| Index: third_party/WebKit/Source/platform/wtf/dtoa/fast-dtoa.cc | 
| diff --git a/third_party/WebKit/Source/platform/wtf/dtoa/fast-dtoa.cc b/third_party/WebKit/Source/platform/wtf/dtoa/fast-dtoa.cc | 
| index a2613ca384779a970ad880b9db488ef183010644..f58d1868e1e283dff4aefffbb672743ccce9f469 100644 | 
| --- a/third_party/WebKit/Source/platform/wtf/dtoa/fast-dtoa.cc | 
| +++ b/third_party/WebKit/Source/platform/wtf/dtoa/fast-dtoa.cc | 
| @@ -140,7 +140,7 @@ namespace double_conversion { | 
| // Conceptually rest ~= too_high - buffer | 
| // We need to do the following tests in this order to avoid over- and | 
| // underflows. | 
| -        ASSERT(rest <= unsafe_interval); | 
| +        DCHECK_LE(rest, unsafe_interval); | 
| while (rest < small_distance &&  // Negated condition 1 | 
| unsafe_interval - rest >= ten_kappa &&  // Negated condition 2 | 
| (rest + ten_kappa < small_distance ||  // buffer{-1} > w_high | 
| @@ -186,7 +186,7 @@ namespace double_conversion { | 
| uint64_t ten_kappa, | 
| uint64_t unit, | 
| int* kappa) { | 
| -        ASSERT(rest < ten_kappa); | 
| +        DCHECK_LT(rest, ten_kappa); | 
| // The following tests are done in a specific order to avoid overflows. They | 
| // will work correctly with any uint64 values of rest < ten_kappa and unit. | 
| // | 
| @@ -241,7 +241,7 @@ namespace double_conversion { | 
| int number_bits, | 
| uint32_t* power, | 
| int* exponent) { | 
| -        ASSERT(number < (uint32_t)(1 << (number_bits + 1))); | 
| +        DCHECK_LT(number, (uint32_t)(1 << (number_bits + 1))); | 
|  | 
| switch (number_bits) { | 
| case 32: | 
| @@ -387,10 +387,11 @@ namespace double_conversion { | 
| Vector<char> buffer, | 
| int* length, | 
| int* kappa) { | 
| -      ASSERT(low.E() == w.E() && w.E() == high.E()); | 
| -      ASSERT(low.F() + 1 <= high.F() - 1); | 
| -      ASSERT(kMinimalTargetExponent <= w.E() && | 
| -             w.E() <= kMaximalTargetExponent); | 
| +      DCHECK_EQ(low.E(), w.E()); | 
| +      DCHECK_EQ(w.E(), high.E()); | 
| +      DCHECK_LE(low.F() + 1, high.F() - 1); | 
| +      DCHECK_LE(kMinimalTargetExponent, w.E()); | 
| +      DCHECK_LE(w.E(), kMaximalTargetExponent); | 
| // low, w and high are imprecise, but by less than one ulp (unit in the | 
| // last place). If we remove (resp. add) 1 ulp from low (resp. high) we | 
| // are certain that the new numbers are outside of the interval we want | 
| @@ -456,9 +457,9 @@ namespace double_conversion { | 
| // data (like the interval or 'unit'), too. | 
| // Note that the multiplication by 10 does not overflow, because w.e >= -60 | 
| // and thus one.e >= -60. | 
| -        ASSERT(one.E() >= -60); | 
| -        ASSERT(fractionals < one.F()); | 
| -        ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.F()); | 
| +        DCHECK_GE(one.E(), -60); | 
| +        DCHECK_LT(fractionals, one.F()); | 
| +        DCHECK_GE(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10, one.F()); | 
| while (true) { | 
| fractionals *= 10; | 
| unit *= 10; | 
| @@ -512,10 +513,10 @@ namespace double_conversion { | 
| Vector<char> buffer, | 
| int* length, | 
| int* kappa) { | 
| -      ASSERT(kMinimalTargetExponent <= w.E() && | 
| -             w.E() <= kMaximalTargetExponent); | 
| -      ASSERT(kMinimalTargetExponent >= -60); | 
| -      ASSERT(kMaximalTargetExponent <= -32); | 
| +      DCHECK_LE(kMinimalTargetExponent, w.E()); | 
| +      DCHECK_LE(w.E(), kMaximalTargetExponent); | 
| +      DCHECK_GE(kMinimalTargetExponent, -60); | 
| +      DCHECK_LE(kMaximalTargetExponent, -32); | 
| // w is assumed to have an error less than 1 unit. Whenever w is scaled we | 
| // also scale its error. | 
| uint64_t w_error = 1; | 
| @@ -567,9 +568,9 @@ namespace double_conversion { | 
| // data (the 'unit'), too. | 
| // Note that the multiplication by 10 does not overflow, because w.e >= -60 | 
| // and thus one.e >= -60. | 
| -        ASSERT(one.E() >= -60); | 
| -        ASSERT(fractionals < one.F()); | 
| -        ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.F()); | 
| +        DCHECK_GE(one.E(), -60); | 
| +        DCHECK_LT(fractionals, one.F()); | 
| +        DCHECK_GE(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10, one.F()); | 
| while (requested_digits > 0 && fractionals > w_error) { | 
| fractionals *= 10; | 
| w_error *= 10; | 
| @@ -609,7 +610,7 @@ namespace double_conversion { | 
| // Grisu3 will never output representations that lie exactly on a boundary. | 
| DiyFp boundary_minus, boundary_plus; | 
| Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus); | 
| -        ASSERT(boundary_plus.E() == w.E()); | 
| +        DCHECK_EQ(boundary_plus.E(), w.E()); | 
| DiyFp ten_mk;  // Cached power of ten: 10^-k | 
| int mk;        // -k | 
| int ten_mk_minimal_binary_exponent = | 
| @@ -620,10 +621,10 @@ namespace double_conversion { | 
| ten_mk_minimal_binary_exponent, | 
| ten_mk_maximal_binary_exponent, | 
| &ten_mk, &mk); | 
| -        ASSERT((kMinimalTargetExponent <= | 
| -                w.E() + ten_mk.E() + DiyFp::kSignificandSize) && | 
| -               (kMaximalTargetExponent >= | 
| -                w.E() + ten_mk.E() + DiyFp::kSignificandSize)); | 
| +        DCHECK_LE(kMinimalTargetExponent, | 
| +                   w.E() + ten_mk.E() + DiyFp::kSignificandSize); | 
| +        DCHECK_GE(kMaximalTargetExponent, | 
| +                   w.E() + ten_mk.E() + DiyFp::kSignificandSize); | 
| // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a | 
| // 64 bit significand and ten_mk is thus only precise up to 64 bits. | 
|  | 
| @@ -634,8 +635,8 @@ namespace double_conversion { | 
| // In other words: let f = scaled_w.f() and e = scaled_w.e(), then | 
| //           (f-1) * 2^e < w*10^k < (f+1) * 2^e | 
| DiyFp scaled_w = DiyFp::Times(w, ten_mk); | 
| -        ASSERT(scaled_w.E() == | 
| -               boundary_plus.E() + ten_mk.E() + DiyFp::kSignificandSize); | 
| +        DCHECK_EQ(scaled_w.E(), | 
| +                  boundary_plus.E() + ten_mk.E() + DiyFp::kSignificandSize); | 
| // In theory it would be possible to avoid some recomputations by computing | 
| // the difference between w and boundary_minus/plus (a power of 2) and to | 
| // compute scaled_boundary_minus/plus by subtracting/adding from | 
| @@ -679,10 +680,10 @@ namespace double_conversion { | 
| ten_mk_minimal_binary_exponent, | 
| ten_mk_maximal_binary_exponent, | 
| &ten_mk, &mk); | 
| -        ASSERT((kMinimalTargetExponent <= | 
| -                w.E() + ten_mk.E() + DiyFp::kSignificandSize) && | 
| -               (kMaximalTargetExponent >= | 
| -                w.E() + ten_mk.E() + DiyFp::kSignificandSize)); | 
| +        DCHECK_LE(kMinimalTargetExponent, | 
| +                   w.E() + ten_mk.E() + DiyFp::kSignificandSize); | 
| +        DCHECK_GE(kMaximalTargetExponent, | 
| +                   w.E() + ten_mk.E() + DiyFp::kSignificandSize); | 
| // Note that ten_mk is only an approximation of 10^-k. A DiyFp only contains a | 
| // 64 bit significand and ten_mk is thus only precise up to 64 bits. | 
|  | 
| @@ -713,7 +714,7 @@ namespace double_conversion { | 
| Vector<char> buffer, | 
| int* length, | 
| int* decimal_point) { | 
| -        ASSERT(v > 0); | 
| +        DCHECK_GT(v, 0); | 
| DCHECK(!Double(v).IsSpecial()); | 
|  | 
| bool result = false; | 
|  |