| OLD | NEW |
| 1 // Copyright (c) 2012 The Chromium Authors. All rights reserved. | 1 // Copyright (c) 2017 The Chromium Authors. All rights reserved. |
| 2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
| 3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
| 4 | 4 |
| 5 #include "net/cert/cert_verify_proc_win.h" | 5 #include "net/cert/known_roots_win.h" |
| 6 | 6 |
| 7 #include <memory> | |
| 8 #include <string> | |
| 9 #include <vector> | |
| 10 | |
| 11 #include "base/memory/free_deleter.h" | |
| 12 #include "base/metrics/histogram_macros.h" | 7 #include "base/metrics/histogram_macros.h" |
| 13 #include "base/sha1.h" | |
| 14 #include "base/strings/string_util.h" | |
| 15 #include "base/strings/utf_string_conversions.h" | |
| 16 #include "base/threading/thread_local.h" | |
| 17 #include "crypto/capi_util.h" | |
| 18 #include "crypto/scoped_capi_types.h" | |
| 19 #include "crypto/sha2.h" | 8 #include "crypto/sha2.h" |
| 20 #include "net/base/net_errors.h" | |
| 21 #include "net/cert/asn1_util.h" | |
| 22 #include "net/cert/cert_status_flags.h" | |
| 23 #include "net/cert/cert_verifier.h" | |
| 24 #include "net/cert/cert_verify_result.h" | |
| 25 #include "net/cert/crl_set.h" | |
| 26 #include "net/cert/ev_root_ca_metadata.h" | |
| 27 #include "net/cert/test_root_certs.h" | |
| 28 #include "net/cert/x509_certificate.h" | 9 #include "net/cert/x509_certificate.h" |
| 29 #include "net/cert/x509_certificate_known_roots_win.h" | 10 #include "net/cert/x509_certificate_known_roots_win.h" |
| 30 | 11 |
| 31 #if !defined(CERT_TRUST_HAS_WEAK_SIGNATURE) | |
| 32 // This was introduced in Windows 8 / Windows Server 2012, but retroactively | |
| 33 // ported as far back as Windows XP via system update. | |
| 34 #define CERT_TRUST_HAS_WEAK_SIGNATURE 0x00100000 | |
| 35 #endif | |
| 36 | |
| 37 namespace net { | 12 namespace net { |
| 38 | 13 |
| 39 namespace { | 14 bool IsKnownRoot(PCCERT_CONTEXT cert) { |
| 40 | |
| 41 struct FreeChainEngineFunctor { | |
| 42 void operator()(HCERTCHAINENGINE engine) const { | |
| 43 if (engine) | |
| 44 CertFreeCertificateChainEngine(engine); | |
| 45 } | |
| 46 }; | |
| 47 | |
| 48 struct FreeCertChainContextFunctor { | |
| 49 void operator()(PCCERT_CHAIN_CONTEXT chain_context) const { | |
| 50 if (chain_context) | |
| 51 CertFreeCertificateChain(chain_context); | |
| 52 } | |
| 53 }; | |
| 54 | |
| 55 struct FreeCertContextFunctor { | |
| 56 void operator()(PCCERT_CONTEXT context) const { | |
| 57 if (context) | |
| 58 CertFreeCertificateContext(context); | |
| 59 } | |
| 60 }; | |
| 61 | |
| 62 typedef crypto::ScopedCAPIHandle<HCERTCHAINENGINE, FreeChainEngineFunctor> | |
| 63 ScopedHCERTCHAINENGINE; | |
| 64 | |
| 65 typedef std::unique_ptr<const CERT_CHAIN_CONTEXT, FreeCertChainContextFunctor> | |
| 66 ScopedPCCERT_CHAIN_CONTEXT; | |
| 67 | |
| 68 typedef std::unique_ptr<const CERT_CONTEXT, FreeCertContextFunctor> | |
| 69 ScopedPCCERT_CONTEXT; | |
| 70 | |
| 71 //----------------------------------------------------------------------------- | |
| 72 | |
| 73 int MapSecurityError(SECURITY_STATUS err) { | |
| 74 // There are numerous security error codes, but these are the ones we thus | |
| 75 // far find interesting. | |
| 76 switch (err) { | |
| 77 case SEC_E_WRONG_PRINCIPAL: // Schannel | |
| 78 case CERT_E_CN_NO_MATCH: // CryptoAPI | |
| 79 return ERR_CERT_COMMON_NAME_INVALID; | |
| 80 case SEC_E_UNTRUSTED_ROOT: // Schannel | |
| 81 case CERT_E_UNTRUSTEDROOT: // CryptoAPI | |
| 82 case TRUST_E_CERT_SIGNATURE: // CryptoAPI. Caused by weak crypto or bad | |
| 83 // signatures, but not differentiable. | |
| 84 return ERR_CERT_AUTHORITY_INVALID; | |
| 85 case SEC_E_CERT_EXPIRED: // Schannel | |
| 86 case CERT_E_EXPIRED: // CryptoAPI | |
| 87 return ERR_CERT_DATE_INVALID; | |
| 88 case CRYPT_E_NO_REVOCATION_CHECK: | |
| 89 return ERR_CERT_NO_REVOCATION_MECHANISM; | |
| 90 case CRYPT_E_REVOCATION_OFFLINE: | |
| 91 return ERR_CERT_UNABLE_TO_CHECK_REVOCATION; | |
| 92 case CRYPT_E_REVOKED: // Schannel and CryptoAPI | |
| 93 return ERR_CERT_REVOKED; | |
| 94 case SEC_E_CERT_UNKNOWN: | |
| 95 case CERT_E_ROLE: | |
| 96 return ERR_CERT_INVALID; | |
| 97 case CERT_E_WRONG_USAGE: | |
| 98 // TODO(wtc): Should we add ERR_CERT_WRONG_USAGE? | |
| 99 return ERR_CERT_INVALID; | |
| 100 // We received an unexpected_message or illegal_parameter alert message | |
| 101 // from the server. | |
| 102 case SEC_E_ILLEGAL_MESSAGE: | |
| 103 return ERR_SSL_PROTOCOL_ERROR; | |
| 104 case SEC_E_ALGORITHM_MISMATCH: | |
| 105 return ERR_SSL_VERSION_OR_CIPHER_MISMATCH; | |
| 106 case SEC_E_INVALID_HANDLE: | |
| 107 return ERR_UNEXPECTED; | |
| 108 case SEC_E_OK: | |
| 109 return OK; | |
| 110 default: | |
| 111 LOG(WARNING) << "Unknown error " << err << " mapped to net::ERR_FAILED"; | |
| 112 return ERR_FAILED; | |
| 113 } | |
| 114 } | |
| 115 | |
| 116 // Map the errors in the chain_context->TrustStatus.dwErrorStatus returned by | |
| 117 // CertGetCertificateChain to our certificate status flags. | |
| 118 int MapCertChainErrorStatusToCertStatus(DWORD error_status) { | |
| 119 CertStatus cert_status = 0; | |
| 120 | |
| 121 // We don't include CERT_TRUST_IS_NOT_TIME_NESTED because it's obsolete and | |
| 122 // we wouldn't consider it an error anyway | |
| 123 const DWORD kDateInvalidErrors = CERT_TRUST_IS_NOT_TIME_VALID | | |
| 124 CERT_TRUST_CTL_IS_NOT_TIME_VALID; | |
| 125 if (error_status & kDateInvalidErrors) | |
| 126 cert_status |= CERT_STATUS_DATE_INVALID; | |
| 127 | |
| 128 const DWORD kAuthorityInvalidErrors = CERT_TRUST_IS_UNTRUSTED_ROOT | | |
| 129 CERT_TRUST_IS_EXPLICIT_DISTRUST | | |
| 130 CERT_TRUST_IS_PARTIAL_CHAIN; | |
| 131 if (error_status & kAuthorityInvalidErrors) | |
| 132 cert_status |= CERT_STATUS_AUTHORITY_INVALID; | |
| 133 | |
| 134 if ((error_status & CERT_TRUST_REVOCATION_STATUS_UNKNOWN) && | |
| 135 !(error_status & CERT_TRUST_IS_OFFLINE_REVOCATION)) | |
| 136 cert_status |= CERT_STATUS_NO_REVOCATION_MECHANISM; | |
| 137 | |
| 138 if (error_status & CERT_TRUST_IS_OFFLINE_REVOCATION) | |
| 139 cert_status |= CERT_STATUS_UNABLE_TO_CHECK_REVOCATION; | |
| 140 | |
| 141 if (error_status & CERT_TRUST_IS_REVOKED) | |
| 142 cert_status |= CERT_STATUS_REVOKED; | |
| 143 | |
| 144 const DWORD kWrongUsageErrors = CERT_TRUST_IS_NOT_VALID_FOR_USAGE | | |
| 145 CERT_TRUST_CTL_IS_NOT_VALID_FOR_USAGE; | |
| 146 if (error_status & kWrongUsageErrors) { | |
| 147 // TODO(wtc): Should we add CERT_STATUS_WRONG_USAGE? | |
| 148 cert_status |= CERT_STATUS_INVALID; | |
| 149 } | |
| 150 | |
| 151 if (error_status & CERT_TRUST_IS_NOT_SIGNATURE_VALID) { | |
| 152 // Check for a signature that does not meet the OS criteria for strong | |
| 153 // signatures. | |
| 154 // Note: These checks may be more restrictive than the current weak key | |
| 155 // criteria implemented within CertVerifier, such as excluding SHA-1 or | |
| 156 // excluding RSA keys < 2048 bits. However, if the user has configured | |
| 157 // these more stringent checks, respect that configuration and err on the | |
| 158 // more restrictive criteria. | |
| 159 if (error_status & CERT_TRUST_HAS_WEAK_SIGNATURE) { | |
| 160 cert_status |= CERT_STATUS_WEAK_KEY; | |
| 161 } else { | |
| 162 cert_status |= CERT_STATUS_INVALID; | |
| 163 } | |
| 164 } | |
| 165 | |
| 166 // The rest of the errors. | |
| 167 const DWORD kCertInvalidErrors = | |
| 168 CERT_TRUST_IS_CYCLIC | | |
| 169 CERT_TRUST_INVALID_EXTENSION | | |
| 170 CERT_TRUST_INVALID_POLICY_CONSTRAINTS | | |
| 171 CERT_TRUST_INVALID_BASIC_CONSTRAINTS | | |
| 172 CERT_TRUST_INVALID_NAME_CONSTRAINTS | | |
| 173 CERT_TRUST_CTL_IS_NOT_SIGNATURE_VALID | | |
| 174 CERT_TRUST_HAS_NOT_SUPPORTED_NAME_CONSTRAINT | | |
| 175 CERT_TRUST_HAS_NOT_DEFINED_NAME_CONSTRAINT | | |
| 176 CERT_TRUST_HAS_NOT_PERMITTED_NAME_CONSTRAINT | | |
| 177 CERT_TRUST_HAS_EXCLUDED_NAME_CONSTRAINT | | |
| 178 CERT_TRUST_NO_ISSUANCE_CHAIN_POLICY | | |
| 179 CERT_TRUST_HAS_NOT_SUPPORTED_CRITICAL_EXT; | |
| 180 if (error_status & kCertInvalidErrors) | |
| 181 cert_status |= CERT_STATUS_INVALID; | |
| 182 | |
| 183 return cert_status; | |
| 184 } | |
| 185 | |
| 186 // Returns true if any common name in the certificate's Subject field contains | |
| 187 // a NULL character. | |
| 188 bool CertSubjectCommonNameHasNull(PCCERT_CONTEXT cert) { | |
| 189 CRYPT_DECODE_PARA decode_para; | |
| 190 decode_para.cbSize = sizeof(decode_para); | |
| 191 decode_para.pfnAlloc = crypto::CryptAlloc; | |
| 192 decode_para.pfnFree = crypto::CryptFree; | |
| 193 CERT_NAME_INFO* name_info = NULL; | |
| 194 DWORD name_info_size = 0; | |
| 195 BOOL rv; | |
| 196 rv = CryptDecodeObjectEx(X509_ASN_ENCODING | PKCS_7_ASN_ENCODING, | |
| 197 WINCRYPT_X509_NAME, | |
| 198 cert->pCertInfo->Subject.pbData, | |
| 199 cert->pCertInfo->Subject.cbData, | |
| 200 CRYPT_DECODE_ALLOC_FLAG | CRYPT_DECODE_NOCOPY_FLAG, | |
| 201 &decode_para, | |
| 202 &name_info, | |
| 203 &name_info_size); | |
| 204 if (rv) { | |
| 205 std::unique_ptr<CERT_NAME_INFO, base::FreeDeleter> scoped_name_info( | |
| 206 name_info); | |
| 207 | |
| 208 // The Subject field may have multiple common names. According to the | |
| 209 // "PKI Layer Cake" paper, CryptoAPI uses every common name in the | |
| 210 // Subject field, so we inspect every common name. | |
| 211 // | |
| 212 // From RFC 5280: | |
| 213 // X520CommonName ::= CHOICE { | |
| 214 // teletexString TeletexString (SIZE (1..ub-common-name)), | |
| 215 // printableString PrintableString (SIZE (1..ub-common-name)), | |
| 216 // universalString UniversalString (SIZE (1..ub-common-name)), | |
| 217 // utf8String UTF8String (SIZE (1..ub-common-name)), | |
| 218 // bmpString BMPString (SIZE (1..ub-common-name)) } | |
| 219 // | |
| 220 // We also check IA5String and VisibleString. | |
| 221 for (DWORD i = 0; i < name_info->cRDN; ++i) { | |
| 222 PCERT_RDN rdn = &name_info->rgRDN[i]; | |
| 223 for (DWORD j = 0; j < rdn->cRDNAttr; ++j) { | |
| 224 PCERT_RDN_ATTR rdn_attr = &rdn->rgRDNAttr[j]; | |
| 225 if (strcmp(rdn_attr->pszObjId, szOID_COMMON_NAME) == 0) { | |
| 226 switch (rdn_attr->dwValueType) { | |
| 227 // After the CryptoAPI ASN.1 security vulnerabilities described in | |
| 228 // http://www.microsoft.com/technet/security/Bulletin/MS09-056.mspx | |
| 229 // were patched, we get CERT_RDN_ENCODED_BLOB for a common name | |
| 230 // that contains a NULL character. | |
| 231 case CERT_RDN_ENCODED_BLOB: | |
| 232 break; | |
| 233 // Array of 8-bit characters. | |
| 234 case CERT_RDN_PRINTABLE_STRING: | |
| 235 case CERT_RDN_TELETEX_STRING: | |
| 236 case CERT_RDN_IA5_STRING: | |
| 237 case CERT_RDN_VISIBLE_STRING: | |
| 238 for (DWORD k = 0; k < rdn_attr->Value.cbData; ++k) { | |
| 239 if (rdn_attr->Value.pbData[k] == '\0') | |
| 240 return true; | |
| 241 } | |
| 242 break; | |
| 243 // Array of 16-bit characters. | |
| 244 case CERT_RDN_BMP_STRING: | |
| 245 case CERT_RDN_UTF8_STRING: { | |
| 246 DWORD num_wchars = rdn_attr->Value.cbData / 2; | |
| 247 wchar_t* common_name = | |
| 248 reinterpret_cast<wchar_t*>(rdn_attr->Value.pbData); | |
| 249 for (DWORD k = 0; k < num_wchars; ++k) { | |
| 250 if (common_name[k] == L'\0') | |
| 251 return true; | |
| 252 } | |
| 253 break; | |
| 254 } | |
| 255 // Array of ints (32-bit). | |
| 256 case CERT_RDN_UNIVERSAL_STRING: { | |
| 257 DWORD num_ints = rdn_attr->Value.cbData / 4; | |
| 258 int* common_name = | |
| 259 reinterpret_cast<int*>(rdn_attr->Value.pbData); | |
| 260 for (DWORD k = 0; k < num_ints; ++k) { | |
| 261 if (common_name[k] == 0) | |
| 262 return true; | |
| 263 } | |
| 264 break; | |
| 265 } | |
| 266 default: | |
| 267 NOTREACHED(); | |
| 268 break; | |
| 269 } | |
| 270 } | |
| 271 } | |
| 272 } | |
| 273 } | |
| 274 return false; | |
| 275 } | |
| 276 | |
| 277 // IsIssuedByKnownRoot returns true if the given chain is rooted at a root CA | |
| 278 // which we recognise as a standard root. | |
| 279 // static | |
| 280 bool IsIssuedByKnownRoot(PCCERT_CHAIN_CONTEXT chain_context) { | |
| 281 PCERT_SIMPLE_CHAIN first_chain = chain_context->rgpChain[0]; | |
| 282 int num_elements = first_chain->cElement; | |
| 283 if (num_elements < 1) | |
| 284 return false; | |
| 285 PCERT_CHAIN_ELEMENT* element = first_chain->rgpElement; | |
| 286 PCCERT_CONTEXT cert = element[num_elements - 1]->pCertContext; | |
| 287 | |
| 288 SHA256HashValue hash = X509Certificate::CalculateFingerprint256(cert); | 15 SHA256HashValue hash = X509Certificate::CalculateFingerprint256(cert); |
| 289 bool is_builtin = | 16 bool is_builtin = |
| 290 IsSHA256HashInSortedArray(hash, &kKnownRootCertSHA256Hashes[0][0], | 17 IsSHA256HashInSortedArray(hash, &kKnownRootCertSHA256Hashes[0][0], |
| 291 sizeof(kKnownRootCertSHA256Hashes)); | 18 sizeof(kKnownRootCertSHA256Hashes)); |
| 292 | 19 |
| 293 // Test to see if the use of a built-in set of known roots on Windows can be | 20 // Test to see if the use of a built-in set of known roots on Windows can be |
| 294 // replaced with using AuthRoot's SHA-256 property. On any system other than | 21 // replaced with using AuthRoot's SHA-256 property. On any system other than |
| 295 // a fresh RTM with no AuthRoot updates, this property should always exist for | 22 // a fresh RTM with no AuthRoot updates, this property should always exist for |
| 296 // roots delivered via AuthRoot.stl, but should not exist on any manually or | 23 // roots delivered via AuthRoot.stl, but should not exist on any manually or |
| 297 // administratively deployed roots. | 24 // administratively deployed roots. |
| (...skipping 21 matching lines...) Expand all Loading... |
| 319 status = BUILT_IN_PROPERTY_FOUND_BUILTIN_SET; | 46 status = BUILT_IN_PROPERTY_FOUND_BUILTIN_SET; |
| 320 } else { | 47 } else { |
| 321 status = BUILT_IN_MAX_VALUE; | 48 status = BUILT_IN_MAX_VALUE; |
| 322 } | 49 } |
| 323 UMA_HISTOGRAM_ENUMERATION("Net.SSL_AuthRootConsistency", status, | 50 UMA_HISTOGRAM_ENUMERATION("Net.SSL_AuthRootConsistency", status, |
| 324 BUILT_IN_MAX_VALUE); | 51 BUILT_IN_MAX_VALUE); |
| 325 | 52 |
| 326 return is_builtin; | 53 return is_builtin; |
| 327 } | 54 } |
| 328 | 55 |
| 329 // Saves some information about the certificate chain |chain_context| in | |
| 330 // |*verify_result|. The caller MUST initialize |*verify_result| before | |
| 331 // calling this function. | |
| 332 void GetCertChainInfo(PCCERT_CHAIN_CONTEXT chain_context, | |
| 333 CertVerifyResult* verify_result) { | |
| 334 if (chain_context->cChain == 0) | |
| 335 return; | |
| 336 | |
| 337 PCERT_SIMPLE_CHAIN first_chain = chain_context->rgpChain[0]; | |
| 338 DWORD num_elements = first_chain->cElement; | |
| 339 PCERT_CHAIN_ELEMENT* element = first_chain->rgpElement; | |
| 340 | |
| 341 PCCERT_CONTEXT verified_cert = NULL; | |
| 342 std::vector<PCCERT_CONTEXT> verified_chain; | |
| 343 | |
| 344 bool has_root_ca = num_elements > 1 && | |
| 345 !(chain_context->TrustStatus.dwErrorStatus & | |
| 346 CERT_TRUST_IS_PARTIAL_CHAIN); | |
| 347 | |
| 348 // Each chain starts with the end entity certificate (i = 0) and ends with | |
| 349 // either the root CA certificate or the last available intermediate. If a | |
| 350 // root CA certificate is present, do not inspect the signature algorithm of | |
| 351 // the root CA certificate because the signature on the trust anchor is not | |
| 352 // important. | |
| 353 if (has_root_ca) { | |
| 354 // If a full chain was constructed, regardless of whether it was trusted, | |
| 355 // don't inspect the root's signature algorithm. | |
| 356 num_elements -= 1; | |
| 357 } | |
| 358 | |
| 359 for (DWORD i = 0; i < num_elements; ++i) { | |
| 360 PCCERT_CONTEXT cert = element[i]->pCertContext; | |
| 361 if (i == 0) { | |
| 362 verified_cert = cert; | |
| 363 } else { | |
| 364 verified_chain.push_back(cert); | |
| 365 } | |
| 366 } | |
| 367 | |
| 368 if (verified_cert) { | |
| 369 // Add the root certificate, if present, as it was not added above. | |
| 370 if (has_root_ca) | |
| 371 verified_chain.push_back(element[num_elements]->pCertContext); | |
| 372 scoped_refptr<X509Certificate> verified_cert_with_chain = | |
| 373 X509Certificate::CreateFromHandle(verified_cert, verified_chain); | |
| 374 if (verified_cert_with_chain) | |
| 375 verify_result->verified_cert = std::move(verified_cert_with_chain); | |
| 376 else | |
| 377 verify_result->cert_status |= CERT_STATUS_INVALID; | |
| 378 } | |
| 379 } | |
| 380 | |
| 381 // Decodes the cert's certificatePolicies extension into a CERT_POLICIES_INFO | |
| 382 // structure and stores it in *output. | |
| 383 void GetCertPoliciesInfo( | |
| 384 PCCERT_CONTEXT cert, | |
| 385 std::unique_ptr<CERT_POLICIES_INFO, base::FreeDeleter>* output) { | |
| 386 PCERT_EXTENSION extension = CertFindExtension(szOID_CERT_POLICIES, | |
| 387 cert->pCertInfo->cExtension, | |
| 388 cert->pCertInfo->rgExtension); | |
| 389 if (!extension) | |
| 390 return; | |
| 391 | |
| 392 CRYPT_DECODE_PARA decode_para; | |
| 393 decode_para.cbSize = sizeof(decode_para); | |
| 394 decode_para.pfnAlloc = crypto::CryptAlloc; | |
| 395 decode_para.pfnFree = crypto::CryptFree; | |
| 396 CERT_POLICIES_INFO* policies_info = NULL; | |
| 397 DWORD policies_info_size = 0; | |
| 398 BOOL rv; | |
| 399 rv = CryptDecodeObjectEx(X509_ASN_ENCODING | PKCS_7_ASN_ENCODING, | |
| 400 szOID_CERT_POLICIES, | |
| 401 extension->Value.pbData, | |
| 402 extension->Value.cbData, | |
| 403 CRYPT_DECODE_ALLOC_FLAG | CRYPT_DECODE_NOCOPY_FLAG, | |
| 404 &decode_para, | |
| 405 &policies_info, | |
| 406 &policies_info_size); | |
| 407 if (rv) | |
| 408 output->reset(policies_info); | |
| 409 } | |
| 410 | |
| 411 // Computes the SHA-256 hash of the SPKI of |cert| and stores it in |hash|, | |
| 412 // returning true. If an error occurs, returns false and leaves |hash| | |
| 413 // unmodified. | |
| 414 bool HashSPKI(PCCERT_CONTEXT cert, std::string* hash) { | |
| 415 base::StringPiece der_bytes( | |
| 416 reinterpret_cast<const char*>(cert->pbCertEncoded), cert->cbCertEncoded); | |
| 417 | |
| 418 base::StringPiece spki; | |
| 419 if (!asn1::ExtractSPKIFromDERCert(der_bytes, &spki)) | |
| 420 return false; | |
| 421 | |
| 422 *hash = crypto::SHA256HashString(spki); | |
| 423 return true; | |
| 424 } | |
| 425 | |
| 426 enum CRLSetResult { | |
| 427 // Indicates an error happened while attempting to determine CRLSet status. | |
| 428 // For example, if the certificate's SPKI could not be extracted. | |
| 429 kCRLSetError, | |
| 430 | |
| 431 // Indicates there is no fresh information about the certificate, or if the | |
| 432 // CRLSet has expired. | |
| 433 // In the case of certificate chains, this is only returned if the leaf | |
| 434 // certificate is not covered by the CRLSet; this is because some | |
| 435 // intermediates are fully covered, but after filtering, the issuer's CRL | |
| 436 // is empty and thus omitted from the CRLSet. Since online checking is | |
| 437 // performed for EV certificates when this status is returned, this would | |
| 438 // result in needless online lookups for certificates known not-revoked. | |
| 439 kCRLSetUnknown, | |
| 440 | |
| 441 // Indicates that the certificate (or a certificate in the chain) has been | |
| 442 // revoked. | |
| 443 kCRLSetRevoked, | |
| 444 | |
| 445 // The certificate (or certificate chain) has no revocations. | |
| 446 kCRLSetOk, | |
| 447 }; | |
| 448 | |
| 449 // Determines if |subject_cert| is revoked within |crl_set|, | |
| 450 // storing the SubjectPublicKeyInfo hash of |subject_cert| in | |
| 451 // |*previous_hash|. | |
| 452 // | |
| 453 // CRLSets store revocations by both SPKI and by the tuple of Issuer SPKI | |
| 454 // Hash & Serial. While |subject_cert| contains enough information to check | |
| 455 // for SPKI revocations, to determine the issuer's SPKI, either |issuer_cert| | |
| 456 // must be supplied, or the hash of the issuer's SPKI provided in | |
| 457 // |*previous_hash|. If |issuer_cert| is omitted, and |*previous_hash| is empty, | |
| 458 // only SPKI checks are performed. | |
| 459 // | |
| 460 // To avoid recomputing SPKI hashes, the hash of |subject_cert| is stored in | |
| 461 // |*previous_hash|. This allows chaining revocation checking, by starting | |
| 462 // at the root and iterating to the leaf, supplying |previous_hash| each time. | |
| 463 // | |
| 464 // In the event of a parsing error, |*previous_hash| is cleared, to prevent the | |
| 465 // wrong Issuer&Serial tuple from being used. | |
| 466 CRLSetResult CheckRevocationWithCRLSet(CRLSet* crl_set, | |
| 467 PCCERT_CONTEXT subject_cert, | |
| 468 PCCERT_CONTEXT issuer_cert, | |
| 469 std::string* previous_hash) { | |
| 470 DCHECK(crl_set); | |
| 471 DCHECK(subject_cert); | |
| 472 | |
| 473 // Check to see if |subject_cert|'s SPKI is revoked. The actual revocation | |
| 474 // is handled by the SHA-256 hash of the SPKI, so compute that. | |
| 475 std::string subject_hash; | |
| 476 if (!HashSPKI(subject_cert, &subject_hash)) { | |
| 477 NOTREACHED(); // Indicates Windows accepted something irrecoverably bad. | |
| 478 previous_hash->clear(); | |
| 479 return kCRLSetError; | |
| 480 } | |
| 481 | |
| 482 CRLSet::Result result = crl_set->CheckSPKI(subject_hash); | |
| 483 if (result == CRLSet::REVOKED) | |
| 484 return kCRLSetRevoked; | |
| 485 | |
| 486 // If no issuer cert is provided, nor a hash of the issuer's SPKI, no | |
| 487 // further checks can be done. | |
| 488 if (!issuer_cert && previous_hash->empty()) { | |
| 489 previous_hash->swap(subject_hash); | |
| 490 return kCRLSetUnknown; | |
| 491 } | |
| 492 | |
| 493 // Compute the subject's serial. | |
| 494 const CRYPT_INTEGER_BLOB* serial_blob = | |
| 495 &subject_cert->pCertInfo->SerialNumber; | |
| 496 std::unique_ptr<uint8_t[]> serial_bytes(new uint8_t[serial_blob->cbData]); | |
| 497 // The bytes of the serial number are stored little-endian. | |
| 498 // Note: While MSDN implies that bytes are stripped from this serial, | |
| 499 // they are not - only CertCompareIntegerBlob actually removes bytes. | |
| 500 for (DWORD j = 0; j < serial_blob->cbData; j++) | |
| 501 serial_bytes[j] = serial_blob->pbData[serial_blob->cbData - j - 1]; | |
| 502 base::StringPiece serial(reinterpret_cast<const char*>(serial_bytes.get()), | |
| 503 serial_blob->cbData); | |
| 504 | |
| 505 // Compute the issuer's hash. If it was provided (via previous_hash), | |
| 506 // use that; otherwise, compute it based on |issuer_cert|. | |
| 507 std::string issuer_hash_local; | |
| 508 std::string* issuer_hash = previous_hash; | |
| 509 if (issuer_hash->empty()) { | |
| 510 if (!HashSPKI(issuer_cert, &issuer_hash_local)) { | |
| 511 NOTREACHED(); // Indicates Windows accepted something irrecoverably bad. | |
| 512 previous_hash->clear(); | |
| 513 return kCRLSetError; | |
| 514 } | |
| 515 issuer_hash = &issuer_hash_local; | |
| 516 } | |
| 517 | |
| 518 // Look up by serial & issuer SPKI. | |
| 519 result = crl_set->CheckSerial(serial, *issuer_hash); | |
| 520 if (result == CRLSet::REVOKED) | |
| 521 return kCRLSetRevoked; | |
| 522 | |
| 523 previous_hash->swap(subject_hash); | |
| 524 if (result == CRLSet::GOOD) | |
| 525 return kCRLSetOk; | |
| 526 if (result == CRLSet::UNKNOWN) | |
| 527 return kCRLSetUnknown; | |
| 528 | |
| 529 NOTREACHED(); | |
| 530 return kCRLSetError; | |
| 531 } | |
| 532 | |
| 533 // CheckChainRevocationWithCRLSet attempts to check each element of |chain| | |
| 534 // against |crl_set|. It returns: | |
| 535 // kCRLSetRevoked: if any element of the chain is known to have been revoked. | |
| 536 // kCRLSetUnknown: if there is no fresh information about the leaf | |
| 537 // certificate in the chain or if the CRLSet has expired. | |
| 538 // | |
| 539 // Only the leaf certificate is considered for coverage because some | |
| 540 // intermediates have CRLs with no revocations (after filtering) and | |
| 541 // those CRLs are pruned from the CRLSet at generation time. This means | |
| 542 // that some EV sites would otherwise take the hit of an OCSP lookup for | |
| 543 // no reason. | |
| 544 // kCRLSetOk: otherwise. | |
| 545 CRLSetResult CheckChainRevocationWithCRLSet(PCCERT_CHAIN_CONTEXT chain, | |
| 546 CRLSet* crl_set) { | |
| 547 if (chain->cChain == 0 || chain->rgpChain[0]->cElement == 0) | |
| 548 return kCRLSetOk; | |
| 549 | |
| 550 PCERT_CHAIN_ELEMENT* elements = chain->rgpChain[0]->rgpElement; | |
| 551 DWORD num_elements = chain->rgpChain[0]->cElement; | |
| 552 | |
| 553 bool had_error = false; | |
| 554 CRLSetResult result = kCRLSetError; | |
| 555 std::string issuer_spki_hash; | |
| 556 for (DWORD i = 0; i < num_elements; ++i) { | |
| 557 PCCERT_CONTEXT subject = elements[num_elements - i - 1]->pCertContext; | |
| 558 result = | |
| 559 CheckRevocationWithCRLSet(crl_set, subject, nullptr, &issuer_spki_hash); | |
| 560 if (result == kCRLSetRevoked) | |
| 561 return result; | |
| 562 if (result == kCRLSetError) | |
| 563 had_error = true; | |
| 564 } | |
| 565 if (had_error || crl_set->IsExpired()) | |
| 566 return kCRLSetUnknown; | |
| 567 return result; | |
| 568 } | |
| 569 | |
| 570 void AppendPublicKeyHashes(PCCERT_CHAIN_CONTEXT chain, | |
| 571 HashValueVector* hashes) { | |
| 572 if (chain->cChain == 0) | |
| 573 return; | |
| 574 | |
| 575 PCERT_SIMPLE_CHAIN first_chain = chain->rgpChain[0]; | |
| 576 PCERT_CHAIN_ELEMENT* const element = first_chain->rgpElement; | |
| 577 | |
| 578 const DWORD num_elements = first_chain->cElement; | |
| 579 for (DWORD i = 0; i < num_elements; i++) { | |
| 580 PCCERT_CONTEXT cert = element[i]->pCertContext; | |
| 581 | |
| 582 base::StringPiece der_bytes( | |
| 583 reinterpret_cast<const char*>(cert->pbCertEncoded), | |
| 584 cert->cbCertEncoded); | |
| 585 base::StringPiece spki_bytes; | |
| 586 if (!asn1::ExtractSPKIFromDERCert(der_bytes, &spki_bytes)) | |
| 587 continue; | |
| 588 | |
| 589 HashValue sha1(HASH_VALUE_SHA1); | |
| 590 base::SHA1HashBytes(reinterpret_cast<const uint8_t*>(spki_bytes.data()), | |
| 591 spki_bytes.size(), sha1.data()); | |
| 592 hashes->push_back(sha1); | |
| 593 | |
| 594 HashValue sha256(HASH_VALUE_SHA256); | |
| 595 crypto::SHA256HashString(spki_bytes, sha256.data(), crypto::kSHA256Length); | |
| 596 hashes->push_back(sha256); | |
| 597 } | |
| 598 } | |
| 599 | |
| 600 // Returns true if the certificate is an extended-validation certificate. | |
| 601 // | |
| 602 // This function checks the certificatePolicies extensions of the | |
| 603 // certificates in the certificate chain according to Section 7 (pp. 11-12) | |
| 604 // of the EV Certificate Guidelines Version 1.0 at | |
| 605 // http://cabforum.org/EV_Certificate_Guidelines.pdf. | |
| 606 bool CheckEV(PCCERT_CHAIN_CONTEXT chain_context, | |
| 607 bool rev_checking_enabled, | |
| 608 const char* policy_oid) { | |
| 609 DCHECK_NE(static_cast<DWORD>(0), chain_context->cChain); | |
| 610 // If the cert doesn't match any of the policies, the | |
| 611 // CERT_TRUST_IS_NOT_VALID_FOR_USAGE bit (0x10) in | |
| 612 // chain_context->TrustStatus.dwErrorStatus is set. | |
| 613 DWORD error_status = chain_context->TrustStatus.dwErrorStatus; | |
| 614 | |
| 615 if (!rev_checking_enabled) { | |
| 616 // If online revocation checking is disabled then we will have still | |
| 617 // requested that the revocation cache be checked. However, that will often | |
| 618 // cause the following two error bits to be set. These error bits mean that | |
| 619 // the local OCSP/CRL is stale or missing entries for these certificates. | |
| 620 // Since they are expected, we mask them away. | |
| 621 error_status &= ~(CERT_TRUST_IS_OFFLINE_REVOCATION | | |
| 622 CERT_TRUST_REVOCATION_STATUS_UNKNOWN); | |
| 623 } | |
| 624 if (!chain_context->cChain || error_status != CERT_TRUST_NO_ERROR) | |
| 625 return false; | |
| 626 | |
| 627 // Check the end certificate simple chain (chain_context->rgpChain[0]). | |
| 628 // If the end certificate's certificatePolicies extension contains the | |
| 629 // EV policy OID of the root CA, return true. | |
| 630 PCERT_CHAIN_ELEMENT* element = chain_context->rgpChain[0]->rgpElement; | |
| 631 int num_elements = chain_context->rgpChain[0]->cElement; | |
| 632 if (num_elements < 2) | |
| 633 return false; | |
| 634 | |
| 635 // Look up the EV policy OID of the root CA. | |
| 636 PCCERT_CONTEXT root_cert = element[num_elements - 1]->pCertContext; | |
| 637 SHA1HashValue weak_fingerprint; | |
| 638 base::SHA1HashBytes(root_cert->pbCertEncoded, root_cert->cbCertEncoded, | |
| 639 weak_fingerprint.data); | |
| 640 EVRootCAMetadata* metadata = EVRootCAMetadata::GetInstance(); | |
| 641 return metadata->HasEVPolicyOID(weak_fingerprint, policy_oid); | |
| 642 } | |
| 643 | |
| 644 // Custom revocation provider function that compares incoming certificates with | |
| 645 // those in CRLSets. This is called BEFORE the default CRL & OCSP handling | |
| 646 // is invoked (which is handled by the revocation provider function | |
| 647 // "CertDllVerifyRevocation" in cryptnet.dll) | |
| 648 BOOL WINAPI | |
| 649 CertDllVerifyRevocationWithCRLSet(DWORD encoding_type, | |
| 650 DWORD revocation_type, | |
| 651 DWORD num_contexts, | |
| 652 void* rgpvContext[], | |
| 653 DWORD flags, | |
| 654 PCERT_REVOCATION_PARA revocation_params, | |
| 655 PCERT_REVOCATION_STATUS revocation_status); | |
| 656 | |
| 657 // Helper class that installs the CRLSet-based Revocation Provider as the | |
| 658 // default revocation provider. Because it is installed as a function address | |
| 659 // (meaning only scoped to the process, and not stored in the registry), it | |
| 660 // will be used before any registry-based providers, including Microsoft's | |
| 661 // default provider. | |
| 662 class RevocationInjector { | |
| 663 public: | |
| 664 CRLSet* GetCRLSet() { return thread_local_crlset.Get(); } | |
| 665 | |
| 666 void SetCRLSet(CRLSet* crl_set) { thread_local_crlset.Set(crl_set); } | |
| 667 | |
| 668 private: | |
| 669 friend struct base::LazyInstanceTraitsBase<RevocationInjector>; | |
| 670 | |
| 671 RevocationInjector() { | |
| 672 const CRYPT_OID_FUNC_ENTRY kInterceptFunction[] = { | |
| 673 {CRYPT_DEFAULT_OID, &CertDllVerifyRevocationWithCRLSet}, | |
| 674 }; | |
| 675 BOOL ok = CryptInstallOIDFunctionAddress( | |
| 676 NULL, X509_ASN_ENCODING, CRYPT_OID_VERIFY_REVOCATION_FUNC, | |
| 677 arraysize(kInterceptFunction), kInterceptFunction, | |
| 678 CRYPT_INSTALL_OID_FUNC_BEFORE_FLAG); | |
| 679 DCHECK(ok); | |
| 680 } | |
| 681 | |
| 682 ~RevocationInjector() {} | |
| 683 | |
| 684 // As the revocation parameters passed to CertVerifyProc::VerifyInternal | |
| 685 // cannot be officially smuggled to the Revocation Provider | |
| 686 base::ThreadLocalPointer<CRLSet> thread_local_crlset; | |
| 687 }; | |
| 688 | |
| 689 // Leaky, as CertVerifyProc workers are themselves leaky. | |
| 690 base::LazyInstance<RevocationInjector>::Leaky g_revocation_injector = | |
| 691 LAZY_INSTANCE_INITIALIZER; | |
| 692 | |
| 693 BOOL WINAPI | |
| 694 CertDllVerifyRevocationWithCRLSet(DWORD encoding_type, | |
| 695 DWORD revocation_type, | |
| 696 DWORD num_contexts, | |
| 697 void* rgpvContext[], | |
| 698 DWORD flags, | |
| 699 PCERT_REVOCATION_PARA revocation_params, | |
| 700 PCERT_REVOCATION_STATUS revocation_status) { | |
| 701 PCERT_CONTEXT* cert_contexts = reinterpret_cast<PCERT_CONTEXT*>(rgpvContext); | |
| 702 // The dummy CRLSet provider never returns that something is affirmatively | |
| 703 // *un*revoked, as this would disable other revocation providers from being | |
| 704 // checked for this certificate (much like an OCSP "Good" status would). | |
| 705 // Instead, it merely indicates that insufficient information existed to | |
| 706 // determine if the certificate was revoked (in the good case), or that a cert | |
| 707 // is affirmatively revoked in the event it appears within the CRLSet. | |
| 708 // Because of this, set up some basic bookkeeping for the results. | |
| 709 CHECK(revocation_status); | |
| 710 revocation_status->dwIndex = 0; | |
| 711 revocation_status->dwError = static_cast<DWORD>(CRYPT_E_NO_REVOCATION_CHECK); | |
| 712 revocation_status->dwReason = 0; | |
| 713 | |
| 714 if (num_contexts == 0 || !cert_contexts[0]) { | |
| 715 SetLastError(static_cast<DWORD>(E_INVALIDARG)); | |
| 716 return FALSE; | |
| 717 } | |
| 718 | |
| 719 if ((GET_CERT_ENCODING_TYPE(encoding_type) != X509_ASN_ENCODING) || | |
| 720 revocation_type != CERT_CONTEXT_REVOCATION_TYPE) { | |
| 721 SetLastError(static_cast<DWORD>(CRYPT_E_NO_REVOCATION_CHECK)); | |
| 722 return FALSE; | |
| 723 } | |
| 724 | |
| 725 // No revocation checking possible if there is no associated | |
| 726 // CRLSet. | |
| 727 CRLSet* crl_set = g_revocation_injector.Get().GetCRLSet(); | |
| 728 if (!crl_set) | |
| 729 return FALSE; | |
| 730 | |
| 731 // |revocation_params| is an optional structure; to make life simple and avoid | |
| 732 // the need to constantly check whether or not it was supplied, create a local | |
| 733 // copy. If the caller didn't supply anything, it will be empty; otherwise, | |
| 734 // it will be (non-owning) copies of the caller's original params. | |
| 735 CERT_REVOCATION_PARA local_params; | |
| 736 memset(&local_params, 0, sizeof(local_params)); | |
| 737 if (revocation_params) { | |
| 738 DWORD bytes_to_copy = std::min(revocation_params->cbSize, | |
| 739 static_cast<DWORD>(sizeof(local_params))); | |
| 740 memcpy(&local_params, revocation_params, bytes_to_copy); | |
| 741 } | |
| 742 local_params.cbSize = sizeof(local_params); | |
| 743 | |
| 744 PCERT_CONTEXT subject_cert = cert_contexts[0]; | |
| 745 | |
| 746 if ((flags & CERT_VERIFY_REV_CHAIN_FLAG) && num_contexts > 1) { | |
| 747 // Verifying a chain; first verify from the last certificate in the | |
| 748 // chain to the first, and then leave the last certificate (which | |
| 749 // is presumably self-issued, although it may simply be a trust | |
| 750 // anchor) as the |subject_cert| in order to scan for more | |
| 751 // revocations. | |
| 752 std::string issuer_hash; | |
| 753 PCCERT_CONTEXT issuer_cert = nullptr; | |
| 754 for (DWORD i = num_contexts; i > 0; --i) { | |
| 755 subject_cert = cert_contexts[i - 1]; | |
| 756 if (!subject_cert) { | |
| 757 SetLastError(static_cast<DWORD>(E_INVALIDARG)); | |
| 758 return FALSE; | |
| 759 } | |
| 760 CRLSetResult result = CheckRevocationWithCRLSet( | |
| 761 crl_set, subject_cert, issuer_cert, &issuer_hash); | |
| 762 if (result == kCRLSetRevoked) { | |
| 763 revocation_status->dwIndex = i - 1; | |
| 764 revocation_status->dwError = static_cast<DWORD>(CRYPT_E_REVOKED); | |
| 765 revocation_status->dwReason = CRL_REASON_UNSPECIFIED; | |
| 766 SetLastError(revocation_status->dwError); | |
| 767 return FALSE; | |
| 768 } | |
| 769 issuer_cert = subject_cert; | |
| 770 } | |
| 771 // Verified all certificates from the trust anchor to the leaf, and none | |
| 772 // were explicitly revoked. Now do a second pass to attempt to determine | |
| 773 // the issuer for cert_contexts[num_contexts - 1], so that the | |
| 774 // Issuer SPKI+Serial can be checked for that certificate. | |
| 775 // | |
| 776 // This code intentionally ignores the flag | |
| 777 subject_cert = cert_contexts[num_contexts - 1]; | |
| 778 // Reset local_params.pIssuerCert, since it would contain the issuer | |
| 779 // for cert_contexts[0]. | |
| 780 local_params.pIssuerCert = nullptr; | |
| 781 // Fixup the revocation index to point to this cert (in the event it is | |
| 782 // revoked). If it isn't revoked, this will be done undone later. | |
| 783 revocation_status->dwIndex = num_contexts - 1; | |
| 784 } | |
| 785 | |
| 786 // Determine the issuer cert for the incoming cert | |
| 787 ScopedPCCERT_CONTEXT issuer_cert; | |
| 788 if (local_params.pIssuerCert && | |
| 789 CryptVerifyCertificateSignatureEx( | |
| 790 NULL, subject_cert->dwCertEncodingType, | |
| 791 CRYPT_VERIFY_CERT_SIGN_SUBJECT_CERT, subject_cert, | |
| 792 CRYPT_VERIFY_CERT_SIGN_ISSUER_CERT, | |
| 793 const_cast<PCERT_CONTEXT>(local_params.pIssuerCert), 0, nullptr)) { | |
| 794 // Caller has already supplied the issuer cert via the revocation params; | |
| 795 // just use that. | |
| 796 issuer_cert.reset( | |
| 797 CertDuplicateCertificateContext(local_params.pIssuerCert)); | |
| 798 } else if (CertCompareCertificateName(subject_cert->dwCertEncodingType, | |
| 799 &subject_cert->pCertInfo->Subject, | |
| 800 &subject_cert->pCertInfo->Issuer) && | |
| 801 CryptVerifyCertificateSignatureEx( | |
| 802 NULL, subject_cert->dwCertEncodingType, | |
| 803 CRYPT_VERIFY_CERT_SIGN_SUBJECT_CERT, subject_cert, | |
| 804 CRYPT_VERIFY_CERT_SIGN_ISSUER_CERT, subject_cert, 0, | |
| 805 nullptr)) { | |
| 806 // Certificate is self-signed; use it as its own issuer. | |
| 807 issuer_cert.reset(CertDuplicateCertificateContext(subject_cert)); | |
| 808 } else { | |
| 809 // Scan the caller-supplied stores first, to try and find the issuer cert. | |
| 810 for (DWORD i = 0; i < local_params.cCertStore && !issuer_cert; ++i) { | |
| 811 PCCERT_CONTEXT previous_cert = nullptr; | |
| 812 for (;;) { | |
| 813 DWORD store_search_flags = CERT_STORE_SIGNATURE_FLAG; | |
| 814 previous_cert = CertGetIssuerCertificateFromStore( | |
| 815 local_params.rgCertStore[i], subject_cert, previous_cert, | |
| 816 &store_search_flags); | |
| 817 if (!previous_cert) | |
| 818 break; | |
| 819 // If a cert is found and meets the criteria, the flag will be reset to | |
| 820 // zero. Thus NOT having the bit set is equivalent to having found a | |
| 821 // matching certificate. | |
| 822 if (!(store_search_flags & CERT_STORE_SIGNATURE_FLAG)) { | |
| 823 // No need to dupe; reference is held. | |
| 824 issuer_cert.reset(previous_cert); | |
| 825 break; | |
| 826 } | |
| 827 } | |
| 828 if (issuer_cert) | |
| 829 break; | |
| 830 if (GetLastError() == static_cast<DWORD>(CRYPT_E_SELF_SIGNED)) { | |
| 831 issuer_cert.reset(CertDuplicateCertificateContext(subject_cert)); | |
| 832 break; | |
| 833 } | |
| 834 } | |
| 835 | |
| 836 // At this point, the Microsoft provider opens up the "CA", "Root", and | |
| 837 // "SPC" stores to search for the issuer certificate, if not found in the | |
| 838 // caller-supplied stores. It is unclear whether that is necessary here. | |
| 839 } | |
| 840 | |
| 841 if (!issuer_cert) { | |
| 842 // Rather than return CRYPT_E_NO_REVOCATION_CHECK (indicating everything | |
| 843 // is fine to try the next provider), return CRYPT_E_REVOCATION_OFFLINE. | |
| 844 // This propogates up to the caller as an error while checking revocation, | |
| 845 // which is the desired intent if there are certificates that cannot | |
| 846 // be checked. | |
| 847 revocation_status->dwIndex = 0; | |
| 848 revocation_status->dwError = static_cast<DWORD>(CRYPT_E_REVOCATION_OFFLINE); | |
| 849 SetLastError(revocation_status->dwError); | |
| 850 return FALSE; | |
| 851 } | |
| 852 | |
| 853 std::string unused; | |
| 854 CRLSetResult result = CheckRevocationWithCRLSet(crl_set, subject_cert, | |
| 855 issuer_cert.get(), &unused); | |
| 856 if (result == kCRLSetRevoked) { | |
| 857 revocation_status->dwError = static_cast<DWORD>(CRYPT_E_REVOKED); | |
| 858 revocation_status->dwReason = CRL_REASON_UNSPECIFIED; | |
| 859 SetLastError(revocation_status->dwError); | |
| 860 return FALSE; | |
| 861 } | |
| 862 | |
| 863 // The result is ALWAYS FALSE in order to allow the next revocation provider | |
| 864 // a chance to examine. The only difference is whether or not an error is | |
| 865 // indicated via dwError (and SetLastError()). | |
| 866 // Reset the error index so that Windows does not believe this code has | |
| 867 // examined the entire chain and found no issues until the last cert (thus | |
| 868 // skipping other revocation providers). | |
| 869 revocation_status->dwIndex = 0; | |
| 870 return FALSE; | |
| 871 } | |
| 872 | |
| 873 class ScopedThreadLocalCRLSet { | |
| 874 public: | |
| 875 explicit ScopedThreadLocalCRLSet(CRLSet* crl_set) { | |
| 876 g_revocation_injector.Get().SetCRLSet(crl_set); | |
| 877 } | |
| 878 ~ScopedThreadLocalCRLSet() { g_revocation_injector.Get().SetCRLSet(nullptr); } | |
| 879 }; | |
| 880 | |
| 881 } // namespace | |
| 882 | |
| 883 CertVerifyProcWin::CertVerifyProcWin() {} | |
| 884 | |
| 885 CertVerifyProcWin::~CertVerifyProcWin() {} | |
| 886 | |
| 887 bool CertVerifyProcWin::SupportsAdditionalTrustAnchors() const { | |
| 888 return false; | |
| 889 } | |
| 890 | |
| 891 bool CertVerifyProcWin::SupportsOCSPStapling() const { | |
| 892 // CERT_OCSP_RESPONSE_PROP_ID is only implemented on Vista+, but it can be | |
| 893 // set on Windows XP without error. There is some overhead from the server | |
| 894 // sending the OCSP response if it supports the extension, for the subset of | |
| 895 // XP clients who will request it but be unable to use it, but this is an | |
| 896 // acceptable trade-off for simplicity of implementation. | |
| 897 return true; | |
| 898 } | |
| 899 | |
| 900 int CertVerifyProcWin::VerifyInternal( | |
| 901 X509Certificate* cert, | |
| 902 const std::string& hostname, | |
| 903 const std::string& ocsp_response, | |
| 904 int flags, | |
| 905 CRLSet* crl_set, | |
| 906 const CertificateList& additional_trust_anchors, | |
| 907 CertVerifyResult* verify_result) { | |
| 908 // Ensure the Revocation Provider has been installed and configured for this | |
| 909 // CRLSet. | |
| 910 ScopedThreadLocalCRLSet thread_local_crlset(crl_set); | |
| 911 | |
| 912 PCCERT_CONTEXT cert_handle = cert->os_cert_handle(); | |
| 913 if (!cert_handle) | |
| 914 return ERR_UNEXPECTED; | |
| 915 | |
| 916 // Build and validate certificate chain. | |
| 917 CERT_CHAIN_PARA chain_para; | |
| 918 memset(&chain_para, 0, sizeof(chain_para)); | |
| 919 chain_para.cbSize = sizeof(chain_para); | |
| 920 // ExtendedKeyUsage. | |
| 921 // We still need to request szOID_SERVER_GATED_CRYPTO and szOID_SGC_NETSCAPE | |
| 922 // today because some certificate chains need them. IE also requests these | |
| 923 // two usages. | |
| 924 static const LPCSTR usage[] = { | |
| 925 szOID_PKIX_KP_SERVER_AUTH, | |
| 926 szOID_SERVER_GATED_CRYPTO, | |
| 927 szOID_SGC_NETSCAPE | |
| 928 }; | |
| 929 chain_para.RequestedUsage.dwType = USAGE_MATCH_TYPE_OR; | |
| 930 chain_para.RequestedUsage.Usage.cUsageIdentifier = arraysize(usage); | |
| 931 chain_para.RequestedUsage.Usage.rgpszUsageIdentifier = | |
| 932 const_cast<LPSTR*>(usage); | |
| 933 | |
| 934 // Get the certificatePolicies extension of the certificate. | |
| 935 std::unique_ptr<CERT_POLICIES_INFO, base::FreeDeleter> policies_info; | |
| 936 LPSTR ev_policy_oid = NULL; | |
| 937 if (flags & CertVerifier::VERIFY_EV_CERT) { | |
| 938 GetCertPoliciesInfo(cert_handle, &policies_info); | |
| 939 if (policies_info.get()) { | |
| 940 EVRootCAMetadata* metadata = EVRootCAMetadata::GetInstance(); | |
| 941 for (DWORD i = 0; i < policies_info->cPolicyInfo; ++i) { | |
| 942 LPSTR policy_oid = policies_info->rgPolicyInfo[i].pszPolicyIdentifier; | |
| 943 if (metadata->IsEVPolicyOID(policy_oid)) { | |
| 944 ev_policy_oid = policy_oid; | |
| 945 chain_para.RequestedIssuancePolicy.dwType = USAGE_MATCH_TYPE_AND; | |
| 946 chain_para.RequestedIssuancePolicy.Usage.cUsageIdentifier = 1; | |
| 947 chain_para.RequestedIssuancePolicy.Usage.rgpszUsageIdentifier = | |
| 948 &ev_policy_oid; | |
| 949 | |
| 950 // De-prioritize the CA/Browser forum Extended Validation policy | |
| 951 // (2.23.140.1.1). See crbug.com/705285. | |
| 952 if (!EVRootCAMetadata::IsCaBrowserForumEvOid(ev_policy_oid)) | |
| 953 break; | |
| 954 } | |
| 955 } | |
| 956 } | |
| 957 } | |
| 958 | |
| 959 // Revocation checking is always enabled, in order to enable CRLSets to be | |
| 960 // evaluated as part of a revocation provider. However, when the caller did | |
| 961 // not explicitly request revocation checking (which is to say, online | |
| 962 // revocation checking), then only enable cached results. This disables OCSP | |
| 963 // and CRL fetching, but still allows the revocation provider to be called. | |
| 964 // Note: The root cert is also checked for revocation status, so that CRLSets | |
| 965 // will cover revoked SPKIs. | |
| 966 DWORD chain_flags = CERT_CHAIN_REVOCATION_CHECK_CHAIN; | |
| 967 bool rev_checking_enabled = | |
| 968 (flags & CertVerifier::VERIFY_REV_CHECKING_ENABLED); | |
| 969 if (rev_checking_enabled) { | |
| 970 verify_result->cert_status |= CERT_STATUS_REV_CHECKING_ENABLED; | |
| 971 } else { | |
| 972 chain_flags |= CERT_CHAIN_REVOCATION_CHECK_CACHE_ONLY; | |
| 973 } | |
| 974 | |
| 975 // By default, use the default HCERTCHAINENGINE (aka HCCE_CURRENT_USER). When | |
| 976 // running tests, use a dynamic HCERTCHAINENGINE. All of the status and cache | |
| 977 // of verified certificates and chains is tied to the HCERTCHAINENGINE. As | |
| 978 // each invocation may have changed the set of known roots, invalidate the | |
| 979 // cache between runs. | |
| 980 // | |
| 981 // This is not the most efficient means of doing so; it's possible to mark the | |
| 982 // Root store used by TestRootCerts as changed, via CertControlStore with the | |
| 983 // CERT_STORE_CTRL_NOTIFY_CHANGE / CERT_STORE_CTRL_RESYNC, but that's more | |
| 984 // complexity for what is test-only code. | |
| 985 ScopedHCERTCHAINENGINE chain_engine(NULL); | |
| 986 if (TestRootCerts::HasInstance()) | |
| 987 chain_engine.reset(TestRootCerts::GetInstance()->GetChainEngine()); | |
| 988 | |
| 989 ScopedPCCERT_CONTEXT cert_list(cert->CreateOSCertChainForCert()); | |
| 990 | |
| 991 // Add stapled OCSP response data, which will be preferred over online checks | |
| 992 // and used when in cache-only mode. | |
| 993 if (!ocsp_response.empty()) { | |
| 994 CRYPT_DATA_BLOB ocsp_response_blob; | |
| 995 ocsp_response_blob.cbData = ocsp_response.size(); | |
| 996 ocsp_response_blob.pbData = | |
| 997 reinterpret_cast<BYTE*>(const_cast<char*>(ocsp_response.data())); | |
| 998 CertSetCertificateContextProperty( | |
| 999 cert_list.get(), CERT_OCSP_RESPONSE_PROP_ID, | |
| 1000 CERT_SET_PROPERTY_IGNORE_PERSIST_ERROR_FLAG, &ocsp_response_blob); | |
| 1001 } | |
| 1002 | |
| 1003 CERT_STRONG_SIGN_SERIALIZED_INFO strong_signed_info; | |
| 1004 memset(&strong_signed_info, 0, sizeof(strong_signed_info)); | |
| 1005 strong_signed_info.dwFlags = 0; // Don't check OCSP or CRL signatures. | |
| 1006 | |
| 1007 // Note that the following two configurations result in disabling support for | |
| 1008 // any CNG-added algorithms, which may result in some disruption for internal | |
| 1009 // PKI operations that use national forms of crypto (e.g. GOST). However, the | |
| 1010 // fallback mechanism for this (to support SHA-1 chains) will re-enable them, | |
| 1011 // so they should continue to work - just with added latency. | |
| 1012 wchar_t hash_algs[] = | |
| 1013 L"RSA/SHA256;RSA/SHA384;RSA/SHA512;" | |
| 1014 L"ECDSA/SHA256;ECDSA/SHA384;ECDSA/SHA512"; | |
| 1015 strong_signed_info.pwszCNGSignHashAlgids = hash_algs; | |
| 1016 | |
| 1017 // RSA-1024 bit support is intentionally enabled here. More investigation is | |
| 1018 // needed to determine if setting CERT_STRONG_SIGN_DISABLE_END_CHECK_FLAG in | |
| 1019 // the dwStrongSignFlags of |chain_para| would allow the ability to disable | |
| 1020 // support for intermediates/roots < 2048-bits, while still ensuring that | |
| 1021 // end-entity certs signed with SHA-1 are flagged/rejected. | |
| 1022 wchar_t key_sizes[] = L"RSA/1024;ECDSA/256"; | |
| 1023 strong_signed_info.pwszCNGPubKeyMinBitLengths = key_sizes; | |
| 1024 | |
| 1025 CERT_STRONG_SIGN_PARA strong_sign_params; | |
| 1026 memset(&strong_sign_params, 0, sizeof(strong_sign_params)); | |
| 1027 strong_sign_params.cbSize = sizeof(strong_sign_params); | |
| 1028 strong_sign_params.dwInfoChoice = CERT_STRONG_SIGN_SERIALIZED_INFO_CHOICE; | |
| 1029 strong_sign_params.pSerializedInfo = &strong_signed_info; | |
| 1030 | |
| 1031 chain_para.dwStrongSignFlags = 0; | |
| 1032 chain_para.pStrongSignPara = &strong_sign_params; | |
| 1033 | |
| 1034 PCCERT_CHAIN_CONTEXT chain_context = nullptr; | |
| 1035 | |
| 1036 // First, try to verify with strong signing enabled. If this fails, or if the | |
| 1037 // chain is rejected, then clear it from |chain_para| so that all subsequent | |
| 1038 // calls will use the fallback path. | |
| 1039 BOOL chain_result = | |
| 1040 CertGetCertificateChain(chain_engine, cert_list.get(), | |
| 1041 NULL, // current system time | |
| 1042 cert_list->hCertStore, &chain_para, chain_flags, | |
| 1043 NULL, // reserved | |
| 1044 &chain_context); | |
| 1045 if (chain_result && chain_context && | |
| 1046 (chain_context->TrustStatus.dwErrorStatus & | |
| 1047 (CERT_TRUST_HAS_WEAK_SIGNATURE | CERT_TRUST_IS_NOT_SIGNATURE_VALID))) { | |
| 1048 // The attempt to verify with strong-sign (only SHA-2) failed, so fall back | |
| 1049 // to disabling it. This will allow SHA-1 chains to be returned, which will | |
| 1050 // then be subsequently signalled as weak if necessary. | |
| 1051 CertFreeCertificateChain(chain_context); | |
| 1052 chain_context = nullptr; | |
| 1053 | |
| 1054 chain_para.pStrongSignPara = nullptr; | |
| 1055 chain_para.dwStrongSignFlags = 0; | |
| 1056 chain_result = | |
| 1057 CertGetCertificateChain(chain_engine, cert_list.get(), | |
| 1058 NULL, // current system time | |
| 1059 cert_list->hCertStore, &chain_para, chain_flags, | |
| 1060 NULL, // reserved | |
| 1061 &chain_context); | |
| 1062 } | |
| 1063 | |
| 1064 if (!chain_result) { | |
| 1065 verify_result->cert_status |= CERT_STATUS_INVALID; | |
| 1066 return MapSecurityError(GetLastError()); | |
| 1067 } | |
| 1068 | |
| 1069 // Perform a second check with CRLSets. Although the Revocation Provider | |
| 1070 // should have prevented invalid paths from being built, the behaviour and | |
| 1071 // timing of how a Revocation Provider is invoked is not well documented. This | |
| 1072 // is just defense in depth. | |
| 1073 CRLSetResult crl_set_result = kCRLSetUnknown; | |
| 1074 if (crl_set) | |
| 1075 crl_set_result = CheckChainRevocationWithCRLSet(chain_context, crl_set); | |
| 1076 | |
| 1077 if (crl_set_result == kCRLSetRevoked) { | |
| 1078 verify_result->cert_status |= CERT_STATUS_REVOKED; | |
| 1079 } else if (crl_set_result == kCRLSetUnknown && | |
| 1080 (flags & CertVerifier::VERIFY_REV_CHECKING_ENABLED_EV_ONLY) && | |
| 1081 !rev_checking_enabled && | |
| 1082 ev_policy_oid != NULL) { | |
| 1083 // We don't have fresh information about this chain from the CRLSet and | |
| 1084 // it's probably an EV certificate. Retry with online revocation checking. | |
| 1085 rev_checking_enabled = true; | |
| 1086 chain_flags &= ~CERT_CHAIN_REVOCATION_CHECK_CACHE_ONLY; | |
| 1087 verify_result->cert_status |= CERT_STATUS_REV_CHECKING_ENABLED; | |
| 1088 | |
| 1089 CertFreeCertificateChain(chain_context); | |
| 1090 if (!CertGetCertificateChain( | |
| 1091 chain_engine, | |
| 1092 cert_list.get(), | |
| 1093 NULL, // current system time | |
| 1094 cert_list->hCertStore, | |
| 1095 &chain_para, | |
| 1096 chain_flags, | |
| 1097 NULL, // reserved | |
| 1098 &chain_context)) { | |
| 1099 verify_result->cert_status |= CERT_STATUS_INVALID; | |
| 1100 return MapSecurityError(GetLastError()); | |
| 1101 } | |
| 1102 } | |
| 1103 | |
| 1104 if (chain_context->TrustStatus.dwErrorStatus & | |
| 1105 CERT_TRUST_IS_NOT_VALID_FOR_USAGE) { | |
| 1106 ev_policy_oid = NULL; | |
| 1107 chain_para.RequestedIssuancePolicy.Usage.cUsageIdentifier = 0; | |
| 1108 chain_para.RequestedIssuancePolicy.Usage.rgpszUsageIdentifier = NULL; | |
| 1109 CertFreeCertificateChain(chain_context); | |
| 1110 if (!CertGetCertificateChain( | |
| 1111 chain_engine, | |
| 1112 cert_list.get(), | |
| 1113 NULL, // current system time | |
| 1114 cert_list->hCertStore, | |
| 1115 &chain_para, | |
| 1116 chain_flags, | |
| 1117 NULL, // reserved | |
| 1118 &chain_context)) { | |
| 1119 verify_result->cert_status |= CERT_STATUS_INVALID; | |
| 1120 return MapSecurityError(GetLastError()); | |
| 1121 } | |
| 1122 } | |
| 1123 | |
| 1124 CertVerifyResult temp_verify_result = *verify_result; | |
| 1125 GetCertChainInfo(chain_context, verify_result); | |
| 1126 if (!verify_result->is_issued_by_known_root && | |
| 1127 (flags & CertVerifier::VERIFY_REV_CHECKING_REQUIRED_LOCAL_ANCHORS)) { | |
| 1128 *verify_result = temp_verify_result; | |
| 1129 | |
| 1130 rev_checking_enabled = true; | |
| 1131 verify_result->cert_status |= CERT_STATUS_REV_CHECKING_ENABLED; | |
| 1132 chain_flags &= ~CERT_CHAIN_REVOCATION_CHECK_CACHE_ONLY; | |
| 1133 | |
| 1134 CertFreeCertificateChain(chain_context); | |
| 1135 if (!CertGetCertificateChain( | |
| 1136 chain_engine, | |
| 1137 cert_list.get(), | |
| 1138 NULL, // current system time | |
| 1139 cert_list->hCertStore, | |
| 1140 &chain_para, | |
| 1141 chain_flags, | |
| 1142 NULL, // reserved | |
| 1143 &chain_context)) { | |
| 1144 verify_result->cert_status |= CERT_STATUS_INVALID; | |
| 1145 return MapSecurityError(GetLastError()); | |
| 1146 } | |
| 1147 GetCertChainInfo(chain_context, verify_result); | |
| 1148 | |
| 1149 if (chain_context->TrustStatus.dwErrorStatus & | |
| 1150 CERT_TRUST_IS_OFFLINE_REVOCATION) { | |
| 1151 verify_result->cert_status |= CERT_STATUS_REVOKED; | |
| 1152 } | |
| 1153 } | |
| 1154 | |
| 1155 ScopedPCCERT_CHAIN_CONTEXT scoped_chain_context(chain_context); | |
| 1156 | |
| 1157 verify_result->cert_status |= MapCertChainErrorStatusToCertStatus( | |
| 1158 chain_context->TrustStatus.dwErrorStatus); | |
| 1159 | |
| 1160 // Flag certificates that have a Subject common name with a NULL character. | |
| 1161 if (CertSubjectCommonNameHasNull(cert_handle)) | |
| 1162 verify_result->cert_status |= CERT_STATUS_INVALID; | |
| 1163 | |
| 1164 base::string16 hostname16 = base::ASCIIToUTF16(hostname); | |
| 1165 | |
| 1166 SSL_EXTRA_CERT_CHAIN_POLICY_PARA extra_policy_para; | |
| 1167 memset(&extra_policy_para, 0, sizeof(extra_policy_para)); | |
| 1168 extra_policy_para.cbSize = sizeof(extra_policy_para); | |
| 1169 extra_policy_para.dwAuthType = AUTHTYPE_SERVER; | |
| 1170 // Certificate name validation happens separately, later, using an internal | |
| 1171 // routine that has better support for RFC 6125 name matching. | |
| 1172 extra_policy_para.fdwChecks = | |
| 1173 0x00001000; // SECURITY_FLAG_IGNORE_CERT_CN_INVALID | |
| 1174 extra_policy_para.pwszServerName = | |
| 1175 const_cast<base::char16*>(hostname16.c_str()); | |
| 1176 | |
| 1177 CERT_CHAIN_POLICY_PARA policy_para; | |
| 1178 memset(&policy_para, 0, sizeof(policy_para)); | |
| 1179 policy_para.cbSize = sizeof(policy_para); | |
| 1180 policy_para.dwFlags = 0; | |
| 1181 policy_para.pvExtraPolicyPara = &extra_policy_para; | |
| 1182 | |
| 1183 CERT_CHAIN_POLICY_STATUS policy_status; | |
| 1184 memset(&policy_status, 0, sizeof(policy_status)); | |
| 1185 policy_status.cbSize = sizeof(policy_status); | |
| 1186 | |
| 1187 if (!CertVerifyCertificateChainPolicy( | |
| 1188 CERT_CHAIN_POLICY_SSL, | |
| 1189 chain_context, | |
| 1190 &policy_para, | |
| 1191 &policy_status)) { | |
| 1192 return MapSecurityError(GetLastError()); | |
| 1193 } | |
| 1194 | |
| 1195 if (policy_status.dwError) { | |
| 1196 verify_result->cert_status |= MapNetErrorToCertStatus( | |
| 1197 MapSecurityError(policy_status.dwError)); | |
| 1198 } | |
| 1199 | |
| 1200 // TODO(wtc): Suppress CERT_STATUS_NO_REVOCATION_MECHANISM for now to be | |
| 1201 // compatible with WinHTTP, which doesn't report this error (bug 3004). | |
| 1202 verify_result->cert_status &= ~CERT_STATUS_NO_REVOCATION_MECHANISM; | |
| 1203 | |
| 1204 if (!rev_checking_enabled) { | |
| 1205 // If we didn't do online revocation checking then Windows will report | |
| 1206 // CERT_UNABLE_TO_CHECK_REVOCATION unless it had cached OCSP or CRL | |
| 1207 // information for every certificate. We only want to put up revoked | |
| 1208 // statuses from the offline checks so we squash this error. | |
| 1209 verify_result->cert_status &= ~CERT_STATUS_UNABLE_TO_CHECK_REVOCATION; | |
| 1210 } | |
| 1211 | |
| 1212 AppendPublicKeyHashes(chain_context, &verify_result->public_key_hashes); | |
| 1213 verify_result->is_issued_by_known_root = IsIssuedByKnownRoot(chain_context); | |
| 1214 | |
| 1215 if (IsCertStatusError(verify_result->cert_status)) | |
| 1216 return MapCertStatusToNetError(verify_result->cert_status); | |
| 1217 | |
| 1218 if (ev_policy_oid && | |
| 1219 CheckEV(chain_context, rev_checking_enabled, ev_policy_oid)) { | |
| 1220 verify_result->cert_status |= CERT_STATUS_IS_EV; | |
| 1221 } | |
| 1222 return OK; | |
| 1223 } | |
| 1224 | |
| 1225 } // namespace net | 56 } // namespace net |
| OLD | NEW |