &pStmt, apVal);
499 if( rc==SQLITE_OK ){
500 sqlite3_step(pStmt);
501 rc = sqlite3_reset(pStmt);
502 }
503 *pRC = rc;
504 }
505
506
507 /*
508 ** This function ensures that the caller has obtained an exclusive
509 ** shared-cache table-lock on the %_segdir table. This is required before
510 ** writing data to the fts3 table. If this lock is not acquired first, then
511 ** the caller may end up attempting to take this lock as part of committing
512 ** a transaction, causing SQLite to return SQLITE_LOCKED or
513 ** LOCKED_SHAREDCACHEto a COMMIT command.
514 **
515 ** It is best to avoid this because if FTS3 returns any error when
516 ** committing a transaction, the whole transaction will be rolled back.
517 ** And this is not what users expect when they get SQLITE_LOCKED_SHAREDCACHE.
518 ** It can still happen if the user locks the underlying tables directly
519 ** instead of accessing them via FTS.
520 */
521 static int fts3Writelock(Fts3Table *p){
522 int rc = SQLITE_OK;
523
524 if( p->nPendingData==0 ){
525 sqlite3_stmt *pStmt;
526 rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pStmt, 0);
527 if( rc==SQLITE_OK ){
528 sqlite3_bind_null(pStmt, 1);
529 sqlite3_step(pStmt);
530 rc = sqlite3_reset(pStmt);
531 }
532 }
533
534 return rc;
535 }
536
537 /*
538 ** FTS maintains a separate indexes for each language-id (a 32-bit integer).
539 ** Within each language id, a separate index is maintained to store the
540 ** document terms, and each configured prefix size (configured the FTS
541 ** "prefix=" option). And each index consists of multiple levels ("relative
542 ** levels").
543 **
544 ** All three of these values (the language id, the specific index and the
545 ** level within the index) are encoded in 64-bit integer values stored
546 ** in the %_segdir table on disk. This function is used to convert three
547 ** separate component values into the single 64-bit integer value that
548 ** can be used to query the %_segdir table.
549 **
550 ** Specifically, each language-id/index combination is allocated 1024
551 ** 64-bit integer level values ("absolute levels"). The main terms index
552 ** for language-id 0 is allocate values 0-1023. The first prefix index
553 ** (if any) for language-id 0 is allocated values 1024-2047. And so on.
554 ** Language 1 indexes are allocated immediately following language 0.
555 **
556 ** So, for a system with nPrefix prefix indexes configured, the block of
557 ** absolute levels that corresponds to language-id iLangid and index
558 ** iIndex starts at absolute level ((iLangid * (nPrefix+1) + iIndex) * 1024).
559 */
560 static sqlite3_int64 getAbsoluteLevel(
561 Fts3Table *p, /* FTS3 table handle */
562 int iLangid, /* Language id */
563 int iIndex, /* Index in p->aIndex[] */
564 int iLevel /* Level of segments */
565 ){
566 sqlite3_int64 iBase; /* First absolute level for iLangid/iIndex */
567 assert( iLangid>=0 );
568 assert( p->nIndex>0 );
569 assert( iIndex>=0 && iIndex<p->nIndex );
570
571 iBase = ((sqlite3_int64)iLangid * p->nIndex + iIndex) * FTS3_SEGDIR_MAXLEVEL;
572 return iBase + iLevel;
573 }
574
575 /*
576 ** Set *ppStmt to a statement handle that may be used to iterate through
577 ** all rows in the %_segdir table, from oldest to newest. If successful,
578 ** return SQLITE_OK. If an error occurs while preparing the statement,
579 ** return an SQLite error code.
580 **
581 ** There is only ever one instance of this SQL statement compiled for
582 ** each FTS3 table.
583 **
584 ** The statement returns the following columns from the %_segdir table:
585 **
586 ** 0: idx
587 ** 1: start_block
588 ** 2: leaves_end_block
589 ** 3: end_block
590 ** 4: root
591 */
592 int sqlite3Fts3AllSegdirs(
593 Fts3Table *p, /* FTS3 table */
594 int iLangid, /* Language being queried */
595 int iIndex, /* Index for p->aIndex[] */
596 int iLevel, /* Level to select (relative level) */
597 sqlite3_stmt **ppStmt /* OUT: Compiled statement */
598 ){
599 int rc;
600 sqlite3_stmt *pStmt = 0;
601
602 assert( iLevel==FTS3_SEGCURSOR_ALL || iLevel>=0 );
603 assert( iLevel<FTS3_SEGDIR_MAXLEVEL );
604 assert( iIndex>=0 && iIndex<p->nIndex );
605
606 if( iLevel<0 ){
607 /* "SELECT * FROM %_segdir WHERE level BETWEEN ? AND ? ORDER BY ..." */
608 rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE, &pStmt, 0);
609 if( rc==SQLITE_OK ){
610 sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0));
611 sqlite3_bind_int64(pStmt, 2,
612 getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1)
613 );
614 }
615 }else{
616 /* "SELECT * FROM %_segdir WHERE level = ? ORDER BY ..." */
617 rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0);
618 if( rc==SQLITE_OK ){
619 sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex,iLevel));
620 }
621 }
622 *ppStmt = pStmt;
623 return rc;
624 }
625
626
627 /*
628 ** Append a single varint to a PendingList buffer. SQLITE_OK is returned
629 ** if successful, or an SQLite error code otherwise.
630 **
631 ** This function also serves to allocate the PendingList structure itself.
632 ** For example, to create a new PendingList structure containing two
633 ** varints:
634 **
635 ** PendingList *p = 0;
636 ** fts3PendingListAppendVarint(&p, 1);
637 ** fts3PendingListAppendVarint(&p, 2);
638 */
639 static int fts3PendingListAppendVarint(
640 PendingList **pp, /* IN/OUT: Pointer to PendingList struct */
641 sqlite3_int64 i /* Value to append to data */
642 ){
643 PendingList *p = *pp;
644
645 /* Allocate or grow the PendingList as required. */
646 if( !p ){
647 p = sqlite3_malloc(sizeof(*p) + 100);
648 if( !p ){
649 return SQLITE_NOMEM;
650 }
651 p->nSpace = 100;
652 p->aData = (char *)&p[1];
653 p->nData = 0;
654 }
655 else if( p->nData+FTS3_VARINT_MAX+1>p->nSpace ){
656 int nNew = p->nSpace * 2;
657 p = sqlite3_realloc(p, sizeof(*p) + nNew);
658 if( !p ){
659 sqlite3_free(*pp);
660 *pp = 0;
661 return SQLITE_NOMEM;
662 }
663 p->nSpace = nNew;
664 p->aData = (char *)&p[1];
665 }
666
667 /* Append the new serialized varint to the end of the list. */
668 p->nData += sqlite3Fts3PutVarint(&p->aData[p->nData], i);
669 p->aData[p->nData] = '\0';
670 *pp = p;
671 return SQLITE_OK;
672 }
673
674 /*
675 ** Add a docid/column/position entry to a PendingList structure. Non-zero
676 ** is returned if the structure is sqlite3_realloced as part of adding
677 ** the entry. Otherwise, zero.
678 **
679 ** If an OOM error occurs, *pRc is set to SQLITE_NOMEM before returning.
680 ** Zero is always returned in this case. Otherwise, if no OOM error occurs,
681 ** it is set to SQLITE_OK.
682 */
683 static int fts3PendingListAppend(
684 PendingList **pp, /* IN/OUT: PendingList structure */
685 sqlite3_int64 iDocid, /* Docid for entry to add */
686 sqlite3_int64 iCol, /* Column for entry to add */
687 sqlite3_int64 iPos, /* Position of term for entry to add */
688 int *pRc /* OUT: Return code */
689 ){
690 PendingList *p = *pp;
691 int rc = SQLITE_OK;
692
693 assert( !p || p->iLastDocid<=iDocid );
694
695 if( !p || p->iLastDocid!=iDocid ){
696 sqlite3_int64 iDelta = iDocid - (p ? p->iLastDocid : 0);
697 if( p ){
698 assert( p->nData<p->nSpace );
699 assert( p->aData[p->nData]==0 );
700 p->nData++;
701 }
702 if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iDelta)) ){
703 goto pendinglistappend_out;
704 }
705 p->iLastCol = -1;
706 p->iLastPos = 0;
707 p->iLastDocid = iDocid;
708 }
709 if( iCol>0 && p->iLastCol!=iCol ){
710 if( SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, 1))
711 || SQLITE_OK!=(rc = fts3PendingListAppendVarint(&p, iCol))
712 ){
713 goto pendinglistappend_out;
714 }
715 p->iLastCol = iCol;
716 p->iLastPos = 0;
717 }
718 if( iCol>=0 ){
719 assert( iPos>p->iLastPos || (iPos==0 && p->iLastPos==0) );
720 rc = fts3PendingListAppendVarint(&p, 2+iPos-p->iLastPos);
721 if( rc==SQLITE_OK ){
722 p->iLastPos = iPos;
723 }
724 }
725
726 pendinglistappend_out:
727 *pRc = rc;
728 if( p!=*pp ){
729 *pp = p;
730 return 1;
731 }
732 return 0;
733 }
734
735 /*
736 ** Free a PendingList object allocated by fts3PendingListAppend().
737 */
738 static void fts3PendingListDelete(PendingList *pList){
739 sqlite3_free(pList);
740 }
741
742 /*
743 ** Add an entry to one of the pending-terms hash tables.
744 */
745 static int fts3PendingTermsAddOne(
746 Fts3Table *p,
747 int iCol,
748 int iPos,
749 Fts3Hash *pHash, /* Pending terms hash table to add entry to */
750 const char *zToken,
751 int nToken
752 ){
753 PendingList *pList;
754 int rc = SQLITE_OK;
755
756 pList = (PendingList *)fts3HashFind(pHash, zToken, nToken);
757 if( pList ){
758 p->nPendingData -= (pList->nData + nToken + sizeof(Fts3HashElem));
759 }
760 if( fts3PendingListAppend(&pList, p->iPrevDocid, iCol, iPos, &rc) ){
761 if( pList==fts3HashInsert(pHash, zToken, nToken, pList) ){
762 /* Malloc failed while inserting the new entry. This can only
763 ** happen if there was no previous entry for this token.
764 */
765 assert( 0==fts3HashFind(pHash, zToken, nToken) );
766 sqlite3_free(pList);
767 rc = SQLITE_NOMEM;
768 }
769 }
770 if( rc==SQLITE_OK ){
771 p->nPendingData += (pList->nData + nToken + sizeof(Fts3HashElem));
772 }
773 return rc;
774 }
775
776 /*
777 ** Tokenize the nul-terminated string zText and add all tokens to the
778 ** pending-terms hash-table. The docid used is that currently stored in
779 ** p->iPrevDocid, and the column is specified by argument iCol.
780 **
781 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
782 */
783 static int fts3PendingTermsAdd(
784 Fts3Table *p, /* Table into which text will be inserted */
785 int iLangid, /* Language id to use */
786 const char *zText, /* Text of document to be inserted */
787 int iCol, /* Column into which text is being inserted */
788 u32 *pnWord /* IN/OUT: Incr. by number tokens inserted */
789 ){
790 int rc;
791 int iStart = 0;
792 int iEnd = 0;
793 int iPos = 0;
794 int nWord = 0;
795
796 char const *zToken;
797 int nToken = 0;
798
799 sqlite3_tokenizer *pTokenizer = p->pTokenizer;
800 sqlite3_tokenizer_module const *pModule = pTokenizer->pModule;
801 sqlite3_tokenizer_cursor *pCsr;
802 int (*xNext)(sqlite3_tokenizer_cursor *pCursor,
803 const char**,int*,int*,int*,int*);
804
805 assert( pTokenizer && pModule );
806
807 /* If the user has inserted a NULL value, this function may be called with
808 ** zText==0. In this case, add zero token entries to the hash table and
809 ** return early. */
810 if( zText==0 ){
811 *pnWord = 0;
812 return SQLITE_OK;
813 }
814
815 rc = sqlite3Fts3OpenTokenizer(pTokenizer, iLangid, zText, -1, &pCsr);
816 if( rc!=SQLITE_OK ){
817 return rc;
818 }
819
820 xNext = pModule->xNext;
821 while( SQLITE_OK==rc
822 && SQLITE_OK==(rc = xNext(pCsr, &zToken, &nToken, &iStart, &iEnd, &iPos))
823 ){
824 int i;
825 if( iPos>=nWord ) nWord = iPos+1;
826
827 /* Positions cannot be negative; we use -1 as a terminator internally.
828 ** Tokens must have a non-zero length.
829 */
830 if( iPos<0 || !zToken || nToken<=0 ){
831 rc = SQLITE_ERROR;
832 break;
833 }
834
835 /* Add the term to the terms index */
836 rc = fts3PendingTermsAddOne(
837 p, iCol, iPos, &p->aIndex[0].hPending, zToken, nToken
838 );
839
840 /* Add the term to each of the prefix indexes that it is not too
841 ** short for. */
842 for(i=1; rc==SQLITE_OK && i<p->nIndex; i++){
843 struct Fts3Index *pIndex = &p->aIndex[i];
844 if( nToken<pIndex->nPrefix ) continue;
845 rc = fts3PendingTermsAddOne(
846 p, iCol, iPos, &pIndex->hPending, zToken, pIndex->nPrefix
847 );
848 }
849 }
850
851 pModule->xClose(pCsr);
852 *pnWord += nWord;
853 return (rc==SQLITE_DONE ? SQLITE_OK : rc);
854 }
855
856 /*
857 ** Calling this function indicates that subsequent calls to
858 ** fts3PendingTermsAdd() are to add term/position-list pairs for the
859 ** contents of the document with docid iDocid.
860 */
861 static int fts3PendingTermsDocid(
862 Fts3Table *p, /* Full-text table handle */
863 int bDelete, /* True if this op is a delete */
864 int iLangid, /* Language id of row being written */
865 sqlite_int64 iDocid /* Docid of row being written */
866 ){
867 assert( iLangid>=0 );
868 assert( bDelete==1 || bDelete==0 );
869
870 /* TODO(shess) Explore whether partially flushing the buffer on
871 ** forced-flush would provide better performance. I suspect that if
872 ** we ordered the doclists by size and flushed the largest until the
873 ** buffer was half empty, that would let the less frequent terms
874 ** generate longer doclists.
875 */
876 if( iDocid<p->iPrevDocid
877 || (iDocid==p->iPrevDocid && p->bPrevDelete==0)
878 || p->iPrevLangid!=iLangid
879 || p->nPendingData>p->nMaxPendingData
880 ){
881 int rc = sqlite3Fts3PendingTermsFlush(p);
882 if( rc!=SQLITE_OK ) return rc;
883 }
884 p->iPrevDocid = iDocid;
885 p->iPrevLangid = iLangid;
886 p->bPrevDelete = bDelete;
887 return SQLITE_OK;
888 }
889
890 /*
891 ** Discard the contents of the pending-terms hash tables.
892 */
893 void sqlite3Fts3PendingTermsClear(Fts3Table *p){
894 int i;
895 for(i=0; i<p->nIndex; i++){
896 Fts3HashElem *pElem;
897 Fts3Hash *pHash = &p->aIndex[i].hPending;
898 for(pElem=fts3HashFirst(pHash); pElem; pElem=fts3HashNext(pElem)){
899 PendingList *pList = (PendingList *)fts3HashData(pElem);
900 fts3PendingListDelete(pList);
901 }
902 fts3HashClear(pHash);
903 }
904 p->nPendingData = 0;
905 }
906
907 /*
908 ** This function is called by the xUpdate() method as part of an INSERT
909 ** operation. It adds entries for each term in the new record to the
910 ** pendingTerms hash table.
911 **
912 ** Argument apVal is the same as the similarly named argument passed to
913 ** fts3InsertData(). Parameter iDocid is the docid of the new row.
914 */
915 static int fts3InsertTerms(
916 Fts3Table *p,
917 int iLangid,
918 sqlite3_value **apVal,
919 u32 *aSz
920 ){
921 int i; /* Iterator variable */
922 for(i=2; i<p->nColumn+2; i++){
923 int iCol = i-2;
924 if( p->abNotindexed[iCol]==0 ){
925 const char *zText = (const char *)sqlite3_value_text(apVal[i]);
926 int rc = fts3PendingTermsAdd(p, iLangid, zText, iCol, &aSz[iCol]);
927 if( rc!=SQLITE_OK ){
928 return rc;
929 }
930 aSz[p->nColumn] += sqlite3_value_bytes(apVal[i]);
931 }
932 }
933 return SQLITE_OK;
934 }
935
936 /*
937 ** This function is called by the xUpdate() method for an INSERT operation.
938 ** The apVal parameter is passed a copy of the apVal argument passed by
939 ** SQLite to the xUpdate() method. i.e:
940 **
941 ** apVal[0] Not used for INSERT.
942 ** apVal[1] rowid
943 ** apVal[2] Left-most user-defined column
944 ** ...
945 ** apVal[p->nColumn+1] Right-most user-defined column
946 ** apVal[p->nColumn+2] Hidden column with same name as table
947 ** apVal[p->nColumn+3] Hidden "docid" column (alias for rowid)
948 ** apVal[p->nColumn+4] Hidden languageid column
949 */
950 static int fts3InsertData(
951 Fts3Table *p, /* Full-text table */
952 sqlite3_value **apVal, /* Array of values to insert */
953 sqlite3_int64 *piDocid /* OUT: Docid for row just inserted */
954 ){
955 int rc; /* Return code */
956 sqlite3_stmt *pContentInsert; /* INSERT INTO %_content VALUES(...) */
957
958 if( p->zContentTbl ){
959 sqlite3_value *pRowid = apVal[p->nColumn+3];
960 if( sqlite3_value_type(pRowid)==SQLITE_NULL ){
961 pRowid = apVal[1];
962 }
963 if( sqlite3_value_type(pRowid)!=SQLITE_INTEGER ){
964 return SQLITE_CONSTRAINT;
965 }
966 *piDocid = sqlite3_value_int64(pRowid);
967 return SQLITE_OK;
968 }
969
970 /* Locate the statement handle used to insert data into the %_content
971 ** table. The SQL for this statement is:
972 **
973 ** INSERT INTO %_content VALUES(?, ?, ?, ...)
974 **
975 ** The statement features N '?' variables, where N is the number of user
976 ** defined columns in the FTS3 table, plus one for the docid field.
977 */
978 rc = fts3SqlStmt(p, SQL_CONTENT_INSERT, &pContentInsert, &apVal[1]);
979 if( rc==SQLITE_OK && p->zLanguageid ){
980 rc = sqlite3_bind_int(
981 pContentInsert, p->nColumn+2,
982 sqlite3_value_int(apVal[p->nColumn+4])
983 );
984 }
985 if( rc!=SQLITE_OK ) return rc;
986
987 /* There is a quirk here. The users INSERT statement may have specified
988 ** a value for the "rowid" field, for the "docid" field, or for both.
989 ** Which is a problem, since "rowid" and "docid" are aliases for the
990 ** same value. For example:
991 **
992 ** INSERT INTO fts3tbl(rowid, docid) VALUES(1, 2);
993 **
994 ** In FTS3, this is an error. It is an error to specify non-NULL values
995 ** for both docid and some other rowid alias.
996 */
997 if( SQLITE_NULL!=sqlite3_value_type(apVal[3+p->nColumn]) ){
998 if( SQLITE_NULL==sqlite3_value_type(apVal[0])
999 && SQLITE_NULL!=sqlite3_value_type(apVal[1])
1000 ){
1001 /* A rowid/docid conflict. */
1002 return SQLITE_ERROR;
1003 }
1004 rc = sqlite3_bind_value(pContentInsert, 1, apVal[3+p->nColumn]);
1005 if( rc!=SQLITE_OK ) return rc;
1006 }
1007
1008 /* Execute the statement to insert the record. Set *piDocid to the
1009 ** new docid value.
1010 */
1011 sqlite3_step(pContentInsert);
1012 rc = sqlite3_reset(pContentInsert);
1013
1014 *piDocid = sqlite3_last_insert_rowid(p->db);
1015 return rc;
1016 }
1017
1018
1019
1020 /*
1021 ** Remove all data from the FTS3 table. Clear the hash table containing
1022 ** pending terms.
1023 */
1024 static int fts3DeleteAll(Fts3Table *p, int bContent){
1025 int rc = SQLITE_OK; /* Return code */
1026
1027 /* Discard the contents of the pending-terms hash table. */
1028 sqlite3Fts3PendingTermsClear(p);
1029
1030 /* Delete everything from the shadow tables. Except, leave %_content as
1031 ** is if bContent is false. */
1032 assert( p->zContentTbl==0 || bContent==0 );
1033 if( bContent ) fts3SqlExec(&rc, p, SQL_DELETE_ALL_CONTENT, 0);
1034 fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGMENTS, 0);
1035 fts3SqlExec(&rc, p, SQL_DELETE_ALL_SEGDIR, 0);
1036 if( p->bHasDocsize ){
1037 fts3SqlExec(&rc, p, SQL_DELETE_ALL_DOCSIZE, 0);
1038 }
1039 if( p->bHasStat ){
1040 fts3SqlExec(&rc, p, SQL_DELETE_ALL_STAT, 0);
1041 }
1042 return rc;
1043 }
1044
1045 /*
1046 **
1047 */
1048 static int langidFromSelect(Fts3Table *p, sqlite3_stmt *pSelect){
1049 int iLangid = 0;
1050 if( p->zLanguageid ) iLangid = sqlite3_column_int(pSelect, p->nColumn+1);
1051 return iLangid;
1052 }
1053
1054 /*
1055 ** The first element in the apVal[] array is assumed to contain the docid
1056 ** (an integer) of a row about to be deleted. Remove all terms from the
1057 ** full-text index.
1058 */
1059 static void fts3DeleteTerms(
1060 int *pRC, /* Result code */
1061 Fts3Table *p, /* The FTS table to delete from */
1062 sqlite3_value *pRowid, /* The docid to be deleted */
1063 u32 *aSz, /* Sizes of deleted document written here */
1064 int *pbFound /* OUT: Set to true if row really does exist */
1065 ){
1066 int rc;
1067 sqlite3_stmt *pSelect;
1068
1069 assert( *pbFound==0 );
1070 if( *pRC ) return;
1071 rc = fts3SqlStmt(p, SQL_SELECT_CONTENT_BY_ROWID, &pSelect, &pRowid);
1072 if( rc==SQLITE_OK ){
1073 if( SQLITE_ROW==sqlite3_step(pSelect) ){
1074 int i;
1075 int iLangid = langidFromSelect(p, pSelect);
1076 i64 iDocid = sqlite3_column_int64(pSelect, 0);
1077 rc = fts3PendingTermsDocid(p, 1, iLangid, iDocid);
1078 for(i=1; rc==SQLITE_OK && i<=p->nColumn; i++){
1079 int iCol = i-1;
1080 if( p->abNotindexed[iCol]==0 ){
1081 const char *zText = (const char *)sqlite3_column_text(pSelect, i);
1082 rc = fts3PendingTermsAdd(p, iLangid, zText, -1, &aSz[iCol]);
1083 aSz[p->nColumn] += sqlite3_column_bytes(pSelect, i);
1084 }
1085 }
1086 if( rc!=SQLITE_OK ){
1087 sqlite3_reset(pSelect);
1088 *pRC = rc;
1089 return;
1090 }
1091 *pbFound = 1;
1092 }
1093 rc = sqlite3_reset(pSelect);
1094 }else{
1095 sqlite3_reset(pSelect);
1096 }
1097 *pRC = rc;
1098 }
1099
1100 /*
1101 ** Forward declaration to account for the circular dependency between
1102 ** functions fts3SegmentMerge() and fts3AllocateSegdirIdx().
1103 */
1104 static int fts3SegmentMerge(Fts3Table *, int, int, int);
1105
1106 /*
1107 ** This function allocates a new level iLevel index in the segdir table.
1108 ** Usually, indexes are allocated within a level sequentially starting
1109 ** with 0, so the allocated index is one greater than the value returned
1110 ** by:
1111 **
1112 ** SELECT max(idx) FROM %_segdir WHERE level = :iLevel
1113 **
1114 ** However, if there are already FTS3_MERGE_COUNT indexes at the requested
1115 ** level, they are merged into a single level (iLevel+1) segment and the
1116 ** allocated index is 0.
1117 **
1118 ** If successful, *piIdx is set to the allocated index slot and SQLITE_OK
1119 ** returned. Otherwise, an SQLite error code is returned.
1120 */
1121 static int fts3AllocateSegdirIdx(
1122 Fts3Table *p,
1123 int iLangid, /* Language id */
1124 int iIndex, /* Index for p->aIndex */
1125 int iLevel,
1126 int *piIdx
1127 ){
1128 int rc; /* Return Code */
1129 sqlite3_stmt *pNextIdx; /* Query for next idx at level iLevel */
1130 int iNext = 0; /* Result of query pNextIdx */
1131
1132 assert( iLangid>=0 );
1133 assert( p->nIndex>=1 );
1134
1135 /* Set variable iNext to the next available segdir index at level iLevel. */
1136 rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pNextIdx, 0);
1137 if( rc==SQLITE_OK ){
1138 sqlite3_bind_int64(
1139 pNextIdx, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel)
1140 );
1141 if( SQLITE_ROW==sqlite3_step(pNextIdx) ){
1142 iNext = sqlite3_column_int(pNextIdx, 0);
1143 }
1144 rc = sqlite3_reset(pNextIdx);
1145 }
1146
1147 if( rc==SQLITE_OK ){
1148 /* If iNext is FTS3_MERGE_COUNT, indicating that level iLevel is already
1149 ** full, merge all segments in level iLevel into a single iLevel+1
1150 ** segment and allocate (newly freed) index 0 at level iLevel. Otherwise,
1151 ** if iNext is less than FTS3_MERGE_COUNT, allocate index iNext.
1152 */
1153 if( iNext>=FTS3_MERGE_COUNT ){
1154 fts3LogMerge(16, getAbsoluteLevel(p, iLangid, iIndex, iLevel));
1155 rc = fts3SegmentMerge(p, iLangid, iIndex, iLevel);
1156 *piIdx = 0;
1157 }else{
1158 *piIdx = iNext;
1159 }
1160 }
1161
1162 return rc;
1163 }
1164
1165 /*
1166 ** The %_segments table is declared as follows:
1167 **
1168 ** CREATE TABLE %_segments(blockid INTEGER PRIMARY KEY, block BLOB)
1169 **
1170 ** This function reads data from a single row of the %_segments table. The
1171 ** specific row is identified by the iBlockid parameter. If paBlob is not
1172 ** NULL, then a buffer is allocated using sqlite3_malloc() and populated
1173 ** with the contents of the blob stored in the "block" column of the
1174 ** identified table row is. Whether or not paBlob is NULL, *pnBlob is set
1175 ** to the size of the blob in bytes before returning.
1176 **
1177 ** If an error occurs, or the table does not contain the specified row,
1178 ** an SQLite error code is returned. Otherwise, SQLITE_OK is returned. If
1179 ** paBlob is non-NULL, then it is the responsibility of the caller to
1180 ** eventually free the returned buffer.
1181 **
1182 ** This function may leave an open sqlite3_blob* handle in the
1183 ** Fts3Table.pSegments variable. This handle is reused by subsequent calls
1184 ** to this function. The handle may be closed by calling the
1185 ** sqlite3Fts3SegmentsClose() function. Reusing a blob handle is a handy
1186 ** performance improvement, but the blob handle should always be closed
1187 ** before control is returned to the user (to prevent a lock being held
1188 ** on the database file for longer than necessary). Thus, any virtual table
1189 ** method (xFilter etc.) that may directly or indirectly call this function
1190 ** must call sqlite3Fts3SegmentsClose() before returning.
1191 */
1192 int sqlite3Fts3ReadBlock(
1193 Fts3Table *p, /* FTS3 table handle */
1194 sqlite3_int64 iBlockid, /* Access the row with blockid=$iBlockid */
1195 char **paBlob, /* OUT: Blob data in malloc'd buffer */
1196 int *pnBlob, /* OUT: Size of blob data */
1197 int *pnLoad /* OUT: Bytes actually loaded */
1198 ){
1199 int rc; /* Return code */
1200
1201 /* pnBlob must be non-NULL. paBlob may be NULL or non-NULL. */
1202 assert( pnBlob );
1203
1204 if( p->pSegments ){
1205 rc = sqlite3_blob_reopen(p->pSegments, iBlockid);
1206 }else{
1207 if( 0==p->zSegmentsTbl ){
1208 p->zSegmentsTbl = sqlite3_mprintf("%s_segments", p->zName);
1209 if( 0==p->zSegmentsTbl ) return SQLITE_NOMEM;
1210 }
1211 rc = sqlite3_blob_open(
1212 p->db, p->zDb, p->zSegmentsTbl, "block", iBlockid, 0, &p->pSegments
1213 );
1214 }
1215
1216 if( rc==SQLITE_OK ){
1217 int nByte = sqlite3_blob_bytes(p->pSegments);
1218 *pnBlob = nByte;
1219 if( paBlob ){
1220 char *aByte = sqlite3_malloc(nByte + FTS3_NODE_PADDING);
1221 if( !aByte ){
1222 rc = SQLITE_NOMEM;
1223 }else{
1224 if( pnLoad && nByte>(FTS3_NODE_CHUNK_THRESHOLD) ){
1225 nByte = FTS3_NODE_CHUNKSIZE;
1226 *pnLoad = nByte;
1227 }
1228 rc = sqlite3_blob_read(p->pSegments, aByte, nByte, 0);
1229 memset(&aByte[nByte], 0, FTS3_NODE_PADDING);
1230 if( rc!=SQLITE_OK ){
1231 sqlite3_free(aByte);
1232 aByte = 0;
1233 }
1234 }
1235 *paBlob = aByte;
1236 }
1237 }
1238
1239 return rc;
1240 }
1241
1242 /*
1243 ** Close the blob handle at p->pSegments, if it is open. See comments above
1244 ** the sqlite3Fts3ReadBlock() function for details.
1245 */
1246 void sqlite3Fts3SegmentsClose(Fts3Table *p){
1247 sqlite3_blob_close(p->pSegments);
1248 p->pSegments = 0;
1249 }
1250
1251 static int fts3SegReaderIncrRead(Fts3SegReader *pReader){
1252 int nRead; /* Number of bytes to read */
1253 int rc; /* Return code */
1254
1255 nRead = MIN(pReader->nNode - pReader->nPopulate, FTS3_NODE_CHUNKSIZE);
1256 rc = sqlite3_blob_read(
1257 pReader->pBlob,
1258 &pReader->aNode[pReader->nPopulate],
1259 nRead,
1260 pReader->nPopulate
1261 );
1262
1263 if( rc==SQLITE_OK ){
1264 pReader->nPopulate += nRead;
1265 memset(&pReader->aNode[pReader->nPopulate], 0, FTS3_NODE_PADDING);
1266 if( pReader->nPopulate==pReader->nNode ){
1267 sqlite3_blob_close(pReader->pBlob);
1268 pReader->pBlob = 0;
1269 pReader->nPopulate = 0;
1270 }
1271 }
1272 return rc;
1273 }
1274
1275 static int fts3SegReaderRequire(Fts3SegReader *pReader, char *pFrom, int nByte){
1276 int rc = SQLITE_OK;
1277 assert( !pReader->pBlob
1278 || (pFrom>=pReader->aNode && pFrom<&pReader->aNode[pReader->nNode])
1279 );
1280 while( pReader->pBlob && rc==SQLITE_OK
1281 && (pFrom - pReader->aNode + nByte)>pReader->nPopulate
1282 ){
1283 rc = fts3SegReaderIncrRead(pReader);
1284 }
1285 return rc;
1286 }
1287
1288 /*
1289 ** Set an Fts3SegReader cursor to point at EOF.
1290 */
1291 static void fts3SegReaderSetEof(Fts3SegReader *pSeg){
1292 if( !fts3SegReaderIsRootOnly(pSeg) ){
1293 sqlite3_free(pSeg->aNode);
1294 sqlite3_blob_close(pSeg->pBlob);
1295 pSeg->pBlob = 0;
1296 }
1297 pSeg->aNode = 0;
1298 }
1299
1300 /*
1301 ** Move the iterator passed as the first argument to the next term in the
1302 ** segment. If successful, SQLITE_OK is returned. If there is no next term,
1303 ** SQLITE_DONE. Otherwise, an SQLite error code.
1304 */
1305 static int fts3SegReaderNext(
1306 Fts3Table *p,
1307 Fts3SegReader *pReader,
1308 int bIncr
1309 ){
1310 int rc; /* Return code of various sub-routines */
1311 char *pNext; /* Cursor variable */
1312 int nPrefix; /* Number of bytes in term prefix */
1313 int nSuffix; /* Number of bytes in term suffix */
1314
1315 if( !pReader->aDoclist ){
1316 pNext = pReader->aNode;
1317 }else{
1318 pNext = &pReader->aDoclist[pReader->nDoclist];
1319 }
1320
1321 if( !pNext || pNext>=&pReader->aNode[pReader->nNode] ){
1322
1323 if( fts3SegReaderIsPending(pReader) ){
1324 Fts3HashElem *pElem = *(pReader->ppNextElem);
1325 sqlite3_free(pReader->aNode);
1326 pReader->aNode = 0;
1327 if( pElem ){
1328 char *aCopy;
1329 PendingList *pList = (PendingList *)fts3HashData(pElem);
1330 int nCopy = pList->nData+1;
1331 pReader->zTerm = (char *)fts3HashKey(pElem);
1332 pReader->nTerm = fts3HashKeysize(pElem);
1333 aCopy = (char*)sqlite3_malloc(nCopy);
1334 if( !aCopy ) return SQLITE_NOMEM;
1335 memcpy(aCopy, pList->aData, nCopy);
1336 pReader->nNode = pReader->nDoclist = nCopy;
1337 pReader->aNode = pReader->aDoclist = aCopy;
1338 pReader->ppNextElem++;
1339 assert( pReader->aNode );
1340 }
1341 return SQLITE_OK;
1342 }
1343
1344 fts3SegReaderSetEof(pReader);
1345
1346 /* If iCurrentBlock>=iLeafEndBlock, this is an EOF condition. All leaf
1347 ** blocks have already been traversed. */
1348 assert( pReader->iCurrentBlock<=pReader->iLeafEndBlock );
1349 if( pReader->iCurrentBlock>=pReader->iLeafEndBlock ){
1350 return SQLITE_OK;
1351 }
1352
1353 rc = sqlite3Fts3ReadBlock(
1354 p, ++pReader->iCurrentBlock, &pReader->aNode, &pReader->nNode,
1355 (bIncr ? &pReader->nPopulate : 0)
1356 );
1357 if( rc!=SQLITE_OK ) return rc;
1358 assert( pReader->pBlob==0 );
1359 if( bIncr && pReader->nPopulate<pReader->nNode ){
1360 pReader->pBlob = p->pSegments;
1361 p->pSegments = 0;
1362 }
1363 pNext = pReader->aNode;
1364 }
1365
1366 assert( !fts3SegReaderIsPending(pReader) );
1367
1368 rc = fts3SegReaderRequire(pReader, pNext, FTS3_VARINT_MAX*2);
1369 if( rc!=SQLITE_OK ) return rc;
1370
1371 /* Because of the FTS3_NODE_PADDING bytes of padding, the following is
1372 ** safe (no risk of overread) even if the node data is corrupted. */
1373 pNext += fts3GetVarint32(pNext, &nPrefix);
1374 pNext += fts3GetVarint32(pNext, &nSuffix);
1375 if( nPrefix<0 || nSuffix<=0
1376 || &pNext[nSuffix]>&pReader->aNode[pReader->nNode]
1377 ){
1378 return FTS_CORRUPT_VTAB;
1379 }
1380
1381 if( nPrefix+nSuffix>pReader->nTermAlloc ){
1382 int nNew = (nPrefix+nSuffix)*2;
1383 char *zNew = sqlite3_realloc(pReader->zTerm, nNew);
1384 if( !zNew ){
1385 return SQLITE_NOMEM;
1386 }
1387 pReader->zTerm = zNew;
1388 pReader->nTermAlloc = nNew;
1389 }
1390
1391 rc = fts3SegReaderRequire(pReader, pNext, nSuffix+FTS3_VARINT_MAX);
1392 if( rc!=SQLITE_OK ) return rc;
1393
1394 memcpy(&pReader->zTerm[nPrefix], pNext, nSuffix);
1395 pReader->nTerm = nPrefix+nSuffix;
1396 pNext += nSuffix;
1397 pNext += fts3GetVarint32(pNext, &pReader->nDoclist);
1398 pReader->aDoclist = pNext;
1399 pReader->pOffsetList = 0;
1400
1401 /* Check that the doclist does not appear to extend past the end of the
1402 ** b-tree node. And that the final byte of the doclist is 0x00. If either
1403 ** of these statements is untrue, then the data structure is corrupt.
1404 */
1405 if( &pReader->aDoclist[pReader->nDoclist]>&pReader->aNode[pReader->nNode]
1406 || (pReader->nPopulate==0 && pReader->aDoclist[pReader->nDoclist-1])
1407 ){
1408 return FTS_CORRUPT_VTAB;
1409 }
1410 return SQLITE_OK;
1411 }
1412
1413 /*
1414 ** Set the SegReader to point to the first docid in the doclist associated
1415 ** with the current term.
1416 */
1417 static int fts3SegReaderFirstDocid(Fts3Table *pTab, Fts3SegReader *pReader){
1418 int rc = SQLITE_OK;
1419 assert( pReader->aDoclist );
1420 assert( !pReader->pOffsetList );
1421 if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){
1422 u8 bEof = 0;
1423 pReader->iDocid = 0;
1424 pReader->nOffsetList = 0;
1425 sqlite3Fts3DoclistPrev(0,
1426 pReader->aDoclist, pReader->nDoclist, &pReader->pOffsetList,
1427 &pReader->iDocid, &pReader->nOffsetList, &bEof
1428 );
1429 }else{
1430 rc = fts3SegReaderRequire(pReader, pReader->aDoclist, FTS3_VARINT_MAX);
1431 if( rc==SQLITE_OK ){
1432 int n = sqlite3Fts3GetVarint(pReader->aDoclist, &pReader->iDocid);
1433 pReader->pOffsetList = &pReader->aDoclist[n];
1434 }
1435 }
1436 return rc;
1437 }
1438
1439 /*
1440 ** Advance the SegReader to point to the next docid in the doclist
1441 ** associated with the current term.
1442 **
1443 ** If arguments ppOffsetList and pnOffsetList are not NULL, then
1444 ** *ppOffsetList is set to point to the first column-offset list
1445 ** in the doclist entry (i.e. immediately past the docid varint).
1446 ** *pnOffsetList is set to the length of the set of column-offset
1447 ** lists, not including the nul-terminator byte. For example:
1448 */
1449 static int fts3SegReaderNextDocid(
1450 Fts3Table *pTab,
1451 Fts3SegReader *pReader, /* Reader to advance to next docid */
1452 char **ppOffsetList, /* OUT: Pointer to current position-list */
1453 int *pnOffsetList /* OUT: Length of *ppOffsetList in bytes */
1454 ){
1455 int rc = SQLITE_OK;
1456 char *p = pReader->pOffsetList;
1457 char c = 0;
1458
1459 assert( p );
1460
1461 if( pTab->bDescIdx && fts3SegReaderIsPending(pReader) ){
1462 /* A pending-terms seg-reader for an FTS4 table that uses order=desc.
1463 ** Pending-terms doclists are always built up in ascending order, so
1464 ** we have to iterate through them backwards here. */
1465 u8 bEof = 0;
1466 if( ppOffsetList ){
1467 *ppOffsetList = pReader->pOffsetList;
1468 *pnOffsetList = pReader->nOffsetList - 1;
1469 }
1470 sqlite3Fts3DoclistPrev(0,
1471 pReader->aDoclist, pReader->nDoclist, &p, &pReader->iDocid,
1472 &pReader->nOffsetList, &bEof
1473 );
1474 if( bEof ){
1475 pReader->pOffsetList = 0;
1476 }else{
1477 pReader->pOffsetList = p;
1478 }
1479 }else{
1480 char *pEnd = &pReader->aDoclist[pReader->nDoclist];
1481
1482 /* Pointer p currently points at the first byte of an offset list. The
1483 ** following block advances it to point one byte past the end of
1484 ** the same offset list. */
1485 while( 1 ){
1486
1487 /* The following line of code (and the "p++" below the while() loop) is
1488 ** normally all that is required to move pointer p to the desired
1489 ** position. The exception is if this node is being loaded from disk
1490 ** incrementally and pointer "p" now points to the first byte past
1491 ** the populated part of pReader->aNode[].
1492 */
1493 while( *p | c ) c = *p++ & 0x80;
1494 assert( *p==0 );
1495
1496 if( pReader->pBlob==0 || p<&pReader->aNode[pReader->nPopulate] ) break;
1497 rc = fts3SegReaderIncrRead(pReader);
1498 if( rc!=SQLITE_OK ) return rc;
1499 }
1500 p++;
1501
1502 /* If required, populate the output variables with a pointer to and the
1503 ** size of the previous offset-list.
1504 */
1505 if( ppOffsetList ){
1506 *ppOffsetList = pReader->pOffsetList;
1507 *pnOffsetList = (int)(p - pReader->pOffsetList - 1);
1508 }
1509
1510 /* List may have been edited in place by fts3EvalNearTrim() */
1511 while( p<pEnd && *p==0 ) p++;
1512
1513 /* If there are no more entries in the doclist, set pOffsetList to
1514 ** NULL. Otherwise, set Fts3SegReader.iDocid to the next docid and
1515 ** Fts3SegReader.pOffsetList to point to the next offset list before
1516 ** returning.
1517 */
1518 if( p>=pEnd ){
1519 pReader->pOffsetList = 0;
1520 }else{
1521 rc = fts3SegReaderRequire(pReader, p, FTS3_VARINT_MAX);
1522 if( rc==SQLITE_OK ){
1523 sqlite3_int64 iDelta;
1524 pReader->pOffsetList = p + sqlite3Fts3GetVarint(p, &iDelta);
1525 if( pTab->bDescIdx ){
1526 pReader->iDocid -= iDelta;
1527 }else{
1528 pReader->iDocid += iDelta;
1529 }
1530 }
1531 }
1532 }
1533
1534 return SQLITE_OK;
1535 }
1536
1537
1538 int sqlite3Fts3MsrOvfl(
1539 Fts3Cursor *pCsr,
1540 Fts3MultiSegReader *pMsr,
1541 int *pnOvfl
1542 ){
1543 Fts3Table *p = (Fts3Table*)pCsr->base.pVtab;
1544 int nOvfl = 0;
1545 int ii;
1546 int rc = SQLITE_OK;
1547 int pgsz = p->nPgsz;
1548
1549 assert( p->bFts4 );
1550 assert( pgsz>0 );
1551
1552 for(ii=0; rc==SQLITE_OK && ii<pMsr->nSegment; ii++){
1553 Fts3SegReader *pReader = pMsr->apSegment[ii];
1554 if( !fts3SegReaderIsPending(pReader)
1555 && !fts3SegReaderIsRootOnly(pReader)
1556 ){
1557 sqlite3_int64 jj;
1558 for(jj=pReader->iStartBlock; jj<=pReader->iLeafEndBlock; jj++){
1559 int nBlob;
1560 rc = sqlite3Fts3ReadBlock(p, jj, 0, &nBlob, 0);
1561 if( rc!=SQLITE_OK ) break;
1562 if( (nBlob+35)>pgsz ){
1563 nOvfl += (nBlob + 34)/pgsz;
1564 }
1565 }
1566 }
1567 }
1568 *pnOvfl = nOvfl;
1569 return rc;
1570 }
1571
1572 /*
1573 ** Free all allocations associated with the iterator passed as the
1574 ** second argument.
1575 */
1576 void sqlite3Fts3SegReaderFree(Fts3SegReader *pReader){
1577 if( pReader ){
1578 if( !fts3SegReaderIsPending(pReader) ){
1579 sqlite3_free(pReader->zTerm);
1580 }
1581 if( !fts3SegReaderIsRootOnly(pReader) ){
1582 sqlite3_free(pReader->aNode);
1583 }
1584 sqlite3_blob_close(pReader->pBlob);
1585 }
1586 sqlite3_free(pReader);
1587 }
1588
1589 /*
1590 ** Allocate a new SegReader object.
1591 */
1592 int sqlite3Fts3SegReaderNew(
1593 int iAge, /* Segment "age". */
1594 int bLookup, /* True for a lookup only */
1595 sqlite3_int64 iStartLeaf, /* First leaf to traverse */
1596 sqlite3_int64 iEndLeaf, /* Final leaf to traverse */
1597 sqlite3_int64 iEndBlock, /* Final block of segment */
1598 const char *zRoot, /* Buffer containing root node */
1599 int nRoot, /* Size of buffer containing root node */
1600 Fts3SegReader **ppReader /* OUT: Allocated Fts3SegReader */
1601 ){
1602 Fts3SegReader *pReader; /* Newly allocated SegReader object */
1603 int nExtra = 0; /* Bytes to allocate segment root node */
1604
1605 assert( iStartLeaf<=iEndLeaf );
1606 if( iStartLeaf==0 ){
1607 nExtra = nRoot + FTS3_NODE_PADDING;
1608 }
1609
1610 pReader = (Fts3SegReader *)sqlite3_malloc(sizeof(Fts3SegReader) + nExtra);
1611 if( !pReader ){
1612 return SQLITE_NOMEM;
1613 }
1614 memset(pReader, 0, sizeof(Fts3SegReader));
1615 pReader->iIdx = iAge;
1616 pReader->bLookup = bLookup!=0;
1617 pReader->iStartBlock = iStartLeaf;
1618 pReader->iLeafEndBlock = iEndLeaf;
1619 pReader->iEndBlock = iEndBlock;
1620
1621 if( nExtra ){
1622 /* The entire segment is stored in the root node. */
1623 pReader->aNode = (char *)&pReader[1];
1624 pReader->rootOnly = 1;
1625 pReader->nNode = nRoot;
1626 memcpy(pReader->aNode, zRoot, nRoot);
1627 memset(&pReader->aNode[nRoot], 0, FTS3_NODE_PADDING);
1628 }else{
1629 pReader->iCurrentBlock = iStartLeaf-1;
1630 }
1631 *ppReader = pReader;
1632 return SQLITE_OK;
1633 }
1634
1635 /*
1636 ** This is a comparison function used as a qsort() callback when sorting
1637 ** an array of pending terms by term. This occurs as part of flushing
1638 ** the contents of the pending-terms hash table to the database.
1639 */
1640 static int SQLITE_CDECL fts3CompareElemByTerm(
1641 const void *lhs,
1642 const void *rhs
1643 ){
1644 char *z1 = fts3HashKey(*(Fts3HashElem **)lhs);
1645 char *z2 = fts3HashKey(*(Fts3HashElem **)rhs);
1646 int n1 = fts3HashKeysize(*(Fts3HashElem **)lhs);
1647 int n2 = fts3HashKeysize(*(Fts3HashElem **)rhs);
1648
1649 int n = (n1<n2 ? n1 : n2);
1650 int c = memcmp(z1, z2, n);
1651 if( c==0 ){
1652 c = n1 - n2;
1653 }
1654 return c;
1655 }
1656
1657 /*
1658 ** This function is used to allocate an Fts3SegReader that iterates through
1659 ** a subset of the terms stored in the Fts3Table.pendingTerms array.
1660 **
1661 ** If the isPrefixIter parameter is zero, then the returned SegReader iterates
1662 ** through each term in the pending-terms table. Or, if isPrefixIter is
1663 ** non-zero, it iterates through each term and its prefixes. For example, if
1664 ** the pending terms hash table contains the terms "sqlite", "mysql" and
1665 ** "firebird", then the iterator visits the following 'terms' (in the order
1666 ** shown):
1667 **
1668 ** f fi fir fire fireb firebi firebir firebird
1669 ** m my mys mysq mysql
1670 ** s sq sql sqli sqlit sqlite
1671 **
1672 ** Whereas if isPrefixIter is zero, the terms visited are:
1673 **
1674 ** firebird mysql sqlite
1675 */
1676 int sqlite3Fts3SegReaderPending(
1677 Fts3Table *p, /* Virtual table handle */
1678 int iIndex, /* Index for p->aIndex */
1679 const char *zTerm, /* Term to search for */
1680 int nTerm, /* Size of buffer zTerm */
1681 int bPrefix, /* True for a prefix iterator */
1682 Fts3SegReader **ppReader /* OUT: SegReader for pending-terms */
1683 ){
1684 Fts3SegReader *pReader = 0; /* Fts3SegReader object to return */
1685 Fts3HashElem *pE; /* Iterator variable */
1686 Fts3HashElem **aElem = 0; /* Array of term hash entries to scan */
1687 int nElem = 0; /* Size of array at aElem */
1688 int rc = SQLITE_OK; /* Return Code */
1689 Fts3Hash *pHash;
1690
1691 pHash = &p->aIndex[iIndex].hPending;
1692 if( bPrefix ){
1693 int nAlloc = 0; /* Size of allocated array at aElem */
1694
1695 for(pE=fts3HashFirst(pHash); pE; pE=fts3HashNext(pE)){
1696 char *zKey = (char *)fts3HashKey(pE);
1697 int nKey = fts3HashKeysize(pE);
1698 if( nTerm==0 || (nKey>=nTerm && 0==memcmp(zKey, zTerm, nTerm)) ){
1699 if( nElem==nAlloc ){
1700 Fts3HashElem **aElem2;
1701 nAlloc += 16;
1702 aElem2 = (Fts3HashElem **)sqlite3_realloc(
1703 aElem, nAlloc*sizeof(Fts3HashElem *)
1704 );
1705 if( !aElem2 ){
1706 rc = SQLITE_NOMEM;
1707 nElem = 0;
1708 break;
1709 }
1710 aElem = aElem2;
1711 }
1712
1713 aElem[nElem++] = pE;
1714 }
1715 }
1716
1717 /* If more than one term matches the prefix, sort the Fts3HashElem
1718 ** objects in term order using qsort(). This uses the same comparison
1719 ** callback as is used when flushing terms to disk.
1720 */
1721 if( nElem>1 ){
1722 qsort(aElem, nElem, sizeof(Fts3HashElem *), fts3CompareElemByTerm);
1723 }
1724
1725 }else{
1726 /* The query is a simple term lookup that matches at most one term in
1727 ** the index. All that is required is a straight hash-lookup.
1728 **
1729 ** Because the stack address of pE may be accessed via the aElem pointer
1730 ** below, the "Fts3HashElem *pE" must be declared so that it is valid
1731 ** within this entire function, not just this "else{...}" block.
1732 */
1733 pE = fts3HashFindElem(pHash, zTerm, nTerm);
1734 if( pE ){
1735 aElem = &pE;
1736 nElem = 1;
1737 }
1738 }
1739
1740 if( nElem>0 ){
1741 int nByte = sizeof(Fts3SegReader) + (nElem+1)*sizeof(Fts3HashElem *);
1742 pReader = (Fts3SegReader *)sqlite3_malloc(nByte);
1743 if( !pReader ){
1744 rc = SQLITE_NOMEM;
1745 }else{
1746 memset(pReader, 0, nByte);
1747 pReader->iIdx = 0x7FFFFFFF;
1748 pReader->ppNextElem = (Fts3HashElem **)&pReader[1];
1749 memcpy(pReader->ppNextElem, aElem, nElem*sizeof(Fts3HashElem *));
1750 }
1751 }
1752
1753 if( bPrefix ){
1754 sqlite3_free(aElem);
1755 }
1756 *ppReader = pReader;
1757 return rc;
1758 }
1759
1760 /*
1761 ** Compare the entries pointed to by two Fts3SegReader structures.
1762 ** Comparison is as follows:
1763 **
1764 ** 1) EOF is greater than not EOF.
1765 **
1766 ** 2) The current terms (if any) are compared using memcmp(). If one
1767 ** term is a prefix of another, the longer term is considered the
1768 ** larger.
1769 **
1770 ** 3) By segment age. An older segment is considered larger.
1771 */
1772 static int fts3SegReaderCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
1773 int rc;
1774 if( pLhs->aNode && pRhs->aNode ){
1775 int rc2 = pLhs->nTerm - pRhs->nTerm;
1776 if( rc2<0 ){
1777 rc = memcmp(pLhs->zTerm, pRhs->zTerm, pLhs->nTerm);
1778 }else{
1779 rc = memcmp(pLhs->zTerm, pRhs->zTerm, pRhs->nTerm);
1780 }
1781 if( rc==0 ){
1782 rc = rc2;
1783 }
1784 }else{
1785 rc = (pLhs->aNode==0) - (pRhs->aNode==0);
1786 }
1787 if( rc==0 ){
1788 rc = pRhs->iIdx - pLhs->iIdx;
1789 }
1790 assert( rc!=0 );
1791 return rc;
1792 }
1793
1794 /*
1795 ** A different comparison function for SegReader structures. In this
1796 ** version, it is assumed that each SegReader points to an entry in
1797 ** a doclist for identical terms. Comparison is made as follows:
1798 **
1799 ** 1) EOF (end of doclist in this case) is greater than not EOF.
1800 **
1801 ** 2) By current docid.
1802 **
1803 ** 3) By segment age. An older segment is considered larger.
1804 */
1805 static int fts3SegReaderDoclistCmp(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
1806 int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0);
1807 if( rc==0 ){
1808 if( pLhs->iDocid==pRhs->iDocid ){
1809 rc = pRhs->iIdx - pLhs->iIdx;
1810 }else{
1811 rc = (pLhs->iDocid > pRhs->iDocid) ? 1 : -1;
1812 }
1813 }
1814 assert( pLhs->aNode && pRhs->aNode );
1815 return rc;
1816 }
1817 static int fts3SegReaderDoclistCmpRev(Fts3SegReader *pLhs, Fts3SegReader *pRhs){
1818 int rc = (pLhs->pOffsetList==0)-(pRhs->pOffsetList==0);
1819 if( rc==0 ){
1820 if( pLhs->iDocid==pRhs->iDocid ){
1821 rc = pRhs->iIdx - pLhs->iIdx;
1822 }else{
1823 rc = (pLhs->iDocid < pRhs->iDocid) ? 1 : -1;
1824 }
1825 }
1826 assert( pLhs->aNode && pRhs->aNode );
1827 return rc;
1828 }
1829
1830 /*
1831 ** Compare the term that the Fts3SegReader object passed as the first argument
1832 ** points to with the term specified by arguments zTerm and nTerm.
1833 **
1834 ** If the pSeg iterator is already at EOF, return 0. Otherwise, return
1835 ** -ve if the pSeg term is less than zTerm/nTerm, 0 if the two terms are
1836 ** equal, or +ve if the pSeg term is greater than zTerm/nTerm.
1837 */
1838 static int fts3SegReaderTermCmp(
1839 Fts3SegReader *pSeg, /* Segment reader object */
1840 const char *zTerm, /* Term to compare to */
1841 int nTerm /* Size of term zTerm in bytes */
1842 ){
1843 int res = 0;
1844 if( pSeg->aNode ){
1845 if( pSeg->nTerm>nTerm ){
1846 res = memcmp(pSeg->zTerm, zTerm, nTerm);
1847 }else{
1848 res = memcmp(pSeg->zTerm, zTerm, pSeg->nTerm);
1849 }
1850 if( res==0 ){
1851 res = pSeg->nTerm-nTerm;
1852 }
1853 }
1854 return res;
1855 }
1856
1857 /*
1858 ** Argument apSegment is an array of nSegment elements. It is known that
1859 ** the final (nSegment-nSuspect) members are already in sorted order
1860 ** (according to the comparison function provided). This function shuffles
1861 ** the array around until all entries are in sorted order.
1862 */
1863 static void fts3SegReaderSort(
1864 Fts3SegReader **apSegment, /* Array to sort entries of */
1865 int nSegment, /* Size of apSegment array */
1866 int nSuspect, /* Unsorted entry count */
1867 int (*xCmp)(Fts3SegReader *, Fts3SegReader *) /* Comparison function */
1868 ){
1869 int i; /* Iterator variable */
1870
1871 assert( nSuspect<=nSegment );
1872
1873 if( nSuspect==nSegment ) nSuspect--;
1874 for(i=nSuspect-1; i>=0; i--){
1875 int j;
1876 for(j=i; j<(nSegment-1); j++){
1877 Fts3SegReader *pTmp;
1878 if( xCmp(apSegment[j], apSegment[j+1])<0 ) break;
1879 pTmp = apSegment[j+1];
1880 apSegment[j+1] = apSegment[j];
1881 apSegment[j] = pTmp;
1882 }
1883 }
1884
1885 #ifndef NDEBUG
1886 /* Check that the list really is sorted now. */
1887 for(i=0; i<(nSuspect-1); i++){
1888 assert( xCmp(apSegment[i], apSegment[i+1])<0 );
1889 }
1890 #endif
1891 }
1892
1893 /*
1894 ** Insert a record into the %_segments table.
1895 */
1896 static int fts3WriteSegment(
1897 Fts3Table *p, /* Virtual table handle */
1898 sqlite3_int64 iBlock, /* Block id for new block */
1899 char *z, /* Pointer to buffer containing block data */
1900 int n /* Size of buffer z in bytes */
1901 ){
1902 sqlite3_stmt *pStmt;
1903 int rc = fts3SqlStmt(p, SQL_INSERT_SEGMENTS, &pStmt, 0);
1904 if( rc==SQLITE_OK ){
1905 sqlite3_bind_int64(pStmt, 1, iBlock);
1906 sqlite3_bind_blob(pStmt, 2, z, n, SQLITE_STATIC);
1907 sqlite3_step(pStmt);
1908 rc = sqlite3_reset(pStmt);
1909 }
1910 return rc;
1911 }
1912
1913 /*
1914 ** Find the largest relative level number in the table. If successful, set
1915 ** *pnMax to this value and return SQLITE_OK. Otherwise, if an error occurs,
1916 ** set *pnMax to zero and return an SQLite error code.
1917 */
1918 int sqlite3Fts3MaxLevel(Fts3Table *p, int *pnMax){
1919 int rc;
1920 int mxLevel = 0;
1921 sqlite3_stmt *pStmt = 0;
1922
1923 rc = fts3SqlStmt(p, SQL_SELECT_MXLEVEL, &pStmt, 0);
1924 if( rc==SQLITE_OK ){
1925 if( SQLITE_ROW==sqlite3_step(pStmt) ){
1926 mxLevel = sqlite3_column_int(pStmt, 0);
1927 }
1928 rc = sqlite3_reset(pStmt);
1929 }
1930 *pnMax = mxLevel;
1931 return rc;
1932 }
1933
1934 /*
1935 ** Insert a record into the %_segdir table.
1936 */
1937 static int fts3WriteSegdir(
1938 Fts3Table *p, /* Virtual table handle */
1939 sqlite3_int64 iLevel, /* Value for "level" field (absolute level) */
1940 int iIdx, /* Value for "idx" field */
1941 sqlite3_int64 iStartBlock, /* Value for "start_block" field */
1942 sqlite3_int64 iLeafEndBlock, /* Value for "leaves_end_block" field */
1943 sqlite3_int64 iEndBlock, /* Value for "end_block" field */
1944 sqlite3_int64 nLeafData, /* Bytes of leaf data in segment */
1945 char *zRoot, /* Blob value for "root" field */
1946 int nRoot /* Number of bytes in buffer zRoot */
1947 ){
1948 sqlite3_stmt *pStmt;
1949 int rc = fts3SqlStmt(p, SQL_INSERT_SEGDIR, &pStmt, 0);
1950 if( rc==SQLITE_OK ){
1951 sqlite3_bind_int64(pStmt, 1, iLevel);
1952 sqlite3_bind_int(pStmt, 2, iIdx);
1953 sqlite3_bind_int64(pStmt, 3, iStartBlock);
1954 sqlite3_bind_int64(pStmt, 4, iLeafEndBlock);
1955 if( nLeafData==0 ){
1956 sqlite3_bind_int64(pStmt, 5, iEndBlock);
1957 }else{
1958 char *zEnd = sqlite3_mprintf("%lld %lld", iEndBlock, nLeafData);
1959 if( !zEnd ) return SQLITE_NOMEM;
1960 sqlite3_bind_text(pStmt, 5, zEnd, -1, sqlite3_free);
1961 }
1962 sqlite3_bind_blob(pStmt, 6, zRoot, nRoot, SQLITE_STATIC);
1963 sqlite3_step(pStmt);
1964 rc = sqlite3_reset(pStmt);
1965 }
1966 return rc;
1967 }
1968
1969 /*
1970 ** Return the size of the common prefix (if any) shared by zPrev and
1971 ** zNext, in bytes. For example,
1972 **
1973 ** fts3PrefixCompress("abc", 3, "abcdef", 6) // returns 3
1974 ** fts3PrefixCompress("abX", 3, "abcdef", 6) // returns 2
1975 ** fts3PrefixCompress("abX", 3, "Xbcdef", 6) // returns 0
1976 */
1977 static int fts3PrefixCompress(
1978 const char *zPrev, /* Buffer containing previous term */
1979 int nPrev, /* Size of buffer zPrev in bytes */
1980 const char *zNext, /* Buffer containing next term */
1981 int nNext /* Size of buffer zNext in bytes */
1982 ){
1983 int n;
1984 UNUSED_PARAMETER(nNext);
1985 for(n=0; n<nPrev && zPrev[n]==zNext[n]; n++);
1986 return n;
1987 }
1988
1989 /*
1990 ** Add term zTerm to the SegmentNode. It is guaranteed that zTerm is larger
1991 ** (according to memcmp) than the previous term.
1992 */
1993 static int fts3NodeAddTerm(
1994 Fts3Table *p, /* Virtual table handle */
1995 SegmentNode **ppTree, /* IN/OUT: SegmentNode handle */
1996 int isCopyTerm, /* True if zTerm/nTerm is transient */
1997 const char *zTerm, /* Pointer to buffer containing term */
1998 int nTerm /* Size of term in bytes */
1999 ){
2000 SegmentNode *pTree = *ppTree;
2001 int rc;
2002 SegmentNode *pNew;
2003
2004 /* First try to append the term to the current node. Return early if
2005 ** this is possible.
2006 */
2007 if( pTree ){
2008 int nData = pTree->nData; /* Current size of node in bytes */
2009 int nReq = nData; /* Required space after adding zTerm */
2010 int nPrefix; /* Number of bytes of prefix compression */
2011 int nSuffix; /* Suffix length */
2012
2013 nPrefix = fts3PrefixCompress(pTree->zTerm, pTree->nTerm, zTerm, nTerm);
2014 nSuffix = nTerm-nPrefix;
2015
2016 nReq += sqlite3Fts3VarintLen(nPrefix)+sqlite3Fts3VarintLen(nSuffix)+nSuffix;
2017 if( nReq<=p->nNodeSize || !pTree->zTerm ){
2018
2019 if( nReq>p->nNodeSize ){
2020 /* An unusual case: this is the first term to be added to the node
2021 ** and the static node buffer (p->nNodeSize bytes) is not large
2022 ** enough. Use a separately malloced buffer instead This wastes
2023 ** p->nNodeSize bytes, but since this scenario only comes about when
2024 ** the database contain two terms that share a prefix of almost 2KB,
2025 ** this is not expected to be a serious problem.
2026 */
2027 assert( pTree->aData==(char *)&pTree[1] );
2028 pTree->aData = (char *)sqlite3_malloc(nReq);
2029 if( !pTree->aData ){
2030 return SQLITE_NOMEM;
2031 }
2032 }
2033
2034 if( pTree->zTerm ){
2035 /* There is no prefix-length field for first term in a node */
2036 nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nPrefix);
2037 }
2038
2039 nData += sqlite3Fts3PutVarint(&pTree->aData[nData], nSuffix);
2040 memcpy(&pTree->aData[nData], &zTerm[nPrefix], nSuffix);
2041 pTree->nData = nData + nSuffix;
2042 pTree->nEntry++;
2043
2044 if( isCopyTerm ){
2045 if( pTree->nMalloc<nTerm ){
2046 char *zNew = sqlite3_realloc(pTree->zMalloc, nTerm*2);
2047 if( !zNew ){
2048 return SQLITE_NOMEM;
2049 }
2050 pTree->nMalloc = nTerm*2;
2051 pTree->zMalloc = zNew;
2052 }
2053 pTree->zTerm = pTree->zMalloc;
2054 memcpy(pTree->zTerm, zTerm, nTerm);
2055 pTree->nTerm = nTerm;
2056 }else{
2057 pTree->zTerm = (char *)zTerm;
2058 pTree->nTerm = nTerm;
2059 }
2060 return SQLITE_OK;
2061 }
2062 }
2063
2064 /* If control flows to here, it was not possible to append zTerm to the
2065 ** current node. Create a new node (a right-sibling of the current node).
2066 ** If this is the first node in the tree, the term is added to it.
2067 **
2068 ** Otherwise, the term is not added to the new node, it is left empty for
2069 ** now. Instead, the term is inserted into the parent of pTree. If pTree
2070 ** has no parent, one is created here.
2071 */
2072 pNew = (SegmentNode *)sqlite3_malloc(sizeof(SegmentNode) + p->nNodeSize);
2073 if( !pNew ){
2074 return SQLITE_NOMEM;
2075 }
2076 memset(pNew, 0, sizeof(SegmentNode));
2077 pNew->nData = 1 + FTS3_VARINT_MAX;
2078 pNew->aData = (char *)&pNew[1];
2079
2080 if( pTree ){
2081 SegmentNode *pParent = pTree->pParent;
2082 rc = fts3NodeAddTerm(p, &pParent, isCopyTerm, zTerm, nTerm);
2083 if( pTree->pParent==0 ){
2084 pTree->pParent = pParent;
2085 }
2086 pTree->pRight = pNew;
2087 pNew->pLeftmost = pTree->pLeftmost;
2088 pNew->pParent = pParent;
2089 pNew->zMalloc = pTree->zMalloc;
2090 pNew->nMalloc = pTree->nMalloc;
2091 pTree->zMalloc = 0;
2092 }else{
2093 pNew->pLeftmost = pNew;
2094 rc = fts3NodeAddTerm(p, &pNew, isCopyTerm, zTerm, nTerm);
2095 }
2096
2097 *ppTree = pNew;
2098 return rc;
2099 }
2100
2101 /*
2102 ** Helper function for fts3NodeWrite().
2103 */
2104 static int fts3TreeFinishNode(
2105 SegmentNode *pTree,
2106 int iHeight,
2107 sqlite3_int64 iLeftChild
2108 ){
2109 int nStart;
2110 assert( iHeight>=1 && iHeight<128 );
2111 nStart = FTS3_VARINT_MAX - sqlite3Fts3VarintLen(iLeftChild);
2112 pTree->aData[nStart] = (char)iHeight;
2113 sqlite3Fts3PutVarint(&pTree->aData[nStart+1], iLeftChild);
2114 return nStart;
2115 }
2116
2117 /*
2118 ** Write the buffer for the segment node pTree and all of its peers to the
2119 ** database. Then call this function recursively to write the parent of
2120 ** pTree and its peers to the database.
2121 **
2122 ** Except, if pTree is a root node, do not write it to the database. Instead,
2123 ** set output variables *paRoot and *pnRoot to contain the root node.
2124 **
2125 ** If successful, SQLITE_OK is returned and output variable *piLast is
2126 ** set to the largest blockid written to the database (or zero if no
2127 ** blocks were written to the db). Otherwise, an SQLite error code is
2128 ** returned.
2129 */
2130 static int fts3NodeWrite(
2131 Fts3Table *p, /* Virtual table handle */
2132 SegmentNode *pTree, /* SegmentNode handle */
2133 int iHeight, /* Height of this node in tree */
2134 sqlite3_int64 iLeaf, /* Block id of first leaf node */
2135 sqlite3_int64 iFree, /* Block id of next free slot in %_segments */
2136 sqlite3_int64 *piLast, /* OUT: Block id of last entry written */
2137 char **paRoot, /* OUT: Data for root node */
2138 int *pnRoot /* OUT: Size of root node in bytes */
2139 ){
2140 int rc = SQLITE_OK;
2141
2142 if( !pTree->pParent ){
2143 /* Root node of the tree. */
2144 int nStart = fts3TreeFinishNode(pTree, iHeight, iLeaf);
2145 *piLast = iFree-1;
2146 *pnRoot = pTree->nData - nStart;
2147 *paRoot = &pTree->aData[nStart];
2148 }else{
2149 SegmentNode *pIter;
2150 sqlite3_int64 iNextFree = iFree;
2151 sqlite3_int64 iNextLeaf = iLeaf;
2152 for(pIter=pTree->pLeftmost; pIter && rc==SQLITE_OK; pIter=pIter->pRight){
2153 int nStart = fts3TreeFinishNode(pIter, iHeight, iNextLeaf);
2154 int nWrite = pIter->nData - nStart;
2155
2156 rc = fts3WriteSegment(p, iNextFree, &pIter->aData[nStart], nWrite);
2157 iNextFree++;
2158 iNextLeaf += (pIter->nEntry+1);
2159 }
2160 if( rc==SQLITE_OK ){
2161 assert( iNextLeaf==iFree );
2162 rc = fts3NodeWrite(
2163 p, pTree->pParent, iHeight+1, iFree, iNextFree, piLast, paRoot, pnRoot
2164 );
2165 }
2166 }
2167
2168 return rc;
2169 }
2170
2171 /*
2172 ** Free all memory allocations associated with the tree pTree.
2173 */
2174 static void fts3NodeFree(SegmentNode *pTree){
2175 if( pTree ){
2176 SegmentNode *p = pTree->pLeftmost;
2177 fts3NodeFree(p->pParent);
2178 while( p ){
2179 SegmentNode *pRight = p->pRight;
2180 if( p->aData!=(char *)&p[1] ){
2181 sqlite3_free(p->aData);
2182 }
2183 assert( pRight==0 || p->zMalloc==0 );
2184 sqlite3_free(p->zMalloc);
2185 sqlite3_free(p);
2186 p = pRight;
2187 }
2188 }
2189 }
2190
2191 /*
2192 ** Add a term to the segment being constructed by the SegmentWriter object
2193 ** *ppWriter. When adding the first term to a segment, *ppWriter should
2194 ** be passed NULL. This function will allocate a new SegmentWriter object
2195 ** and return it via the input/output variable *ppWriter in this case.
2196 **
2197 ** If successful, SQLITE_OK is returned. Otherwise, an SQLite error code.
2198 */
2199 static int fts3SegWriterAdd(
2200 Fts3Table *p, /* Virtual table handle */
2201 SegmentWriter **ppWriter, /* IN/OUT: SegmentWriter handle */
2202 int isCopyTerm, /* True if buffer zTerm must be copied */
2203 const char *zTerm, /* Pointer to buffer containing term */
2204 int nTerm, /* Size of term in bytes */
2205 const char *aDoclist, /* Pointer to buffer containing doclist */
2206 int nDoclist /* Size of doclist in bytes */
2207 ){
2208 int nPrefix; /* Size of term prefix in bytes */
2209 int nSuffix; /* Size of term suffix in bytes */
2210 int nReq; /* Number of bytes required on leaf page */
2211 int nData;
2212 SegmentWriter *pWriter = *ppWriter;
2213
2214 if( !pWriter ){
2215 int rc;
2216 sqlite3_stmt *pStmt;
2217
2218 /* Allocate the SegmentWriter structure */
2219 pWriter = (SegmentWriter *)sqlite3_malloc(sizeof(SegmentWriter));
2220 if( !pWriter ) return SQLITE_NOMEM;
2221 memset(pWriter, 0, sizeof(SegmentWriter));
2222 *ppWriter = pWriter;
2223
2224 /* Allocate a buffer in which to accumulate data */
2225 pWriter->aData = (char *)sqlite3_malloc(p->nNodeSize);
2226 if( !pWriter->aData ) return SQLITE_NOMEM;
2227 pWriter->nSize = p->nNodeSize;
2228
2229 /* Find the next free blockid in the %_segments table */
2230 rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pStmt, 0);
2231 if( rc!=SQLITE_OK ) return rc;
2232 if( SQLITE_ROW==sqlite3_step(pStmt) ){
2233 pWriter->iFree = sqlite3_column_int64(pStmt, 0);
2234 pWriter->iFirst = pWriter->iFree;
2235 }
2236 rc = sqlite3_reset(pStmt);
2237 if( rc!=SQLITE_OK ) return rc;
2238 }
2239 nData = pWriter->nData;
2240
2241 nPrefix = fts3PrefixCompress(pWriter->zTerm, pWriter->nTerm, zTerm, nTerm);
2242 nSuffix = nTerm-nPrefix;
2243
2244 /* Figure out how many bytes are required by this new entry */
2245 nReq = sqlite3Fts3VarintLen(nPrefix) + /* varint containing prefix size */
2246 sqlite3Fts3VarintLen(nSuffix) + /* varint containing suffix size */
2247 nSuffix + /* Term suffix */
2248 sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */
2249 nDoclist; /* Doclist data */
2250
2251 if( nData>0 && nData+nReq>p->nNodeSize ){
2252 int rc;
2253
2254 /* The current leaf node is full. Write it out to the database. */
2255 rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, nData);
2256 if( rc!=SQLITE_OK ) return rc;
2257 p->nLeafAdd++;
2258
2259 /* Add the current term to the interior node tree. The term added to
2260 ** the interior tree must:
2261 **
2262 ** a) be greater than the largest term on the leaf node just written
2263 ** to the database (still available in pWriter->zTerm), and
2264 **
2265 ** b) be less than or equal to the term about to be added to the new
2266 ** leaf node (zTerm/nTerm).
2267 **
2268 ** In other words, it must be the prefix of zTerm 1 byte longer than
2269 ** the common prefix (if any) of zTerm and pWriter->zTerm.
2270 */
2271 assert( nPrefix<nTerm );
2272 rc = fts3NodeAddTerm(p, &pWriter->pTree, isCopyTerm, zTerm, nPrefix+1);
2273 if( rc!=SQLITE_OK ) return rc;
2274
2275 nData = 0;
2276 pWriter->nTerm = 0;
2277
2278 nPrefix = 0;
2279 nSuffix = nTerm;
2280 nReq = 1 + /* varint containing prefix size */
2281 sqlite3Fts3VarintLen(nTerm) + /* varint containing suffix size */
2282 nTerm + /* Term suffix */
2283 sqlite3Fts3VarintLen(nDoclist) + /* Size of doclist */
2284 nDoclist; /* Doclist data */
2285 }
2286
2287 /* Increase the total number of bytes written to account for the new entry. */
2288 pWriter->nLeafData += nReq;
2289
2290 /* If the buffer currently allocated is too small for this entry, realloc
2291 ** the buffer to make it large enough.
2292 */
2293 if( nReq>pWriter->nSize ){
2294 char *aNew = sqlite3_realloc(pWriter->aData, nReq);
2295 if( !aNew ) return SQLITE_NOMEM;
2296 pWriter->aData = aNew;
2297 pWriter->nSize = nReq;
2298 }
2299 assert( nData+nReq<=pWriter->nSize );
2300
2301 /* Append the prefix-compressed term and doclist to the buffer. */
2302 nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nPrefix);
2303 nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nSuffix);
2304 memcpy(&pWriter->aData[nData], &zTerm[nPrefix], nSuffix);
2305 nData += nSuffix;
2306 nData += sqlite3Fts3PutVarint(&pWriter->aData[nData], nDoclist);
2307 memcpy(&pWriter->aData[nData], aDoclist, nDoclist);
2308 pWriter->nData = nData + nDoclist;
2309
2310 /* Save the current term so that it can be used to prefix-compress the next.
2311 ** If the isCopyTerm parameter is true, then the buffer pointed to by
2312 ** zTerm is transient, so take a copy of the term data. Otherwise, just
2313 ** store a copy of the pointer.
2314 */
2315 if( isCopyTerm ){
2316 if( nTerm>pWriter->nMalloc ){
2317 char *zNew = sqlite3_realloc(pWriter->zMalloc, nTerm*2);
2318 if( !zNew ){
2319 return SQLITE_NOMEM;
2320 }
2321 pWriter->nMalloc = nTerm*2;
2322 pWriter->zMalloc = zNew;
2323 pWriter->zTerm = zNew;
2324 }
2325 assert( pWriter->zTerm==pWriter->zMalloc );
2326 memcpy(pWriter->zTerm, zTerm, nTerm);
2327 }else{
2328 pWriter->zTerm = (char *)zTerm;
2329 }
2330 pWriter->nTerm = nTerm;
2331
2332 return SQLITE_OK;
2333 }
2334
2335 /*
2336 ** Flush all data associated with the SegmentWriter object pWriter to the
2337 ** database. This function must be called after all terms have been added
2338 ** to the segment using fts3SegWriterAdd(). If successful, SQLITE_OK is
2339 ** returned. Otherwise, an SQLite error code.
2340 */
2341 static int fts3SegWriterFlush(
2342 Fts3Table *p, /* Virtual table handle */
2343 SegmentWriter *pWriter, /* SegmentWriter to flush to the db */
2344 sqlite3_int64 iLevel, /* Value for 'level' column of %_segdir */
2345 int iIdx /* Value for 'idx' column of %_segdir */
2346 ){
2347 int rc; /* Return code */
2348 if( pWriter->pTree ){
2349 sqlite3_int64 iLast = 0; /* Largest block id written to database */
2350 sqlite3_int64 iLastLeaf; /* Largest leaf block id written to db */
2351 char *zRoot = NULL; /* Pointer to buffer containing root node */
2352 int nRoot = 0; /* Size of buffer zRoot */
2353
2354 iLastLeaf = pWriter->iFree;
2355 rc = fts3WriteSegment(p, pWriter->iFree++, pWriter->aData, pWriter->nData);
2356 if( rc==SQLITE_OK ){
2357 rc = fts3NodeWrite(p, pWriter->pTree, 1,
2358 pWriter->iFirst, pWriter->iFree, &iLast, &zRoot, &nRoot);
2359 }
2360 if( rc==SQLITE_OK ){
2361 rc = fts3WriteSegdir(p, iLevel, iIdx,
2362 pWriter->iFirst, iLastLeaf, iLast, pWriter->nLeafData, zRoot, nRoot);
2363 }
2364 }else{
2365 /* The entire tree fits on the root node. Write it to the segdir table. */
2366 rc = fts3WriteSegdir(p, iLevel, iIdx,
2367 0, 0, 0, pWriter->nLeafData, pWriter->aData, pWriter->nData);
2368 }
2369 p->nLeafAdd++;
2370 return rc;
2371 }
2372
2373 /*
2374 ** Release all memory held by the SegmentWriter object passed as the
2375 ** first argument.
2376 */
2377 static void fts3SegWriterFree(SegmentWriter *pWriter){
2378 if( pWriter ){
2379 sqlite3_free(pWriter->aData);
2380 sqlite3_free(pWriter->zMalloc);
2381 fts3NodeFree(pWriter->pTree);
2382 sqlite3_free(pWriter);
2383 }
2384 }
2385
2386 /*
2387 ** The first value in the apVal[] array is assumed to contain an integer.
2388 ** This function tests if there exist any documents with docid values that
2389 ** are different from that integer. i.e. if deleting the document with docid
2390 ** pRowid would mean the FTS3 table were empty.
2391 **
2392 ** If successful, *pisEmpty is set to true if the table is empty except for
2393 ** document pRowid, or false otherwise, and SQLITE_OK is returned. If an
2394 ** error occurs, an SQLite error code is returned.
2395 */
2396 static int fts3IsEmpty(Fts3Table *p, sqlite3_value *pRowid, int *pisEmpty){
2397 sqlite3_stmt *pStmt;
2398 int rc;
2399 if( p->zContentTbl ){
2400 /* If using the content=xxx option, assume the table is never empty */
2401 *pisEmpty = 0;
2402 rc = SQLITE_OK;
2403 }else{
2404 rc = fts3SqlStmt(p, SQL_IS_EMPTY, &pStmt, &pRowid);
2405 if( rc==SQLITE_OK ){
2406 if( SQLITE_ROW==sqlite3_step(pStmt) ){
2407 *pisEmpty = sqlite3_column_int(pStmt, 0);
2408 }
2409 rc = sqlite3_reset(pStmt);
2410 }
2411 }
2412 return rc;
2413 }
2414
2415 /*
2416 ** Set *pnMax to the largest segment level in the database for the index
2417 ** iIndex.
2418 **
2419 ** Segment levels are stored in the 'level' column of the %_segdir table.
2420 **
2421 ** Return SQLITE_OK if successful, or an SQLite error code if not.
2422 */
2423 static int fts3SegmentMaxLevel(
2424 Fts3Table *p,
2425 int iLangid,
2426 int iIndex,
2427 sqlite3_int64 *pnMax
2428 ){
2429 sqlite3_stmt *pStmt;
2430 int rc;
2431 assert( iIndex>=0 && iIndex<p->nIndex );
2432
2433 /* Set pStmt to the compiled version of:
2434 **
2435 ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?
2436 **
2437 ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR).
2438 */
2439 rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0);
2440 if( rc!=SQLITE_OK ) return rc;
2441 sqlite3_bind_int64(pStmt, 1, getAbsoluteLevel(p, iLangid, iIndex, 0));
2442 sqlite3_bind_int64(pStmt, 2,
2443 getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1)
2444 );
2445 if( SQLITE_ROW==sqlite3_step(pStmt) ){
2446 *pnMax = sqlite3_column_int64(pStmt, 0);
2447 }
2448 return sqlite3_reset(pStmt);
2449 }
2450
2451 /*
2452 ** iAbsLevel is an absolute level that may be assumed to exist within
2453 ** the database. This function checks if it is the largest level number
2454 ** within its index. Assuming no error occurs, *pbMax is set to 1 if
2455 ** iAbsLevel is indeed the largest level, or 0 otherwise, and SQLITE_OK
2456 ** is returned. If an error occurs, an error code is returned and the
2457 ** final value of *pbMax is undefined.
2458 */
2459 static int fts3SegmentIsMaxLevel(Fts3Table *p, i64 iAbsLevel, int *pbMax){
2460
2461 /* Set pStmt to the compiled version of:
2462 **
2463 ** SELECT max(level) FROM %Q.'%q_segdir' WHERE level BETWEEN ? AND ?
2464 **
2465 ** (1024 is actually the value of macro FTS3_SEGDIR_PREFIXLEVEL_STR).
2466 */
2467 sqlite3_stmt *pStmt;
2468 int rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR_MAX_LEVEL, &pStmt, 0);
2469 if( rc!=SQLITE_OK ) return rc;
2470 sqlite3_bind_int64(pStmt, 1, iAbsLevel+1);
2471 sqlite3_bind_int64(pStmt, 2,
2472 ((iAbsLevel/FTS3_SEGDIR_MAXLEVEL)+1) * FTS3_SEGDIR_MAXLEVEL
2473 );
2474
2475 *pbMax = 0;
2476 if( SQLITE_ROW==sqlite3_step(pStmt) ){
2477 *pbMax = sqlite3_column_type(pStmt, 0)==SQLITE_NULL;
2478 }
2479 return sqlite3_reset(pStmt);
2480 }
2481
2482 /*
2483 ** Delete all entries in the %_segments table associated with the segment
2484 ** opened with seg-reader pSeg. This function does not affect the contents
2485 ** of the %_segdir table.
2486 */
2487 static int fts3DeleteSegment(
2488 Fts3Table *p, /* FTS table handle */
2489 Fts3SegReader *pSeg /* Segment to delete */
2490 ){
2491 int rc = SQLITE_OK; /* Return code */
2492 if( pSeg->iStartBlock ){
2493 sqlite3_stmt *pDelete; /* SQL statement to delete rows */
2494 rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDelete, 0);
2495 if( rc==SQLITE_OK ){
2496 sqlite3_bind_int64(pDelete, 1, pSeg->iStartBlock);
2497 sqlite3_bind_int64(pDelete, 2, pSeg->iEndBlock);
2498 sqlite3_step(pDelete);
2499 rc = sqlite3_reset(pDelete);
2500 }
2501 }
2502 return rc;
2503 }
2504
2505 /*
2506 ** This function is used after merging multiple segments into a single large
2507 ** segment to delete the old, now redundant, segment b-trees. Specifically,
2508 ** it:
2509 **
2510 ** 1) Deletes all %_segments entries for the segments associated with
2511 ** each of the SegReader objects in the array passed as the third
2512 ** argument, and
2513 **
2514 ** 2) deletes all %_segdir entries with level iLevel, or all %_segdir
2515 ** entries regardless of level if (iLevel<0).
2516 **
2517 ** SQLITE_OK is returned if successful, otherwise an SQLite error code.
2518 */
2519 static int fts3DeleteSegdir(
2520 Fts3Table *p, /* Virtual table handle */
2521 int iLangid, /* Language id */
2522 int iIndex, /* Index for p->aIndex */
2523 int iLevel, /* Level of %_segdir entries to delete */
2524 Fts3SegReader **apSegment, /* Array of SegReader objects */
2525 int nReader /* Size of array apSegment */
2526 ){
2527 int rc = SQLITE_OK; /* Return Code */
2528 int i; /* Iterator variable */
2529 sqlite3_stmt *pDelete = 0; /* SQL statement to delete rows */
2530
2531 for(i=0; rc==SQLITE_OK && i<nReader; i++){
2532 rc = fts3DeleteSegment(p, apSegment[i]);
2533 }
2534 if( rc!=SQLITE_OK ){
2535 return rc;
2536 }
2537
2538 assert( iLevel>=0 || iLevel==FTS3_SEGCURSOR_ALL );
2539 if( iLevel==FTS3_SEGCURSOR_ALL ){
2540 rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_RANGE, &pDelete, 0);
2541 if( rc==SQLITE_OK ){
2542 sqlite3_bind_int64(pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, 0));
2543 sqlite3_bind_int64(pDelete, 2,
2544 getAbsoluteLevel(p, iLangid, iIndex, FTS3_SEGDIR_MAXLEVEL-1)
2545 );
2546 }
2547 }else{
2548 rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_LEVEL, &pDelete, 0);
2549 if( rc==SQLITE_OK ){
2550 sqlite3_bind_int64(
2551 pDelete, 1, getAbsoluteLevel(p, iLangid, iIndex, iLevel)
2552 );
2553 }
2554 }
2555
2556 if( rc==SQLITE_OK ){
2557 sqlite3_step(pDelete);
2558 rc = sqlite3_reset(pDelete);
2559 }
2560
2561 return rc;
2562 }
2563
2564 /*
2565 ** When this function is called, buffer *ppList (size *pnList bytes) contains
2566 ** a position list that may (or may not) feature multiple columns. This
2567 ** function adjusts the pointer *ppList and the length *pnList so that they
2568 ** identify the subset of the position list that corresponds to column iCol.
2569 **
2570 ** If there are no entries in the input position list for column iCol, then
2571 ** *pnList is set to zero before returning.
2572 **
2573 ** If parameter bZero is non-zero, then any part of the input list following
2574 ** the end of the output list is zeroed before returning.
2575 */
2576 static void fts3ColumnFilter(
2577 int iCol, /* Column to filter on */
2578 int bZero, /* Zero out anything following *ppList */
2579 char **ppList, /* IN/OUT: Pointer to position list */
2580 int *pnList /* IN/OUT: Size of buffer *ppList in bytes */
2581 ){
2582 char *pList = *ppList;
2583 int nList = *pnList;
2584 char *pEnd = &pList[nList];
2585 int iCurrent = 0;
2586 char *p = pList;
2587
2588 assert( iCol>=0 );
2589 while( 1 ){
2590 char c = 0;
2591 while( p<pEnd && (c | *p)&0xFE ) c = *p++ & 0x80;
2592
2593 if( iCol==iCurrent ){
2594 nList = (int)(p - pList);
2595 break;
2596 }
2597
2598 nList -= (int)(p - pList);
2599 pList = p;
2600 if( nList==0 ){
2601 break;
2602 }
2603 p = &pList[1];
2604 p += fts3GetVarint32(p, &iCurrent);
2605 }
2606
2607 if( bZero && &pList[nList]!=pEnd ){
2608 memset(&pList[nList], 0, pEnd - &pList[nList]);
2609 }
2610 *ppList = pList;
2611 *pnList = nList;
2612 }
2613
2614 /*
2615 ** Cache data in the Fts3MultiSegReader.aBuffer[] buffer (overwriting any
2616 ** existing data). Grow the buffer if required.
2617 **
2618 ** If successful, return SQLITE_OK. Otherwise, if an OOM error is encountered
2619 ** trying to resize the buffer, return SQLITE_NOMEM.
2620 */
2621 static int fts3MsrBufferData(
2622 Fts3MultiSegReader *pMsr, /* Multi-segment-reader handle */
2623 char *pList,
2624 int nList
2625 ){
2626 if( nList>pMsr->nBuffer ){
2627 char *pNew;
2628 pMsr->nBuffer = nList*2;
2629 pNew = (char *)sqlite3_realloc(pMsr->aBuffer, pMsr->nBuffer);
2630 if( !pNew ) return SQLITE_NOMEM;
2631 pMsr->aBuffer = pNew;
2632 }
2633
2634 memcpy(pMsr->aBuffer, pList, nList);
2635 return SQLITE_OK;
2636 }
2637
2638 int sqlite3Fts3MsrIncrNext(
2639 Fts3Table *p, /* Virtual table handle */
2640 Fts3MultiSegReader *pMsr, /* Multi-segment-reader handle */
2641 sqlite3_int64 *piDocid, /* OUT: Docid value */
2642 char **paPoslist, /* OUT: Pointer to position list */
2643 int *pnPoslist /* OUT: Size of position list in bytes */
2644 ){
2645 int nMerge = pMsr->nAdvance;
2646 Fts3SegReader **apSegment = pMsr->apSegment;
2647 int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = (
2648 p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp
2649 );
2650
2651 if( nMerge==0 ){
2652 *paPoslist = 0;
2653 return SQLITE_OK;
2654 }
2655
2656 while( 1 ){
2657 Fts3SegReader *pSeg;
2658 pSeg = pMsr->apSegment[0];
2659
2660 if( pSeg->pOffsetList==0 ){
2661 *paPoslist = 0;
2662 break;
2663 }else{
2664 int rc;
2665 char *pList;
2666 int nList;
2667 int j;
2668 sqlite3_int64 iDocid = apSegment[0]->iDocid;
2669
2670 rc = fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList);
2671 j = 1;
2672 while( rc==SQLITE_OK
2673 && j<nMerge
2674 && apSegment[j]->pOffsetList
2675 && apSegment[j]->iDocid==iDocid
2676 ){
2677 rc = fts3SegReaderNextDocid(p, apSegment[j], 0, 0);
2678 j++;
2679 }
2680 if( rc!=SQLITE_OK ) return rc;
2681 fts3SegReaderSort(pMsr->apSegment, nMerge, j, xCmp);
2682
2683 if( nList>0 && fts3SegReaderIsPending(apSegment[0]) ){
2684 rc = fts3MsrBufferData(pMsr, pList, nList+1);
2685 if( rc!=SQLITE_OK ) return rc;
2686 assert( (pMsr->aBuffer[nList] & 0xFE)==0x00 );
2687 pList = pMsr->aBuffer;
2688 }
2689
2690 if( pMsr->iColFilter>=0 ){
2691 fts3ColumnFilter(pMsr->iColFilter, 1, &pList, &nList);
2692 }
2693
2694 if( nList>0 ){
2695 *paPoslist = pList;
2696 *piDocid = iDocid;
2697 *pnPoslist = nList;
2698 break;
2699 }
2700 }
2701 }
2702
2703 return SQLITE_OK;
2704 }
2705
2706 static int fts3SegReaderStart(
2707 Fts3Table *p, /* Virtual table handle */
2708 Fts3MultiSegReader *pCsr, /* Cursor object */
2709 const char *zTerm, /* Term searched for (or NULL) */
2710 int nTerm /* Length of zTerm in bytes */
2711 ){
2712 int i;
2713 int nSeg = pCsr->nSegment;
2714
2715 /* If the Fts3SegFilter defines a specific term (or term prefix) to search
2716 ** for, then advance each segment iterator until it points to a term of
2717 ** equal or greater value than the specified term. This prevents many
2718 ** unnecessary merge/sort operations for the case where single segment
2719 ** b-tree leaf nodes contain more than one term.
2720 */
2721 for(i=0; pCsr->bRestart==0 && i<pCsr->nSegment; i++){
2722 int res = 0;
2723 Fts3SegReader *pSeg = pCsr->apSegment[i];
2724 do {
2725 int rc = fts3SegReaderNext(p, pSeg, 0);
2726 if( rc!=SQLITE_OK ) return rc;
2727 }while( zTerm && (res = fts3SegReaderTermCmp(pSeg, zTerm, nTerm))<0 );
2728
2729 if( pSeg->bLookup && res!=0 ){
2730 fts3SegReaderSetEof(pSeg);
2731 }
2732 }
2733 fts3SegReaderSort(pCsr->apSegment, nSeg, nSeg, fts3SegReaderCmp);
2734
2735 return SQLITE_OK;
2736 }
2737
2738 int sqlite3Fts3SegReaderStart(
2739 Fts3Table *p, /* Virtual table handle */
2740 Fts3MultiSegReader *pCsr, /* Cursor object */
2741 Fts3SegFilter *pFilter /* Restrictions on range of iteration */
2742 ){
2743 pCsr->pFilter = pFilter;
2744 return fts3SegReaderStart(p, pCsr, pFilter->zTerm, pFilter->nTerm);
2745 }
2746
2747 int sqlite3Fts3MsrIncrStart(
2748 Fts3Table *p, /* Virtual table handle */
2749 Fts3MultiSegReader *pCsr, /* Cursor object */
2750 int iCol, /* Column to match on. */
2751 const char *zTerm, /* Term to iterate through a doclist for */
2752 int nTerm /* Number of bytes in zTerm */
2753 ){
2754 int i;
2755 int rc;
2756 int nSegment = pCsr->nSegment;
2757 int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = (
2758 p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp
2759 );
2760
2761 assert( pCsr->pFilter==0 );
2762 assert( zTerm && nTerm>0 );
2763
2764 /* Advance each segment iterator until it points to the term zTerm/nTerm. */
2765 rc = fts3SegReaderStart(p, pCsr, zTerm, nTerm);
2766 if( rc!=SQLITE_OK ) return rc;
2767
2768 /* Determine how many of the segments actually point to zTerm/nTerm. */
2769 for(i=0; i<nSegment; i++){
2770 Fts3SegReader *pSeg = pCsr->apSegment[i];
2771 if( !pSeg->aNode || fts3SegReaderTermCmp(pSeg, zTerm, nTerm) ){
2772 break;
2773 }
2774 }
2775 pCsr->nAdvance = i;
2776
2777 /* Advance each of the segments to point to the first docid. */
2778 for(i=0; i<pCsr->nAdvance; i++){
2779 rc = fts3SegReaderFirstDocid(p, pCsr->apSegment[i]);
2780 if( rc!=SQLITE_OK ) return rc;
2781 }
2782 fts3SegReaderSort(pCsr->apSegment, i, i, xCmp);
2783
2784 assert( iCol<0 || iCol<p->nColumn );
2785 pCsr->iColFilter = iCol;
2786
2787 return SQLITE_OK;
2788 }
2789
2790 /*
2791 ** This function is called on a MultiSegReader that has been started using
2792 ** sqlite3Fts3MsrIncrStart(). One or more calls to MsrIncrNext() may also
2793 ** have been made. Calling this function puts the MultiSegReader in such
2794 ** a state that if the next two calls are:
2795 **
2796 ** sqlite3Fts3SegReaderStart()
2797 ** sqlite3Fts3SegReaderStep()
2798 **
2799 ** then the entire doclist for the term is available in
2800 ** MultiSegReader.aDoclist/nDoclist.
2801 */
2802 int sqlite3Fts3MsrIncrRestart(Fts3MultiSegReader *pCsr){
2803 int i; /* Used to iterate through segment-readers */
2804
2805 assert( pCsr->zTerm==0 );
2806 assert( pCsr->nTerm==0 );
2807 assert( pCsr->aDoclist==0 );
2808 assert( pCsr->nDoclist==0 );
2809
2810 pCsr->nAdvance = 0;
2811 pCsr->bRestart = 1;
2812 for(i=0; i<pCsr->nSegment; i++){
2813 pCsr->apSegment[i]->pOffsetList = 0;
2814 pCsr->apSegment[i]->nOffsetList = 0;
2815 pCsr->apSegment[i]->iDocid = 0;
2816 }
2817
2818 return SQLITE_OK;
2819 }
2820
2821
2822 int sqlite3Fts3SegReaderStep(
2823 Fts3Table *p, /* Virtual table handle */
2824 Fts3MultiSegReader *pCsr /* Cursor object */
2825 ){
2826 int rc = SQLITE_OK;
2827
2828 int isIgnoreEmpty = (pCsr->pFilter->flags & FTS3_SEGMENT_IGNORE_EMPTY);
2829 int isRequirePos = (pCsr->pFilter->flags & FTS3_SEGMENT_REQUIRE_POS);
2830 int isColFilter = (pCsr->pFilter->flags & FTS3_SEGMENT_COLUMN_FILTER);
2831 int isPrefix = (pCsr->pFilter->flags & FTS3_SEGMENT_PREFIX);
2832 int isScan = (pCsr->pFilter->flags & FTS3_SEGMENT_SCAN);
2833 int isFirst = (pCsr->pFilter->flags & FTS3_SEGMENT_FIRST);
2834
2835 Fts3SegReader **apSegment = pCsr->apSegment;
2836 int nSegment = pCsr->nSegment;
2837 Fts3SegFilter *pFilter = pCsr->pFilter;
2838 int (*xCmp)(Fts3SegReader *, Fts3SegReader *) = (
2839 p->bDescIdx ? fts3SegReaderDoclistCmpRev : fts3SegReaderDoclistCmp
2840 );
2841
2842 if( pCsr->nSegment==0 ) return SQLITE_OK;
2843
2844 do {
2845 int nMerge;
2846 int i;
2847
2848 /* Advance the first pCsr->nAdvance entries in the apSegment[] array
2849 ** forward. Then sort the list in order of current term again.
2850 */
2851 for(i=0; i<pCsr->nAdvance; i++){
2852 Fts3SegReader *pSeg = apSegment[i];
2853 if( pSeg->bLookup ){
2854 fts3SegReaderSetEof(pSeg);
2855 }else{
2856 rc = fts3SegReaderNext(p, pSeg, 0);
2857 }
2858 if( rc!=SQLITE_OK ) return rc;
2859 }
2860 fts3SegReaderSort(apSegment, nSegment, pCsr->nAdvance, fts3SegReaderCmp);
2861 pCsr->nAdvance = 0;
2862
2863 /* If all the seg-readers are at EOF, we're finished. return SQLITE_OK. */
2864 assert( rc==SQLITE_OK );
2865 if( apSegment[0]->aNode==0 ) break;
2866
2867 pCsr->nTerm = apSegment[0]->nTerm;
2868 pCsr->zTerm = apSegment[0]->zTerm;
2869
2870 /* If this is a prefix-search, and if the term that apSegment[0] points
2871 ** to does not share a suffix with pFilter->zTerm/nTerm, then all
2872 ** required callbacks have been made. In this case exit early.
2873 **
2874 ** Similarly, if this is a search for an exact match, and the first term
2875 ** of segment apSegment[0] is not a match, exit early.
2876 */
2877 if( pFilter->zTerm && !isScan ){
2878 if( pCsr->nTerm<pFilter->nTerm
2879 || (!isPrefix && pCsr->nTerm>pFilter->nTerm)
2880 || memcmp(pCsr->zTerm, pFilter->zTerm, pFilter->nTerm)
2881 ){
2882 break;
2883 }
2884 }
2885
2886 nMerge = 1;
2887 while( nMerge<nSegment
2888 && apSegment[nMerge]->aNode
2889 && apSegment[nMerge]->nTerm==pCsr->nTerm
2890 && 0==memcmp(pCsr->zTerm, apSegment[nMerge]->zTerm, pCsr->nTerm)
2891 ){
2892 nMerge++;
2893 }
2894
2895 assert( isIgnoreEmpty || (isRequirePos && !isColFilter) );
2896 if( nMerge==1
2897 && !isIgnoreEmpty
2898 && !isFirst
2899 && (p->bDescIdx==0 || fts3SegReaderIsPending(apSegment[0])==0)
2900 ){
2901 pCsr->nDoclist = apSegment[0]->nDoclist;
2902 if( fts3SegReaderIsPending(apSegment[0]) ){
2903 rc = fts3MsrBufferData(pCsr, apSegment[0]->aDoclist, pCsr->nDoclist);
2904 pCsr->aDoclist = pCsr->aBuffer;
2905 }else{
2906 pCsr->aDoclist = apSegment[0]->aDoclist;
2907 }
2908 if( rc==SQLITE_OK ) rc = SQLITE_ROW;
2909 }else{
2910 int nDoclist = 0; /* Size of doclist */
2911 sqlite3_int64 iPrev = 0; /* Previous docid stored in doclist */
2912
2913 /* The current term of the first nMerge entries in the array
2914 ** of Fts3SegReader objects is the same. The doclists must be merged
2915 ** and a single term returned with the merged doclist.
2916 */
2917 for(i=0; i<nMerge; i++){
2918 fts3SegReaderFirstDocid(p, apSegment[i]);
2919 }
2920 fts3SegReaderSort(apSegment, nMerge, nMerge, xCmp);
2921 while( apSegment[0]->pOffsetList ){
2922 int j; /* Number of segments that share a docid */
2923 char *pList = 0;
2924 int nList = 0;
2925 int nByte;
2926 sqlite3_int64 iDocid = apSegment[0]->iDocid;
2927 fts3SegReaderNextDocid(p, apSegment[0], &pList, &nList);
2928 j = 1;
2929 while( j<nMerge
2930 && apSegment[j]->pOffsetList
2931 && apSegment[j]->iDocid==iDocid
2932 ){
2933 fts3SegReaderNextDocid(p, apSegment[j], 0, 0);
2934 j++;
2935 }
2936
2937 if( isColFilter ){
2938 fts3ColumnFilter(pFilter->iCol, 0, &pList, &nList);
2939 }
2940
2941 if( !isIgnoreEmpty || nList>0 ){
2942
2943 /* Calculate the 'docid' delta value to write into the merged
2944 ** doclist. */
2945 sqlite3_int64 iDelta;
2946 if( p->bDescIdx && nDoclist>0 ){
2947 iDelta = iPrev - iDocid;
2948 }else{
2949 iDelta = iDocid - iPrev;
2950 }
2951 assert( iDelta>0 || (nDoclist==0 && iDelta==iDocid) );
2952 assert( nDoclist>0 || iDelta==iDocid );
2953
2954 nByte = sqlite3Fts3VarintLen(iDelta) + (isRequirePos?nList+1:0);
2955 if( nDoclist+nByte>pCsr->nBuffer ){
2956 char *aNew;
2957 pCsr->nBuffer = (nDoclist+nByte)*2;
2958 aNew = sqlite3_realloc(pCsr->aBuffer, pCsr->nBuffer);
2959 if( !aNew ){
2960 return SQLITE_NOMEM;
2961 }
2962 pCsr->aBuffer = aNew;
2963 }
2964
2965 if( isFirst ){
2966 char *a = &pCsr->aBuffer[nDoclist];
2967 int nWrite;
2968
2969 nWrite = sqlite3Fts3FirstFilter(iDelta, pList, nList, a);
2970 if( nWrite ){
2971 iPrev = iDocid;
2972 nDoclist += nWrite;
2973 }
2974 }else{
2975 nDoclist += sqlite3Fts3PutVarint(&pCsr->aBuffer[nDoclist], iDelta);
2976 iPrev = iDocid;
2977 if( isRequirePos ){
2978 memcpy(&pCsr->aBuffer[nDoclist], pList, nList);
2979 nDoclist += nList;
2980 pCsr->aBuffer[nDoclist++] = '\0';
2981 }
2982 }
2983 }
2984
2985 fts3SegReaderSort(apSegment, nMerge, j, xCmp);
2986 }
2987 if( nDoclist>0 ){
2988 pCsr->aDoclist = pCsr->aBuffer;
2989 pCsr->nDoclist = nDoclist;
2990 rc = SQLITE_ROW;
2991 }
2992 }
2993 pCsr->nAdvance = nMerge;
2994 }while( rc==SQLITE_OK );
2995
2996 return rc;
2997 }
2998
2999
3000 void sqlite3Fts3SegReaderFinish(
3001 Fts3MultiSegReader *pCsr /* Cursor object */
3002 ){
3003 if( pCsr ){
3004 int i;
3005 for(i=0; i<pCsr->nSegment; i++){
3006 sqlite3Fts3SegReaderFree(pCsr->apSegment[i]);
3007 }
3008 sqlite3_free(pCsr->apSegment);
3009 sqlite3_free(pCsr->aBuffer);
3010
3011 pCsr->nSegment = 0;
3012 pCsr->apSegment = 0;
3013 pCsr->aBuffer = 0;
3014 }
3015 }
3016
3017 /*
3018 ** Decode the "end_block" field, selected by column iCol of the SELECT
3019 ** statement passed as the first argument.
3020 **
3021 ** The "end_block" field may contain either an integer, or a text field
3022 ** containing the text representation of two non-negative integers separated
3023 ** by one or more space (0x20) characters. In the first case, set *piEndBlock
3024 ** to the integer value and *pnByte to zero before returning. In the second,
3025 ** set *piEndBlock to the first value and *pnByte to the second.
3026 */
3027 static void fts3ReadEndBlockField(
3028 sqlite3_stmt *pStmt,
3029 int iCol,
3030 i64 *piEndBlock,
3031 i64 *pnByte
3032 ){
3033 const unsigned char *zText = sqlite3_column_text(pStmt, iCol);
3034 if( zText ){
3035 int i;
3036 int iMul = 1;
3037 i64 iVal = 0;
3038 for(i=0; zText[i]>='0' && zText[i]<='9'; i++){
3039 iVal = iVal*10 + (zText[i] - '0');
3040 }
3041 *piEndBlock = iVal;
3042 while( zText[i]==' ' ) i++;
3043 iVal = 0;
3044 if( zText[i]=='-' ){
3045 i++;
3046 iMul = -1;
3047 }
3048 for(/* no-op */; zText[i]>='0' && zText[i]<='9'; i++){
3049 iVal = iVal*10 + (zText[i] - '0');
3050 }
3051 *pnByte = (iVal * (i64)iMul);
3052 }
3053 }
3054
3055
3056 /*
3057 ** A segment of size nByte bytes has just been written to absolute level
3058 ** iAbsLevel. Promote any segments that should be promoted as a result.
3059 */
3060 static int fts3PromoteSegments(
3061 Fts3Table *p, /* FTS table handle */
3062 sqlite3_int64 iAbsLevel, /* Absolute level just updated */
3063 sqlite3_int64 nByte /* Size of new segment at iAbsLevel */
3064 ){
3065 int rc = SQLITE_OK;
3066 sqlite3_stmt *pRange;
3067
3068 rc = fts3SqlStmt(p, SQL_SELECT_LEVEL_RANGE2, &pRange, 0);
3069
3070 if( rc==SQLITE_OK ){
3071 int bOk = 0;
3072 i64 iLast = (iAbsLevel/FTS3_SEGDIR_MAXLEVEL + 1) * FTS3_SEGDIR_MAXLEVEL - 1;
3073 i64 nLimit = (nByte*3)/2;
3074
3075 /* Loop through all entries in the %_segdir table corresponding to
3076 ** segments in this index on levels greater than iAbsLevel. If there is
3077 ** at least one such segment, and it is possible to determine that all
3078 ** such segments are smaller than nLimit bytes in size, they will be
3079 ** promoted to level iAbsLevel. */
3080 sqlite3_bind_int64(pRange, 1, iAbsLevel+1);
3081 sqlite3_bind_int64(pRange, 2, iLast);
3082 while( SQLITE_ROW==sqlite3_step(pRange) ){
3083 i64 nSize = 0, dummy;
3084 fts3ReadEndBlockField(pRange, 2, &dummy, &nSize);
3085 if( nSize<=0 || nSize>nLimit ){
3086 /* If nSize==0, then the %_segdir.end_block field does not not
3087 ** contain a size value. This happens if it was written by an
3088 ** old version of FTS. In this case it is not possible to determine
3089 ** the size of the segment, and so segment promotion does not
3090 ** take place. */
3091 bOk = 0;
3092 break;
3093 }
3094 bOk = 1;
3095 }
3096 rc = sqlite3_reset(pRange);
3097
3098 if( bOk ){
3099 int iIdx = 0;
3100 sqlite3_stmt *pUpdate1 = 0;
3101 sqlite3_stmt *pUpdate2 = 0;
3102
3103 if( rc==SQLITE_OK ){
3104 rc = fts3SqlStmt(p, SQL_UPDATE_LEVEL_IDX, &pUpdate1, 0);
3105 }
3106 if( rc==SQLITE_OK ){
3107 rc = fts3SqlStmt(p, SQL_UPDATE_LEVEL, &pUpdate2, 0);
3108 }
3109
3110 if( rc==SQLITE_OK ){
3111
3112 /* Loop through all %_segdir entries for segments in this index with
3113 ** levels equal to or greater than iAbsLevel. As each entry is visited,
3114 ** updated it to set (level = -1) and (idx = N), where N is 0 for the
3115 ** oldest segment in the range, 1 for the next oldest, and so on.
3116 **
3117 ** In other words, move all segments being promoted to level -1,
3118 ** setting the "idx" fields as appropriate to keep them in the same
3119 ** order. The contents of level -1 (which is never used, except
3120 ** transiently here), will be moved back to level iAbsLevel below. */
3121 sqlite3_bind_int64(pRange, 1, iAbsLevel);
3122 while( SQLITE_ROW==sqlite3_step(pRange) ){
3123 sqlite3_bind_int(pUpdate1, 1, iIdx++);
3124 sqlite3_bind_int(pUpdate1, 2, sqlite3_column_int(pRange, 0));
3125 sqlite3_bind_int(pUpdate1, 3, sqlite3_column_int(pRange, 1));
3126 sqlite3_step(pUpdate1);
3127 rc = sqlite3_reset(pUpdate1);
3128 if( rc!=SQLITE_OK ){
3129 sqlite3_reset(pRange);
3130 break;
3131 }
3132 }
3133 }
3134 if( rc==SQLITE_OK ){
3135 rc = sqlite3_reset(pRange);
3136 }
3137
3138 /* Move level -1 to level iAbsLevel */
3139 if( rc==SQLITE_OK ){
3140 sqlite3_bind_int64(pUpdate2, 1, iAbsLevel);
3141 sqlite3_step(pUpdate2);
3142 rc = sqlite3_reset(pUpdate2);
3143 }
3144 }
3145 }
3146
3147
3148 return rc;
3149 }
3150
3151 /*
3152 ** Merge all level iLevel segments in the database into a single
3153 ** iLevel+1 segment. Or, if iLevel<0, merge all segments into a
3154 ** single segment with a level equal to the numerically largest level
3155 ** currently present in the database.
3156 **
3157 ** If this function is called with iLevel<0, but there is only one
3158 ** segment in the database, SQLITE_DONE is returned immediately.
3159 ** Otherwise, if successful, SQLITE_OK is returned. If an error occurs,
3160 ** an SQLite error code is returned.
3161 */
3162 static int fts3SegmentMerge(
3163 Fts3Table *p,
3164 int iLangid, /* Language id to merge */
3165 int iIndex, /* Index in p->aIndex[] to merge */
3166 int iLevel /* Level to merge */
3167 ){
3168 int rc; /* Return code */
3169 int iIdx = 0; /* Index of new segment */
3170 sqlite3_int64 iNewLevel = 0; /* Level/index to create new segment at */
3171 SegmentWriter *pWriter = 0; /* Used to write the new, merged, segment */
3172 Fts3SegFilter filter; /* Segment term filter condition */
3173 Fts3MultiSegReader csr; /* Cursor to iterate through level(s) */
3174 int bIgnoreEmpty = 0; /* True to ignore empty segments */
3175 i64 iMaxLevel = 0; /* Max level number for this index/langid */
3176
3177 assert( iLevel==FTS3_SEGCURSOR_ALL
3178 || iLevel==FTS3_SEGCURSOR_PENDING
3179 || iLevel>=0
3180 );
3181 assert( iLevel<FTS3_SEGDIR_MAXLEVEL );
3182 assert( iIndex>=0 && iIndex<p->nIndex );
3183
3184 rc = sqlite3Fts3SegReaderCursor(p, iLangid, iIndex, iLevel, 0, 0, 1, 0, &csr);
3185 if( rc!=SQLITE_OK || csr.nSegment==0 ) goto finished;
3186
3187 if( iLevel!=FTS3_SEGCURSOR_PENDING ){
3188 rc = fts3SegmentMaxLevel(p, iLangid, iIndex, &iMaxLevel);
3189 if( rc!=SQLITE_OK ) goto finished;
3190 }
3191
3192 if( iLevel==FTS3_SEGCURSOR_ALL ){
3193 /* This call is to merge all segments in the database to a single
3194 ** segment. The level of the new segment is equal to the numerically
3195 ** greatest segment level currently present in the database for this
3196 ** index. The idx of the new segment is always 0. */
3197 if( csr.nSegment==1 ){
3198 rc = SQLITE_DONE;
3199 goto finished;
3200 }
3201 iNewLevel = iMaxLevel;
3202 bIgnoreEmpty = 1;
3203
3204 }else{
3205 /* This call is to merge all segments at level iLevel. find the next
3206 ** available segment index at level iLevel+1. The call to
3207 ** fts3AllocateSegdirIdx() will merge the segments at level iLevel+1 to
3208 ** a single iLevel+2 segment if necessary. */
3209 assert( FTS3_SEGCURSOR_PENDING==-1 );
3210 iNewLevel = getAbsoluteLevel(p, iLangid, iIndex, iLevel+1);
3211 rc = fts3AllocateSegdirIdx(p, iLangid, iIndex, iLevel+1, &iIdx);
3212 bIgnoreEmpty = (iLevel!=FTS3_SEGCURSOR_PENDING) && (iNewLevel>iMaxLevel);
3213 }
3214 if( rc!=SQLITE_OK ) goto finished;
3215
3216 assert( csr.nSegment>0 );
3217 assert( iNewLevel>=getAbsoluteLevel(p, iLangid, iIndex, 0) );
3218 assert( iNewLevel<getAbsoluteLevel(p, iLangid, iIndex,FTS3_SEGDIR_MAXLEVEL) );
3219
3220 memset(&filter, 0, sizeof(Fts3SegFilter));
3221 filter.flags = FTS3_SEGMENT_REQUIRE_POS;
3222 filter.flags |= (bIgnoreEmpty ? FTS3_SEGMENT_IGNORE_EMPTY : 0);
3223
3224 rc = sqlite3Fts3SegReaderStart(p, &csr, &filter);
3225 while( SQLITE_OK==rc ){
3226 rc = sqlite3Fts3SegReaderStep(p, &csr);
3227 if( rc!=SQLITE_ROW ) break;
3228 rc = fts3SegWriterAdd(p, &pWriter, 1,
3229 csr.zTerm, csr.nTerm, csr.aDoclist, csr.nDoclist);
3230 }
3231 if( rc!=SQLITE_OK ) goto finished;
3232 assert( pWriter || bIgnoreEmpty );
3233
3234 if( iLevel!=FTS3_SEGCURSOR_PENDING ){
3235 rc = fts3DeleteSegdir(
3236 p, iLangid, iIndex, iLevel, csr.apSegment, csr.nSegment
3237 );
3238 if( rc!=SQLITE_OK ) goto finished;
3239 }
3240 if( pWriter ){
3241 rc = fts3SegWriterFlush(p, pWriter, iNewLevel, iIdx);
3242 if( rc==SQLITE_OK ){
3243 if( iLevel==FTS3_SEGCURSOR_PENDING || iNewLevel<iMaxLevel ){
3244 rc = fts3PromoteSegments(p, iNewLevel, pWriter->nLeafData);
3245 }
3246 }
3247 }
3248
3249 finished:
3250 fts3SegWriterFree(pWriter);
3251 sqlite3Fts3SegReaderFinish(&csr);
3252 return rc;
3253 }
3254
3255
3256 /*
3257 ** Flush the contents of pendingTerms to level 0 segments.
3258 */
3259 int sqlite3Fts3PendingTermsFlush(Fts3Table *p){
3260 int rc = SQLITE_OK;
3261 int i;
3262
3263 for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){
3264 rc = fts3SegmentMerge(p, p->iPrevLangid, i, FTS3_SEGCURSOR_PENDING);
3265 if( rc==SQLITE_DONE ) rc = SQLITE_OK;
3266 }
3267 sqlite3Fts3PendingTermsClear(p);
3268
3269 /* Determine the auto-incr-merge setting if unknown. If enabled,
3270 ** estimate the number of leaf blocks of content to be written
3271 */
3272 if( rc==SQLITE_OK && p->bHasStat
3273 && p->nAutoincrmerge==0xff && p->nLeafAdd>0
3274 ){
3275 sqlite3_stmt *pStmt = 0;
3276 rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0);
3277 if( rc==SQLITE_OK ){
3278 sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE);
3279 rc = sqlite3_step(pStmt);
3280 if( rc==SQLITE_ROW ){
3281 p->nAutoincrmerge = sqlite3_column_int(pStmt, 0);
3282 if( p->nAutoincrmerge==1 ) p->nAutoincrmerge = 8;
3283 }else if( rc==SQLITE_DONE ){
3284 p->nAutoincrmerge = 0;
3285 }
3286 rc = sqlite3_reset(pStmt);
3287 }
3288 }
3289 return rc;
3290 }
3291
3292 /*
3293 ** Encode N integers as varints into a blob.
3294 */
3295 static void fts3EncodeIntArray(
3296 int N, /* The number of integers to encode */
3297 u32 *a, /* The integer values */
3298 char *zBuf, /* Write the BLOB here */
3299 int *pNBuf /* Write number of bytes if zBuf[] used here */
3300 ){
3301 int i, j;
3302 for(i=j=0; i<N; i++){
3303 j += sqlite3Fts3PutVarint(&zBuf[j], (sqlite3_int64)a[i]);
3304 }
3305 *pNBuf = j;
3306 }
3307
3308 /*
3309 ** Decode a blob of varints into N integers
3310 */
3311 static void fts3DecodeIntArray(
3312 int N, /* The number of integers to decode */
3313 u32 *a, /* Write the integer values */
3314 const char *zBuf, /* The BLOB containing the varints */
3315 int nBuf /* size of the BLOB */
3316 ){
3317 int i, j;
3318 UNUSED_PARAMETER(nBuf);
3319 for(i=j=0; i<N; i++){
3320 sqlite3_int64 x;
3321 j += sqlite3Fts3GetVarint(&zBuf[j], &x);
3322 assert(j<=nBuf);
3323 a[i] = (u32)(x & 0xffffffff);
3324 }
3325 }
3326
3327 /*
3328 ** Insert the sizes (in tokens) for each column of the document
3329 ** with docid equal to p->iPrevDocid. The sizes are encoded as
3330 ** a blob of varints.
3331 */
3332 static void fts3InsertDocsize(
3333 int *pRC, /* Result code */
3334 Fts3Table *p, /* Table into which to insert */
3335 u32 *aSz /* Sizes of each column, in tokens */
3336 ){
3337 char *pBlob; /* The BLOB encoding of the document size */
3338 int nBlob; /* Number of bytes in the BLOB */
3339 sqlite3_stmt *pStmt; /* Statement used to insert the encoding */
3340 int rc; /* Result code from subfunctions */
3341
3342 if( *pRC ) return;
3343 pBlob = sqlite3_malloc( 10*p->nColumn );
3344 if( pBlob==0 ){
3345 *pRC = SQLITE_NOMEM;
3346 return;
3347 }
3348 fts3EncodeIntArray(p->nColumn, aSz, pBlob, &nBlob);
3349 rc = fts3SqlStmt(p, SQL_REPLACE_DOCSIZE, &pStmt, 0);
3350 if( rc ){
3351 sqlite3_free(pBlob);
3352 *pRC = rc;
3353 return;
3354 }
3355 sqlite3_bind_int64(pStmt, 1, p->iPrevDocid);
3356 sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, sqlite3_free);
3357 sqlite3_step(pStmt);
3358 *pRC = sqlite3_reset(pStmt);
3359 }
3360
3361 /*
3362 ** Record 0 of the %_stat table contains a blob consisting of N varints,
3363 ** where N is the number of user defined columns in the fts3 table plus
3364 ** two. If nCol is the number of user defined columns, then values of the
3365 ** varints are set as follows:
3366 **
3367 ** Varint 0: Total number of rows in the table.
3368 **
3369 ** Varint 1..nCol: For each column, the total number of tokens stored in
3370 ** the column for all rows of the table.
3371 **
3372 ** Varint 1+nCol: The total size, in bytes, of all text values in all
3373 ** columns of all rows of the table.
3374 **
3375 */
3376 static void fts3UpdateDocTotals(
3377 int *pRC, /* The result code */
3378 Fts3Table *p, /* Table being updated */
3379 u32 *aSzIns, /* Size increases */
3380 u32 *aSzDel, /* Size decreases */
3381 int nChng /* Change in the number of documents */
3382 ){
3383 char *pBlob; /* Storage for BLOB written into %_stat */
3384 int nBlob; /* Size of BLOB written into %_stat */
3385 u32 *a; /* Array of integers that becomes the BLOB */
3386 sqlite3_stmt *pStmt; /* Statement for reading and writing */
3387 int i; /* Loop counter */
3388 int rc; /* Result code from subfunctions */
3389
3390 const int nStat = p->nColumn+2;
3391
3392 if( *pRC ) return;
3393 a = sqlite3_malloc( (sizeof(u32)+10)*nStat );
3394 if( a==0 ){
3395 *pRC = SQLITE_NOMEM;
3396 return;
3397 }
3398 pBlob = (char*)&a[nStat];
3399 rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pStmt, 0);
3400 if( rc ){
3401 sqlite3_free(a);
3402 *pRC = rc;
3403 return;
3404 }
3405 sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL);
3406 if( sqlite3_step(pStmt)==SQLITE_ROW ){
3407 fts3DecodeIntArray(nStat, a,
3408 sqlite3_column_blob(pStmt, 0),
3409 sqlite3_column_bytes(pStmt, 0));
3410 }else{
3411 memset(a, 0, sizeof(u32)*(nStat) );
3412 }
3413 rc = sqlite3_reset(pStmt);
3414 if( rc!=SQLITE_OK ){
3415 sqlite3_free(a);
3416 *pRC = rc;
3417 return;
3418 }
3419 if( nChng<0 && a[0]<(u32)(-nChng) ){
3420 a[0] = 0;
3421 }else{
3422 a[0] += nChng;
3423 }
3424 for(i=0; i<p->nColumn+1; i++){
3425 u32 x = a[i+1];
3426 if( x+aSzIns[i] < aSzDel[i] ){
3427 x = 0;
3428 }else{
3429 x = x + aSzIns[i] - aSzDel[i];
3430 }
3431 a[i+1] = x;
3432 }
3433 fts3EncodeIntArray(nStat, a, pBlob, &nBlob);
3434 rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0);
3435 if( rc ){
3436 sqlite3_free(a);
3437 *pRC = rc;
3438 return;
3439 }
3440 sqlite3_bind_int(pStmt, 1, FTS_STAT_DOCTOTAL);
3441 sqlite3_bind_blob(pStmt, 2, pBlob, nBlob, SQLITE_STATIC);
3442 sqlite3_step(pStmt);
3443 *pRC = sqlite3_reset(pStmt);
3444 sqlite3_free(a);
3445 }
3446
3447 /*
3448 ** Merge the entire database so that there is one segment for each
3449 ** iIndex/iLangid combination.
3450 */
3451 static int fts3DoOptimize(Fts3Table *p, int bReturnDone){
3452 int bSeenDone = 0;
3453 int rc;
3454 sqlite3_stmt *pAllLangid = 0;
3455
3456 rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0);
3457 if( rc==SQLITE_OK ){
3458 int rc2;
3459 sqlite3_bind_int(pAllLangid, 1, p->iPrevLangid);
3460 sqlite3_bind_int(pAllLangid, 2, p->nIndex);
3461 while( sqlite3_step(pAllLangid)==SQLITE_ROW ){
3462 int i;
3463 int iLangid = sqlite3_column_int(pAllLangid, 0);
3464 for(i=0; rc==SQLITE_OK && i<p->nIndex; i++){
3465 rc = fts3SegmentMerge(p, iLangid, i, FTS3_SEGCURSOR_ALL);
3466 if( rc==SQLITE_DONE ){
3467 bSeenDone = 1;
3468 rc = SQLITE_OK;
3469 }
3470 }
3471 }
3472 rc2 = sqlite3_reset(pAllLangid);
3473 if( rc==SQLITE_OK ) rc = rc2;
3474 }
3475
3476 sqlite3Fts3SegmentsClose(p);
3477 sqlite3Fts3PendingTermsClear(p);
3478
3479 return (rc==SQLITE_OK && bReturnDone && bSeenDone) ? SQLITE_DONE : rc;
3480 }
3481
3482 /*
3483 ** This function is called when the user executes the following statement:
3484 **
3485 ** INSERT INTO <tbl>(<tbl>) VALUES('rebuild');
3486 **
3487 ** The entire FTS index is discarded and rebuilt. If the table is one
3488 ** created using the content=xxx option, then the new index is based on
3489 ** the current contents of the xxx table. Otherwise, it is rebuilt based
3490 ** on the contents of the %_content table.
3491 */
3492 static int fts3DoRebuild(Fts3Table *p){
3493 int rc; /* Return Code */
3494
3495 rc = fts3DeleteAll(p, 0);
3496 if( rc==SQLITE_OK ){
3497 u32 *aSz = 0;
3498 u32 *aSzIns = 0;
3499 u32 *aSzDel = 0;
3500 sqlite3_stmt *pStmt = 0;
3501 int nEntry = 0;
3502
3503 /* Compose and prepare an SQL statement to loop through the content table */
3504 char *zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist);
3505 if( !zSql ){
3506 rc = SQLITE_NOMEM;
3507 }else{
3508 rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
3509 sqlite3_free(zSql);
3510 }
3511
3512 if( rc==SQLITE_OK ){
3513 int nByte = sizeof(u32) * (p->nColumn+1)*3;
3514 aSz = (u32 *)sqlite3_malloc(nByte);
3515 if( aSz==0 ){
3516 rc = SQLITE_NOMEM;
3517 }else{
3518 memset(aSz, 0, nByte);
3519 aSzIns = &aSz[p->nColumn+1];
3520 aSzDel = &aSzIns[p->nColumn+1];
3521 }
3522 }
3523
3524 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
3525 int iCol;
3526 int iLangid = langidFromSelect(p, pStmt);
3527 rc = fts3PendingTermsDocid(p, 0, iLangid, sqlite3_column_int64(pStmt, 0));
3528 memset(aSz, 0, sizeof(aSz[0]) * (p->nColumn+1));
3529 for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){
3530 if( p->abNotindexed[iCol]==0 ){
3531 const char *z = (const char *) sqlite3_column_text(pStmt, iCol+1);
3532 rc = fts3PendingTermsAdd(p, iLangid, z, iCol, &aSz[iCol]);
3533 aSz[p->nColumn] += sqlite3_column_bytes(pStmt, iCol+1);
3534 }
3535 }
3536 if( p->bHasDocsize ){
3537 fts3InsertDocsize(&rc, p, aSz);
3538 }
3539 if( rc!=SQLITE_OK ){
3540 sqlite3_finalize(pStmt);
3541 pStmt = 0;
3542 }else{
3543 nEntry++;
3544 for(iCol=0; iCol<=p->nColumn; iCol++){
3545 aSzIns[iCol] += aSz[iCol];
3546 }
3547 }
3548 }
3549 if( p->bFts4 ){
3550 fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nEntry);
3551 }
3552 sqlite3_free(aSz);
3553
3554 if( pStmt ){
3555 int rc2 = sqlite3_finalize(pStmt);
3556 if( rc==SQLITE_OK ){
3557 rc = rc2;
3558 }
3559 }
3560 }
3561
3562 return rc;
3563 }
3564
3565
3566 /*
3567 ** This function opens a cursor used to read the input data for an
3568 ** incremental merge operation. Specifically, it opens a cursor to scan
3569 ** the oldest nSeg segments (idx=0 through idx=(nSeg-1)) in absolute
3570 ** level iAbsLevel.
3571 */
3572 static int fts3IncrmergeCsr(
3573 Fts3Table *p, /* FTS3 table handle */
3574 sqlite3_int64 iAbsLevel, /* Absolute level to open */
3575 int nSeg, /* Number of segments to merge */
3576 Fts3MultiSegReader *pCsr /* Cursor object to populate */
3577 ){
3578 int rc; /* Return Code */
3579 sqlite3_stmt *pStmt = 0; /* Statement used to read %_segdir entry */
3580 int nByte; /* Bytes allocated at pCsr->apSegment[] */
3581
3582 /* Allocate space for the Fts3MultiSegReader.aCsr[] array */
3583 memset(pCsr, 0, sizeof(*pCsr));
3584 nByte = sizeof(Fts3SegReader *) * nSeg;
3585 pCsr->apSegment = (Fts3SegReader **)sqlite3_malloc(nByte);
3586
3587 if( pCsr->apSegment==0 ){
3588 rc = SQLITE_NOMEM;
3589 }else{
3590 memset(pCsr->apSegment, 0, nByte);
3591 rc = fts3SqlStmt(p, SQL_SELECT_LEVEL, &pStmt, 0);
3592 }
3593 if( rc==SQLITE_OK ){
3594 int i;
3595 int rc2;
3596 sqlite3_bind_int64(pStmt, 1, iAbsLevel);
3597 assert( pCsr->nSegment==0 );
3598 for(i=0; rc==SQLITE_OK && sqlite3_step(pStmt)==SQLITE_ROW && i<nSeg; i++){
3599 rc = sqlite3Fts3SegReaderNew(i, 0,
3600 sqlite3_column_int64(pStmt, 1), /* segdir.start_block */
3601 sqlite3_column_int64(pStmt, 2), /* segdir.leaves_end_block */
3602 sqlite3_column_int64(pStmt, 3), /* segdir.end_block */
3603 sqlite3_column_blob(pStmt, 4), /* segdir.root */
3604 sqlite3_column_bytes(pStmt, 4), /* segdir.root */
3605 &pCsr->apSegment[i]
3606 );
3607 pCsr->nSegment++;
3608 }
3609 rc2 = sqlite3_reset(pStmt);
3610 if( rc==SQLITE_OK ) rc = rc2;
3611 }
3612
3613 return rc;
3614 }
3615
3616 typedef struct IncrmergeWriter IncrmergeWriter;
3617 typedef struct NodeWriter NodeWriter;
3618 typedef struct Blob Blob;
3619 typedef struct NodeReader NodeReader;
3620
3621 /*
3622 ** An instance of the following structure is used as a dynamic buffer
3623 ** to build up nodes or other blobs of data in.
3624 **
3625 ** The function blobGrowBuffer() is used to extend the allocation.
3626 */
3627 struct Blob {
3628 char *a; /* Pointer to allocation */
3629 int n; /* Number of valid bytes of data in a[] */
3630 int nAlloc; /* Allocated size of a[] (nAlloc>=n) */
3631 };
3632
3633 /*
3634 ** This structure is used to build up buffers containing segment b-tree
3635 ** nodes (blocks).
3636 */
3637 struct NodeWriter {
3638 sqlite3_int64 iBlock; /* Current block id */
3639 Blob key; /* Last key written to the current block */
3640 Blob block; /* Current block image */
3641 };
3642
3643 /*
3644 ** An object of this type contains the state required to create or append
3645 ** to an appendable b-tree segment.
3646 */
3647 struct IncrmergeWriter {
3648 int nLeafEst; /* Space allocated for leaf blocks */
3649 int nWork; /* Number of leaf pages flushed */
3650 sqlite3_int64 iAbsLevel; /* Absolute level of input segments */
3651 int iIdx; /* Index of *output* segment in iAbsLevel+1 */
3652 sqlite3_int64 iStart; /* Block number of first allocated block */
3653 sqlite3_int64 iEnd; /* Block number of last allocated block */
3654 sqlite3_int64 nLeafData; /* Bytes of leaf page data so far */
3655 u8 bNoLeafData; /* If true, store 0 for segment size */
3656 NodeWriter aNodeWriter[FTS_MAX_APPENDABLE_HEIGHT];
3657 };
3658
3659 /*
3660 ** An object of the following type is used to read data from a single
3661 ** FTS segment node. See the following functions:
3662 **
3663 ** nodeReaderInit()
3664 ** nodeReaderNext()
3665 ** nodeReaderRelease()
3666 */
3667 struct NodeReader {
3668 const char *aNode;
3669 int nNode;
3670 int iOff; /* Current offset within aNode[] */
3671
3672 /* Output variables. Containing the current node entry. */
3673 sqlite3_int64 iChild; /* Pointer to child node */
3674 Blob term; /* Current term */
3675 const char *aDoclist; /* Pointer to doclist */
3676 int nDoclist; /* Size of doclist in bytes */
3677 };
3678
3679 /*
3680 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
3681 ** Otherwise, if the allocation at pBlob->a is not already at least nMin
3682 ** bytes in size, extend (realloc) it to be so.
3683 **
3684 ** If an OOM error occurs, set *pRc to SQLITE_NOMEM and leave pBlob->a
3685 ** unmodified. Otherwise, if the allocation succeeds, update pBlob->nAlloc
3686 ** to reflect the new size of the pBlob->a[] buffer.
3687 */
3688 static void blobGrowBuffer(Blob *pBlob, int nMin, int *pRc){
3689 if( *pRc==SQLITE_OK && nMin>pBlob->nAlloc ){
3690 int nAlloc = nMin;
3691 char *a = (char *)sqlite3_realloc(pBlob->a, nAlloc);
3692 if( a ){
3693 pBlob->nAlloc = nAlloc;
3694 pBlob->a = a;
3695 }else{
3696 *pRc = SQLITE_NOMEM;
3697 }
3698 }
3699 }
3700
3701 /*
3702 ** Attempt to advance the node-reader object passed as the first argument to
3703 ** the next entry on the node.
3704 **
3705 ** Return an error code if an error occurs (SQLITE_NOMEM is possible).
3706 ** Otherwise return SQLITE_OK. If there is no next entry on the node
3707 ** (e.g. because the current entry is the last) set NodeReader->aNode to
3708 ** NULL to indicate EOF. Otherwise, populate the NodeReader structure output
3709 ** variables for the new entry.
3710 */
3711 static int nodeReaderNext(NodeReader *p){
3712 int bFirst = (p->term.n==0); /* True for first term on the node */
3713 int nPrefix = 0; /* Bytes to copy from previous term */
3714 int nSuffix = 0; /* Bytes to append to the prefix */
3715 int rc = SQLITE_OK; /* Return code */
3716
3717 assert( p->aNode );
3718 if( p->iChild && bFirst==0 ) p->iChild++;
3719 if( p->iOff>=p->nNode ){
3720 /* EOF */
3721 p->aNode = 0;
3722 }else{
3723 if( bFirst==0 ){
3724 p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nPrefix);
3725 }
3726 p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &nSuffix);
3727
3728 blobGrowBuffer(&p->term, nPrefix+nSuffix, &rc);
3729 if( rc==SQLITE_OK ){
3730 memcpy(&p->term.a[nPrefix], &p->aNode[p->iOff], nSuffix);
3731 p->term.n = nPrefix+nSuffix;
3732 p->iOff += nSuffix;
3733 if( p->iChild==0 ){
3734 p->iOff += fts3GetVarint32(&p->aNode[p->iOff], &p->nDoclist);
3735 p->aDoclist = &p->aNode[p->iOff];
3736 p->iOff += p->nDoclist;
3737 }
3738 }
3739 }
3740
3741 assert( p->iOff<=p->nNode );
3742
3743 return rc;
3744 }
3745
3746 /*
3747 ** Release all dynamic resources held by node-reader object *p.
3748 */
3749 static void nodeReaderRelease(NodeReader *p){
3750 sqlite3_free(p->term.a);
3751 }
3752
3753 /*
3754 ** Initialize a node-reader object to read the node in buffer aNode/nNode.
3755 **
3756 ** If successful, SQLITE_OK is returned and the NodeReader object set to
3757 ** point to the first entry on the node (if any). Otherwise, an SQLite
3758 ** error code is returned.
3759 */
3760 static int nodeReaderInit(NodeReader *p, const char *aNode, int nNode){
3761 memset(p, 0, sizeof(NodeReader));
3762 p->aNode = aNode;
3763 p->nNode = nNode;
3764
3765 /* Figure out if this is a leaf or an internal node. */
3766 if( p->aNode[0] ){
3767 /* An internal node. */
3768 p->iOff = 1 + sqlite3Fts3GetVarint(&p->aNode[1], &p->iChild);
3769 }else{
3770 p->iOff = 1;
3771 }
3772
3773 return nodeReaderNext(p);
3774 }
3775
3776 /*
3777 ** This function is called while writing an FTS segment each time a leaf o
3778 ** node is finished and written to disk. The key (zTerm/nTerm) is guaranteed
3779 ** to be greater than the largest key on the node just written, but smaller
3780 ** than or equal to the first key that will be written to the next leaf
3781 ** node.
3782 **
3783 ** The block id of the leaf node just written to disk may be found in
3784 ** (pWriter->aNodeWriter[0].iBlock) when this function is called.
3785 */
3786 static int fts3IncrmergePush(
3787 Fts3Table *p, /* Fts3 table handle */
3788 IncrmergeWriter *pWriter, /* Writer object */
3789 const char *zTerm, /* Term to write to internal node */
3790 int nTerm /* Bytes at zTerm */
3791 ){
3792 sqlite3_int64 iPtr = pWriter->aNodeWriter[0].iBlock;
3793 int iLayer;
3794
3795 assert( nTerm>0 );
3796 for(iLayer=1; ALWAYS(iLayer<FTS_MAX_APPENDABLE_HEIGHT); iLayer++){
3797 sqlite3_int64 iNextPtr = 0;
3798 NodeWriter *pNode = &pWriter->aNodeWriter[iLayer];
3799 int rc = SQLITE_OK;
3800 int nPrefix;
3801 int nSuffix;
3802 int nSpace;
3803
3804 /* Figure out how much space the key will consume if it is written to
3805 ** the current node of layer iLayer. Due to the prefix compression,
3806 ** the space required changes depending on which node the key is to
3807 ** be added to. */
3808 nPrefix = fts3PrefixCompress(pNode->key.a, pNode->key.n, zTerm, nTerm);
3809 nSuffix = nTerm - nPrefix;
3810 nSpace = sqlite3Fts3VarintLen(nPrefix);
3811 nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix;
3812
3813 if( pNode->key.n==0 || (pNode->block.n + nSpace)<=p->nNodeSize ){
3814 /* If the current node of layer iLayer contains zero keys, or if adding
3815 ** the key to it will not cause it to grow to larger than nNodeSize
3816 ** bytes in size, write the key here. */
3817
3818 Blob *pBlk = &pNode->block;
3819 if( pBlk->n==0 ){
3820 blobGrowBuffer(pBlk, p->nNodeSize, &rc);
3821 if( rc==SQLITE_OK ){
3822 pBlk->a[0] = (char)iLayer;
3823 pBlk->n = 1 + sqlite3Fts3PutVarint(&pBlk->a[1], iPtr);
3824 }
3825 }
3826 blobGrowBuffer(pBlk, pBlk->n + nSpace, &rc);
3827 blobGrowBuffer(&pNode->key, nTerm, &rc);
3828
3829 if( rc==SQLITE_OK ){
3830 if( pNode->key.n ){
3831 pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nPrefix);
3832 }
3833 pBlk->n += sqlite3Fts3PutVarint(&pBlk->a[pBlk->n], nSuffix);
3834 memcpy(&pBlk->a[pBlk->n], &zTerm[nPrefix], nSuffix);
3835 pBlk->n += nSuffix;
3836
3837 memcpy(pNode->key.a, zTerm, nTerm);
3838 pNode->key.n = nTerm;
3839 }
3840 }else{
3841 /* Otherwise, flush the current node of layer iLayer to disk.
3842 ** Then allocate a new, empty sibling node. The key will be written
3843 ** into the parent of this node. */
3844 rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n);
3845
3846 assert( pNode->block.nAlloc>=p->nNodeSize );
3847 pNode->block.a[0] = (char)iLayer;
3848 pNode->block.n = 1 + sqlite3Fts3PutVarint(&pNode->block.a[1], iPtr+1);
3849
3850 iNextPtr = pNode->iBlock;
3851 pNode->iBlock++;
3852 pNode->key.n = 0;
3853 }
3854
3855 if( rc!=SQLITE_OK || iNextPtr==0 ) return rc;
3856 iPtr = iNextPtr;
3857 }
3858
3859 assert( 0 );
3860 return 0;
3861 }
3862
3863 /*
3864 ** Append a term and (optionally) doclist to the FTS segment node currently
3865 ** stored in blob *pNode. The node need not contain any terms, but the
3866 ** header must be written before this function is called.
3867 **
3868 ** A node header is a single 0x00 byte for a leaf node, or a height varint
3869 ** followed by the left-hand-child varint for an internal node.
3870 **
3871 ** The term to be appended is passed via arguments zTerm/nTerm. For a
3872 ** leaf node, the doclist is passed as aDoclist/nDoclist. For an internal
3873 ** node, both aDoclist and nDoclist must be passed 0.
3874 **
3875 ** If the size of the value in blob pPrev is zero, then this is the first
3876 ** term written to the node. Otherwise, pPrev contains a copy of the
3877 ** previous term. Before this function returns, it is updated to contain a
3878 ** copy of zTerm/nTerm.
3879 **
3880 ** It is assumed that the buffer associated with pNode is already large
3881 ** enough to accommodate the new entry. The buffer associated with pPrev
3882 ** is extended by this function if requrired.
3883 **
3884 ** If an error (i.e. OOM condition) occurs, an SQLite error code is
3885 ** returned. Otherwise, SQLITE_OK.
3886 */
3887 static int fts3AppendToNode(
3888 Blob *pNode, /* Current node image to append to */
3889 Blob *pPrev, /* Buffer containing previous term written */
3890 const char *zTerm, /* New term to write */
3891 int nTerm, /* Size of zTerm in bytes */
3892 const char *aDoclist, /* Doclist (or NULL) to write */
3893 int nDoclist /* Size of aDoclist in bytes */
3894 ){
3895 int rc = SQLITE_OK; /* Return code */
3896 int bFirst = (pPrev->n==0); /* True if this is the first term written */
3897 int nPrefix; /* Size of term prefix in bytes */
3898 int nSuffix; /* Size of term suffix in bytes */
3899
3900 /* Node must have already been started. There must be a doclist for a
3901 ** leaf node, and there must not be a doclist for an internal node. */
3902 assert( pNode->n>0 );
3903 assert( (pNode->a[0]=='\0')==(aDoclist!=0) );
3904
3905 blobGrowBuffer(pPrev, nTerm, &rc);
3906 if( rc!=SQLITE_OK ) return rc;
3907
3908 nPrefix = fts3PrefixCompress(pPrev->a, pPrev->n, zTerm, nTerm);
3909 nSuffix = nTerm - nPrefix;
3910 memcpy(pPrev->a, zTerm, nTerm);
3911 pPrev->n = nTerm;
3912
3913 if( bFirst==0 ){
3914 pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nPrefix);
3915 }
3916 pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nSuffix);
3917 memcpy(&pNode->a[pNode->n], &zTerm[nPrefix], nSuffix);
3918 pNode->n += nSuffix;
3919
3920 if( aDoclist ){
3921 pNode->n += sqlite3Fts3PutVarint(&pNode->a[pNode->n], nDoclist);
3922 memcpy(&pNode->a[pNode->n], aDoclist, nDoclist);
3923 pNode->n += nDoclist;
3924 }
3925
3926 assert( pNode->n<=pNode->nAlloc );
3927
3928 return SQLITE_OK;
3929 }
3930
3931 /*
3932 ** Append the current term and doclist pointed to by cursor pCsr to the
3933 ** appendable b-tree segment opened for writing by pWriter.
3934 **
3935 ** Return SQLITE_OK if successful, or an SQLite error code otherwise.
3936 */
3937 static int fts3IncrmergeAppend(
3938 Fts3Table *p, /* Fts3 table handle */
3939 IncrmergeWriter *pWriter, /* Writer object */
3940 Fts3MultiSegReader *pCsr /* Cursor containing term and doclist */
3941 ){
3942 const char *zTerm = pCsr->zTerm;
3943 int nTerm = pCsr->nTerm;
3944 const char *aDoclist = pCsr->aDoclist;
3945 int nDoclist = pCsr->nDoclist;
3946 int rc = SQLITE_OK; /* Return code */
3947 int nSpace; /* Total space in bytes required on leaf */
3948 int nPrefix; /* Size of prefix shared with previous term */
3949 int nSuffix; /* Size of suffix (nTerm - nPrefix) */
3950 NodeWriter *pLeaf; /* Object used to write leaf nodes */
3951
3952 pLeaf = &pWriter->aNodeWriter[0];
3953 nPrefix = fts3PrefixCompress(pLeaf->key.a, pLeaf->key.n, zTerm, nTerm);
3954 nSuffix = nTerm - nPrefix;
3955
3956 nSpace = sqlite3Fts3VarintLen(nPrefix);
3957 nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix;
3958 nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist;
3959
3960 /* If the current block is not empty, and if adding this term/doclist
3961 ** to the current block would make it larger than Fts3Table.nNodeSize
3962 ** bytes, write this block out to the database. */
3963 if( pLeaf->block.n>0 && (pLeaf->block.n + nSpace)>p->nNodeSize ){
3964 rc = fts3WriteSegment(p, pLeaf->iBlock, pLeaf->block.a, pLeaf->block.n);
3965 pWriter->nWork++;
3966
3967 /* Add the current term to the parent node. The term added to the
3968 ** parent must:
3969 **
3970 ** a) be greater than the largest term on the leaf node just written
3971 ** to the database (still available in pLeaf->key), and
3972 **
3973 ** b) be less than or equal to the term about to be added to the new
3974 ** leaf node (zTerm/nTerm).
3975 **
3976 ** In other words, it must be the prefix of zTerm 1 byte longer than
3977 ** the common prefix (if any) of zTerm and pWriter->zTerm.
3978 */
3979 if( rc==SQLITE_OK ){
3980 rc = fts3IncrmergePush(p, pWriter, zTerm, nPrefix+1);
3981 }
3982
3983 /* Advance to the next output block */
3984 pLeaf->iBlock++;
3985 pLeaf->key.n = 0;
3986 pLeaf->block.n = 0;
3987
3988 nSuffix = nTerm;
3989 nSpace = 1;
3990 nSpace += sqlite3Fts3VarintLen(nSuffix) + nSuffix;
3991 nSpace += sqlite3Fts3VarintLen(nDoclist) + nDoclist;
3992 }
3993
3994 pWriter->nLeafData += nSpace;
3995 blobGrowBuffer(&pLeaf->block, pLeaf->block.n + nSpace, &rc);
3996 if( rc==SQLITE_OK ){
3997 if( pLeaf->block.n==0 ){
3998 pLeaf->block.n = 1;
3999 pLeaf->block.a[0] = '\0';
4000 }
4001 rc = fts3AppendToNode(
4002 &pLeaf->block, &pLeaf->key, zTerm, nTerm, aDoclist, nDoclist
4003 );
4004 }
4005
4006 return rc;
4007 }
4008
4009 /*
4010 ** This function is called to release all dynamic resources held by the
4011 ** merge-writer object pWriter, and if no error has occurred, to flush
4012 ** all outstanding node buffers held by pWriter to disk.
4013 **
4014 ** If *pRc is not SQLITE_OK when this function is called, then no attempt
4015 ** is made to write any data to disk. Instead, this function serves only
4016 ** to release outstanding resources.
4017 **
4018 ** Otherwise, if *pRc is initially SQLITE_OK and an error occurs while
4019 ** flushing buffers to disk, *pRc is set to an SQLite error code before
4020 ** returning.
4021 */
4022 static void fts3IncrmergeRelease(
4023 Fts3Table *p, /* FTS3 table handle */
4024 IncrmergeWriter *pWriter, /* Merge-writer object */
4025 int *pRc /* IN/OUT: Error code */
4026 ){
4027 int i; /* Used to iterate through non-root layers */
4028 int iRoot; /* Index of root in pWriter->aNodeWriter */
4029 NodeWriter *pRoot; /* NodeWriter for root node */
4030 int rc = *pRc; /* Error code */
4031
4032 /* Set iRoot to the index in pWriter->aNodeWriter[] of the output segment
4033 ** root node. If the segment fits entirely on a single leaf node, iRoot
4034 ** will be set to 0. If the root node is the parent of the leaves, iRoot
4035 ** will be 1. And so on. */
4036 for(iRoot=FTS_MAX_APPENDABLE_HEIGHT-1; iRoot>=0; iRoot--){
4037 NodeWriter *pNode = &pWriter->aNodeWriter[iRoot];
4038 if( pNode->block.n>0 ) break;
4039 assert( *pRc || pNode->block.nAlloc==0 );
4040 assert( *pRc || pNode->key.nAlloc==0 );
4041 sqlite3_free(pNode->block.a);
4042 sqlite3_free(pNode->key.a);
4043 }
4044
4045 /* Empty output segment. This is a no-op. */
4046 if( iRoot<0 ) return;
4047
4048 /* The entire output segment fits on a single node. Normally, this means
4049 ** the node would be stored as a blob in the "root" column of the %_segdir
4050 ** table. However, this is not permitted in this case. The problem is that
4051 ** space has already been reserved in the %_segments table, and so the
4052 ** start_block and end_block fields of the %_segdir table must be populated.
4053 ** And, by design or by accident, released versions of FTS cannot handle
4054 ** segments that fit entirely on the root node with start_block!=0.
4055 **
4056 ** Instead, create a synthetic root node that contains nothing but a
4057 ** pointer to the single content node. So that the segment consists of a
4058 ** single leaf and a single interior (root) node.
4059 **
4060 ** Todo: Better might be to defer allocating space in the %_segments
4061 ** table until we are sure it is needed.
4062 */
4063 if( iRoot==0 ){
4064 Blob *pBlock = &pWriter->aNodeWriter[1].block;
4065 blobGrowBuffer(pBlock, 1 + FTS3_VARINT_MAX, &rc);
4066 if( rc==SQLITE_OK ){
4067 pBlock->a[0] = 0x01;
4068 pBlock->n = 1 + sqlite3Fts3PutVarint(
4069 &pBlock->a[1], pWriter->aNodeWriter[0].iBlock
4070 );
4071 }
4072 iRoot = 1;
4073 }
4074 pRoot = &pWriter->aNodeWriter[iRoot];
4075
4076 /* Flush all currently outstanding nodes to disk. */
4077 for(i=0; i<iRoot; i++){
4078 NodeWriter *pNode = &pWriter->aNodeWriter[i];
4079 if( pNode->block.n>0 && rc==SQLITE_OK ){
4080 rc = fts3WriteSegment(p, pNode->iBlock, pNode->block.a, pNode->block.n);
4081 }
4082 sqlite3_free(pNode->block.a);
4083 sqlite3_free(pNode->key.a);
4084 }
4085
4086 /* Write the %_segdir record. */
4087 if( rc==SQLITE_OK ){
4088 rc = fts3WriteSegdir(p,
4089 pWriter->iAbsLevel+1, /* level */
4090 pWriter->iIdx, /* idx */
4091 pWriter->iStart, /* start_block */
4092 pWriter->aNodeWriter[0].iBlock, /* leaves_end_block */
4093 pWriter->iEnd, /* end_block */
4094 (pWriter->bNoLeafData==0 ? pWriter->nLeafData : 0), /* end_block */
4095 pRoot->block.a, pRoot->block.n /* root */
4096 );
4097 }
4098 sqlite3_free(pRoot->block.a);
4099 sqlite3_free(pRoot->key.a);
4100
4101 *pRc = rc;
4102 }
4103
4104 /*
4105 ** Compare the term in buffer zLhs (size in bytes nLhs) with that in
4106 ** zRhs (size in bytes nRhs) using memcmp. If one term is a prefix of
4107 ** the other, it is considered to be smaller than the other.
4108 **
4109 ** Return -ve if zLhs is smaller than zRhs, 0 if it is equal, or +ve
4110 ** if it is greater.
4111 */
4112 static int fts3TermCmp(
4113 const char *zLhs, int nLhs, /* LHS of comparison */
4114 const char *zRhs, int nRhs /* RHS of comparison */
4115 ){
4116 int nCmp = MIN(nLhs, nRhs);
4117 int res;
4118
4119 res = memcmp(zLhs, zRhs, nCmp);
4120 if( res==0 ) res = nLhs - nRhs;
4121
4122 return res;
4123 }
4124
4125
4126 /*
4127 ** Query to see if the entry in the %_segments table with blockid iEnd is
4128 ** NULL. If no error occurs and the entry is NULL, set *pbRes 1 before
4129 ** returning. Otherwise, set *pbRes to 0.
4130 **
4131 ** Or, if an error occurs while querying the database, return an SQLite
4132 ** error code. The final value of *pbRes is undefined in this case.
4133 **
4134 ** This is used to test if a segment is an "appendable" segment. If it
4135 ** is, then a NULL entry has been inserted into the %_segments table
4136 ** with blockid %_segdir.end_block.
4137 */
4138 static int fts3IsAppendable(Fts3Table *p, sqlite3_int64 iEnd, int *pbRes){
4139 int bRes = 0; /* Result to set *pbRes to */
4140 sqlite3_stmt *pCheck = 0; /* Statement to query database with */
4141 int rc; /* Return code */
4142
4143 rc = fts3SqlStmt(p, SQL_SEGMENT_IS_APPENDABLE, &pCheck, 0);
4144 if( rc==SQLITE_OK ){
4145 sqlite3_bind_int64(pCheck, 1, iEnd);
4146 if( SQLITE_ROW==sqlite3_step(pCheck) ) bRes = 1;
4147 rc = sqlite3_reset(pCheck);
4148 }
4149
4150 *pbRes = bRes;
4151 return rc;
4152 }
4153
4154 /*
4155 ** This function is called when initializing an incremental-merge operation.
4156 ** It checks if the existing segment with index value iIdx at absolute level
4157 ** (iAbsLevel+1) can be appended to by the incremental merge. If it can, the
4158 ** merge-writer object *pWriter is initialized to write to it.
4159 **
4160 ** An existing segment can be appended to by an incremental merge if:
4161 **
4162 ** * It was initially created as an appendable segment (with all required
4163 ** space pre-allocated), and
4164 **
4165 ** * The first key read from the input (arguments zKey and nKey) is
4166 ** greater than the largest key currently stored in the potential
4167 ** output segment.
4168 */
4169 static int fts3IncrmergeLoad(
4170 Fts3Table *p, /* Fts3 table handle */
4171 sqlite3_int64 iAbsLevel, /* Absolute level of input segments */
4172 int iIdx, /* Index of candidate output segment */
4173 const char *zKey, /* First key to write */
4174 int nKey, /* Number of bytes in nKey */
4175 IncrmergeWriter *pWriter /* Populate this object */
4176 ){
4177 int rc; /* Return code */
4178 sqlite3_stmt *pSelect = 0; /* SELECT to read %_segdir entry */
4179
4180 rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pSelect, 0);
4181 if( rc==SQLITE_OK ){
4182 sqlite3_int64 iStart = 0; /* Value of %_segdir.start_block */
4183 sqlite3_int64 iLeafEnd = 0; /* Value of %_segdir.leaves_end_block */
4184 sqlite3_int64 iEnd = 0; /* Value of %_segdir.end_block */
4185 const char *aRoot = 0; /* Pointer to %_segdir.root buffer */
4186 int nRoot = 0; /* Size of aRoot[] in bytes */
4187 int rc2; /* Return code from sqlite3_reset() */
4188 int bAppendable = 0; /* Set to true if segment is appendable */
4189
4190 /* Read the %_segdir entry for index iIdx absolute level (iAbsLevel+1) */
4191 sqlite3_bind_int64(pSelect, 1, iAbsLevel+1);
4192 sqlite3_bind_int(pSelect, 2, iIdx);
4193 if( sqlite3_step(pSelect)==SQLITE_ROW ){
4194 iStart = sqlite3_column_int64(pSelect, 1);
4195 iLeafEnd = sqlite3_column_int64(pSelect, 2);
4196 fts3ReadEndBlockField(pSelect, 3, &iEnd, &pWriter->nLeafData);
4197 if( pWriter->nLeafData<0 ){
4198 pWriter->nLeafData = pWriter->nLeafData * -1;
4199 }
4200 pWriter->bNoLeafData = (pWriter->nLeafData==0);
4201 nRoot = sqlite3_column_bytes(pSelect, 4);
4202 aRoot = sqlite3_column_blob(pSelect, 4);
4203 }else{
4204 return sqlite3_reset(pSelect);
4205 }
4206
4207 /* Check for the zero-length marker in the %_segments table */
4208 rc = fts3IsAppendable(p, iEnd, &bAppendable);
4209
4210 /* Check that zKey/nKey is larger than the largest key the candidate */
4211 if( rc==SQLITE_OK && bAppendable ){
4212 char *aLeaf = 0;
4213 int nLeaf = 0;
4214
4215 rc = sqlite3Fts3ReadBlock(p, iLeafEnd, &aLeaf, &nLeaf, 0);
4216 if( rc==SQLITE_OK ){
4217 NodeReader reader;
4218 for(rc = nodeReaderInit(&reader, aLeaf, nLeaf);
4219 rc==SQLITE_OK && reader.aNode;
4220 rc = nodeReaderNext(&reader)
4221 ){
4222 assert( reader.aNode );
4223 }
4224 if( fts3TermCmp(zKey, nKey, reader.term.a, reader.term.n)<=0 ){
4225 bAppendable = 0;
4226 }
4227 nodeReaderRelease(&reader);
4228 }
4229 sqlite3_free(aLeaf);
4230 }
4231
4232 if( rc==SQLITE_OK && bAppendable ){
4233 /* It is possible to append to this segment. Set up the IncrmergeWriter
4234 ** object to do so. */
4235 int i;
4236 int nHeight = (int)aRoot[0];
4237 NodeWriter *pNode;
4238
4239 pWriter->nLeafEst = (int)((iEnd - iStart) + 1)/FTS_MAX_APPENDABLE_HEIGHT;
4240 pWriter->iStart = iStart;
4241 pWriter->iEnd = iEnd;
4242 pWriter->iAbsLevel = iAbsLevel;
4243 pWriter->iIdx = iIdx;
4244
4245 for(i=nHeight+1; i<FTS_MAX_APPENDABLE_HEIGHT; i++){
4246 pWriter->aNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst;
4247 }
4248
4249 pNode = &pWriter->aNodeWriter[nHeight];
4250 pNode->iBlock = pWriter->iStart + pWriter->nLeafEst*nHeight;
4251 blobGrowBuffer(&pNode->block, MAX(nRoot, p->nNodeSize), &rc);
4252 if( rc==SQLITE_OK ){
4253 memcpy(pNode->block.a, aRoot, nRoot);
4254 pNode->block.n = nRoot;
4255 }
4256
4257 for(i=nHeight; i>=0 && rc==SQLITE_OK; i--){
4258 NodeReader reader;
4259 pNode = &pWriter->aNodeWriter[i];
4260
4261 rc = nodeReaderInit(&reader, pNode->block.a, pNode->block.n);
4262 while( reader.aNode && rc==SQLITE_OK ) rc = nodeReaderNext(&reader);
4263 blobGrowBuffer(&pNode->key, reader.term.n, &rc);
4264 if( rc==SQLITE_OK ){
4265 memcpy(pNode->key.a, reader.term.a, reader.term.n);
4266 pNode->key.n = reader.term.n;
4267 if( i>0 ){
4268 char *aBlock = 0;
4269 int nBlock = 0;
4270 pNode = &pWriter->aNodeWriter[i-1];
4271 pNode->iBlock = reader.iChild;
4272 rc = sqlite3Fts3ReadBlock(p, reader.iChild, &aBlock, &nBlock, 0);
4273 blobGrowBuffer(&pNode->block, MAX(nBlock, p->nNodeSize), &rc);
4274 if( rc==SQLITE_OK ){
4275 memcpy(pNode->block.a, aBlock, nBlock);
4276 pNode->block.n = nBlock;
4277 }
4278 sqlite3_free(aBlock);
4279 }
4280 }
4281 nodeReaderRelease(&reader);
4282 }
4283 }
4284
4285 rc2 = sqlite3_reset(pSelect);
4286 if( rc==SQLITE_OK ) rc = rc2;
4287 }
4288
4289 return rc;
4290 }
4291
4292 /*
4293 ** Determine the largest segment index value that exists within absolute
4294 ** level iAbsLevel+1. If no error occurs, set *piIdx to this value plus
4295 ** one before returning SQLITE_OK. Or, if there are no segments at all
4296 ** within level iAbsLevel, set *piIdx to zero.
4297 **
4298 ** If an error occurs, return an SQLite error code. The final value of
4299 ** *piIdx is undefined in this case.
4300 */
4301 static int fts3IncrmergeOutputIdx(
4302 Fts3Table *p, /* FTS Table handle */
4303 sqlite3_int64 iAbsLevel, /* Absolute index of input segments */
4304 int *piIdx /* OUT: Next free index at iAbsLevel+1 */
4305 ){
4306 int rc;
4307 sqlite3_stmt *pOutputIdx = 0; /* SQL used to find output index */
4308
4309 rc = fts3SqlStmt(p, SQL_NEXT_SEGMENT_INDEX, &pOutputIdx, 0);
4310 if( rc==SQLITE_OK ){
4311 sqlite3_bind_int64(pOutputIdx, 1, iAbsLevel+1);
4312 sqlite3_step(pOutputIdx);
4313 *piIdx = sqlite3_column_int(pOutputIdx, 0);
4314 rc = sqlite3_reset(pOutputIdx);
4315 }
4316
4317 return rc;
4318 }
4319
4320 /*
4321 ** Allocate an appendable output segment on absolute level iAbsLevel+1
4322 ** with idx value iIdx.
4323 **
4324 ** In the %_segdir table, a segment is defined by the values in three
4325 ** columns:
4326 **
4327 ** start_block
4328 ** leaves_end_block
4329 ** end_block
4330 **
4331 ** When an appendable segment is allocated, it is estimated that the
4332 ** maximum number of leaf blocks that may be required is the sum of the
4333 ** number of leaf blocks consumed by the input segments, plus the number
4334 ** of input segments, multiplied by two. This value is stored in stack
4335 ** variable nLeafEst.
4336 **
4337 ** A total of 16*nLeafEst blocks are allocated when an appendable segment
4338 ** is created ((1 + end_block - start_block)==16*nLeafEst). The contiguous
4339 ** array of leaf nodes starts at the first block allocated. The array
4340 ** of interior nodes that are parents of the leaf nodes start at block
4341 ** (start_block + (1 + end_block - start_block) / 16). And so on.
4342 **
4343 ** In the actual code below, the value "16" is replaced with the
4344 ** pre-processor macro FTS_MAX_APPENDABLE_HEIGHT.
4345 */
4346 static int fts3IncrmergeWriter(
4347 Fts3Table *p, /* Fts3 table handle */
4348 sqlite3_int64 iAbsLevel, /* Absolute level of input segments */
4349 int iIdx, /* Index of new output segment */
4350 Fts3MultiSegReader *pCsr, /* Cursor that data will be read from */
4351 IncrmergeWriter *pWriter /* Populate this object */
4352 ){
4353 int rc; /* Return Code */
4354 int i; /* Iterator variable */
4355 int nLeafEst = 0; /* Blocks allocated for leaf nodes */
4356 sqlite3_stmt *pLeafEst = 0; /* SQL used to determine nLeafEst */
4357 sqlite3_stmt *pFirstBlock = 0; /* SQL used to determine first block */
4358
4359 /* Calculate nLeafEst. */
4360 rc = fts3SqlStmt(p, SQL_MAX_LEAF_NODE_ESTIMATE, &pLeafEst, 0);
4361 if( rc==SQLITE_OK ){
4362 sqlite3_bind_int64(pLeafEst, 1, iAbsLevel);
4363 sqlite3_bind_int64(pLeafEst, 2, pCsr->nSegment);
4364 if( SQLITE_ROW==sqlite3_step(pLeafEst) ){
4365 nLeafEst = sqlite3_column_int(pLeafEst, 0);
4366 }
4367 rc = sqlite3_reset(pLeafEst);
4368 }
4369 if( rc!=SQLITE_OK ) return rc;
4370
4371 /* Calculate the first block to use in the output segment */
4372 rc = fts3SqlStmt(p, SQL_NEXT_SEGMENTS_ID, &pFirstBlock, 0);
4373 if( rc==SQLITE_OK ){
4374 if( SQLITE_ROW==sqlite3_step(pFirstBlock) ){
4375 pWriter->iStart = sqlite3_column_int64(pFirstBlock, 0);
4376 pWriter->iEnd = pWriter->iStart - 1;
4377 pWriter->iEnd += nLeafEst * FTS_MAX_APPENDABLE_HEIGHT;
4378 }
4379 rc = sqlite3_reset(pFirstBlock);
4380 }
4381 if( rc!=SQLITE_OK ) return rc;
4382
4383 /* Insert the marker in the %_segments table to make sure nobody tries
4384 ** to steal the space just allocated. This is also used to identify
4385 ** appendable segments. */
4386 rc = fts3WriteSegment(p, pWriter->iEnd, 0, 0);
4387 if( rc!=SQLITE_OK ) return rc;
4388
4389 pWriter->iAbsLevel = iAbsLevel;
4390 pWriter->nLeafEst = nLeafEst;
4391 pWriter->iIdx = iIdx;
4392
4393 /* Set up the array of NodeWriter objects */
4394 for(i=0; i<FTS_MAX_APPENDABLE_HEIGHT; i++){
4395 pWriter->aNodeWriter[i].iBlock = pWriter->iStart + i*pWriter->nLeafEst;
4396 }
4397 return SQLITE_OK;
4398 }
4399
4400 /*
4401 ** Remove an entry from the %_segdir table. This involves running the
4402 ** following two statements:
4403 **
4404 ** DELETE FROM %_segdir WHERE level = :iAbsLevel AND idx = :iIdx
4405 ** UPDATE %_segdir SET idx = idx - 1 WHERE level = :iAbsLevel AND idx > :iIdx
4406 **
4407 ** The DELETE statement removes the specific %_segdir level. The UPDATE
4408 ** statement ensures that the remaining segments have contiguously allocated
4409 ** idx values.
4410 */
4411 static int fts3RemoveSegdirEntry(
4412 Fts3Table *p, /* FTS3 table handle */
4413 sqlite3_int64 iAbsLevel, /* Absolute level to delete from */
4414 int iIdx /* Index of %_segdir entry to delete */
4415 ){
4416 int rc; /* Return code */
4417 sqlite3_stmt *pDelete = 0; /* DELETE statement */
4418
4419 rc = fts3SqlStmt(p, SQL_DELETE_SEGDIR_ENTRY, &pDelete, 0);
4420 if( rc==SQLITE_OK ){
4421 sqlite3_bind_int64(pDelete, 1, iAbsLevel);
4422 sqlite3_bind_int(pDelete, 2, iIdx);
4423 sqlite3_step(pDelete);
4424 rc = sqlite3_reset(pDelete);
4425 }
4426
4427 return rc;
4428 }
4429
4430 /*
4431 ** One or more segments have just been removed from absolute level iAbsLevel.
4432 ** Update the 'idx' values of the remaining segments in the level so that
4433 ** the idx values are a contiguous sequence starting from 0.
4434 */
4435 static int fts3RepackSegdirLevel(
4436 Fts3Table *p, /* FTS3 table handle */
4437 sqlite3_int64 iAbsLevel /* Absolute level to repack */
4438 ){
4439 int rc; /* Return code */
4440 int *aIdx = 0; /* Array of remaining idx values */
4441 int nIdx = 0; /* Valid entries in aIdx[] */
4442 int nAlloc = 0; /* Allocated size of aIdx[] */
4443 int i; /* Iterator variable */
4444 sqlite3_stmt *pSelect = 0; /* Select statement to read idx values */
4445 sqlite3_stmt *pUpdate = 0; /* Update statement to modify idx values */
4446
4447 rc = fts3SqlStmt(p, SQL_SELECT_INDEXES, &pSelect, 0);
4448 if( rc==SQLITE_OK ){
4449 int rc2;
4450 sqlite3_bind_int64(pSelect, 1, iAbsLevel);
4451 while( SQLITE_ROW==sqlite3_step(pSelect) ){
4452 if( nIdx>=nAlloc ){
4453 int *aNew;
4454 nAlloc += 16;
4455 aNew = sqlite3_realloc(aIdx, nAlloc*sizeof(int));
4456 if( !aNew ){
4457 rc = SQLITE_NOMEM;
4458 break;
4459 }
4460 aIdx = aNew;
4461 }
4462 aIdx[nIdx++] = sqlite3_column_int(pSelect, 0);
4463 }
4464 rc2 = sqlite3_reset(pSelect);
4465 if( rc==SQLITE_OK ) rc = rc2;
4466 }
4467
4468 if( rc==SQLITE_OK ){
4469 rc = fts3SqlStmt(p, SQL_SHIFT_SEGDIR_ENTRY, &pUpdate, 0);
4470 }
4471 if( rc==SQLITE_OK ){
4472 sqlite3_bind_int64(pUpdate, 2, iAbsLevel);
4473 }
4474
4475 assert( p->bIgnoreSavepoint==0 );
4476 p->bIgnoreSavepoint = 1;
4477 for(i=0; rc==SQLITE_OK && i<nIdx; i++){
4478 if( aIdx[i]!=i ){
4479 sqlite3_bind_int(pUpdate, 3, aIdx[i]);
4480 sqlite3_bind_int(pUpdate, 1, i);
4481 sqlite3_step(pUpdate);
4482 rc = sqlite3_reset(pUpdate);
4483 }
4484 }
4485 p->bIgnoreSavepoint = 0;
4486
4487 sqlite3_free(aIdx);
4488 return rc;
4489 }
4490
4491 static void fts3StartNode(Blob *pNode, int iHeight, sqlite3_int64 iChild){
4492 pNode->a[0] = (char)iHeight;
4493 if( iChild ){
4494 assert( pNode->nAlloc>=1+sqlite3Fts3VarintLen(iChild) );
4495 pNode->n = 1 + sqlite3Fts3PutVarint(&pNode->a[1], iChild);
4496 }else{
4497 assert( pNode->nAlloc>=1 );
4498 pNode->n = 1;
4499 }
4500 }
4501
4502 /*
4503 ** The first two arguments are a pointer to and the size of a segment b-tree
4504 ** node. The node may be a leaf or an internal node.
4505 **
4506 ** This function creates a new node image in blob object *pNew by copying
4507 ** all terms that are greater than or equal to zTerm/nTerm (for leaf nodes)
4508 ** or greater than zTerm/nTerm (for internal nodes) from aNode/nNode.
4509 */
4510 static int fts3TruncateNode(
4511 const char *aNode, /* Current node image */
4512 int nNode, /* Size of aNode in bytes */
4513 Blob *pNew, /* OUT: Write new node image here */
4514 const char *zTerm, /* Omit all terms smaller than this */
4515 int nTerm, /* Size of zTerm in bytes */
4516 sqlite3_int64 *piBlock /* OUT: Block number in next layer down */
4517 ){
4518 NodeReader reader; /* Reader object */
4519 Blob prev = {0, 0, 0}; /* Previous term written to new node */
4520 int rc = SQLITE_OK; /* Return code */
4521 int bLeaf = aNode[0]=='\0'; /* True for a leaf node */
4522
4523 /* Allocate required output space */
4524 blobGrowBuffer(pNew, nNode, &rc);
4525 if( rc!=SQLITE_OK ) return rc;
4526 pNew->n = 0;
4527
4528 /* Populate new node buffer */
4529 for(rc = nodeReaderInit(&reader, aNode, nNode);
4530 rc==SQLITE_OK && reader.aNode;
4531 rc = nodeReaderNext(&reader)
4532 ){
4533 if( pNew->n==0 ){
4534 int res = fts3TermCmp(reader.term.a, reader.term.n, zTerm, nTerm);
4535 if( res<0 || (bLeaf==0 && res==0) ) continue;
4536 fts3StartNode(pNew, (int)aNode[0], reader.iChild);
4537 *piBlock = reader.iChild;
4538 }
4539 rc = fts3AppendToNode(
4540 pNew, &prev, reader.term.a, reader.term.n,
4541 reader.aDoclist, reader.nDoclist
4542 );
4543 if( rc!=SQLITE_OK ) break;
4544 }
4545 if( pNew->n==0 ){
4546 fts3StartNode(pNew, (int)aNode[0], reader.iChild);
4547 *piBlock = reader.iChild;
4548 }
4549 assert( pNew->n<=pNew->nAlloc );
4550
4551 nodeReaderRelease(&reader);
4552 sqlite3_free(prev.a);
4553 return rc;
4554 }
4555
4556 /*
4557 ** Remove all terms smaller than zTerm/nTerm from segment iIdx in absolute
4558 ** level iAbsLevel. This may involve deleting entries from the %_segments
4559 ** table, and modifying existing entries in both the %_segments and %_segdir
4560 ** tables.
4561 **
4562 ** SQLITE_OK is returned if the segment is updated successfully. Or an
4563 ** SQLite error code otherwise.
4564 */
4565 static int fts3TruncateSegment(
4566 Fts3Table *p, /* FTS3 table handle */
4567 sqlite3_int64 iAbsLevel, /* Absolute level of segment to modify */
4568 int iIdx, /* Index within level of segment to modify */
4569 const char *zTerm, /* Remove terms smaller than this */
4570 int nTerm /* Number of bytes in buffer zTerm */
4571 ){
4572 int rc = SQLITE_OK; /* Return code */
4573 Blob root = {0,0,0}; /* New root page image */
4574 Blob block = {0,0,0}; /* Buffer used for any other block */
4575 sqlite3_int64 iBlock = 0; /* Block id */
4576 sqlite3_int64 iNewStart = 0; /* New value for iStartBlock */
4577 sqlite3_int64 iOldStart = 0; /* Old value for iStartBlock */
4578 sqlite3_stmt *pFetch = 0; /* Statement used to fetch segdir */
4579
4580 rc = fts3SqlStmt(p, SQL_SELECT_SEGDIR, &pFetch, 0);
4581 if( rc==SQLITE_OK ){
4582 int rc2; /* sqlite3_reset() return code */
4583 sqlite3_bind_int64(pFetch, 1, iAbsLevel);
4584 sqlite3_bind_int(pFetch, 2, iIdx);
4585 if( SQLITE_ROW==sqlite3_step(pFetch) ){
4586 const char *aRoot = sqlite3_column_blob(pFetch, 4);
4587 int nRoot = sqlite3_column_bytes(pFetch, 4);
4588 iOldStart = sqlite3_column_int64(pFetch, 1);
4589 rc = fts3TruncateNode(aRoot, nRoot, &root, zTerm, nTerm, &iBlock);
4590 }
4591 rc2 = sqlite3_reset(pFetch);
4592 if( rc==SQLITE_OK ) rc = rc2;
4593 }
4594
4595 while( rc==SQLITE_OK && iBlock ){
4596 char *aBlock = 0;
4597 int nBlock = 0;
4598 iNewStart = iBlock;
4599
4600 rc = sqlite3Fts3ReadBlock(p, iBlock, &aBlock, &nBlock, 0);
4601 if( rc==SQLITE_OK ){
4602 rc = fts3TruncateNode(aBlock, nBlock, &block, zTerm, nTerm, &iBlock);
4603 }
4604 if( rc==SQLITE_OK ){
4605 rc = fts3WriteSegment(p, iNewStart, block.a, block.n);
4606 }
4607 sqlite3_free(aBlock);
4608 }
4609
4610 /* Variable iNewStart now contains the first valid leaf node. */
4611 if( rc==SQLITE_OK && iNewStart ){
4612 sqlite3_stmt *pDel = 0;
4613 rc = fts3SqlStmt(p, SQL_DELETE_SEGMENTS_RANGE, &pDel, 0);
4614 if( rc==SQLITE_OK ){
4615 sqlite3_bind_int64(pDel, 1, iOldStart);
4616 sqlite3_bind_int64(pDel, 2, iNewStart-1);
4617 sqlite3_step(pDel);
4618 rc = sqlite3_reset(pDel);
4619 }
4620 }
4621
4622 if( rc==SQLITE_OK ){
4623 sqlite3_stmt *pChomp = 0;
4624 rc = fts3SqlStmt(p, SQL_CHOMP_SEGDIR, &pChomp, 0);
4625 if( rc==SQLITE_OK ){
4626 sqlite3_bind_int64(pChomp, 1, iNewStart);
4627 sqlite3_bind_blob(pChomp, 2, root.a, root.n, SQLITE_STATIC);
4628 sqlite3_bind_int64(pChomp, 3, iAbsLevel);
4629 sqlite3_bind_int(pChomp, 4, iIdx);
4630 sqlite3_step(pChomp);
4631 rc = sqlite3_reset(pChomp);
4632 }
4633 }
4634
4635 sqlite3_free(root.a);
4636 sqlite3_free(block.a);
4637 return rc;
4638 }
4639
4640 /*
4641 ** This function is called after an incrmental-merge operation has run to
4642 ** merge (or partially merge) two or more segments from absolute level
4643 ** iAbsLevel.
4644 **
4645 ** Each input segment is either removed from the db completely (if all of
4646 ** its data was copied to the output segment by the incrmerge operation)
4647 ** or modified in place so that it no longer contains those entries that
4648 ** have been duplicated in the output segment.
4649 */
4650 static int fts3IncrmergeChomp(
4651 Fts3Table *p, /* FTS table handle */
4652 sqlite3_int64 iAbsLevel, /* Absolute level containing segments */
4653 Fts3MultiSegReader *pCsr, /* Chomp all segments opened by this cursor */
4654 int *pnRem /* Number of segments not deleted */
4655 ){
4656 int i;
4657 int nRem = 0;
4658 int rc = SQLITE_OK;
4659
4660 for(i=pCsr->nSegment-1; i>=0 && rc==SQLITE_OK; i--){
4661 Fts3SegReader *pSeg = 0;
4662 int j;
4663
4664 /* Find the Fts3SegReader object with Fts3SegReader.iIdx==i. It is hiding
4665 ** somewhere in the pCsr->apSegment[] array. */
4666 for(j=0; ALWAYS(j<pCsr->nSegment); j++){
4667 pSeg = pCsr->apSegment[j];
4668 if( pSeg->iIdx==i ) break;
4669 }
4670 assert( j<pCsr->nSegment && pSeg->iIdx==i );
4671
4672 if( pSeg->aNode==0 ){
4673 /* Seg-reader is at EOF. Remove the entire input segment. */
4674 rc = fts3DeleteSegment(p, pSeg);
4675 if( rc==SQLITE_OK ){
4676 rc = fts3RemoveSegdirEntry(p, iAbsLevel, pSeg->iIdx);
4677 }
4678 *pnRem = 0;
4679 }else{
4680 /* The incremental merge did not copy all the data from this
4681 ** segment to the upper level. The segment is modified in place
4682 ** so that it contains no keys smaller than zTerm/nTerm. */
4683 const char *zTerm = pSeg->zTerm;
4684 int nTerm = pSeg->nTerm;
4685 rc = fts3TruncateSegment(p, iAbsLevel, pSeg->iIdx, zTerm, nTerm);
4686 nRem++;
4687 }
4688 }
4689
4690 if( rc==SQLITE_OK && nRem!=pCsr->nSegment ){
4691 rc = fts3RepackSegdirLevel(p, iAbsLevel);
4692 }
4693
4694 *pnRem = nRem;
4695 return rc;
4696 }
4697
4698 /*
4699 ** Store an incr-merge hint in the database.
4700 */
4701 static int fts3IncrmergeHintStore(Fts3Table *p, Blob *pHint){
4702 sqlite3_stmt *pReplace = 0;
4703 int rc; /* Return code */
4704
4705 rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pReplace, 0);
4706 if( rc==SQLITE_OK ){
4707 sqlite3_bind_int(pReplace, 1, FTS_STAT_INCRMERGEHINT);
4708 sqlite3_bind_blob(pReplace, 2, pHint->a, pHint->n, SQLITE_STATIC);
4709 sqlite3_step(pReplace);
4710 rc = sqlite3_reset(pReplace);
4711 }
4712
4713 return rc;
4714 }
4715
4716 /*
4717 ** Load an incr-merge hint from the database. The incr-merge hint, if one
4718 ** exists, is stored in the rowid==1 row of the %_stat table.
4719 **
4720 ** If successful, populate blob *pHint with the value read from the %_stat
4721 ** table and return SQLITE_OK. Otherwise, if an error occurs, return an
4722 ** SQLite error code.
4723 */
4724 static int fts3IncrmergeHintLoad(Fts3Table *p, Blob *pHint){
4725 sqlite3_stmt *pSelect = 0;
4726 int rc;
4727
4728 pHint->n = 0;
4729 rc = fts3SqlStmt(p, SQL_SELECT_STAT, &pSelect, 0);
4730 if( rc==SQLITE_OK ){
4731 int rc2;
4732 sqlite3_bind_int(pSelect, 1, FTS_STAT_INCRMERGEHINT);
4733 if( SQLITE_ROW==sqlite3_step(pSelect) ){
4734 const char *aHint = sqlite3_column_blob(pSelect, 0);
4735 int nHint = sqlite3_column_bytes(pSelect, 0);
4736 if( aHint ){
4737 blobGrowBuffer(pHint, nHint, &rc);
4738 if( rc==SQLITE_OK ){
4739 memcpy(pHint->a, aHint, nHint);
4740 pHint->n = nHint;
4741 }
4742 }
4743 }
4744 rc2 = sqlite3_reset(pSelect);
4745 if( rc==SQLITE_OK ) rc = rc2;
4746 }
4747
4748 return rc;
4749 }
4750
4751 /*
4752 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op.
4753 ** Otherwise, append an entry to the hint stored in blob *pHint. Each entry
4754 ** consists of two varints, the absolute level number of the input segments
4755 ** and the number of input segments.
4756 **
4757 ** If successful, leave *pRc set to SQLITE_OK and return. If an error occurs,
4758 ** set *pRc to an SQLite error code before returning.
4759 */
4760 static void fts3IncrmergeHintPush(
4761 Blob *pHint, /* Hint blob to append to */
4762 i64 iAbsLevel, /* First varint to store in hint */
4763 int nInput, /* Second varint to store in hint */
4764 int *pRc /* IN/OUT: Error code */
4765 ){
4766 blobGrowBuffer(pHint, pHint->n + 2*FTS3_VARINT_MAX, pRc);
4767 if( *pRc==SQLITE_OK ){
4768 pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], iAbsLevel);
4769 pHint->n += sqlite3Fts3PutVarint(&pHint->a[pHint->n], (i64)nInput);
4770 }
4771 }
4772
4773 /*
4774 ** Read the last entry (most recently pushed) from the hint blob *pHint
4775 ** and then remove the entry. Write the two values read to *piAbsLevel and
4776 ** *pnInput before returning.
4777 **
4778 ** If no error occurs, return SQLITE_OK. If the hint blob in *pHint does
4779 ** not contain at least two valid varints, return SQLITE_CORRUPT_VTAB.
4780 */
4781 static int fts3IncrmergeHintPop(Blob *pHint, i64 *piAbsLevel, int *pnInput){
4782 const int nHint = pHint->n;
4783 int i;
4784
4785 i = pHint->n-2;
4786 while( i>0 && (pHint->a[i-1] & 0x80) ) i--;
4787 while( i>0 && (pHint->a[i-1] & 0x80) ) i--;
4788
4789 pHint->n = i;
4790 i += sqlite3Fts3GetVarint(&pHint->a[i], piAbsLevel);
4791 i += fts3GetVarint32(&pHint->a[i], pnInput);
4792 if( i!=nHint ) return FTS_CORRUPT_VTAB;
4793
4794 return SQLITE_OK;
4795 }
4796
4797
4798 /*
4799 ** Attempt an incremental merge that writes nMerge leaf blocks.
4800 **
4801 ** Incremental merges happen nMin segments at a time. The segments
4802 ** to be merged are the nMin oldest segments (the ones with the smallest
4803 ** values for the _segdir.idx field) in the highest level that contains
4804 ** at least nMin segments. Multiple merges might occur in an attempt to
4805 ** write the quota of nMerge leaf blocks.
4806 */
4807 int sqlite3Fts3Incrmerge(Fts3Table *p, int nMerge, int nMin){
4808 int rc; /* Return code */
4809 int nRem = nMerge; /* Number of leaf pages yet to be written */
4810 Fts3MultiSegReader *pCsr; /* Cursor used to read input data */
4811 Fts3SegFilter *pFilter; /* Filter used with cursor pCsr */
4812 IncrmergeWriter *pWriter; /* Writer object */
4813 int nSeg = 0; /* Number of input segments */
4814 sqlite3_int64 iAbsLevel = 0; /* Absolute level number to work on */
4815 Blob hint = {0, 0, 0}; /* Hint read from %_stat table */
4816 int bDirtyHint = 0; /* True if blob 'hint' has been modified */
4817
4818 /* Allocate space for the cursor, filter and writer objects */
4819 const int nAlloc = sizeof(*pCsr) + sizeof(*pFilter) + sizeof(*pWriter);
4820 pWriter = (IncrmergeWriter *)sqlite3_malloc(nAlloc);
4821 if( !pWriter ) return SQLITE_NOMEM;
4822 pFilter = (Fts3SegFilter *)&pWriter[1];
4823 pCsr = (Fts3MultiSegReader *)&pFilter[1];
4824
4825 rc = fts3IncrmergeHintLoad(p, &hint);
4826 while( rc==SQLITE_OK && nRem>0 ){
4827 const i64 nMod = FTS3_SEGDIR_MAXLEVEL * p->nIndex;
4828 sqlite3_stmt *pFindLevel = 0; /* SQL used to determine iAbsLevel */
4829 int bUseHint = 0; /* True if attempting to append */
4830 int iIdx = 0; /* Largest idx in level (iAbsLevel+1) */
4831
4832 /* Search the %_segdir table for the absolute level with the smallest
4833 ** relative level number that contains at least nMin segments, if any.
4834 ** If one is found, set iAbsLevel to the absolute level number and
4835 ** nSeg to nMin. If no level with at least nMin segments can be found,
4836 ** set nSeg to -1.
4837 */
4838 rc = fts3SqlStmt(p, SQL_FIND_MERGE_LEVEL, &pFindLevel, 0);
4839 sqlite3_bind_int(pFindLevel, 1, nMin);
4840 if( sqlite3_step(pFindLevel)==SQLITE_ROW ){
4841 iAbsLevel = sqlite3_column_int64(pFindLevel, 0);
4842 nSeg = nMin;
4843 }else{
4844 nSeg = -1;
4845 }
4846 rc = sqlite3_reset(pFindLevel);
4847
4848 /* If the hint read from the %_stat table is not empty, check if the
4849 ** last entry in it specifies a relative level smaller than or equal
4850 ** to the level identified by the block above (if any). If so, this
4851 ** iteration of the loop will work on merging at the hinted level.
4852 */
4853 if( rc==SQLITE_OK && hint.n ){
4854 int nHint = hint.n;
4855 sqlite3_int64 iHintAbsLevel = 0; /* Hint level */
4856 int nHintSeg = 0; /* Hint number of segments */
4857
4858 rc = fts3IncrmergeHintPop(&hint, &iHintAbsLevel, &nHintSeg);
4859 if( nSeg<0 || (iAbsLevel % nMod) >= (iHintAbsLevel % nMod) ){
4860 iAbsLevel = iHintAbsLevel;
4861 nSeg = nHintSeg;
4862 bUseHint = 1;
4863 bDirtyHint = 1;
4864 }else{
4865 /* This undoes the effect of the HintPop() above - so that no entry
4866 ** is removed from the hint blob. */
4867 hint.n = nHint;
4868 }
4869 }
4870
4871 /* If nSeg is less that zero, then there is no level with at least
4872 ** nMin segments and no hint in the %_stat table. No work to do.
4873 ** Exit early in this case. */
4874 if( nSeg<0 ) break;
4875
4876 /* Open a cursor to iterate through the contents of the oldest nSeg
4877 ** indexes of absolute level iAbsLevel. If this cursor is opened using
4878 ** the 'hint' parameters, it is possible that there are less than nSeg
4879 ** segments available in level iAbsLevel. In this case, no work is
4880 ** done on iAbsLevel - fall through to the next iteration of the loop
4881 ** to start work on some other level. */
4882 memset(pWriter, 0, nAlloc);
4883 pFilter->flags = FTS3_SEGMENT_REQUIRE_POS;
4884
4885 if( rc==SQLITE_OK ){
4886 rc = fts3IncrmergeOutputIdx(p, iAbsLevel, &iIdx);
4887 assert( bUseHint==1 || bUseHint==0 );
4888 if( iIdx==0 || (bUseHint && iIdx==1) ){
4889 int bIgnore = 0;
4890 rc = fts3SegmentIsMaxLevel(p, iAbsLevel+1, &bIgnore);
4891 if( bIgnore ){
4892 pFilter->flags |= FTS3_SEGMENT_IGNORE_EMPTY;
4893 }
4894 }
4895 }
4896
4897 if( rc==SQLITE_OK ){
4898 rc = fts3IncrmergeCsr(p, iAbsLevel, nSeg, pCsr);
4899 }
4900 if( SQLITE_OK==rc && pCsr->nSegment==nSeg
4901 && SQLITE_OK==(rc = sqlite3Fts3SegReaderStart(p, pCsr, pFilter))
4902 && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pCsr))
4903 ){
4904 if( bUseHint && iIdx>0 ){
4905 const char *zKey = pCsr->zTerm;
4906 int nKey = pCsr->nTerm;
4907 rc = fts3IncrmergeLoad(p, iAbsLevel, iIdx-1, zKey, nKey, pWriter);
4908 }else{
4909 rc = fts3IncrmergeWriter(p, iAbsLevel, iIdx, pCsr, pWriter);
4910 }
4911
4912 if( rc==SQLITE_OK && pWriter->nLeafEst ){
4913 fts3LogMerge(nSeg, iAbsLevel);
4914 do {
4915 rc = fts3IncrmergeAppend(p, pWriter, pCsr);
4916 if( rc==SQLITE_OK ) rc = sqlite3Fts3SegReaderStep(p, pCsr);
4917 if( pWriter->nWork>=nRem && rc==SQLITE_ROW ) rc = SQLITE_OK;
4918 }while( rc==SQLITE_ROW );
4919
4920 /* Update or delete the input segments */
4921 if( rc==SQLITE_OK ){
4922 nRem -= (1 + pWriter->nWork);
4923 rc = fts3IncrmergeChomp(p, iAbsLevel, pCsr, &nSeg);
4924 if( nSeg!=0 ){
4925 bDirtyHint = 1;
4926 fts3IncrmergeHintPush(&hint, iAbsLevel, nSeg, &rc);
4927 }
4928 }
4929 }
4930
4931 if( nSeg!=0 ){
4932 pWriter->nLeafData = pWriter->nLeafData * -1;
4933 }
4934 fts3IncrmergeRelease(p, pWriter, &rc);
4935 if( nSeg==0 && pWriter->bNoLeafData==0 ){
4936 fts3PromoteSegments(p, iAbsLevel+1, pWriter->nLeafData);
4937 }
4938 }
4939
4940 sqlite3Fts3SegReaderFinish(pCsr);
4941 }
4942
4943 /* Write the hint values into the %_stat table for the next incr-merger */
4944 if( bDirtyHint && rc==SQLITE_OK ){
4945 rc = fts3IncrmergeHintStore(p, &hint);
4946 }
4947
4948 sqlite3_free(pWriter);
4949 sqlite3_free(hint.a);
4950 return rc;
4951 }
4952
4953 /*
4954 ** Convert the text beginning at *pz into an integer and return
4955 ** its value. Advance *pz to point to the first character past
4956 ** the integer.
4957 */
4958 static int fts3Getint(const char **pz){
4959 const char *z = *pz;
4960 int i = 0;
4961 while( (*z)>='0' && (*z)<='9' ) i = 10*i + *(z++) - '0';
4962 *pz = z;
4963 return i;
4964 }
4965
4966 /*
4967 ** Process statements of the form:
4968 **
4969 ** INSERT INTO table(table) VALUES('merge=A,B');
4970 **
4971 ** A and B are integers that decode to be the number of leaf pages
4972 ** written for the merge, and the minimum number of segments on a level
4973 ** before it will be selected for a merge, respectively.
4974 */
4975 static int fts3DoIncrmerge(
4976 Fts3Table *p, /* FTS3 table handle */
4977 const char *zParam /* Nul-terminated string containing "A,B" */
4978 ){
4979 int rc;
4980 int nMin = (FTS3_MERGE_COUNT / 2);
4981 int nMerge = 0;
4982 const char *z = zParam;
4983
4984 /* Read the first integer value */
4985 nMerge = fts3Getint(&z);
4986
4987 /* If the first integer value is followed by a ',', read the second
4988 ** integer value. */
4989 if( z[0]==',' && z[1]!='\0' ){
4990 z++;
4991 nMin = fts3Getint(&z);
4992 }
4993
4994 if( z[0]!='\0' || nMin<2 ){
4995 rc = SQLITE_ERROR;
4996 }else{
4997 rc = SQLITE_OK;
4998 if( !p->bHasStat ){
4999 assert( p->bFts4==0 );
5000 sqlite3Fts3CreateStatTable(&rc, p);
5001 }
5002 if( rc==SQLITE_OK ){
5003 rc = sqlite3Fts3Incrmerge(p, nMerge, nMin);
5004 }
5005 sqlite3Fts3SegmentsClose(p);
5006 }
5007 return rc;
5008 }
5009
5010 /*
5011 ** Process statements of the form:
5012 **
5013 ** INSERT INTO table(table) VALUES('automerge=X');
5014 **
5015 ** where X is an integer. X==0 means to turn automerge off. X!=0 means
5016 ** turn it on. The setting is persistent.
5017 */
5018 static int fts3DoAutoincrmerge(
5019 Fts3Table *p, /* FTS3 table handle */
5020 const char *zParam /* Nul-terminated string containing boolean */
5021 ){
5022 int rc = SQLITE_OK;
5023 sqlite3_stmt *pStmt = 0;
5024 p->nAutoincrmerge = fts3Getint(&zParam);
5025 if( p->nAutoincrmerge==1 || p->nAutoincrmerge>FTS3_MERGE_COUNT ){
5026 p->nAutoincrmerge = 8;
5027 }
5028 if( !p->bHasStat ){
5029 assert( p->bFts4==0 );
5030 sqlite3Fts3CreateStatTable(&rc, p);
5031 if( rc ) return rc;
5032 }
5033 rc = fts3SqlStmt(p, SQL_REPLACE_STAT, &pStmt, 0);
5034 if( rc ) return rc;
5035 sqlite3_bind_int(pStmt, 1, FTS_STAT_AUTOINCRMERGE);
5036 sqlite3_bind_int(pStmt, 2, p->nAutoincrmerge);
5037 sqlite3_step(pStmt);
5038 rc = sqlite3_reset(pStmt);
5039 return rc;
5040 }
5041
5042 /*
5043 ** Return a 64-bit checksum for the FTS index entry specified by the
5044 ** arguments to this function.
5045 */
5046 static u64 fts3ChecksumEntry(
5047 const char *zTerm, /* Pointer to buffer containing term */
5048 int nTerm, /* Size of zTerm in bytes */
5049 int iLangid, /* Language id for current row */
5050 int iIndex, /* Index (0..Fts3Table.nIndex-1) */
5051 i64 iDocid, /* Docid for current row. */
5052 int iCol, /* Column number */
5053 int iPos /* Position */
5054 ){
5055 int i;
5056 u64 ret = (u64)iDocid;
5057
5058 ret += (ret<<3) + iLangid;
5059 ret += (ret<<3) + iIndex;
5060 ret += (ret<<3) + iCol;
5061 ret += (ret<<3) + iPos;
5062 for(i=0; i<nTerm; i++) ret += (ret<<3) + zTerm[i];
5063
5064 return ret;
5065 }
5066
5067 /*
5068 ** Return a checksum of all entries in the FTS index that correspond to
5069 ** language id iLangid. The checksum is calculated by XORing the checksums
5070 ** of each individual entry (see fts3ChecksumEntry()) together.
5071 **
5072 ** If successful, the checksum value is returned and *pRc set to SQLITE_OK.
5073 ** Otherwise, if an error occurs, *pRc is set to an SQLite error code. The
5074 ** return value is undefined in this case.
5075 */
5076 static u64 fts3ChecksumIndex(
5077 Fts3Table *p, /* FTS3 table handle */
5078 int iLangid, /* Language id to return cksum for */
5079 int iIndex, /* Index to cksum (0..p->nIndex-1) */
5080 int *pRc /* OUT: Return code */
5081 ){
5082 Fts3SegFilter filter;
5083 Fts3MultiSegReader csr;
5084 int rc;
5085 u64 cksum = 0;
5086
5087 assert( *pRc==SQLITE_OK );
5088
5089 memset(&filter, 0, sizeof(filter));
5090 memset(&csr, 0, sizeof(csr));
5091 filter.flags = FTS3_SEGMENT_REQUIRE_POS|FTS3_SEGMENT_IGNORE_EMPTY;
5092 filter.flags |= FTS3_SEGMENT_SCAN;
5093
5094 rc = sqlite3Fts3SegReaderCursor(
5095 p, iLangid, iIndex, FTS3_SEGCURSOR_ALL, 0, 0, 0, 1,&csr
5096 );
5097 if( rc==SQLITE_OK ){
5098 rc = sqlite3Fts3SegReaderStart(p, &csr, &filter);
5099 }
5100
5101 if( rc==SQLITE_OK ){
5102 while( SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, &csr)) ){
5103 char *pCsr = csr.aDoclist;
5104 char *pEnd = &pCsr[csr.nDoclist];
5105
5106 i64 iDocid = 0;
5107 i64 iCol = 0;
5108 i64 iPos = 0;
5109
5110 pCsr += sqlite3Fts3GetVarint(pCsr, &iDocid);
5111 while( pCsr<pEnd ){
5112 i64 iVal = 0;
5113 pCsr += sqlite3Fts3GetVarint(pCsr, &iVal);
5114 if( pCsr<pEnd ){
5115 if( iVal==0 || iVal==1 ){
5116 iCol = 0;
5117 iPos = 0;
5118 if( iVal ){
5119 pCsr += sqlite3Fts3GetVarint(pCsr, &iCol);
5120 }else{
5121 pCsr += sqlite3Fts3GetVarint(pCsr, &iVal);
5122 iDocid += iVal;
5123 }
5124 }else{
5125 iPos += (iVal - 2);
5126 cksum = cksum ^ fts3ChecksumEntry(
5127 csr.zTerm, csr.nTerm, iLangid, iIndex, iDocid,
5128 (int)iCol, (int)iPos
5129 );
5130 }
5131 }
5132 }
5133 }
5134 }
5135 sqlite3Fts3SegReaderFinish(&csr);
5136
5137 *pRc = rc;
5138 return cksum;
5139 }
5140
5141 /*
5142 ** Check if the contents of the FTS index match the current contents of the
5143 ** content table. If no error occurs and the contents do match, set *pbOk
5144 ** to true and return SQLITE_OK. Or if the contents do not match, set *pbOk
5145 ** to false before returning.
5146 **
5147 ** If an error occurs (e.g. an OOM or IO error), return an SQLite error
5148 ** code. The final value of *pbOk is undefined in this case.
5149 */
5150 static int fts3IntegrityCheck(Fts3Table *p, int *pbOk){
5151 int rc = SQLITE_OK; /* Return code */
5152 u64 cksum1 = 0; /* Checksum based on FTS index contents */
5153 u64 cksum2 = 0; /* Checksum based on %_content contents */
5154 sqlite3_stmt *pAllLangid = 0; /* Statement to return all language-ids */
5155
5156 /* This block calculates the checksum according to the FTS index. */
5157 rc = fts3SqlStmt(p, SQL_SELECT_ALL_LANGID, &pAllLangid, 0);
5158 if( rc==SQLITE_OK ){
5159 int rc2;
5160 sqlite3_bind_int(pAllLangid, 1, p->iPrevLangid);
5161 sqlite3_bind_int(pAllLangid, 2, p->nIndex);
5162 while( rc==SQLITE_OK && sqlite3_step(pAllLangid)==SQLITE_ROW ){
5163 int iLangid = sqlite3_column_int(pAllLangid, 0);
5164 int i;
5165 for(i=0; i<p->nIndex; i++){
5166 cksum1 = cksum1 ^ fts3ChecksumIndex(p, iLangid, i, &rc);
5167 }
5168 }
5169 rc2 = sqlite3_reset(pAllLangid);
5170 if( rc==SQLITE_OK ) rc = rc2;
5171 }
5172
5173 /* This block calculates the checksum according to the %_content table */
5174 if( rc==SQLITE_OK ){
5175 sqlite3_tokenizer_module const *pModule = p->pTokenizer->pModule;
5176 sqlite3_stmt *pStmt = 0;
5177 char *zSql;
5178
5179 zSql = sqlite3_mprintf("SELECT %s" , p->zReadExprlist);
5180 if( !zSql ){
5181 rc = SQLITE_NOMEM;
5182 }else{
5183 rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0);
5184 sqlite3_free(zSql);
5185 }
5186
5187 while( rc==SQLITE_OK && SQLITE_ROW==sqlite3_step(pStmt) ){
5188 i64 iDocid = sqlite3_column_int64(pStmt, 0);
5189 int iLang = langidFromSelect(p, pStmt);
5190 int iCol;
5191
5192 for(iCol=0; rc==SQLITE_OK && iCol<p->nColumn; iCol++){
5193 if( p->abNotindexed[iCol]==0 ){
5194 const char *zText = (const char *)sqlite3_column_text(pStmt, iCol+1);
5195 int nText = sqlite3_column_bytes(pStmt, iCol+1);
5196 sqlite3_tokenizer_cursor *pT = 0;
5197
5198 rc = sqlite3Fts3OpenTokenizer(p->pTokenizer, iLang, zText, nText,&pT);
5199 while( rc==SQLITE_OK ){
5200 char const *zToken; /* Buffer containing token */
5201 int nToken = 0; /* Number of bytes in token */
5202 int iDum1 = 0, iDum2 = 0; /* Dummy variables */
5203 int iPos = 0; /* Position of token in zText */
5204
5205 rc = pModule->xNext(pT, &zToken, &nToken, &iDum1, &iDum2, &iPos);
5206 if( rc==SQLITE_OK ){
5207 int i;
5208 cksum2 = cksum2 ^ fts3ChecksumEntry(
5209 zToken, nToken, iLang, 0, iDocid, iCol, iPos
5210 );
5211 for(i=1; i<p->nIndex; i++){
5212 if( p->aIndex[i].nPrefix<=nToken ){
5213 cksum2 = cksum2 ^ fts3ChecksumEntry(
5214 zToken, p->aIndex[i].nPrefix, iLang, i, iDocid, iCol, iPos
5215 );
5216 }
5217 }
5218 }
5219 }
5220 if( pT ) pModule->xClose(pT);
5221 if( rc==SQLITE_DONE ) rc = SQLITE_OK;
5222 }
5223 }
5224 }
5225
5226 sqlite3_finalize(pStmt);
5227 }
5228
5229 *pbOk = (cksum1==cksum2);
5230 return rc;
5231 }
5232
5233 /*
5234 ** Run the integrity-check. If no error occurs and the current contents of
5235 ** the FTS index are correct, return SQLITE_OK. Or, if the contents of the
5236 ** FTS index are incorrect, return SQLITE_CORRUPT_VTAB.
5237 **
5238 ** Or, if an error (e.g. an OOM or IO error) occurs, return an SQLite
5239 ** error code.
5240 **
5241 ** The integrity-check works as follows. For each token and indexed token
5242 ** prefix in the document set, a 64-bit checksum is calculated (by code
5243 ** in fts3ChecksumEntry()) based on the following:
5244 **
5245 ** + The index number (0 for the main index, 1 for the first prefix
5246 ** index etc.),
5247 ** + The token (or token prefix) text itself,
5248 ** + The language-id of the row it appears in,
5249 ** + The docid of the row it appears in,
5250 ** + The column it appears in, and
5251 ** + The tokens position within that column.
5252 **
5253 ** The checksums for all entries in the index are XORed together to create
5254 ** a single checksum for the entire index.
5255 **
5256 ** The integrity-check code calculates the same checksum in two ways:
5257 **
5258 ** 1. By scanning the contents of the FTS index, and
5259 ** 2. By scanning and tokenizing the content table.
5260 **
5261 ** If the two checksums are identical, the integrity-check is deemed to have
5262 ** passed.
5263 */
5264 static int fts3DoIntegrityCheck(
5265 Fts3Table *p /* FTS3 table handle */
5266 ){
5267 int rc;
5268 int bOk = 0;
5269 rc = fts3IntegrityCheck(p, &bOk);
5270 if( rc==SQLITE_OK && bOk==0 ) rc = FTS_CORRUPT_VTAB;
5271 return rc;
5272 }
5273
5274 /*
5275 ** Handle a 'special' INSERT of the form:
5276 **
5277 ** "INSERT INTO tbl(tbl) VALUES(<expr>)"
5278 **
5279 ** Argument pVal contains the result of <expr>. Currently the only
5280 ** meaningful value to insert is the text 'optimize'.
5281 */
5282 static int fts3SpecialInsert(Fts3Table *p, sqlite3_value *pVal){
5283 int rc; /* Return Code */
5284 const char *zVal = (const char *)sqlite3_value_text(pVal);
5285 int nVal = sqlite3_value_bytes(pVal);
5286
5287 if( !zVal ){
5288 return SQLITE_NOMEM;
5289 }else if( nVal==8 && 0==sqlite3_strnicmp(zVal, "optimize", 8) ){
5290 rc = fts3DoOptimize(p, 0);
5291 }else if( nVal==7 && 0==sqlite3_strnicmp(zVal, "rebuild", 7) ){
5292 rc = fts3DoRebuild(p);
5293 }else if( nVal==15 && 0==sqlite3_strnicmp(zVal, "integrity-check", 15) ){
5294 rc = fts3DoIntegrityCheck(p);
5295 }else if( nVal>6 && 0==sqlite3_strnicmp(zVal, "merge=", 6) ){
5296 rc = fts3DoIncrmerge(p, &zVal[6]);
5297 }else if( nVal>10 && 0==sqlite3_strnicmp(zVal, "automerge=", 10) ){
5298 rc = fts3DoAutoincrmerge(p, &zVal[10]);
5299 #ifdef SQLITE_TEST
5300 }else if( nVal>9 && 0==sqlite3_strnicmp(zVal, "nodesize=", 9) ){
5301 p->nNodeSize = atoi(&zVal[9]);
5302 rc = SQLITE_OK;
5303 }else if( nVal>11 && 0==sqlite3_strnicmp(zVal, "maxpending=", 9) ){
5304 p->nMaxPendingData = atoi(&zVal[11]);
5305 rc = SQLITE_OK;
5306 }else if( nVal>21 && 0==sqlite3_strnicmp(zVal, "test-no-incr-doclist=", 21) ){
5307 p->bNoIncrDoclist = atoi(&zVal[21]);
5308 rc = SQLITE_OK;
5309 #endif
5310 }else{
5311 rc = SQLITE_ERROR;
5312 }
5313
5314 return rc;
5315 }
5316
5317 #ifndef SQLITE_DISABLE_FTS4_DEFERRED
5318 /*
5319 ** Delete all cached deferred doclists. Deferred doclists are cached
5320 ** (allocated) by the sqlite3Fts3CacheDeferredDoclists() function.
5321 */
5322 void sqlite3Fts3FreeDeferredDoclists(Fts3Cursor *pCsr){
5323 Fts3DeferredToken *pDef;
5324 for(pDef=pCsr->pDeferred; pDef; pDef=pDef->pNext){
5325 fts3PendingListDelete(pDef->pList);
5326 pDef->pList = 0;
5327 }
5328 }
5329
5330 /*
5331 ** Free all entries in the pCsr->pDeffered list. Entries are added to
5332 ** this list using sqlite3Fts3DeferToken().
5333 */
5334 void sqlite3Fts3FreeDeferredTokens(Fts3Cursor *pCsr){
5335 Fts3DeferredToken *pDef;
5336 Fts3DeferredToken *pNext;
5337 for(pDef=pCsr->pDeferred; pDef; pDef=pNext){
5338 pNext = pDef->pNext;
5339 fts3PendingListDelete(pDef->pList);
5340 sqlite3_free(pDef);
5341 }
5342 pCsr->pDeferred = 0;
5343 }
5344
5345 /*
5346 ** Generate deferred-doclists for all tokens in the pCsr->pDeferred list
5347 ** based on the row that pCsr currently points to.
5348 **
5349 ** A deferred-doclist is like any other doclist with position information
5350 ** included, except that it only contains entries for a single row of the
5351 ** table, not for all rows.
5352 */
5353 int sqlite3Fts3CacheDeferredDoclists(Fts3Cursor *pCsr){
5354 int rc = SQLITE_OK; /* Return code */
5355 if( pCsr->pDeferred ){
5356 int i; /* Used to iterate through table columns */
5357 sqlite3_int64 iDocid; /* Docid of the row pCsr points to */
5358 Fts3DeferredToken *pDef; /* Used to iterate through deferred tokens */
5359
5360 Fts3Table *p = (Fts3Table *)pCsr->base.pVtab;
5361 sqlite3_tokenizer *pT = p->pTokenizer;
5362 sqlite3_tokenizer_module const *pModule = pT->pModule;
5363
5364 assert( pCsr->isRequireSeek==0 );
5365 iDocid = sqlite3_column_int64(pCsr->pStmt, 0);
5366
5367 for(i=0; i<p->nColumn && rc==SQLITE_OK; i++){
5368 if( p->abNotindexed[i]==0 ){
5369 const char *zText = (const char *)sqlite3_column_text(pCsr->pStmt, i+1);
5370 sqlite3_tokenizer_cursor *pTC = 0;
5371
5372 rc = sqlite3Fts3OpenTokenizer(pT, pCsr->iLangid, zText, -1, &pTC);
5373 while( rc==SQLITE_OK ){
5374 char const *zToken; /* Buffer containing token */
5375 int nToken = 0; /* Number of bytes in token */
5376 int iDum1 = 0, iDum2 = 0; /* Dummy variables */
5377 int iPos = 0; /* Position of token in zText */
5378
5379 rc = pModule->xNext(pTC, &zToken, &nToken, &iDum1, &iDum2, &iPos);
5380 for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){
5381 Fts3PhraseToken *pPT = pDef->pToken;
5382 if( (pDef->iCol>=p->nColumn || pDef->iCol==i)
5383 && (pPT->bFirst==0 || iPos==0)
5384 && (pPT->n==nToken || (pPT->isPrefix && pPT->n<nToken))
5385 && (0==memcmp(zToken, pPT->z, pPT->n))
5386 ){
5387 fts3PendingListAppend(&pDef->pList, iDocid, i, iPos, &rc);
5388 }
5389 }
5390 }
5391 if( pTC ) pModule->xClose(pTC);
5392 if( rc==SQLITE_DONE ) rc = SQLITE_OK;
5393 }
5394 }
5395
5396 for(pDef=pCsr->pDeferred; pDef && rc==SQLITE_OK; pDef=pDef->pNext){
5397 if( pDef->pList ){
5398 rc = fts3PendingListAppendVarint(&pDef->pList, 0);
5399 }
5400 }
5401 }
5402
5403 return rc;
5404 }
5405
5406 int sqlite3Fts3DeferredTokenList(
5407 Fts3DeferredToken *p,
5408 char **ppData,
5409 int *pnData
5410 ){
5411 char *pRet;
5412 int nSkip;
5413 sqlite3_int64 dummy;
5414
5415 *ppData = 0;
5416 *pnData = 0;
5417
5418 if( p->pList==0 ){
5419 return SQLITE_OK;
5420 }
5421
5422 pRet = (char *)sqlite3_malloc(p->pList->nData);
5423 if( !pRet ) return SQLITE_NOMEM;
5424
5425 nSkip = sqlite3Fts3GetVarint(p->pList->aData, &dummy);
5426 *pnData = p->pList->nData - nSkip;
5427 *ppData = pRet;
5428
5429 memcpy(pRet, &p->pList->aData[nSkip], *pnData);
5430 return SQLITE_OK;
5431 }
5432
5433 /*
5434 ** Add an entry for token pToken to the pCsr->pDeferred list.
5435 */
5436 int sqlite3Fts3DeferToken(
5437 Fts3Cursor *pCsr, /* Fts3 table cursor */
5438 Fts3PhraseToken *pToken, /* Token to defer */
5439 int iCol /* Column that token must appear in (or -1) */
5440 ){
5441 Fts3DeferredToken *pDeferred;
5442 pDeferred = sqlite3_malloc(sizeof(*pDeferred));
5443 if( !pDeferred ){
5444 return SQLITE_NOMEM;
5445 }
5446 memset(pDeferred, 0, sizeof(*pDeferred));
5447 pDeferred->pToken = pToken;
5448 pDeferred->pNext = pCsr->pDeferred;
5449 pDeferred->iCol = iCol;
5450 pCsr->pDeferred = pDeferred;
5451
5452 assert( pToken->pDeferred==0 );
5453 pToken->pDeferred = pDeferred;
5454
5455 return SQLITE_OK;
5456 }
5457 #endif
5458
5459 /*
5460 ** SQLite value pRowid contains the rowid of a row that may or may not be
5461 ** present in the FTS3 table. If it is, delete it and adjust the contents
5462 ** of subsiduary data structures accordingly.
5463 */
5464 static int fts3DeleteByRowid(
5465 Fts3Table *p,
5466 sqlite3_value *pRowid,
5467 int *pnChng, /* IN/OUT: Decrement if row is deleted */
5468 u32 *aSzDel
5469 ){
5470 int rc = SQLITE_OK; /* Return code */
5471 int bFound = 0; /* True if *pRowid really is in the table */
5472
5473 fts3DeleteTerms(&rc, p, pRowid, aSzDel, &bFound);
5474 if( bFound && rc==SQLITE_OK ){
5475 int isEmpty = 0; /* Deleting *pRowid leaves the table empty */
5476 rc = fts3IsEmpty(p, pRowid, &isEmpty);
5477 if( rc==SQLITE_OK ){
5478 if( isEmpty ){
5479 /* Deleting this row means the whole table is empty. In this case
5480 ** delete the contents of all three tables and throw away any
5481 ** data in the pendingTerms hash table. */
5482 rc = fts3DeleteAll(p, 1);
5483 *pnChng = 0;
5484 memset(aSzDel, 0, sizeof(u32) * (p->nColumn+1) * 2);
5485 }else{
5486 *pnChng = *pnChng - 1;
5487 if( p->zContentTbl==0 ){
5488 fts3SqlExec(&rc, p, SQL_DELETE_CONTENT, &pRowid);
5489 }
5490 if( p->bHasDocsize ){
5491 fts3SqlExec(&rc, p, SQL_DELETE_DOCSIZE, &pRowid);
5492 }
5493 }
5494 }
5495 }
5496
5497 return rc;
5498 }
5499
5500 /*
5501 ** This function does the work for the xUpdate method of FTS3 virtual
5502 ** tables. The schema of the virtual table being:
5503 **
5504 ** CREATE TABLE <table name>(
5505 ** <user columns>,
5506 ** <table name> HIDDEN,
5507 ** docid HIDDEN,
5508 ** <langid> HIDDEN
5509 ** );
5510 **
5511 **
5512 */
5513 int sqlite3Fts3UpdateMethod(
5514 sqlite3_vtab *pVtab, /* FTS3 vtab object */
5515 int nArg, /* Size of argument array */
5516 sqlite3_value **apVal, /* Array of arguments */
5517 sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */
5518 ){
5519 Fts3Table *p = (Fts3Table *)pVtab;
5520 int rc = SQLITE_OK; /* Return Code */
5521 int isRemove = 0; /* True for an UPDATE or DELETE */
5522 u32 *aSzIns = 0; /* Sizes of inserted documents */
5523 u32 *aSzDel = 0; /* Sizes of deleted documents */
5524 int nChng = 0; /* Net change in number of documents */
5525 int bInsertDone = 0;
5526
5527 /* At this point it must be known if the %_stat table exists or not.
5528 ** So bHasStat may not be 2. */
5529 assert( p->bHasStat==0 || p->bHasStat==1 );
5530
5531 assert( p->pSegments==0 );
5532 assert(
5533 nArg==1 /* DELETE operations */
5534 || nArg==(2 + p->nColumn + 3) /* INSERT or UPDATE operations */
5535 );
5536
5537 /* Check for a "special" INSERT operation. One of the form:
5538 **
5539 ** INSERT INTO xyz(xyz) VALUES('command');
5540 */
5541 if( nArg>1
5542 && sqlite3_value_type(apVal[0])==SQLITE_NULL
5543 && sqlite3_value_type(apVal[p->nColumn+2])!=SQLITE_NULL
5544 ){
5545 rc = fts3SpecialInsert(p, apVal[p->nColumn+2]);
5546 goto update_out;
5547 }
5548
5549 if( nArg>1 && sqlite3_value_int(apVal[2 + p->nColumn + 2])<0 ){
5550 rc = SQLITE_CONSTRAINT;
5551 goto update_out;
5552 }
5553
5554 /* Allocate space to hold the change in document sizes */
5555 aSzDel = sqlite3_malloc( sizeof(aSzDel[0])*(p->nColumn+1)*2 );
5556 if( aSzDel==0 ){
5557 rc = SQLITE_NOMEM;
5558 goto update_out;
5559 }
5560 aSzIns = &aSzDel[p->nColumn+1];
5561 memset(aSzDel, 0, sizeof(aSzDel[0])*(p->nColumn+1)*2);
5562
5563 rc = fts3Writelock(p);
5564 if( rc!=SQLITE_OK ) goto update_out;
5565
5566 /* If this is an INSERT operation, or an UPDATE that modifies the rowid
5567 ** value, then this operation requires constraint handling.
5568 **
5569 ** If the on-conflict mode is REPLACE, this means that the existing row
5570 ** should be deleted from the database before inserting the new row. Or,
5571 ** if the on-conflict mode is other than REPLACE, then this method must
5572 ** detect the conflict and return SQLITE_CONSTRAINT before beginning to
5573 ** modify the database file.
5574 */
5575 if( nArg>1 && p->zContentTbl==0 ){
5576 /* Find the value object that holds the new rowid value. */
5577 sqlite3_value *pNewRowid = apVal[3+p->nColumn];
5578 if( sqlite3_value_type(pNewRowid)==SQLITE_NULL ){
5579 pNewRowid = apVal[1];
5580 }
5581
5582 if( sqlite3_value_type(pNewRowid)!=SQLITE_NULL && (
5583 sqlite3_value_type(apVal[0])==SQLITE_NULL
5584 || sqlite3_value_int64(apVal[0])!=sqlite3_value_int64(pNewRowid)
5585 )){
5586 /* The new rowid is not NULL (in this case the rowid will be
5587 ** automatically assigned and there is no chance of a conflict), and
5588 ** the statement is either an INSERT or an UPDATE that modifies the
5589 ** rowid column. So if the conflict mode is REPLACE, then delete any
5590 ** existing row with rowid=pNewRowid.
5591 **
5592 ** Or, if the conflict mode is not REPLACE, insert the new record into
5593 ** the %_content table. If we hit the duplicate rowid constraint (or any
5594 ** other error) while doing so, return immediately.
5595 **
5596 ** This branch may also run if pNewRowid contains a value that cannot
5597 ** be losslessly converted to an integer. In this case, the eventual
5598 ** call to fts3InsertData() (either just below or further on in this
5599 ** function) will return SQLITE_MISMATCH. If fts3DeleteByRowid is
5600 ** invoked, it will delete zero rows (since no row will have
5601 ** docid=$pNewRowid if $pNewRowid is not an integer value).
5602 */
5603 if( sqlite3_vtab_on_conflict(p->db)==SQLITE_REPLACE ){
5604 rc = fts3DeleteByRowid(p, pNewRowid, &nChng, aSzDel);
5605 }else{
5606 rc = fts3InsertData(p, apVal, pRowid);
5607 bInsertDone = 1;
5608 }
5609 }
5610 }
5611 if( rc!=SQLITE_OK ){
5612 goto update_out;
5613 }
5614
5615 /* If this is a DELETE or UPDATE operation, remove the old record. */
5616 if( sqlite3_value_type(apVal[0])!=SQLITE_NULL ){
5617 assert( sqlite3_value_type(apVal[0])==SQLITE_INTEGER );
5618 rc = fts3DeleteByRowid(p, apVal[0], &nChng, aSzDel);
5619 isRemove = 1;
5620 }
5621
5622 /* If this is an INSERT or UPDATE operation, insert the new record. */
5623 if( nArg>1 && rc==SQLITE_OK ){
5624 int iLangid = sqlite3_value_int(apVal[2 + p->nColumn + 2]);
5625 if( bInsertDone==0 ){
5626 rc = fts3InsertData(p, apVal, pRowid);
5627 if( rc==SQLITE_CONSTRAINT && p->zContentTbl==0 ){
5628 rc = FTS_CORRUPT_VTAB;
5629 }
5630 }
5631 if( rc==SQLITE_OK && (!isRemove || *pRowid!=p->iPrevDocid ) ){
5632 rc = fts3PendingTermsDocid(p, 0, iLangid, *pRowid);
5633 }
5634 if( rc==SQLITE_OK ){
5635 assert( p->iPrevDocid==*pRowid );
5636 rc = fts3InsertTerms(p, iLangid, apVal, aSzIns);
5637 }
5638 if( p->bHasDocsize ){
5639 fts3InsertDocsize(&rc, p, aSzIns);
5640 }
5641 nChng++;
5642 }
5643
5644 if( p->bFts4 ){
5645 fts3UpdateDocTotals(&rc, p, aSzIns, aSzDel, nChng);
5646 }
5647
5648 update_out:
5649 sqlite3_free(aSzDel);
5650 sqlite3Fts3SegmentsClose(p);
5651 return rc;
5652 }
5653
5654 /*
5655 ** Flush any data in the pending-terms hash table to disk. If successful,
5656 ** merge all segments in the database (including the new segment, if
5657 ** there was any data to flush) into a single segment.
5658 */
5659 int sqlite3Fts3Optimize(Fts3Table *p){
5660 int rc;
5661 rc = sqlite3_exec(p->db, "SAVEPOINT fts3", 0, 0, 0);
5662 if( rc==SQLITE_OK ){
5663 rc = fts3DoOptimize(p, 1);
5664 if( rc==SQLITE_OK || rc==SQLITE_DONE ){
5665 int rc2 = sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0);
5666 if( rc2!=SQLITE_OK ) rc = rc2;
5667 }else{
5668 sqlite3_exec(p->db, "ROLLBACK TO fts3", 0, 0, 0);
5669 sqlite3_exec(p->db, "RELEASE fts3", 0, 0, 0);
5670 }
5671 }
5672 sqlite3Fts3SegmentsClose(p);
5673 return rc;
5674 }
5675
5676 #endif
OLDNEW

Powered by Google App Engine
This is Rietveld 408576698