| Index: third_party/WebKit/Source/platform/wtf/dtoa/fast-dtoa.cc
|
| diff --git a/third_party/WebKit/Source/platform/wtf/dtoa/fast-dtoa.cc b/third_party/WebKit/Source/platform/wtf/dtoa/fast-dtoa.cc
|
| index a2613ca384779a970ad880b9db488ef183010644..f58d1868e1e283dff4aefffbb672743ccce9f469 100644
|
| --- a/third_party/WebKit/Source/platform/wtf/dtoa/fast-dtoa.cc
|
| +++ b/third_party/WebKit/Source/platform/wtf/dtoa/fast-dtoa.cc
|
| @@ -140,7 +140,7 @@ namespace double_conversion {
|
| // Conceptually rest ~= too_high - buffer
|
| // We need to do the following tests in this order to avoid over- and
|
| // underflows.
|
| - ASSERT(rest <= unsafe_interval);
|
| + DCHECK_LE(rest, unsafe_interval);
|
| while (rest < small_distance && // Negated condition 1
|
| unsafe_interval - rest >= ten_kappa && // Negated condition 2
|
| (rest + ten_kappa < small_distance || // buffer{-1} > w_high
|
| @@ -186,7 +186,7 @@ namespace double_conversion {
|
| uint64_t ten_kappa,
|
| uint64_t unit,
|
| int* kappa) {
|
| - ASSERT(rest < ten_kappa);
|
| + DCHECK_LT(rest, ten_kappa);
|
| // The following tests are done in a specific order to avoid overflows. They
|
| // will work correctly with any uint64 values of rest < ten_kappa and unit.
|
| //
|
| @@ -241,7 +241,7 @@ namespace double_conversion {
|
| int number_bits,
|
| uint32_t* power,
|
| int* exponent) {
|
| - ASSERT(number < (uint32_t)(1 << (number_bits + 1)));
|
| + DCHECK_LT(number, (uint32_t)(1 << (number_bits + 1)));
|
|
|
| switch (number_bits) {
|
| case 32:
|
| @@ -387,10 +387,11 @@ namespace double_conversion {
|
| Vector<char> buffer,
|
| int* length,
|
| int* kappa) {
|
| - ASSERT(low.E() == w.E() && w.E() == high.E());
|
| - ASSERT(low.F() + 1 <= high.F() - 1);
|
| - ASSERT(kMinimalTargetExponent <= w.E() &&
|
| - w.E() <= kMaximalTargetExponent);
|
| + DCHECK_EQ(low.E(), w.E());
|
| + DCHECK_EQ(w.E(), high.E());
|
| + DCHECK_LE(low.F() + 1, high.F() - 1);
|
| + DCHECK_LE(kMinimalTargetExponent, w.E());
|
| + DCHECK_LE(w.E(), kMaximalTargetExponent);
|
| // low, w and high are imprecise, but by less than one ulp (unit in the
|
| // last place). If we remove (resp. add) 1 ulp from low (resp. high) we
|
| // are certain that the new numbers are outside of the interval we want
|
| @@ -456,9 +457,9 @@ namespace double_conversion {
|
| // data (like the interval or 'unit'), too.
|
| // Note that the multiplication by 10 does not overflow, because w.e >= -60
|
| // and thus one.e >= -60.
|
| - ASSERT(one.E() >= -60);
|
| - ASSERT(fractionals < one.F());
|
| - ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.F());
|
| + DCHECK_GE(one.E(), -60);
|
| + DCHECK_LT(fractionals, one.F());
|
| + DCHECK_GE(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10, one.F());
|
| while (true) {
|
| fractionals *= 10;
|
| unit *= 10;
|
| @@ -512,10 +513,10 @@ namespace double_conversion {
|
| Vector<char> buffer,
|
| int* length,
|
| int* kappa) {
|
| - ASSERT(kMinimalTargetExponent <= w.E() &&
|
| - w.E() <= kMaximalTargetExponent);
|
| - ASSERT(kMinimalTargetExponent >= -60);
|
| - ASSERT(kMaximalTargetExponent <= -32);
|
| + DCHECK_LE(kMinimalTargetExponent, w.E());
|
| + DCHECK_LE(w.E(), kMaximalTargetExponent);
|
| + DCHECK_GE(kMinimalTargetExponent, -60);
|
| + DCHECK_LE(kMaximalTargetExponent, -32);
|
| // w is assumed to have an error less than 1 unit. Whenever w is scaled we
|
| // also scale its error.
|
| uint64_t w_error = 1;
|
| @@ -567,9 +568,9 @@ namespace double_conversion {
|
| // data (the 'unit'), too.
|
| // Note that the multiplication by 10 does not overflow, because w.e >= -60
|
| // and thus one.e >= -60.
|
| - ASSERT(one.E() >= -60);
|
| - ASSERT(fractionals < one.F());
|
| - ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.F());
|
| + DCHECK_GE(one.E(), -60);
|
| + DCHECK_LT(fractionals, one.F());
|
| + DCHECK_GE(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10, one.F());
|
| while (requested_digits > 0 && fractionals > w_error) {
|
| fractionals *= 10;
|
| w_error *= 10;
|
| @@ -609,7 +610,7 @@ namespace double_conversion {
|
| // Grisu3 will never output representations that lie exactly on a boundary.
|
| DiyFp boundary_minus, boundary_plus;
|
| Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
|
| - ASSERT(boundary_plus.E() == w.E());
|
| + DCHECK_EQ(boundary_plus.E(), w.E());
|
| DiyFp ten_mk; // Cached power of ten: 10^-k
|
| int mk; // -k
|
| int ten_mk_minimal_binary_exponent =
|
| @@ -620,10 +621,10 @@ namespace double_conversion {
|
| ten_mk_minimal_binary_exponent,
|
| ten_mk_maximal_binary_exponent,
|
| &ten_mk, &mk);
|
| - ASSERT((kMinimalTargetExponent <=
|
| - w.E() + ten_mk.E() + DiyFp::kSignificandSize) &&
|
| - (kMaximalTargetExponent >=
|
| - w.E() + ten_mk.E() + DiyFp::kSignificandSize));
|
| + DCHECK_LE(kMinimalTargetExponent,
|
| + w.E() + ten_mk.E() + DiyFp::kSignificandSize);
|
| + DCHECK_GE(kMaximalTargetExponent,
|
| + w.E() + ten_mk.E() + DiyFp::kSignificandSize);
|
| // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
|
| // 64 bit significand and ten_mk is thus only precise up to 64 bits.
|
|
|
| @@ -634,8 +635,8 @@ namespace double_conversion {
|
| // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
|
| // (f-1) * 2^e < w*10^k < (f+1) * 2^e
|
| DiyFp scaled_w = DiyFp::Times(w, ten_mk);
|
| - ASSERT(scaled_w.E() ==
|
| - boundary_plus.E() + ten_mk.E() + DiyFp::kSignificandSize);
|
| + DCHECK_EQ(scaled_w.E(),
|
| + boundary_plus.E() + ten_mk.E() + DiyFp::kSignificandSize);
|
| // In theory it would be possible to avoid some recomputations by computing
|
| // the difference between w and boundary_minus/plus (a power of 2) and to
|
| // compute scaled_boundary_minus/plus by subtracting/adding from
|
| @@ -679,10 +680,10 @@ namespace double_conversion {
|
| ten_mk_minimal_binary_exponent,
|
| ten_mk_maximal_binary_exponent,
|
| &ten_mk, &mk);
|
| - ASSERT((kMinimalTargetExponent <=
|
| - w.E() + ten_mk.E() + DiyFp::kSignificandSize) &&
|
| - (kMaximalTargetExponent >=
|
| - w.E() + ten_mk.E() + DiyFp::kSignificandSize));
|
| + DCHECK_LE(kMinimalTargetExponent,
|
| + w.E() + ten_mk.E() + DiyFp::kSignificandSize);
|
| + DCHECK_GE(kMaximalTargetExponent,
|
| + w.E() + ten_mk.E() + DiyFp::kSignificandSize);
|
| // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a
|
| // 64 bit significand and ten_mk is thus only precise up to 64 bits.
|
|
|
| @@ -713,7 +714,7 @@ namespace double_conversion {
|
| Vector<char> buffer,
|
| int* length,
|
| int* decimal_point) {
|
| - ASSERT(v > 0);
|
| + DCHECK_GT(v, 0);
|
| DCHECK(!Double(v).IsSpecial());
|
|
|
| bool result = false;
|
|
|