Index: third_party/WebKit/Source/platform/wtf/dtoa/fast-dtoa.cc |
diff --git a/third_party/WebKit/Source/platform/wtf/dtoa/fast-dtoa.cc b/third_party/WebKit/Source/platform/wtf/dtoa/fast-dtoa.cc |
index a2613ca384779a970ad880b9db488ef183010644..f58d1868e1e283dff4aefffbb672743ccce9f469 100644 |
--- a/third_party/WebKit/Source/platform/wtf/dtoa/fast-dtoa.cc |
+++ b/third_party/WebKit/Source/platform/wtf/dtoa/fast-dtoa.cc |
@@ -140,7 +140,7 @@ namespace double_conversion { |
// Conceptually rest ~= too_high - buffer |
// We need to do the following tests in this order to avoid over- and |
// underflows. |
- ASSERT(rest <= unsafe_interval); |
+ DCHECK_LE(rest, unsafe_interval); |
while (rest < small_distance && // Negated condition 1 |
unsafe_interval - rest >= ten_kappa && // Negated condition 2 |
(rest + ten_kappa < small_distance || // buffer{-1} > w_high |
@@ -186,7 +186,7 @@ namespace double_conversion { |
uint64_t ten_kappa, |
uint64_t unit, |
int* kappa) { |
- ASSERT(rest < ten_kappa); |
+ DCHECK_LT(rest, ten_kappa); |
// The following tests are done in a specific order to avoid overflows. They |
// will work correctly with any uint64 values of rest < ten_kappa and unit. |
// |
@@ -241,7 +241,7 @@ namespace double_conversion { |
int number_bits, |
uint32_t* power, |
int* exponent) { |
- ASSERT(number < (uint32_t)(1 << (number_bits + 1))); |
+ DCHECK_LT(number, (uint32_t)(1 << (number_bits + 1))); |
switch (number_bits) { |
case 32: |
@@ -387,10 +387,11 @@ namespace double_conversion { |
Vector<char> buffer, |
int* length, |
int* kappa) { |
- ASSERT(low.E() == w.E() && w.E() == high.E()); |
- ASSERT(low.F() + 1 <= high.F() - 1); |
- ASSERT(kMinimalTargetExponent <= w.E() && |
- w.E() <= kMaximalTargetExponent); |
+ DCHECK_EQ(low.E(), w.E()); |
+ DCHECK_EQ(w.E(), high.E()); |
+ DCHECK_LE(low.F() + 1, high.F() - 1); |
+ DCHECK_LE(kMinimalTargetExponent, w.E()); |
+ DCHECK_LE(w.E(), kMaximalTargetExponent); |
// low, w and high are imprecise, but by less than one ulp (unit in the |
// last place). If we remove (resp. add) 1 ulp from low (resp. high) we |
// are certain that the new numbers are outside of the interval we want |
@@ -456,9 +457,9 @@ namespace double_conversion { |
// data (like the interval or 'unit'), too. |
// Note that the multiplication by 10 does not overflow, because w.e >= -60 |
// and thus one.e >= -60. |
- ASSERT(one.E() >= -60); |
- ASSERT(fractionals < one.F()); |
- ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.F()); |
+ DCHECK_GE(one.E(), -60); |
+ DCHECK_LT(fractionals, one.F()); |
+ DCHECK_GE(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10, one.F()); |
while (true) { |
fractionals *= 10; |
unit *= 10; |
@@ -512,10 +513,10 @@ namespace double_conversion { |
Vector<char> buffer, |
int* length, |
int* kappa) { |
- ASSERT(kMinimalTargetExponent <= w.E() && |
- w.E() <= kMaximalTargetExponent); |
- ASSERT(kMinimalTargetExponent >= -60); |
- ASSERT(kMaximalTargetExponent <= -32); |
+ DCHECK_LE(kMinimalTargetExponent, w.E()); |
+ DCHECK_LE(w.E(), kMaximalTargetExponent); |
+ DCHECK_GE(kMinimalTargetExponent, -60); |
+ DCHECK_LE(kMaximalTargetExponent, -32); |
// w is assumed to have an error less than 1 unit. Whenever w is scaled we |
// also scale its error. |
uint64_t w_error = 1; |
@@ -567,9 +568,9 @@ namespace double_conversion { |
// data (the 'unit'), too. |
// Note that the multiplication by 10 does not overflow, because w.e >= -60 |
// and thus one.e >= -60. |
- ASSERT(one.E() >= -60); |
- ASSERT(fractionals < one.F()); |
- ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.F()); |
+ DCHECK_GE(one.E(), -60); |
+ DCHECK_LT(fractionals, one.F()); |
+ DCHECK_GE(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10, one.F()); |
while (requested_digits > 0 && fractionals > w_error) { |
fractionals *= 10; |
w_error *= 10; |
@@ -609,7 +610,7 @@ namespace double_conversion { |
// Grisu3 will never output representations that lie exactly on a boundary. |
DiyFp boundary_minus, boundary_plus; |
Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus); |
- ASSERT(boundary_plus.E() == w.E()); |
+ DCHECK_EQ(boundary_plus.E(), w.E()); |
DiyFp ten_mk; // Cached power of ten: 10^-k |
int mk; // -k |
int ten_mk_minimal_binary_exponent = |
@@ -620,10 +621,10 @@ namespace double_conversion { |
ten_mk_minimal_binary_exponent, |
ten_mk_maximal_binary_exponent, |
&ten_mk, &mk); |
- ASSERT((kMinimalTargetExponent <= |
- w.E() + ten_mk.E() + DiyFp::kSignificandSize) && |
- (kMaximalTargetExponent >= |
- w.E() + ten_mk.E() + DiyFp::kSignificandSize)); |
+ DCHECK_LE(kMinimalTargetExponent, |
+ w.E() + ten_mk.E() + DiyFp::kSignificandSize); |
+ DCHECK_GE(kMaximalTargetExponent, |
+ w.E() + ten_mk.E() + DiyFp::kSignificandSize); |
// Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a |
// 64 bit significand and ten_mk is thus only precise up to 64 bits. |
@@ -634,8 +635,8 @@ namespace double_conversion { |
// In other words: let f = scaled_w.f() and e = scaled_w.e(), then |
// (f-1) * 2^e < w*10^k < (f+1) * 2^e |
DiyFp scaled_w = DiyFp::Times(w, ten_mk); |
- ASSERT(scaled_w.E() == |
- boundary_plus.E() + ten_mk.E() + DiyFp::kSignificandSize); |
+ DCHECK_EQ(scaled_w.E(), |
+ boundary_plus.E() + ten_mk.E() + DiyFp::kSignificandSize); |
// In theory it would be possible to avoid some recomputations by computing |
// the difference between w and boundary_minus/plus (a power of 2) and to |
// compute scaled_boundary_minus/plus by subtracting/adding from |
@@ -679,10 +680,10 @@ namespace double_conversion { |
ten_mk_minimal_binary_exponent, |
ten_mk_maximal_binary_exponent, |
&ten_mk, &mk); |
- ASSERT((kMinimalTargetExponent <= |
- w.E() + ten_mk.E() + DiyFp::kSignificandSize) && |
- (kMaximalTargetExponent >= |
- w.E() + ten_mk.E() + DiyFp::kSignificandSize)); |
+ DCHECK_LE(kMinimalTargetExponent, |
+ w.E() + ten_mk.E() + DiyFp::kSignificandSize); |
+ DCHECK_GE(kMaximalTargetExponent, |
+ w.E() + ten_mk.E() + DiyFp::kSignificandSize); |
// Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a |
// 64 bit significand and ten_mk is thus only precise up to 64 bits. |
@@ -713,7 +714,7 @@ namespace double_conversion { |
Vector<char> buffer, |
int* length, |
int* decimal_point) { |
- ASSERT(v > 0); |
+ DCHECK_GT(v, 0); |
DCHECK(!Double(v).IsSpecial()); |
bool result = false; |