| Index: third_party/WebKit/Source/platform/wtf/dtoa/bignum-dtoa.cc
|
| diff --git a/third_party/WebKit/Source/platform/wtf/dtoa/bignum-dtoa.cc b/third_party/WebKit/Source/platform/wtf/dtoa/bignum-dtoa.cc
|
| index bee7cf3c52b8647ea713ef757370164b42a6608b..4c377d0bb912260dbe390ac4bd9439464d11fd86 100644
|
| --- a/third_party/WebKit/Source/platform/wtf/dtoa/bignum-dtoa.cc
|
| +++ b/third_party/WebKit/Source/platform/wtf/dtoa/bignum-dtoa.cc
|
| @@ -36,7 +36,7 @@ namespace WTF {
|
| namespace double_conversion {
|
|
|
| static int NormalizedExponent(uint64_t significand, int exponent) {
|
| - ASSERT(significand != 0);
|
| + DCHECK_NE(significand, 0u);
|
| while ((significand & Double::kHiddenBit) == 0) {
|
| significand = significand << 1;
|
| exponent = exponent - 1;
|
| @@ -87,7 +87,7 @@ namespace double_conversion {
|
|
|
| void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
|
| Vector<char> buffer, int* length, int* decimal_point) {
|
| - ASSERT(v > 0);
|
| + DCHECK_GT(v, 0);
|
| DCHECK(!Double(v).IsSpecial());
|
| uint64_t significand = Double(v).Significand();
|
| bool is_even = (significand & 1) == 0;
|
| @@ -118,7 +118,7 @@ namespace double_conversion {
|
| // 4e-324. In this case the denominator needs fewer than 324*4 binary digits.
|
| // The maximum double is 1.7976931348623157e308 which needs fewer than
|
| // 308*4 binary digits.
|
| - ASSERT(Bignum::kMaxSignificantBits >= 324*4);
|
| + DCHECK_GE(Bignum::kMaxSignificantBits, 324*4);
|
| bool need_boundary_deltas = (mode == BIGNUM_DTOA_SHORTEST);
|
| InitialScaledStartValues(v, estimated_power, need_boundary_deltas,
|
| &numerator, &denominator,
|
| @@ -178,7 +178,7 @@ namespace double_conversion {
|
| while (true) {
|
| uint16_t digit;
|
| digit = numerator->DivideModuloIntBignum(*denominator);
|
| - ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive.
|
| + DCHECK_LE(digit, 9u); // digit is a uint16_t and therefore always positive.
|
| // digit = numerator / denominator (integer division).
|
| // numerator = numerator % denominator.
|
| buffer[(*length)++] = static_cast<char>(digit + '0');
|
| @@ -224,7 +224,7 @@ namespace double_conversion {
|
| // loop would have stopped earlier.
|
| // We still have an assert here in case the preconditions were not
|
| // satisfied.
|
| - ASSERT(buffer[(*length) - 1] != '9');
|
| + DCHECK_NE(buffer[(*length) - 1], '9');
|
| buffer[(*length) - 1]++;
|
| } else {
|
| // Halfway case.
|
| @@ -235,7 +235,7 @@ namespace double_conversion {
|
| if ((buffer[(*length) - 1] - '0') % 2 == 0) {
|
| // Round down => Do nothing.
|
| } else {
|
| - ASSERT(buffer[(*length) - 1] != '9');
|
| + DCHECK_NE(buffer[(*length) - 1], '9');
|
| buffer[(*length) - 1]++;
|
| }
|
| }
|
| @@ -249,7 +249,7 @@ namespace double_conversion {
|
| // stopped the loop earlier.
|
| // We still have an ASSERT here, in case the preconditions were not
|
| // satisfied.
|
| - ASSERT(buffer[(*length) -1] != '9');
|
| + DCHECK_NE(buffer[(*length) -1], '9');
|
| buffer[(*length) - 1]++;
|
| return;
|
| }
|
| @@ -266,11 +266,11 @@ namespace double_conversion {
|
| static void GenerateCountedDigits(int count, int* decimal_point,
|
| Bignum* numerator, Bignum* denominator,
|
| Vector<char>(buffer), int* length) {
|
| - ASSERT(count >= 0);
|
| + DCHECK_GE(count, 0);
|
| for (int i = 0; i < count - 1; ++i) {
|
| uint16_t digit;
|
| digit = numerator->DivideModuloIntBignum(*denominator);
|
| - ASSERT(digit <= 9); // digit is a uint16_t and therefore always positive.
|
| + DCHECK_LE(digit, 9u); // digit is a uint16_t and therefore always positive.
|
| // digit = numerator / denominator (integer division).
|
| // numerator = numerator % denominator.
|
| buffer[i] = static_cast<char>(digit + '0');
|
| @@ -323,7 +323,7 @@ namespace double_conversion {
|
| } else if (-(*decimal_point) == requested_digits) {
|
| // We only need to verify if the number rounds down or up.
|
| // Ex: 0.04 and 0.06 with requested_digits == 1.
|
| - ASSERT(*decimal_point == -requested_digits);
|
| + DCHECK_EQ(*decimal_point, -requested_digits);
|
| // Initially the fraction lies in range (1, 10]. Multiply the denominator
|
| // by 10 so that we can compare more easily.
|
| denominator->Times10();
|
| @@ -402,7 +402,7 @@ namespace double_conversion {
|
| Bignum* numerator, Bignum* denominator,
|
| Bignum* delta_minus, Bignum* delta_plus) {
|
| // A positive exponent implies a positive power.
|
| - ASSERT(estimated_power >= 0);
|
| + DCHECK_GE(estimated_power, 0);
|
| // Since the estimated_power is positive we simply multiply the denominator
|
| // by 10^estimated_power.
|
|
|
| @@ -521,7 +521,7 @@ namespace double_conversion {
|
| // numerator = v * 10^-estimated_power * 2 * 2^-exponent.
|
| // Remember: numerator has been abused as power_ten. So no need to assign it
|
| // to itself.
|
| - ASSERT(numerator == power_ten);
|
| + DCHECK_EQ(numerator, power_ten);
|
| numerator->MultiplyByUInt64(significand);
|
|
|
| // denominator = 2 * 2^-exponent with exponent < 0.
|
|
|