| Index: third_party/WebKit/Source/platform/wtf/dtoa/strtod.cc
|
| diff --git a/third_party/WebKit/Source/platform/wtf/dtoa/strtod.cc b/third_party/WebKit/Source/platform/wtf/dtoa/strtod.cc
|
| index 6a841c4389b4f8085b08879624dbf6640689ca94..3746aa78158da1fec8e52dd7080fd7f2a242bc26 100644
|
| --- a/third_party/WebKit/Source/platform/wtf/dtoa/strtod.cc
|
| +++ b/third_party/WebKit/Source/platform/wtf/dtoa/strtod.cc
|
| @@ -119,7 +119,7 @@ namespace double_conversion {
|
| }
|
| // The input buffer has been trimmed. Therefore the last digit must be
|
| // different from '0'.
|
| - ASSERT(buffer[buffer.length() - 1] != '0');
|
| + DCHECK_NE(buffer[buffer.length() - 1], '0');
|
| // Set the last digit to be non-zero. This is sufficient to guarantee
|
| // correct rounding.
|
| significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
|
| @@ -138,7 +138,8 @@ namespace double_conversion {
|
| int i = 0;
|
| while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
|
| int digit = buffer[i++] - '0';
|
| - ASSERT(0 <= digit && digit <= 9);
|
| + DCHECK_LE(0, digit);
|
| + DCHECK_LE(digit, 9);
|
| result = 10 * result + digit;
|
| }
|
| *number_of_read_digits = i;
|
| @@ -194,14 +195,14 @@ namespace double_conversion {
|
| if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
|
| // 10^-exponent fits into a double.
|
| *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
|
| - ASSERT(read_digits == trimmed.length());
|
| + DCHECK_EQ(read_digits, trimmed.length());
|
| *result /= exact_powers_of_ten[-exponent];
|
| return true;
|
| }
|
| if (0 <= exponent && exponent < kExactPowersOfTenSize) {
|
| // 10^exponent fits into a double.
|
| *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
|
| - ASSERT(read_digits == trimmed.length());
|
| + DCHECK_EQ(read_digits, trimmed.length());
|
| *result *= exact_powers_of_ten[exponent];
|
| return true;
|
| }
|
| @@ -213,7 +214,7 @@ namespace double_conversion {
|
| // 10^remaining_digits. As a result the remaining exponent now fits
|
| // into a double too.
|
| *result = static_cast<double>(ReadUint64(trimmed, &read_digits));
|
| - ASSERT(read_digits == trimmed.length());
|
| + DCHECK_EQ(read_digits, trimmed.length());
|
| *result *= exact_powers_of_ten[remaining_digits];
|
| *result *= exact_powers_of_ten[exponent - remaining_digits];
|
| return true;
|
| @@ -226,11 +227,11 @@ namespace double_conversion {
|
| // Returns 10^exponent as an exact DiyFp.
|
| // The given exponent must be in the range [1; kDecimalExponentDistance[.
|
| static DiyFp AdjustmentPowerOfTen(int exponent) {
|
| - ASSERT(0 < exponent);
|
| - ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance);
|
| + DCHECK_LT(0, exponent);
|
| + DCHECK_LT(exponent, PowersOfTenCache::kDecimalExponentDistance);
|
| // Simply hardcode the remaining powers for the given decimal exponent
|
| // distance.
|
| - ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8);
|
| + DCHECK_EQ(PowersOfTenCache::kDecimalExponentDistance, 8);
|
| switch (exponent) {
|
| case 1: return DiyFp(UINT64_2PART_C(0xa0000000, 00000000), -60);
|
| case 2: return DiyFp(UINT64_2PART_C(0xc8000000, 00000000), -57);
|
| @@ -270,7 +271,7 @@ namespace double_conversion {
|
| input.Normalize();
|
| error <<= old_e - input.E();
|
|
|
| - ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent);
|
| + DCHECK_LE(exponent, PowersOfTenCache::kMaxDecimalExponent);
|
| if (exponent < PowersOfTenCache::kMinDecimalExponent) {
|
| *result = 0.0;
|
| return true;
|
| @@ -288,7 +289,7 @@ namespace double_conversion {
|
| if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) {
|
| // The product of input with the adjustment power fits into a 64 bit
|
| // integer.
|
| - ASSERT(DiyFp::kSignificandSize == 64);
|
| + DCHECK_EQ(DiyFp::kSignificandSize, 64);
|
| } else {
|
| // The adjustment power is exact. There is hence only an error of 0.5.
|
| error += kDenominator / 2;
|
| @@ -330,8 +331,8 @@ namespace double_conversion {
|
| precision_digits_count -= shift_amount;
|
| }
|
| // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too.
|
| - ASSERT(DiyFp::kSignificandSize == 64);
|
| - ASSERT(precision_digits_count < 64);
|
| + DCHECK_EQ(DiyFp::kSignificandSize, 64);
|
| + DCHECK_LT(precision_digits_count, 64);
|
| uint64_t one64 = 1;
|
| uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
|
| uint64_t precision_bits = input.F() & precision_bits_mask;
|
| @@ -375,14 +376,14 @@ namespace double_conversion {
|
|
|
| DiyFp upper_boundary = Double(guess).UpperBoundary();
|
|
|
| - ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1);
|
| - ASSERT(buffer.length() + exponent > kMinDecimalPower);
|
| - ASSERT(buffer.length() <= kMaxSignificantDecimalDigits);
|
| + DCHECK_LE(buffer.length() + exponent, kMaxDecimalPower + 1);
|
| + DCHECK_GT(buffer.length() + exponent, kMinDecimalPower);
|
| + DCHECK_LE(buffer.length(), kMaxSignificantDecimalDigits);
|
| // Make sure that the Bignum will be able to hold all our numbers.
|
| // Our Bignum implementation has a separate field for exponents. Shifts will
|
| // consume at most one bigit (< 64 bits).
|
| // ln(10) == 3.3219...
|
| - ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits);
|
| + DCHECK_LT(((kMaxDecimalPower + 1) * 333 / 100), Bignum::kMaxSignificantBits);
|
| Bignum input;
|
| Bignum boundary;
|
| input.AssignDecimalString(buffer);
|
|
|