Index: third_party/WebKit/Source/platform/wtf/dtoa/strtod.cc |
diff --git a/third_party/WebKit/Source/platform/wtf/dtoa/strtod.cc b/third_party/WebKit/Source/platform/wtf/dtoa/strtod.cc |
index 6a841c4389b4f8085b08879624dbf6640689ca94..3746aa78158da1fec8e52dd7080fd7f2a242bc26 100644 |
--- a/third_party/WebKit/Source/platform/wtf/dtoa/strtod.cc |
+++ b/third_party/WebKit/Source/platform/wtf/dtoa/strtod.cc |
@@ -119,7 +119,7 @@ namespace double_conversion { |
} |
// The input buffer has been trimmed. Therefore the last digit must be |
// different from '0'. |
- ASSERT(buffer[buffer.length() - 1] != '0'); |
+ DCHECK_NE(buffer[buffer.length() - 1], '0'); |
// Set the last digit to be non-zero. This is sufficient to guarantee |
// correct rounding. |
significant_buffer[kMaxSignificantDecimalDigits - 1] = '1'; |
@@ -138,7 +138,8 @@ namespace double_conversion { |
int i = 0; |
while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) { |
int digit = buffer[i++] - '0'; |
- ASSERT(0 <= digit && digit <= 9); |
+ DCHECK_LE(0, digit); |
+ DCHECK_LE(digit, 9); |
result = 10 * result + digit; |
} |
*number_of_read_digits = i; |
@@ -194,14 +195,14 @@ namespace double_conversion { |
if (exponent < 0 && -exponent < kExactPowersOfTenSize) { |
// 10^-exponent fits into a double. |
*result = static_cast<double>(ReadUint64(trimmed, &read_digits)); |
- ASSERT(read_digits == trimmed.length()); |
+ DCHECK_EQ(read_digits, trimmed.length()); |
*result /= exact_powers_of_ten[-exponent]; |
return true; |
} |
if (0 <= exponent && exponent < kExactPowersOfTenSize) { |
// 10^exponent fits into a double. |
*result = static_cast<double>(ReadUint64(trimmed, &read_digits)); |
- ASSERT(read_digits == trimmed.length()); |
+ DCHECK_EQ(read_digits, trimmed.length()); |
*result *= exact_powers_of_ten[exponent]; |
return true; |
} |
@@ -213,7 +214,7 @@ namespace double_conversion { |
// 10^remaining_digits. As a result the remaining exponent now fits |
// into a double too. |
*result = static_cast<double>(ReadUint64(trimmed, &read_digits)); |
- ASSERT(read_digits == trimmed.length()); |
+ DCHECK_EQ(read_digits, trimmed.length()); |
*result *= exact_powers_of_ten[remaining_digits]; |
*result *= exact_powers_of_ten[exponent - remaining_digits]; |
return true; |
@@ -226,11 +227,11 @@ namespace double_conversion { |
// Returns 10^exponent as an exact DiyFp. |
// The given exponent must be in the range [1; kDecimalExponentDistance[. |
static DiyFp AdjustmentPowerOfTen(int exponent) { |
- ASSERT(0 < exponent); |
- ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance); |
+ DCHECK_LT(0, exponent); |
+ DCHECK_LT(exponent, PowersOfTenCache::kDecimalExponentDistance); |
// Simply hardcode the remaining powers for the given decimal exponent |
// distance. |
- ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8); |
+ DCHECK_EQ(PowersOfTenCache::kDecimalExponentDistance, 8); |
switch (exponent) { |
case 1: return DiyFp(UINT64_2PART_C(0xa0000000, 00000000), -60); |
case 2: return DiyFp(UINT64_2PART_C(0xc8000000, 00000000), -57); |
@@ -270,7 +271,7 @@ namespace double_conversion { |
input.Normalize(); |
error <<= old_e - input.E(); |
- ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent); |
+ DCHECK_LE(exponent, PowersOfTenCache::kMaxDecimalExponent); |
if (exponent < PowersOfTenCache::kMinDecimalExponent) { |
*result = 0.0; |
return true; |
@@ -288,7 +289,7 @@ namespace double_conversion { |
if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent) { |
// The product of input with the adjustment power fits into a 64 bit |
// integer. |
- ASSERT(DiyFp::kSignificandSize == 64); |
+ DCHECK_EQ(DiyFp::kSignificandSize, 64); |
} else { |
// The adjustment power is exact. There is hence only an error of 0.5. |
error += kDenominator / 2; |
@@ -330,8 +331,8 @@ namespace double_conversion { |
precision_digits_count -= shift_amount; |
} |
// We use uint64_ts now. This only works if the DiyFp uses uint64_ts too. |
- ASSERT(DiyFp::kSignificandSize == 64); |
- ASSERT(precision_digits_count < 64); |
+ DCHECK_EQ(DiyFp::kSignificandSize, 64); |
+ DCHECK_LT(precision_digits_count, 64); |
uint64_t one64 = 1; |
uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1; |
uint64_t precision_bits = input.F() & precision_bits_mask; |
@@ -375,14 +376,14 @@ namespace double_conversion { |
DiyFp upper_boundary = Double(guess).UpperBoundary(); |
- ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1); |
- ASSERT(buffer.length() + exponent > kMinDecimalPower); |
- ASSERT(buffer.length() <= kMaxSignificantDecimalDigits); |
+ DCHECK_LE(buffer.length() + exponent, kMaxDecimalPower + 1); |
+ DCHECK_GT(buffer.length() + exponent, kMinDecimalPower); |
+ DCHECK_LE(buffer.length(), kMaxSignificantDecimalDigits); |
// Make sure that the Bignum will be able to hold all our numbers. |
// Our Bignum implementation has a separate field for exponents. Shifts will |
// consume at most one bigit (< 64 bits). |
// ln(10) == 3.3219... |
- ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBits); |
+ DCHECK_LT(((kMaxDecimalPower + 1) * 333 / 100), Bignum::kMaxSignificantBits); |
Bignum input; |
Bignum boundary; |
input.AssignDecimalString(buffer); |