OLD | NEW |
| (Empty) |
1 /* | |
2 ** 2006 Oct 10 | |
3 ** | |
4 ** The author disclaims copyright to this source code. In place of | |
5 ** a legal notice, here is a blessing: | |
6 ** | |
7 ** May you do good and not evil. | |
8 ** May you find forgiveness for yourself and forgive others. | |
9 ** May you share freely, never taking more than you give. | |
10 ** | |
11 ****************************************************************************** | |
12 ** | |
13 ** This is an SQLite module implementing full-text search. | |
14 */ | |
15 | |
16 /* | |
17 ** The code in this file is only compiled if: | |
18 ** | |
19 ** * The FTS3 module is being built as an extension | |
20 ** (in which case SQLITE_CORE is not defined), or | |
21 ** | |
22 ** * The FTS3 module is being built into the core of | |
23 ** SQLite (in which case SQLITE_ENABLE_FTS3 is defined). | |
24 */ | |
25 | |
26 /* The full-text index is stored in a series of b+tree (-like) | |
27 ** structures called segments which map terms to doclists. The | |
28 ** structures are like b+trees in layout, but are constructed from the | |
29 ** bottom up in optimal fashion and are not updatable. Since trees | |
30 ** are built from the bottom up, things will be described from the | |
31 ** bottom up. | |
32 ** | |
33 ** | |
34 **** Varints **** | |
35 ** The basic unit of encoding is a variable-length integer called a | |
36 ** varint. We encode variable-length integers in little-endian order | |
37 ** using seven bits * per byte as follows: | |
38 ** | |
39 ** KEY: | |
40 ** A = 0xxxxxxx 7 bits of data and one flag bit | |
41 ** B = 1xxxxxxx 7 bits of data and one flag bit | |
42 ** | |
43 ** 7 bits - A | |
44 ** 14 bits - BA | |
45 ** 21 bits - BBA | |
46 ** and so on. | |
47 ** | |
48 ** This is similar in concept to how sqlite encodes "varints" but | |
49 ** the encoding is not the same. SQLite varints are big-endian | |
50 ** are are limited to 9 bytes in length whereas FTS3 varints are | |
51 ** little-endian and can be up to 10 bytes in length (in theory). | |
52 ** | |
53 ** Example encodings: | |
54 ** | |
55 ** 1: 0x01 | |
56 ** 127: 0x7f | |
57 ** 128: 0x81 0x00 | |
58 ** | |
59 ** | |
60 **** Document lists **** | |
61 ** A doclist (document list) holds a docid-sorted list of hits for a | |
62 ** given term. Doclists hold docids and associated token positions. | |
63 ** A docid is the unique integer identifier for a single document. | |
64 ** A position is the index of a word within the document. The first | |
65 ** word of the document has a position of 0. | |
66 ** | |
67 ** FTS3 used to optionally store character offsets using a compile-time | |
68 ** option. But that functionality is no longer supported. | |
69 ** | |
70 ** A doclist is stored like this: | |
71 ** | |
72 ** array { | |
73 ** varint docid; (delta from previous doclist) | |
74 ** array { (position list for column 0) | |
75 ** varint position; (2 more than the delta from previous position) | |
76 ** } | |
77 ** array { | |
78 ** varint POS_COLUMN; (marks start of position list for new column) | |
79 ** varint column; (index of new column) | |
80 ** array { | |
81 ** varint position; (2 more than the delta from previous position) | |
82 ** } | |
83 ** } | |
84 ** varint POS_END; (marks end of positions for this document. | |
85 ** } | |
86 ** | |
87 ** Here, array { X } means zero or more occurrences of X, adjacent in | |
88 ** memory. A "position" is an index of a token in the token stream | |
89 ** generated by the tokenizer. Note that POS_END and POS_COLUMN occur | |
90 ** in the same logical place as the position element, and act as sentinals | |
91 ** ending a position list array. POS_END is 0. POS_COLUMN is 1. | |
92 ** The positions numbers are not stored literally but rather as two more | |
93 ** than the difference from the prior position, or the just the position plus | |
94 ** 2 for the first position. Example: | |
95 ** | |
96 ** label: A B C D E F G H I J K | |
97 ** value: 123 5 9 1 1 14 35 0 234 72 0 | |
98 ** | |
99 ** The 123 value is the first docid. For column zero in this document | |
100 ** there are two matches at positions 3 and 10 (5-2 and 9-2+3). The 1 | |
101 ** at D signals the start of a new column; the 1 at E indicates that the | |
102 ** new column is column number 1. There are two positions at 12 and 45 | |
103 ** (14-2 and 35-2+12). The 0 at H indicate the end-of-document. The | |
104 ** 234 at I is the delta to next docid (357). It has one position 70 | |
105 ** (72-2) and then terminates with the 0 at K. | |
106 ** | |
107 ** A "position-list" is the list of positions for multiple columns for | |
108 ** a single docid. A "column-list" is the set of positions for a single | |
109 ** column. Hence, a position-list consists of one or more column-lists, | |
110 ** a document record consists of a docid followed by a position-list and | |
111 ** a doclist consists of one or more document records. | |
112 ** | |
113 ** A bare doclist omits the position information, becoming an | |
114 ** array of varint-encoded docids. | |
115 ** | |
116 **** Segment leaf nodes **** | |
117 ** Segment leaf nodes store terms and doclists, ordered by term. Leaf | |
118 ** nodes are written using LeafWriter, and read using LeafReader (to | |
119 ** iterate through a single leaf node's data) and LeavesReader (to | |
120 ** iterate through a segment's entire leaf layer). Leaf nodes have | |
121 ** the format: | |
122 ** | |
123 ** varint iHeight; (height from leaf level, always 0) | |
124 ** varint nTerm; (length of first term) | |
125 ** char pTerm[nTerm]; (content of first term) | |
126 ** varint nDoclist; (length of term's associated doclist) | |
127 ** char pDoclist[nDoclist]; (content of doclist) | |
128 ** array { | |
129 ** (further terms are delta-encoded) | |
130 ** varint nPrefix; (length of prefix shared with previous term) | |
131 ** varint nSuffix; (length of unshared suffix) | |
132 ** char pTermSuffix[nSuffix];(unshared suffix of next term) | |
133 ** varint nDoclist; (length of term's associated doclist) | |
134 ** char pDoclist[nDoclist]; (content of doclist) | |
135 ** } | |
136 ** | |
137 ** Here, array { X } means zero or more occurrences of X, adjacent in | |
138 ** memory. | |
139 ** | |
140 ** Leaf nodes are broken into blocks which are stored contiguously in | |
141 ** the %_segments table in sorted order. This means that when the end | |
142 ** of a node is reached, the next term is in the node with the next | |
143 ** greater node id. | |
144 ** | |
145 ** New data is spilled to a new leaf node when the current node | |
146 ** exceeds LEAF_MAX bytes (default 2048). New data which itself is | |
147 ** larger than STANDALONE_MIN (default 1024) is placed in a standalone | |
148 ** node (a leaf node with a single term and doclist). The goal of | |
149 ** these settings is to pack together groups of small doclists while | |
150 ** making it efficient to directly access large doclists. The | |
151 ** assumption is that large doclists represent terms which are more | |
152 ** likely to be query targets. | |
153 ** | |
154 ** TODO(shess) It may be useful for blocking decisions to be more | |
155 ** dynamic. For instance, it may make more sense to have a 2.5k leaf | |
156 ** node rather than splitting into 2k and .5k nodes. My intuition is | |
157 ** that this might extend through 2x or 4x the pagesize. | |
158 ** | |
159 ** | |
160 **** Segment interior nodes **** | |
161 ** Segment interior nodes store blockids for subtree nodes and terms | |
162 ** to describe what data is stored by the each subtree. Interior | |
163 ** nodes are written using InteriorWriter, and read using | |
164 ** InteriorReader. InteriorWriters are created as needed when | |
165 ** SegmentWriter creates new leaf nodes, or when an interior node | |
166 ** itself grows too big and must be split. The format of interior | |
167 ** nodes: | |
168 ** | |
169 ** varint iHeight; (height from leaf level, always >0) | |
170 ** varint iBlockid; (block id of node's leftmost subtree) | |
171 ** optional { | |
172 ** varint nTerm; (length of first term) | |
173 ** char pTerm[nTerm]; (content of first term) | |
174 ** array { | |
175 ** (further terms are delta-encoded) | |
176 ** varint nPrefix; (length of shared prefix with previous term) | |
177 ** varint nSuffix; (length of unshared suffix) | |
178 ** char pTermSuffix[nSuffix]; (unshared suffix of next term) | |
179 ** } | |
180 ** } | |
181 ** | |
182 ** Here, optional { X } means an optional element, while array { X } | |
183 ** means zero or more occurrences of X, adjacent in memory. | |
184 ** | |
185 ** An interior node encodes n terms separating n+1 subtrees. The | |
186 ** subtree blocks are contiguous, so only the first subtree's blockid | |
187 ** is encoded. The subtree at iBlockid will contain all terms less | |
188 ** than the first term encoded (or all terms if no term is encoded). | |
189 ** Otherwise, for terms greater than or equal to pTerm[i] but less | |
190 ** than pTerm[i+1], the subtree for that term will be rooted at | |
191 ** iBlockid+i. Interior nodes only store enough term data to | |
192 ** distinguish adjacent children (if the rightmost term of the left | |
193 ** child is "something", and the leftmost term of the right child is | |
194 ** "wicked", only "w" is stored). | |
195 ** | |
196 ** New data is spilled to a new interior node at the same height when | |
197 ** the current node exceeds INTERIOR_MAX bytes (default 2048). | |
198 ** INTERIOR_MIN_TERMS (default 7) keeps large terms from monopolizing | |
199 ** interior nodes and making the tree too skinny. The interior nodes | |
200 ** at a given height are naturally tracked by interior nodes at | |
201 ** height+1, and so on. | |
202 ** | |
203 ** | |
204 **** Segment directory **** | |
205 ** The segment directory in table %_segdir stores meta-information for | |
206 ** merging and deleting segments, and also the root node of the | |
207 ** segment's tree. | |
208 ** | |
209 ** The root node is the top node of the segment's tree after encoding | |
210 ** the entire segment, restricted to ROOT_MAX bytes (default 1024). | |
211 ** This could be either a leaf node or an interior node. If the top | |
212 ** node requires more than ROOT_MAX bytes, it is flushed to %_segments | |
213 ** and a new root interior node is generated (which should always fit | |
214 ** within ROOT_MAX because it only needs space for 2 varints, the | |
215 ** height and the blockid of the previous root). | |
216 ** | |
217 ** The meta-information in the segment directory is: | |
218 ** level - segment level (see below) | |
219 ** idx - index within level | |
220 ** - (level,idx uniquely identify a segment) | |
221 ** start_block - first leaf node | |
222 ** leaves_end_block - last leaf node | |
223 ** end_block - last block (including interior nodes) | |
224 ** root - contents of root node | |
225 ** | |
226 ** If the root node is a leaf node, then start_block, | |
227 ** leaves_end_block, and end_block are all 0. | |
228 ** | |
229 ** | |
230 **** Segment merging **** | |
231 ** To amortize update costs, segments are grouped into levels and | |
232 ** merged in batches. Each increase in level represents exponentially | |
233 ** more documents. | |
234 ** | |
235 ** New documents (actually, document updates) are tokenized and | |
236 ** written individually (using LeafWriter) to a level 0 segment, with | |
237 ** incrementing idx. When idx reaches MERGE_COUNT (default 16), all | |
238 ** level 0 segments are merged into a single level 1 segment. Level 1 | |
239 ** is populated like level 0, and eventually MERGE_COUNT level 1 | |
240 ** segments are merged to a single level 2 segment (representing | |
241 ** MERGE_COUNT^2 updates), and so on. | |
242 ** | |
243 ** A segment merge traverses all segments at a given level in | |
244 ** parallel, performing a straightforward sorted merge. Since segment | |
245 ** leaf nodes are written in to the %_segments table in order, this | |
246 ** merge traverses the underlying sqlite disk structures efficiently. | |
247 ** After the merge, all segment blocks from the merged level are | |
248 ** deleted. | |
249 ** | |
250 ** MERGE_COUNT controls how often we merge segments. 16 seems to be | |
251 ** somewhat of a sweet spot for insertion performance. 32 and 64 show | |
252 ** very similar performance numbers to 16 on insertion, though they're | |
253 ** a tiny bit slower (perhaps due to more overhead in merge-time | |
254 ** sorting). 8 is about 20% slower than 16, 4 about 50% slower than | |
255 ** 16, 2 about 66% slower than 16. | |
256 ** | |
257 ** At query time, high MERGE_COUNT increases the number of segments | |
258 ** which need to be scanned and merged. For instance, with 100k docs | |
259 ** inserted: | |
260 ** | |
261 ** MERGE_COUNT segments | |
262 ** 16 25 | |
263 ** 8 12 | |
264 ** 4 10 | |
265 ** 2 6 | |
266 ** | |
267 ** This appears to have only a moderate impact on queries for very | |
268 ** frequent terms (which are somewhat dominated by segment merge | |
269 ** costs), and infrequent and non-existent terms still seem to be fast | |
270 ** even with many segments. | |
271 ** | |
272 ** TODO(shess) That said, it would be nice to have a better query-side | |
273 ** argument for MERGE_COUNT of 16. Also, it is possible/likely that | |
274 ** optimizations to things like doclist merging will swing the sweet | |
275 ** spot around. | |
276 ** | |
277 ** | |
278 ** | |
279 **** Handling of deletions and updates **** | |
280 ** Since we're using a segmented structure, with no docid-oriented | |
281 ** index into the term index, we clearly cannot simply update the term | |
282 ** index when a document is deleted or updated. For deletions, we | |
283 ** write an empty doclist (varint(docid) varint(POS_END)), for updates | |
284 ** we simply write the new doclist. Segment merges overwrite older | |
285 ** data for a particular docid with newer data, so deletes or updates | |
286 ** will eventually overtake the earlier data and knock it out. The | |
287 ** query logic likewise merges doclists so that newer data knocks out | |
288 ** older data. | |
289 */ | |
290 | |
291 #include "fts3Int.h" | |
292 #if !defined(SQLITE_CORE) || defined(SQLITE_ENABLE_FTS3) | |
293 | |
294 #if defined(SQLITE_ENABLE_FTS3) && !defined(SQLITE_CORE) | |
295 # define SQLITE_CORE 1 | |
296 #endif | |
297 | |
298 #include <assert.h> | |
299 #include <stdlib.h> | |
300 #include <stddef.h> | |
301 #include <stdio.h> | |
302 #include <string.h> | |
303 #include <stdarg.h> | |
304 | |
305 #include "fts3.h" | |
306 #ifndef SQLITE_CORE | |
307 # include "sqlite3ext.h" | |
308 SQLITE_EXTENSION_INIT1 | |
309 #endif | |
310 | |
311 static int fts3EvalNext(Fts3Cursor *pCsr); | |
312 static int fts3EvalStart(Fts3Cursor *pCsr); | |
313 static int fts3TermSegReaderCursor( | |
314 Fts3Cursor *, const char *, int, int, Fts3MultiSegReader **); | |
315 | |
316 #ifndef SQLITE_AMALGAMATION | |
317 # if defined(SQLITE_DEBUG) | |
318 int sqlite3Fts3Always(int b) { assert( b ); return b; } | |
319 int sqlite3Fts3Never(int b) { assert( !b ); return b; } | |
320 # endif | |
321 #endif | |
322 | |
323 /* | |
324 ** Write a 64-bit variable-length integer to memory starting at p[0]. | |
325 ** The length of data written will be between 1 and FTS3_VARINT_MAX bytes. | |
326 ** The number of bytes written is returned. | |
327 */ | |
328 int sqlite3Fts3PutVarint(char *p, sqlite_int64 v){ | |
329 unsigned char *q = (unsigned char *) p; | |
330 sqlite_uint64 vu = v; | |
331 do{ | |
332 *q++ = (unsigned char) ((vu & 0x7f) | 0x80); | |
333 vu >>= 7; | |
334 }while( vu!=0 ); | |
335 q[-1] &= 0x7f; /* turn off high bit in final byte */ | |
336 assert( q - (unsigned char *)p <= FTS3_VARINT_MAX ); | |
337 return (int) (q - (unsigned char *)p); | |
338 } | |
339 | |
340 #define GETVARINT_STEP(v, ptr, shift, mask1, mask2, var, ret) \ | |
341 v = (v & mask1) | ( (*ptr++) << shift ); \ | |
342 if( (v & mask2)==0 ){ var = v; return ret; } | |
343 #define GETVARINT_INIT(v, ptr, shift, mask1, mask2, var, ret) \ | |
344 v = (*ptr++); \ | |
345 if( (v & mask2)==0 ){ var = v; return ret; } | |
346 | |
347 /* | |
348 ** Read a 64-bit variable-length integer from memory starting at p[0]. | |
349 ** Return the number of bytes read, or 0 on error. | |
350 ** The value is stored in *v. | |
351 */ | |
352 int sqlite3Fts3GetVarint(const char *p, sqlite_int64 *v){ | |
353 const char *pStart = p; | |
354 u32 a; | |
355 u64 b; | |
356 int shift; | |
357 | |
358 GETVARINT_INIT(a, p, 0, 0x00, 0x80, *v, 1); | |
359 GETVARINT_STEP(a, p, 7, 0x7F, 0x4000, *v, 2); | |
360 GETVARINT_STEP(a, p, 14, 0x3FFF, 0x200000, *v, 3); | |
361 GETVARINT_STEP(a, p, 21, 0x1FFFFF, 0x10000000, *v, 4); | |
362 b = (a & 0x0FFFFFFF ); | |
363 | |
364 for(shift=28; shift<=63; shift+=7){ | |
365 u64 c = *p++; | |
366 b += (c&0x7F) << shift; | |
367 if( (c & 0x80)==0 ) break; | |
368 } | |
369 *v = b; | |
370 return (int)(p - pStart); | |
371 } | |
372 | |
373 /* | |
374 ** Similar to sqlite3Fts3GetVarint(), except that the output is truncated to a | |
375 ** 32-bit integer before it is returned. | |
376 */ | |
377 int sqlite3Fts3GetVarint32(const char *p, int *pi){ | |
378 u32 a; | |
379 | |
380 #ifndef fts3GetVarint32 | |
381 GETVARINT_INIT(a, p, 0, 0x00, 0x80, *pi, 1); | |
382 #else | |
383 a = (*p++); | |
384 assert( a & 0x80 ); | |
385 #endif | |
386 | |
387 GETVARINT_STEP(a, p, 7, 0x7F, 0x4000, *pi, 2); | |
388 GETVARINT_STEP(a, p, 14, 0x3FFF, 0x200000, *pi, 3); | |
389 GETVARINT_STEP(a, p, 21, 0x1FFFFF, 0x10000000, *pi, 4); | |
390 a = (a & 0x0FFFFFFF ); | |
391 *pi = (int)(a | ((u32)(*p & 0x0F) << 28)); | |
392 return 5; | |
393 } | |
394 | |
395 /* | |
396 ** Return the number of bytes required to encode v as a varint | |
397 */ | |
398 int sqlite3Fts3VarintLen(sqlite3_uint64 v){ | |
399 int i = 0; | |
400 do{ | |
401 i++; | |
402 v >>= 7; | |
403 }while( v!=0 ); | |
404 return i; | |
405 } | |
406 | |
407 /* | |
408 ** Convert an SQL-style quoted string into a normal string by removing | |
409 ** the quote characters. The conversion is done in-place. If the | |
410 ** input does not begin with a quote character, then this routine | |
411 ** is a no-op. | |
412 ** | |
413 ** Examples: | |
414 ** | |
415 ** "abc" becomes abc | |
416 ** 'xyz' becomes xyz | |
417 ** [pqr] becomes pqr | |
418 ** `mno` becomes mno | |
419 ** | |
420 */ | |
421 void sqlite3Fts3Dequote(char *z){ | |
422 char quote; /* Quote character (if any ) */ | |
423 | |
424 quote = z[0]; | |
425 if( quote=='[' || quote=='\'' || quote=='"' || quote=='`' ){ | |
426 int iIn = 1; /* Index of next byte to read from input */ | |
427 int iOut = 0; /* Index of next byte to write to output */ | |
428 | |
429 /* If the first byte was a '[', then the close-quote character is a ']' */ | |
430 if( quote=='[' ) quote = ']'; | |
431 | |
432 while( z[iIn] ){ | |
433 if( z[iIn]==quote ){ | |
434 if( z[iIn+1]!=quote ) break; | |
435 z[iOut++] = quote; | |
436 iIn += 2; | |
437 }else{ | |
438 z[iOut++] = z[iIn++]; | |
439 } | |
440 } | |
441 z[iOut] = '\0'; | |
442 } | |
443 } | |
444 | |
445 /* | |
446 ** Read a single varint from the doclist at *pp and advance *pp to point | |
447 ** to the first byte past the end of the varint. Add the value of the varint | |
448 ** to *pVal. | |
449 */ | |
450 static void fts3GetDeltaVarint(char **pp, sqlite3_int64 *pVal){ | |
451 sqlite3_int64 iVal; | |
452 *pp += sqlite3Fts3GetVarint(*pp, &iVal); | |
453 *pVal += iVal; | |
454 } | |
455 | |
456 /* | |
457 ** When this function is called, *pp points to the first byte following a | |
458 ** varint that is part of a doclist (or position-list, or any other list | |
459 ** of varints). This function moves *pp to point to the start of that varint, | |
460 ** and sets *pVal by the varint value. | |
461 ** | |
462 ** Argument pStart points to the first byte of the doclist that the | |
463 ** varint is part of. | |
464 */ | |
465 static void fts3GetReverseVarint( | |
466 char **pp, | |
467 char *pStart, | |
468 sqlite3_int64 *pVal | |
469 ){ | |
470 sqlite3_int64 iVal; | |
471 char *p; | |
472 | |
473 /* Pointer p now points at the first byte past the varint we are | |
474 ** interested in. So, unless the doclist is corrupt, the 0x80 bit is | |
475 ** clear on character p[-1]. */ | |
476 for(p = (*pp)-2; p>=pStart && *p&0x80; p--); | |
477 p++; | |
478 *pp = p; | |
479 | |
480 sqlite3Fts3GetVarint(p, &iVal); | |
481 *pVal = iVal; | |
482 } | |
483 | |
484 /* | |
485 ** The xDisconnect() virtual table method. | |
486 */ | |
487 static int fts3DisconnectMethod(sqlite3_vtab *pVtab){ | |
488 Fts3Table *p = (Fts3Table *)pVtab; | |
489 int i; | |
490 | |
491 assert( p->nPendingData==0 ); | |
492 assert( p->pSegments==0 ); | |
493 | |
494 /* Free any prepared statements held */ | |
495 for(i=0; i<SizeofArray(p->aStmt); i++){ | |
496 sqlite3_finalize(p->aStmt[i]); | |
497 } | |
498 sqlite3_free(p->zSegmentsTbl); | |
499 sqlite3_free(p->zReadExprlist); | |
500 sqlite3_free(p->zWriteExprlist); | |
501 sqlite3_free(p->zContentTbl); | |
502 sqlite3_free(p->zLanguageid); | |
503 | |
504 /* Invoke the tokenizer destructor to free the tokenizer. */ | |
505 p->pTokenizer->pModule->xDestroy(p->pTokenizer); | |
506 | |
507 sqlite3_free(p); | |
508 return SQLITE_OK; | |
509 } | |
510 | |
511 /* | |
512 ** Write an error message into *pzErr | |
513 */ | |
514 void sqlite3Fts3ErrMsg(char **pzErr, const char *zFormat, ...){ | |
515 va_list ap; | |
516 sqlite3_free(*pzErr); | |
517 va_start(ap, zFormat); | |
518 *pzErr = sqlite3_vmprintf(zFormat, ap); | |
519 va_end(ap); | |
520 } | |
521 | |
522 /* | |
523 ** Construct one or more SQL statements from the format string given | |
524 ** and then evaluate those statements. The success code is written | |
525 ** into *pRc. | |
526 ** | |
527 ** If *pRc is initially non-zero then this routine is a no-op. | |
528 */ | |
529 static void fts3DbExec( | |
530 int *pRc, /* Success code */ | |
531 sqlite3 *db, /* Database in which to run SQL */ | |
532 const char *zFormat, /* Format string for SQL */ | |
533 ... /* Arguments to the format string */ | |
534 ){ | |
535 va_list ap; | |
536 char *zSql; | |
537 if( *pRc ) return; | |
538 va_start(ap, zFormat); | |
539 zSql = sqlite3_vmprintf(zFormat, ap); | |
540 va_end(ap); | |
541 if( zSql==0 ){ | |
542 *pRc = SQLITE_NOMEM; | |
543 }else{ | |
544 *pRc = sqlite3_exec(db, zSql, 0, 0, 0); | |
545 sqlite3_free(zSql); | |
546 } | |
547 } | |
548 | |
549 /* | |
550 ** The xDestroy() virtual table method. | |
551 */ | |
552 static int fts3DestroyMethod(sqlite3_vtab *pVtab){ | |
553 Fts3Table *p = (Fts3Table *)pVtab; | |
554 int rc = SQLITE_OK; /* Return code */ | |
555 const char *zDb = p->zDb; /* Name of database (e.g. "main", "temp") */ | |
556 sqlite3 *db = p->db; /* Database handle */ | |
557 | |
558 /* Drop the shadow tables */ | |
559 if( p->zContentTbl==0 ){ | |
560 fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_content'", zDb, p->zName); | |
561 } | |
562 fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_segments'", zDb,p->zName); | |
563 fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_segdir'", zDb, p->zName); | |
564 fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_docsize'", zDb, p->zName); | |
565 fts3DbExec(&rc, db, "DROP TABLE IF EXISTS %Q.'%q_stat'", zDb, p->zName); | |
566 | |
567 /* If everything has worked, invoke fts3DisconnectMethod() to free the | |
568 ** memory associated with the Fts3Table structure and return SQLITE_OK. | |
569 ** Otherwise, return an SQLite error code. | |
570 */ | |
571 return (rc==SQLITE_OK ? fts3DisconnectMethod(pVtab) : rc); | |
572 } | |
573 | |
574 | |
575 /* | |
576 ** Invoke sqlite3_declare_vtab() to declare the schema for the FTS3 table | |
577 ** passed as the first argument. This is done as part of the xConnect() | |
578 ** and xCreate() methods. | |
579 ** | |
580 ** If *pRc is non-zero when this function is called, it is a no-op. | |
581 ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc | |
582 ** before returning. | |
583 */ | |
584 static void fts3DeclareVtab(int *pRc, Fts3Table *p){ | |
585 if( *pRc==SQLITE_OK ){ | |
586 int i; /* Iterator variable */ | |
587 int rc; /* Return code */ | |
588 char *zSql; /* SQL statement passed to declare_vtab() */ | |
589 char *zCols; /* List of user defined columns */ | |
590 const char *zLanguageid; | |
591 | |
592 zLanguageid = (p->zLanguageid ? p->zLanguageid : "__langid"); | |
593 sqlite3_vtab_config(p->db, SQLITE_VTAB_CONSTRAINT_SUPPORT, 1); | |
594 | |
595 /* Create a list of user columns for the virtual table */ | |
596 zCols = sqlite3_mprintf("%Q, ", p->azColumn[0]); | |
597 for(i=1; zCols && i<p->nColumn; i++){ | |
598 zCols = sqlite3_mprintf("%z%Q, ", zCols, p->azColumn[i]); | |
599 } | |
600 | |
601 /* Create the whole "CREATE TABLE" statement to pass to SQLite */ | |
602 zSql = sqlite3_mprintf( | |
603 "CREATE TABLE x(%s %Q HIDDEN, docid HIDDEN, %Q HIDDEN)", | |
604 zCols, p->zName, zLanguageid | |
605 ); | |
606 if( !zCols || !zSql ){ | |
607 rc = SQLITE_NOMEM; | |
608 }else{ | |
609 rc = sqlite3_declare_vtab(p->db, zSql); | |
610 } | |
611 | |
612 sqlite3_free(zSql); | |
613 sqlite3_free(zCols); | |
614 *pRc = rc; | |
615 } | |
616 } | |
617 | |
618 /* | |
619 ** Create the %_stat table if it does not already exist. | |
620 */ | |
621 void sqlite3Fts3CreateStatTable(int *pRc, Fts3Table *p){ | |
622 fts3DbExec(pRc, p->db, | |
623 "CREATE TABLE IF NOT EXISTS %Q.'%q_stat'" | |
624 "(id INTEGER PRIMARY KEY, value BLOB);", | |
625 p->zDb, p->zName | |
626 ); | |
627 if( (*pRc)==SQLITE_OK ) p->bHasStat = 1; | |
628 } | |
629 | |
630 /* | |
631 ** Create the backing store tables (%_content, %_segments and %_segdir) | |
632 ** required by the FTS3 table passed as the only argument. This is done | |
633 ** as part of the vtab xCreate() method. | |
634 ** | |
635 ** If the p->bHasDocsize boolean is true (indicating that this is an | |
636 ** FTS4 table, not an FTS3 table) then also create the %_docsize and | |
637 ** %_stat tables required by FTS4. | |
638 */ | |
639 static int fts3CreateTables(Fts3Table *p){ | |
640 int rc = SQLITE_OK; /* Return code */ | |
641 int i; /* Iterator variable */ | |
642 sqlite3 *db = p->db; /* The database connection */ | |
643 | |
644 if( p->zContentTbl==0 ){ | |
645 const char *zLanguageid = p->zLanguageid; | |
646 char *zContentCols; /* Columns of %_content table */ | |
647 | |
648 /* Create a list of user columns for the content table */ | |
649 zContentCols = sqlite3_mprintf("docid INTEGER PRIMARY KEY"); | |
650 for(i=0; zContentCols && i<p->nColumn; i++){ | |
651 char *z = p->azColumn[i]; | |
652 zContentCols = sqlite3_mprintf("%z, 'c%d%q'", zContentCols, i, z); | |
653 } | |
654 if( zLanguageid && zContentCols ){ | |
655 zContentCols = sqlite3_mprintf("%z, langid", zContentCols, zLanguageid); | |
656 } | |
657 if( zContentCols==0 ) rc = SQLITE_NOMEM; | |
658 | |
659 /* Create the content table */ | |
660 fts3DbExec(&rc, db, | |
661 "CREATE TABLE %Q.'%q_content'(%s)", | |
662 p->zDb, p->zName, zContentCols | |
663 ); | |
664 sqlite3_free(zContentCols); | |
665 } | |
666 | |
667 /* Create other tables */ | |
668 fts3DbExec(&rc, db, | |
669 "CREATE TABLE %Q.'%q_segments'(blockid INTEGER PRIMARY KEY, block BLOB);", | |
670 p->zDb, p->zName | |
671 ); | |
672 fts3DbExec(&rc, db, | |
673 "CREATE TABLE %Q.'%q_segdir'(" | |
674 "level INTEGER," | |
675 "idx INTEGER," | |
676 "start_block INTEGER," | |
677 "leaves_end_block INTEGER," | |
678 "end_block INTEGER," | |
679 "root BLOB," | |
680 "PRIMARY KEY(level, idx)" | |
681 ");", | |
682 p->zDb, p->zName | |
683 ); | |
684 if( p->bHasDocsize ){ | |
685 fts3DbExec(&rc, db, | |
686 "CREATE TABLE %Q.'%q_docsize'(docid INTEGER PRIMARY KEY, size BLOB);", | |
687 p->zDb, p->zName | |
688 ); | |
689 } | |
690 assert( p->bHasStat==p->bFts4 ); | |
691 if( p->bHasStat ){ | |
692 sqlite3Fts3CreateStatTable(&rc, p); | |
693 } | |
694 return rc; | |
695 } | |
696 | |
697 /* | |
698 ** Store the current database page-size in bytes in p->nPgsz. | |
699 ** | |
700 ** If *pRc is non-zero when this function is called, it is a no-op. | |
701 ** Otherwise, if an error occurs, an SQLite error code is stored in *pRc | |
702 ** before returning. | |
703 */ | |
704 static void fts3DatabasePageSize(int *pRc, Fts3Table *p){ | |
705 if( *pRc==SQLITE_OK ){ | |
706 int rc; /* Return code */ | |
707 char *zSql; /* SQL text "PRAGMA %Q.page_size" */ | |
708 sqlite3_stmt *pStmt; /* Compiled "PRAGMA %Q.page_size" statement */ | |
709 | |
710 zSql = sqlite3_mprintf("PRAGMA %Q.page_size", p->zDb); | |
711 if( !zSql ){ | |
712 rc = SQLITE_NOMEM; | |
713 }else{ | |
714 rc = sqlite3_prepare(p->db, zSql, -1, &pStmt, 0); | |
715 if( rc==SQLITE_OK ){ | |
716 sqlite3_step(pStmt); | |
717 p->nPgsz = sqlite3_column_int(pStmt, 0); | |
718 rc = sqlite3_finalize(pStmt); | |
719 }else if( rc==SQLITE_AUTH ){ | |
720 p->nPgsz = 1024; | |
721 rc = SQLITE_OK; | |
722 } | |
723 } | |
724 assert( p->nPgsz>0 || rc!=SQLITE_OK ); | |
725 sqlite3_free(zSql); | |
726 *pRc = rc; | |
727 } | |
728 } | |
729 | |
730 /* | |
731 ** "Special" FTS4 arguments are column specifications of the following form: | |
732 ** | |
733 ** <key> = <value> | |
734 ** | |
735 ** There may not be whitespace surrounding the "=" character. The <value> | |
736 ** term may be quoted, but the <key> may not. | |
737 */ | |
738 static int fts3IsSpecialColumn( | |
739 const char *z, | |
740 int *pnKey, | |
741 char **pzValue | |
742 ){ | |
743 char *zValue; | |
744 const char *zCsr = z; | |
745 | |
746 while( *zCsr!='=' ){ | |
747 if( *zCsr=='\0' ) return 0; | |
748 zCsr++; | |
749 } | |
750 | |
751 *pnKey = (int)(zCsr-z); | |
752 zValue = sqlite3_mprintf("%s", &zCsr[1]); | |
753 if( zValue ){ | |
754 sqlite3Fts3Dequote(zValue); | |
755 } | |
756 *pzValue = zValue; | |
757 return 1; | |
758 } | |
759 | |
760 /* | |
761 ** Append the output of a printf() style formatting to an existing string. | |
762 */ | |
763 static void fts3Appendf( | |
764 int *pRc, /* IN/OUT: Error code */ | |
765 char **pz, /* IN/OUT: Pointer to string buffer */ | |
766 const char *zFormat, /* Printf format string to append */ | |
767 ... /* Arguments for printf format string */ | |
768 ){ | |
769 if( *pRc==SQLITE_OK ){ | |
770 va_list ap; | |
771 char *z; | |
772 va_start(ap, zFormat); | |
773 z = sqlite3_vmprintf(zFormat, ap); | |
774 va_end(ap); | |
775 if( z && *pz ){ | |
776 char *z2 = sqlite3_mprintf("%s%s", *pz, z); | |
777 sqlite3_free(z); | |
778 z = z2; | |
779 } | |
780 if( z==0 ) *pRc = SQLITE_NOMEM; | |
781 sqlite3_free(*pz); | |
782 *pz = z; | |
783 } | |
784 } | |
785 | |
786 /* | |
787 ** Return a copy of input string zInput enclosed in double-quotes (") and | |
788 ** with all double quote characters escaped. For example: | |
789 ** | |
790 ** fts3QuoteId("un \"zip\"") -> "un \"\"zip\"\"" | |
791 ** | |
792 ** The pointer returned points to memory obtained from sqlite3_malloc(). It | |
793 ** is the callers responsibility to call sqlite3_free() to release this | |
794 ** memory. | |
795 */ | |
796 static char *fts3QuoteId(char const *zInput){ | |
797 int nRet; | |
798 char *zRet; | |
799 nRet = 2 + (int)strlen(zInput)*2 + 1; | |
800 zRet = sqlite3_malloc(nRet); | |
801 if( zRet ){ | |
802 int i; | |
803 char *z = zRet; | |
804 *(z++) = '"'; | |
805 for(i=0; zInput[i]; i++){ | |
806 if( zInput[i]=='"' ) *(z++) = '"'; | |
807 *(z++) = zInput[i]; | |
808 } | |
809 *(z++) = '"'; | |
810 *(z++) = '\0'; | |
811 } | |
812 return zRet; | |
813 } | |
814 | |
815 /* | |
816 ** Return a list of comma separated SQL expressions and a FROM clause that | |
817 ** could be used in a SELECT statement such as the following: | |
818 ** | |
819 ** SELECT <list of expressions> FROM %_content AS x ... | |
820 ** | |
821 ** to return the docid, followed by each column of text data in order | |
822 ** from left to write. If parameter zFunc is not NULL, then instead of | |
823 ** being returned directly each column of text data is passed to an SQL | |
824 ** function named zFunc first. For example, if zFunc is "unzip" and the | |
825 ** table has the three user-defined columns "a", "b", and "c", the following | |
826 ** string is returned: | |
827 ** | |
828 ** "docid, unzip(x.'a'), unzip(x.'b'), unzip(x.'c') FROM %_content AS x" | |
829 ** | |
830 ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It | |
831 ** is the responsibility of the caller to eventually free it. | |
832 ** | |
833 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and | |
834 ** a NULL pointer is returned). Otherwise, if an OOM error is encountered | |
835 ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If | |
836 ** no error occurs, *pRc is left unmodified. | |
837 */ | |
838 static char *fts3ReadExprList(Fts3Table *p, const char *zFunc, int *pRc){ | |
839 char *zRet = 0; | |
840 char *zFree = 0; | |
841 char *zFunction; | |
842 int i; | |
843 | |
844 if( p->zContentTbl==0 ){ | |
845 if( !zFunc ){ | |
846 zFunction = ""; | |
847 }else{ | |
848 zFree = zFunction = fts3QuoteId(zFunc); | |
849 } | |
850 fts3Appendf(pRc, &zRet, "docid"); | |
851 for(i=0; i<p->nColumn; i++){ | |
852 fts3Appendf(pRc, &zRet, ",%s(x.'c%d%q')", zFunction, i, p->azColumn[i]); | |
853 } | |
854 if( p->zLanguageid ){ | |
855 fts3Appendf(pRc, &zRet, ", x.%Q", "langid"); | |
856 } | |
857 sqlite3_free(zFree); | |
858 }else{ | |
859 fts3Appendf(pRc, &zRet, "rowid"); | |
860 for(i=0; i<p->nColumn; i++){ | |
861 fts3Appendf(pRc, &zRet, ", x.'%q'", p->azColumn[i]); | |
862 } | |
863 if( p->zLanguageid ){ | |
864 fts3Appendf(pRc, &zRet, ", x.%Q", p->zLanguageid); | |
865 } | |
866 } | |
867 fts3Appendf(pRc, &zRet, " FROM '%q'.'%q%s' AS x", | |
868 p->zDb, | |
869 (p->zContentTbl ? p->zContentTbl : p->zName), | |
870 (p->zContentTbl ? "" : "_content") | |
871 ); | |
872 return zRet; | |
873 } | |
874 | |
875 /* | |
876 ** Return a list of N comma separated question marks, where N is the number | |
877 ** of columns in the %_content table (one for the docid plus one for each | |
878 ** user-defined text column). | |
879 ** | |
880 ** If argument zFunc is not NULL, then all but the first question mark | |
881 ** is preceded by zFunc and an open bracket, and followed by a closed | |
882 ** bracket. For example, if zFunc is "zip" and the FTS3 table has three | |
883 ** user-defined text columns, the following string is returned: | |
884 ** | |
885 ** "?, zip(?), zip(?), zip(?)" | |
886 ** | |
887 ** The pointer returned points to a buffer allocated by sqlite3_malloc(). It | |
888 ** is the responsibility of the caller to eventually free it. | |
889 ** | |
890 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op (and | |
891 ** a NULL pointer is returned). Otherwise, if an OOM error is encountered | |
892 ** by this function, NULL is returned and *pRc is set to SQLITE_NOMEM. If | |
893 ** no error occurs, *pRc is left unmodified. | |
894 */ | |
895 static char *fts3WriteExprList(Fts3Table *p, const char *zFunc, int *pRc){ | |
896 char *zRet = 0; | |
897 char *zFree = 0; | |
898 char *zFunction; | |
899 int i; | |
900 | |
901 if( !zFunc ){ | |
902 zFunction = ""; | |
903 }else{ | |
904 zFree = zFunction = fts3QuoteId(zFunc); | |
905 } | |
906 fts3Appendf(pRc, &zRet, "?"); | |
907 for(i=0; i<p->nColumn; i++){ | |
908 fts3Appendf(pRc, &zRet, ",%s(?)", zFunction); | |
909 } | |
910 if( p->zLanguageid ){ | |
911 fts3Appendf(pRc, &zRet, ", ?"); | |
912 } | |
913 sqlite3_free(zFree); | |
914 return zRet; | |
915 } | |
916 | |
917 /* | |
918 ** This function interprets the string at (*pp) as a non-negative integer | |
919 ** value. It reads the integer and sets *pnOut to the value read, then | |
920 ** sets *pp to point to the byte immediately following the last byte of | |
921 ** the integer value. | |
922 ** | |
923 ** Only decimal digits ('0'..'9') may be part of an integer value. | |
924 ** | |
925 ** If *pp does not being with a decimal digit SQLITE_ERROR is returned and | |
926 ** the output value undefined. Otherwise SQLITE_OK is returned. | |
927 ** | |
928 ** This function is used when parsing the "prefix=" FTS4 parameter. | |
929 */ | |
930 static int fts3GobbleInt(const char **pp, int *pnOut){ | |
931 const int MAX_NPREFIX = 10000000; | |
932 const char *p; /* Iterator pointer */ | |
933 int nInt = 0; /* Output value */ | |
934 | |
935 for(p=*pp; p[0]>='0' && p[0]<='9'; p++){ | |
936 nInt = nInt * 10 + (p[0] - '0'); | |
937 if( nInt>MAX_NPREFIX ){ | |
938 nInt = 0; | |
939 break; | |
940 } | |
941 } | |
942 if( p==*pp ) return SQLITE_ERROR; | |
943 *pnOut = nInt; | |
944 *pp = p; | |
945 return SQLITE_OK; | |
946 } | |
947 | |
948 /* | |
949 ** This function is called to allocate an array of Fts3Index structures | |
950 ** representing the indexes maintained by the current FTS table. FTS tables | |
951 ** always maintain the main "terms" index, but may also maintain one or | |
952 ** more "prefix" indexes, depending on the value of the "prefix=" parameter | |
953 ** (if any) specified as part of the CREATE VIRTUAL TABLE statement. | |
954 ** | |
955 ** Argument zParam is passed the value of the "prefix=" option if one was | |
956 ** specified, or NULL otherwise. | |
957 ** | |
958 ** If no error occurs, SQLITE_OK is returned and *apIndex set to point to | |
959 ** the allocated array. *pnIndex is set to the number of elements in the | |
960 ** array. If an error does occur, an SQLite error code is returned. | |
961 ** | |
962 ** Regardless of whether or not an error is returned, it is the responsibility | |
963 ** of the caller to call sqlite3_free() on the output array to free it. | |
964 */ | |
965 static int fts3PrefixParameter( | |
966 const char *zParam, /* ABC in prefix=ABC parameter to parse */ | |
967 int *pnIndex, /* OUT: size of *apIndex[] array */ | |
968 struct Fts3Index **apIndex /* OUT: Array of indexes for this table */ | |
969 ){ | |
970 struct Fts3Index *aIndex; /* Allocated array */ | |
971 int nIndex = 1; /* Number of entries in array */ | |
972 | |
973 if( zParam && zParam[0] ){ | |
974 const char *p; | |
975 nIndex++; | |
976 for(p=zParam; *p; p++){ | |
977 if( *p==',' ) nIndex++; | |
978 } | |
979 } | |
980 | |
981 aIndex = sqlite3_malloc(sizeof(struct Fts3Index) * nIndex); | |
982 *apIndex = aIndex; | |
983 if( !aIndex ){ | |
984 return SQLITE_NOMEM; | |
985 } | |
986 | |
987 memset(aIndex, 0, sizeof(struct Fts3Index) * nIndex); | |
988 if( zParam ){ | |
989 const char *p = zParam; | |
990 int i; | |
991 for(i=1; i<nIndex; i++){ | |
992 int nPrefix = 0; | |
993 if( fts3GobbleInt(&p, &nPrefix) ) return SQLITE_ERROR; | |
994 assert( nPrefix>=0 ); | |
995 if( nPrefix==0 ){ | |
996 nIndex--; | |
997 i--; | |
998 }else{ | |
999 aIndex[i].nPrefix = nPrefix; | |
1000 } | |
1001 p++; | |
1002 } | |
1003 } | |
1004 | |
1005 *pnIndex = nIndex; | |
1006 return SQLITE_OK; | |
1007 } | |
1008 | |
1009 /* | |
1010 ** This function is called when initializing an FTS4 table that uses the | |
1011 ** content=xxx option. It determines the number of and names of the columns | |
1012 ** of the new FTS4 table. | |
1013 ** | |
1014 ** The third argument passed to this function is the value passed to the | |
1015 ** config=xxx option (i.e. "xxx"). This function queries the database for | |
1016 ** a table of that name. If found, the output variables are populated | |
1017 ** as follows: | |
1018 ** | |
1019 ** *pnCol: Set to the number of columns table xxx has, | |
1020 ** | |
1021 ** *pnStr: Set to the total amount of space required to store a copy | |
1022 ** of each columns name, including the nul-terminator. | |
1023 ** | |
1024 ** *pazCol: Set to point to an array of *pnCol strings. Each string is | |
1025 ** the name of the corresponding column in table xxx. The array | |
1026 ** and its contents are allocated using a single allocation. It | |
1027 ** is the responsibility of the caller to free this allocation | |
1028 ** by eventually passing the *pazCol value to sqlite3_free(). | |
1029 ** | |
1030 ** If the table cannot be found, an error code is returned and the output | |
1031 ** variables are undefined. Or, if an OOM is encountered, SQLITE_NOMEM is | |
1032 ** returned (and the output variables are undefined). | |
1033 */ | |
1034 static int fts3ContentColumns( | |
1035 sqlite3 *db, /* Database handle */ | |
1036 const char *zDb, /* Name of db (i.e. "main", "temp" etc.) */ | |
1037 const char *zTbl, /* Name of content table */ | |
1038 const char ***pazCol, /* OUT: Malloc'd array of column names */ | |
1039 int *pnCol, /* OUT: Size of array *pazCol */ | |
1040 int *pnStr, /* OUT: Bytes of string content */ | |
1041 char **pzErr /* OUT: error message */ | |
1042 ){ | |
1043 int rc = SQLITE_OK; /* Return code */ | |
1044 char *zSql; /* "SELECT *" statement on zTbl */ | |
1045 sqlite3_stmt *pStmt = 0; /* Compiled version of zSql */ | |
1046 | |
1047 zSql = sqlite3_mprintf("SELECT * FROM %Q.%Q", zDb, zTbl); | |
1048 if( !zSql ){ | |
1049 rc = SQLITE_NOMEM; | |
1050 }else{ | |
1051 rc = sqlite3_prepare(db, zSql, -1, &pStmt, 0); | |
1052 if( rc!=SQLITE_OK ){ | |
1053 sqlite3Fts3ErrMsg(pzErr, "%s", sqlite3_errmsg(db)); | |
1054 } | |
1055 } | |
1056 sqlite3_free(zSql); | |
1057 | |
1058 if( rc==SQLITE_OK ){ | |
1059 const char **azCol; /* Output array */ | |
1060 int nStr = 0; /* Size of all column names (incl. 0x00) */ | |
1061 int nCol; /* Number of table columns */ | |
1062 int i; /* Used to iterate through columns */ | |
1063 | |
1064 /* Loop through the returned columns. Set nStr to the number of bytes of | |
1065 ** space required to store a copy of each column name, including the | |
1066 ** nul-terminator byte. */ | |
1067 nCol = sqlite3_column_count(pStmt); | |
1068 for(i=0; i<nCol; i++){ | |
1069 const char *zCol = sqlite3_column_name(pStmt, i); | |
1070 nStr += (int)strlen(zCol) + 1; | |
1071 } | |
1072 | |
1073 /* Allocate and populate the array to return. */ | |
1074 azCol = (const char **)sqlite3_malloc(sizeof(char *) * nCol + nStr); | |
1075 if( azCol==0 ){ | |
1076 rc = SQLITE_NOMEM; | |
1077 }else{ | |
1078 char *p = (char *)&azCol[nCol]; | |
1079 for(i=0; i<nCol; i++){ | |
1080 const char *zCol = sqlite3_column_name(pStmt, i); | |
1081 int n = (int)strlen(zCol)+1; | |
1082 memcpy(p, zCol, n); | |
1083 azCol[i] = p; | |
1084 p += n; | |
1085 } | |
1086 } | |
1087 sqlite3_finalize(pStmt); | |
1088 | |
1089 /* Set the output variables. */ | |
1090 *pnCol = nCol; | |
1091 *pnStr = nStr; | |
1092 *pazCol = azCol; | |
1093 } | |
1094 | |
1095 return rc; | |
1096 } | |
1097 | |
1098 /* | |
1099 ** This function is the implementation of both the xConnect and xCreate | |
1100 ** methods of the FTS3 virtual table. | |
1101 ** | |
1102 ** The argv[] array contains the following: | |
1103 ** | |
1104 ** argv[0] -> module name ("fts3" or "fts4") | |
1105 ** argv[1] -> database name | |
1106 ** argv[2] -> table name | |
1107 ** argv[...] -> "column name" and other module argument fields. | |
1108 */ | |
1109 static int fts3InitVtab( | |
1110 int isCreate, /* True for xCreate, false for xConnect */ | |
1111 sqlite3 *db, /* The SQLite database connection */ | |
1112 void *pAux, /* Hash table containing tokenizers */ | |
1113 int argc, /* Number of elements in argv array */ | |
1114 const char * const *argv, /* xCreate/xConnect argument array */ | |
1115 sqlite3_vtab **ppVTab, /* Write the resulting vtab structure here */ | |
1116 char **pzErr /* Write any error message here */ | |
1117 ){ | |
1118 Fts3Hash *pHash = (Fts3Hash *)pAux; | |
1119 Fts3Table *p = 0; /* Pointer to allocated vtab */ | |
1120 int rc = SQLITE_OK; /* Return code */ | |
1121 int i; /* Iterator variable */ | |
1122 int nByte; /* Size of allocation used for *p */ | |
1123 int iCol; /* Column index */ | |
1124 int nString = 0; /* Bytes required to hold all column names */ | |
1125 int nCol = 0; /* Number of columns in the FTS table */ | |
1126 char *zCsr; /* Space for holding column names */ | |
1127 int nDb; /* Bytes required to hold database name */ | |
1128 int nName; /* Bytes required to hold table name */ | |
1129 int isFts4 = (argv[0][3]=='4'); /* True for FTS4, false for FTS3 */ | |
1130 const char **aCol; /* Array of column names */ | |
1131 sqlite3_tokenizer *pTokenizer = 0; /* Tokenizer for this table */ | |
1132 | |
1133 int nIndex = 0; /* Size of aIndex[] array */ | |
1134 struct Fts3Index *aIndex = 0; /* Array of indexes for this table */ | |
1135 | |
1136 /* The results of parsing supported FTS4 key=value options: */ | |
1137 int bNoDocsize = 0; /* True to omit %_docsize table */ | |
1138 int bDescIdx = 0; /* True to store descending indexes */ | |
1139 char *zPrefix = 0; /* Prefix parameter value (or NULL) */ | |
1140 char *zCompress = 0; /* compress=? parameter (or NULL) */ | |
1141 char *zUncompress = 0; /* uncompress=? parameter (or NULL) */ | |
1142 char *zContent = 0; /* content=? parameter (or NULL) */ | |
1143 char *zLanguageid = 0; /* languageid=? parameter (or NULL) */ | |
1144 char **azNotindexed = 0; /* The set of notindexed= columns */ | |
1145 int nNotindexed = 0; /* Size of azNotindexed[] array */ | |
1146 | |
1147 assert( strlen(argv[0])==4 ); | |
1148 assert( (sqlite3_strnicmp(argv[0], "fts4", 4)==0 && isFts4) | |
1149 || (sqlite3_strnicmp(argv[0], "fts3", 4)==0 && !isFts4) | |
1150 ); | |
1151 | |
1152 nDb = (int)strlen(argv[1]) + 1; | |
1153 nName = (int)strlen(argv[2]) + 1; | |
1154 | |
1155 nByte = sizeof(const char *) * (argc-2); | |
1156 aCol = (const char **)sqlite3_malloc(nByte); | |
1157 if( aCol ){ | |
1158 memset((void*)aCol, 0, nByte); | |
1159 azNotindexed = (char **)sqlite3_malloc(nByte); | |
1160 } | |
1161 if( azNotindexed ){ | |
1162 memset(azNotindexed, 0, nByte); | |
1163 } | |
1164 if( !aCol || !azNotindexed ){ | |
1165 rc = SQLITE_NOMEM; | |
1166 goto fts3_init_out; | |
1167 } | |
1168 | |
1169 /* Loop through all of the arguments passed by the user to the FTS3/4 | |
1170 ** module (i.e. all the column names and special arguments). This loop | |
1171 ** does the following: | |
1172 ** | |
1173 ** + Figures out the number of columns the FTSX table will have, and | |
1174 ** the number of bytes of space that must be allocated to store copies | |
1175 ** of the column names. | |
1176 ** | |
1177 ** + If there is a tokenizer specification included in the arguments, | |
1178 ** initializes the tokenizer pTokenizer. | |
1179 */ | |
1180 for(i=3; rc==SQLITE_OK && i<argc; i++){ | |
1181 char const *z = argv[i]; | |
1182 int nKey; | |
1183 char *zVal; | |
1184 | |
1185 /* Check if this is a tokenizer specification */ | |
1186 if( !pTokenizer | |
1187 && strlen(z)>8 | |
1188 && 0==sqlite3_strnicmp(z, "tokenize", 8) | |
1189 && 0==sqlite3Fts3IsIdChar(z[8]) | |
1190 ){ | |
1191 rc = sqlite3Fts3InitTokenizer(pHash, &z[9], &pTokenizer, pzErr); | |
1192 } | |
1193 | |
1194 /* Check if it is an FTS4 special argument. */ | |
1195 else if( isFts4 && fts3IsSpecialColumn(z, &nKey, &zVal) ){ | |
1196 struct Fts4Option { | |
1197 const char *zOpt; | |
1198 int nOpt; | |
1199 } aFts4Opt[] = { | |
1200 { "matchinfo", 9 }, /* 0 -> MATCHINFO */ | |
1201 { "prefix", 6 }, /* 1 -> PREFIX */ | |
1202 { "compress", 8 }, /* 2 -> COMPRESS */ | |
1203 { "uncompress", 10 }, /* 3 -> UNCOMPRESS */ | |
1204 { "order", 5 }, /* 4 -> ORDER */ | |
1205 { "content", 7 }, /* 5 -> CONTENT */ | |
1206 { "languageid", 10 }, /* 6 -> LANGUAGEID */ | |
1207 { "notindexed", 10 } /* 7 -> NOTINDEXED */ | |
1208 }; | |
1209 | |
1210 int iOpt; | |
1211 if( !zVal ){ | |
1212 rc = SQLITE_NOMEM; | |
1213 }else{ | |
1214 for(iOpt=0; iOpt<SizeofArray(aFts4Opt); iOpt++){ | |
1215 struct Fts4Option *pOp = &aFts4Opt[iOpt]; | |
1216 if( nKey==pOp->nOpt && !sqlite3_strnicmp(z, pOp->zOpt, pOp->nOpt) ){ | |
1217 break; | |
1218 } | |
1219 } | |
1220 if( iOpt==SizeofArray(aFts4Opt) ){ | |
1221 sqlite3Fts3ErrMsg(pzErr, "unrecognized parameter: %s", z); | |
1222 rc = SQLITE_ERROR; | |
1223 }else{ | |
1224 switch( iOpt ){ | |
1225 case 0: /* MATCHINFO */ | |
1226 if( strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "fts3", 4) ){ | |
1227 sqlite3Fts3ErrMsg(pzErr, "unrecognized matchinfo: %s", zVal); | |
1228 rc = SQLITE_ERROR; | |
1229 } | |
1230 bNoDocsize = 1; | |
1231 break; | |
1232 | |
1233 case 1: /* PREFIX */ | |
1234 sqlite3_free(zPrefix); | |
1235 zPrefix = zVal; | |
1236 zVal = 0; | |
1237 break; | |
1238 | |
1239 case 2: /* COMPRESS */ | |
1240 sqlite3_free(zCompress); | |
1241 zCompress = zVal; | |
1242 zVal = 0; | |
1243 break; | |
1244 | |
1245 case 3: /* UNCOMPRESS */ | |
1246 sqlite3_free(zUncompress); | |
1247 zUncompress = zVal; | |
1248 zVal = 0; | |
1249 break; | |
1250 | |
1251 case 4: /* ORDER */ | |
1252 if( (strlen(zVal)!=3 || sqlite3_strnicmp(zVal, "asc", 3)) | |
1253 && (strlen(zVal)!=4 || sqlite3_strnicmp(zVal, "desc", 4)) | |
1254 ){ | |
1255 sqlite3Fts3ErrMsg(pzErr, "unrecognized order: %s", zVal); | |
1256 rc = SQLITE_ERROR; | |
1257 } | |
1258 bDescIdx = (zVal[0]=='d' || zVal[0]=='D'); | |
1259 break; | |
1260 | |
1261 case 5: /* CONTENT */ | |
1262 sqlite3_free(zContent); | |
1263 zContent = zVal; | |
1264 zVal = 0; | |
1265 break; | |
1266 | |
1267 case 6: /* LANGUAGEID */ | |
1268 assert( iOpt==6 ); | |
1269 sqlite3_free(zLanguageid); | |
1270 zLanguageid = zVal; | |
1271 zVal = 0; | |
1272 break; | |
1273 | |
1274 case 7: /* NOTINDEXED */ | |
1275 azNotindexed[nNotindexed++] = zVal; | |
1276 zVal = 0; | |
1277 break; | |
1278 } | |
1279 } | |
1280 sqlite3_free(zVal); | |
1281 } | |
1282 } | |
1283 | |
1284 /* Otherwise, the argument is a column name. */ | |
1285 else { | |
1286 nString += (int)(strlen(z) + 1); | |
1287 aCol[nCol++] = z; | |
1288 } | |
1289 } | |
1290 | |
1291 /* If a content=xxx option was specified, the following: | |
1292 ** | |
1293 ** 1. Ignore any compress= and uncompress= options. | |
1294 ** | |
1295 ** 2. If no column names were specified as part of the CREATE VIRTUAL | |
1296 ** TABLE statement, use all columns from the content table. | |
1297 */ | |
1298 if( rc==SQLITE_OK && zContent ){ | |
1299 sqlite3_free(zCompress); | |
1300 sqlite3_free(zUncompress); | |
1301 zCompress = 0; | |
1302 zUncompress = 0; | |
1303 if( nCol==0 ){ | |
1304 sqlite3_free((void*)aCol); | |
1305 aCol = 0; | |
1306 rc = fts3ContentColumns(db, argv[1], zContent,&aCol,&nCol,&nString,pzErr); | |
1307 | |
1308 /* If a languageid= option was specified, remove the language id | |
1309 ** column from the aCol[] array. */ | |
1310 if( rc==SQLITE_OK && zLanguageid ){ | |
1311 int j; | |
1312 for(j=0; j<nCol; j++){ | |
1313 if( sqlite3_stricmp(zLanguageid, aCol[j])==0 ){ | |
1314 int k; | |
1315 for(k=j; k<nCol; k++) aCol[k] = aCol[k+1]; | |
1316 nCol--; | |
1317 break; | |
1318 } | |
1319 } | |
1320 } | |
1321 } | |
1322 } | |
1323 if( rc!=SQLITE_OK ) goto fts3_init_out; | |
1324 | |
1325 if( nCol==0 ){ | |
1326 assert( nString==0 ); | |
1327 aCol[0] = "content"; | |
1328 nString = 8; | |
1329 nCol = 1; | |
1330 } | |
1331 | |
1332 if( pTokenizer==0 ){ | |
1333 rc = sqlite3Fts3InitTokenizer(pHash, "simple", &pTokenizer, pzErr); | |
1334 if( rc!=SQLITE_OK ) goto fts3_init_out; | |
1335 } | |
1336 assert( pTokenizer ); | |
1337 | |
1338 rc = fts3PrefixParameter(zPrefix, &nIndex, &aIndex); | |
1339 if( rc==SQLITE_ERROR ){ | |
1340 assert( zPrefix ); | |
1341 sqlite3Fts3ErrMsg(pzErr, "error parsing prefix parameter: %s", zPrefix); | |
1342 } | |
1343 if( rc!=SQLITE_OK ) goto fts3_init_out; | |
1344 | |
1345 /* Allocate and populate the Fts3Table structure. */ | |
1346 nByte = sizeof(Fts3Table) + /* Fts3Table */ | |
1347 nCol * sizeof(char *) + /* azColumn */ | |
1348 nIndex * sizeof(struct Fts3Index) + /* aIndex */ | |
1349 nCol * sizeof(u8) + /* abNotindexed */ | |
1350 nName + /* zName */ | |
1351 nDb + /* zDb */ | |
1352 nString; /* Space for azColumn strings */ | |
1353 p = (Fts3Table*)sqlite3_malloc(nByte); | |
1354 if( p==0 ){ | |
1355 rc = SQLITE_NOMEM; | |
1356 goto fts3_init_out; | |
1357 } | |
1358 memset(p, 0, nByte); | |
1359 p->db = db; | |
1360 p->nColumn = nCol; | |
1361 p->nPendingData = 0; | |
1362 p->azColumn = (char **)&p[1]; | |
1363 p->pTokenizer = pTokenizer; | |
1364 p->nMaxPendingData = FTS3_MAX_PENDING_DATA; | |
1365 p->bHasDocsize = (isFts4 && bNoDocsize==0); | |
1366 p->bHasStat = isFts4; | |
1367 p->bFts4 = isFts4; | |
1368 p->bDescIdx = bDescIdx; | |
1369 p->nAutoincrmerge = 0xff; /* 0xff means setting unknown */ | |
1370 p->zContentTbl = zContent; | |
1371 p->zLanguageid = zLanguageid; | |
1372 zContent = 0; | |
1373 zLanguageid = 0; | |
1374 TESTONLY( p->inTransaction = -1 ); | |
1375 TESTONLY( p->mxSavepoint = -1 ); | |
1376 | |
1377 p->aIndex = (struct Fts3Index *)&p->azColumn[nCol]; | |
1378 memcpy(p->aIndex, aIndex, sizeof(struct Fts3Index) * nIndex); | |
1379 p->nIndex = nIndex; | |
1380 for(i=0; i<nIndex; i++){ | |
1381 fts3HashInit(&p->aIndex[i].hPending, FTS3_HASH_STRING, 1); | |
1382 } | |
1383 p->abNotindexed = (u8 *)&p->aIndex[nIndex]; | |
1384 | |
1385 /* Fill in the zName and zDb fields of the vtab structure. */ | |
1386 zCsr = (char *)&p->abNotindexed[nCol]; | |
1387 p->zName = zCsr; | |
1388 memcpy(zCsr, argv[2], nName); | |
1389 zCsr += nName; | |
1390 p->zDb = zCsr; | |
1391 memcpy(zCsr, argv[1], nDb); | |
1392 zCsr += nDb; | |
1393 | |
1394 /* Fill in the azColumn array */ | |
1395 for(iCol=0; iCol<nCol; iCol++){ | |
1396 char *z; | |
1397 int n = 0; | |
1398 z = (char *)sqlite3Fts3NextToken(aCol[iCol], &n); | |
1399 memcpy(zCsr, z, n); | |
1400 zCsr[n] = '\0'; | |
1401 sqlite3Fts3Dequote(zCsr); | |
1402 p->azColumn[iCol] = zCsr; | |
1403 zCsr += n+1; | |
1404 assert( zCsr <= &((char *)p)[nByte] ); | |
1405 } | |
1406 | |
1407 /* Fill in the abNotindexed array */ | |
1408 for(iCol=0; iCol<nCol; iCol++){ | |
1409 int n = (int)strlen(p->azColumn[iCol]); | |
1410 for(i=0; i<nNotindexed; i++){ | |
1411 char *zNot = azNotindexed[i]; | |
1412 if( zNot && n==(int)strlen(zNot) | |
1413 && 0==sqlite3_strnicmp(p->azColumn[iCol], zNot, n) | |
1414 ){ | |
1415 p->abNotindexed[iCol] = 1; | |
1416 sqlite3_free(zNot); | |
1417 azNotindexed[i] = 0; | |
1418 } | |
1419 } | |
1420 } | |
1421 for(i=0; i<nNotindexed; i++){ | |
1422 if( azNotindexed[i] ){ | |
1423 sqlite3Fts3ErrMsg(pzErr, "no such column: %s", azNotindexed[i]); | |
1424 rc = SQLITE_ERROR; | |
1425 } | |
1426 } | |
1427 | |
1428 if( rc==SQLITE_OK && (zCompress==0)!=(zUncompress==0) ){ | |
1429 char const *zMiss = (zCompress==0 ? "compress" : "uncompress"); | |
1430 rc = SQLITE_ERROR; | |
1431 sqlite3Fts3ErrMsg(pzErr, "missing %s parameter in fts4 constructor", zMiss); | |
1432 } | |
1433 p->zReadExprlist = fts3ReadExprList(p, zUncompress, &rc); | |
1434 p->zWriteExprlist = fts3WriteExprList(p, zCompress, &rc); | |
1435 if( rc!=SQLITE_OK ) goto fts3_init_out; | |
1436 | |
1437 /* If this is an xCreate call, create the underlying tables in the | |
1438 ** database. TODO: For xConnect(), it could verify that said tables exist. | |
1439 */ | |
1440 if( isCreate ){ | |
1441 rc = fts3CreateTables(p); | |
1442 } | |
1443 | |
1444 /* Check to see if a legacy fts3 table has been "upgraded" by the | |
1445 ** addition of a %_stat table so that it can use incremental merge. | |
1446 */ | |
1447 if( !isFts4 && !isCreate ){ | |
1448 p->bHasStat = 2; | |
1449 } | |
1450 | |
1451 /* Figure out the page-size for the database. This is required in order to | |
1452 ** estimate the cost of loading large doclists from the database. */ | |
1453 fts3DatabasePageSize(&rc, p); | |
1454 p->nNodeSize = p->nPgsz-35; | |
1455 | |
1456 /* Declare the table schema to SQLite. */ | |
1457 fts3DeclareVtab(&rc, p); | |
1458 | |
1459 fts3_init_out: | |
1460 sqlite3_free(zPrefix); | |
1461 sqlite3_free(aIndex); | |
1462 sqlite3_free(zCompress); | |
1463 sqlite3_free(zUncompress); | |
1464 sqlite3_free(zContent); | |
1465 sqlite3_free(zLanguageid); | |
1466 for(i=0; i<nNotindexed; i++) sqlite3_free(azNotindexed[i]); | |
1467 sqlite3_free((void *)aCol); | |
1468 sqlite3_free((void *)azNotindexed); | |
1469 if( rc!=SQLITE_OK ){ | |
1470 if( p ){ | |
1471 fts3DisconnectMethod((sqlite3_vtab *)p); | |
1472 }else if( pTokenizer ){ | |
1473 pTokenizer->pModule->xDestroy(pTokenizer); | |
1474 } | |
1475 }else{ | |
1476 assert( p->pSegments==0 ); | |
1477 *ppVTab = &p->base; | |
1478 } | |
1479 return rc; | |
1480 } | |
1481 | |
1482 /* | |
1483 ** The xConnect() and xCreate() methods for the virtual table. All the | |
1484 ** work is done in function fts3InitVtab(). | |
1485 */ | |
1486 static int fts3ConnectMethod( | |
1487 sqlite3 *db, /* Database connection */ | |
1488 void *pAux, /* Pointer to tokenizer hash table */ | |
1489 int argc, /* Number of elements in argv array */ | |
1490 const char * const *argv, /* xCreate/xConnect argument array */ | |
1491 sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */ | |
1492 char **pzErr /* OUT: sqlite3_malloc'd error message */ | |
1493 ){ | |
1494 return fts3InitVtab(0, db, pAux, argc, argv, ppVtab, pzErr); | |
1495 } | |
1496 static int fts3CreateMethod( | |
1497 sqlite3 *db, /* Database connection */ | |
1498 void *pAux, /* Pointer to tokenizer hash table */ | |
1499 int argc, /* Number of elements in argv array */ | |
1500 const char * const *argv, /* xCreate/xConnect argument array */ | |
1501 sqlite3_vtab **ppVtab, /* OUT: New sqlite3_vtab object */ | |
1502 char **pzErr /* OUT: sqlite3_malloc'd error message */ | |
1503 ){ | |
1504 return fts3InitVtab(1, db, pAux, argc, argv, ppVtab, pzErr); | |
1505 } | |
1506 | |
1507 /* | |
1508 ** Set the pIdxInfo->estimatedRows variable to nRow. Unless this | |
1509 ** extension is currently being used by a version of SQLite too old to | |
1510 ** support estimatedRows. In that case this function is a no-op. | |
1511 */ | |
1512 static void fts3SetEstimatedRows(sqlite3_index_info *pIdxInfo, i64 nRow){ | |
1513 #if SQLITE_VERSION_NUMBER>=3008002 | |
1514 if( sqlite3_libversion_number()>=3008002 ){ | |
1515 pIdxInfo->estimatedRows = nRow; | |
1516 } | |
1517 #endif | |
1518 } | |
1519 | |
1520 /* | |
1521 ** Set the SQLITE_INDEX_SCAN_UNIQUE flag in pIdxInfo->flags. Unless this | |
1522 ** extension is currently being used by a version of SQLite too old to | |
1523 ** support index-info flags. In that case this function is a no-op. | |
1524 */ | |
1525 static void fts3SetUniqueFlag(sqlite3_index_info *pIdxInfo){ | |
1526 #if SQLITE_VERSION_NUMBER>=3008012 | |
1527 if( sqlite3_libversion_number()>=3008012 ){ | |
1528 pIdxInfo->idxFlags |= SQLITE_INDEX_SCAN_UNIQUE; | |
1529 } | |
1530 #endif | |
1531 } | |
1532 | |
1533 /* | |
1534 ** Implementation of the xBestIndex method for FTS3 tables. There | |
1535 ** are three possible strategies, in order of preference: | |
1536 ** | |
1537 ** 1. Direct lookup by rowid or docid. | |
1538 ** 2. Full-text search using a MATCH operator on a non-docid column. | |
1539 ** 3. Linear scan of %_content table. | |
1540 */ | |
1541 static int fts3BestIndexMethod(sqlite3_vtab *pVTab, sqlite3_index_info *pInfo){ | |
1542 Fts3Table *p = (Fts3Table *)pVTab; | |
1543 int i; /* Iterator variable */ | |
1544 int iCons = -1; /* Index of constraint to use */ | |
1545 | |
1546 int iLangidCons = -1; /* Index of langid=x constraint, if present */ | |
1547 int iDocidGe = -1; /* Index of docid>=x constraint, if present */ | |
1548 int iDocidLe = -1; /* Index of docid<=x constraint, if present */ | |
1549 int iIdx; | |
1550 | |
1551 /* By default use a full table scan. This is an expensive option, | |
1552 ** so search through the constraints to see if a more efficient | |
1553 ** strategy is possible. | |
1554 */ | |
1555 pInfo->idxNum = FTS3_FULLSCAN_SEARCH; | |
1556 pInfo->estimatedCost = 5000000; | |
1557 for(i=0; i<pInfo->nConstraint; i++){ | |
1558 int bDocid; /* True if this constraint is on docid */ | |
1559 struct sqlite3_index_constraint *pCons = &pInfo->aConstraint[i]; | |
1560 if( pCons->usable==0 ){ | |
1561 if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH ){ | |
1562 /* There exists an unusable MATCH constraint. This means that if | |
1563 ** the planner does elect to use the results of this call as part | |
1564 ** of the overall query plan the user will see an "unable to use | |
1565 ** function MATCH in the requested context" error. To discourage | |
1566 ** this, return a very high cost here. */ | |
1567 pInfo->idxNum = FTS3_FULLSCAN_SEARCH; | |
1568 pInfo->estimatedCost = 1e50; | |
1569 fts3SetEstimatedRows(pInfo, ((sqlite3_int64)1) << 50); | |
1570 return SQLITE_OK; | |
1571 } | |
1572 continue; | |
1573 } | |
1574 | |
1575 bDocid = (pCons->iColumn<0 || pCons->iColumn==p->nColumn+1); | |
1576 | |
1577 /* A direct lookup on the rowid or docid column. Assign a cost of 1.0. */ | |
1578 if( iCons<0 && pCons->op==SQLITE_INDEX_CONSTRAINT_EQ && bDocid ){ | |
1579 pInfo->idxNum = FTS3_DOCID_SEARCH; | |
1580 pInfo->estimatedCost = 1.0; | |
1581 iCons = i; | |
1582 } | |
1583 | |
1584 /* A MATCH constraint. Use a full-text search. | |
1585 ** | |
1586 ** If there is more than one MATCH constraint available, use the first | |
1587 ** one encountered. If there is both a MATCH constraint and a direct | |
1588 ** rowid/docid lookup, prefer the MATCH strategy. This is done even | |
1589 ** though the rowid/docid lookup is faster than a MATCH query, selecting | |
1590 ** it would lead to an "unable to use function MATCH in the requested | |
1591 ** context" error. | |
1592 */ | |
1593 if( pCons->op==SQLITE_INDEX_CONSTRAINT_MATCH | |
1594 && pCons->iColumn>=0 && pCons->iColumn<=p->nColumn | |
1595 ){ | |
1596 pInfo->idxNum = FTS3_FULLTEXT_SEARCH + pCons->iColumn; | |
1597 pInfo->estimatedCost = 2.0; | |
1598 iCons = i; | |
1599 } | |
1600 | |
1601 /* Equality constraint on the langid column */ | |
1602 if( pCons->op==SQLITE_INDEX_CONSTRAINT_EQ | |
1603 && pCons->iColumn==p->nColumn + 2 | |
1604 ){ | |
1605 iLangidCons = i; | |
1606 } | |
1607 | |
1608 if( bDocid ){ | |
1609 switch( pCons->op ){ | |
1610 case SQLITE_INDEX_CONSTRAINT_GE: | |
1611 case SQLITE_INDEX_CONSTRAINT_GT: | |
1612 iDocidGe = i; | |
1613 break; | |
1614 | |
1615 case SQLITE_INDEX_CONSTRAINT_LE: | |
1616 case SQLITE_INDEX_CONSTRAINT_LT: | |
1617 iDocidLe = i; | |
1618 break; | |
1619 } | |
1620 } | |
1621 } | |
1622 | |
1623 /* If using a docid=? or rowid=? strategy, set the UNIQUE flag. */ | |
1624 if( pInfo->idxNum==FTS3_DOCID_SEARCH ) fts3SetUniqueFlag(pInfo); | |
1625 | |
1626 iIdx = 1; | |
1627 if( iCons>=0 ){ | |
1628 pInfo->aConstraintUsage[iCons].argvIndex = iIdx++; | |
1629 pInfo->aConstraintUsage[iCons].omit = 1; | |
1630 } | |
1631 if( iLangidCons>=0 ){ | |
1632 pInfo->idxNum |= FTS3_HAVE_LANGID; | |
1633 pInfo->aConstraintUsage[iLangidCons].argvIndex = iIdx++; | |
1634 } | |
1635 if( iDocidGe>=0 ){ | |
1636 pInfo->idxNum |= FTS3_HAVE_DOCID_GE; | |
1637 pInfo->aConstraintUsage[iDocidGe].argvIndex = iIdx++; | |
1638 } | |
1639 if( iDocidLe>=0 ){ | |
1640 pInfo->idxNum |= FTS3_HAVE_DOCID_LE; | |
1641 pInfo->aConstraintUsage[iDocidLe].argvIndex = iIdx++; | |
1642 } | |
1643 | |
1644 /* Regardless of the strategy selected, FTS can deliver rows in rowid (or | |
1645 ** docid) order. Both ascending and descending are possible. | |
1646 */ | |
1647 if( pInfo->nOrderBy==1 ){ | |
1648 struct sqlite3_index_orderby *pOrder = &pInfo->aOrderBy[0]; | |
1649 if( pOrder->iColumn<0 || pOrder->iColumn==p->nColumn+1 ){ | |
1650 if( pOrder->desc ){ | |
1651 pInfo->idxStr = "DESC"; | |
1652 }else{ | |
1653 pInfo->idxStr = "ASC"; | |
1654 } | |
1655 pInfo->orderByConsumed = 1; | |
1656 } | |
1657 } | |
1658 | |
1659 assert( p->pSegments==0 ); | |
1660 return SQLITE_OK; | |
1661 } | |
1662 | |
1663 /* | |
1664 ** Implementation of xOpen method. | |
1665 */ | |
1666 static int fts3OpenMethod(sqlite3_vtab *pVTab, sqlite3_vtab_cursor **ppCsr){ | |
1667 sqlite3_vtab_cursor *pCsr; /* Allocated cursor */ | |
1668 | |
1669 UNUSED_PARAMETER(pVTab); | |
1670 | |
1671 /* Allocate a buffer large enough for an Fts3Cursor structure. If the | |
1672 ** allocation succeeds, zero it and return SQLITE_OK. Otherwise, | |
1673 ** if the allocation fails, return SQLITE_NOMEM. | |
1674 */ | |
1675 *ppCsr = pCsr = (sqlite3_vtab_cursor *)sqlite3_malloc(sizeof(Fts3Cursor)); | |
1676 if( !pCsr ){ | |
1677 return SQLITE_NOMEM; | |
1678 } | |
1679 memset(pCsr, 0, sizeof(Fts3Cursor)); | |
1680 return SQLITE_OK; | |
1681 } | |
1682 | |
1683 /* | |
1684 ** Close the cursor. For additional information see the documentation | |
1685 ** on the xClose method of the virtual table interface. | |
1686 */ | |
1687 static int fts3CloseMethod(sqlite3_vtab_cursor *pCursor){ | |
1688 Fts3Cursor *pCsr = (Fts3Cursor *)pCursor; | |
1689 assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 ); | |
1690 sqlite3_finalize(pCsr->pStmt); | |
1691 sqlite3Fts3ExprFree(pCsr->pExpr); | |
1692 sqlite3Fts3FreeDeferredTokens(pCsr); | |
1693 sqlite3_free(pCsr->aDoclist); | |
1694 sqlite3Fts3MIBufferFree(pCsr->pMIBuffer); | |
1695 assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 ); | |
1696 sqlite3_free(pCsr); | |
1697 return SQLITE_OK; | |
1698 } | |
1699 | |
1700 /* | |
1701 ** If pCsr->pStmt has not been prepared (i.e. if pCsr->pStmt==0), then | |
1702 ** compose and prepare an SQL statement of the form: | |
1703 ** | |
1704 ** "SELECT <columns> FROM %_content WHERE rowid = ?" | |
1705 ** | |
1706 ** (or the equivalent for a content=xxx table) and set pCsr->pStmt to | |
1707 ** it. If an error occurs, return an SQLite error code. | |
1708 ** | |
1709 ** Otherwise, set *ppStmt to point to pCsr->pStmt and return SQLITE_OK. | |
1710 */ | |
1711 static int fts3CursorSeekStmt(Fts3Cursor *pCsr, sqlite3_stmt **ppStmt){ | |
1712 int rc = SQLITE_OK; | |
1713 if( pCsr->pStmt==0 ){ | |
1714 Fts3Table *p = (Fts3Table *)pCsr->base.pVtab; | |
1715 char *zSql; | |
1716 zSql = sqlite3_mprintf("SELECT %s WHERE rowid = ?", p->zReadExprlist); | |
1717 if( !zSql ) return SQLITE_NOMEM; | |
1718 rc = sqlite3_prepare_v2(p->db, zSql, -1, &pCsr->pStmt, 0); | |
1719 sqlite3_free(zSql); | |
1720 } | |
1721 *ppStmt = pCsr->pStmt; | |
1722 return rc; | |
1723 } | |
1724 | |
1725 /* | |
1726 ** Position the pCsr->pStmt statement so that it is on the row | |
1727 ** of the %_content table that contains the last match. Return | |
1728 ** SQLITE_OK on success. | |
1729 */ | |
1730 static int fts3CursorSeek(sqlite3_context *pContext, Fts3Cursor *pCsr){ | |
1731 int rc = SQLITE_OK; | |
1732 if( pCsr->isRequireSeek ){ | |
1733 sqlite3_stmt *pStmt = 0; | |
1734 | |
1735 rc = fts3CursorSeekStmt(pCsr, &pStmt); | |
1736 if( rc==SQLITE_OK ){ | |
1737 sqlite3_bind_int64(pCsr->pStmt, 1, pCsr->iPrevId); | |
1738 pCsr->isRequireSeek = 0; | |
1739 if( SQLITE_ROW==sqlite3_step(pCsr->pStmt) ){ | |
1740 return SQLITE_OK; | |
1741 }else{ | |
1742 rc = sqlite3_reset(pCsr->pStmt); | |
1743 if( rc==SQLITE_OK && ((Fts3Table *)pCsr->base.pVtab)->zContentTbl==0 ){ | |
1744 /* If no row was found and no error has occurred, then the %_content | |
1745 ** table is missing a row that is present in the full-text index. | |
1746 ** The data structures are corrupt. */ | |
1747 rc = FTS_CORRUPT_VTAB; | |
1748 pCsr->isEof = 1; | |
1749 } | |
1750 } | |
1751 } | |
1752 } | |
1753 | |
1754 if( rc!=SQLITE_OK && pContext ){ | |
1755 sqlite3_result_error_code(pContext, rc); | |
1756 } | |
1757 return rc; | |
1758 } | |
1759 | |
1760 /* | |
1761 ** This function is used to process a single interior node when searching | |
1762 ** a b-tree for a term or term prefix. The node data is passed to this | |
1763 ** function via the zNode/nNode parameters. The term to search for is | |
1764 ** passed in zTerm/nTerm. | |
1765 ** | |
1766 ** If piFirst is not NULL, then this function sets *piFirst to the blockid | |
1767 ** of the child node that heads the sub-tree that may contain the term. | |
1768 ** | |
1769 ** If piLast is not NULL, then *piLast is set to the right-most child node | |
1770 ** that heads a sub-tree that may contain a term for which zTerm/nTerm is | |
1771 ** a prefix. | |
1772 ** | |
1773 ** If an OOM error occurs, SQLITE_NOMEM is returned. Otherwise, SQLITE_OK. | |
1774 */ | |
1775 static int fts3ScanInteriorNode( | |
1776 const char *zTerm, /* Term to select leaves for */ | |
1777 int nTerm, /* Size of term zTerm in bytes */ | |
1778 const char *zNode, /* Buffer containing segment interior node */ | |
1779 int nNode, /* Size of buffer at zNode */ | |
1780 sqlite3_int64 *piFirst, /* OUT: Selected child node */ | |
1781 sqlite3_int64 *piLast /* OUT: Selected child node */ | |
1782 ){ | |
1783 int rc = SQLITE_OK; /* Return code */ | |
1784 const char *zCsr = zNode; /* Cursor to iterate through node */ | |
1785 const char *zEnd = &zCsr[nNode];/* End of interior node buffer */ | |
1786 char *zBuffer = 0; /* Buffer to load terms into */ | |
1787 int nAlloc = 0; /* Size of allocated buffer */ | |
1788 int isFirstTerm = 1; /* True when processing first term on page */ | |
1789 sqlite3_int64 iChild; /* Block id of child node to descend to */ | |
1790 | |
1791 /* Skip over the 'height' varint that occurs at the start of every | |
1792 ** interior node. Then load the blockid of the left-child of the b-tree | |
1793 ** node into variable iChild. | |
1794 ** | |
1795 ** Even if the data structure on disk is corrupted, this (reading two | |
1796 ** varints from the buffer) does not risk an overread. If zNode is a | |
1797 ** root node, then the buffer comes from a SELECT statement. SQLite does | |
1798 ** not make this guarantee explicitly, but in practice there are always | |
1799 ** either more than 20 bytes of allocated space following the nNode bytes of | |
1800 ** contents, or two zero bytes. Or, if the node is read from the %_segments | |
1801 ** table, then there are always 20 bytes of zeroed padding following the | |
1802 ** nNode bytes of content (see sqlite3Fts3ReadBlock() for details). | |
1803 */ | |
1804 zCsr += sqlite3Fts3GetVarint(zCsr, &iChild); | |
1805 zCsr += sqlite3Fts3GetVarint(zCsr, &iChild); | |
1806 if( zCsr>zEnd ){ | |
1807 return FTS_CORRUPT_VTAB; | |
1808 } | |
1809 | |
1810 while( zCsr<zEnd && (piFirst || piLast) ){ | |
1811 int cmp; /* memcmp() result */ | |
1812 int nSuffix; /* Size of term suffix */ | |
1813 int nPrefix = 0; /* Size of term prefix */ | |
1814 int nBuffer; /* Total term size */ | |
1815 | |
1816 /* Load the next term on the node into zBuffer. Use realloc() to expand | |
1817 ** the size of zBuffer if required. */ | |
1818 if( !isFirstTerm ){ | |
1819 zCsr += fts3GetVarint32(zCsr, &nPrefix); | |
1820 } | |
1821 isFirstTerm = 0; | |
1822 zCsr += fts3GetVarint32(zCsr, &nSuffix); | |
1823 | |
1824 if( nPrefix<0 || nSuffix<0 || &zCsr[nSuffix]>zEnd ){ | |
1825 rc = FTS_CORRUPT_VTAB; | |
1826 goto finish_scan; | |
1827 } | |
1828 if( nPrefix+nSuffix>nAlloc ){ | |
1829 char *zNew; | |
1830 nAlloc = (nPrefix+nSuffix) * 2; | |
1831 zNew = (char *)sqlite3_realloc(zBuffer, nAlloc); | |
1832 if( !zNew ){ | |
1833 rc = SQLITE_NOMEM; | |
1834 goto finish_scan; | |
1835 } | |
1836 zBuffer = zNew; | |
1837 } | |
1838 assert( zBuffer ); | |
1839 memcpy(&zBuffer[nPrefix], zCsr, nSuffix); | |
1840 nBuffer = nPrefix + nSuffix; | |
1841 zCsr += nSuffix; | |
1842 | |
1843 /* Compare the term we are searching for with the term just loaded from | |
1844 ** the interior node. If the specified term is greater than or equal | |
1845 ** to the term from the interior node, then all terms on the sub-tree | |
1846 ** headed by node iChild are smaller than zTerm. No need to search | |
1847 ** iChild. | |
1848 ** | |
1849 ** If the interior node term is larger than the specified term, then | |
1850 ** the tree headed by iChild may contain the specified term. | |
1851 */ | |
1852 cmp = memcmp(zTerm, zBuffer, (nBuffer>nTerm ? nTerm : nBuffer)); | |
1853 if( piFirst && (cmp<0 || (cmp==0 && nBuffer>nTerm)) ){ | |
1854 *piFirst = iChild; | |
1855 piFirst = 0; | |
1856 } | |
1857 | |
1858 if( piLast && cmp<0 ){ | |
1859 *piLast = iChild; | |
1860 piLast = 0; | |
1861 } | |
1862 | |
1863 iChild++; | |
1864 }; | |
1865 | |
1866 if( piFirst ) *piFirst = iChild; | |
1867 if( piLast ) *piLast = iChild; | |
1868 | |
1869 finish_scan: | |
1870 sqlite3_free(zBuffer); | |
1871 return rc; | |
1872 } | |
1873 | |
1874 | |
1875 /* | |
1876 ** The buffer pointed to by argument zNode (size nNode bytes) contains an | |
1877 ** interior node of a b-tree segment. The zTerm buffer (size nTerm bytes) | |
1878 ** contains a term. This function searches the sub-tree headed by the zNode | |
1879 ** node for the range of leaf nodes that may contain the specified term | |
1880 ** or terms for which the specified term is a prefix. | |
1881 ** | |
1882 ** If piLeaf is not NULL, then *piLeaf is set to the blockid of the | |
1883 ** left-most leaf node in the tree that may contain the specified term. | |
1884 ** If piLeaf2 is not NULL, then *piLeaf2 is set to the blockid of the | |
1885 ** right-most leaf node that may contain a term for which the specified | |
1886 ** term is a prefix. | |
1887 ** | |
1888 ** It is possible that the range of returned leaf nodes does not contain | |
1889 ** the specified term or any terms for which it is a prefix. However, if the | |
1890 ** segment does contain any such terms, they are stored within the identified | |
1891 ** range. Because this function only inspects interior segment nodes (and | |
1892 ** never loads leaf nodes into memory), it is not possible to be sure. | |
1893 ** | |
1894 ** If an error occurs, an error code other than SQLITE_OK is returned. | |
1895 */ | |
1896 static int fts3SelectLeaf( | |
1897 Fts3Table *p, /* Virtual table handle */ | |
1898 const char *zTerm, /* Term to select leaves for */ | |
1899 int nTerm, /* Size of term zTerm in bytes */ | |
1900 const char *zNode, /* Buffer containing segment interior node */ | |
1901 int nNode, /* Size of buffer at zNode */ | |
1902 sqlite3_int64 *piLeaf, /* Selected leaf node */ | |
1903 sqlite3_int64 *piLeaf2 /* Selected leaf node */ | |
1904 ){ | |
1905 int rc = SQLITE_OK; /* Return code */ | |
1906 int iHeight; /* Height of this node in tree */ | |
1907 | |
1908 assert( piLeaf || piLeaf2 ); | |
1909 | |
1910 fts3GetVarint32(zNode, &iHeight); | |
1911 rc = fts3ScanInteriorNode(zTerm, nTerm, zNode, nNode, piLeaf, piLeaf2); | |
1912 assert( !piLeaf2 || !piLeaf || rc!=SQLITE_OK || (*piLeaf<=*piLeaf2) ); | |
1913 | |
1914 if( rc==SQLITE_OK && iHeight>1 ){ | |
1915 char *zBlob = 0; /* Blob read from %_segments table */ | |
1916 int nBlob = 0; /* Size of zBlob in bytes */ | |
1917 | |
1918 if( piLeaf && piLeaf2 && (*piLeaf!=*piLeaf2) ){ | |
1919 rc = sqlite3Fts3ReadBlock(p, *piLeaf, &zBlob, &nBlob, 0); | |
1920 if( rc==SQLITE_OK ){ | |
1921 rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, 0); | |
1922 } | |
1923 sqlite3_free(zBlob); | |
1924 piLeaf = 0; | |
1925 zBlob = 0; | |
1926 } | |
1927 | |
1928 if( rc==SQLITE_OK ){ | |
1929 rc = sqlite3Fts3ReadBlock(p, piLeaf?*piLeaf:*piLeaf2, &zBlob, &nBlob, 0); | |
1930 } | |
1931 if( rc==SQLITE_OK ){ | |
1932 rc = fts3SelectLeaf(p, zTerm, nTerm, zBlob, nBlob, piLeaf, piLeaf2); | |
1933 } | |
1934 sqlite3_free(zBlob); | |
1935 } | |
1936 | |
1937 return rc; | |
1938 } | |
1939 | |
1940 /* | |
1941 ** This function is used to create delta-encoded serialized lists of FTS3 | |
1942 ** varints. Each call to this function appends a single varint to a list. | |
1943 */ | |
1944 static void fts3PutDeltaVarint( | |
1945 char **pp, /* IN/OUT: Output pointer */ | |
1946 sqlite3_int64 *piPrev, /* IN/OUT: Previous value written to list */ | |
1947 sqlite3_int64 iVal /* Write this value to the list */ | |
1948 ){ | |
1949 assert( iVal-*piPrev > 0 || (*piPrev==0 && iVal==0) ); | |
1950 *pp += sqlite3Fts3PutVarint(*pp, iVal-*piPrev); | |
1951 *piPrev = iVal; | |
1952 } | |
1953 | |
1954 /* | |
1955 ** When this function is called, *ppPoslist is assumed to point to the | |
1956 ** start of a position-list. After it returns, *ppPoslist points to the | |
1957 ** first byte after the position-list. | |
1958 ** | |
1959 ** A position list is list of positions (delta encoded) and columns for | |
1960 ** a single document record of a doclist. So, in other words, this | |
1961 ** routine advances *ppPoslist so that it points to the next docid in | |
1962 ** the doclist, or to the first byte past the end of the doclist. | |
1963 ** | |
1964 ** If pp is not NULL, then the contents of the position list are copied | |
1965 ** to *pp. *pp is set to point to the first byte past the last byte copied | |
1966 ** before this function returns. | |
1967 */ | |
1968 static void fts3PoslistCopy(char **pp, char **ppPoslist){ | |
1969 char *pEnd = *ppPoslist; | |
1970 char c = 0; | |
1971 | |
1972 /* The end of a position list is marked by a zero encoded as an FTS3 | |
1973 ** varint. A single POS_END (0) byte. Except, if the 0 byte is preceded by | |
1974 ** a byte with the 0x80 bit set, then it is not a varint 0, but the tail | |
1975 ** of some other, multi-byte, value. | |
1976 ** | |
1977 ** The following while-loop moves pEnd to point to the first byte that is not | |
1978 ** immediately preceded by a byte with the 0x80 bit set. Then increments | |
1979 ** pEnd once more so that it points to the byte immediately following the | |
1980 ** last byte in the position-list. | |
1981 */ | |
1982 while( *pEnd | c ){ | |
1983 c = *pEnd++ & 0x80; | |
1984 testcase( c!=0 && (*pEnd)==0 ); | |
1985 } | |
1986 pEnd++; /* Advance past the POS_END terminator byte */ | |
1987 | |
1988 if( pp ){ | |
1989 int n = (int)(pEnd - *ppPoslist); | |
1990 char *p = *pp; | |
1991 memcpy(p, *ppPoslist, n); | |
1992 p += n; | |
1993 *pp = p; | |
1994 } | |
1995 *ppPoslist = pEnd; | |
1996 } | |
1997 | |
1998 /* | |
1999 ** When this function is called, *ppPoslist is assumed to point to the | |
2000 ** start of a column-list. After it returns, *ppPoslist points to the | |
2001 ** to the terminator (POS_COLUMN or POS_END) byte of the column-list. | |
2002 ** | |
2003 ** A column-list is list of delta-encoded positions for a single column | |
2004 ** within a single document within a doclist. | |
2005 ** | |
2006 ** The column-list is terminated either by a POS_COLUMN varint (1) or | |
2007 ** a POS_END varint (0). This routine leaves *ppPoslist pointing to | |
2008 ** the POS_COLUMN or POS_END that terminates the column-list. | |
2009 ** | |
2010 ** If pp is not NULL, then the contents of the column-list are copied | |
2011 ** to *pp. *pp is set to point to the first byte past the last byte copied | |
2012 ** before this function returns. The POS_COLUMN or POS_END terminator | |
2013 ** is not copied into *pp. | |
2014 */ | |
2015 static void fts3ColumnlistCopy(char **pp, char **ppPoslist){ | |
2016 char *pEnd = *ppPoslist; | |
2017 char c = 0; | |
2018 | |
2019 /* A column-list is terminated by either a 0x01 or 0x00 byte that is | |
2020 ** not part of a multi-byte varint. | |
2021 */ | |
2022 while( 0xFE & (*pEnd | c) ){ | |
2023 c = *pEnd++ & 0x80; | |
2024 testcase( c!=0 && ((*pEnd)&0xfe)==0 ); | |
2025 } | |
2026 if( pp ){ | |
2027 int n = (int)(pEnd - *ppPoslist); | |
2028 char *p = *pp; | |
2029 memcpy(p, *ppPoslist, n); | |
2030 p += n; | |
2031 *pp = p; | |
2032 } | |
2033 *ppPoslist = pEnd; | |
2034 } | |
2035 | |
2036 /* | |
2037 ** Value used to signify the end of an position-list. This is safe because | |
2038 ** it is not possible to have a document with 2^31 terms. | |
2039 */ | |
2040 #define POSITION_LIST_END 0x7fffffff | |
2041 | |
2042 /* | |
2043 ** This function is used to help parse position-lists. When this function is | |
2044 ** called, *pp may point to the start of the next varint in the position-list | |
2045 ** being parsed, or it may point to 1 byte past the end of the position-list | |
2046 ** (in which case **pp will be a terminator bytes POS_END (0) or | |
2047 ** (1)). | |
2048 ** | |
2049 ** If *pp points past the end of the current position-list, set *pi to | |
2050 ** POSITION_LIST_END and return. Otherwise, read the next varint from *pp, | |
2051 ** increment the current value of *pi by the value read, and set *pp to | |
2052 ** point to the next value before returning. | |
2053 ** | |
2054 ** Before calling this routine *pi must be initialized to the value of | |
2055 ** the previous position, or zero if we are reading the first position | |
2056 ** in the position-list. Because positions are delta-encoded, the value | |
2057 ** of the previous position is needed in order to compute the value of | |
2058 ** the next position. | |
2059 */ | |
2060 static void fts3ReadNextPos( | |
2061 char **pp, /* IN/OUT: Pointer into position-list buffer */ | |
2062 sqlite3_int64 *pi /* IN/OUT: Value read from position-list */ | |
2063 ){ | |
2064 if( (**pp)&0xFE ){ | |
2065 fts3GetDeltaVarint(pp, pi); | |
2066 *pi -= 2; | |
2067 }else{ | |
2068 *pi = POSITION_LIST_END; | |
2069 } | |
2070 } | |
2071 | |
2072 /* | |
2073 ** If parameter iCol is not 0, write an POS_COLUMN (1) byte followed by | |
2074 ** the value of iCol encoded as a varint to *pp. This will start a new | |
2075 ** column list. | |
2076 ** | |
2077 ** Set *pp to point to the byte just after the last byte written before | |
2078 ** returning (do not modify it if iCol==0). Return the total number of bytes | |
2079 ** written (0 if iCol==0). | |
2080 */ | |
2081 static int fts3PutColNumber(char **pp, int iCol){ | |
2082 int n = 0; /* Number of bytes written */ | |
2083 if( iCol ){ | |
2084 char *p = *pp; /* Output pointer */ | |
2085 n = 1 + sqlite3Fts3PutVarint(&p[1], iCol); | |
2086 *p = 0x01; | |
2087 *pp = &p[n]; | |
2088 } | |
2089 return n; | |
2090 } | |
2091 | |
2092 /* | |
2093 ** Compute the union of two position lists. The output written | |
2094 ** into *pp contains all positions of both *pp1 and *pp2 in sorted | |
2095 ** order and with any duplicates removed. All pointers are | |
2096 ** updated appropriately. The caller is responsible for insuring | |
2097 ** that there is enough space in *pp to hold the complete output. | |
2098 */ | |
2099 static void fts3PoslistMerge( | |
2100 char **pp, /* Output buffer */ | |
2101 char **pp1, /* Left input list */ | |
2102 char **pp2 /* Right input list */ | |
2103 ){ | |
2104 char *p = *pp; | |
2105 char *p1 = *pp1; | |
2106 char *p2 = *pp2; | |
2107 | |
2108 while( *p1 || *p2 ){ | |
2109 int iCol1; /* The current column index in pp1 */ | |
2110 int iCol2; /* The current column index in pp2 */ | |
2111 | |
2112 if( *p1==POS_COLUMN ) fts3GetVarint32(&p1[1], &iCol1); | |
2113 else if( *p1==POS_END ) iCol1 = POSITION_LIST_END; | |
2114 else iCol1 = 0; | |
2115 | |
2116 if( *p2==POS_COLUMN ) fts3GetVarint32(&p2[1], &iCol2); | |
2117 else if( *p2==POS_END ) iCol2 = POSITION_LIST_END; | |
2118 else iCol2 = 0; | |
2119 | |
2120 if( iCol1==iCol2 ){ | |
2121 sqlite3_int64 i1 = 0; /* Last position from pp1 */ | |
2122 sqlite3_int64 i2 = 0; /* Last position from pp2 */ | |
2123 sqlite3_int64 iPrev = 0; | |
2124 int n = fts3PutColNumber(&p, iCol1); | |
2125 p1 += n; | |
2126 p2 += n; | |
2127 | |
2128 /* At this point, both p1 and p2 point to the start of column-lists | |
2129 ** for the same column (the column with index iCol1 and iCol2). | |
2130 ** A column-list is a list of non-negative delta-encoded varints, each | |
2131 ** incremented by 2 before being stored. Each list is terminated by a | |
2132 ** POS_END (0) or POS_COLUMN (1). The following block merges the two lists | |
2133 ** and writes the results to buffer p. p is left pointing to the byte | |
2134 ** after the list written. No terminator (POS_END or POS_COLUMN) is | |
2135 ** written to the output. | |
2136 */ | |
2137 fts3GetDeltaVarint(&p1, &i1); | |
2138 fts3GetDeltaVarint(&p2, &i2); | |
2139 do { | |
2140 fts3PutDeltaVarint(&p, &iPrev, (i1<i2) ? i1 : i2); | |
2141 iPrev -= 2; | |
2142 if( i1==i2 ){ | |
2143 fts3ReadNextPos(&p1, &i1); | |
2144 fts3ReadNextPos(&p2, &i2); | |
2145 }else if( i1<i2 ){ | |
2146 fts3ReadNextPos(&p1, &i1); | |
2147 }else{ | |
2148 fts3ReadNextPos(&p2, &i2); | |
2149 } | |
2150 }while( i1!=POSITION_LIST_END || i2!=POSITION_LIST_END ); | |
2151 }else if( iCol1<iCol2 ){ | |
2152 p1 += fts3PutColNumber(&p, iCol1); | |
2153 fts3ColumnlistCopy(&p, &p1); | |
2154 }else{ | |
2155 p2 += fts3PutColNumber(&p, iCol2); | |
2156 fts3ColumnlistCopy(&p, &p2); | |
2157 } | |
2158 } | |
2159 | |
2160 *p++ = POS_END; | |
2161 *pp = p; | |
2162 *pp1 = p1 + 1; | |
2163 *pp2 = p2 + 1; | |
2164 } | |
2165 | |
2166 /* | |
2167 ** This function is used to merge two position lists into one. When it is | |
2168 ** called, *pp1 and *pp2 must both point to position lists. A position-list is | |
2169 ** the part of a doclist that follows each document id. For example, if a row | |
2170 ** contains: | |
2171 ** | |
2172 ** 'a b c'|'x y z'|'a b b a' | |
2173 ** | |
2174 ** Then the position list for this row for token 'b' would consist of: | |
2175 ** | |
2176 ** 0x02 0x01 0x02 0x03 0x03 0x00 | |
2177 ** | |
2178 ** When this function returns, both *pp1 and *pp2 are left pointing to the | |
2179 ** byte following the 0x00 terminator of their respective position lists. | |
2180 ** | |
2181 ** If isSaveLeft is 0, an entry is added to the output position list for | |
2182 ** each position in *pp2 for which there exists one or more positions in | |
2183 ** *pp1 so that (pos(*pp2)>pos(*pp1) && pos(*pp2)-pos(*pp1)<=nToken). i.e. | |
2184 ** when the *pp1 token appears before the *pp2 token, but not more than nToken | |
2185 ** slots before it. | |
2186 ** | |
2187 ** e.g. nToken==1 searches for adjacent positions. | |
2188 */ | |
2189 static int fts3PoslistPhraseMerge( | |
2190 char **pp, /* IN/OUT: Preallocated output buffer */ | |
2191 int nToken, /* Maximum difference in token positions */ | |
2192 int isSaveLeft, /* Save the left position */ | |
2193 int isExact, /* If *pp1 is exactly nTokens before *pp2 */ | |
2194 char **pp1, /* IN/OUT: Left input list */ | |
2195 char **pp2 /* IN/OUT: Right input list */ | |
2196 ){ | |
2197 char *p = *pp; | |
2198 char *p1 = *pp1; | |
2199 char *p2 = *pp2; | |
2200 int iCol1 = 0; | |
2201 int iCol2 = 0; | |
2202 | |
2203 /* Never set both isSaveLeft and isExact for the same invocation. */ | |
2204 assert( isSaveLeft==0 || isExact==0 ); | |
2205 | |
2206 assert( p!=0 && *p1!=0 && *p2!=0 ); | |
2207 if( *p1==POS_COLUMN ){ | |
2208 p1++; | |
2209 p1 += fts3GetVarint32(p1, &iCol1); | |
2210 } | |
2211 if( *p2==POS_COLUMN ){ | |
2212 p2++; | |
2213 p2 += fts3GetVarint32(p2, &iCol2); | |
2214 } | |
2215 | |
2216 while( 1 ){ | |
2217 if( iCol1==iCol2 ){ | |
2218 char *pSave = p; | |
2219 sqlite3_int64 iPrev = 0; | |
2220 sqlite3_int64 iPos1 = 0; | |
2221 sqlite3_int64 iPos2 = 0; | |
2222 | |
2223 if( iCol1 ){ | |
2224 *p++ = POS_COLUMN; | |
2225 p += sqlite3Fts3PutVarint(p, iCol1); | |
2226 } | |
2227 | |
2228 assert( *p1!=POS_END && *p1!=POS_COLUMN ); | |
2229 assert( *p2!=POS_END && *p2!=POS_COLUMN ); | |
2230 fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2; | |
2231 fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2; | |
2232 | |
2233 while( 1 ){ | |
2234 if( iPos2==iPos1+nToken | |
2235 || (isExact==0 && iPos2>iPos1 && iPos2<=iPos1+nToken) | |
2236 ){ | |
2237 sqlite3_int64 iSave; | |
2238 iSave = isSaveLeft ? iPos1 : iPos2; | |
2239 fts3PutDeltaVarint(&p, &iPrev, iSave+2); iPrev -= 2; | |
2240 pSave = 0; | |
2241 assert( p ); | |
2242 } | |
2243 if( (!isSaveLeft && iPos2<=(iPos1+nToken)) || iPos2<=iPos1 ){ | |
2244 if( (*p2&0xFE)==0 ) break; | |
2245 fts3GetDeltaVarint(&p2, &iPos2); iPos2 -= 2; | |
2246 }else{ | |
2247 if( (*p1&0xFE)==0 ) break; | |
2248 fts3GetDeltaVarint(&p1, &iPos1); iPos1 -= 2; | |
2249 } | |
2250 } | |
2251 | |
2252 if( pSave ){ | |
2253 assert( pp && p ); | |
2254 p = pSave; | |
2255 } | |
2256 | |
2257 fts3ColumnlistCopy(0, &p1); | |
2258 fts3ColumnlistCopy(0, &p2); | |
2259 assert( (*p1&0xFE)==0 && (*p2&0xFE)==0 ); | |
2260 if( 0==*p1 || 0==*p2 ) break; | |
2261 | |
2262 p1++; | |
2263 p1 += fts3GetVarint32(p1, &iCol1); | |
2264 p2++; | |
2265 p2 += fts3GetVarint32(p2, &iCol2); | |
2266 } | |
2267 | |
2268 /* Advance pointer p1 or p2 (whichever corresponds to the smaller of | |
2269 ** iCol1 and iCol2) so that it points to either the 0x00 that marks the | |
2270 ** end of the position list, or the 0x01 that precedes the next | |
2271 ** column-number in the position list. | |
2272 */ | |
2273 else if( iCol1<iCol2 ){ | |
2274 fts3ColumnlistCopy(0, &p1); | |
2275 if( 0==*p1 ) break; | |
2276 p1++; | |
2277 p1 += fts3GetVarint32(p1, &iCol1); | |
2278 }else{ | |
2279 fts3ColumnlistCopy(0, &p2); | |
2280 if( 0==*p2 ) break; | |
2281 p2++; | |
2282 p2 += fts3GetVarint32(p2, &iCol2); | |
2283 } | |
2284 } | |
2285 | |
2286 fts3PoslistCopy(0, &p2); | |
2287 fts3PoslistCopy(0, &p1); | |
2288 *pp1 = p1; | |
2289 *pp2 = p2; | |
2290 if( *pp==p ){ | |
2291 return 0; | |
2292 } | |
2293 *p++ = 0x00; | |
2294 *pp = p; | |
2295 return 1; | |
2296 } | |
2297 | |
2298 /* | |
2299 ** Merge two position-lists as required by the NEAR operator. The argument | |
2300 ** position lists correspond to the left and right phrases of an expression | |
2301 ** like: | |
2302 ** | |
2303 ** "phrase 1" NEAR "phrase number 2" | |
2304 ** | |
2305 ** Position list *pp1 corresponds to the left-hand side of the NEAR | |
2306 ** expression and *pp2 to the right. As usual, the indexes in the position | |
2307 ** lists are the offsets of the last token in each phrase (tokens "1" and "2" | |
2308 ** in the example above). | |
2309 ** | |
2310 ** The output position list - written to *pp - is a copy of *pp2 with those | |
2311 ** entries that are not sufficiently NEAR entries in *pp1 removed. | |
2312 */ | |
2313 static int fts3PoslistNearMerge( | |
2314 char **pp, /* Output buffer */ | |
2315 char *aTmp, /* Temporary buffer space */ | |
2316 int nRight, /* Maximum difference in token positions */ | |
2317 int nLeft, /* Maximum difference in token positions */ | |
2318 char **pp1, /* IN/OUT: Left input list */ | |
2319 char **pp2 /* IN/OUT: Right input list */ | |
2320 ){ | |
2321 char *p1 = *pp1; | |
2322 char *p2 = *pp2; | |
2323 | |
2324 char *pTmp1 = aTmp; | |
2325 char *pTmp2; | |
2326 char *aTmp2; | |
2327 int res = 1; | |
2328 | |
2329 fts3PoslistPhraseMerge(&pTmp1, nRight, 0, 0, pp1, pp2); | |
2330 aTmp2 = pTmp2 = pTmp1; | |
2331 *pp1 = p1; | |
2332 *pp2 = p2; | |
2333 fts3PoslistPhraseMerge(&pTmp2, nLeft, 1, 0, pp2, pp1); | |
2334 if( pTmp1!=aTmp && pTmp2!=aTmp2 ){ | |
2335 fts3PoslistMerge(pp, &aTmp, &aTmp2); | |
2336 }else if( pTmp1!=aTmp ){ | |
2337 fts3PoslistCopy(pp, &aTmp); | |
2338 }else if( pTmp2!=aTmp2 ){ | |
2339 fts3PoslistCopy(pp, &aTmp2); | |
2340 }else{ | |
2341 res = 0; | |
2342 } | |
2343 | |
2344 return res; | |
2345 } | |
2346 | |
2347 /* | |
2348 ** An instance of this function is used to merge together the (potentially | |
2349 ** large number of) doclists for each term that matches a prefix query. | |
2350 ** See function fts3TermSelectMerge() for details. | |
2351 */ | |
2352 typedef struct TermSelect TermSelect; | |
2353 struct TermSelect { | |
2354 char *aaOutput[16]; /* Malloc'd output buffers */ | |
2355 int anOutput[16]; /* Size each output buffer in bytes */ | |
2356 }; | |
2357 | |
2358 /* | |
2359 ** This function is used to read a single varint from a buffer. Parameter | |
2360 ** pEnd points 1 byte past the end of the buffer. When this function is | |
2361 ** called, if *pp points to pEnd or greater, then the end of the buffer | |
2362 ** has been reached. In this case *pp is set to 0 and the function returns. | |
2363 ** | |
2364 ** If *pp does not point to or past pEnd, then a single varint is read | |
2365 ** from *pp. *pp is then set to point 1 byte past the end of the read varint. | |
2366 ** | |
2367 ** If bDescIdx is false, the value read is added to *pVal before returning. | |
2368 ** If it is true, the value read is subtracted from *pVal before this | |
2369 ** function returns. | |
2370 */ | |
2371 static void fts3GetDeltaVarint3( | |
2372 char **pp, /* IN/OUT: Point to read varint from */ | |
2373 char *pEnd, /* End of buffer */ | |
2374 int bDescIdx, /* True if docids are descending */ | |
2375 sqlite3_int64 *pVal /* IN/OUT: Integer value */ | |
2376 ){ | |
2377 if( *pp>=pEnd ){ | |
2378 *pp = 0; | |
2379 }else{ | |
2380 sqlite3_int64 iVal; | |
2381 *pp += sqlite3Fts3GetVarint(*pp, &iVal); | |
2382 if( bDescIdx ){ | |
2383 *pVal -= iVal; | |
2384 }else{ | |
2385 *pVal += iVal; | |
2386 } | |
2387 } | |
2388 } | |
2389 | |
2390 /* | |
2391 ** This function is used to write a single varint to a buffer. The varint | |
2392 ** is written to *pp. Before returning, *pp is set to point 1 byte past the | |
2393 ** end of the value written. | |
2394 ** | |
2395 ** If *pbFirst is zero when this function is called, the value written to | |
2396 ** the buffer is that of parameter iVal. | |
2397 ** | |
2398 ** If *pbFirst is non-zero when this function is called, then the value | |
2399 ** written is either (iVal-*piPrev) (if bDescIdx is zero) or (*piPrev-iVal) | |
2400 ** (if bDescIdx is non-zero). | |
2401 ** | |
2402 ** Before returning, this function always sets *pbFirst to 1 and *piPrev | |
2403 ** to the value of parameter iVal. | |
2404 */ | |
2405 static void fts3PutDeltaVarint3( | |
2406 char **pp, /* IN/OUT: Output pointer */ | |
2407 int bDescIdx, /* True for descending docids */ | |
2408 sqlite3_int64 *piPrev, /* IN/OUT: Previous value written to list */ | |
2409 int *pbFirst, /* IN/OUT: True after first int written */ | |
2410 sqlite3_int64 iVal /* Write this value to the list */ | |
2411 ){ | |
2412 sqlite3_int64 iWrite; | |
2413 if( bDescIdx==0 || *pbFirst==0 ){ | |
2414 iWrite = iVal - *piPrev; | |
2415 }else{ | |
2416 iWrite = *piPrev - iVal; | |
2417 } | |
2418 assert( *pbFirst || *piPrev==0 ); | |
2419 assert( *pbFirst==0 || iWrite>0 ); | |
2420 *pp += sqlite3Fts3PutVarint(*pp, iWrite); | |
2421 *piPrev = iVal; | |
2422 *pbFirst = 1; | |
2423 } | |
2424 | |
2425 | |
2426 /* | |
2427 ** This macro is used by various functions that merge doclists. The two | |
2428 ** arguments are 64-bit docid values. If the value of the stack variable | |
2429 ** bDescDoclist is 0 when this macro is invoked, then it returns (i1-i2). | |
2430 ** Otherwise, (i2-i1). | |
2431 ** | |
2432 ** Using this makes it easier to write code that can merge doclists that are | |
2433 ** sorted in either ascending or descending order. | |
2434 */ | |
2435 #define DOCID_CMP(i1, i2) ((bDescDoclist?-1:1) * (i1-i2)) | |
2436 | |
2437 /* | |
2438 ** This function does an "OR" merge of two doclists (output contains all | |
2439 ** positions contained in either argument doclist). If the docids in the | |
2440 ** input doclists are sorted in ascending order, parameter bDescDoclist | |
2441 ** should be false. If they are sorted in ascending order, it should be | |
2442 ** passed a non-zero value. | |
2443 ** | |
2444 ** If no error occurs, *paOut is set to point at an sqlite3_malloc'd buffer | |
2445 ** containing the output doclist and SQLITE_OK is returned. In this case | |
2446 ** *pnOut is set to the number of bytes in the output doclist. | |
2447 ** | |
2448 ** If an error occurs, an SQLite error code is returned. The output values | |
2449 ** are undefined in this case. | |
2450 */ | |
2451 static int fts3DoclistOrMerge( | |
2452 int bDescDoclist, /* True if arguments are desc */ | |
2453 char *a1, int n1, /* First doclist */ | |
2454 char *a2, int n2, /* Second doclist */ | |
2455 char **paOut, int *pnOut /* OUT: Malloc'd doclist */ | |
2456 ){ | |
2457 sqlite3_int64 i1 = 0; | |
2458 sqlite3_int64 i2 = 0; | |
2459 sqlite3_int64 iPrev = 0; | |
2460 char *pEnd1 = &a1[n1]; | |
2461 char *pEnd2 = &a2[n2]; | |
2462 char *p1 = a1; | |
2463 char *p2 = a2; | |
2464 char *p; | |
2465 char *aOut; | |
2466 int bFirstOut = 0; | |
2467 | |
2468 *paOut = 0; | |
2469 *pnOut = 0; | |
2470 | |
2471 /* Allocate space for the output. Both the input and output doclists | |
2472 ** are delta encoded. If they are in ascending order (bDescDoclist==0), | |
2473 ** then the first docid in each list is simply encoded as a varint. For | |
2474 ** each subsequent docid, the varint stored is the difference between the | |
2475 ** current and previous docid (a positive number - since the list is in | |
2476 ** ascending order). | |
2477 ** | |
2478 ** The first docid written to the output is therefore encoded using the | |
2479 ** same number of bytes as it is in whichever of the input lists it is | |
2480 ** read from. And each subsequent docid read from the same input list | |
2481 ** consumes either the same or less bytes as it did in the input (since | |
2482 ** the difference between it and the previous value in the output must | |
2483 ** be a positive value less than or equal to the delta value read from | |
2484 ** the input list). The same argument applies to all but the first docid | |
2485 ** read from the 'other' list. And to the contents of all position lists | |
2486 ** that will be copied and merged from the input to the output. | |
2487 ** | |
2488 ** However, if the first docid copied to the output is a negative number, | |
2489 ** then the encoding of the first docid from the 'other' input list may | |
2490 ** be larger in the output than it was in the input (since the delta value | |
2491 ** may be a larger positive integer than the actual docid). | |
2492 ** | |
2493 ** The space required to store the output is therefore the sum of the | |
2494 ** sizes of the two inputs, plus enough space for exactly one of the input | |
2495 ** docids to grow. | |
2496 ** | |
2497 ** A symetric argument may be made if the doclists are in descending | |
2498 ** order. | |
2499 */ | |
2500 aOut = sqlite3_malloc(n1+n2+FTS3_VARINT_MAX-1); | |
2501 if( !aOut ) return SQLITE_NOMEM; | |
2502 | |
2503 p = aOut; | |
2504 fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1); | |
2505 fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2); | |
2506 while( p1 || p2 ){ | |
2507 sqlite3_int64 iDiff = DOCID_CMP(i1, i2); | |
2508 | |
2509 if( p2 && p1 && iDiff==0 ){ | |
2510 fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1); | |
2511 fts3PoslistMerge(&p, &p1, &p2); | |
2512 fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1); | |
2513 fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2); | |
2514 }else if( !p2 || (p1 && iDiff<0) ){ | |
2515 fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1); | |
2516 fts3PoslistCopy(&p, &p1); | |
2517 fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1); | |
2518 }else{ | |
2519 fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i2); | |
2520 fts3PoslistCopy(&p, &p2); | |
2521 fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2); | |
2522 } | |
2523 } | |
2524 | |
2525 *paOut = aOut; | |
2526 *pnOut = (int)(p-aOut); | |
2527 assert( *pnOut<=n1+n2+FTS3_VARINT_MAX-1 ); | |
2528 return SQLITE_OK; | |
2529 } | |
2530 | |
2531 /* | |
2532 ** This function does a "phrase" merge of two doclists. In a phrase merge, | |
2533 ** the output contains a copy of each position from the right-hand input | |
2534 ** doclist for which there is a position in the left-hand input doclist | |
2535 ** exactly nDist tokens before it. | |
2536 ** | |
2537 ** If the docids in the input doclists are sorted in ascending order, | |
2538 ** parameter bDescDoclist should be false. If they are sorted in ascending | |
2539 ** order, it should be passed a non-zero value. | |
2540 ** | |
2541 ** The right-hand input doclist is overwritten by this function. | |
2542 */ | |
2543 static int fts3DoclistPhraseMerge( | |
2544 int bDescDoclist, /* True if arguments are desc */ | |
2545 int nDist, /* Distance from left to right (1=adjacent) */ | |
2546 char *aLeft, int nLeft, /* Left doclist */ | |
2547 char **paRight, int *pnRight /* IN/OUT: Right/output doclist */ | |
2548 ){ | |
2549 sqlite3_int64 i1 = 0; | |
2550 sqlite3_int64 i2 = 0; | |
2551 sqlite3_int64 iPrev = 0; | |
2552 char *aRight = *paRight; | |
2553 char *pEnd1 = &aLeft[nLeft]; | |
2554 char *pEnd2 = &aRight[*pnRight]; | |
2555 char *p1 = aLeft; | |
2556 char *p2 = aRight; | |
2557 char *p; | |
2558 int bFirstOut = 0; | |
2559 char *aOut; | |
2560 | |
2561 assert( nDist>0 ); | |
2562 if( bDescDoclist ){ | |
2563 aOut = sqlite3_malloc(*pnRight + FTS3_VARINT_MAX); | |
2564 if( aOut==0 ) return SQLITE_NOMEM; | |
2565 }else{ | |
2566 aOut = aRight; | |
2567 } | |
2568 p = aOut; | |
2569 | |
2570 fts3GetDeltaVarint3(&p1, pEnd1, 0, &i1); | |
2571 fts3GetDeltaVarint3(&p2, pEnd2, 0, &i2); | |
2572 | |
2573 while( p1 && p2 ){ | |
2574 sqlite3_int64 iDiff = DOCID_CMP(i1, i2); | |
2575 if( iDiff==0 ){ | |
2576 char *pSave = p; | |
2577 sqlite3_int64 iPrevSave = iPrev; | |
2578 int bFirstOutSave = bFirstOut; | |
2579 | |
2580 fts3PutDeltaVarint3(&p, bDescDoclist, &iPrev, &bFirstOut, i1); | |
2581 if( 0==fts3PoslistPhraseMerge(&p, nDist, 0, 1, &p1, &p2) ){ | |
2582 p = pSave; | |
2583 iPrev = iPrevSave; | |
2584 bFirstOut = bFirstOutSave; | |
2585 } | |
2586 fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1); | |
2587 fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2); | |
2588 }else if( iDiff<0 ){ | |
2589 fts3PoslistCopy(0, &p1); | |
2590 fts3GetDeltaVarint3(&p1, pEnd1, bDescDoclist, &i1); | |
2591 }else{ | |
2592 fts3PoslistCopy(0, &p2); | |
2593 fts3GetDeltaVarint3(&p2, pEnd2, bDescDoclist, &i2); | |
2594 } | |
2595 } | |
2596 | |
2597 *pnRight = (int)(p - aOut); | |
2598 if( bDescDoclist ){ | |
2599 sqlite3_free(aRight); | |
2600 *paRight = aOut; | |
2601 } | |
2602 | |
2603 return SQLITE_OK; | |
2604 } | |
2605 | |
2606 /* | |
2607 ** Argument pList points to a position list nList bytes in size. This | |
2608 ** function checks to see if the position list contains any entries for | |
2609 ** a token in position 0 (of any column). If so, it writes argument iDelta | |
2610 ** to the output buffer pOut, followed by a position list consisting only | |
2611 ** of the entries from pList at position 0, and terminated by an 0x00 byte. | |
2612 ** The value returned is the number of bytes written to pOut (if any). | |
2613 */ | |
2614 int sqlite3Fts3FirstFilter( | |
2615 sqlite3_int64 iDelta, /* Varint that may be written to pOut */ | |
2616 char *pList, /* Position list (no 0x00 term) */ | |
2617 int nList, /* Size of pList in bytes */ | |
2618 char *pOut /* Write output here */ | |
2619 ){ | |
2620 int nOut = 0; | |
2621 int bWritten = 0; /* True once iDelta has been written */ | |
2622 char *p = pList; | |
2623 char *pEnd = &pList[nList]; | |
2624 | |
2625 if( *p!=0x01 ){ | |
2626 if( *p==0x02 ){ | |
2627 nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta); | |
2628 pOut[nOut++] = 0x02; | |
2629 bWritten = 1; | |
2630 } | |
2631 fts3ColumnlistCopy(0, &p); | |
2632 } | |
2633 | |
2634 while( p<pEnd && *p==0x01 ){ | |
2635 sqlite3_int64 iCol; | |
2636 p++; | |
2637 p += sqlite3Fts3GetVarint(p, &iCol); | |
2638 if( *p==0x02 ){ | |
2639 if( bWritten==0 ){ | |
2640 nOut += sqlite3Fts3PutVarint(&pOut[nOut], iDelta); | |
2641 bWritten = 1; | |
2642 } | |
2643 pOut[nOut++] = 0x01; | |
2644 nOut += sqlite3Fts3PutVarint(&pOut[nOut], iCol); | |
2645 pOut[nOut++] = 0x02; | |
2646 } | |
2647 fts3ColumnlistCopy(0, &p); | |
2648 } | |
2649 if( bWritten ){ | |
2650 pOut[nOut++] = 0x00; | |
2651 } | |
2652 | |
2653 return nOut; | |
2654 } | |
2655 | |
2656 | |
2657 /* | |
2658 ** Merge all doclists in the TermSelect.aaOutput[] array into a single | |
2659 ** doclist stored in TermSelect.aaOutput[0]. If successful, delete all | |
2660 ** other doclists (except the aaOutput[0] one) and return SQLITE_OK. | |
2661 ** | |
2662 ** If an OOM error occurs, return SQLITE_NOMEM. In this case it is | |
2663 ** the responsibility of the caller to free any doclists left in the | |
2664 ** TermSelect.aaOutput[] array. | |
2665 */ | |
2666 static int fts3TermSelectFinishMerge(Fts3Table *p, TermSelect *pTS){ | |
2667 char *aOut = 0; | |
2668 int nOut = 0; | |
2669 int i; | |
2670 | |
2671 /* Loop through the doclists in the aaOutput[] array. Merge them all | |
2672 ** into a single doclist. | |
2673 */ | |
2674 for(i=0; i<SizeofArray(pTS->aaOutput); i++){ | |
2675 if( pTS->aaOutput[i] ){ | |
2676 if( !aOut ){ | |
2677 aOut = pTS->aaOutput[i]; | |
2678 nOut = pTS->anOutput[i]; | |
2679 pTS->aaOutput[i] = 0; | |
2680 }else{ | |
2681 int nNew; | |
2682 char *aNew; | |
2683 | |
2684 int rc = fts3DoclistOrMerge(p->bDescIdx, | |
2685 pTS->aaOutput[i], pTS->anOutput[i], aOut, nOut, &aNew, &nNew | |
2686 ); | |
2687 if( rc!=SQLITE_OK ){ | |
2688 sqlite3_free(aOut); | |
2689 return rc; | |
2690 } | |
2691 | |
2692 sqlite3_free(pTS->aaOutput[i]); | |
2693 sqlite3_free(aOut); | |
2694 pTS->aaOutput[i] = 0; | |
2695 aOut = aNew; | |
2696 nOut = nNew; | |
2697 } | |
2698 } | |
2699 } | |
2700 | |
2701 pTS->aaOutput[0] = aOut; | |
2702 pTS->anOutput[0] = nOut; | |
2703 return SQLITE_OK; | |
2704 } | |
2705 | |
2706 /* | |
2707 ** Merge the doclist aDoclist/nDoclist into the TermSelect object passed | |
2708 ** as the first argument. The merge is an "OR" merge (see function | |
2709 ** fts3DoclistOrMerge() for details). | |
2710 ** | |
2711 ** This function is called with the doclist for each term that matches | |
2712 ** a queried prefix. It merges all these doclists into one, the doclist | |
2713 ** for the specified prefix. Since there can be a very large number of | |
2714 ** doclists to merge, the merging is done pair-wise using the TermSelect | |
2715 ** object. | |
2716 ** | |
2717 ** This function returns SQLITE_OK if the merge is successful, or an | |
2718 ** SQLite error code (SQLITE_NOMEM) if an error occurs. | |
2719 */ | |
2720 static int fts3TermSelectMerge( | |
2721 Fts3Table *p, /* FTS table handle */ | |
2722 TermSelect *pTS, /* TermSelect object to merge into */ | |
2723 char *aDoclist, /* Pointer to doclist */ | |
2724 int nDoclist /* Size of aDoclist in bytes */ | |
2725 ){ | |
2726 if( pTS->aaOutput[0]==0 ){ | |
2727 /* If this is the first term selected, copy the doclist to the output | |
2728 ** buffer using memcpy(). | |
2729 ** | |
2730 ** Add FTS3_VARINT_MAX bytes of unused space to the end of the | |
2731 ** allocation. This is so as to ensure that the buffer is big enough | |
2732 ** to hold the current doclist AND'd with any other doclist. If the | |
2733 ** doclists are stored in order=ASC order, this padding would not be | |
2734 ** required (since the size of [doclistA AND doclistB] is always less | |
2735 ** than or equal to the size of [doclistA] in that case). But this is | |
2736 ** not true for order=DESC. For example, a doclist containing (1, -1) | |
2737 ** may be smaller than (-1), as in the first example the -1 may be stored | |
2738 ** as a single-byte delta, whereas in the second it must be stored as a | |
2739 ** FTS3_VARINT_MAX byte varint. | |
2740 ** | |
2741 ** Similar padding is added in the fts3DoclistOrMerge() function. | |
2742 */ | |
2743 pTS->aaOutput[0] = sqlite3_malloc(nDoclist + FTS3_VARINT_MAX + 1); | |
2744 pTS->anOutput[0] = nDoclist; | |
2745 if( pTS->aaOutput[0] ){ | |
2746 memcpy(pTS->aaOutput[0], aDoclist, nDoclist); | |
2747 }else{ | |
2748 return SQLITE_NOMEM; | |
2749 } | |
2750 }else{ | |
2751 char *aMerge = aDoclist; | |
2752 int nMerge = nDoclist; | |
2753 int iOut; | |
2754 | |
2755 for(iOut=0; iOut<SizeofArray(pTS->aaOutput); iOut++){ | |
2756 if( pTS->aaOutput[iOut]==0 ){ | |
2757 assert( iOut>0 ); | |
2758 pTS->aaOutput[iOut] = aMerge; | |
2759 pTS->anOutput[iOut] = nMerge; | |
2760 break; | |
2761 }else{ | |
2762 char *aNew; | |
2763 int nNew; | |
2764 | |
2765 int rc = fts3DoclistOrMerge(p->bDescIdx, aMerge, nMerge, | |
2766 pTS->aaOutput[iOut], pTS->anOutput[iOut], &aNew, &nNew | |
2767 ); | |
2768 if( rc!=SQLITE_OK ){ | |
2769 if( aMerge!=aDoclist ) sqlite3_free(aMerge); | |
2770 return rc; | |
2771 } | |
2772 | |
2773 if( aMerge!=aDoclist ) sqlite3_free(aMerge); | |
2774 sqlite3_free(pTS->aaOutput[iOut]); | |
2775 pTS->aaOutput[iOut] = 0; | |
2776 | |
2777 aMerge = aNew; | |
2778 nMerge = nNew; | |
2779 if( (iOut+1)==SizeofArray(pTS->aaOutput) ){ | |
2780 pTS->aaOutput[iOut] = aMerge; | |
2781 pTS->anOutput[iOut] = nMerge; | |
2782 } | |
2783 } | |
2784 } | |
2785 } | |
2786 return SQLITE_OK; | |
2787 } | |
2788 | |
2789 /* | |
2790 ** Append SegReader object pNew to the end of the pCsr->apSegment[] array. | |
2791 */ | |
2792 static int fts3SegReaderCursorAppend( | |
2793 Fts3MultiSegReader *pCsr, | |
2794 Fts3SegReader *pNew | |
2795 ){ | |
2796 if( (pCsr->nSegment%16)==0 ){ | |
2797 Fts3SegReader **apNew; | |
2798 int nByte = (pCsr->nSegment + 16)*sizeof(Fts3SegReader*); | |
2799 apNew = (Fts3SegReader **)sqlite3_realloc(pCsr->apSegment, nByte); | |
2800 if( !apNew ){ | |
2801 sqlite3Fts3SegReaderFree(pNew); | |
2802 return SQLITE_NOMEM; | |
2803 } | |
2804 pCsr->apSegment = apNew; | |
2805 } | |
2806 pCsr->apSegment[pCsr->nSegment++] = pNew; | |
2807 return SQLITE_OK; | |
2808 } | |
2809 | |
2810 /* | |
2811 ** Add seg-reader objects to the Fts3MultiSegReader object passed as the | |
2812 ** 8th argument. | |
2813 ** | |
2814 ** This function returns SQLITE_OK if successful, or an SQLite error code | |
2815 ** otherwise. | |
2816 */ | |
2817 static int fts3SegReaderCursor( | |
2818 Fts3Table *p, /* FTS3 table handle */ | |
2819 int iLangid, /* Language id */ | |
2820 int iIndex, /* Index to search (from 0 to p->nIndex-1) */ | |
2821 int iLevel, /* Level of segments to scan */ | |
2822 const char *zTerm, /* Term to query for */ | |
2823 int nTerm, /* Size of zTerm in bytes */ | |
2824 int isPrefix, /* True for a prefix search */ | |
2825 int isScan, /* True to scan from zTerm to EOF */ | |
2826 Fts3MultiSegReader *pCsr /* Cursor object to populate */ | |
2827 ){ | |
2828 int rc = SQLITE_OK; /* Error code */ | |
2829 sqlite3_stmt *pStmt = 0; /* Statement to iterate through segments */ | |
2830 int rc2; /* Result of sqlite3_reset() */ | |
2831 | |
2832 /* If iLevel is less than 0 and this is not a scan, include a seg-reader | |
2833 ** for the pending-terms. If this is a scan, then this call must be being | |
2834 ** made by an fts4aux module, not an FTS table. In this case calling | |
2835 ** Fts3SegReaderPending might segfault, as the data structures used by | |
2836 ** fts4aux are not completely populated. So it's easiest to filter these | |
2837 ** calls out here. */ | |
2838 if( iLevel<0 && p->aIndex ){ | |
2839 Fts3SegReader *pSeg = 0; | |
2840 rc = sqlite3Fts3SegReaderPending(p, iIndex, zTerm, nTerm, isPrefix||isScan,
&pSeg); | |
2841 if( rc==SQLITE_OK && pSeg ){ | |
2842 rc = fts3SegReaderCursorAppend(pCsr, pSeg); | |
2843 } | |
2844 } | |
2845 | |
2846 if( iLevel!=FTS3_SEGCURSOR_PENDING ){ | |
2847 if( rc==SQLITE_OK ){ | |
2848 rc = sqlite3Fts3AllSegdirs(p, iLangid, iIndex, iLevel, &pStmt); | |
2849 } | |
2850 | |
2851 while( rc==SQLITE_OK && SQLITE_ROW==(rc = sqlite3_step(pStmt)) ){ | |
2852 Fts3SegReader *pSeg = 0; | |
2853 | |
2854 /* Read the values returned by the SELECT into local variables. */ | |
2855 sqlite3_int64 iStartBlock = sqlite3_column_int64(pStmt, 1); | |
2856 sqlite3_int64 iLeavesEndBlock = sqlite3_column_int64(pStmt, 2); | |
2857 sqlite3_int64 iEndBlock = sqlite3_column_int64(pStmt, 3); | |
2858 int nRoot = sqlite3_column_bytes(pStmt, 4); | |
2859 char const *zRoot = sqlite3_column_blob(pStmt, 4); | |
2860 | |
2861 /* If zTerm is not NULL, and this segment is not stored entirely on its | |
2862 ** root node, the range of leaves scanned can be reduced. Do this. */ | |
2863 if( iStartBlock && zTerm ){ | |
2864 sqlite3_int64 *pi = (isPrefix ? &iLeavesEndBlock : 0); | |
2865 rc = fts3SelectLeaf(p, zTerm, nTerm, zRoot, nRoot, &iStartBlock, pi); | |
2866 if( rc!=SQLITE_OK ) goto finished; | |
2867 if( isPrefix==0 && isScan==0 ) iLeavesEndBlock = iStartBlock; | |
2868 } | |
2869 | |
2870 rc = sqlite3Fts3SegReaderNew(pCsr->nSegment+1, | |
2871 (isPrefix==0 && isScan==0), | |
2872 iStartBlock, iLeavesEndBlock, | |
2873 iEndBlock, zRoot, nRoot, &pSeg | |
2874 ); | |
2875 if( rc!=SQLITE_OK ) goto finished; | |
2876 rc = fts3SegReaderCursorAppend(pCsr, pSeg); | |
2877 } | |
2878 } | |
2879 | |
2880 finished: | |
2881 rc2 = sqlite3_reset(pStmt); | |
2882 if( rc==SQLITE_DONE ) rc = rc2; | |
2883 | |
2884 return rc; | |
2885 } | |
2886 | |
2887 /* | |
2888 ** Set up a cursor object for iterating through a full-text index or a | |
2889 ** single level therein. | |
2890 */ | |
2891 int sqlite3Fts3SegReaderCursor( | |
2892 Fts3Table *p, /* FTS3 table handle */ | |
2893 int iLangid, /* Language-id to search */ | |
2894 int iIndex, /* Index to search (from 0 to p->nIndex-1) */ | |
2895 int iLevel, /* Level of segments to scan */ | |
2896 const char *zTerm, /* Term to query for */ | |
2897 int nTerm, /* Size of zTerm in bytes */ | |
2898 int isPrefix, /* True for a prefix search */ | |
2899 int isScan, /* True to scan from zTerm to EOF */ | |
2900 Fts3MultiSegReader *pCsr /* Cursor object to populate */ | |
2901 ){ | |
2902 assert( iIndex>=0 && iIndex<p->nIndex ); | |
2903 assert( iLevel==FTS3_SEGCURSOR_ALL | |
2904 || iLevel==FTS3_SEGCURSOR_PENDING | |
2905 || iLevel>=0 | |
2906 ); | |
2907 assert( iLevel<FTS3_SEGDIR_MAXLEVEL ); | |
2908 assert( FTS3_SEGCURSOR_ALL<0 && FTS3_SEGCURSOR_PENDING<0 ); | |
2909 assert( isPrefix==0 || isScan==0 ); | |
2910 | |
2911 memset(pCsr, 0, sizeof(Fts3MultiSegReader)); | |
2912 return fts3SegReaderCursor( | |
2913 p, iLangid, iIndex, iLevel, zTerm, nTerm, isPrefix, isScan, pCsr | |
2914 ); | |
2915 } | |
2916 | |
2917 /* | |
2918 ** In addition to its current configuration, have the Fts3MultiSegReader | |
2919 ** passed as the 4th argument also scan the doclist for term zTerm/nTerm. | |
2920 ** | |
2921 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code. | |
2922 */ | |
2923 static int fts3SegReaderCursorAddZero( | |
2924 Fts3Table *p, /* FTS virtual table handle */ | |
2925 int iLangid, | |
2926 const char *zTerm, /* Term to scan doclist of */ | |
2927 int nTerm, /* Number of bytes in zTerm */ | |
2928 Fts3MultiSegReader *pCsr /* Fts3MultiSegReader to modify */ | |
2929 ){ | |
2930 return fts3SegReaderCursor(p, | |
2931 iLangid, 0, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 0, 0,pCsr | |
2932 ); | |
2933 } | |
2934 | |
2935 /* | |
2936 ** Open an Fts3MultiSegReader to scan the doclist for term zTerm/nTerm. Or, | |
2937 ** if isPrefix is true, to scan the doclist for all terms for which | |
2938 ** zTerm/nTerm is a prefix. If successful, return SQLITE_OK and write | |
2939 ** a pointer to the new Fts3MultiSegReader to *ppSegcsr. Otherwise, return | |
2940 ** an SQLite error code. | |
2941 ** | |
2942 ** It is the responsibility of the caller to free this object by eventually | |
2943 ** passing it to fts3SegReaderCursorFree() | |
2944 ** | |
2945 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code. | |
2946 ** Output parameter *ppSegcsr is set to 0 if an error occurs. | |
2947 */ | |
2948 static int fts3TermSegReaderCursor( | |
2949 Fts3Cursor *pCsr, /* Virtual table cursor handle */ | |
2950 const char *zTerm, /* Term to query for */ | |
2951 int nTerm, /* Size of zTerm in bytes */ | |
2952 int isPrefix, /* True for a prefix search */ | |
2953 Fts3MultiSegReader **ppSegcsr /* OUT: Allocated seg-reader cursor */ | |
2954 ){ | |
2955 Fts3MultiSegReader *pSegcsr; /* Object to allocate and return */ | |
2956 int rc = SQLITE_NOMEM; /* Return code */ | |
2957 | |
2958 pSegcsr = sqlite3_malloc(sizeof(Fts3MultiSegReader)); | |
2959 if( pSegcsr ){ | |
2960 int i; | |
2961 int bFound = 0; /* True once an index has been found */ | |
2962 Fts3Table *p = (Fts3Table *)pCsr->base.pVtab; | |
2963 | |
2964 if( isPrefix ){ | |
2965 for(i=1; bFound==0 && i<p->nIndex; i++){ | |
2966 if( p->aIndex[i].nPrefix==nTerm ){ | |
2967 bFound = 1; | |
2968 rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid, | |
2969 i, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 0, 0, pSegcsr | |
2970 ); | |
2971 pSegcsr->bLookup = 1; | |
2972 } | |
2973 } | |
2974 | |
2975 for(i=1; bFound==0 && i<p->nIndex; i++){ | |
2976 if( p->aIndex[i].nPrefix==nTerm+1 ){ | |
2977 bFound = 1; | |
2978 rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid, | |
2979 i, FTS3_SEGCURSOR_ALL, zTerm, nTerm, 1, 0, pSegcsr | |
2980 ); | |
2981 if( rc==SQLITE_OK ){ | |
2982 rc = fts3SegReaderCursorAddZero( | |
2983 p, pCsr->iLangid, zTerm, nTerm, pSegcsr | |
2984 ); | |
2985 } | |
2986 } | |
2987 } | |
2988 } | |
2989 | |
2990 if( bFound==0 ){ | |
2991 rc = sqlite3Fts3SegReaderCursor(p, pCsr->iLangid, | |
2992 0, FTS3_SEGCURSOR_ALL, zTerm, nTerm, isPrefix, 0, pSegcsr | |
2993 ); | |
2994 pSegcsr->bLookup = !isPrefix; | |
2995 } | |
2996 } | |
2997 | |
2998 *ppSegcsr = pSegcsr; | |
2999 return rc; | |
3000 } | |
3001 | |
3002 /* | |
3003 ** Free an Fts3MultiSegReader allocated by fts3TermSegReaderCursor(). | |
3004 */ | |
3005 static void fts3SegReaderCursorFree(Fts3MultiSegReader *pSegcsr){ | |
3006 sqlite3Fts3SegReaderFinish(pSegcsr); | |
3007 sqlite3_free(pSegcsr); | |
3008 } | |
3009 | |
3010 /* | |
3011 ** This function retrieves the doclist for the specified term (or term | |
3012 ** prefix) from the database. | |
3013 */ | |
3014 static int fts3TermSelect( | |
3015 Fts3Table *p, /* Virtual table handle */ | |
3016 Fts3PhraseToken *pTok, /* Token to query for */ | |
3017 int iColumn, /* Column to query (or -ve for all columns) */ | |
3018 int *pnOut, /* OUT: Size of buffer at *ppOut */ | |
3019 char **ppOut /* OUT: Malloced result buffer */ | |
3020 ){ | |
3021 int rc; /* Return code */ | |
3022 Fts3MultiSegReader *pSegcsr; /* Seg-reader cursor for this term */ | |
3023 TermSelect tsc; /* Object for pair-wise doclist merging */ | |
3024 Fts3SegFilter filter; /* Segment term filter configuration */ | |
3025 | |
3026 pSegcsr = pTok->pSegcsr; | |
3027 memset(&tsc, 0, sizeof(TermSelect)); | |
3028 | |
3029 filter.flags = FTS3_SEGMENT_IGNORE_EMPTY | FTS3_SEGMENT_REQUIRE_POS | |
3030 | (pTok->isPrefix ? FTS3_SEGMENT_PREFIX : 0) | |
3031 | (pTok->bFirst ? FTS3_SEGMENT_FIRST : 0) | |
3032 | (iColumn<p->nColumn ? FTS3_SEGMENT_COLUMN_FILTER : 0); | |
3033 filter.iCol = iColumn; | |
3034 filter.zTerm = pTok->z; | |
3035 filter.nTerm = pTok->n; | |
3036 | |
3037 rc = sqlite3Fts3SegReaderStart(p, pSegcsr, &filter); | |
3038 while( SQLITE_OK==rc | |
3039 && SQLITE_ROW==(rc = sqlite3Fts3SegReaderStep(p, pSegcsr)) | |
3040 ){ | |
3041 rc = fts3TermSelectMerge(p, &tsc, pSegcsr->aDoclist, pSegcsr->nDoclist); | |
3042 } | |
3043 | |
3044 if( rc==SQLITE_OK ){ | |
3045 rc = fts3TermSelectFinishMerge(p, &tsc); | |
3046 } | |
3047 if( rc==SQLITE_OK ){ | |
3048 *ppOut = tsc.aaOutput[0]; | |
3049 *pnOut = tsc.anOutput[0]; | |
3050 }else{ | |
3051 int i; | |
3052 for(i=0; i<SizeofArray(tsc.aaOutput); i++){ | |
3053 sqlite3_free(tsc.aaOutput[i]); | |
3054 } | |
3055 } | |
3056 | |
3057 fts3SegReaderCursorFree(pSegcsr); | |
3058 pTok->pSegcsr = 0; | |
3059 return rc; | |
3060 } | |
3061 | |
3062 /* | |
3063 ** This function counts the total number of docids in the doclist stored | |
3064 ** in buffer aList[], size nList bytes. | |
3065 ** | |
3066 ** If the isPoslist argument is true, then it is assumed that the doclist | |
3067 ** contains a position-list following each docid. Otherwise, it is assumed | |
3068 ** that the doclist is simply a list of docids stored as delta encoded | |
3069 ** varints. | |
3070 */ | |
3071 static int fts3DoclistCountDocids(char *aList, int nList){ | |
3072 int nDoc = 0; /* Return value */ | |
3073 if( aList ){ | |
3074 char *aEnd = &aList[nList]; /* Pointer to one byte after EOF */ | |
3075 char *p = aList; /* Cursor */ | |
3076 while( p<aEnd ){ | |
3077 nDoc++; | |
3078 while( (*p++)&0x80 ); /* Skip docid varint */ | |
3079 fts3PoslistCopy(0, &p); /* Skip over position list */ | |
3080 } | |
3081 } | |
3082 | |
3083 return nDoc; | |
3084 } | |
3085 | |
3086 /* | |
3087 ** Advance the cursor to the next row in the %_content table that | |
3088 ** matches the search criteria. For a MATCH search, this will be | |
3089 ** the next row that matches. For a full-table scan, this will be | |
3090 ** simply the next row in the %_content table. For a docid lookup, | |
3091 ** this routine simply sets the EOF flag. | |
3092 ** | |
3093 ** Return SQLITE_OK if nothing goes wrong. SQLITE_OK is returned | |
3094 ** even if we reach end-of-file. The fts3EofMethod() will be called | |
3095 ** subsequently to determine whether or not an EOF was hit. | |
3096 */ | |
3097 static int fts3NextMethod(sqlite3_vtab_cursor *pCursor){ | |
3098 int rc; | |
3099 Fts3Cursor *pCsr = (Fts3Cursor *)pCursor; | |
3100 if( pCsr->eSearch==FTS3_DOCID_SEARCH || pCsr->eSearch==FTS3_FULLSCAN_SEARCH ){ | |
3101 if( SQLITE_ROW!=sqlite3_step(pCsr->pStmt) ){ | |
3102 pCsr->isEof = 1; | |
3103 rc = sqlite3_reset(pCsr->pStmt); | |
3104 }else{ | |
3105 pCsr->iPrevId = sqlite3_column_int64(pCsr->pStmt, 0); | |
3106 rc = SQLITE_OK; | |
3107 } | |
3108 }else{ | |
3109 rc = fts3EvalNext((Fts3Cursor *)pCursor); | |
3110 } | |
3111 assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 ); | |
3112 return rc; | |
3113 } | |
3114 | |
3115 /* | |
3116 ** The following are copied from sqliteInt.h. | |
3117 ** | |
3118 ** Constants for the largest and smallest possible 64-bit signed integers. | |
3119 ** These macros are designed to work correctly on both 32-bit and 64-bit | |
3120 ** compilers. | |
3121 */ | |
3122 #ifndef SQLITE_AMALGAMATION | |
3123 # define LARGEST_INT64 (0xffffffff|(((sqlite3_int64)0x7fffffff)<<32)) | |
3124 # define SMALLEST_INT64 (((sqlite3_int64)-1) - LARGEST_INT64) | |
3125 #endif | |
3126 | |
3127 /* | |
3128 ** If the numeric type of argument pVal is "integer", then return it | |
3129 ** converted to a 64-bit signed integer. Otherwise, return a copy of | |
3130 ** the second parameter, iDefault. | |
3131 */ | |
3132 static sqlite3_int64 fts3DocidRange(sqlite3_value *pVal, i64 iDefault){ | |
3133 if( pVal ){ | |
3134 int eType = sqlite3_value_numeric_type(pVal); | |
3135 if( eType==SQLITE_INTEGER ){ | |
3136 return sqlite3_value_int64(pVal); | |
3137 } | |
3138 } | |
3139 return iDefault; | |
3140 } | |
3141 | |
3142 /* | |
3143 ** This is the xFilter interface for the virtual table. See | |
3144 ** the virtual table xFilter method documentation for additional | |
3145 ** information. | |
3146 ** | |
3147 ** If idxNum==FTS3_FULLSCAN_SEARCH then do a full table scan against | |
3148 ** the %_content table. | |
3149 ** | |
3150 ** If idxNum==FTS3_DOCID_SEARCH then do a docid lookup for a single entry | |
3151 ** in the %_content table. | |
3152 ** | |
3153 ** If idxNum>=FTS3_FULLTEXT_SEARCH then use the full text index. The | |
3154 ** column on the left-hand side of the MATCH operator is column | |
3155 ** number idxNum-FTS3_FULLTEXT_SEARCH, 0 indexed. argv[0] is the right-hand | |
3156 ** side of the MATCH operator. | |
3157 */ | |
3158 static int fts3FilterMethod( | |
3159 sqlite3_vtab_cursor *pCursor, /* The cursor used for this query */ | |
3160 int idxNum, /* Strategy index */ | |
3161 const char *idxStr, /* Unused */ | |
3162 int nVal, /* Number of elements in apVal */ | |
3163 sqlite3_value **apVal /* Arguments for the indexing scheme */ | |
3164 ){ | |
3165 int rc = SQLITE_OK; | |
3166 char *zSql; /* SQL statement used to access %_content */ | |
3167 int eSearch; | |
3168 Fts3Table *p = (Fts3Table *)pCursor->pVtab; | |
3169 Fts3Cursor *pCsr = (Fts3Cursor *)pCursor; | |
3170 | |
3171 sqlite3_value *pCons = 0; /* The MATCH or rowid constraint, if any */ | |
3172 sqlite3_value *pLangid = 0; /* The "langid = ?" constraint, if any */ | |
3173 sqlite3_value *pDocidGe = 0; /* The "docid >= ?" constraint, if any */ | |
3174 sqlite3_value *pDocidLe = 0; /* The "docid <= ?" constraint, if any */ | |
3175 int iIdx; | |
3176 | |
3177 UNUSED_PARAMETER(idxStr); | |
3178 UNUSED_PARAMETER(nVal); | |
3179 | |
3180 eSearch = (idxNum & 0x0000FFFF); | |
3181 assert( eSearch>=0 && eSearch<=(FTS3_FULLTEXT_SEARCH+p->nColumn) ); | |
3182 assert( p->pSegments==0 ); | |
3183 | |
3184 /* Collect arguments into local variables */ | |
3185 iIdx = 0; | |
3186 if( eSearch!=FTS3_FULLSCAN_SEARCH ) pCons = apVal[iIdx++]; | |
3187 if( idxNum & FTS3_HAVE_LANGID ) pLangid = apVal[iIdx++]; | |
3188 if( idxNum & FTS3_HAVE_DOCID_GE ) pDocidGe = apVal[iIdx++]; | |
3189 if( idxNum & FTS3_HAVE_DOCID_LE ) pDocidLe = apVal[iIdx++]; | |
3190 assert( iIdx==nVal ); | |
3191 | |
3192 /* In case the cursor has been used before, clear it now. */ | |
3193 sqlite3_finalize(pCsr->pStmt); | |
3194 sqlite3_free(pCsr->aDoclist); | |
3195 sqlite3Fts3MIBufferFree(pCsr->pMIBuffer); | |
3196 sqlite3Fts3ExprFree(pCsr->pExpr); | |
3197 memset(&pCursor[1], 0, sizeof(Fts3Cursor)-sizeof(sqlite3_vtab_cursor)); | |
3198 | |
3199 /* Set the lower and upper bounds on docids to return */ | |
3200 pCsr->iMinDocid = fts3DocidRange(pDocidGe, SMALLEST_INT64); | |
3201 pCsr->iMaxDocid = fts3DocidRange(pDocidLe, LARGEST_INT64); | |
3202 | |
3203 if( idxStr ){ | |
3204 pCsr->bDesc = (idxStr[0]=='D'); | |
3205 }else{ | |
3206 pCsr->bDesc = p->bDescIdx; | |
3207 } | |
3208 pCsr->eSearch = (i16)eSearch; | |
3209 | |
3210 if( eSearch!=FTS3_DOCID_SEARCH && eSearch!=FTS3_FULLSCAN_SEARCH ){ | |
3211 int iCol = eSearch-FTS3_FULLTEXT_SEARCH; | |
3212 const char *zQuery = (const char *)sqlite3_value_text(pCons); | |
3213 | |
3214 if( zQuery==0 && sqlite3_value_type(pCons)!=SQLITE_NULL ){ | |
3215 return SQLITE_NOMEM; | |
3216 } | |
3217 | |
3218 pCsr->iLangid = 0; | |
3219 if( pLangid ) pCsr->iLangid = sqlite3_value_int(pLangid); | |
3220 | |
3221 assert( p->base.zErrMsg==0 ); | |
3222 rc = sqlite3Fts3ExprParse(p->pTokenizer, pCsr->iLangid, | |
3223 p->azColumn, p->bFts4, p->nColumn, iCol, zQuery, -1, &pCsr->pExpr, | |
3224 &p->base.zErrMsg | |
3225 ); | |
3226 if( rc!=SQLITE_OK ){ | |
3227 return rc; | |
3228 } | |
3229 | |
3230 rc = fts3EvalStart(pCsr); | |
3231 sqlite3Fts3SegmentsClose(p); | |
3232 if( rc!=SQLITE_OK ) return rc; | |
3233 pCsr->pNextId = pCsr->aDoclist; | |
3234 pCsr->iPrevId = 0; | |
3235 } | |
3236 | |
3237 /* Compile a SELECT statement for this cursor. For a full-table-scan, the | |
3238 ** statement loops through all rows of the %_content table. For a | |
3239 ** full-text query or docid lookup, the statement retrieves a single | |
3240 ** row by docid. | |
3241 */ | |
3242 if( eSearch==FTS3_FULLSCAN_SEARCH ){ | |
3243 if( pDocidGe || pDocidLe ){ | |
3244 zSql = sqlite3_mprintf( | |
3245 "SELECT %s WHERE rowid BETWEEN %lld AND %lld ORDER BY rowid %s", | |
3246 p->zReadExprlist, pCsr->iMinDocid, pCsr->iMaxDocid, | |
3247 (pCsr->bDesc ? "DESC" : "ASC") | |
3248 ); | |
3249 }else{ | |
3250 zSql = sqlite3_mprintf("SELECT %s ORDER BY rowid %s", | |
3251 p->zReadExprlist, (pCsr->bDesc ? "DESC" : "ASC") | |
3252 ); | |
3253 } | |
3254 if( zSql ){ | |
3255 rc = sqlite3_prepare_v2(p->db, zSql, -1, &pCsr->pStmt, 0); | |
3256 sqlite3_free(zSql); | |
3257 }else{ | |
3258 rc = SQLITE_NOMEM; | |
3259 } | |
3260 }else if( eSearch==FTS3_DOCID_SEARCH ){ | |
3261 rc = fts3CursorSeekStmt(pCsr, &pCsr->pStmt); | |
3262 if( rc==SQLITE_OK ){ | |
3263 rc = sqlite3_bind_value(pCsr->pStmt, 1, pCons); | |
3264 } | |
3265 } | |
3266 if( rc!=SQLITE_OK ) return rc; | |
3267 | |
3268 return fts3NextMethod(pCursor); | |
3269 } | |
3270 | |
3271 /* | |
3272 ** This is the xEof method of the virtual table. SQLite calls this | |
3273 ** routine to find out if it has reached the end of a result set. | |
3274 */ | |
3275 static int fts3EofMethod(sqlite3_vtab_cursor *pCursor){ | |
3276 return ((Fts3Cursor *)pCursor)->isEof; | |
3277 } | |
3278 | |
3279 /* | |
3280 ** This is the xRowid method. The SQLite core calls this routine to | |
3281 ** retrieve the rowid for the current row of the result set. fts3 | |
3282 ** exposes %_content.docid as the rowid for the virtual table. The | |
3283 ** rowid should be written to *pRowid. | |
3284 */ | |
3285 static int fts3RowidMethod(sqlite3_vtab_cursor *pCursor, sqlite_int64 *pRowid){ | |
3286 Fts3Cursor *pCsr = (Fts3Cursor *) pCursor; | |
3287 *pRowid = pCsr->iPrevId; | |
3288 return SQLITE_OK; | |
3289 } | |
3290 | |
3291 /* | |
3292 ** This is the xColumn method, called by SQLite to request a value from | |
3293 ** the row that the supplied cursor currently points to. | |
3294 ** | |
3295 ** If: | |
3296 ** | |
3297 ** (iCol < p->nColumn) -> The value of the iCol'th user column. | |
3298 ** (iCol == p->nColumn) -> Magic column with the same name as the table. | |
3299 ** (iCol == p->nColumn+1) -> Docid column | |
3300 ** (iCol == p->nColumn+2) -> Langid column | |
3301 */ | |
3302 static int fts3ColumnMethod( | |
3303 sqlite3_vtab_cursor *pCursor, /* Cursor to retrieve value from */ | |
3304 sqlite3_context *pCtx, /* Context for sqlite3_result_xxx() calls */ | |
3305 int iCol /* Index of column to read value from */ | |
3306 ){ | |
3307 int rc = SQLITE_OK; /* Return Code */ | |
3308 Fts3Cursor *pCsr = (Fts3Cursor *) pCursor; | |
3309 Fts3Table *p = (Fts3Table *)pCursor->pVtab; | |
3310 | |
3311 /* The column value supplied by SQLite must be in range. */ | |
3312 assert( iCol>=0 && iCol<=p->nColumn+2 ); | |
3313 | |
3314 if( iCol==p->nColumn+1 ){ | |
3315 /* This call is a request for the "docid" column. Since "docid" is an | |
3316 ** alias for "rowid", use the xRowid() method to obtain the value. | |
3317 */ | |
3318 sqlite3_result_int64(pCtx, pCsr->iPrevId); | |
3319 }else if( iCol==p->nColumn ){ | |
3320 /* The extra column whose name is the same as the table. | |
3321 ** Return a blob which is a pointer to the cursor. */ | |
3322 sqlite3_result_blob(pCtx, &pCsr, sizeof(pCsr), SQLITE_TRANSIENT); | |
3323 }else if( iCol==p->nColumn+2 && pCsr->pExpr ){ | |
3324 sqlite3_result_int64(pCtx, pCsr->iLangid); | |
3325 }else{ | |
3326 /* The requested column is either a user column (one that contains | |
3327 ** indexed data), or the language-id column. */ | |
3328 rc = fts3CursorSeek(0, pCsr); | |
3329 | |
3330 if( rc==SQLITE_OK ){ | |
3331 if( iCol==p->nColumn+2 ){ | |
3332 int iLangid = 0; | |
3333 if( p->zLanguageid ){ | |
3334 iLangid = sqlite3_column_int(pCsr->pStmt, p->nColumn+1); | |
3335 } | |
3336 sqlite3_result_int(pCtx, iLangid); | |
3337 }else if( sqlite3_data_count(pCsr->pStmt)>(iCol+1) ){ | |
3338 sqlite3_result_value(pCtx, sqlite3_column_value(pCsr->pStmt, iCol+1)); | |
3339 } | |
3340 } | |
3341 } | |
3342 | |
3343 assert( ((Fts3Table *)pCsr->base.pVtab)->pSegments==0 ); | |
3344 return rc; | |
3345 } | |
3346 | |
3347 /* | |
3348 ** This function is the implementation of the xUpdate callback used by | |
3349 ** FTS3 virtual tables. It is invoked by SQLite each time a row is to be | |
3350 ** inserted, updated or deleted. | |
3351 */ | |
3352 static int fts3UpdateMethod( | |
3353 sqlite3_vtab *pVtab, /* Virtual table handle */ | |
3354 int nArg, /* Size of argument array */ | |
3355 sqlite3_value **apVal, /* Array of arguments */ | |
3356 sqlite_int64 *pRowid /* OUT: The affected (or effected) rowid */ | |
3357 ){ | |
3358 return sqlite3Fts3UpdateMethod(pVtab, nArg, apVal, pRowid); | |
3359 } | |
3360 | |
3361 /* | |
3362 ** Implementation of xSync() method. Flush the contents of the pending-terms | |
3363 ** hash-table to the database. | |
3364 */ | |
3365 static int fts3SyncMethod(sqlite3_vtab *pVtab){ | |
3366 | |
3367 /* Following an incremental-merge operation, assuming that the input | |
3368 ** segments are not completely consumed (the usual case), they are updated | |
3369 ** in place to remove the entries that have already been merged. This | |
3370 ** involves updating the leaf block that contains the smallest unmerged | |
3371 ** entry and each block (if any) between the leaf and the root node. So | |
3372 ** if the height of the input segment b-trees is N, and input segments | |
3373 ** are merged eight at a time, updating the input segments at the end | |
3374 ** of an incremental-merge requires writing (8*(1+N)) blocks. N is usually | |
3375 ** small - often between 0 and 2. So the overhead of the incremental | |
3376 ** merge is somewhere between 8 and 24 blocks. To avoid this overhead | |
3377 ** dwarfing the actual productive work accomplished, the incremental merge | |
3378 ** is only attempted if it will write at least 64 leaf blocks. Hence | |
3379 ** nMinMerge. | |
3380 ** | |
3381 ** Of course, updating the input segments also involves deleting a bunch | |
3382 ** of blocks from the segments table. But this is not considered overhead | |
3383 ** as it would also be required by a crisis-merge that used the same input | |
3384 ** segments. | |
3385 */ | |
3386 const u32 nMinMerge = 64; /* Minimum amount of incr-merge work to do */ | |
3387 | |
3388 Fts3Table *p = (Fts3Table*)pVtab; | |
3389 int rc = sqlite3Fts3PendingTermsFlush(p); | |
3390 | |
3391 if( rc==SQLITE_OK | |
3392 && p->nLeafAdd>(nMinMerge/16) | |
3393 && p->nAutoincrmerge && p->nAutoincrmerge!=0xff | |
3394 ){ | |
3395 int mxLevel = 0; /* Maximum relative level value in db */ | |
3396 int A; /* Incr-merge parameter A */ | |
3397 | |
3398 rc = sqlite3Fts3MaxLevel(p, &mxLevel); | |
3399 assert( rc==SQLITE_OK || mxLevel==0 ); | |
3400 A = p->nLeafAdd * mxLevel; | |
3401 A += (A/2); | |
3402 if( A>(int)nMinMerge ) rc = sqlite3Fts3Incrmerge(p, A, p->nAutoincrmerge); | |
3403 } | |
3404 sqlite3Fts3SegmentsClose(p); | |
3405 return rc; | |
3406 } | |
3407 | |
3408 /* | |
3409 ** If it is currently unknown whether or not the FTS table has an %_stat | |
3410 ** table (if p->bHasStat==2), attempt to determine this (set p->bHasStat | |
3411 ** to 0 or 1). Return SQLITE_OK if successful, or an SQLite error code | |
3412 ** if an error occurs. | |
3413 */ | |
3414 static int fts3SetHasStat(Fts3Table *p){ | |
3415 int rc = SQLITE_OK; | |
3416 if( p->bHasStat==2 ){ | |
3417 const char *zFmt ="SELECT 1 FROM %Q.sqlite_master WHERE tbl_name='%q_stat'"; | |
3418 char *zSql = sqlite3_mprintf(zFmt, p->zDb, p->zName); | |
3419 if( zSql ){ | |
3420 sqlite3_stmt *pStmt = 0; | |
3421 rc = sqlite3_prepare_v2(p->db, zSql, -1, &pStmt, 0); | |
3422 if( rc==SQLITE_OK ){ | |
3423 int bHasStat = (sqlite3_step(pStmt)==SQLITE_ROW); | |
3424 rc = sqlite3_finalize(pStmt); | |
3425 if( rc==SQLITE_OK ) p->bHasStat = bHasStat; | |
3426 } | |
3427 sqlite3_free(zSql); | |
3428 }else{ | |
3429 rc = SQLITE_NOMEM; | |
3430 } | |
3431 } | |
3432 return rc; | |
3433 } | |
3434 | |
3435 /* | |
3436 ** Implementation of xBegin() method. | |
3437 */ | |
3438 static int fts3BeginMethod(sqlite3_vtab *pVtab){ | |
3439 Fts3Table *p = (Fts3Table*)pVtab; | |
3440 UNUSED_PARAMETER(pVtab); | |
3441 assert( p->pSegments==0 ); | |
3442 assert( p->nPendingData==0 ); | |
3443 assert( p->inTransaction!=1 ); | |
3444 TESTONLY( p->inTransaction = 1 ); | |
3445 TESTONLY( p->mxSavepoint = -1; ); | |
3446 p->nLeafAdd = 0; | |
3447 return fts3SetHasStat(p); | |
3448 } | |
3449 | |
3450 /* | |
3451 ** Implementation of xCommit() method. This is a no-op. The contents of | |
3452 ** the pending-terms hash-table have already been flushed into the database | |
3453 ** by fts3SyncMethod(). | |
3454 */ | |
3455 static int fts3CommitMethod(sqlite3_vtab *pVtab){ | |
3456 TESTONLY( Fts3Table *p = (Fts3Table*)pVtab ); | |
3457 UNUSED_PARAMETER(pVtab); | |
3458 assert( p->nPendingData==0 ); | |
3459 assert( p->inTransaction!=0 ); | |
3460 assert( p->pSegments==0 ); | |
3461 TESTONLY( p->inTransaction = 0 ); | |
3462 TESTONLY( p->mxSavepoint = -1; ); | |
3463 return SQLITE_OK; | |
3464 } | |
3465 | |
3466 /* | |
3467 ** Implementation of xRollback(). Discard the contents of the pending-terms | |
3468 ** hash-table. Any changes made to the database are reverted by SQLite. | |
3469 */ | |
3470 static int fts3RollbackMethod(sqlite3_vtab *pVtab){ | |
3471 Fts3Table *p = (Fts3Table*)pVtab; | |
3472 sqlite3Fts3PendingTermsClear(p); | |
3473 assert( p->inTransaction!=0 ); | |
3474 TESTONLY( p->inTransaction = 0 ); | |
3475 TESTONLY( p->mxSavepoint = -1; ); | |
3476 return SQLITE_OK; | |
3477 } | |
3478 | |
3479 /* | |
3480 ** When called, *ppPoslist must point to the byte immediately following the | |
3481 ** end of a position-list. i.e. ( (*ppPoslist)[-1]==POS_END ). This function | |
3482 ** moves *ppPoslist so that it instead points to the first byte of the | |
3483 ** same position list. | |
3484 */ | |
3485 static void fts3ReversePoslist(char *pStart, char **ppPoslist){ | |
3486 char *p = &(*ppPoslist)[-2]; | |
3487 char c = 0; | |
3488 | |
3489 /* Skip backwards passed any trailing 0x00 bytes added by NearTrim() */ | |
3490 while( p>pStart && (c=*p--)==0 ); | |
3491 | |
3492 /* Search backwards for a varint with value zero (the end of the previous | |
3493 ** poslist). This is an 0x00 byte preceded by some byte that does not | |
3494 ** have the 0x80 bit set. */ | |
3495 while( p>pStart && (*p & 0x80) | c ){ | |
3496 c = *p--; | |
3497 } | |
3498 assert( p==pStart || c==0 ); | |
3499 | |
3500 /* At this point p points to that preceding byte without the 0x80 bit | |
3501 ** set. So to find the start of the poslist, skip forward 2 bytes then | |
3502 ** over a varint. | |
3503 ** | |
3504 ** Normally. The other case is that p==pStart and the poslist to return | |
3505 ** is the first in the doclist. In this case do not skip forward 2 bytes. | |
3506 ** The second part of the if condition (c==0 && *ppPoslist>&p[2]) | |
3507 ** is required for cases where the first byte of a doclist and the | |
3508 ** doclist is empty. For example, if the first docid is 10, a doclist | |
3509 ** that begins with: | |
3510 ** | |
3511 ** 0x0A 0x00 <next docid delta varint> | |
3512 */ | |
3513 if( p>pStart || (c==0 && *ppPoslist>&p[2]) ){ p = &p[2]; } | |
3514 while( *p++&0x80 ); | |
3515 *ppPoslist = p; | |
3516 } | |
3517 | |
3518 /* | |
3519 ** Helper function used by the implementation of the overloaded snippet(), | |
3520 ** offsets() and optimize() SQL functions. | |
3521 ** | |
3522 ** If the value passed as the third argument is a blob of size | |
3523 ** sizeof(Fts3Cursor*), then the blob contents are copied to the | |
3524 ** output variable *ppCsr and SQLITE_OK is returned. Otherwise, an error | |
3525 ** message is written to context pContext and SQLITE_ERROR returned. The | |
3526 ** string passed via zFunc is used as part of the error message. | |
3527 */ | |
3528 static int fts3FunctionArg( | |
3529 sqlite3_context *pContext, /* SQL function call context */ | |
3530 const char *zFunc, /* Function name */ | |
3531 sqlite3_value *pVal, /* argv[0] passed to function */ | |
3532 Fts3Cursor **ppCsr /* OUT: Store cursor handle here */ | |
3533 ){ | |
3534 Fts3Cursor *pRet; | |
3535 if( sqlite3_value_type(pVal)!=SQLITE_BLOB | |
3536 || sqlite3_value_bytes(pVal)!=sizeof(Fts3Cursor *) | |
3537 ){ | |
3538 char *zErr = sqlite3_mprintf("illegal first argument to %s", zFunc); | |
3539 sqlite3_result_error(pContext, zErr, -1); | |
3540 sqlite3_free(zErr); | |
3541 return SQLITE_ERROR; | |
3542 } | |
3543 memcpy(&pRet, sqlite3_value_blob(pVal), sizeof(Fts3Cursor *)); | |
3544 *ppCsr = pRet; | |
3545 return SQLITE_OK; | |
3546 } | |
3547 | |
3548 /* | |
3549 ** Implementation of the snippet() function for FTS3 | |
3550 */ | |
3551 static void fts3SnippetFunc( | |
3552 sqlite3_context *pContext, /* SQLite function call context */ | |
3553 int nVal, /* Size of apVal[] array */ | |
3554 sqlite3_value **apVal /* Array of arguments */ | |
3555 ){ | |
3556 Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */ | |
3557 const char *zStart = "<b>"; | |
3558 const char *zEnd = "</b>"; | |
3559 const char *zEllipsis = "<b>...</b>"; | |
3560 int iCol = -1; | |
3561 int nToken = 15; /* Default number of tokens in snippet */ | |
3562 | |
3563 /* There must be at least one argument passed to this function (otherwise | |
3564 ** the non-overloaded version would have been called instead of this one). | |
3565 */ | |
3566 assert( nVal>=1 ); | |
3567 | |
3568 if( nVal>6 ){ | |
3569 sqlite3_result_error(pContext, | |
3570 "wrong number of arguments to function snippet()", -1); | |
3571 return; | |
3572 } | |
3573 if( fts3FunctionArg(pContext, "snippet", apVal[0], &pCsr) ) return; | |
3574 | |
3575 switch( nVal ){ | |
3576 case 6: nToken = sqlite3_value_int(apVal[5]); | |
3577 case 5: iCol = sqlite3_value_int(apVal[4]); | |
3578 case 4: zEllipsis = (const char*)sqlite3_value_text(apVal[3]); | |
3579 case 3: zEnd = (const char*)sqlite3_value_text(apVal[2]); | |
3580 case 2: zStart = (const char*)sqlite3_value_text(apVal[1]); | |
3581 } | |
3582 if( !zEllipsis || !zEnd || !zStart ){ | |
3583 sqlite3_result_error_nomem(pContext); | |
3584 }else if( nToken==0 ){ | |
3585 sqlite3_result_text(pContext, "", -1, SQLITE_STATIC); | |
3586 }else if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){ | |
3587 sqlite3Fts3Snippet(pContext, pCsr, zStart, zEnd, zEllipsis, iCol, nToken); | |
3588 } | |
3589 } | |
3590 | |
3591 /* | |
3592 ** Implementation of the offsets() function for FTS3 | |
3593 */ | |
3594 static void fts3OffsetsFunc( | |
3595 sqlite3_context *pContext, /* SQLite function call context */ | |
3596 int nVal, /* Size of argument array */ | |
3597 sqlite3_value **apVal /* Array of arguments */ | |
3598 ){ | |
3599 Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */ | |
3600 | |
3601 UNUSED_PARAMETER(nVal); | |
3602 | |
3603 assert( nVal==1 ); | |
3604 if( fts3FunctionArg(pContext, "offsets", apVal[0], &pCsr) ) return; | |
3605 assert( pCsr ); | |
3606 if( SQLITE_OK==fts3CursorSeek(pContext, pCsr) ){ | |
3607 sqlite3Fts3Offsets(pContext, pCsr); | |
3608 } | |
3609 } | |
3610 | |
3611 /* | |
3612 ** Implementation of the special optimize() function for FTS3. This | |
3613 ** function merges all segments in the database to a single segment. | |
3614 ** Example usage is: | |
3615 ** | |
3616 ** SELECT optimize(t) FROM t LIMIT 1; | |
3617 ** | |
3618 ** where 't' is the name of an FTS3 table. | |
3619 */ | |
3620 static void fts3OptimizeFunc( | |
3621 sqlite3_context *pContext, /* SQLite function call context */ | |
3622 int nVal, /* Size of argument array */ | |
3623 sqlite3_value **apVal /* Array of arguments */ | |
3624 ){ | |
3625 int rc; /* Return code */ | |
3626 Fts3Table *p; /* Virtual table handle */ | |
3627 Fts3Cursor *pCursor; /* Cursor handle passed through apVal[0] */ | |
3628 | |
3629 UNUSED_PARAMETER(nVal); | |
3630 | |
3631 assert( nVal==1 ); | |
3632 if( fts3FunctionArg(pContext, "optimize", apVal[0], &pCursor) ) return; | |
3633 p = (Fts3Table *)pCursor->base.pVtab; | |
3634 assert( p ); | |
3635 | |
3636 rc = sqlite3Fts3Optimize(p); | |
3637 | |
3638 switch( rc ){ | |
3639 case SQLITE_OK: | |
3640 sqlite3_result_text(pContext, "Index optimized", -1, SQLITE_STATIC); | |
3641 break; | |
3642 case SQLITE_DONE: | |
3643 sqlite3_result_text(pContext, "Index already optimal", -1, SQLITE_STATIC); | |
3644 break; | |
3645 default: | |
3646 sqlite3_result_error_code(pContext, rc); | |
3647 break; | |
3648 } | |
3649 } | |
3650 | |
3651 /* | |
3652 ** Implementation of the matchinfo() function for FTS3 | |
3653 */ | |
3654 static void fts3MatchinfoFunc( | |
3655 sqlite3_context *pContext, /* SQLite function call context */ | |
3656 int nVal, /* Size of argument array */ | |
3657 sqlite3_value **apVal /* Array of arguments */ | |
3658 ){ | |
3659 Fts3Cursor *pCsr; /* Cursor handle passed through apVal[0] */ | |
3660 assert( nVal==1 || nVal==2 ); | |
3661 if( SQLITE_OK==fts3FunctionArg(pContext, "matchinfo", apVal[0], &pCsr) ){ | |
3662 const char *zArg = 0; | |
3663 if( nVal>1 ){ | |
3664 zArg = (const char *)sqlite3_value_text(apVal[1]); | |
3665 } | |
3666 sqlite3Fts3Matchinfo(pContext, pCsr, zArg); | |
3667 } | |
3668 } | |
3669 | |
3670 /* | |
3671 ** This routine implements the xFindFunction method for the FTS3 | |
3672 ** virtual table. | |
3673 */ | |
3674 static int fts3FindFunctionMethod( | |
3675 sqlite3_vtab *pVtab, /* Virtual table handle */ | |
3676 int nArg, /* Number of SQL function arguments */ | |
3677 const char *zName, /* Name of SQL function */ | |
3678 void (**pxFunc)(sqlite3_context*,int,sqlite3_value**), /* OUT: Result */ | |
3679 void **ppArg /* Unused */ | |
3680 ){ | |
3681 struct Overloaded { | |
3682 const char *zName; | |
3683 void (*xFunc)(sqlite3_context*,int,sqlite3_value**); | |
3684 } aOverload[] = { | |
3685 { "snippet", fts3SnippetFunc }, | |
3686 { "offsets", fts3OffsetsFunc }, | |
3687 { "optimize", fts3OptimizeFunc }, | |
3688 { "matchinfo", fts3MatchinfoFunc }, | |
3689 }; | |
3690 int i; /* Iterator variable */ | |
3691 | |
3692 UNUSED_PARAMETER(pVtab); | |
3693 UNUSED_PARAMETER(nArg); | |
3694 UNUSED_PARAMETER(ppArg); | |
3695 | |
3696 for(i=0; i<SizeofArray(aOverload); i++){ | |
3697 if( strcmp(zName, aOverload[i].zName)==0 ){ | |
3698 *pxFunc = aOverload[i].xFunc; | |
3699 return 1; | |
3700 } | |
3701 } | |
3702 | |
3703 /* No function of the specified name was found. Return 0. */ | |
3704 return 0; | |
3705 } | |
3706 | |
3707 /* | |
3708 ** Implementation of FTS3 xRename method. Rename an fts3 table. | |
3709 */ | |
3710 static int fts3RenameMethod( | |
3711 sqlite3_vtab *pVtab, /* Virtual table handle */ | |
3712 const char *zName /* New name of table */ | |
3713 ){ | |
3714 Fts3Table *p = (Fts3Table *)pVtab; | |
3715 sqlite3 *db = p->db; /* Database connection */ | |
3716 int rc; /* Return Code */ | |
3717 | |
3718 /* At this point it must be known if the %_stat table exists or not. | |
3719 ** So bHasStat may not be 2. */ | |
3720 rc = fts3SetHasStat(p); | |
3721 | |
3722 /* As it happens, the pending terms table is always empty here. This is | |
3723 ** because an "ALTER TABLE RENAME TABLE" statement inside a transaction | |
3724 ** always opens a savepoint transaction. And the xSavepoint() method | |
3725 ** flushes the pending terms table. But leave the (no-op) call to | |
3726 ** PendingTermsFlush() in in case that changes. | |
3727 */ | |
3728 assert( p->nPendingData==0 ); | |
3729 if( rc==SQLITE_OK ){ | |
3730 rc = sqlite3Fts3PendingTermsFlush(p); | |
3731 } | |
3732 | |
3733 if( p->zContentTbl==0 ){ | |
3734 fts3DbExec(&rc, db, | |
3735 "ALTER TABLE %Q.'%q_content' RENAME TO '%q_content';", | |
3736 p->zDb, p->zName, zName | |
3737 ); | |
3738 } | |
3739 | |
3740 if( p->bHasDocsize ){ | |
3741 fts3DbExec(&rc, db, | |
3742 "ALTER TABLE %Q.'%q_docsize' RENAME TO '%q_docsize';", | |
3743 p->zDb, p->zName, zName | |
3744 ); | |
3745 } | |
3746 if( p->bHasStat ){ | |
3747 fts3DbExec(&rc, db, | |
3748 "ALTER TABLE %Q.'%q_stat' RENAME TO '%q_stat';", | |
3749 p->zDb, p->zName, zName | |
3750 ); | |
3751 } | |
3752 fts3DbExec(&rc, db, | |
3753 "ALTER TABLE %Q.'%q_segments' RENAME TO '%q_segments';", | |
3754 p->zDb, p->zName, zName | |
3755 ); | |
3756 fts3DbExec(&rc, db, | |
3757 "ALTER TABLE %Q.'%q_segdir' RENAME TO '%q_segdir';", | |
3758 p->zDb, p->zName, zName | |
3759 ); | |
3760 return rc; | |
3761 } | |
3762 | |
3763 /* | |
3764 ** The xSavepoint() method. | |
3765 ** | |
3766 ** Flush the contents of the pending-terms table to disk. | |
3767 */ | |
3768 static int fts3SavepointMethod(sqlite3_vtab *pVtab, int iSavepoint){ | |
3769 int rc = SQLITE_OK; | |
3770 UNUSED_PARAMETER(iSavepoint); | |
3771 assert( ((Fts3Table *)pVtab)->inTransaction ); | |
3772 assert( ((Fts3Table *)pVtab)->mxSavepoint < iSavepoint ); | |
3773 TESTONLY( ((Fts3Table *)pVtab)->mxSavepoint = iSavepoint ); | |
3774 if( ((Fts3Table *)pVtab)->bIgnoreSavepoint==0 ){ | |
3775 rc = fts3SyncMethod(pVtab); | |
3776 } | |
3777 return rc; | |
3778 } | |
3779 | |
3780 /* | |
3781 ** The xRelease() method. | |
3782 ** | |
3783 ** This is a no-op. | |
3784 */ | |
3785 static int fts3ReleaseMethod(sqlite3_vtab *pVtab, int iSavepoint){ | |
3786 TESTONLY( Fts3Table *p = (Fts3Table*)pVtab ); | |
3787 UNUSED_PARAMETER(iSavepoint); | |
3788 UNUSED_PARAMETER(pVtab); | |
3789 assert( p->inTransaction ); | |
3790 assert( p->mxSavepoint >= iSavepoint ); | |
3791 TESTONLY( p->mxSavepoint = iSavepoint-1 ); | |
3792 return SQLITE_OK; | |
3793 } | |
3794 | |
3795 /* | |
3796 ** The xRollbackTo() method. | |
3797 ** | |
3798 ** Discard the contents of the pending terms table. | |
3799 */ | |
3800 static int fts3RollbackToMethod(sqlite3_vtab *pVtab, int iSavepoint){ | |
3801 Fts3Table *p = (Fts3Table*)pVtab; | |
3802 UNUSED_PARAMETER(iSavepoint); | |
3803 assert( p->inTransaction ); | |
3804 assert( p->mxSavepoint >= iSavepoint ); | |
3805 TESTONLY( p->mxSavepoint = iSavepoint ); | |
3806 sqlite3Fts3PendingTermsClear(p); | |
3807 return SQLITE_OK; | |
3808 } | |
3809 | |
3810 static const sqlite3_module fts3Module = { | |
3811 /* iVersion */ 2, | |
3812 /* xCreate */ fts3CreateMethod, | |
3813 /* xConnect */ fts3ConnectMethod, | |
3814 /* xBestIndex */ fts3BestIndexMethod, | |
3815 /* xDisconnect */ fts3DisconnectMethod, | |
3816 /* xDestroy */ fts3DestroyMethod, | |
3817 /* xOpen */ fts3OpenMethod, | |
3818 /* xClose */ fts3CloseMethod, | |
3819 /* xFilter */ fts3FilterMethod, | |
3820 /* xNext */ fts3NextMethod, | |
3821 /* xEof */ fts3EofMethod, | |
3822 /* xColumn */ fts3ColumnMethod, | |
3823 /* xRowid */ fts3RowidMethod, | |
3824 /* xUpdate */ fts3UpdateMethod, | |
3825 /* xBegin */ fts3BeginMethod, | |
3826 /* xSync */ fts3SyncMethod, | |
3827 /* xCommit */ fts3CommitMethod, | |
3828 /* xRollback */ fts3RollbackMethod, | |
3829 /* xFindFunction */ fts3FindFunctionMethod, | |
3830 /* xRename */ fts3RenameMethod, | |
3831 /* xSavepoint */ fts3SavepointMethod, | |
3832 /* xRelease */ fts3ReleaseMethod, | |
3833 /* xRollbackTo */ fts3RollbackToMethod, | |
3834 }; | |
3835 | |
3836 /* | |
3837 ** This function is registered as the module destructor (called when an | |
3838 ** FTS3 enabled database connection is closed). It frees the memory | |
3839 ** allocated for the tokenizer hash table. | |
3840 */ | |
3841 static void hashDestroy(void *p){ | |
3842 Fts3Hash *pHash = (Fts3Hash *)p; | |
3843 sqlite3Fts3HashClear(pHash); | |
3844 sqlite3_free(pHash); | |
3845 } | |
3846 | |
3847 /* | |
3848 ** The fts3 built-in tokenizers - "simple", "porter" and "icu"- are | |
3849 ** implemented in files fts3_tokenizer1.c, fts3_porter.c and fts3_icu.c | |
3850 ** respectively. The following three forward declarations are for functions | |
3851 ** declared in these files used to retrieve the respective implementations. | |
3852 ** | |
3853 ** Calling sqlite3Fts3SimpleTokenizerModule() sets the value pointed | |
3854 ** to by the argument to point to the "simple" tokenizer implementation. | |
3855 ** And so on. | |
3856 */ | |
3857 void sqlite3Fts3SimpleTokenizerModule(sqlite3_tokenizer_module const**ppModule); | |
3858 void sqlite3Fts3PorterTokenizerModule(sqlite3_tokenizer_module const**ppModule); | |
3859 #ifndef SQLITE_DISABLE_FTS3_UNICODE | |
3860 void sqlite3Fts3UnicodeTokenizer(sqlite3_tokenizer_module const**ppModule); | |
3861 #endif | |
3862 #ifdef SQLITE_ENABLE_ICU | |
3863 void sqlite3Fts3IcuTokenizerModule(sqlite3_tokenizer_module const**ppModule); | |
3864 #endif | |
3865 | |
3866 /* | |
3867 ** Initialize the fts3 extension. If this extension is built as part | |
3868 ** of the sqlite library, then this function is called directly by | |
3869 ** SQLite. If fts3 is built as a dynamically loadable extension, this | |
3870 ** function is called by the sqlite3_extension_init() entry point. | |
3871 */ | |
3872 int sqlite3Fts3Init(sqlite3 *db){ | |
3873 int rc = SQLITE_OK; | |
3874 Fts3Hash *pHash = 0; | |
3875 const sqlite3_tokenizer_module *pSimple = 0; | |
3876 const sqlite3_tokenizer_module *pPorter = 0; | |
3877 #ifndef SQLITE_DISABLE_FTS3_UNICODE | |
3878 const sqlite3_tokenizer_module *pUnicode = 0; | |
3879 #endif | |
3880 | |
3881 #ifdef SQLITE_ENABLE_ICU | |
3882 const sqlite3_tokenizer_module *pIcu = 0; | |
3883 sqlite3Fts3IcuTokenizerModule(&pIcu); | |
3884 #endif | |
3885 | |
3886 #ifndef SQLITE_DISABLE_FTS3_UNICODE | |
3887 sqlite3Fts3UnicodeTokenizer(&pUnicode); | |
3888 #endif | |
3889 | |
3890 #ifdef SQLITE_TEST | |
3891 rc = sqlite3Fts3InitTerm(db); | |
3892 if( rc!=SQLITE_OK ) return rc; | |
3893 #endif | |
3894 | |
3895 rc = sqlite3Fts3InitAux(db); | |
3896 if( rc!=SQLITE_OK ) return rc; | |
3897 | |
3898 sqlite3Fts3SimpleTokenizerModule(&pSimple); | |
3899 sqlite3Fts3PorterTokenizerModule(&pPorter); | |
3900 | |
3901 /* Allocate and initialize the hash-table used to store tokenizers. */ | |
3902 pHash = sqlite3_malloc(sizeof(Fts3Hash)); | |
3903 if( !pHash ){ | |
3904 rc = SQLITE_NOMEM; | |
3905 }else{ | |
3906 sqlite3Fts3HashInit(pHash, FTS3_HASH_STRING, 1); | |
3907 } | |
3908 | |
3909 /* Load the built-in tokenizers into the hash table */ | |
3910 if( rc==SQLITE_OK ){ | |
3911 if( sqlite3Fts3HashInsert(pHash, "simple", 7, (void *)pSimple) | |
3912 || sqlite3Fts3HashInsert(pHash, "porter", 7, (void *)pPorter) | |
3913 | |
3914 #ifndef SQLITE_DISABLE_FTS3_UNICODE | |
3915 || sqlite3Fts3HashInsert(pHash, "unicode61", 10, (void *)pUnicode) | |
3916 #endif | |
3917 #ifdef SQLITE_ENABLE_ICU | |
3918 || (pIcu && sqlite3Fts3HashInsert(pHash, "icu", 4, (void *)pIcu)) | |
3919 #endif | |
3920 ){ | |
3921 rc = SQLITE_NOMEM; | |
3922 } | |
3923 } | |
3924 | |
3925 #ifdef SQLITE_TEST | |
3926 if( rc==SQLITE_OK ){ | |
3927 rc = sqlite3Fts3ExprInitTestInterface(db); | |
3928 } | |
3929 #endif | |
3930 | |
3931 /* Create the virtual table wrapper around the hash-table and overload | |
3932 ** the two scalar functions. If this is successful, register the | |
3933 ** module with sqlite. | |
3934 */ | |
3935 if( SQLITE_OK==rc | |
3936 && SQLITE_OK==(rc = sqlite3Fts3InitHashTable(db, pHash, "fts3_tokenizer")) | |
3937 && SQLITE_OK==(rc = sqlite3_overload_function(db, "snippet", -1)) | |
3938 && SQLITE_OK==(rc = sqlite3_overload_function(db, "offsets", 1)) | |
3939 && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 1)) | |
3940 && SQLITE_OK==(rc = sqlite3_overload_function(db, "matchinfo", 2)) | |
3941 && SQLITE_OK==(rc = sqlite3_overload_function(db, "optimize", 1)) | |
3942 ){ | |
3943 rc = sqlite3_create_module_v2( | |
3944 db, "fts3", &fts3Module, (void *)pHash, hashDestroy | |
3945 ); | |
3946 if( rc==SQLITE_OK ){ | |
3947 rc = sqlite3_create_module_v2( | |
3948 db, "fts4", &fts3Module, (void *)pHash, 0 | |
3949 ); | |
3950 } | |
3951 if( rc==SQLITE_OK ){ | |
3952 rc = sqlite3Fts3InitTok(db, (void *)pHash); | |
3953 } | |
3954 return rc; | |
3955 } | |
3956 | |
3957 | |
3958 /* An error has occurred. Delete the hash table and return the error code. */ | |
3959 assert( rc!=SQLITE_OK ); | |
3960 if( pHash ){ | |
3961 sqlite3Fts3HashClear(pHash); | |
3962 sqlite3_free(pHash); | |
3963 } | |
3964 return rc; | |
3965 } | |
3966 | |
3967 /* | |
3968 ** Allocate an Fts3MultiSegReader for each token in the expression headed | |
3969 ** by pExpr. | |
3970 ** | |
3971 ** An Fts3SegReader object is a cursor that can seek or scan a range of | |
3972 ** entries within a single segment b-tree. An Fts3MultiSegReader uses multiple | |
3973 ** Fts3SegReader objects internally to provide an interface to seek or scan | |
3974 ** within the union of all segments of a b-tree. Hence the name. | |
3975 ** | |
3976 ** If the allocated Fts3MultiSegReader just seeks to a single entry in a | |
3977 ** segment b-tree (if the term is not a prefix or it is a prefix for which | |
3978 ** there exists prefix b-tree of the right length) then it may be traversed | |
3979 ** and merged incrementally. Otherwise, it has to be merged into an in-memory | |
3980 ** doclist and then traversed. | |
3981 */ | |
3982 static void fts3EvalAllocateReaders( | |
3983 Fts3Cursor *pCsr, /* FTS cursor handle */ | |
3984 Fts3Expr *pExpr, /* Allocate readers for this expression */ | |
3985 int *pnToken, /* OUT: Total number of tokens in phrase. */ | |
3986 int *pnOr, /* OUT: Total number of OR nodes in expr. */ | |
3987 int *pRc /* IN/OUT: Error code */ | |
3988 ){ | |
3989 if( pExpr && SQLITE_OK==*pRc ){ | |
3990 if( pExpr->eType==FTSQUERY_PHRASE ){ | |
3991 int i; | |
3992 int nToken = pExpr->pPhrase->nToken; | |
3993 *pnToken += nToken; | |
3994 for(i=0; i<nToken; i++){ | |
3995 Fts3PhraseToken *pToken = &pExpr->pPhrase->aToken[i]; | |
3996 int rc = fts3TermSegReaderCursor(pCsr, | |
3997 pToken->z, pToken->n, pToken->isPrefix, &pToken->pSegcsr | |
3998 ); | |
3999 if( rc!=SQLITE_OK ){ | |
4000 *pRc = rc; | |
4001 return; | |
4002 } | |
4003 } | |
4004 assert( pExpr->pPhrase->iDoclistToken==0 ); | |
4005 pExpr->pPhrase->iDoclistToken = -1; | |
4006 }else{ | |
4007 *pnOr += (pExpr->eType==FTSQUERY_OR); | |
4008 fts3EvalAllocateReaders(pCsr, pExpr->pLeft, pnToken, pnOr, pRc); | |
4009 fts3EvalAllocateReaders(pCsr, pExpr->pRight, pnToken, pnOr, pRc); | |
4010 } | |
4011 } | |
4012 } | |
4013 | |
4014 /* | |
4015 ** Arguments pList/nList contain the doclist for token iToken of phrase p. | |
4016 ** It is merged into the main doclist stored in p->doclist.aAll/nAll. | |
4017 ** | |
4018 ** This function assumes that pList points to a buffer allocated using | |
4019 ** sqlite3_malloc(). This function takes responsibility for eventually | |
4020 ** freeing the buffer. | |
4021 ** | |
4022 ** SQLITE_OK is returned if successful, or SQLITE_NOMEM if an error occurs. | |
4023 */ | |
4024 static int fts3EvalPhraseMergeToken( | |
4025 Fts3Table *pTab, /* FTS Table pointer */ | |
4026 Fts3Phrase *p, /* Phrase to merge pList/nList into */ | |
4027 int iToken, /* Token pList/nList corresponds to */ | |
4028 char *pList, /* Pointer to doclist */ | |
4029 int nList /* Number of bytes in pList */ | |
4030 ){ | |
4031 int rc = SQLITE_OK; | |
4032 assert( iToken!=p->iDoclistToken ); | |
4033 | |
4034 if( pList==0 ){ | |
4035 sqlite3_free(p->doclist.aAll); | |
4036 p->doclist.aAll = 0; | |
4037 p->doclist.nAll = 0; | |
4038 } | |
4039 | |
4040 else if( p->iDoclistToken<0 ){ | |
4041 p->doclist.aAll = pList; | |
4042 p->doclist.nAll = nList; | |
4043 } | |
4044 | |
4045 else if( p->doclist.aAll==0 ){ | |
4046 sqlite3_free(pList); | |
4047 } | |
4048 | |
4049 else { | |
4050 char *pLeft; | |
4051 char *pRight; | |
4052 int nLeft; | |
4053 int nRight; | |
4054 int nDiff; | |
4055 | |
4056 if( p->iDoclistToken<iToken ){ | |
4057 pLeft = p->doclist.aAll; | |
4058 nLeft = p->doclist.nAll; | |
4059 pRight = pList; | |
4060 nRight = nList; | |
4061 nDiff = iToken - p->iDoclistToken; | |
4062 }else{ | |
4063 pRight = p->doclist.aAll; | |
4064 nRight = p->doclist.nAll; | |
4065 pLeft = pList; | |
4066 nLeft = nList; | |
4067 nDiff = p->iDoclistToken - iToken; | |
4068 } | |
4069 | |
4070 rc = fts3DoclistPhraseMerge( | |
4071 pTab->bDescIdx, nDiff, pLeft, nLeft, &pRight, &nRight | |
4072 ); | |
4073 sqlite3_free(pLeft); | |
4074 p->doclist.aAll = pRight; | |
4075 p->doclist.nAll = nRight; | |
4076 } | |
4077 | |
4078 if( iToken>p->iDoclistToken ) p->iDoclistToken = iToken; | |
4079 return rc; | |
4080 } | |
4081 | |
4082 /* | |
4083 ** Load the doclist for phrase p into p->doclist.aAll/nAll. The loaded doclist | |
4084 ** does not take deferred tokens into account. | |
4085 ** | |
4086 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code. | |
4087 */ | |
4088 static int fts3EvalPhraseLoad( | |
4089 Fts3Cursor *pCsr, /* FTS Cursor handle */ | |
4090 Fts3Phrase *p /* Phrase object */ | |
4091 ){ | |
4092 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; | |
4093 int iToken; | |
4094 int rc = SQLITE_OK; | |
4095 | |
4096 for(iToken=0; rc==SQLITE_OK && iToken<p->nToken; iToken++){ | |
4097 Fts3PhraseToken *pToken = &p->aToken[iToken]; | |
4098 assert( pToken->pDeferred==0 || pToken->pSegcsr==0 ); | |
4099 | |
4100 if( pToken->pSegcsr ){ | |
4101 int nThis = 0; | |
4102 char *pThis = 0; | |
4103 rc = fts3TermSelect(pTab, pToken, p->iColumn, &nThis, &pThis); | |
4104 if( rc==SQLITE_OK ){ | |
4105 rc = fts3EvalPhraseMergeToken(pTab, p, iToken, pThis, nThis); | |
4106 } | |
4107 } | |
4108 assert( pToken->pSegcsr==0 ); | |
4109 } | |
4110 | |
4111 return rc; | |
4112 } | |
4113 | |
4114 /* | |
4115 ** This function is called on each phrase after the position lists for | |
4116 ** any deferred tokens have been loaded into memory. It updates the phrases | |
4117 ** current position list to include only those positions that are really | |
4118 ** instances of the phrase (after considering deferred tokens). If this | |
4119 ** means that the phrase does not appear in the current row, doclist.pList | |
4120 ** and doclist.nList are both zeroed. | |
4121 ** | |
4122 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code. | |
4123 */ | |
4124 static int fts3EvalDeferredPhrase(Fts3Cursor *pCsr, Fts3Phrase *pPhrase){ | |
4125 int iToken; /* Used to iterate through phrase tokens */ | |
4126 char *aPoslist = 0; /* Position list for deferred tokens */ | |
4127 int nPoslist = 0; /* Number of bytes in aPoslist */ | |
4128 int iPrev = -1; /* Token number of previous deferred token */ | |
4129 | |
4130 assert( pPhrase->doclist.bFreeList==0 ); | |
4131 | |
4132 for(iToken=0; iToken<pPhrase->nToken; iToken++){ | |
4133 Fts3PhraseToken *pToken = &pPhrase->aToken[iToken]; | |
4134 Fts3DeferredToken *pDeferred = pToken->pDeferred; | |
4135 | |
4136 if( pDeferred ){ | |
4137 char *pList; | |
4138 int nList; | |
4139 int rc = sqlite3Fts3DeferredTokenList(pDeferred, &pList, &nList); | |
4140 if( rc!=SQLITE_OK ) return rc; | |
4141 | |
4142 if( pList==0 ){ | |
4143 sqlite3_free(aPoslist); | |
4144 pPhrase->doclist.pList = 0; | |
4145 pPhrase->doclist.nList = 0; | |
4146 return SQLITE_OK; | |
4147 | |
4148 }else if( aPoslist==0 ){ | |
4149 aPoslist = pList; | |
4150 nPoslist = nList; | |
4151 | |
4152 }else{ | |
4153 char *aOut = pList; | |
4154 char *p1 = aPoslist; | |
4155 char *p2 = aOut; | |
4156 | |
4157 assert( iPrev>=0 ); | |
4158 fts3PoslistPhraseMerge(&aOut, iToken-iPrev, 0, 1, &p1, &p2); | |
4159 sqlite3_free(aPoslist); | |
4160 aPoslist = pList; | |
4161 nPoslist = (int)(aOut - aPoslist); | |
4162 if( nPoslist==0 ){ | |
4163 sqlite3_free(aPoslist); | |
4164 pPhrase->doclist.pList = 0; | |
4165 pPhrase->doclist.nList = 0; | |
4166 return SQLITE_OK; | |
4167 } | |
4168 } | |
4169 iPrev = iToken; | |
4170 } | |
4171 } | |
4172 | |
4173 if( iPrev>=0 ){ | |
4174 int nMaxUndeferred = pPhrase->iDoclistToken; | |
4175 if( nMaxUndeferred<0 ){ | |
4176 pPhrase->doclist.pList = aPoslist; | |
4177 pPhrase->doclist.nList = nPoslist; | |
4178 pPhrase->doclist.iDocid = pCsr->iPrevId; | |
4179 pPhrase->doclist.bFreeList = 1; | |
4180 }else{ | |
4181 int nDistance; | |
4182 char *p1; | |
4183 char *p2; | |
4184 char *aOut; | |
4185 | |
4186 if( nMaxUndeferred>iPrev ){ | |
4187 p1 = aPoslist; | |
4188 p2 = pPhrase->doclist.pList; | |
4189 nDistance = nMaxUndeferred - iPrev; | |
4190 }else{ | |
4191 p1 = pPhrase->doclist.pList; | |
4192 p2 = aPoslist; | |
4193 nDistance = iPrev - nMaxUndeferred; | |
4194 } | |
4195 | |
4196 aOut = (char *)sqlite3_malloc(nPoslist+8); | |
4197 if( !aOut ){ | |
4198 sqlite3_free(aPoslist); | |
4199 return SQLITE_NOMEM; | |
4200 } | |
4201 | |
4202 pPhrase->doclist.pList = aOut; | |
4203 if( fts3PoslistPhraseMerge(&aOut, nDistance, 0, 1, &p1, &p2) ){ | |
4204 pPhrase->doclist.bFreeList = 1; | |
4205 pPhrase->doclist.nList = (int)(aOut - pPhrase->doclist.pList); | |
4206 }else{ | |
4207 sqlite3_free(aOut); | |
4208 pPhrase->doclist.pList = 0; | |
4209 pPhrase->doclist.nList = 0; | |
4210 } | |
4211 sqlite3_free(aPoslist); | |
4212 } | |
4213 } | |
4214 | |
4215 return SQLITE_OK; | |
4216 } | |
4217 | |
4218 /* | |
4219 ** Maximum number of tokens a phrase may have to be considered for the | |
4220 ** incremental doclists strategy. | |
4221 */ | |
4222 #define MAX_INCR_PHRASE_TOKENS 4 | |
4223 | |
4224 /* | |
4225 ** This function is called for each Fts3Phrase in a full-text query | |
4226 ** expression to initialize the mechanism for returning rows. Once this | |
4227 ** function has been called successfully on an Fts3Phrase, it may be | |
4228 ** used with fts3EvalPhraseNext() to iterate through the matching docids. | |
4229 ** | |
4230 ** If parameter bOptOk is true, then the phrase may (or may not) use the | |
4231 ** incremental loading strategy. Otherwise, the entire doclist is loaded into | |
4232 ** memory within this call. | |
4233 ** | |
4234 ** SQLITE_OK is returned if no error occurs, otherwise an SQLite error code. | |
4235 */ | |
4236 static int fts3EvalPhraseStart(Fts3Cursor *pCsr, int bOptOk, Fts3Phrase *p){ | |
4237 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; | |
4238 int rc = SQLITE_OK; /* Error code */ | |
4239 int i; | |
4240 | |
4241 /* Determine if doclists may be loaded from disk incrementally. This is | |
4242 ** possible if the bOptOk argument is true, the FTS doclists will be | |
4243 ** scanned in forward order, and the phrase consists of | |
4244 ** MAX_INCR_PHRASE_TOKENS or fewer tokens, none of which are are "^first" | |
4245 ** tokens or prefix tokens that cannot use a prefix-index. */ | |
4246 int bHaveIncr = 0; | |
4247 int bIncrOk = (bOptOk | |
4248 && pCsr->bDesc==pTab->bDescIdx | |
4249 && p->nToken<=MAX_INCR_PHRASE_TOKENS && p->nToken>0 | |
4250 #ifdef SQLITE_TEST | |
4251 && pTab->bNoIncrDoclist==0 | |
4252 #endif | |
4253 ); | |
4254 for(i=0; bIncrOk==1 && i<p->nToken; i++){ | |
4255 Fts3PhraseToken *pToken = &p->aToken[i]; | |
4256 if( pToken->bFirst || (pToken->pSegcsr!=0 && !pToken->pSegcsr->bLookup) ){ | |
4257 bIncrOk = 0; | |
4258 } | |
4259 if( pToken->pSegcsr ) bHaveIncr = 1; | |
4260 } | |
4261 | |
4262 if( bIncrOk && bHaveIncr ){ | |
4263 /* Use the incremental approach. */ | |
4264 int iCol = (p->iColumn >= pTab->nColumn ? -1 : p->iColumn); | |
4265 for(i=0; rc==SQLITE_OK && i<p->nToken; i++){ | |
4266 Fts3PhraseToken *pToken = &p->aToken[i]; | |
4267 Fts3MultiSegReader *pSegcsr = pToken->pSegcsr; | |
4268 if( pSegcsr ){ | |
4269 rc = sqlite3Fts3MsrIncrStart(pTab, pSegcsr, iCol, pToken->z, pToken->n); | |
4270 } | |
4271 } | |
4272 p->bIncr = 1; | |
4273 }else{ | |
4274 /* Load the full doclist for the phrase into memory. */ | |
4275 rc = fts3EvalPhraseLoad(pCsr, p); | |
4276 p->bIncr = 0; | |
4277 } | |
4278 | |
4279 assert( rc!=SQLITE_OK || p->nToken<1 || p->aToken[0].pSegcsr==0 || p->bIncr ); | |
4280 return rc; | |
4281 } | |
4282 | |
4283 /* | |
4284 ** This function is used to iterate backwards (from the end to start) | |
4285 ** through doclists. It is used by this module to iterate through phrase | |
4286 ** doclists in reverse and by the fts3_write.c module to iterate through | |
4287 ** pending-terms lists when writing to databases with "order=desc". | |
4288 ** | |
4289 ** The doclist may be sorted in ascending (parameter bDescIdx==0) or | |
4290 ** descending (parameter bDescIdx==1) order of docid. Regardless, this | |
4291 ** function iterates from the end of the doclist to the beginning. | |
4292 */ | |
4293 void sqlite3Fts3DoclistPrev( | |
4294 int bDescIdx, /* True if the doclist is desc */ | |
4295 char *aDoclist, /* Pointer to entire doclist */ | |
4296 int nDoclist, /* Length of aDoclist in bytes */ | |
4297 char **ppIter, /* IN/OUT: Iterator pointer */ | |
4298 sqlite3_int64 *piDocid, /* IN/OUT: Docid pointer */ | |
4299 int *pnList, /* OUT: List length pointer */ | |
4300 u8 *pbEof /* OUT: End-of-file flag */ | |
4301 ){ | |
4302 char *p = *ppIter; | |
4303 | |
4304 assert( nDoclist>0 ); | |
4305 assert( *pbEof==0 ); | |
4306 assert( p || *piDocid==0 ); | |
4307 assert( !p || (p>aDoclist && p<&aDoclist[nDoclist]) ); | |
4308 | |
4309 if( p==0 ){ | |
4310 sqlite3_int64 iDocid = 0; | |
4311 char *pNext = 0; | |
4312 char *pDocid = aDoclist; | |
4313 char *pEnd = &aDoclist[nDoclist]; | |
4314 int iMul = 1; | |
4315 | |
4316 while( pDocid<pEnd ){ | |
4317 sqlite3_int64 iDelta; | |
4318 pDocid += sqlite3Fts3GetVarint(pDocid, &iDelta); | |
4319 iDocid += (iMul * iDelta); | |
4320 pNext = pDocid; | |
4321 fts3PoslistCopy(0, &pDocid); | |
4322 while( pDocid<pEnd && *pDocid==0 ) pDocid++; | |
4323 iMul = (bDescIdx ? -1 : 1); | |
4324 } | |
4325 | |
4326 *pnList = (int)(pEnd - pNext); | |
4327 *ppIter = pNext; | |
4328 *piDocid = iDocid; | |
4329 }else{ | |
4330 int iMul = (bDescIdx ? -1 : 1); | |
4331 sqlite3_int64 iDelta; | |
4332 fts3GetReverseVarint(&p, aDoclist, &iDelta); | |
4333 *piDocid -= (iMul * iDelta); | |
4334 | |
4335 if( p==aDoclist ){ | |
4336 *pbEof = 1; | |
4337 }else{ | |
4338 char *pSave = p; | |
4339 fts3ReversePoslist(aDoclist, &p); | |
4340 *pnList = (int)(pSave - p); | |
4341 } | |
4342 *ppIter = p; | |
4343 } | |
4344 } | |
4345 | |
4346 /* | |
4347 ** Iterate forwards through a doclist. | |
4348 */ | |
4349 void sqlite3Fts3DoclistNext( | |
4350 int bDescIdx, /* True if the doclist is desc */ | |
4351 char *aDoclist, /* Pointer to entire doclist */ | |
4352 int nDoclist, /* Length of aDoclist in bytes */ | |
4353 char **ppIter, /* IN/OUT: Iterator pointer */ | |
4354 sqlite3_int64 *piDocid, /* IN/OUT: Docid pointer */ | |
4355 u8 *pbEof /* OUT: End-of-file flag */ | |
4356 ){ | |
4357 char *p = *ppIter; | |
4358 | |
4359 assert( nDoclist>0 ); | |
4360 assert( *pbEof==0 ); | |
4361 assert( p || *piDocid==0 ); | |
4362 assert( !p || (p>=aDoclist && p<=&aDoclist[nDoclist]) ); | |
4363 | |
4364 if( p==0 ){ | |
4365 p = aDoclist; | |
4366 p += sqlite3Fts3GetVarint(p, piDocid); | |
4367 }else{ | |
4368 fts3PoslistCopy(0, &p); | |
4369 while( p<&aDoclist[nDoclist] && *p==0 ) p++; | |
4370 if( p>=&aDoclist[nDoclist] ){ | |
4371 *pbEof = 1; | |
4372 }else{ | |
4373 sqlite3_int64 iVar; | |
4374 p += sqlite3Fts3GetVarint(p, &iVar); | |
4375 *piDocid += ((bDescIdx ? -1 : 1) * iVar); | |
4376 } | |
4377 } | |
4378 | |
4379 *ppIter = p; | |
4380 } | |
4381 | |
4382 /* | |
4383 ** Advance the iterator pDL to the next entry in pDL->aAll/nAll. Set *pbEof | |
4384 ** to true if EOF is reached. | |
4385 */ | |
4386 static void fts3EvalDlPhraseNext( | |
4387 Fts3Table *pTab, | |
4388 Fts3Doclist *pDL, | |
4389 u8 *pbEof | |
4390 ){ | |
4391 char *pIter; /* Used to iterate through aAll */ | |
4392 char *pEnd = &pDL->aAll[pDL->nAll]; /* 1 byte past end of aAll */ | |
4393 | |
4394 if( pDL->pNextDocid ){ | |
4395 pIter = pDL->pNextDocid; | |
4396 }else{ | |
4397 pIter = pDL->aAll; | |
4398 } | |
4399 | |
4400 if( pIter>=pEnd ){ | |
4401 /* We have already reached the end of this doclist. EOF. */ | |
4402 *pbEof = 1; | |
4403 }else{ | |
4404 sqlite3_int64 iDelta; | |
4405 pIter += sqlite3Fts3GetVarint(pIter, &iDelta); | |
4406 if( pTab->bDescIdx==0 || pDL->pNextDocid==0 ){ | |
4407 pDL->iDocid += iDelta; | |
4408 }else{ | |
4409 pDL->iDocid -= iDelta; | |
4410 } | |
4411 pDL->pList = pIter; | |
4412 fts3PoslistCopy(0, &pIter); | |
4413 pDL->nList = (int)(pIter - pDL->pList); | |
4414 | |
4415 /* pIter now points just past the 0x00 that terminates the position- | |
4416 ** list for document pDL->iDocid. However, if this position-list was | |
4417 ** edited in place by fts3EvalNearTrim(), then pIter may not actually | |
4418 ** point to the start of the next docid value. The following line deals | |
4419 ** with this case by advancing pIter past the zero-padding added by | |
4420 ** fts3EvalNearTrim(). */ | |
4421 while( pIter<pEnd && *pIter==0 ) pIter++; | |
4422 | |
4423 pDL->pNextDocid = pIter; | |
4424 assert( pIter>=&pDL->aAll[pDL->nAll] || *pIter ); | |
4425 *pbEof = 0; | |
4426 } | |
4427 } | |
4428 | |
4429 /* | |
4430 ** Helper type used by fts3EvalIncrPhraseNext() and incrPhraseTokenNext(). | |
4431 */ | |
4432 typedef struct TokenDoclist TokenDoclist; | |
4433 struct TokenDoclist { | |
4434 int bIgnore; | |
4435 sqlite3_int64 iDocid; | |
4436 char *pList; | |
4437 int nList; | |
4438 }; | |
4439 | |
4440 /* | |
4441 ** Token pToken is an incrementally loaded token that is part of a | |
4442 ** multi-token phrase. Advance it to the next matching document in the | |
4443 ** database and populate output variable *p with the details of the new | |
4444 ** entry. Or, if the iterator has reached EOF, set *pbEof to true. | |
4445 ** | |
4446 ** If an error occurs, return an SQLite error code. Otherwise, return | |
4447 ** SQLITE_OK. | |
4448 */ | |
4449 static int incrPhraseTokenNext( | |
4450 Fts3Table *pTab, /* Virtual table handle */ | |
4451 Fts3Phrase *pPhrase, /* Phrase to advance token of */ | |
4452 int iToken, /* Specific token to advance */ | |
4453 TokenDoclist *p, /* OUT: Docid and doclist for new entry */ | |
4454 u8 *pbEof /* OUT: True if iterator is at EOF */ | |
4455 ){ | |
4456 int rc = SQLITE_OK; | |
4457 | |
4458 if( pPhrase->iDoclistToken==iToken ){ | |
4459 assert( p->bIgnore==0 ); | |
4460 assert( pPhrase->aToken[iToken].pSegcsr==0 ); | |
4461 fts3EvalDlPhraseNext(pTab, &pPhrase->doclist, pbEof); | |
4462 p->pList = pPhrase->doclist.pList; | |
4463 p->nList = pPhrase->doclist.nList; | |
4464 p->iDocid = pPhrase->doclist.iDocid; | |
4465 }else{ | |
4466 Fts3PhraseToken *pToken = &pPhrase->aToken[iToken]; | |
4467 assert( pToken->pDeferred==0 ); | |
4468 assert( pToken->pSegcsr || pPhrase->iDoclistToken>=0 ); | |
4469 if( pToken->pSegcsr ){ | |
4470 assert( p->bIgnore==0 ); | |
4471 rc = sqlite3Fts3MsrIncrNext( | |
4472 pTab, pToken->pSegcsr, &p->iDocid, &p->pList, &p->nList | |
4473 ); | |
4474 if( p->pList==0 ) *pbEof = 1; | |
4475 }else{ | |
4476 p->bIgnore = 1; | |
4477 } | |
4478 } | |
4479 | |
4480 return rc; | |
4481 } | |
4482 | |
4483 | |
4484 /* | |
4485 ** The phrase iterator passed as the second argument: | |
4486 ** | |
4487 ** * features at least one token that uses an incremental doclist, and | |
4488 ** | |
4489 ** * does not contain any deferred tokens. | |
4490 ** | |
4491 ** Advance it to the next matching documnent in the database and populate | |
4492 ** the Fts3Doclist.pList and nList fields. | |
4493 ** | |
4494 ** If there is no "next" entry and no error occurs, then *pbEof is set to | |
4495 ** 1 before returning. Otherwise, if no error occurs and the iterator is | |
4496 ** successfully advanced, *pbEof is set to 0. | |
4497 ** | |
4498 ** If an error occurs, return an SQLite error code. Otherwise, return | |
4499 ** SQLITE_OK. | |
4500 */ | |
4501 static int fts3EvalIncrPhraseNext( | |
4502 Fts3Cursor *pCsr, /* FTS Cursor handle */ | |
4503 Fts3Phrase *p, /* Phrase object to advance to next docid */ | |
4504 u8 *pbEof /* OUT: Set to 1 if EOF */ | |
4505 ){ | |
4506 int rc = SQLITE_OK; | |
4507 Fts3Doclist *pDL = &p->doclist; | |
4508 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; | |
4509 u8 bEof = 0; | |
4510 | |
4511 /* This is only called if it is guaranteed that the phrase has at least | |
4512 ** one incremental token. In which case the bIncr flag is set. */ | |
4513 assert( p->bIncr==1 ); | |
4514 | |
4515 if( p->nToken==1 && p->bIncr ){ | |
4516 rc = sqlite3Fts3MsrIncrNext(pTab, p->aToken[0].pSegcsr, | |
4517 &pDL->iDocid, &pDL->pList, &pDL->nList | |
4518 ); | |
4519 if( pDL->pList==0 ) bEof = 1; | |
4520 }else{ | |
4521 int bDescDoclist = pCsr->bDesc; | |
4522 struct TokenDoclist a[MAX_INCR_PHRASE_TOKENS]; | |
4523 | |
4524 memset(a, 0, sizeof(a)); | |
4525 assert( p->nToken<=MAX_INCR_PHRASE_TOKENS ); | |
4526 assert( p->iDoclistToken<MAX_INCR_PHRASE_TOKENS ); | |
4527 | |
4528 while( bEof==0 ){ | |
4529 int bMaxSet = 0; | |
4530 sqlite3_int64 iMax = 0; /* Largest docid for all iterators */ | |
4531 int i; /* Used to iterate through tokens */ | |
4532 | |
4533 /* Advance the iterator for each token in the phrase once. */ | |
4534 for(i=0; rc==SQLITE_OK && i<p->nToken && bEof==0; i++){ | |
4535 rc = incrPhraseTokenNext(pTab, p, i, &a[i], &bEof); | |
4536 if( a[i].bIgnore==0 && (bMaxSet==0 || DOCID_CMP(iMax, a[i].iDocid)<0) ){ | |
4537 iMax = a[i].iDocid; | |
4538 bMaxSet = 1; | |
4539 } | |
4540 } | |
4541 assert( rc!=SQLITE_OK || (p->nToken>=1 && a[p->nToken-1].bIgnore==0) ); | |
4542 assert( rc!=SQLITE_OK || bMaxSet ); | |
4543 | |
4544 /* Keep advancing iterators until they all point to the same document */ | |
4545 for(i=0; i<p->nToken; i++){ | |
4546 while( rc==SQLITE_OK && bEof==0 | |
4547 && a[i].bIgnore==0 && DOCID_CMP(a[i].iDocid, iMax)<0 | |
4548 ){ | |
4549 rc = incrPhraseTokenNext(pTab, p, i, &a[i], &bEof); | |
4550 if( DOCID_CMP(a[i].iDocid, iMax)>0 ){ | |
4551 iMax = a[i].iDocid; | |
4552 i = 0; | |
4553 } | |
4554 } | |
4555 } | |
4556 | |
4557 /* Check if the current entries really are a phrase match */ | |
4558 if( bEof==0 ){ | |
4559 int nList = 0; | |
4560 int nByte = a[p->nToken-1].nList; | |
4561 char *aDoclist = sqlite3_malloc(nByte+1); | |
4562 if( !aDoclist ) return SQLITE_NOMEM; | |
4563 memcpy(aDoclist, a[p->nToken-1].pList, nByte+1); | |
4564 | |
4565 for(i=0; i<(p->nToken-1); i++){ | |
4566 if( a[i].bIgnore==0 ){ | |
4567 char *pL = a[i].pList; | |
4568 char *pR = aDoclist; | |
4569 char *pOut = aDoclist; | |
4570 int nDist = p->nToken-1-i; | |
4571 int res = fts3PoslistPhraseMerge(&pOut, nDist, 0, 1, &pL, &pR); | |
4572 if( res==0 ) break; | |
4573 nList = (int)(pOut - aDoclist); | |
4574 } | |
4575 } | |
4576 if( i==(p->nToken-1) ){ | |
4577 pDL->iDocid = iMax; | |
4578 pDL->pList = aDoclist; | |
4579 pDL->nList = nList; | |
4580 pDL->bFreeList = 1; | |
4581 break; | |
4582 } | |
4583 sqlite3_free(aDoclist); | |
4584 } | |
4585 } | |
4586 } | |
4587 | |
4588 *pbEof = bEof; | |
4589 return rc; | |
4590 } | |
4591 | |
4592 /* | |
4593 ** Attempt to move the phrase iterator to point to the next matching docid. | |
4594 ** If an error occurs, return an SQLite error code. Otherwise, return | |
4595 ** SQLITE_OK. | |
4596 ** | |
4597 ** If there is no "next" entry and no error occurs, then *pbEof is set to | |
4598 ** 1 before returning. Otherwise, if no error occurs and the iterator is | |
4599 ** successfully advanced, *pbEof is set to 0. | |
4600 */ | |
4601 static int fts3EvalPhraseNext( | |
4602 Fts3Cursor *pCsr, /* FTS Cursor handle */ | |
4603 Fts3Phrase *p, /* Phrase object to advance to next docid */ | |
4604 u8 *pbEof /* OUT: Set to 1 if EOF */ | |
4605 ){ | |
4606 int rc = SQLITE_OK; | |
4607 Fts3Doclist *pDL = &p->doclist; | |
4608 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; | |
4609 | |
4610 if( p->bIncr ){ | |
4611 rc = fts3EvalIncrPhraseNext(pCsr, p, pbEof); | |
4612 }else if( pCsr->bDesc!=pTab->bDescIdx && pDL->nAll ){ | |
4613 sqlite3Fts3DoclistPrev(pTab->bDescIdx, pDL->aAll, pDL->nAll, | |
4614 &pDL->pNextDocid, &pDL->iDocid, &pDL->nList, pbEof | |
4615 ); | |
4616 pDL->pList = pDL->pNextDocid; | |
4617 }else{ | |
4618 fts3EvalDlPhraseNext(pTab, pDL, pbEof); | |
4619 } | |
4620 | |
4621 return rc; | |
4622 } | |
4623 | |
4624 /* | |
4625 ** | |
4626 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op. | |
4627 ** Otherwise, fts3EvalPhraseStart() is called on all phrases within the | |
4628 ** expression. Also the Fts3Expr.bDeferred variable is set to true for any | |
4629 ** expressions for which all descendent tokens are deferred. | |
4630 ** | |
4631 ** If parameter bOptOk is zero, then it is guaranteed that the | |
4632 ** Fts3Phrase.doclist.aAll/nAll variables contain the entire doclist for | |
4633 ** each phrase in the expression (subject to deferred token processing). | |
4634 ** Or, if bOptOk is non-zero, then one or more tokens within the expression | |
4635 ** may be loaded incrementally, meaning doclist.aAll/nAll is not available. | |
4636 ** | |
4637 ** If an error occurs within this function, *pRc is set to an SQLite error | |
4638 ** code before returning. | |
4639 */ | |
4640 static void fts3EvalStartReaders( | |
4641 Fts3Cursor *pCsr, /* FTS Cursor handle */ | |
4642 Fts3Expr *pExpr, /* Expression to initialize phrases in */ | |
4643 int *pRc /* IN/OUT: Error code */ | |
4644 ){ | |
4645 if( pExpr && SQLITE_OK==*pRc ){ | |
4646 if( pExpr->eType==FTSQUERY_PHRASE ){ | |
4647 int nToken = pExpr->pPhrase->nToken; | |
4648 if( nToken ){ | |
4649 int i; | |
4650 for(i=0; i<nToken; i++){ | |
4651 if( pExpr->pPhrase->aToken[i].pDeferred==0 ) break; | |
4652 } | |
4653 pExpr->bDeferred = (i==nToken); | |
4654 } | |
4655 *pRc = fts3EvalPhraseStart(pCsr, 1, pExpr->pPhrase); | |
4656 }else{ | |
4657 fts3EvalStartReaders(pCsr, pExpr->pLeft, pRc); | |
4658 fts3EvalStartReaders(pCsr, pExpr->pRight, pRc); | |
4659 pExpr->bDeferred = (pExpr->pLeft->bDeferred && pExpr->pRight->bDeferred); | |
4660 } | |
4661 } | |
4662 } | |
4663 | |
4664 /* | |
4665 ** An array of the following structures is assembled as part of the process | |
4666 ** of selecting tokens to defer before the query starts executing (as part | |
4667 ** of the xFilter() method). There is one element in the array for each | |
4668 ** token in the FTS expression. | |
4669 ** | |
4670 ** Tokens are divided into AND/NEAR clusters. All tokens in a cluster belong | |
4671 ** to phrases that are connected only by AND and NEAR operators (not OR or | |
4672 ** NOT). When determining tokens to defer, each AND/NEAR cluster is considered | |
4673 ** separately. The root of a tokens AND/NEAR cluster is stored in | |
4674 ** Fts3TokenAndCost.pRoot. | |
4675 */ | |
4676 typedef struct Fts3TokenAndCost Fts3TokenAndCost; | |
4677 struct Fts3TokenAndCost { | |
4678 Fts3Phrase *pPhrase; /* The phrase the token belongs to */ | |
4679 int iToken; /* Position of token in phrase */ | |
4680 Fts3PhraseToken *pToken; /* The token itself */ | |
4681 Fts3Expr *pRoot; /* Root of NEAR/AND cluster */ | |
4682 int nOvfl; /* Number of overflow pages to load doclist */ | |
4683 int iCol; /* The column the token must match */ | |
4684 }; | |
4685 | |
4686 /* | |
4687 ** This function is used to populate an allocated Fts3TokenAndCost array. | |
4688 ** | |
4689 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op. | |
4690 ** Otherwise, if an error occurs during execution, *pRc is set to an | |
4691 ** SQLite error code. | |
4692 */ | |
4693 static void fts3EvalTokenCosts( | |
4694 Fts3Cursor *pCsr, /* FTS Cursor handle */ | |
4695 Fts3Expr *pRoot, /* Root of current AND/NEAR cluster */ | |
4696 Fts3Expr *pExpr, /* Expression to consider */ | |
4697 Fts3TokenAndCost **ppTC, /* Write new entries to *(*ppTC)++ */ | |
4698 Fts3Expr ***ppOr, /* Write new OR root to *(*ppOr)++ */ | |
4699 int *pRc /* IN/OUT: Error code */ | |
4700 ){ | |
4701 if( *pRc==SQLITE_OK ){ | |
4702 if( pExpr->eType==FTSQUERY_PHRASE ){ | |
4703 Fts3Phrase *pPhrase = pExpr->pPhrase; | |
4704 int i; | |
4705 for(i=0; *pRc==SQLITE_OK && i<pPhrase->nToken; i++){ | |
4706 Fts3TokenAndCost *pTC = (*ppTC)++; | |
4707 pTC->pPhrase = pPhrase; | |
4708 pTC->iToken = i; | |
4709 pTC->pRoot = pRoot; | |
4710 pTC->pToken = &pPhrase->aToken[i]; | |
4711 pTC->iCol = pPhrase->iColumn; | |
4712 *pRc = sqlite3Fts3MsrOvfl(pCsr, pTC->pToken->pSegcsr, &pTC->nOvfl); | |
4713 } | |
4714 }else if( pExpr->eType!=FTSQUERY_NOT ){ | |
4715 assert( pExpr->eType==FTSQUERY_OR | |
4716 || pExpr->eType==FTSQUERY_AND | |
4717 || pExpr->eType==FTSQUERY_NEAR | |
4718 ); | |
4719 assert( pExpr->pLeft && pExpr->pRight ); | |
4720 if( pExpr->eType==FTSQUERY_OR ){ | |
4721 pRoot = pExpr->pLeft; | |
4722 **ppOr = pRoot; | |
4723 (*ppOr)++; | |
4724 } | |
4725 fts3EvalTokenCosts(pCsr, pRoot, pExpr->pLeft, ppTC, ppOr, pRc); | |
4726 if( pExpr->eType==FTSQUERY_OR ){ | |
4727 pRoot = pExpr->pRight; | |
4728 **ppOr = pRoot; | |
4729 (*ppOr)++; | |
4730 } | |
4731 fts3EvalTokenCosts(pCsr, pRoot, pExpr->pRight, ppTC, ppOr, pRc); | |
4732 } | |
4733 } | |
4734 } | |
4735 | |
4736 /* | |
4737 ** Determine the average document (row) size in pages. If successful, | |
4738 ** write this value to *pnPage and return SQLITE_OK. Otherwise, return | |
4739 ** an SQLite error code. | |
4740 ** | |
4741 ** The average document size in pages is calculated by first calculating | |
4742 ** determining the average size in bytes, B. If B is less than the amount | |
4743 ** of data that will fit on a single leaf page of an intkey table in | |
4744 ** this database, then the average docsize is 1. Otherwise, it is 1 plus | |
4745 ** the number of overflow pages consumed by a record B bytes in size. | |
4746 */ | |
4747 static int fts3EvalAverageDocsize(Fts3Cursor *pCsr, int *pnPage){ | |
4748 if( pCsr->nRowAvg==0 ){ | |
4749 /* The average document size, which is required to calculate the cost | |
4750 ** of each doclist, has not yet been determined. Read the required | |
4751 ** data from the %_stat table to calculate it. | |
4752 ** | |
4753 ** Entry 0 of the %_stat table is a blob containing (nCol+1) FTS3 | |
4754 ** varints, where nCol is the number of columns in the FTS3 table. | |
4755 ** The first varint is the number of documents currently stored in | |
4756 ** the table. The following nCol varints contain the total amount of | |
4757 ** data stored in all rows of each column of the table, from left | |
4758 ** to right. | |
4759 */ | |
4760 int rc; | |
4761 Fts3Table *p = (Fts3Table*)pCsr->base.pVtab; | |
4762 sqlite3_stmt *pStmt; | |
4763 sqlite3_int64 nDoc = 0; | |
4764 sqlite3_int64 nByte = 0; | |
4765 const char *pEnd; | |
4766 const char *a; | |
4767 | |
4768 rc = sqlite3Fts3SelectDoctotal(p, &pStmt); | |
4769 if( rc!=SQLITE_OK ) return rc; | |
4770 a = sqlite3_column_blob(pStmt, 0); | |
4771 assert( a ); | |
4772 | |
4773 pEnd = &a[sqlite3_column_bytes(pStmt, 0)]; | |
4774 a += sqlite3Fts3GetVarint(a, &nDoc); | |
4775 while( a<pEnd ){ | |
4776 a += sqlite3Fts3GetVarint(a, &nByte); | |
4777 } | |
4778 if( nDoc==0 || nByte==0 ){ | |
4779 sqlite3_reset(pStmt); | |
4780 return FTS_CORRUPT_VTAB; | |
4781 } | |
4782 | |
4783 pCsr->nDoc = nDoc; | |
4784 pCsr->nRowAvg = (int)(((nByte / nDoc) + p->nPgsz) / p->nPgsz); | |
4785 assert( pCsr->nRowAvg>0 ); | |
4786 rc = sqlite3_reset(pStmt); | |
4787 if( rc!=SQLITE_OK ) return rc; | |
4788 } | |
4789 | |
4790 *pnPage = pCsr->nRowAvg; | |
4791 return SQLITE_OK; | |
4792 } | |
4793 | |
4794 /* | |
4795 ** This function is called to select the tokens (if any) that will be | |
4796 ** deferred. The array aTC[] has already been populated when this is | |
4797 ** called. | |
4798 ** | |
4799 ** This function is called once for each AND/NEAR cluster in the | |
4800 ** expression. Each invocation determines which tokens to defer within | |
4801 ** the cluster with root node pRoot. See comments above the definition | |
4802 ** of struct Fts3TokenAndCost for more details. | |
4803 ** | |
4804 ** If no error occurs, SQLITE_OK is returned and sqlite3Fts3DeferToken() | |
4805 ** called on each token to defer. Otherwise, an SQLite error code is | |
4806 ** returned. | |
4807 */ | |
4808 static int fts3EvalSelectDeferred( | |
4809 Fts3Cursor *pCsr, /* FTS Cursor handle */ | |
4810 Fts3Expr *pRoot, /* Consider tokens with this root node */ | |
4811 Fts3TokenAndCost *aTC, /* Array of expression tokens and costs */ | |
4812 int nTC /* Number of entries in aTC[] */ | |
4813 ){ | |
4814 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; | |
4815 int nDocSize = 0; /* Number of pages per doc loaded */ | |
4816 int rc = SQLITE_OK; /* Return code */ | |
4817 int ii; /* Iterator variable for various purposes */ | |
4818 int nOvfl = 0; /* Total overflow pages used by doclists */ | |
4819 int nToken = 0; /* Total number of tokens in cluster */ | |
4820 | |
4821 int nMinEst = 0; /* The minimum count for any phrase so far. */ | |
4822 int nLoad4 = 1; /* (Phrases that will be loaded)^4. */ | |
4823 | |
4824 /* Tokens are never deferred for FTS tables created using the content=xxx | |
4825 ** option. The reason being that it is not guaranteed that the content | |
4826 ** table actually contains the same data as the index. To prevent this from | |
4827 ** causing any problems, the deferred token optimization is completely | |
4828 ** disabled for content=xxx tables. */ | |
4829 if( pTab->zContentTbl ){ | |
4830 return SQLITE_OK; | |
4831 } | |
4832 | |
4833 /* Count the tokens in this AND/NEAR cluster. If none of the doclists | |
4834 ** associated with the tokens spill onto overflow pages, or if there is | |
4835 ** only 1 token, exit early. No tokens to defer in this case. */ | |
4836 for(ii=0; ii<nTC; ii++){ | |
4837 if( aTC[ii].pRoot==pRoot ){ | |
4838 nOvfl += aTC[ii].nOvfl; | |
4839 nToken++; | |
4840 } | |
4841 } | |
4842 if( nOvfl==0 || nToken<2 ) return SQLITE_OK; | |
4843 | |
4844 /* Obtain the average docsize (in pages). */ | |
4845 rc = fts3EvalAverageDocsize(pCsr, &nDocSize); | |
4846 assert( rc!=SQLITE_OK || nDocSize>0 ); | |
4847 | |
4848 | |
4849 /* Iterate through all tokens in this AND/NEAR cluster, in ascending order | |
4850 ** of the number of overflow pages that will be loaded by the pager layer | |
4851 ** to retrieve the entire doclist for the token from the full-text index. | |
4852 ** Load the doclists for tokens that are either: | |
4853 ** | |
4854 ** a. The cheapest token in the entire query (i.e. the one visited by the | |
4855 ** first iteration of this loop), or | |
4856 ** | |
4857 ** b. Part of a multi-token phrase. | |
4858 ** | |
4859 ** After each token doclist is loaded, merge it with the others from the | |
4860 ** same phrase and count the number of documents that the merged doclist | |
4861 ** contains. Set variable "nMinEst" to the smallest number of documents in | |
4862 ** any phrase doclist for which 1 or more token doclists have been loaded. | |
4863 ** Let nOther be the number of other phrases for which it is certain that | |
4864 ** one or more tokens will not be deferred. | |
4865 ** | |
4866 ** Then, for each token, defer it if loading the doclist would result in | |
4867 ** loading N or more overflow pages into memory, where N is computed as: | |
4868 ** | |
4869 ** (nMinEst + 4^nOther - 1) / (4^nOther) | |
4870 */ | |
4871 for(ii=0; ii<nToken && rc==SQLITE_OK; ii++){ | |
4872 int iTC; /* Used to iterate through aTC[] array. */ | |
4873 Fts3TokenAndCost *pTC = 0; /* Set to cheapest remaining token. */ | |
4874 | |
4875 /* Set pTC to point to the cheapest remaining token. */ | |
4876 for(iTC=0; iTC<nTC; iTC++){ | |
4877 if( aTC[iTC].pToken && aTC[iTC].pRoot==pRoot | |
4878 && (!pTC || aTC[iTC].nOvfl<pTC->nOvfl) | |
4879 ){ | |
4880 pTC = &aTC[iTC]; | |
4881 } | |
4882 } | |
4883 assert( pTC ); | |
4884 | |
4885 if( ii && pTC->nOvfl>=((nMinEst+(nLoad4/4)-1)/(nLoad4/4))*nDocSize ){ | |
4886 /* The number of overflow pages to load for this (and therefore all | |
4887 ** subsequent) tokens is greater than the estimated number of pages | |
4888 ** that will be loaded if all subsequent tokens are deferred. | |
4889 */ | |
4890 Fts3PhraseToken *pToken = pTC->pToken; | |
4891 rc = sqlite3Fts3DeferToken(pCsr, pToken, pTC->iCol); | |
4892 fts3SegReaderCursorFree(pToken->pSegcsr); | |
4893 pToken->pSegcsr = 0; | |
4894 }else{ | |
4895 /* Set nLoad4 to the value of (4^nOther) for the next iteration of the | |
4896 ** for-loop. Except, limit the value to 2^24 to prevent it from | |
4897 ** overflowing the 32-bit integer it is stored in. */ | |
4898 if( ii<12 ) nLoad4 = nLoad4*4; | |
4899 | |
4900 if( ii==0 || (pTC->pPhrase->nToken>1 && ii!=nToken-1) ){ | |
4901 /* Either this is the cheapest token in the entire query, or it is | |
4902 ** part of a multi-token phrase. Either way, the entire doclist will | |
4903 ** (eventually) be loaded into memory. It may as well be now. */ | |
4904 Fts3PhraseToken *pToken = pTC->pToken; | |
4905 int nList = 0; | |
4906 char *pList = 0; | |
4907 rc = fts3TermSelect(pTab, pToken, pTC->iCol, &nList, &pList); | |
4908 assert( rc==SQLITE_OK || pList==0 ); | |
4909 if( rc==SQLITE_OK ){ | |
4910 rc = fts3EvalPhraseMergeToken( | |
4911 pTab, pTC->pPhrase, pTC->iToken,pList,nList | |
4912 ); | |
4913 } | |
4914 if( rc==SQLITE_OK ){ | |
4915 int nCount; | |
4916 nCount = fts3DoclistCountDocids( | |
4917 pTC->pPhrase->doclist.aAll, pTC->pPhrase->doclist.nAll | |
4918 ); | |
4919 if( ii==0 || nCount<nMinEst ) nMinEst = nCount; | |
4920 } | |
4921 } | |
4922 } | |
4923 pTC->pToken = 0; | |
4924 } | |
4925 | |
4926 return rc; | |
4927 } | |
4928 | |
4929 /* | |
4930 ** This function is called from within the xFilter method. It initializes | |
4931 ** the full-text query currently stored in pCsr->pExpr. To iterate through | |
4932 ** the results of a query, the caller does: | |
4933 ** | |
4934 ** fts3EvalStart(pCsr); | |
4935 ** while( 1 ){ | |
4936 ** fts3EvalNext(pCsr); | |
4937 ** if( pCsr->bEof ) break; | |
4938 ** ... return row pCsr->iPrevId to the caller ... | |
4939 ** } | |
4940 */ | |
4941 static int fts3EvalStart(Fts3Cursor *pCsr){ | |
4942 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; | |
4943 int rc = SQLITE_OK; | |
4944 int nToken = 0; | |
4945 int nOr = 0; | |
4946 | |
4947 /* Allocate a MultiSegReader for each token in the expression. */ | |
4948 fts3EvalAllocateReaders(pCsr, pCsr->pExpr, &nToken, &nOr, &rc); | |
4949 | |
4950 /* Determine which, if any, tokens in the expression should be deferred. */ | |
4951 #ifndef SQLITE_DISABLE_FTS4_DEFERRED | |
4952 if( rc==SQLITE_OK && nToken>1 && pTab->bFts4 ){ | |
4953 Fts3TokenAndCost *aTC; | |
4954 Fts3Expr **apOr; | |
4955 aTC = (Fts3TokenAndCost *)sqlite3_malloc( | |
4956 sizeof(Fts3TokenAndCost) * nToken | |
4957 + sizeof(Fts3Expr *) * nOr * 2 | |
4958 ); | |
4959 apOr = (Fts3Expr **)&aTC[nToken]; | |
4960 | |
4961 if( !aTC ){ | |
4962 rc = SQLITE_NOMEM; | |
4963 }else{ | |
4964 int ii; | |
4965 Fts3TokenAndCost *pTC = aTC; | |
4966 Fts3Expr **ppOr = apOr; | |
4967 | |
4968 fts3EvalTokenCosts(pCsr, 0, pCsr->pExpr, &pTC, &ppOr, &rc); | |
4969 nToken = (int)(pTC-aTC); | |
4970 nOr = (int)(ppOr-apOr); | |
4971 | |
4972 if( rc==SQLITE_OK ){ | |
4973 rc = fts3EvalSelectDeferred(pCsr, 0, aTC, nToken); | |
4974 for(ii=0; rc==SQLITE_OK && ii<nOr; ii++){ | |
4975 rc = fts3EvalSelectDeferred(pCsr, apOr[ii], aTC, nToken); | |
4976 } | |
4977 } | |
4978 | |
4979 sqlite3_free(aTC); | |
4980 } | |
4981 } | |
4982 #endif | |
4983 | |
4984 fts3EvalStartReaders(pCsr, pCsr->pExpr, &rc); | |
4985 return rc; | |
4986 } | |
4987 | |
4988 /* | |
4989 ** Invalidate the current position list for phrase pPhrase. | |
4990 */ | |
4991 static void fts3EvalInvalidatePoslist(Fts3Phrase *pPhrase){ | |
4992 if( pPhrase->doclist.bFreeList ){ | |
4993 sqlite3_free(pPhrase->doclist.pList); | |
4994 } | |
4995 pPhrase->doclist.pList = 0; | |
4996 pPhrase->doclist.nList = 0; | |
4997 pPhrase->doclist.bFreeList = 0; | |
4998 } | |
4999 | |
5000 /* | |
5001 ** This function is called to edit the position list associated with | |
5002 ** the phrase object passed as the fifth argument according to a NEAR | |
5003 ** condition. For example: | |
5004 ** | |
5005 ** abc NEAR/5 "def ghi" | |
5006 ** | |
5007 ** Parameter nNear is passed the NEAR distance of the expression (5 in | |
5008 ** the example above). When this function is called, *paPoslist points to | |
5009 ** the position list, and *pnToken is the number of phrase tokens in, the | |
5010 ** phrase on the other side of the NEAR operator to pPhrase. For example, | |
5011 ** if pPhrase refers to the "def ghi" phrase, then *paPoslist points to | |
5012 ** the position list associated with phrase "abc". | |
5013 ** | |
5014 ** All positions in the pPhrase position list that are not sufficiently | |
5015 ** close to a position in the *paPoslist position list are removed. If this | |
5016 ** leaves 0 positions, zero is returned. Otherwise, non-zero. | |
5017 ** | |
5018 ** Before returning, *paPoslist is set to point to the position lsit | |
5019 ** associated with pPhrase. And *pnToken is set to the number of tokens in | |
5020 ** pPhrase. | |
5021 */ | |
5022 static int fts3EvalNearTrim( | |
5023 int nNear, /* NEAR distance. As in "NEAR/nNear". */ | |
5024 char *aTmp, /* Temporary space to use */ | |
5025 char **paPoslist, /* IN/OUT: Position list */ | |
5026 int *pnToken, /* IN/OUT: Tokens in phrase of *paPoslist */ | |
5027 Fts3Phrase *pPhrase /* The phrase object to trim the doclist of */ | |
5028 ){ | |
5029 int nParam1 = nNear + pPhrase->nToken; | |
5030 int nParam2 = nNear + *pnToken; | |
5031 int nNew; | |
5032 char *p2; | |
5033 char *pOut; | |
5034 int res; | |
5035 | |
5036 assert( pPhrase->doclist.pList ); | |
5037 | |
5038 p2 = pOut = pPhrase->doclist.pList; | |
5039 res = fts3PoslistNearMerge( | |
5040 &pOut, aTmp, nParam1, nParam2, paPoslist, &p2 | |
5041 ); | |
5042 if( res ){ | |
5043 nNew = (int)(pOut - pPhrase->doclist.pList) - 1; | |
5044 assert( pPhrase->doclist.pList[nNew]=='\0' ); | |
5045 assert( nNew<=pPhrase->doclist.nList && nNew>0 ); | |
5046 memset(&pPhrase->doclist.pList[nNew], 0, pPhrase->doclist.nList - nNew); | |
5047 pPhrase->doclist.nList = nNew; | |
5048 *paPoslist = pPhrase->doclist.pList; | |
5049 *pnToken = pPhrase->nToken; | |
5050 } | |
5051 | |
5052 return res; | |
5053 } | |
5054 | |
5055 /* | |
5056 ** This function is a no-op if *pRc is other than SQLITE_OK when it is called. | |
5057 ** Otherwise, it advances the expression passed as the second argument to | |
5058 ** point to the next matching row in the database. Expressions iterate through | |
5059 ** matching rows in docid order. Ascending order if Fts3Cursor.bDesc is zero, | |
5060 ** or descending if it is non-zero. | |
5061 ** | |
5062 ** If an error occurs, *pRc is set to an SQLite error code. Otherwise, if | |
5063 ** successful, the following variables in pExpr are set: | |
5064 ** | |
5065 ** Fts3Expr.bEof (non-zero if EOF - there is no next row) | |
5066 ** Fts3Expr.iDocid (valid if bEof==0. The docid of the next row) | |
5067 ** | |
5068 ** If the expression is of type FTSQUERY_PHRASE, and the expression is not | |
5069 ** at EOF, then the following variables are populated with the position list | |
5070 ** for the phrase for the visited row: | |
5071 ** | |
5072 ** FTs3Expr.pPhrase->doclist.nList (length of pList in bytes) | |
5073 ** FTs3Expr.pPhrase->doclist.pList (pointer to position list) | |
5074 ** | |
5075 ** It says above that this function advances the expression to the next | |
5076 ** matching row. This is usually true, but there are the following exceptions: | |
5077 ** | |
5078 ** 1. Deferred tokens are not taken into account. If a phrase consists | |
5079 ** entirely of deferred tokens, it is assumed to match every row in | |
5080 ** the db. In this case the position-list is not populated at all. | |
5081 ** | |
5082 ** Or, if a phrase contains one or more deferred tokens and one or | |
5083 ** more non-deferred tokens, then the expression is advanced to the | |
5084 ** next possible match, considering only non-deferred tokens. In other | |
5085 ** words, if the phrase is "A B C", and "B" is deferred, the expression | |
5086 ** is advanced to the next row that contains an instance of "A * C", | |
5087 ** where "*" may match any single token. The position list in this case | |
5088 ** is populated as for "A * C" before returning. | |
5089 ** | |
5090 ** 2. NEAR is treated as AND. If the expression is "x NEAR y", it is | |
5091 ** advanced to point to the next row that matches "x AND y". | |
5092 ** | |
5093 ** See sqlite3Fts3EvalTestDeferred() for details on testing if a row is | |
5094 ** really a match, taking into account deferred tokens and NEAR operators. | |
5095 */ | |
5096 static void fts3EvalNextRow( | |
5097 Fts3Cursor *pCsr, /* FTS Cursor handle */ | |
5098 Fts3Expr *pExpr, /* Expr. to advance to next matching row */ | |
5099 int *pRc /* IN/OUT: Error code */ | |
5100 ){ | |
5101 if( *pRc==SQLITE_OK ){ | |
5102 int bDescDoclist = pCsr->bDesc; /* Used by DOCID_CMP() macro */ | |
5103 assert( pExpr->bEof==0 ); | |
5104 pExpr->bStart = 1; | |
5105 | |
5106 switch( pExpr->eType ){ | |
5107 case FTSQUERY_NEAR: | |
5108 case FTSQUERY_AND: { | |
5109 Fts3Expr *pLeft = pExpr->pLeft; | |
5110 Fts3Expr *pRight = pExpr->pRight; | |
5111 assert( !pLeft->bDeferred || !pRight->bDeferred ); | |
5112 | |
5113 if( pLeft->bDeferred ){ | |
5114 /* LHS is entirely deferred. So we assume it matches every row. | |
5115 ** Advance the RHS iterator to find the next row visited. */ | |
5116 fts3EvalNextRow(pCsr, pRight, pRc); | |
5117 pExpr->iDocid = pRight->iDocid; | |
5118 pExpr->bEof = pRight->bEof; | |
5119 }else if( pRight->bDeferred ){ | |
5120 /* RHS is entirely deferred. So we assume it matches every row. | |
5121 ** Advance the LHS iterator to find the next row visited. */ | |
5122 fts3EvalNextRow(pCsr, pLeft, pRc); | |
5123 pExpr->iDocid = pLeft->iDocid; | |
5124 pExpr->bEof = pLeft->bEof; | |
5125 }else{ | |
5126 /* Neither the RHS or LHS are deferred. */ | |
5127 fts3EvalNextRow(pCsr, pLeft, pRc); | |
5128 fts3EvalNextRow(pCsr, pRight, pRc); | |
5129 while( !pLeft->bEof && !pRight->bEof && *pRc==SQLITE_OK ){ | |
5130 sqlite3_int64 iDiff = DOCID_CMP(pLeft->iDocid, pRight->iDocid); | |
5131 if( iDiff==0 ) break; | |
5132 if( iDiff<0 ){ | |
5133 fts3EvalNextRow(pCsr, pLeft, pRc); | |
5134 }else{ | |
5135 fts3EvalNextRow(pCsr, pRight, pRc); | |
5136 } | |
5137 } | |
5138 pExpr->iDocid = pLeft->iDocid; | |
5139 pExpr->bEof = (pLeft->bEof || pRight->bEof); | |
5140 if( pExpr->eType==FTSQUERY_NEAR && pExpr->bEof ){ | |
5141 if( pRight->pPhrase && pRight->pPhrase->doclist.aAll ){ | |
5142 Fts3Doclist *pDl = &pRight->pPhrase->doclist; | |
5143 while( *pRc==SQLITE_OK && pRight->bEof==0 ){ | |
5144 memset(pDl->pList, 0, pDl->nList); | |
5145 fts3EvalNextRow(pCsr, pRight, pRc); | |
5146 } | |
5147 } | |
5148 if( pLeft->pPhrase && pLeft->pPhrase->doclist.aAll ){ | |
5149 Fts3Doclist *pDl = &pLeft->pPhrase->doclist; | |
5150 while( *pRc==SQLITE_OK && pLeft->bEof==0 ){ | |
5151 memset(pDl->pList, 0, pDl->nList); | |
5152 fts3EvalNextRow(pCsr, pLeft, pRc); | |
5153 } | |
5154 } | |
5155 } | |
5156 } | |
5157 break; | |
5158 } | |
5159 | |
5160 case FTSQUERY_OR: { | |
5161 Fts3Expr *pLeft = pExpr->pLeft; | |
5162 Fts3Expr *pRight = pExpr->pRight; | |
5163 sqlite3_int64 iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid); | |
5164 | |
5165 assert( pLeft->bStart || pLeft->iDocid==pRight->iDocid ); | |
5166 assert( pRight->bStart || pLeft->iDocid==pRight->iDocid ); | |
5167 | |
5168 if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){ | |
5169 fts3EvalNextRow(pCsr, pLeft, pRc); | |
5170 }else if( pLeft->bEof || (pRight->bEof==0 && iCmp>0) ){ | |
5171 fts3EvalNextRow(pCsr, pRight, pRc); | |
5172 }else{ | |
5173 fts3EvalNextRow(pCsr, pLeft, pRc); | |
5174 fts3EvalNextRow(pCsr, pRight, pRc); | |
5175 } | |
5176 | |
5177 pExpr->bEof = (pLeft->bEof && pRight->bEof); | |
5178 iCmp = DOCID_CMP(pLeft->iDocid, pRight->iDocid); | |
5179 if( pRight->bEof || (pLeft->bEof==0 && iCmp<0) ){ | |
5180 pExpr->iDocid = pLeft->iDocid; | |
5181 }else{ | |
5182 pExpr->iDocid = pRight->iDocid; | |
5183 } | |
5184 | |
5185 break; | |
5186 } | |
5187 | |
5188 case FTSQUERY_NOT: { | |
5189 Fts3Expr *pLeft = pExpr->pLeft; | |
5190 Fts3Expr *pRight = pExpr->pRight; | |
5191 | |
5192 if( pRight->bStart==0 ){ | |
5193 fts3EvalNextRow(pCsr, pRight, pRc); | |
5194 assert( *pRc!=SQLITE_OK || pRight->bStart ); | |
5195 } | |
5196 | |
5197 fts3EvalNextRow(pCsr, pLeft, pRc); | |
5198 if( pLeft->bEof==0 ){ | |
5199 while( !*pRc | |
5200 && !pRight->bEof | |
5201 && DOCID_CMP(pLeft->iDocid, pRight->iDocid)>0 | |
5202 ){ | |
5203 fts3EvalNextRow(pCsr, pRight, pRc); | |
5204 } | |
5205 } | |
5206 pExpr->iDocid = pLeft->iDocid; | |
5207 pExpr->bEof = pLeft->bEof; | |
5208 break; | |
5209 } | |
5210 | |
5211 default: { | |
5212 Fts3Phrase *pPhrase = pExpr->pPhrase; | |
5213 fts3EvalInvalidatePoslist(pPhrase); | |
5214 *pRc = fts3EvalPhraseNext(pCsr, pPhrase, &pExpr->bEof); | |
5215 pExpr->iDocid = pPhrase->doclist.iDocid; | |
5216 break; | |
5217 } | |
5218 } | |
5219 } | |
5220 } | |
5221 | |
5222 /* | |
5223 ** If *pRc is not SQLITE_OK, or if pExpr is not the root node of a NEAR | |
5224 ** cluster, then this function returns 1 immediately. | |
5225 ** | |
5226 ** Otherwise, it checks if the current row really does match the NEAR | |
5227 ** expression, using the data currently stored in the position lists | |
5228 ** (Fts3Expr->pPhrase.doclist.pList/nList) for each phrase in the expression. | |
5229 ** | |
5230 ** If the current row is a match, the position list associated with each | |
5231 ** phrase in the NEAR expression is edited in place to contain only those | |
5232 ** phrase instances sufficiently close to their peers to satisfy all NEAR | |
5233 ** constraints. In this case it returns 1. If the NEAR expression does not | |
5234 ** match the current row, 0 is returned. The position lists may or may not | |
5235 ** be edited if 0 is returned. | |
5236 */ | |
5237 static int fts3EvalNearTest(Fts3Expr *pExpr, int *pRc){ | |
5238 int res = 1; | |
5239 | |
5240 /* The following block runs if pExpr is the root of a NEAR query. | |
5241 ** For example, the query: | |
5242 ** | |
5243 ** "w" NEAR "x" NEAR "y" NEAR "z" | |
5244 ** | |
5245 ** which is represented in tree form as: | |
5246 ** | |
5247 ** | | |
5248 ** +--NEAR--+ <-- root of NEAR query | |
5249 ** | | | |
5250 ** +--NEAR--+ "z" | |
5251 ** | | | |
5252 ** +--NEAR--+ "y" | |
5253 ** | | | |
5254 ** "w" "x" | |
5255 ** | |
5256 ** The right-hand child of a NEAR node is always a phrase. The | |
5257 ** left-hand child may be either a phrase or a NEAR node. There are | |
5258 ** no exceptions to this - it's the way the parser in fts3_expr.c works. | |
5259 */ | |
5260 if( *pRc==SQLITE_OK | |
5261 && pExpr->eType==FTSQUERY_NEAR | |
5262 && pExpr->bEof==0 | |
5263 && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR) | |
5264 ){ | |
5265 Fts3Expr *p; | |
5266 int nTmp = 0; /* Bytes of temp space */ | |
5267 char *aTmp; /* Temp space for PoslistNearMerge() */ | |
5268 | |
5269 /* Allocate temporary working space. */ | |
5270 for(p=pExpr; p->pLeft; p=p->pLeft){ | |
5271 nTmp += p->pRight->pPhrase->doclist.nList; | |
5272 } | |
5273 nTmp += p->pPhrase->doclist.nList; | |
5274 if( nTmp==0 ){ | |
5275 res = 0; | |
5276 }else{ | |
5277 aTmp = sqlite3_malloc(nTmp*2); | |
5278 if( !aTmp ){ | |
5279 *pRc = SQLITE_NOMEM; | |
5280 res = 0; | |
5281 }else{ | |
5282 char *aPoslist = p->pPhrase->doclist.pList; | |
5283 int nToken = p->pPhrase->nToken; | |
5284 | |
5285 for(p=p->pParent;res && p && p->eType==FTSQUERY_NEAR; p=p->pParent){ | |
5286 Fts3Phrase *pPhrase = p->pRight->pPhrase; | |
5287 int nNear = p->nNear; | |
5288 res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase); | |
5289 } | |
5290 | |
5291 aPoslist = pExpr->pRight->pPhrase->doclist.pList; | |
5292 nToken = pExpr->pRight->pPhrase->nToken; | |
5293 for(p=pExpr->pLeft; p && res; p=p->pLeft){ | |
5294 int nNear; | |
5295 Fts3Phrase *pPhrase; | |
5296 assert( p->pParent && p->pParent->pLeft==p ); | |
5297 nNear = p->pParent->nNear; | |
5298 pPhrase = ( | |
5299 p->eType==FTSQUERY_NEAR ? p->pRight->pPhrase : p->pPhrase | |
5300 ); | |
5301 res = fts3EvalNearTrim(nNear, aTmp, &aPoslist, &nToken, pPhrase); | |
5302 } | |
5303 } | |
5304 | |
5305 sqlite3_free(aTmp); | |
5306 } | |
5307 } | |
5308 | |
5309 return res; | |
5310 } | |
5311 | |
5312 /* | |
5313 ** This function is a helper function for sqlite3Fts3EvalTestDeferred(). | |
5314 ** Assuming no error occurs or has occurred, It returns non-zero if the | |
5315 ** expression passed as the second argument matches the row that pCsr | |
5316 ** currently points to, or zero if it does not. | |
5317 ** | |
5318 ** If *pRc is not SQLITE_OK when this function is called, it is a no-op. | |
5319 ** If an error occurs during execution of this function, *pRc is set to | |
5320 ** the appropriate SQLite error code. In this case the returned value is | |
5321 ** undefined. | |
5322 */ | |
5323 static int fts3EvalTestExpr( | |
5324 Fts3Cursor *pCsr, /* FTS cursor handle */ | |
5325 Fts3Expr *pExpr, /* Expr to test. May or may not be root. */ | |
5326 int *pRc /* IN/OUT: Error code */ | |
5327 ){ | |
5328 int bHit = 1; /* Return value */ | |
5329 if( *pRc==SQLITE_OK ){ | |
5330 switch( pExpr->eType ){ | |
5331 case FTSQUERY_NEAR: | |
5332 case FTSQUERY_AND: | |
5333 bHit = ( | |
5334 fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc) | |
5335 && fts3EvalTestExpr(pCsr, pExpr->pRight, pRc) | |
5336 && fts3EvalNearTest(pExpr, pRc) | |
5337 ); | |
5338 | |
5339 /* If the NEAR expression does not match any rows, zero the doclist for | |
5340 ** all phrases involved in the NEAR. This is because the snippet(), | |
5341 ** offsets() and matchinfo() functions are not supposed to recognize | |
5342 ** any instances of phrases that are part of unmatched NEAR queries. | |
5343 ** For example if this expression: | |
5344 ** | |
5345 ** ... MATCH 'a OR (b NEAR c)' | |
5346 ** | |
5347 ** is matched against a row containing: | |
5348 ** | |
5349 ** 'a b d e' | |
5350 ** | |
5351 ** then any snippet() should ony highlight the "a" term, not the "b" | |
5352 ** (as "b" is part of a non-matching NEAR clause). | |
5353 */ | |
5354 if( bHit==0 | |
5355 && pExpr->eType==FTSQUERY_NEAR | |
5356 && (pExpr->pParent==0 || pExpr->pParent->eType!=FTSQUERY_NEAR) | |
5357 ){ | |
5358 Fts3Expr *p; | |
5359 for(p=pExpr; p->pPhrase==0; p=p->pLeft){ | |
5360 if( p->pRight->iDocid==pCsr->iPrevId ){ | |
5361 fts3EvalInvalidatePoslist(p->pRight->pPhrase); | |
5362 } | |
5363 } | |
5364 if( p->iDocid==pCsr->iPrevId ){ | |
5365 fts3EvalInvalidatePoslist(p->pPhrase); | |
5366 } | |
5367 } | |
5368 | |
5369 break; | |
5370 | |
5371 case FTSQUERY_OR: { | |
5372 int bHit1 = fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc); | |
5373 int bHit2 = fts3EvalTestExpr(pCsr, pExpr->pRight, pRc); | |
5374 bHit = bHit1 || bHit2; | |
5375 break; | |
5376 } | |
5377 | |
5378 case FTSQUERY_NOT: | |
5379 bHit = ( | |
5380 fts3EvalTestExpr(pCsr, pExpr->pLeft, pRc) | |
5381 && !fts3EvalTestExpr(pCsr, pExpr->pRight, pRc) | |
5382 ); | |
5383 break; | |
5384 | |
5385 default: { | |
5386 #ifndef SQLITE_DISABLE_FTS4_DEFERRED | |
5387 if( pCsr->pDeferred | |
5388 && (pExpr->iDocid==pCsr->iPrevId || pExpr->bDeferred) | |
5389 ){ | |
5390 Fts3Phrase *pPhrase = pExpr->pPhrase; | |
5391 assert( pExpr->bDeferred || pPhrase->doclist.bFreeList==0 ); | |
5392 if( pExpr->bDeferred ){ | |
5393 fts3EvalInvalidatePoslist(pPhrase); | |
5394 } | |
5395 *pRc = fts3EvalDeferredPhrase(pCsr, pPhrase); | |
5396 bHit = (pPhrase->doclist.pList!=0); | |
5397 pExpr->iDocid = pCsr->iPrevId; | |
5398 }else | |
5399 #endif | |
5400 { | |
5401 bHit = (pExpr->bEof==0 && pExpr->iDocid==pCsr->iPrevId); | |
5402 } | |
5403 break; | |
5404 } | |
5405 } | |
5406 } | |
5407 return bHit; | |
5408 } | |
5409 | |
5410 /* | |
5411 ** This function is called as the second part of each xNext operation when | |
5412 ** iterating through the results of a full-text query. At this point the | |
5413 ** cursor points to a row that matches the query expression, with the | |
5414 ** following caveats: | |
5415 ** | |
5416 ** * Up until this point, "NEAR" operators in the expression have been | |
5417 ** treated as "AND". | |
5418 ** | |
5419 ** * Deferred tokens have not yet been considered. | |
5420 ** | |
5421 ** If *pRc is not SQLITE_OK when this function is called, it immediately | |
5422 ** returns 0. Otherwise, it tests whether or not after considering NEAR | |
5423 ** operators and deferred tokens the current row is still a match for the | |
5424 ** expression. It returns 1 if both of the following are true: | |
5425 ** | |
5426 ** 1. *pRc is SQLITE_OK when this function returns, and | |
5427 ** | |
5428 ** 2. After scanning the current FTS table row for the deferred tokens, | |
5429 ** it is determined that the row does *not* match the query. | |
5430 ** | |
5431 ** Or, if no error occurs and it seems the current row does match the FTS | |
5432 ** query, return 0. | |
5433 */ | |
5434 int sqlite3Fts3EvalTestDeferred(Fts3Cursor *pCsr, int *pRc){ | |
5435 int rc = *pRc; | |
5436 int bMiss = 0; | |
5437 if( rc==SQLITE_OK ){ | |
5438 | |
5439 /* If there are one or more deferred tokens, load the current row into | |
5440 ** memory and scan it to determine the position list for each deferred | |
5441 ** token. Then, see if this row is really a match, considering deferred | |
5442 ** tokens and NEAR operators (neither of which were taken into account | |
5443 ** earlier, by fts3EvalNextRow()). | |
5444 */ | |
5445 if( pCsr->pDeferred ){ | |
5446 rc = fts3CursorSeek(0, pCsr); | |
5447 if( rc==SQLITE_OK ){ | |
5448 rc = sqlite3Fts3CacheDeferredDoclists(pCsr); | |
5449 } | |
5450 } | |
5451 bMiss = (0==fts3EvalTestExpr(pCsr, pCsr->pExpr, &rc)); | |
5452 | |
5453 /* Free the position-lists accumulated for each deferred token above. */ | |
5454 sqlite3Fts3FreeDeferredDoclists(pCsr); | |
5455 *pRc = rc; | |
5456 } | |
5457 return (rc==SQLITE_OK && bMiss); | |
5458 } | |
5459 | |
5460 /* | |
5461 ** Advance to the next document that matches the FTS expression in | |
5462 ** Fts3Cursor.pExpr. | |
5463 */ | |
5464 static int fts3EvalNext(Fts3Cursor *pCsr){ | |
5465 int rc = SQLITE_OK; /* Return Code */ | |
5466 Fts3Expr *pExpr = pCsr->pExpr; | |
5467 assert( pCsr->isEof==0 ); | |
5468 if( pExpr==0 ){ | |
5469 pCsr->isEof = 1; | |
5470 }else{ | |
5471 do { | |
5472 if( pCsr->isRequireSeek==0 ){ | |
5473 sqlite3_reset(pCsr->pStmt); | |
5474 } | |
5475 assert( sqlite3_data_count(pCsr->pStmt)==0 ); | |
5476 fts3EvalNextRow(pCsr, pExpr, &rc); | |
5477 pCsr->isEof = pExpr->bEof; | |
5478 pCsr->isRequireSeek = 1; | |
5479 pCsr->isMatchinfoNeeded = 1; | |
5480 pCsr->iPrevId = pExpr->iDocid; | |
5481 }while( pCsr->isEof==0 && sqlite3Fts3EvalTestDeferred(pCsr, &rc) ); | |
5482 } | |
5483 | |
5484 /* Check if the cursor is past the end of the docid range specified | |
5485 ** by Fts3Cursor.iMinDocid/iMaxDocid. If so, set the EOF flag. */ | |
5486 if( rc==SQLITE_OK && ( | |
5487 (pCsr->bDesc==0 && pCsr->iPrevId>pCsr->iMaxDocid) | |
5488 || (pCsr->bDesc!=0 && pCsr->iPrevId<pCsr->iMinDocid) | |
5489 )){ | |
5490 pCsr->isEof = 1; | |
5491 } | |
5492 | |
5493 return rc; | |
5494 } | |
5495 | |
5496 /* | |
5497 ** Restart interation for expression pExpr so that the next call to | |
5498 ** fts3EvalNext() visits the first row. Do not allow incremental | |
5499 ** loading or merging of phrase doclists for this iteration. | |
5500 ** | |
5501 ** If *pRc is other than SQLITE_OK when this function is called, it is | |
5502 ** a no-op. If an error occurs within this function, *pRc is set to an | |
5503 ** SQLite error code before returning. | |
5504 */ | |
5505 static void fts3EvalRestart( | |
5506 Fts3Cursor *pCsr, | |
5507 Fts3Expr *pExpr, | |
5508 int *pRc | |
5509 ){ | |
5510 if( pExpr && *pRc==SQLITE_OK ){ | |
5511 Fts3Phrase *pPhrase = pExpr->pPhrase; | |
5512 | |
5513 if( pPhrase ){ | |
5514 fts3EvalInvalidatePoslist(pPhrase); | |
5515 if( pPhrase->bIncr ){ | |
5516 int i; | |
5517 for(i=0; i<pPhrase->nToken; i++){ | |
5518 Fts3PhraseToken *pToken = &pPhrase->aToken[i]; | |
5519 assert( pToken->pDeferred==0 ); | |
5520 if( pToken->pSegcsr ){ | |
5521 sqlite3Fts3MsrIncrRestart(pToken->pSegcsr); | |
5522 } | |
5523 } | |
5524 *pRc = fts3EvalPhraseStart(pCsr, 0, pPhrase); | |
5525 } | |
5526 pPhrase->doclist.pNextDocid = 0; | |
5527 pPhrase->doclist.iDocid = 0; | |
5528 pPhrase->pOrPoslist = 0; | |
5529 } | |
5530 | |
5531 pExpr->iDocid = 0; | |
5532 pExpr->bEof = 0; | |
5533 pExpr->bStart = 0; | |
5534 | |
5535 fts3EvalRestart(pCsr, pExpr->pLeft, pRc); | |
5536 fts3EvalRestart(pCsr, pExpr->pRight, pRc); | |
5537 } | |
5538 } | |
5539 | |
5540 /* | |
5541 ** After allocating the Fts3Expr.aMI[] array for each phrase in the | |
5542 ** expression rooted at pExpr, the cursor iterates through all rows matched | |
5543 ** by pExpr, calling this function for each row. This function increments | |
5544 ** the values in Fts3Expr.aMI[] according to the position-list currently | |
5545 ** found in Fts3Expr.pPhrase->doclist.pList for each of the phrase | |
5546 ** expression nodes. | |
5547 */ | |
5548 static void fts3EvalUpdateCounts(Fts3Expr *pExpr){ | |
5549 if( pExpr ){ | |
5550 Fts3Phrase *pPhrase = pExpr->pPhrase; | |
5551 if( pPhrase && pPhrase->doclist.pList ){ | |
5552 int iCol = 0; | |
5553 char *p = pPhrase->doclist.pList; | |
5554 | |
5555 assert( *p ); | |
5556 while( 1 ){ | |
5557 u8 c = 0; | |
5558 int iCnt = 0; | |
5559 while( 0xFE & (*p | c) ){ | |
5560 if( (c&0x80)==0 ) iCnt++; | |
5561 c = *p++ & 0x80; | |
5562 } | |
5563 | |
5564 /* aMI[iCol*3 + 1] = Number of occurrences | |
5565 ** aMI[iCol*3 + 2] = Number of rows containing at least one instance | |
5566 */ | |
5567 pExpr->aMI[iCol*3 + 1] += iCnt; | |
5568 pExpr->aMI[iCol*3 + 2] += (iCnt>0); | |
5569 if( *p==0x00 ) break; | |
5570 p++; | |
5571 p += fts3GetVarint32(p, &iCol); | |
5572 } | |
5573 } | |
5574 | |
5575 fts3EvalUpdateCounts(pExpr->pLeft); | |
5576 fts3EvalUpdateCounts(pExpr->pRight); | |
5577 } | |
5578 } | |
5579 | |
5580 /* | |
5581 ** Expression pExpr must be of type FTSQUERY_PHRASE. | |
5582 ** | |
5583 ** If it is not already allocated and populated, this function allocates and | |
5584 ** populates the Fts3Expr.aMI[] array for expression pExpr. If pExpr is part | |
5585 ** of a NEAR expression, then it also allocates and populates the same array | |
5586 ** for all other phrases that are part of the NEAR expression. | |
5587 ** | |
5588 ** SQLITE_OK is returned if the aMI[] array is successfully allocated and | |
5589 ** populated. Otherwise, if an error occurs, an SQLite error code is returned. | |
5590 */ | |
5591 static int fts3EvalGatherStats( | |
5592 Fts3Cursor *pCsr, /* Cursor object */ | |
5593 Fts3Expr *pExpr /* FTSQUERY_PHRASE expression */ | |
5594 ){ | |
5595 int rc = SQLITE_OK; /* Return code */ | |
5596 | |
5597 assert( pExpr->eType==FTSQUERY_PHRASE ); | |
5598 if( pExpr->aMI==0 ){ | |
5599 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; | |
5600 Fts3Expr *pRoot; /* Root of NEAR expression */ | |
5601 Fts3Expr *p; /* Iterator used for several purposes */ | |
5602 | |
5603 sqlite3_int64 iPrevId = pCsr->iPrevId; | |
5604 sqlite3_int64 iDocid; | |
5605 u8 bEof; | |
5606 | |
5607 /* Find the root of the NEAR expression */ | |
5608 pRoot = pExpr; | |
5609 while( pRoot->pParent && pRoot->pParent->eType==FTSQUERY_NEAR ){ | |
5610 pRoot = pRoot->pParent; | |
5611 } | |
5612 iDocid = pRoot->iDocid; | |
5613 bEof = pRoot->bEof; | |
5614 assert( pRoot->bStart ); | |
5615 | |
5616 /* Allocate space for the aMSI[] array of each FTSQUERY_PHRASE node */ | |
5617 for(p=pRoot; p; p=p->pLeft){ | |
5618 Fts3Expr *pE = (p->eType==FTSQUERY_PHRASE?p:p->pRight); | |
5619 assert( pE->aMI==0 ); | |
5620 pE->aMI = (u32 *)sqlite3_malloc(pTab->nColumn * 3 * sizeof(u32)); | |
5621 if( !pE->aMI ) return SQLITE_NOMEM; | |
5622 memset(pE->aMI, 0, pTab->nColumn * 3 * sizeof(u32)); | |
5623 } | |
5624 | |
5625 fts3EvalRestart(pCsr, pRoot, &rc); | |
5626 | |
5627 while( pCsr->isEof==0 && rc==SQLITE_OK ){ | |
5628 | |
5629 do { | |
5630 /* Ensure the %_content statement is reset. */ | |
5631 if( pCsr->isRequireSeek==0 ) sqlite3_reset(pCsr->pStmt); | |
5632 assert( sqlite3_data_count(pCsr->pStmt)==0 ); | |
5633 | |
5634 /* Advance to the next document */ | |
5635 fts3EvalNextRow(pCsr, pRoot, &rc); | |
5636 pCsr->isEof = pRoot->bEof; | |
5637 pCsr->isRequireSeek = 1; | |
5638 pCsr->isMatchinfoNeeded = 1; | |
5639 pCsr->iPrevId = pRoot->iDocid; | |
5640 }while( pCsr->isEof==0 | |
5641 && pRoot->eType==FTSQUERY_NEAR | |
5642 && sqlite3Fts3EvalTestDeferred(pCsr, &rc) | |
5643 ); | |
5644 | |
5645 if( rc==SQLITE_OK && pCsr->isEof==0 ){ | |
5646 fts3EvalUpdateCounts(pRoot); | |
5647 } | |
5648 } | |
5649 | |
5650 pCsr->isEof = 0; | |
5651 pCsr->iPrevId = iPrevId; | |
5652 | |
5653 if( bEof ){ | |
5654 pRoot->bEof = bEof; | |
5655 }else{ | |
5656 /* Caution: pRoot may iterate through docids in ascending or descending | |
5657 ** order. For this reason, even though it seems more defensive, the | |
5658 ** do loop can not be written: | |
5659 ** | |
5660 ** do {...} while( pRoot->iDocid<iDocid && rc==SQLITE_OK ); | |
5661 */ | |
5662 fts3EvalRestart(pCsr, pRoot, &rc); | |
5663 do { | |
5664 fts3EvalNextRow(pCsr, pRoot, &rc); | |
5665 assert( pRoot->bEof==0 ); | |
5666 }while( pRoot->iDocid!=iDocid && rc==SQLITE_OK ); | |
5667 } | |
5668 } | |
5669 return rc; | |
5670 } | |
5671 | |
5672 /* | |
5673 ** This function is used by the matchinfo() module to query a phrase | |
5674 ** expression node for the following information: | |
5675 ** | |
5676 ** 1. The total number of occurrences of the phrase in each column of | |
5677 ** the FTS table (considering all rows), and | |
5678 ** | |
5679 ** 2. For each column, the number of rows in the table for which the | |
5680 ** column contains at least one instance of the phrase. | |
5681 ** | |
5682 ** If no error occurs, SQLITE_OK is returned and the values for each column | |
5683 ** written into the array aiOut as follows: | |
5684 ** | |
5685 ** aiOut[iCol*3 + 1] = Number of occurrences | |
5686 ** aiOut[iCol*3 + 2] = Number of rows containing at least one instance | |
5687 ** | |
5688 ** Caveats: | |
5689 ** | |
5690 ** * If a phrase consists entirely of deferred tokens, then all output | |
5691 ** values are set to the number of documents in the table. In other | |
5692 ** words we assume that very common tokens occur exactly once in each | |
5693 ** column of each row of the table. | |
5694 ** | |
5695 ** * If a phrase contains some deferred tokens (and some non-deferred | |
5696 ** tokens), count the potential occurrence identified by considering | |
5697 ** the non-deferred tokens instead of actual phrase occurrences. | |
5698 ** | |
5699 ** * If the phrase is part of a NEAR expression, then only phrase instances | |
5700 ** that meet the NEAR constraint are included in the counts. | |
5701 */ | |
5702 int sqlite3Fts3EvalPhraseStats( | |
5703 Fts3Cursor *pCsr, /* FTS cursor handle */ | |
5704 Fts3Expr *pExpr, /* Phrase expression */ | |
5705 u32 *aiOut /* Array to write results into (see above) */ | |
5706 ){ | |
5707 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; | |
5708 int rc = SQLITE_OK; | |
5709 int iCol; | |
5710 | |
5711 if( pExpr->bDeferred && pExpr->pParent->eType!=FTSQUERY_NEAR ){ | |
5712 assert( pCsr->nDoc>0 ); | |
5713 for(iCol=0; iCol<pTab->nColumn; iCol++){ | |
5714 aiOut[iCol*3 + 1] = (u32)pCsr->nDoc; | |
5715 aiOut[iCol*3 + 2] = (u32)pCsr->nDoc; | |
5716 } | |
5717 }else{ | |
5718 rc = fts3EvalGatherStats(pCsr, pExpr); | |
5719 if( rc==SQLITE_OK ){ | |
5720 assert( pExpr->aMI ); | |
5721 for(iCol=0; iCol<pTab->nColumn; iCol++){ | |
5722 aiOut[iCol*3 + 1] = pExpr->aMI[iCol*3 + 1]; | |
5723 aiOut[iCol*3 + 2] = pExpr->aMI[iCol*3 + 2]; | |
5724 } | |
5725 } | |
5726 } | |
5727 | |
5728 return rc; | |
5729 } | |
5730 | |
5731 /* | |
5732 ** The expression pExpr passed as the second argument to this function | |
5733 ** must be of type FTSQUERY_PHRASE. | |
5734 ** | |
5735 ** The returned value is either NULL or a pointer to a buffer containing | |
5736 ** a position-list indicating the occurrences of the phrase in column iCol | |
5737 ** of the current row. | |
5738 ** | |
5739 ** More specifically, the returned buffer contains 1 varint for each | |
5740 ** occurrence of the phrase in the column, stored using the normal (delta+2) | |
5741 ** compression and is terminated by either an 0x01 or 0x00 byte. For example, | |
5742 ** if the requested column contains "a b X c d X X" and the position-list | |
5743 ** for 'X' is requested, the buffer returned may contain: | |
5744 ** | |
5745 ** 0x04 0x05 0x03 0x01 or 0x04 0x05 0x03 0x00 | |
5746 ** | |
5747 ** This function works regardless of whether or not the phrase is deferred, | |
5748 ** incremental, or neither. | |
5749 */ | |
5750 int sqlite3Fts3EvalPhrasePoslist( | |
5751 Fts3Cursor *pCsr, /* FTS3 cursor object */ | |
5752 Fts3Expr *pExpr, /* Phrase to return doclist for */ | |
5753 int iCol, /* Column to return position list for */ | |
5754 char **ppOut /* OUT: Pointer to position list */ | |
5755 ){ | |
5756 Fts3Phrase *pPhrase = pExpr->pPhrase; | |
5757 Fts3Table *pTab = (Fts3Table *)pCsr->base.pVtab; | |
5758 char *pIter; | |
5759 int iThis; | |
5760 sqlite3_int64 iDocid; | |
5761 | |
5762 /* If this phrase is applies specifically to some column other than | |
5763 ** column iCol, return a NULL pointer. */ | |
5764 *ppOut = 0; | |
5765 assert( iCol>=0 && iCol<pTab->nColumn ); | |
5766 if( (pPhrase->iColumn<pTab->nColumn && pPhrase->iColumn!=iCol) ){ | |
5767 return SQLITE_OK; | |
5768 } | |
5769 | |
5770 iDocid = pExpr->iDocid; | |
5771 pIter = pPhrase->doclist.pList; | |
5772 if( iDocid!=pCsr->iPrevId || pExpr->bEof ){ | |
5773 int rc = SQLITE_OK; | |
5774 int bDescDoclist = pTab->bDescIdx; /* For DOCID_CMP macro */ | |
5775 int bOr = 0; | |
5776 u8 bTreeEof = 0; | |
5777 Fts3Expr *p; /* Used to iterate from pExpr to root */ | |
5778 Fts3Expr *pNear; /* Most senior NEAR ancestor (or pExpr) */ | |
5779 int bMatch; | |
5780 | |
5781 /* Check if this phrase descends from an OR expression node. If not, | |
5782 ** return NULL. Otherwise, the entry that corresponds to docid | |
5783 ** pCsr->iPrevId may lie earlier in the doclist buffer. Or, if the | |
5784 ** tree that the node is part of has been marked as EOF, but the node | |
5785 ** itself is not EOF, then it may point to an earlier entry. */ | |
5786 pNear = pExpr; | |
5787 for(p=pExpr->pParent; p; p=p->pParent){ | |
5788 if( p->eType==FTSQUERY_OR ) bOr = 1; | |
5789 if( p->eType==FTSQUERY_NEAR ) pNear = p; | |
5790 if( p->bEof ) bTreeEof = 1; | |
5791 } | |
5792 if( bOr==0 ) return SQLITE_OK; | |
5793 | |
5794 /* This is the descendent of an OR node. In this case we cannot use | |
5795 ** an incremental phrase. Load the entire doclist for the phrase | |
5796 ** into memory in this case. */ | |
5797 if( pPhrase->bIncr ){ | |
5798 int bEofSave = pNear->bEof; | |
5799 fts3EvalRestart(pCsr, pNear, &rc); | |
5800 while( rc==SQLITE_OK && !pNear->bEof ){ | |
5801 fts3EvalNextRow(pCsr, pNear, &rc); | |
5802 if( bEofSave==0 && pNear->iDocid==iDocid ) break; | |
5803 } | |
5804 assert( rc!=SQLITE_OK || pPhrase->bIncr==0 ); | |
5805 } | |
5806 if( bTreeEof ){ | |
5807 while( rc==SQLITE_OK && !pNear->bEof ){ | |
5808 fts3EvalNextRow(pCsr, pNear, &rc); | |
5809 } | |
5810 } | |
5811 if( rc!=SQLITE_OK ) return rc; | |
5812 | |
5813 bMatch = 1; | |
5814 for(p=pNear; p; p=p->pLeft){ | |
5815 u8 bEof = 0; | |
5816 Fts3Expr *pTest = p; | |
5817 Fts3Phrase *pPh; | |
5818 assert( pTest->eType==FTSQUERY_NEAR || pTest->eType==FTSQUERY_PHRASE ); | |
5819 if( pTest->eType==FTSQUERY_NEAR ) pTest = pTest->pRight; | |
5820 assert( pTest->eType==FTSQUERY_PHRASE ); | |
5821 pPh = pTest->pPhrase; | |
5822 | |
5823 pIter = pPh->pOrPoslist; | |
5824 iDocid = pPh->iOrDocid; | |
5825 if( pCsr->bDesc==bDescDoclist ){ | |
5826 bEof = !pPh->doclist.nAll || | |
5827 (pIter >= (pPh->doclist.aAll + pPh->doclist.nAll)); | |
5828 while( (pIter==0 || DOCID_CMP(iDocid, pCsr->iPrevId)<0 ) && bEof==0 ){ | |
5829 sqlite3Fts3DoclistNext( | |
5830 bDescDoclist, pPh->doclist.aAll, pPh->doclist.nAll, | |
5831 &pIter, &iDocid, &bEof | |
5832 ); | |
5833 } | |
5834 }else{ | |
5835 bEof = !pPh->doclist.nAll || (pIter && pIter<=pPh->doclist.aAll); | |
5836 while( (pIter==0 || DOCID_CMP(iDocid, pCsr->iPrevId)>0 ) && bEof==0 ){ | |
5837 int dummy; | |
5838 sqlite3Fts3DoclistPrev( | |
5839 bDescDoclist, pPh->doclist.aAll, pPh->doclist.nAll, | |
5840 &pIter, &iDocid, &dummy, &bEof | |
5841 ); | |
5842 } | |
5843 } | |
5844 pPh->pOrPoslist = pIter; | |
5845 pPh->iOrDocid = iDocid; | |
5846 if( bEof || iDocid!=pCsr->iPrevId ) bMatch = 0; | |
5847 } | |
5848 | |
5849 if( bMatch ){ | |
5850 pIter = pPhrase->pOrPoslist; | |
5851 }else{ | |
5852 pIter = 0; | |
5853 } | |
5854 } | |
5855 if( pIter==0 ) return SQLITE_OK; | |
5856 | |
5857 if( *pIter==0x01 ){ | |
5858 pIter++; | |
5859 pIter += fts3GetVarint32(pIter, &iThis); | |
5860 }else{ | |
5861 iThis = 0; | |
5862 } | |
5863 while( iThis<iCol ){ | |
5864 fts3ColumnlistCopy(0, &pIter); | |
5865 if( *pIter==0x00 ) return SQLITE_OK; | |
5866 pIter++; | |
5867 pIter += fts3GetVarint32(pIter, &iThis); | |
5868 } | |
5869 if( *pIter==0x00 ){ | |
5870 pIter = 0; | |
5871 } | |
5872 | |
5873 *ppOut = ((iCol==iThis)?pIter:0); | |
5874 return SQLITE_OK; | |
5875 } | |
5876 | |
5877 /* | |
5878 ** Free all components of the Fts3Phrase structure that were allocated by | |
5879 ** the eval module. Specifically, this means to free: | |
5880 ** | |
5881 ** * the contents of pPhrase->doclist, and | |
5882 ** * any Fts3MultiSegReader objects held by phrase tokens. | |
5883 */ | |
5884 void sqlite3Fts3EvalPhraseCleanup(Fts3Phrase *pPhrase){ | |
5885 if( pPhrase ){ | |
5886 int i; | |
5887 sqlite3_free(pPhrase->doclist.aAll); | |
5888 fts3EvalInvalidatePoslist(pPhrase); | |
5889 memset(&pPhrase->doclist, 0, sizeof(Fts3Doclist)); | |
5890 for(i=0; i<pPhrase->nToken; i++){ | |
5891 fts3SegReaderCursorFree(pPhrase->aToken[i].pSegcsr); | |
5892 pPhrase->aToken[i].pSegcsr = 0; | |
5893 } | |
5894 } | |
5895 } | |
5896 | |
5897 | |
5898 /* | |
5899 ** Return SQLITE_CORRUPT_VTAB. | |
5900 */ | |
5901 #ifdef SQLITE_DEBUG | |
5902 int sqlite3Fts3Corrupt(){ | |
5903 return SQLITE_CORRUPT_VTAB; | |
5904 } | |
5905 #endif | |
5906 | |
5907 #if !SQLITE_CORE | |
5908 /* | |
5909 ** Initialize API pointer table, if required. | |
5910 */ | |
5911 #ifdef _WIN32 | |
5912 __declspec(dllexport) | |
5913 #endif | |
5914 int sqlite3_fts3_init( | |
5915 sqlite3 *db, | |
5916 char **pzErrMsg, | |
5917 const sqlite3_api_routines *pApi | |
5918 ){ | |
5919 SQLITE_EXTENSION_INIT2(pApi) | |
5920 return sqlite3Fts3Init(db); | |
5921 } | |
5922 #endif | |
5923 | |
5924 #endif | |
OLD | NEW |