Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(419)

Side by Side Diff: discovery/googleapis/ml__v1.json

Issue 2824163002: Api-roll 48: 2017-04-18 (Closed)
Patch Set: Revert changes to pubspecs Created 3 years, 8 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « discovery/googleapis/mirror__v1.json ('k') | discovery/googleapis/monitoring__v3.json » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
1 { 1 {
2 "auth": { 2 "auth": {
3 "oauth2": { 3 "oauth2": {
4 "scopes": { 4 "scopes": {
5 "https://www.googleapis.com/auth/cloud-platform": { 5 "https://www.googleapis.com/auth/cloud-platform": {
6 "description": "View and manage your data across Google Clou d Platform services" 6 "description": "View and manage your data across Google Clou d Platform services"
7 } 7 }
8 } 8 }
9 } 9 }
10 }, 10 },
11 "basePath": "", 11 "basePath": "",
12 "baseUrl": "https://ml.googleapis.com/", 12 "baseUrl": "https://ml.googleapis.com/",
13 "batchPath": "batch", 13 "batchPath": "batch",
14 "canonicalName": "Cloud Machine Learning Engine", 14 "canonicalName": "Cloud Machine Learning Engine",
15 "description": "An API to enable creating and using machine learning models. ", 15 "description": "An API to enable creating and using machine learning models. ",
16 "discoveryVersion": "v1", 16 "discoveryVersion": "v1",
17 "documentationLink": "https://cloud.google.com/ml/", 17 "documentationLink": "https://cloud.google.com/ml/",
18 "icons": { 18 "icons": {
19 "x16": "http://www.google.com/images/icons/product/search-16.gif", 19 "x16": "http://www.google.com/images/icons/product/search-16.gif",
20 "x32": "http://www.google.com/images/icons/product/search-32.gif" 20 "x32": "http://www.google.com/images/icons/product/search-32.gif"
21 }, 21 },
22 "id": "ml:v1", 22 "id": "ml:v1",
23 "kind": "discovery#restDescription", 23 "kind": "discovery#restDescription",
24 "name": "ml", 24 "name": "ml",
25 "ownerDomain": "google.com", 25 "ownerDomain": "google.com",
26 "ownerName": "Google", 26 "ownerName": "Google",
27 "parameters": { 27 "parameters": {
28 "quotaUser": {
29 "description": "Available to use for quota purposes for server-side applications. Can be any arbitrary string assigned to a user, but should not exc eed 40 characters.",
30 "location": "query",
31 "type": "string"
32 },
33 "pp": { 28 "pp": {
34 "default": "true", 29 "default": "true",
35 "description": "Pretty-print response.", 30 "description": "Pretty-print response.",
36 "location": "query", 31 "location": "query",
37 "type": "boolean" 32 "type": "boolean"
38 }, 33 },
34 "oauth_token": {
35 "description": "OAuth 2.0 token for the current user.",
36 "location": "query",
37 "type": "string"
38 },
39 "bearer_token": { 39 "bearer_token": {
40 "description": "OAuth bearer token.", 40 "description": "OAuth bearer token.",
41 "location": "query", 41 "location": "query",
42 "type": "string" 42 "type": "string"
43 }, 43 },
44 "oauth_token": {
45 "description": "OAuth 2.0 token for the current user.",
46 "location": "query",
47 "type": "string"
48 },
49 "upload_protocol": { 44 "upload_protocol": {
50 "description": "Upload protocol for media (e.g. \"raw\", \"multipart \").", 45 "description": "Upload protocol for media (e.g. \"raw\", \"multipart \").",
51 "location": "query", 46 "location": "query",
52 "type": "string" 47 "type": "string"
53 }, 48 },
54 "prettyPrint": { 49 "prettyPrint": {
55 "default": "true", 50 "default": "true",
56 "description": "Returns response with indentations and line breaks." , 51 "description": "Returns response with indentations and line breaks." ,
57 "location": "query", 52 "location": "query",
58 "type": "boolean" 53 "type": "boolean"
59 }, 54 },
55 "fields": {
56 "description": "Selector specifying which fields to include in a par tial response.",
57 "location": "query",
58 "type": "string"
59 },
60 "uploadType": { 60 "uploadType": {
61 "description": "Legacy upload protocol for media (e.g. \"media\", \" multipart\").", 61 "description": "Legacy upload protocol for media (e.g. \"media\", \" multipart\").",
62 "location": "query", 62 "location": "query",
63 "type": "string" 63 "type": "string"
64 }, 64 },
65 "fields": {
66 "description": "Selector specifying which fields to include in a par tial response.",
67 "location": "query",
68 "type": "string"
69 },
70 "callback": {
71 "description": "JSONP",
72 "location": "query",
73 "type": "string"
74 },
75 "$.xgafv": { 65 "$.xgafv": {
76 "description": "V1 error format.", 66 "description": "V1 error format.",
77 "enum": [ 67 "enum": [
78 "1", 68 "1",
79 "2" 69 "2"
80 ], 70 ],
81 "enumDescriptions": [ 71 "enumDescriptions": [
82 "v1 error format", 72 "v1 error format",
83 "v2 error format" 73 "v2 error format"
84 ], 74 ],
85 "location": "query", 75 "location": "query",
86 "type": "string" 76 "type": "string"
87 }, 77 },
78 "callback": {
79 "description": "JSONP",
80 "location": "query",
81 "type": "string"
82 },
88 "alt": { 83 "alt": {
89 "default": "json", 84 "default": "json",
90 "description": "Data format for response.", 85 "description": "Data format for response.",
91 "enum": [ 86 "enum": [
92 "json", 87 "json",
93 "media", 88 "media",
94 "proto" 89 "proto"
95 ], 90 ],
96 "enumDescriptions": [ 91 "enumDescriptions": [
97 "Responses with Content-Type of application/json", 92 "Responses with Content-Type of application/json",
98 "Media download with context-dependent Content-Type", 93 "Media download with context-dependent Content-Type",
99 "Responses with Content-Type of application/x-protobuf" 94 "Responses with Content-Type of application/x-protobuf"
100 ], 95 ],
101 "location": "query", 96 "location": "query",
102 "type": "string" 97 "type": "string"
103 }, 98 },
99 "access_token": {
100 "description": "OAuth access token.",
101 "location": "query",
102 "type": "string"
103 },
104 "key": { 104 "key": {
105 "description": "API key. Your API key identifies your project and pr ovides you with API access, quota, and reports. Required unless you provide an O Auth 2.0 token.", 105 "description": "API key. Your API key identifies your project and pr ovides you with API access, quota, and reports. Required unless you provide an O Auth 2.0 token.",
106 "location": "query", 106 "location": "query",
107 "type": "string" 107 "type": "string"
108 }, 108 },
109 "access_token": { 109 "quotaUser": {
110 "description": "OAuth access token.", 110 "description": "Available to use for quota purposes for server-side applications. Can be any arbitrary string assigned to a user, but should not exc eed 40 characters.",
111 "location": "query", 111 "location": "query",
112 "type": "string" 112 "type": "string"
113 } 113 }
114 }, 114 },
115 "protocol": "rest", 115 "protocol": "rest",
116 "resources": { 116 "resources": {
117 "projects": { 117 "projects": {
118 "methods": { 118 "methods": {
119 "predict": { 119 "predict": {
120 "description": "Performs prediction on the data in the reque st.\n\n**** REMOVE FROM GENERATED DOCUMENTATION", 120 "description": "Performs prediction on the data in the reque st.\n\n**** REMOVE FROM GENERATED DOCUMENTATION",
(...skipping 159 matching lines...) Expand 10 before | Expand all | Expand 10 after
280 "$ref": "GoogleLongrunning__Operation" 280 "$ref": "GoogleLongrunning__Operation"
281 }, 281 },
282 "scopes": [ 282 "scopes": [
283 "https://www.googleapis.com/auth/cloud-platform" 283 "https://www.googleapis.com/auth/cloud-platform"
284 ] 284 ]
285 } 285 }
286 } 286 }
287 }, 287 },
288 "models": { 288 "models": {
289 "methods": { 289 "methods": {
290 "delete": {
291 "description": "Deletes a model.\n\nYou can only del ete a model if there are no versions in it. You can delete\nversions by calling\ n[projects.models.versions.delete](/ml-engine/reference/rest/v1/projects.models. versions/delete).",
292 "httpMethod": "DELETE",
293 "id": "ml.projects.models.delete",
294 "parameterOrder": [
295 "name"
296 ],
297 "parameters": {
298 "name": {
299 "description": "Required. The name of the mo del.\n\nAuthorization: requires `Editor` role on the parent project.",
300 "location": "path",
301 "pattern": "^projects/[^/]+/models/[^/]+$",
302 "required": true,
303 "type": "string"
304 }
305 },
306 "path": "v1/{+name}",
307 "response": {
308 "$ref": "GoogleLongrunning__Operation"
309 },
310 "scopes": [
311 "https://www.googleapis.com/auth/cloud-platform"
312 ]
313 },
314 "list": { 290 "list": {
315 "description": "Lists the models in a project.\n\nEa ch project can contain multiple models, and each model can have multiple\nversio ns.", 291 "description": "Lists the models in a project.\n\nEa ch project can contain multiple models, and each model can have multiple\nversio ns.",
316 "httpMethod": "GET", 292 "httpMethod": "GET",
317 "id": "ml.projects.models.list", 293 "id": "ml.projects.models.list",
318 "parameterOrder": [ 294 "parameterOrder": [
319 "parent" 295 "parent"
320 ], 296 ],
321 "parameters": { 297 "parameters": {
322 "pageToken": {
323 "description": "Optional. A page token to re quest the next page of results.\n\nYou get the token from the `next_page_token` field of the response from\nthe previous call.",
324 "location": "query",
325 "type": "string"
326 },
327 "pageSize": { 298 "pageSize": {
328 "description": "Optional. The number of mode ls to retrieve per \"page\" of results. If there\nare more remaining results tha n this number, the response message will\ncontain a valid value in the `next_pag e_token` field.\n\nThe default value is 20, and the maximum page size is 100.", 299 "description": "Optional. The number of mode ls to retrieve per \"page\" of results. If there\nare more remaining results tha n this number, the response message will\ncontain a valid value in the `next_pag e_token` field.\n\nThe default value is 20, and the maximum page size is 100.",
329 "format": "int32", 300 "format": "int32",
330 "location": "query", 301 "location": "query",
331 "type": "integer" 302 "type": "integer"
332 }, 303 },
333 "parent": { 304 "parent": {
334 "description": "Required. The name of the pr oject whose models are to be listed.\n\nAuthorization: requires `Viewer` role on the specified project.", 305 "description": "Required. The name of the pr oject whose models are to be listed.\n\nAuthorization: requires `Viewer` role on the specified project.",
335 "location": "path", 306 "location": "path",
336 "pattern": "^projects/[^/]+$", 307 "pattern": "^projects/[^/]+$",
337 "required": true, 308 "required": true,
338 "type": "string" 309 "type": "string"
310 },
311 "pageToken": {
312 "description": "Optional. A page token to re quest the next page of results.\n\nYou get the token from the `next_page_token` field of the response from\nthe previous call.",
313 "location": "query",
314 "type": "string"
339 } 315 }
340 }, 316 },
341 "path": "v1/{+parent}/models", 317 "path": "v1/{+parent}/models",
342 "response": { 318 "response": {
343 "$ref": "GoogleCloudMlV1__ListModelsResponse" 319 "$ref": "GoogleCloudMlV1__ListModelsResponse"
344 }, 320 },
345 "scopes": [ 321 "scopes": [
346 "https://www.googleapis.com/auth/cloud-platform" 322 "https://www.googleapis.com/auth/cloud-platform"
347 ] 323 ]
348 }, 324 },
(...skipping 40 matching lines...) Expand 10 before | Expand all | Expand 10 after
389 "path": "v1/{+parent}/models", 365 "path": "v1/{+parent}/models",
390 "request": { 366 "request": {
391 "$ref": "GoogleCloudMlV1__Model" 367 "$ref": "GoogleCloudMlV1__Model"
392 }, 368 },
393 "response": { 369 "response": {
394 "$ref": "GoogleCloudMlV1__Model" 370 "$ref": "GoogleCloudMlV1__Model"
395 }, 371 },
396 "scopes": [ 372 "scopes": [
397 "https://www.googleapis.com/auth/cloud-platform" 373 "https://www.googleapis.com/auth/cloud-platform"
398 ] 374 ]
375 },
376 "delete": {
377 "description": "Deletes a model.\n\nYou can only del ete a model if there are no versions in it. You can delete\nversions by calling\ n[projects.models.versions.delete](/ml-engine/reference/rest/v1/projects.models. versions/delete).",
378 "httpMethod": "DELETE",
379 "id": "ml.projects.models.delete",
380 "parameterOrder": [
381 "name"
382 ],
383 "parameters": {
384 "name": {
385 "description": "Required. The name of the mo del.\n\nAuthorization: requires `Editor` role on the parent project.",
386 "location": "path",
387 "pattern": "^projects/[^/]+/models/[^/]+$",
388 "required": true,
389 "type": "string"
390 }
391 },
392 "path": "v1/{+name}",
393 "response": {
394 "$ref": "GoogleLongrunning__Operation"
395 },
396 "scopes": [
397 "https://www.googleapis.com/auth/cloud-platform"
398 ]
399 } 399 }
400 }, 400 },
401 "resources": { 401 "resources": {
402 "versions": { 402 "versions": {
403 "methods": { 403 "methods": {
404 "setDefault": { 404 "setDefault": {
405 "description": "Designates a version to be t he default for the model.\n\nThe default version is used for prediction requests made against the model\nthat don't specify a version.\n\nThe first version to b e created for a model is automatically set as the\ndefault. You must make any su bsequent changes to the default version\nsetting manually using this method.", 405 "description": "Designates a version to be t he default for the model.\n\nThe default version is used for prediction requests made against the model\nthat don't specify a version.\n\nThe first version to b e created for a model is automatically set as the\ndefault. You must make any su bsequent changes to the default version\nsetting manually using this method.",
406 "httpMethod": "POST", 406 "httpMethod": "POST",
407 "id": "ml.projects.models.versions.setDefaul t", 407 "id": "ml.projects.models.versions.setDefaul t",
408 "parameterOrder": [ 408 "parameterOrder": [
(...skipping 44 matching lines...) Expand 10 before | Expand all | Expand 10 after
453 ] 453 ]
454 }, 454 },
455 "list": { 455 "list": {
456 "description": "Gets basic information about all the versions of a model.\n\nIf you expect that a model has a lot of version s, or if you need to handle\nonly a limited number of results at a time, you can request that the list\nbe retrieved in batches (called pages):", 456 "description": "Gets basic information about all the versions of a model.\n\nIf you expect that a model has a lot of version s, or if you need to handle\nonly a limited number of results at a time, you can request that the list\nbe retrieved in batches (called pages):",
457 "httpMethod": "GET", 457 "httpMethod": "GET",
458 "id": "ml.projects.models.versions.list", 458 "id": "ml.projects.models.versions.list",
459 "parameterOrder": [ 459 "parameterOrder": [
460 "parent" 460 "parent"
461 ], 461 ],
462 "parameters": { 462 "parameters": {
463 "pageSize": {
464 "description": "Optional. The number of versions to retrieve per \"page\" of results. If\nthere are more remaining r esults than this number, the response message\nwill contain a valid value in the `next_page_token` field.\n\nThe default value is 20, and the maximum page size is 100.",
465 "format": "int32",
466 "location": "query",
467 "type": "integer"
468 },
463 "parent": { 469 "parent": {
464 "description": "Required. The name o f the model for which to list the version.\n\nAuthorization: requires `Viewer` r ole on the parent project.", 470 "description": "Required. The name o f the model for which to list the version.\n\nAuthorization: requires `Viewer` r ole on the parent project.",
465 "location": "path", 471 "location": "path",
466 "pattern": "^projects/[^/]+/models/[ ^/]+$", 472 "pattern": "^projects/[^/]+/models/[ ^/]+$",
467 "required": true, 473 "required": true,
468 "type": "string" 474 "type": "string"
469 }, 475 },
470 "pageToken": { 476 "pageToken": {
471 "description": "Optional. A page tok en to request the next page of results.\n\nYou get the token from the `next_page _token` field of the response from\nthe previous call.", 477 "description": "Optional. A page tok en to request the next page of results.\n\nYou get the token from the `next_page _token` field of the response from\nthe previous call.",
472 "location": "query", 478 "location": "query",
473 "type": "string" 479 "type": "string"
474 },
475 "pageSize": {
476 "description": "Optional. The number of versions to retrieve per \"page\" of results. If\nthere are more remaining r esults than this number, the response message\nwill contain a valid value in the `next_page_token` field.\n\nThe default value is 20, and the maximum page size is 100.",
477 "format": "int32",
478 "location": "query",
479 "type": "integer"
480 } 480 }
481 }, 481 },
482 "path": "v1/{+parent}/versions", 482 "path": "v1/{+parent}/versions",
483 "response": { 483 "response": {
484 "$ref": "GoogleCloudMlV1__ListVersionsRe sponse" 484 "$ref": "GoogleCloudMlV1__ListVersionsRe sponse"
485 }, 485 },
486 "scopes": [ 486 "scopes": [
487 "https://www.googleapis.com/auth/cloud-p latform" 487 "https://www.googleapis.com/auth/cloud-p latform"
488 ] 488 ]
489 }, 489 },
(...skipping 47 matching lines...) Expand 10 before | Expand all | Expand 10 after
537 "scopes": [ 537 "scopes": [
538 "https://www.googleapis.com/auth/cloud-p latform" 538 "https://www.googleapis.com/auth/cloud-p latform"
539 ] 539 ]
540 } 540 }
541 } 541 }
542 } 542 }
543 } 543 }
544 }, 544 },
545 "jobs": { 545 "jobs": {
546 "methods": { 546 "methods": {
547 "cancel": {
548 "description": "Cancels a running job.",
549 "httpMethod": "POST",
550 "id": "ml.projects.jobs.cancel",
551 "parameterOrder": [
552 "name"
553 ],
554 "parameters": {
555 "name": {
556 "description": "Required. The name of the jo b to cancel.\n\nAuthorization: requires `Editor` role on the parent project.",
557 "location": "path",
558 "pattern": "^projects/[^/]+/jobs/[^/]+$",
559 "required": true,
560 "type": "string"
561 }
562 },
563 "path": "v1/{+name}:cancel",
564 "request": {
565 "$ref": "GoogleCloudMlV1__CancelJobRequest"
566 },
567 "response": {
568 "$ref": "GoogleProtobuf__Empty"
569 },
570 "scopes": [
571 "https://www.googleapis.com/auth/cloud-platform"
572 ]
573 },
547 "list": { 574 "list": {
548 "description": "Lists the jobs in the project.", 575 "description": "Lists the jobs in the project.",
549 "httpMethod": "GET", 576 "httpMethod": "GET",
550 "id": "ml.projects.jobs.list", 577 "id": "ml.projects.jobs.list",
551 "parameterOrder": [ 578 "parameterOrder": [
552 "parent" 579 "parent"
553 ], 580 ],
554 "parameters": { 581 "parameters": {
582 "pageSize": {
583 "description": "Optional. The number of jobs to retrieve per \"page\" of results. If there\nare more remaining results than this number, the response message will\ncontain a valid value in the `next_page_ token` field.\n\nThe default value is 20, and the maximum page size is 100.",
584 "format": "int32",
585 "location": "query",
586 "type": "integer"
587 },
555 "parent": { 588 "parent": {
556 "description": "Required. The name of the pr oject for which to list jobs.\n\nAuthorization: requires `Viewer` role on the sp ecified project.", 589 "description": "Required. The name of the pr oject for which to list jobs.\n\nAuthorization: requires `Viewer` role on the sp ecified project.",
557 "location": "path", 590 "location": "path",
558 "pattern": "^projects/[^/]+$", 591 "pattern": "^projects/[^/]+$",
559 "required": true, 592 "required": true,
560 "type": "string" 593 "type": "string"
561 }, 594 },
562 "filter": { 595 "filter": {
563 "description": "Optional. Specifies the subs et of jobs to retrieve.", 596 "description": "Optional. Specifies the subs et of jobs to retrieve.",
564 "location": "query", 597 "location": "query",
565 "type": "string" 598 "type": "string"
566 }, 599 },
567 "pageToken": { 600 "pageToken": {
568 "description": "Optional. A page token to re quest the next page of results.\n\nYou get the token from the `next_page_token` field of the response from\nthe previous call.", 601 "description": "Optional. A page token to re quest the next page of results.\n\nYou get the token from the `next_page_token` field of the response from\nthe previous call.",
569 "location": "query", 602 "location": "query",
570 "type": "string" 603 "type": "string"
571 },
572 "pageSize": {
573 "description": "Optional. The number of jobs to retrieve per \"page\" of results. If there\nare more remaining results than this number, the response message will\ncontain a valid value in the `next_page_ token` field.\n\nThe default value is 20, and the maximum page size is 100.",
574 "format": "int32",
575 "location": "query",
576 "type": "integer"
577 } 604 }
578 }, 605 },
579 "path": "v1/{+parent}/jobs", 606 "path": "v1/{+parent}/jobs",
580 "response": { 607 "response": {
581 "$ref": "GoogleCloudMlV1__ListJobsResponse" 608 "$ref": "GoogleCloudMlV1__ListJobsResponse"
582 }, 609 },
583 "scopes": [ 610 "scopes": [
584 "https://www.googleapis.com/auth/cloud-platform" 611 "https://www.googleapis.com/auth/cloud-platform"
585 ] 612 ]
586 }, 613 },
(...skipping 40 matching lines...) Expand 10 before | Expand all | Expand 10 after
627 "path": "v1/{+parent}/jobs", 654 "path": "v1/{+parent}/jobs",
628 "request": { 655 "request": {
629 "$ref": "GoogleCloudMlV1__Job" 656 "$ref": "GoogleCloudMlV1__Job"
630 }, 657 },
631 "response": { 658 "response": {
632 "$ref": "GoogleCloudMlV1__Job" 659 "$ref": "GoogleCloudMlV1__Job"
633 }, 660 },
634 "scopes": [ 661 "scopes": [
635 "https://www.googleapis.com/auth/cloud-platform" 662 "https://www.googleapis.com/auth/cloud-platform"
636 ] 663 ]
637 },
638 "cancel": {
639 "description": "Cancels a running job.",
640 "httpMethod": "POST",
641 "id": "ml.projects.jobs.cancel",
642 "parameterOrder": [
643 "name"
644 ],
645 "parameters": {
646 "name": {
647 "description": "Required. The name of the jo b to cancel.\n\nAuthorization: requires `Editor` role on the parent project.",
648 "location": "path",
649 "pattern": "^projects/[^/]+/jobs/[^/]+$",
650 "required": true,
651 "type": "string"
652 }
653 },
654 "path": "v1/{+name}:cancel",
655 "request": {
656 "$ref": "GoogleCloudMlV1__CancelJobRequest"
657 },
658 "response": {
659 "$ref": "GoogleProtobuf__Empty"
660 },
661 "scopes": [
662 "https://www.googleapis.com/auth/cloud-platform"
663 ]
664 } 664 }
665 } 665 }
666 } 666 }
667 } 667 }
668 } 668 }
669 }, 669 },
670 "revision": "20170320", 670 "revision": "20170407",
671 "rootUrl": "https://ml.googleapis.com/", 671 "rootUrl": "https://ml.googleapis.com/",
672 "schemas": { 672 "schemas": {
673 "GoogleCloudMlV1beta1__Version": { 673 "GoogleCloudMlV1__HyperparameterSpec": {
674 "description": "Represents a version of the model.\n\nEach version i s a trained model deployed in the cloud, ready to handle\nprediction requests. A model can have multiple versions. You can get\ninformation about all of the ver sions of a given model by calling\n[projects.models.versions.list](/ml-engine/re ference/rest/v1beta1/projects.models.versions/list).", 674 "description": "Represents a set of hyperparameters to optimize.",
675 "id": "GoogleCloudMlV1beta1__Version", 675 "id": "GoogleCloudMlV1__HyperparameterSpec",
676 "properties": { 676 "properties": {
677 "runtimeVersion": { 677 "goal": {
678 "description": "Optional. The Google Cloud ML runtime versio n to use for this deployment.\nIf not set, Google Cloud ML will choose a version .", 678 "description": "Required. The type of goal to use for tuning . Available types are\n`MAXIMIZE` and `MINIMIZE`.\n\nDefaults to `MAXIMIZE`.",
679 "enum": [
680 "GOAL_TYPE_UNSPECIFIED",
681 "MAXIMIZE",
682 "MINIMIZE"
683 ],
684 "enumDescriptions": [
685 "Goal Type will default to maximize.",
686 "Maximize the goal metric.",
687 "Minimize the goal metric."
688 ],
679 "type": "string" 689 "type": "string"
680 }, 690 },
681 "lastUseTime": { 691 "hyperparameterMetricTag": {
682 "description": "Output only. The time the version was last u sed for prediction.", 692 "description": "Optional. The Tensorflow summary tag name to use for optimizing trials. For\ncurrent versions of Tensorflow, this tag name s hould exactly match what is\nshown in Tensorboard, including all scopes. For ve rsions of Tensorflow\nprior to 0.12, this should be only the tag passed to tf.Su mmary.\nBy default, \"training/hptuning/metric\" will be used.",
683 "format": "google-datetime",
684 "type": "string" 693 "type": "string"
685 }, 694 },
686 "description": { 695 "params": {
687 "description": "Optional. The description specified for the version when it was created.", 696 "description": "Required. The set of parameters to tune.",
688 "type": "string" 697 "items": {
698 "$ref": "GoogleCloudMlV1__ParameterSpec"
699 },
700 "type": "array"
689 }, 701 },
690 "deploymentUri": { 702 "maxTrials": {
691 "description": "Required. The Google Cloud Storage location of the trained model used to\ncreate the version. See the\n[overview of model de ployment](/ml-engine/docs/concepts/deployment-overview) for\nmore informaiton.\n \nWhen passing Version to\n[projects.models.versions.create](/ml-engine/referenc e/rest/v1beta1/projects.models.versions/create)\nthe model service uses the spec ified location as the source of the model.\nOnce deployed, the model version is hosted by the prediction service, so\nthis location is useful only as a historic al record.", 703 "description": "Optional. How many training trials should be attempted to optimize\nthe specified hyperparameters.\n\nDefaults to one.",
692 "type": "string" 704 "format": "int32",
705 "type": "integer"
693 }, 706 },
694 "isDefault": { 707 "maxParallelTrials": {
695 "description": "Output only. If true, this version will be u sed to handle prediction\nrequests that do not specify a version.\n\nYou can cha nge the default version by calling\n[projects.methods.versions.setDefault](/ml-e ngine/reference/rest/v1beta1/projects.models.versions/setDefault).", 708 "description": "Optional. The number of training trials to r un concurrently.\nYou can reduce the time it takes to perform hyperparameter tun ing by adding\ntrials in parallel. However, each trail only benefits from the in formation\ngained in completed trials. That means that a trial does not get acce ss to\nthe results of trials running at the same time, which could reduce the\nq uality of the overall optimization.\n\nEach trial will use the same scale tier a nd machine types.\n\nDefaults to one.",
696 "type": "boolean" 709 "format": "int32",
710 "type": "integer"
711 }
712 },
713 "type": "object"
714 },
715 "GoogleCloudMlV1__ListJobsResponse": {
716 "description": "Response message for the ListJobs method.",
717 "id": "GoogleCloudMlV1__ListJobsResponse",
718 "properties": {
719 "jobs": {
720 "description": "The list of jobs.",
721 "items": {
722 "$ref": "GoogleCloudMlV1__Job"
723 },
724 "type": "array"
697 }, 725 },
698 "createTime": { 726 "nextPageToken": {
699 "description": "Output only. The time the version was create d.", 727 "description": "Optional. Pass this token as the `page_token ` field of the request for a\nsubsequent call.",
700 "format": "google-datetime",
701 "type": "string"
702 },
703 "manualScaling": {
704 "$ref": "GoogleCloudMlV1beta1__ManualScaling",
705 "description": "Optional. Manually select the number of node s to use for serving the\nmodel. If unset (i.e., by default), the number of node s used to serve\nthe model automatically scales with traffic. However, care shou ld be\ntaken to ramp up traffic according to the model's ability to scale. If\ny our model needs to handle bursts of traffic beyond it's ability to\nscale, it is recommended you set this field appropriately."
706 },
707 "name": {
708 "description": "Required.The name specified for the version when it was created.\n\nThe version name must be unique within the model it is c reated in.",
709 "type": "string" 728 "type": "string"
710 } 729 }
711 }, 730 },
712 "type": "object" 731 "type": "object"
713 }, 732 },
714 "GoogleCloudMlV1__GetConfigResponse": { 733 "GoogleCloudMlV1__SetDefaultVersionRequest": {
715 "description": "Returns service account information associated with a project.", 734 "description": "Request message for the SetDefaultVersion request.",
716 "id": "GoogleCloudMlV1__GetConfigResponse", 735 "id": "GoogleCloudMlV1__SetDefaultVersionRequest",
736 "properties": {},
737 "type": "object"
738 },
739 "GoogleLongrunning__Operation": {
740 "description": "This resource represents a long-running operation th at is the result of a\nnetwork API call.",
741 "id": "GoogleLongrunning__Operation",
717 "properties": { 742 "properties": {
718 "serviceAccountProject": { 743 "error": {
719 "description": "The project number for `service_account`.", 744 "$ref": "GoogleRpc__Status",
720 "format": "int64", 745 "description": "The error result of the operation in case of failure or cancellation."
721 "type": "string"
722 }, 746 },
723 "serviceAccount": { 747 "metadata": {
724 "description": "The service account Cloud ML uses to access resources in the project.", 748 "additionalProperties": {
749 "description": "Properties of the object. Contains field @type with type URL.",
750 "type": "any"
751 },
752 "description": "Service-specific metadata associated with th e operation. It typically\ncontains progress information and common metadata su ch as create time.\nSome services might not provide such metadata. Any method t hat returns a\nlong-running operation should document the metadata type, if any. ",
753 "type": "object"
754 },
755 "done": {
756 "description": "If the value is `false`, it means the operat ion is still in progress.\nIf true, the operation is completed, and either `erro r` or `response` is\navailable.",
757 "type": "boolean"
758 },
759 "response": {
760 "additionalProperties": {
761 "description": "Properties of the object. Contains field @type with type URL.",
762 "type": "any"
763 },
764 "description": "The normal response of the operation in case of success. If the original\nmethod returns no data on success, such as `Delet e`, the response is\n`google.protobuf.Empty`. If the original method is standar d\n`Get`/`Create`/`Update`, the response should be the resource. For other\nmet hods, the response should have the type `XxxResponse`, where `Xxx`\nis the origi nal method name. For example, if the original method name\nis `TakeSnapshot()`, the inferred response type is\n`TakeSnapshotResponse`.",
765 "type": "object"
766 },
767 "name": {
768 "description": "The server-assigned name, which is only uniq ue within the same service that\noriginally returns it. If you use the default H TTP mapping, the\n`name` should have the format of `operations/some/unique/name` .",
725 "type": "string" 769 "type": "string"
726 } 770 }
727 }, 771 },
728 "type": "object" 772 "type": "object"
729 }, 773 },
730 "GoogleCloudMlV1__HyperparameterOutput": { 774 "GoogleCloudMlV1__Model": {
731 "description": "Represents the result of a single hyperparameter tun ing trial from a\ntraining job. The TrainingOutput object that is returned on su ccessful\ncompletion of a training job with hyperparameter tuning includes a lis t\nof HyperparameterOutput objects, one for each successful trial.", 775 "description": "Represents a machine learning solution.\n\nA model c an have multiple versions, each of which is a deployed, trained\nmodel ready to receive prediction requests. The model itself is just a\ncontainer.",
732 "id": "GoogleCloudMlV1__HyperparameterOutput", 776 "id": "GoogleCloudMlV1__Model",
733 "properties": { 777 "properties": {
734 "hyperparameters": { 778 "description": {
735 "additionalProperties": { 779 "description": "Optional. The description specified for the model when it was created.",
736 "type": "string"
737 },
738 "description": "The hyperparameters given to this trial.",
739 "type": "object"
740 },
741 "trialId": {
742 "description": "The trial id for these results.",
743 "type": "string" 780 "type": "string"
744 }, 781 },
745 "allMetrics": { 782 "onlinePredictionLogging": {
746 "description": "All recorded object metrics for this trial." , 783 "description": "Optional. If true, enables StackDriver Loggi ng for online prediction.\nDefault is false.",
784 "type": "boolean"
785 },
786 "defaultVersion": {
787 "$ref": "GoogleCloudMlV1__Version",
788 "description": "Output only. The default version of the mode l. This version will be used to\nhandle prediction requests that do not specify a version.\n\nYou can change the default version by calling\n[projects.methods.v ersions.setDefault](/ml-engine/reference/rest/v1/projects.models.versions/setDef ault)."
789 },
790 "regions": {
791 "description": "Optional. The list of regions where the mode l is going to be deployed.\nCurrently only one region per model is supported.\nD efaults to 'us-central1' if nothing is set.\nNote:\n* No matter where a model is deployed, it can always be accessed by\n users from anywhere, both for onl ine and batch prediction.\n* The region for a batch prediction job is set by t he region field when\n submitting the batch prediction job and does not take its value from\n this field.",
747 "items": { 792 "items": {
748 "$ref": "GoogleCloudMlV1_HyperparameterOutput_Hyperparam eterMetric" 793 "type": "string"
749 }, 794 },
750 "type": "array" 795 "type": "array"
751 }, 796 },
752 "finalMetric": { 797 "name": {
753 "$ref": "GoogleCloudMlV1_HyperparameterOutput_Hyperparameter Metric", 798 "description": "Required. The name specified for the model w hen it was created.\n\nThe model name must be unique within the project it is cr eated in.",
754 "description": "The final objective metric seen for this tri al."
755 }
756 },
757 "type": "object"
758 },
759 "GoogleCloudMlV1__PredictionOutput": {
760 "description": "Represents results of a prediction job.",
761 "id": "GoogleCloudMlV1__PredictionOutput",
762 "properties": {
763 "outputPath": {
764 "description": "The output Google Cloud Storage location pro vided at the job creation time.",
765 "type": "string"
766 },
767 "nodeHours": {
768 "description": "Node hours used by the batch prediction job. ",
769 "format": "double",
770 "type": "number"
771 },
772 "predictionCount": {
773 "description": "The number of generated predictions.",
774 "format": "int64",
775 "type": "string"
776 },
777 "errorCount": {
778 "description": "The number of data instances which resulted in errors.",
779 "format": "int64",
780 "type": "string" 799 "type": "string"
781 } 800 }
782 }, 801 },
783 "type": "object" 802 "type": "object"
784 }, 803 },
785 "GoogleLongrunning__ListOperationsResponse": { 804 "GoogleProtobuf__Empty": {
786 "description": "The response message for Operations.ListOperations." , 805 "description": "A generic empty message that you can re-use to avoid defining duplicated\nempty messages in your APIs. A typical example is to use i t as the request\nor the response type of an API method. For instance:\n\n se rvice Foo {\n rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty );\n }\n\nThe JSON representation for `Empty` is empty JSON object `{}`.",
787 "id": "GoogleLongrunning__ListOperationsResponse", 806 "id": "GoogleProtobuf__Empty",
807 "properties": {},
808 "type": "object"
809 },
810 "GoogleCloudMlV1__CancelJobRequest": {
811 "description": "Request message for the CancelJob method.",
812 "id": "GoogleCloudMlV1__CancelJobRequest",
813 "properties": {},
814 "type": "object"
815 },
816 "GoogleCloudMlV1__ListVersionsResponse": {
817 "description": "Response message for the ListVersions method.",
818 "id": "GoogleCloudMlV1__ListVersionsResponse",
788 "properties": { 819 "properties": {
789 "nextPageToken": { 820 "versions": {
790 "description": "The standard List next-page token.", 821 "description": "The list of versions.",
791 "type": "string"
792 },
793 "operations": {
794 "description": "A list of operations that matches the specif ied filter in the request.",
795 "items": { 822 "items": {
796 "$ref": "GoogleLongrunning__Operation" 823 "$ref": "GoogleCloudMlV1__Version"
797 }, 824 },
798 "type": "array" 825 "type": "array"
826 },
827 "nextPageToken": {
828 "description": "Optional. Pass this token as the `page_token ` field of the request for a\nsubsequent call.",
829 "type": "string"
799 } 830 }
800 }, 831 },
801 "type": "object" 832 "type": "object"
802 }, 833 },
803 "GoogleCloudMlV1__ManualScaling": { 834 "GoogleCloudMlV1beta1__ManualScaling": {
804 "description": "Options for manually scaling a model.", 835 "description": "Options for manually scaling a model.",
805 "id": "GoogleCloudMlV1__ManualScaling", 836 "id": "GoogleCloudMlV1beta1__ManualScaling",
806 "properties": { 837 "properties": {
807 "nodes": { 838 "nodes": {
808 "description": "The number of nodes to allocate for this mod el. These nodes are always up,\nstarting from the time the model is deployed, so the cost of operating\nthis model will be proportional to nodes * number of hou rs since\ndeployment.", 839 "description": "The number of nodes to allocate for this mod el. These nodes are always up,\nstarting from the time the model is deployed, so the cost of operating\nthis model will be proportional to nodes * number of hou rs since\ndeployment.",
809 "format": "int32", 840 "format": "int32",
810 "type": "integer" 841 "type": "integer"
811 } 842 }
812 }, 843 },
813 "type": "object" 844 "type": "object"
814 }, 845 },
815 "GoogleCloudMlV1__TrainingOutput": {
816 "description": "Represents results of a training job. Output only.",
817 "id": "GoogleCloudMlV1__TrainingOutput",
818 "properties": {
819 "completedTrialCount": {
820 "description": "The number of hyperparameter tuning trials t hat completed successfully.\nOnly set for hyperparameter tuning jobs.",
821 "format": "int64",
822 "type": "string"
823 },
824 "isHyperparameterTuningJob": {
825 "description": "Whether this job is a hyperparameter tuning job.",
826 "type": "boolean"
827 },
828 "consumedMLUnits": {
829 "description": "The amount of ML units consumed by the job." ,
830 "format": "double",
831 "type": "number"
832 },
833 "trials": {
834 "description": "Results for individual Hyperparameter trials .\nOnly set for hyperparameter tuning jobs.",
835 "items": {
836 "$ref": "GoogleCloudMlV1__HyperparameterOutput"
837 },
838 "type": "array"
839 }
840 },
841 "type": "object"
842 },
843 "GoogleCloudMlV1__PredictRequest": {
844 "description": "Request for predictions to be issued against a train ed model.\n\nThe body of the request is a single JSON object with a single top-l evel\nfield:\n\n<dl>\n <dt>instances</dt>\n <dd>A JSON array containing values representing the instances to use for\n prediction.</dd>\n</dl>\n\nThe str ucture of each element of the instances list is determined by your\nmodel's inpu t definition. Instances can include named inputs or can contain\nonly unlabeled values.\n\nNot all data includes named inputs. Some instances will be simple\nJS ON values (boolean, number, or string). However, instances are often lists\nof s imple values, or complex nested lists. Here are some examples of request\nbodies :\n\nCSV data with each row encoded as a string value:\n<pre>\n{\"instances\": [ \"1.0,true,\\\\\"x\\\\\"\", \"-2.0,false,\\\\\"y\\\\\"\"]}\n</pre>\nPlain text:\ n<pre>\n{\"instances\": [\"the quick brown fox\", \"la bruja le dio\"]}\n</pre>\ nSentences encoded as lists of words (vectors of strings):\n<pre>\n{\n \"instan ces\": [\n [\"the\",\"quick\",\"brown\"],\n [\"la\",\"bruja\",\"le\"],\n ...\n ]\n}\n</pre>\nFloating point scalar values:\n<pre>\n{\"instances\": [0. 0, 1.1, 2.2]}\n</pre>\nVectors of integers:\n<pre>\n{\n \"instances\": [\n [ 0, 1, 2],\n [3, 4, 5],\n ...\n ]\n}\n</pre>\nTensors (in this case, two-d imensional tensors):\n<pre>\n{\n \"instances\": [\n [\n [0, 1, 2],\n [3, 4, 5]\n ],\n ...\n ]\n}\n</pre>\nImages can be represented differe nt ways. In this encoding scheme the first\ntwo dimensions represent the rows an d columns of the image, and the third\ncontains lists (vectors) of the R, G, and B values for each pixel.\n<pre>\n{\n \"instances\": [\n [\n [\n [138, 30, 66],\n [130, 20, 56],\n ...\n ],\n [\n [126, 38, 61],\n [122, 24, 57],\n ...\n ],\n ...\n ] ,\n ...\n ]\n}\n</pre>\nJSON strings must be encoded as UTF-8. To send binar y data, you must\nbase64-encode the data and mark it as binary. To mark a JSON s tring\nas binary, replace it with a JSON object with a single attribute named `b 64`:\n<pre>{\"b64\": \"...\"} </pre>\nFor example:\n\nTwo Serialized tf.Examples (fake data, for illustrative purposes only):\n<pre>\n{\"instances\": [{\"b64\": \"X5ad6u\"}, {\"b64\": \"IA9j4nx\"}]}\n</pre>\nTwo JPEG image byte strings (fak e data, for illustrative purposes only):\n<pre>\n{\"instances\": [{\"b64\": \"AS a8asdf\"}, {\"b64\": \"JLK7ljk3\"}]}\n</pre>\nIf your data includes named refere nces, format each instance as a JSON object\nwith the named references as the ke ys:\n\nJSON input data to be preprocessed:\n<pre>\n{\n \"instances\": [\n {\ n \"a\": 1.0,\n \"b\": true,\n \"c\": \"x\"\n },\n {\n \"a\": -2.0,\n \"b\": false,\n \"c\": \"y\"\n }\n ]\n}\n</pre>\nS ome models have an underlying TensorFlow graph that accepts multiple input\ntens ors. In this case, you should use the names of JSON name/value pairs to\nidentif y the input tensors, as shown in the following exmaples:\n\nFor a graph with inp ut tensor aliases \"tag\" (string) and \"image\"\n(base64-encoded string):\n<pre >\n{\n \"instances\": [\n {\n \"tag\": \"beach\",\n \"image\": {\" b64\": \"ASa8asdf\"}\n },\n {\n \"tag\": \"car\",\n \"image\": { \"b64\": \"JLK7ljk3\"}\n }\n ]\n}\n</pre>\nFor a graph with input tensor ali ases \"tag\" (string) and \"image\"\n(3-dimensional array of 8-bit ints):\n<pre> \n{\n \"instances\": [\n {\n \"tag\": \"beach\",\n \"image\": [\n [\n [138, 30, 66],\n [130, 20, 56],\n ...\n ],\n [\n [126, 38, 61],\n [122, 24, 57],\n ...\n ],\n ...\n ]\n },\n {\n \"tag\": \"car\",\ n \"image\": [\n [\n [255, 0, 102],\n [255, 0, 97] ,\n ...\n ],\n [\n [254, 1, 101],\n [25 4, 2, 93],\n ...\n ],\n ...\n ]\n },\n ...\n ]\n}\n</pre>\nIf the call is successful, the response body will contain one pred iction\nentry per instance in the request body. If prediction fails for any\nins tance, the response body will contain no predictions and will contian\na single error entry instead.",
845 "id": "GoogleCloudMlV1__PredictRequest",
846 "properties": {
847 "httpBody": {
848 "$ref": "GoogleApi__HttpBody",
849 "description": "\nRequired. The prediction request body."
850 }
851 },
852 "type": "object"
853 },
854 "GoogleCloudMlV1_HyperparameterOutput_HyperparameterMetric": {
855 "description": "An observed value of a metric.",
856 "id": "GoogleCloudMlV1_HyperparameterOutput_HyperparameterMetric",
857 "properties": {
858 "trainingStep": {
859 "description": "The global training step for this metric.",
860 "format": "int64",
861 "type": "string"
862 },
863 "objectiveValue": {
864 "description": "The objective value at this training step.",
865 "format": "double",
866 "type": "number"
867 }
868 },
869 "type": "object"
870 },
871 "GoogleCloudMlV1__Version": {
872 "description": "Represents a version of the model.\n\nEach version i s a trained model deployed in the cloud, ready to handle\nprediction requests. A model can have multiple versions. You can get\ninformation about all of the ver sions of a given model by calling\n[projects.models.versions.list](/ml-engine/re ference/rest/v1/projects.models.versions/list).",
873 "id": "GoogleCloudMlV1__Version",
874 "properties": {
875 "runtimeVersion": {
876 "description": "Optional. The Google Cloud ML runtime versio n to use for this deployment.\nIf not set, Google Cloud ML will choose a version .",
877 "type": "string"
878 },
879 "lastUseTime": {
880 "description": "Output only. The time the version was last u sed for prediction.",
881 "format": "google-datetime",
882 "type": "string"
883 },
884 "description": {
885 "description": "Optional. The description specified for the version when it was created.",
886 "type": "string"
887 },
888 "deploymentUri": {
889 "description": "Required. The Google Cloud Storage location of the trained model used to\ncreate the version. See the\n[overview of model de ployment](/ml-engine/docs/concepts/deployment-overview) for\nmore informaiton.\n \nWhen passing Version to\n[projects.models.versions.create](/ml-engine/referenc e/rest/v1/projects.models.versions/create)\nthe model service uses the specified location as the source of the model.\nOnce deployed, the model version is hoste d by the prediction service, so\nthis location is useful only as a historical re cord.",
890 "type": "string"
891 },
892 "isDefault": {
893 "description": "Output only. If true, this version will be u sed to handle prediction\nrequests that do not specify a version.\n\nYou can cha nge the default version by calling\n[projects.methods.versions.setDefault](/ml-e ngine/reference/rest/v1/projects.models.versions/setDefault).",
894 "type": "boolean"
895 },
896 "createTime": {
897 "description": "Output only. The time the version was create d.",
898 "format": "google-datetime",
899 "type": "string"
900 },
901 "manualScaling": {
902 "$ref": "GoogleCloudMlV1__ManualScaling",
903 "description": "Optional. Manually select the number of node s to use for serving the\nmodel. If unset (i.e., by default), the number of node s used to serve\nthe model automatically scales with traffic. However, care shou ld be\ntaken to ramp up traffic according to the model's ability to scale. If\ny our model needs to handle bursts of traffic beyond it's ability to\nscale, it is recommended you set this field appropriately."
904 },
905 "name": {
906 "description": "Required.The name specified for the version when it was created.\n\nThe version name must be unique within the model it is c reated in.",
907 "type": "string"
908 }
909 },
910 "type": "object"
911 },
912 "GoogleCloudMlV1__ParameterSpec": {
913 "description": "Represents a single hyperparameter to optimize.",
914 "id": "GoogleCloudMlV1__ParameterSpec",
915 "properties": {
916 "minValue": {
917 "description": "Required if type is `DOUBLE` or `INTEGER`. T his field\nshould be unset if type is `CATEGORICAL`. This value should be intege rs if\ntype is INTEGER.",
918 "format": "double",
919 "type": "number"
920 },
921 "discreteValues": {
922 "description": "Required if type is `DISCRETE`.\nA list of f easible points.\nThe list should be in strictly increasing order. For instance, this\nparameter might have possible settings of 1.5, 2.5, and 4.0. This list\nsh ould not contain more than 1,000 values.",
923 "items": {
924 "format": "double",
925 "type": "number"
926 },
927 "type": "array"
928 },
929 "maxValue": {
930 "description": "Required if typeis `DOUBLE` or `INTEGER`. Th is field\nshould be unset if type is `CATEGORICAL`. This value should be integer s if\ntype is `INTEGER`.",
931 "format": "double",
932 "type": "number"
933 },
934 "scaleType": {
935 "description": "Optional. How the parameter should be scaled to the hypercube.\nLeave unset for categorical parameters.\nSome kind of scalin g is strongly recommended for real or integral\nparameters (e.g., `UNIT_LINEAR_S CALE`).",
936 "enum": [
937 "NONE",
938 "UNIT_LINEAR_SCALE",
939 "UNIT_LOG_SCALE",
940 "UNIT_REVERSE_LOG_SCALE"
941 ],
942 "enumDescriptions": [
943 "By default, no scaling is applied.",
944 "Scales the feasible space to (0, 1) linearly.",
945 "Scales the feasible space logarithmically to (0, 1). Th e entire feasible\nspace must be strictly positive.",
946 "Scales the feasible space \"reverse\" logarithmically t o (0, 1). The result\nis that values close to the top of the feasible space are spread out more\nthan points near the bottom. The entire feasible space must be strictly\npositive."
947 ],
948 "type": "string"
949 },
950 "type": {
951 "description": "Required. The type of the parameter.",
952 "enum": [
953 "PARAMETER_TYPE_UNSPECIFIED",
954 "DOUBLE",
955 "INTEGER",
956 "CATEGORICAL",
957 "DISCRETE"
958 ],
959 "enumDescriptions": [
960 "You must specify a valid type. Using this unspecified t ype will result in\nan error.",
961 "Type for real-valued parameters.",
962 "Type for integral parameters.",
963 "The parameter is categorical, with a value chosen from the categories\nfield.",
964 "The parameter is real valued, with a fixed set of feasi ble points. If\n`type==DISCRETE`, feasible_points must be provided, and\n{`min_v alue`, `max_value`} will be ignored."
965 ],
966 "type": "string"
967 },
968 "parameterName": {
969 "description": "Required. The parameter name must be unique amongst all ParameterConfigs in\na HyperparameterSpec message. E.g., \"learning_ rate\".",
970 "type": "string"
971 },
972 "categoricalValues": {
973 "description": "Required if type is `CATEGORICAL`. The list of possible categories.",
974 "items": {
975 "type": "string"
976 },
977 "type": "array"
978 }
979 },
980 "type": "object"
981 },
982 "GoogleCloudMlV1__PredictionInput": {
983 "description": "Represents input parameters for a prediction job.",
984 "id": "GoogleCloudMlV1__PredictionInput",
985 "properties": {
986 "modelName": {
987 "description": "Use this field if you want to use the defaul t version for the specified\nmodel. The string must use the following format:\n\ n`\"projects/<var>[YOUR_PROJECT]</var>/models/<var>[YOUR_MODEL]</var>\"`",
988 "type": "string"
989 },
990 "outputPath": {
991 "description": "Required. The output Google Cloud Storage lo cation.",
992 "type": "string"
993 },
994 "uri": {
995 "description": "Use this field if you want to specify a Goog le Cloud Storage path for\nthe model to use.",
996 "type": "string"
997 },
998 "maxWorkerCount": {
999 "description": "Optional. The maximum number of workers to b e used for parallel processing.\nDefaults to 10 if not specified.",
1000 "format": "int64",
1001 "type": "string"
1002 },
1003 "dataFormat": {
1004 "description": "Required. The format of the input data files .",
1005 "enum": [
1006 "DATA_FORMAT_UNSPECIFIED",
1007 "TEXT",
1008 "TF_RECORD",
1009 "TF_RECORD_GZIP"
1010 ],
1011 "enumDescriptions": [
1012 "Unspecified format.",
1013 "The source file is a text file with instances separated by the\nnew-line character.",
1014 "The source file is a TFRecord file.",
1015 "The source file is a GZIP-compressed TFRecord file."
1016 ],
1017 "type": "string"
1018 },
1019 "runtimeVersion": {
1020 "description": "Optional. The Google Cloud ML runtime versio n to use for this batch\nprediction. If not set, Google Cloud ML will pick the r untime version used\nduring the CreateVersion request for this model version, or choose the\nlatest stable version when model version information is not availab le\nsuch as when the model is specified by uri.",
1021 "type": "string"
1022 },
1023 "inputPaths": {
1024 "description": "Required. The Google Cloud Storage location of the input data files.\nMay contain wildcards.",
1025 "items": {
1026 "type": "string"
1027 },
1028 "type": "array"
1029 },
1030 "region": {
1031 "description": "Required. The Google Compute Engine region t o run the prediction job in.",
1032 "type": "string"
1033 },
1034 "versionName": {
1035 "description": "Use this field if you want to specify a vers ion of the model to use. The\nstring is formatted the same way as `model_version `, with the addition\nof the version information:\n\n`\"projects/<var>[YOUR_PROJ ECT]</var>/models/<var>YOUR_MODEL/versions/<var>[YOUR_VERSION]</var>\"`",
1036 "type": "string"
1037 }
1038 },
1039 "type": "object"
1040 },
1041 "GoogleCloudMlV1__OperationMetadata": {
1042 "description": "Represents the metadata of the long-running operatio n.",
1043 "id": "GoogleCloudMlV1__OperationMetadata",
1044 "properties": {
1045 "isCancellationRequested": {
1046 "description": "Indicates whether a request to cancel this o peration has been made.",
1047 "type": "boolean"
1048 },
1049 "createTime": {
1050 "description": "The time the operation was submitted.",
1051 "format": "google-datetime",
1052 "type": "string"
1053 },
1054 "modelName": {
1055 "description": "Contains the name of the model associated wi th the operation.",
1056 "type": "string"
1057 },
1058 "version": {
1059 "$ref": "GoogleCloudMlV1__Version",
1060 "description": "Contains the version associated with the ope ration."
1061 },
1062 "endTime": {
1063 "description": "The time operation processing completed.",
1064 "format": "google-datetime",
1065 "type": "string"
1066 },
1067 "operationType": {
1068 "description": "The operation type.",
1069 "enum": [
1070 "OPERATION_TYPE_UNSPECIFIED",
1071 "CREATE_VERSION",
1072 "DELETE_VERSION",
1073 "DELETE_MODEL"
1074 ],
1075 "enumDescriptions": [
1076 "Unspecified operation type.",
1077 "An operation to create a new version.",
1078 "An operation to delete an existing version.",
1079 "An operation to delete an existing model."
1080 ],
1081 "type": "string"
1082 },
1083 "startTime": {
1084 "description": "The time operation processing started.",
1085 "format": "google-datetime",
1086 "type": "string"
1087 }
1088 },
1089 "type": "object"
1090 },
1091 "GoogleCloudMlV1beta1__OperationMetadata": {
1092 "description": "Represents the metadata of the long-running operatio n.",
1093 "id": "GoogleCloudMlV1beta1__OperationMetadata",
1094 "properties": {
1095 "createTime": {
1096 "description": "The time the operation was submitted.",
1097 "format": "google-datetime",
1098 "type": "string"
1099 },
1100 "modelName": {
1101 "description": "Contains the name of the model associated wi th the operation.",
1102 "type": "string"
1103 },
1104 "version": {
1105 "$ref": "GoogleCloudMlV1beta1__Version",
1106 "description": "Contains the version associated with the ope ration."
1107 },
1108 "endTime": {
1109 "description": "The time operation processing completed.",
1110 "format": "google-datetime",
1111 "type": "string"
1112 },
1113 "operationType": {
1114 "description": "The operation type.",
1115 "enum": [
1116 "OPERATION_TYPE_UNSPECIFIED",
1117 "CREATE_VERSION",
1118 "DELETE_VERSION",
1119 "DELETE_MODEL"
1120 ],
1121 "enumDescriptions": [
1122 "Unspecified operation type.",
1123 "An operation to create a new version.",
1124 "An operation to delete an existing version.",
1125 "An operation to delete an existing model."
1126 ],
1127 "type": "string"
1128 },
1129 "startTime": {
1130 "description": "The time operation processing started.",
1131 "format": "google-datetime",
1132 "type": "string"
1133 },
1134 "isCancellationRequested": {
1135 "description": "Indicates whether a request to cancel this o peration has been made.",
1136 "type": "boolean"
1137 }
1138 },
1139 "type": "object"
1140 },
1141 "GoogleCloudMlV1__HyperparameterSpec": {
1142 "description": "Represents a set of hyperparameters to optimize.",
1143 "id": "GoogleCloudMlV1__HyperparameterSpec",
1144 "properties": {
1145 "params": {
1146 "description": "Required. The set of parameters to tune.",
1147 "items": {
1148 "$ref": "GoogleCloudMlV1__ParameterSpec"
1149 },
1150 "type": "array"
1151 },
1152 "maxTrials": {
1153 "description": "Optional. How many training trials should be attempted to optimize\nthe specified hyperparameters.\n\nDefaults to one.",
1154 "format": "int32",
1155 "type": "integer"
1156 },
1157 "maxParallelTrials": {
1158 "description": "Optional. The number of training trials to r un concurrently.\nYou can reduce the time it takes to perform hyperparameter tun ing by adding\ntrials in parallel. However, each trail only benefits from the in formation\ngained in completed trials. That means that a trial does not get acce ss to\nthe results of trials running at the same time, which could reduce the\nq uality of the overall optimization.\n\nEach trial will use the same scale tier a nd machine types.\n\nDefaults to one.",
1159 "format": "int32",
1160 "type": "integer"
1161 },
1162 "goal": {
1163 "description": "Required. The type of goal to use for tuning . Available types are\n`MAXIMIZE` and `MINIMIZE`.\n\nDefaults to `MAXIMIZE`.",
1164 "enum": [
1165 "GOAL_TYPE_UNSPECIFIED",
1166 "MAXIMIZE",
1167 "MINIMIZE"
1168 ],
1169 "enumDescriptions": [
1170 "Goal Type will default to maximize.",
1171 "Maximize the goal metric.",
1172 "Minimize the goal metric."
1173 ],
1174 "type": "string"
1175 },
1176 "hyperparameterMetricTag": {
1177 "description": "Optional. The Tensorflow summary tag name to use for optimizing trials. For\ncurrent versions of Tensorflow, this tag name s hould exactly match what is\nshown in Tensorboard, including all scopes. For ve rsions of Tensorflow\nprior to 0.12, this should be only the tag passed to tf.Su mmary.\nBy default, \"training/hptuning/metric\" will be used.",
1178 "type": "string"
1179 }
1180 },
1181 "type": "object"
1182 },
1183 "GoogleCloudMlV1__ListJobsResponse": {
1184 "description": "Response message for the ListJobs method.",
1185 "id": "GoogleCloudMlV1__ListJobsResponse",
1186 "properties": {
1187 "nextPageToken": {
1188 "description": "Optional. Pass this token as the `page_token ` field of the request for a\nsubsequent call.",
1189 "type": "string"
1190 },
1191 "jobs": {
1192 "description": "The list of jobs.",
1193 "items": {
1194 "$ref": "GoogleCloudMlV1__Job"
1195 },
1196 "type": "array"
1197 }
1198 },
1199 "type": "object"
1200 },
1201 "GoogleCloudMlV1__SetDefaultVersionRequest": {
1202 "description": "Request message for the SetDefaultVersion request.",
1203 "id": "GoogleCloudMlV1__SetDefaultVersionRequest",
1204 "properties": {},
1205 "type": "object"
1206 },
1207 "GoogleLongrunning__Operation": {
1208 "description": "This resource represents a long-running operation th at is the result of a\nnetwork API call.",
1209 "id": "GoogleLongrunning__Operation",
1210 "properties": {
1211 "response": {
1212 "additionalProperties": {
1213 "description": "Properties of the object. Contains field @type with type URL.",
1214 "type": "any"
1215 },
1216 "description": "The normal response of the operation in case of success. If the original\nmethod returns no data on success, such as `Delet e`, the response is\n`google.protobuf.Empty`. If the original method is standar d\n`Get`/`Create`/`Update`, the response should be the resource. For other\nmet hods, the response should have the type `XxxResponse`, where `Xxx`\nis the origi nal method name. For example, if the original method name\nis `TakeSnapshot()`, the inferred response type is\n`TakeSnapshotResponse`.",
1217 "type": "object"
1218 },
1219 "name": {
1220 "description": "The server-assigned name, which is only uniq ue within the same service that\noriginally returns it. If you use the default H TTP mapping, the\n`name` should have the format of `operations/some/unique/name` .",
1221 "type": "string"
1222 },
1223 "error": {
1224 "$ref": "GoogleRpc__Status",
1225 "description": "The error result of the operation in case of failure or cancellation."
1226 },
1227 "metadata": {
1228 "additionalProperties": {
1229 "description": "Properties of the object. Contains field @type with type URL.",
1230 "type": "any"
1231 },
1232 "description": "Service-specific metadata associated with th e operation. It typically\ncontains progress information and common metadata su ch as create time.\nSome services might not provide such metadata. Any method t hat returns a\nlong-running operation should document the metadata type, if any. ",
1233 "type": "object"
1234 },
1235 "done": {
1236 "description": "If the value is `false`, it means the operat ion is still in progress.\nIf true, the operation is completed, and either `erro r` or `response` is\navailable.",
1237 "type": "boolean"
1238 }
1239 },
1240 "type": "object"
1241 },
1242 "GoogleCloudMlV1__Model": {
1243 "description": "Represents a machine learning solution.\n\nA model c an have multiple versions, each of which is a deployed, trained\nmodel ready to receive prediction requests. The model itself is just a\ncontainer.",
1244 "id": "GoogleCloudMlV1__Model",
1245 "properties": {
1246 "regions": {
1247 "description": "Optional. The list of regions where the mode l is going to be deployed.\nCurrently only one region per model is supported.\nD efaults to 'us-central1' if nothing is set.\nNote:\n* No matter where a model is deployed, it can always be accessed by\n users from anywhere, both for onl ine and batch prediction.\n* The region for a batch prediction job is set by t he region field when\n submitting the batch prediction job and does not take its value from\n this field.",
1248 "items": {
1249 "type": "string"
1250 },
1251 "type": "array"
1252 },
1253 "name": {
1254 "description": "Required. The name specified for the model w hen it was created.\n\nThe model name must be unique within the project it is cr eated in.",
1255 "type": "string"
1256 },
1257 "description": {
1258 "description": "Optional. The description specified for the model when it was created.",
1259 "type": "string"
1260 },
1261 "onlinePredictionLogging": {
1262 "description": "Optional. If true, enables StackDriver Loggi ng for online prediction.\nDefault is false.",
1263 "type": "boolean"
1264 },
1265 "defaultVersion": {
1266 "$ref": "GoogleCloudMlV1__Version",
1267 "description": "Output only. The default version of the mode l. This version will be used to\nhandle prediction requests that do not specify a version.\n\nYou can change the default version by calling\n[projects.methods.v ersions.setDefault](/ml-engine/reference/rest/v1/projects.models.versions/setDef ault)."
1268 }
1269 },
1270 "type": "object"
1271 },
1272 "GoogleProtobuf__Empty": {
1273 "description": "A generic empty message that you can re-use to avoid defining duplicated\nempty messages in your APIs. A typical example is to use i t as the request\nor the response type of an API method. For instance:\n\n se rvice Foo {\n rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty );\n }\n\nThe JSON representation for `Empty` is empty JSON object `{}`.",
1274 "id": "GoogleProtobuf__Empty",
1275 "properties": {},
1276 "type": "object"
1277 },
1278 "GoogleCloudMlV1__ListVersionsResponse": {
1279 "description": "Response message for the ListVersions method.",
1280 "id": "GoogleCloudMlV1__ListVersionsResponse",
1281 "properties": {
1282 "versions": {
1283 "description": "The list of versions.",
1284 "items": {
1285 "$ref": "GoogleCloudMlV1__Version"
1286 },
1287 "type": "array"
1288 },
1289 "nextPageToken": {
1290 "description": "Optional. Pass this token as the `page_token ` field of the request for a\nsubsequent call.",
1291 "type": "string"
1292 }
1293 },
1294 "type": "object"
1295 },
1296 "GoogleCloudMlV1__CancelJobRequest": {
1297 "description": "Request message for the CancelJob method.",
1298 "id": "GoogleCloudMlV1__CancelJobRequest",
1299 "properties": {},
1300 "type": "object"
1301 },
1302 "GoogleCloudMlV1beta1__ManualScaling": {
1303 "description": "Options for manually scaling a model.",
1304 "id": "GoogleCloudMlV1beta1__ManualScaling",
1305 "properties": {
1306 "nodes": {
1307 "description": "The number of nodes to allocate for this mod el. These nodes are always up,\nstarting from the time the model is deployed, so the cost of operating\nthis model will be proportional to nodes * number of hou rs since\ndeployment.",
1308 "format": "int32",
1309 "type": "integer"
1310 }
1311 },
1312 "type": "object"
1313 },
1314 "GoogleRpc__Status": { 846 "GoogleRpc__Status": {
1315 "description": "The `Status` type defines a logical error model that is suitable for different\nprogramming environments, including REST APIs and RP C APIs. It is used by\n[gRPC](https://github.com/grpc). The error model is desig ned to be:\n\n- Simple to use and understand for most users\n- Flexible enough t o meet unexpected needs\n\n# Overview\n\nThe `Status` message contains three pie ces of data: error code, error message,\nand error details. The error code shoul d be an enum value of\ngoogle.rpc.Code, but it may accept additional error codes if needed. The\nerror message should be a developer-facing English message tha t helps\ndevelopers *understand* and *resolve* the error. If a localized user-fa cing\nerror message is needed, put the localized message in the error details or \nlocalize it in the client. The optional error details may contain arbitrary\ni nformation about the error. There is a predefined set of error detail types\nin the package `google.rpc` which can be used for common error conditions.\n\n# Lan guage mapping\n\nThe `Status` message is the logical representation of the error model, but it\nis not necessarily the actual wire format. When the `Status` mes sage is\nexposed in different client libraries and different wire protocols, it can be\nmapped differently. For example, it will likely be mapped to some except ions\nin Java, but more likely mapped to some error codes in C.\n\n# Other uses\ n\nThe error model and the `Status` message can be used in a variety of\nenviron ments, either with or without APIs, to provide a\nconsistent developer experienc e across different environments.\n\nExample uses of this error model include:\n\ n- Partial errors. If a service needs to return partial errors to the client,\n it may embed the `Status` in the normal response to indicate the partial\n errors.\n\n- Workflow errors. A typical workflow has multiple steps. Each step may\n have a `Status` message for error reporting purpose.\n\n- Batch operati ons. If a client uses batch request and batch response, the\n `Status` messag e should be used directly inside batch response, one for\n each error sub-res ponse.\n\n- Asynchronous operations. If an API call embeds asynchronous operatio n\n results in its response, the status of those operations should be\n re presented directly using the `Status` message.\n\n- Logging. If some API errors are stored in logs, the message `Status` could\n be used directly after any s tripping needed for security/privacy reasons.", 847 "description": "The `Status` type defines a logical error model that is suitable for different\nprogramming environments, including REST APIs and RP C APIs. It is used by\n[gRPC](https://github.com/grpc). The error model is desig ned to be:\n\n- Simple to use and understand for most users\n- Flexible enough t o meet unexpected needs\n\n# Overview\n\nThe `Status` message contains three pie ces of data: error code, error message,\nand error details. The error code shoul d be an enum value of\ngoogle.rpc.Code, but it may accept additional error codes if needed. The\nerror message should be a developer-facing English message tha t helps\ndevelopers *understand* and *resolve* the error. If a localized user-fa cing\nerror message is needed, put the localized message in the error details or \nlocalize it in the client. The optional error details may contain arbitrary\ni nformation about the error. There is a predefined set of error detail types\nin the package `google.rpc` which can be used for common error conditions.\n\n# Lan guage mapping\n\nThe `Status` message is the logical representation of the error model, but it\nis not necessarily the actual wire format. When the `Status` mes sage is\nexposed in different client libraries and different wire protocols, it can be\nmapped differently. For example, it will likely be mapped to some except ions\nin Java, but more likely mapped to some error codes in C.\n\n# Other uses\ n\nThe error model and the `Status` message can be used in a variety of\nenviron ments, either with or without APIs, to provide a\nconsistent developer experienc e across different environments.\n\nExample uses of this error model include:\n\ n- Partial errors. If a service needs to return partial errors to the client,\n it may embed the `Status` in the normal response to indicate the partial\n errors.\n\n- Workflow errors. A typical workflow has multiple steps. Each step may\n have a `Status` message for error reporting purpose.\n\n- Batch operati ons. If a client uses batch request and batch response, the\n `Status` messag e should be used directly inside batch response, one for\n each error sub-res ponse.\n\n- Asynchronous operations. If an API call embeds asynchronous operatio n\n results in its response, the status of those operations should be\n re presented directly using the `Status` message.\n\n- Logging. If some API errors are stored in logs, the message `Status` could\n be used directly after any s tripping needed for security/privacy reasons.",
1316 "id": "GoogleRpc__Status", 848 "id": "GoogleRpc__Status",
1317 "properties": { 849 "properties": {
850 "code": {
851 "description": "The status code, which should be an enum val ue of google.rpc.Code.",
852 "format": "int32",
853 "type": "integer"
854 },
855 "message": {
856 "description": "A developer-facing error message, which shou ld be in English. Any\nuser-facing error message should be localized and sent in the\ngoogle.rpc.Status.details field, or localized by the client.",
857 "type": "string"
858 },
1318 "details": { 859 "details": {
1319 "description": "A list of messages that carry the error deta ils. There will be a\ncommon set of message types for APIs to use.", 860 "description": "A list of messages that carry the error deta ils. There will be a\ncommon set of message types for APIs to use.",
1320 "items": { 861 "items": {
1321 "additionalProperties": { 862 "additionalProperties": {
1322 "description": "Properties of the object. Contains f ield @type with type URL.", 863 "description": "Properties of the object. Contains f ield @type with type URL.",
1323 "type": "any" 864 "type": "any"
1324 }, 865 },
1325 "type": "object" 866 "type": "object"
1326 }, 867 },
1327 "type": "array" 868 "type": "array"
1328 },
1329 "code": {
1330 "description": "The status code, which should be an enum val ue of google.rpc.Code.",
1331 "format": "int32",
1332 "type": "integer"
1333 },
1334 "message": {
1335 "description": "A developer-facing error message, which shou ld be in English. Any\nuser-facing error message should be localized and sent in the\ngoogle.rpc.Status.details field, or localized by the client.",
1336 "type": "string"
1337 } 869 }
1338 }, 870 },
1339 "type": "object" 871 "type": "object"
1340 }, 872 },
1341 "GoogleCloudMlV1__ListModelsResponse": { 873 "GoogleCloudMlV1__ListModelsResponse": {
1342 "description": "Response message for the ListModels method.", 874 "description": "Response message for the ListModels method.",
1343 "id": "GoogleCloudMlV1__ListModelsResponse", 875 "id": "GoogleCloudMlV1__ListModelsResponse",
1344 "properties": { 876 "properties": {
877 "models": {
878 "description": "The list of models.",
879 "items": {
880 "$ref": "GoogleCloudMlV1__Model"
881 },
882 "type": "array"
883 },
1345 "nextPageToken": { 884 "nextPageToken": {
1346 "description": "Optional. Pass this token as the `page_token ` field of the request for a\nsubsequent call.", 885 "description": "Optional. Pass this token as the `page_token ` field of the request for a\nsubsequent call.",
1347 "type": "string" 886 "type": "string"
1348 },
1349 "models": {
1350 "description": "The list of models.",
1351 "items": {
1352 "$ref": "GoogleCloudMlV1__Model"
1353 },
1354 "type": "array"
1355 } 887 }
1356 }, 888 },
1357 "type": "object" 889 "type": "object"
1358 }, 890 },
1359 "GoogleCloudMlV1__TrainingInput": { 891 "GoogleCloudMlV1__TrainingInput": {
1360 "description": "Represents input parameters for a training job.", 892 "description": "Represents input parameters for a training job.",
1361 "id": "GoogleCloudMlV1__TrainingInput", 893 "id": "GoogleCloudMlV1__TrainingInput",
1362 "properties": { 894 "properties": {
895 "hyperparameters": {
896 "$ref": "GoogleCloudMlV1__HyperparameterSpec",
897 "description": "Optional. The set of Hyperparameters to tune ."
898 },
899 "parameterServerCount": {
900 "description": "Optional. The number of parameter server rep licas to use for the training\njob. Each replica in the cluster will be of the t ype specified in\n`parameter_server_type`.\n\nThis value can only be used when ` scale_tier` is set to `CUSTOM`.If you\nset this value, you must also set `parame ter_server_type`.",
901 "format": "int64",
902 "type": "string"
903 },
904 "packageUris": {
905 "description": "Required. The Google Cloud Storage location of the packages with\nthe training program and any additional dependencies.\nThe maximum number of package URIs is 100.",
906 "items": {
907 "type": "string"
908 },
909 "type": "array"
910 },
911 "workerCount": {
912 "description": "Optional. The number of worker replicas to u se for the training job. Each\nreplica in the cluster will be of the type specif ied in `worker_type`.\n\nThis value can only be used when `scale_tier` is set to `CUSTOM`. If you\nset this value, you must also set `worker_type`.",
913 "format": "int64",
914 "type": "string"
915 },
916 "masterType": {
917 "description": "Optional. Specifies the type of virtual mach ine to use for your training\njob's master worker.\n\nThe following types are su pported:\n\n<dl>\n <dt>standard</dt>\n <dd>\n A basic machine configuration s uitable for training simple models with\n small to moderate datasets.\n </dd>\ n <dt>large_model</dt>\n <dd>\n A machine with a lot of memory, specially sui ted for parameter servers\n when your model is large (having many hidden layers or layers with very\n large numbers of nodes).\n </dd>\n <dt>complex_model_s </dt>\n <dd>\n A machine suitable for the master and workers of the cluster wh en your\n model requires more computation than the standard machine can handle\ n satisfactorily.\n </dd>\n <dt>complex_model_m</dt>\n <dd>\n A machine wit h roughly twice the number of cores and roughly double the\n memory of <code su ppresswarning=\"true\">complex_model_s</code>.\n </dd>\n <dt>complex_model_l</ dt>\n <dd>\n A machine with roughly twice the number of cores and roughly doub le the\n memory of <code suppresswarning=\"true\">complex_model_m</code>.\n </ dd>\n <dt>standard_gpu</dt>\n <dd>\n A machine equivalent to <code suppresswa rning=\"true\">standard</code> that\n also includes a\n <a href=\"/ml-engine/d ocs/how-tos/using-gpus\">\n GPU that you can use in your trainer</a>.\n </dd>\ n <dt>complex_model_m_gpu</dt>\n <dd>\n A machine equivalent to\n <code supp resswarning=\"true\">coplex_model_m</code> that also includes\n four GPUs.\n < /dd>\n</dl>\n\nYou must set this value when `scaleTier` is set to `CUSTOM`.",
918 "type": "string"
919 },
920 "runtimeVersion": {
921 "description": "Optional. The Google Cloud ML runtime versio n to use for training. If not\nset, Google Cloud ML will choose the latest stab le version.",
922 "type": "string"
923 },
924 "pythonModule": {
925 "description": "Required. The Python module name to run afte r installing the packages.",
926 "type": "string"
927 },
928 "args": {
929 "description": "Optional. Command line arguments to pass to the program.",
930 "items": {
931 "type": "string"
932 },
933 "type": "array"
934 },
1363 "workerType": { 935 "workerType": {
1364 "description": "Optional. Specifies the type of virtual mach ine to use for your training\njob's worker nodes.\n\nThe supported values are th e same as those described in the entry for\n`masterType`.\n\nThis value must be present when `scaleTier` is set to `CUSTOM` and\n`workerCount` is greater than z ero.", 936 "description": "Optional. Specifies the type of virtual mach ine to use for your training\njob's worker nodes.\n\nThe supported values are th e same as those described in the entry for\n`masterType`.\n\nThis value must be present when `scaleTier` is set to `CUSTOM` and\n`workerCount` is greater than z ero.",
1365 "type": "string" 937 "type": "string"
1366 }, 938 },
1367 "args": {
1368 "description": "Optional. Command line arguments to pass to the program.",
1369 "items": {
1370 "type": "string"
1371 },
1372 "type": "array"
1373 },
1374 "region": { 939 "region": {
1375 "description": "Required. The Google Compute Engine region t o run the training job in.", 940 "description": "Required. The Google Compute Engine region t o run the training job in.",
1376 "type": "string" 941 "type": "string"
1377 }, 942 },
1378 "parameterServerType": { 943 "parameterServerType": {
1379 "description": "Optional. Specifies the type of virtual mach ine to use for your training\njob's parameter server.\n\nThe supported values ar e the same as those described in the entry for\n`master_type`.\n\nThis value mus t be present when `scaleTier` is set to `CUSTOM` and\n`parameter_server_count` i s greater than zero.", 944 "description": "Optional. Specifies the type of virtual mach ine to use for your training\njob's parameter server.\n\nThe supported values ar e the same as those described in the entry for\n`master_type`.\n\nThis value mus t be present when `scaleTier` is set to `CUSTOM` and\n`parameter_server_count` i s greater than zero.",
1380 "type": "string" 945 "type": "string"
1381 }, 946 },
1382 "scaleTier": { 947 "scaleTier": {
1383 "description": "Required. Specifies the machine types, the n umber of replicas for workers\nand parameter servers.", 948 "description": "Required. Specifies the machine types, the n umber of replicas for workers\nand parameter servers.",
1384 "enum": [ 949 "enum": [
1385 "BASIC", 950 "BASIC",
1386 "STANDARD_1", 951 "STANDARD_1",
1387 "PREMIUM_1", 952 "PREMIUM_1",
1388 "BASIC_GPU", 953 "BASIC_GPU",
1389 "CUSTOM" 954 "CUSTOM"
1390 ], 955 ],
1391 "enumDescriptions": [ 956 "enumDescriptions": [
1392 "A single worker instance. This tier is suitable for lea rning how to use\nCloud ML, and for experimenting with new models using small da tasets.", 957 "A single worker instance. This tier is suitable for lea rning how to use\nCloud ML, and for experimenting with new models using small da tasets.",
1393 "Many workers and a few parameter servers.", 958 "Many workers and a few parameter servers.",
1394 "A large number of workers with many parameter servers." , 959 "A large number of workers with many parameter servers." ,
1395 "A single worker instance [with a GPU](/ml-engine/docs/h ow-tos/using-gpus).", 960 "A single worker instance [with a GPU](/ml-engine/docs/h ow-tos/using-gpus).",
1396 "The CUSTOM tier is not a set tier, but rather enables y ou to use your\nown cluster specification. When you use this tier, set values to \nconfigure your processing cluster according to these guidelines:\n\n* You _m ust_ set `TrainingInput.masterType` to specify the type\n of machine to use f or your master node. This is the only required\n setting.\n\n* You _may_ se t `TrainingInput.workerCount` to specify the number of\n workers to use. If y ou specify one or more workers, you _must_ also\n set `TrainingInput.workerTy pe` to specify the type of machine to use\n for your worker nodes.\n\n* You _may_ set `TrainingInput.parameterServerCount` to specify the\n number of pa rameter servers to use. If you specify one or more\n parameter servers, you _ must_ also set\n `TrainingInput.parameterServerType` to specify the type of m achine to\n use for your parameter servers.\n\nNote that all of your workers must use the same machine type, which can\nbe different from your parameter serv er type and master type. Your\nparameter servers must likewise use the same mach ine type, which can be\ndifferent from your worker type and master type." 961 "The CUSTOM tier is not a set tier, but rather enables y ou to use your\nown cluster specification. When you use this tier, set values to \nconfigure your processing cluster according to these guidelines:\n\n* You _m ust_ set `TrainingInput.masterType` to specify the type\n of machine to use f or your master node. This is the only required\n setting.\n\n* You _may_ se t `TrainingInput.workerCount` to specify the number of\n workers to use. If y ou specify one or more workers, you _must_ also\n set `TrainingInput.workerTy pe` to specify the type of machine to use\n for your worker nodes.\n\n* You _may_ set `TrainingInput.parameterServerCount` to specify the\n number of pa rameter servers to use. If you specify one or more\n parameter servers, you _ must_ also set\n `TrainingInput.parameterServerType` to specify the type of m achine to\n use for your parameter servers.\n\nNote that all of your workers must use the same machine type, which can\nbe different from your parameter serv er type and master type. Your\nparameter servers must likewise use the same mach ine type, which can be\ndifferent from your worker type and master type."
1397 ], 962 ],
1398 "type": "string" 963 "type": "string"
1399 }, 964 },
1400 "jobDir": { 965 "jobDir": {
1401 "description": "Optional. A Google Cloud Storage path in whi ch to store training outputs\nand other data needed for training. This path is p assed to your TensorFlow\nprogram as the 'job_dir' command-line argument. The be nefit of specifying\nthis field is that Cloud ML validates the path for use in t raining.", 966 "description": "Optional. A Google Cloud Storage path in whi ch to store training outputs\nand other data needed for training. This path is p assed to your TensorFlow\nprogram as the 'job_dir' command-line argument. The be nefit of specifying\nthis field is that Cloud ML validates the path for use in t raining.",
1402 "type": "string" 967 "type": "string"
1403 },
1404 "hyperparameters": {
1405 "$ref": "GoogleCloudMlV1__HyperparameterSpec",
1406 "description": "Optional. The set of Hyperparameters to tune ."
1407 },
1408 "parameterServerCount": {
1409 "description": "Optional. The number of parameter server rep licas to use for the training\njob. Each replica in the cluster will be of the t ype specified in\n`parameter_server_type`.\n\nThis value can only be used when ` scale_tier` is set to `CUSTOM`.If you\nset this value, you must also set `parame ter_server_type`.",
1410 "format": "int64",
1411 "type": "string"
1412 },
1413 "packageUris": {
1414 "description": "Required. The Google Cloud Storage location of the packages with\nthe training program and any additional dependencies.",
1415 "items": {
1416 "type": "string"
1417 },
1418 "type": "array"
1419 },
1420 "workerCount": {
1421 "description": "Optional. The number of worker replicas to u se for the training job. Each\nreplica in the cluster will be of the type specif ied in `worker_type`.\n\nThis value can only be used when `scale_tier` is set to `CUSTOM`. If you\nset this value, you must also set `worker_type`.",
1422 "format": "int64",
1423 "type": "string"
1424 },
1425 "masterType": {
1426 "description": "Optional. Specifies the type of virtual mach ine to use for your training\njob's master worker.\n\nThe following types are su pported:\n\n<dl>\n <dt>standard</dt>\n <dd>\n A basic machine configuration s uitable for training simple models with\n small to moderate datasets.\n </dd>\ n <dt>large_model</dt>\n <dd>\n A machine with a lot of memory, specially sui ted for parameter servers\n when your model is large (having many hidden layers or layers with very\n large numbers of nodes).\n </dd>\n <dt>complex_model_s </dt>\n <dd>\n A machine suitable for the master and workers of the cluster wh en your\n model requires more computation than the standard machine can handle\ n satisfactorily.\n </dd>\n <dt>complex_model_m</dt>\n <dd>\n A machine wit h roughly twice the number of cores and roughly double the\n memory of <code su ppresswarning=\"true\">complex_model_s</code>.\n </dd>\n <dt>complex_model_l</ dt>\n <dd>\n A machine with roughly twice the number of cores and roughly doub le the\n memory of <code suppresswarning=\"true\">complex_model_m</code>.\n </ dd>\n <dt>standard_gpu</dt>\n <dd>\n A machine equivalent to <code suppresswa rning=\"true\">standard</code> that\n also includes a\n <a href=\"/ml-engine/d ocs/how-tos/using-gpus\">\n GPU that you can use in your trainer</a>.\n </dd>\ n <dt>complex_model_m_gpu</dt>\n <dd>\n A machine equivalent to\n <code supp resswarning=\"true\">coplex_model_m</code> that also includes\n four GPUs.\n < /dd>\n</dl>\n\nYou must set this value when `scaleTier` is set to `CUSTOM`.",
1427 "type": "string"
1428 },
1429 "runtimeVersion": {
1430 "description": "Optional. The Google Cloud ML runtime versio n to use for training. If not\nset, Google Cloud ML will choose the latest stab le version.",
1431 "type": "string"
1432 },
1433 "pythonModule": {
1434 "description": "Required. The Python module name to run afte r installing the packages.",
1435 "type": "string"
1436 } 968 }
1437 }, 969 },
1438 "type": "object" 970 "type": "object"
1439 }, 971 },
1440 "GoogleCloudMlV1__Job": { 972 "GoogleCloudMlV1__Job": {
1441 "description": "Represents a training or prediction job.", 973 "description": "Represents a training or prediction job.",
1442 "id": "GoogleCloudMlV1__Job", 974 "id": "GoogleCloudMlV1__Job",
1443 "properties": { 975 "properties": {
1444 "jobId": {
1445 "description": "Required. The user-specified id of the job." ,
1446 "type": "string"
1447 },
1448 "errorMessage": {
1449 "description": "Output only. The details of a failure or a c ancellation.",
1450 "type": "string"
1451 },
1452 "endTime": { 976 "endTime": {
1453 "description": "Output only. When the job processing was com pleted.", 977 "description": "Output only. When the job processing was com pleted.",
1454 "format": "google-datetime", 978 "format": "google-datetime",
1455 "type": "string" 979 "type": "string"
1456 }, 980 },
1457 "startTime": { 981 "startTime": {
1458 "description": "Output only. When the job processing was sta rted.", 982 "description": "Output only. When the job processing was sta rted.",
1459 "format": "google-datetime", 983 "format": "google-datetime",
1460 "type": "string" 984 "type": "string"
1461 }, 985 },
(...skipping 34 matching lines...) Expand 10 before | Expand all | Expand 10 after
1496 "The job state is unspecified.", 1020 "The job state is unspecified.",
1497 "The job has been just created and processing has not ye t begun.", 1021 "The job has been just created and processing has not ye t begun.",
1498 "The service is preparing to run the job.", 1022 "The service is preparing to run the job.",
1499 "The job is in progress.", 1023 "The job is in progress.",
1500 "The job completed successfully.", 1024 "The job completed successfully.",
1501 "The job failed.\n`error_message` should contain the det ails of the failure.", 1025 "The job failed.\n`error_message` should contain the det ails of the failure.",
1502 "The job is being cancelled.\n`error_message` should des cribe the reason for the cancellation.", 1026 "The job is being cancelled.\n`error_message` should des cribe the reason for the cancellation.",
1503 "The job has been cancelled.\n`error_message` should des cribe the reason for the cancellation." 1027 "The job has been cancelled.\n`error_message` should des cribe the reason for the cancellation."
1504 ], 1028 ],
1505 "type": "string" 1029 "type": "string"
1030 },
1031 "jobId": {
1032 "description": "Required. The user-specified id of the job." ,
1033 "type": "string"
1034 },
1035 "errorMessage": {
1036 "description": "Output only. The details of a failure or a c ancellation.",
1037 "type": "string"
1506 } 1038 }
1507 }, 1039 },
1508 "type": "object" 1040 "type": "object"
1509 }, 1041 },
1510 "GoogleApi__HttpBody": { 1042 "GoogleApi__HttpBody": {
1511 "description": "Message that represents an arbitrary HTTP body. It s hould only be used for\npayload formats that can't be represented as JSON, such as raw binary or\nan HTML page.\n\n\nThis message can be used both in streaming and non-streaming API methods in\nthe request as well as the response.\n\nIt can be used as a top-level request field, which is convenient if one\nwants to extr act parameters from either the URL or HTTP template into the\nrequest fields and also want access to the raw HTTP body.\n\nExample:\n\n message GetResourceRe quest {\n // A unique request id.\n string request_id = 1;\n\n // The raw HTTP body is bound to this field.\n google.api.HttpBody http_body = 2;\n }\n\n service ResourceService {\n rpc GetResource(GetResourceR equest) returns (google.api.HttpBody);\n rpc UpdateResource(google.api.Http Body) returns (google.protobuf.Empty);\n }\n\nExample with streaming methods: \n\n service CaldavService {\n rpc GetCalendar(stream google.api.HttpBod y)\n returns (stream google.api.HttpBody);\n rpc UpdateCalendar(stre am google.api.HttpBody)\n returns (stream google.api.HttpBody);\n }\n\ nUse of this type only changes how the request and response bodies are\nhandled, all other features will continue to work unchanged.", 1043 "description": "Message that represents an arbitrary HTTP body. It s hould only be used for\npayload formats that can't be represented as JSON, such as raw binary or\nan HTML page.\n\n\nThis message can be used both in streaming and non-streaming API methods in\nthe request as well as the response.\n\nIt can be used as a top-level request field, which is convenient if one\nwants to extr act parameters from either the URL or HTTP template into the\nrequest fields and also want access to the raw HTTP body.\n\nExample:\n\n message GetResourceRe quest {\n // A unique request id.\n string request_id = 1;\n\n // The raw HTTP body is bound to this field.\n google.api.HttpBody http_body = 2;\n }\n\n service ResourceService {\n rpc GetResource(GetResourceR equest) returns (google.api.HttpBody);\n rpc UpdateResource(google.api.Http Body) returns (google.protobuf.Empty);\n }\n\nExample with streaming methods: \n\n service CaldavService {\n rpc GetCalendar(stream google.api.HttpBod y)\n returns (stream google.api.HttpBody);\n rpc UpdateCalendar(stre am google.api.HttpBody)\n returns (stream google.api.HttpBody);\n }\n\ nUse of this type only changes how the request and response bodies are\nhandled, all other features will continue to work unchanged.",
1512 "id": "GoogleApi__HttpBody", 1044 "id": "GoogleApi__HttpBody",
1513 "properties": { 1045 "properties": {
1514 "data": { 1046 "data": {
1515 "description": "HTTP body binary data.", 1047 "description": "HTTP body binary data.",
1516 "format": "byte", 1048 "format": "byte",
1517 "type": "string" 1049 "type": "string"
1518 }, 1050 },
1519 "contentType": { 1051 "contentType": {
1520 "description": "The HTTP Content-Type string representing th e content type of the body.", 1052 "description": "The HTTP Content-Type string representing th e content type of the body.",
1521 "type": "string" 1053 "type": "string"
1522 } 1054 }
1523 }, 1055 },
1056 "type": "object"
1057 },
1058 "GoogleCloudMlV1__GetConfigResponse": {
1059 "description": "Returns service account information associated with a project.",
1060 "id": "GoogleCloudMlV1__GetConfigResponse",
1061 "properties": {
1062 "serviceAccountProject": {
1063 "description": "The project number for `service_account`.",
1064 "format": "int64",
1065 "type": "string"
1066 },
1067 "serviceAccount": {
1068 "description": "The service account Cloud ML uses to access resources in the project.",
1069 "type": "string"
1070 }
1071 },
1072 "type": "object"
1073 },
1074 "GoogleCloudMlV1beta1__Version": {
1075 "description": "Represents a version of the model.\n\nEach version i s a trained model deployed in the cloud, ready to handle\nprediction requests. A model can have multiple versions. You can get\ninformation about all of the ver sions of a given model by calling\n[projects.models.versions.list](/ml-engine/re ference/rest/v1beta1/projects.models.versions/list).",
1076 "id": "GoogleCloudMlV1beta1__Version",
1077 "properties": {
1078 "lastUseTime": {
1079 "description": "Output only. The time the version was last u sed for prediction.",
1080 "format": "google-datetime",
1081 "type": "string"
1082 },
1083 "runtimeVersion": {
1084 "description": "Optional. The Google Cloud ML runtime versio n to use for this deployment.\nIf not set, Google Cloud ML will choose a version .",
1085 "type": "string"
1086 },
1087 "description": {
1088 "description": "Optional. The description specified for the version when it was created.",
1089 "type": "string"
1090 },
1091 "deploymentUri": {
1092 "description": "Required. The Google Cloud Storage location of the trained model used to\ncreate the version. See the\n[overview of model\nd eployment](/ml-engine/docs/concepts/deployment-overview) for more\ninformaiton.\ n\nWhen passing Version to\n[projects.models.versions.create](/ml-engine/referen ce/rest/v1beta1/projects.models.versions/create)\nthe model service uses the spe cified location as the source of the model.\nOnce deployed, the model version is hosted by the prediction service, so\nthis location is useful only as a histori cal record.\nThe total number of model files can't exceed 1000.",
1093 "type": "string"
1094 },
1095 "isDefault": {
1096 "description": "Output only. If true, this version will be u sed to handle prediction\nrequests that do not specify a version.\n\nYou can cha nge the default version by calling\n[projects.methods.versions.setDefault](/ml-e ngine/reference/rest/v1beta1/projects.models.versions/setDefault).",
1097 "type": "boolean"
1098 },
1099 "createTime": {
1100 "description": "Output only. The time the version was create d.",
1101 "format": "google-datetime",
1102 "type": "string"
1103 },
1104 "manualScaling": {
1105 "$ref": "GoogleCloudMlV1beta1__ManualScaling",
1106 "description": "Optional. Manually select the number of node s to use for serving the\nmodel. If unset (i.e., by default), the number of node s used to serve\nthe model automatically scales with traffic. However, care shou ld be\ntaken to ramp up traffic according to the model's ability to scale. If\ny our model needs to handle bursts of traffic beyond it's ability to\nscale, it is recommended you set this field appropriately."
1107 },
1108 "name": {
1109 "description": "Required.The name specified for the version when it was created.\n\nThe version name must be unique within the model it is c reated in.",
1110 "type": "string"
1111 }
1112 },
1113 "type": "object"
1114 },
1115 "GoogleCloudMlV1__HyperparameterOutput": {
1116 "description": "Represents the result of a single hyperparameter tun ing trial from a\ntraining job. The TrainingOutput object that is returned on su ccessful\ncompletion of a training job with hyperparameter tuning includes a lis t\nof HyperparameterOutput objects, one for each successful trial.",
1117 "id": "GoogleCloudMlV1__HyperparameterOutput",
1118 "properties": {
1119 "allMetrics": {
1120 "description": "All recorded object metrics for this trial." ,
1121 "items": {
1122 "$ref": "GoogleCloudMlV1_HyperparameterOutput_Hyperparam eterMetric"
1123 },
1124 "type": "array"
1125 },
1126 "finalMetric": {
1127 "$ref": "GoogleCloudMlV1_HyperparameterOutput_Hyperparameter Metric",
1128 "description": "The final objective metric seen for this tri al."
1129 },
1130 "hyperparameters": {
1131 "additionalProperties": {
1132 "type": "string"
1133 },
1134 "description": "The hyperparameters given to this trial.",
1135 "type": "object"
1136 },
1137 "trialId": {
1138 "description": "The trial id for these results.",
1139 "type": "string"
1140 }
1141 },
1142 "type": "object"
1143 },
1144 "GoogleCloudMlV1__PredictionOutput": {
1145 "description": "Represents results of a prediction job.",
1146 "id": "GoogleCloudMlV1__PredictionOutput",
1147 "properties": {
1148 "outputPath": {
1149 "description": "The output Google Cloud Storage location pro vided at the job creation time.",
1150 "type": "string"
1151 },
1152 "nodeHours": {
1153 "description": "Node hours used by the batch prediction job. ",
1154 "format": "double",
1155 "type": "number"
1156 },
1157 "predictionCount": {
1158 "description": "The number of generated predictions.",
1159 "format": "int64",
1160 "type": "string"
1161 },
1162 "errorCount": {
1163 "description": "The number of data instances which resulted in errors.",
1164 "format": "int64",
1165 "type": "string"
1166 }
1167 },
1168 "type": "object"
1169 },
1170 "GoogleLongrunning__ListOperationsResponse": {
1171 "description": "The response message for Operations.ListOperations." ,
1172 "id": "GoogleLongrunning__ListOperationsResponse",
1173 "properties": {
1174 "operations": {
1175 "description": "A list of operations that matches the specif ied filter in the request.",
1176 "items": {
1177 "$ref": "GoogleLongrunning__Operation"
1178 },
1179 "type": "array"
1180 },
1181 "nextPageToken": {
1182 "description": "The standard List next-page token.",
1183 "type": "string"
1184 }
1185 },
1186 "type": "object"
1187 },
1188 "GoogleCloudMlV1__ManualScaling": {
1189 "description": "Options for manually scaling a model.",
1190 "id": "GoogleCloudMlV1__ManualScaling",
1191 "properties": {
1192 "nodes": {
1193 "description": "The number of nodes to allocate for this mod el. These nodes are always up,\nstarting from the time the model is deployed, so the cost of operating\nthis model will be proportional to nodes * number of hou rs since\ndeployment.",
1194 "format": "int32",
1195 "type": "integer"
1196 }
1197 },
1198 "type": "object"
1199 },
1200 "GoogleCloudMlV1__TrainingOutput": {
1201 "description": "Represents results of a training job. Output only.",
1202 "id": "GoogleCloudMlV1__TrainingOutput",
1203 "properties": {
1204 "completedTrialCount": {
1205 "description": "The number of hyperparameter tuning trials t hat completed successfully.\nOnly set for hyperparameter tuning jobs.",
1206 "format": "int64",
1207 "type": "string"
1208 },
1209 "isHyperparameterTuningJob": {
1210 "description": "Whether this job is a hyperparameter tuning job.",
1211 "type": "boolean"
1212 },
1213 "consumedMLUnits": {
1214 "description": "The amount of ML units consumed by the job." ,
1215 "format": "double",
1216 "type": "number"
1217 },
1218 "trials": {
1219 "description": "Results for individual Hyperparameter trials .\nOnly set for hyperparameter tuning jobs.",
1220 "items": {
1221 "$ref": "GoogleCloudMlV1__HyperparameterOutput"
1222 },
1223 "type": "array"
1224 }
1225 },
1226 "type": "object"
1227 },
1228 "GoogleCloudMlV1__PredictRequest": {
1229 "description": "Request for predictions to be issued against a train ed model.\n\nThe body of the request is a single JSON object with a single top-l evel\nfield:\n\n<dl>\n <dt>instances</dt>\n <dd>A JSON array containing values representing the instances to use for\n prediction.</dd>\n</dl>\n\nThe str ucture of each element of the instances list is determined by your\nmodel's inpu t definition. Instances can include named inputs or can contain\nonly unlabeled values.\n\nNot all data includes named inputs. Some instances will be simple\nJS ON values (boolean, number, or string). However, instances are often lists\nof s imple values, or complex nested lists. Here are some examples of request\nbodies :\n\nCSV data with each row encoded as a string value:\n<pre>\n{\"instances\": [ \"1.0,true,\\\\\"x\\\\\"\", \"-2.0,false,\\\\\"y\\\\\"\"]}\n</pre>\nPlain text:\ n<pre>\n{\"instances\": [\"the quick brown fox\", \"la bruja le dio\"]}\n</pre>\ nSentences encoded as lists of words (vectors of strings):\n<pre>\n{\n \"instan ces\": [\n [\"the\",\"quick\",\"brown\"],\n [\"la\",\"bruja\",\"le\"],\n ...\n ]\n}\n</pre>\nFloating point scalar values:\n<pre>\n{\"instances\": [0. 0, 1.1, 2.2]}\n</pre>\nVectors of integers:\n<pre>\n{\n \"instances\": [\n [ 0, 1, 2],\n [3, 4, 5],\n ...\n ]\n}\n</pre>\nTensors (in this case, two-d imensional tensors):\n<pre>\n{\n \"instances\": [\n [\n [0, 1, 2],\n [3, 4, 5]\n ],\n ...\n ]\n}\n</pre>\nImages can be represented differe nt ways. In this encoding scheme the first\ntwo dimensions represent the rows an d columns of the image, and the third\ncontains lists (vectors) of the R, G, and B values for each pixel.\n<pre>\n{\n \"instances\": [\n [\n [\n [138, 30, 66],\n [130, 20, 56],\n ...\n ],\n [\n [126, 38, 61],\n [122, 24, 57],\n ...\n ],\n ...\n ] ,\n ...\n ]\n}\n</pre>\nJSON strings must be encoded as UTF-8. To send binar y data, you must\nbase64-encode the data and mark it as binary. To mark a JSON s tring\nas binary, replace it with a JSON object with a single attribute named `b 64`:\n<pre>{\"b64\": \"...\"} </pre>\nFor example:\n\nTwo Serialized tf.Examples (fake data, for illustrative purposes only):\n<pre>\n{\"instances\": [{\"b64\": \"X5ad6u\"}, {\"b64\": \"IA9j4nx\"}]}\n</pre>\nTwo JPEG image byte strings (fak e data, for illustrative purposes only):\n<pre>\n{\"instances\": [{\"b64\": \"AS a8asdf\"}, {\"b64\": \"JLK7ljk3\"}]}\n</pre>\nIf your data includes named refere nces, format each instance as a JSON object\nwith the named references as the ke ys:\n\nJSON input data to be preprocessed:\n<pre>\n{\n \"instances\": [\n {\ n \"a\": 1.0,\n \"b\": true,\n \"c\": \"x\"\n },\n {\n \"a\": -2.0,\n \"b\": false,\n \"c\": \"y\"\n }\n ]\n}\n</pre>\nS ome models have an underlying TensorFlow graph that accepts multiple input\ntens ors. In this case, you should use the names of JSON name/value pairs to\nidentif y the input tensors, as shown in the following exmaples:\n\nFor a graph with inp ut tensor aliases \"tag\" (string) and \"image\"\n(base64-encoded string):\n<pre >\n{\n \"instances\": [\n {\n \"tag\": \"beach\",\n \"image\": {\" b64\": \"ASa8asdf\"}\n },\n {\n \"tag\": \"car\",\n \"image\": { \"b64\": \"JLK7ljk3\"}\n }\n ]\n}\n</pre>\nFor a graph with input tensor ali ases \"tag\" (string) and \"image\"\n(3-dimensional array of 8-bit ints):\n<pre> \n{\n \"instances\": [\n {\n \"tag\": \"beach\",\n \"image\": [\n [\n [138, 30, 66],\n [130, 20, 56],\n ...\n ],\n [\n [126, 38, 61],\n [122, 24, 57],\n ...\n ],\n ...\n ]\n },\n {\n \"tag\": \"car\",\ n \"image\": [\n [\n [255, 0, 102],\n [255, 0, 97] ,\n ...\n ],\n [\n [254, 1, 101],\n [25 4, 2, 93],\n ...\n ],\n ...\n ]\n },\n ...\n ]\n}\n</pre>\nIf the call is successful, the response body will contain one pred iction\nentry per instance in the request body. If prediction fails for any\nins tance, the response body will contain no predictions and will contian\na single error entry instead.",
1230 "id": "GoogleCloudMlV1__PredictRequest",
1231 "properties": {
1232 "httpBody": {
1233 "$ref": "GoogleApi__HttpBody",
1234 "description": "\nRequired. The prediction request body."
1235 }
1236 },
1237 "type": "object"
1238 },
1239 "GoogleCloudMlV1_HyperparameterOutput_HyperparameterMetric": {
1240 "description": "An observed value of a metric.",
1241 "id": "GoogleCloudMlV1_HyperparameterOutput_HyperparameterMetric",
1242 "properties": {
1243 "trainingStep": {
1244 "description": "The global training step for this metric.",
1245 "format": "int64",
1246 "type": "string"
1247 },
1248 "objectiveValue": {
1249 "description": "The objective value at this training step.",
1250 "format": "double",
1251 "type": "number"
1252 }
1253 },
1254 "type": "object"
1255 },
1256 "GoogleCloudMlV1__Version": {
1257 "description": "Represents a version of the model.\n\nEach version i s a trained model deployed in the cloud, ready to handle\nprediction requests. A model can have multiple versions. You can get\ninformation about all of the ver sions of a given model by calling\n[projects.models.versions.list](/ml-engine/re ference/rest/v1/projects.models.versions/list).",
1258 "id": "GoogleCloudMlV1__Version",
1259 "properties": {
1260 "runtimeVersion": {
1261 "description": "Optional. The Google Cloud ML runtime versio n to use for this deployment.\nIf not set, Google Cloud ML will choose a version .",
1262 "type": "string"
1263 },
1264 "lastUseTime": {
1265 "description": "Output only. The time the version was last u sed for prediction.",
1266 "format": "google-datetime",
1267 "type": "string"
1268 },
1269 "description": {
1270 "description": "Optional. The description specified for the version when it was created.",
1271 "type": "string"
1272 },
1273 "deploymentUri": {
1274 "description": "Required. The Google Cloud Storage location of the trained model used to\ncreate the version. See the\n[overview of model\nd eployment](/ml-engine/docs/concepts/deployment-overview) for more\ninformaiton.\ n\nWhen passing Version to\n[projects.models.versions.create](/ml-engine/referen ce/rest/v1/projects.models.versions/create)\nthe model service uses the specifie d location as the source of the model.\nOnce deployed, the model version is host ed by the prediction service, so\nthis location is useful only as a historical r ecord.\nThe total number of model files can't exceed 1000.",
1275 "type": "string"
1276 },
1277 "isDefault": {
1278 "description": "Output only. If true, this version will be u sed to handle prediction\nrequests that do not specify a version.\n\nYou can cha nge the default version by calling\n[projects.methods.versions.setDefault](/ml-e ngine/reference/rest/v1/projects.models.versions/setDefault).",
1279 "type": "boolean"
1280 },
1281 "createTime": {
1282 "description": "Output only. The time the version was create d.",
1283 "format": "google-datetime",
1284 "type": "string"
1285 },
1286 "manualScaling": {
1287 "$ref": "GoogleCloudMlV1__ManualScaling",
1288 "description": "Optional. Manually select the number of node s to use for serving the\nmodel. If unset (i.e., by default), the number of node s used to serve\nthe model automatically scales with traffic. However, care shou ld be\ntaken to ramp up traffic according to the model's ability to scale. If\ny our model needs to handle bursts of traffic beyond it's ability to\nscale, it is recommended you set this field appropriately."
1289 },
1290 "name": {
1291 "description": "Required.The name specified for the version when it was created.\n\nThe version name must be unique within the model it is c reated in.",
1292 "type": "string"
1293 }
1294 },
1295 "type": "object"
1296 },
1297 "GoogleCloudMlV1__ParameterSpec": {
1298 "description": "Represents a single hyperparameter to optimize.",
1299 "id": "GoogleCloudMlV1__ParameterSpec",
1300 "properties": {
1301 "minValue": {
1302 "description": "Required if type is `DOUBLE` or `INTEGER`. T his field\nshould be unset if type is `CATEGORICAL`. This value should be intege rs if\ntype is INTEGER.",
1303 "format": "double",
1304 "type": "number"
1305 },
1306 "discreteValues": {
1307 "description": "Required if type is `DISCRETE`.\nA list of f easible points.\nThe list should be in strictly increasing order. For instance, this\nparameter might have possible settings of 1.5, 2.5, and 4.0. This list\nsh ould not contain more than 1,000 values.",
1308 "items": {
1309 "format": "double",
1310 "type": "number"
1311 },
1312 "type": "array"
1313 },
1314 "scaleType": {
1315 "description": "Optional. How the parameter should be scaled to the hypercube.\nLeave unset for categorical parameters.\nSome kind of scalin g is strongly recommended for real or integral\nparameters (e.g., `UNIT_LINEAR_S CALE`).",
1316 "enum": [
1317 "NONE",
1318 "UNIT_LINEAR_SCALE",
1319 "UNIT_LOG_SCALE",
1320 "UNIT_REVERSE_LOG_SCALE"
1321 ],
1322 "enumDescriptions": [
1323 "By default, no scaling is applied.",
1324 "Scales the feasible space to (0, 1) linearly.",
1325 "Scales the feasible space logarithmically to (0, 1). Th e entire feasible\nspace must be strictly positive.",
1326 "Scales the feasible space \"reverse\" logarithmically t o (0, 1). The result\nis that values close to the top of the feasible space are spread out more\nthan points near the bottom. The entire feasible space must be strictly\npositive."
1327 ],
1328 "type": "string"
1329 },
1330 "maxValue": {
1331 "description": "Required if typeis `DOUBLE` or `INTEGER`. Th is field\nshould be unset if type is `CATEGORICAL`. This value should be integer s if\ntype is `INTEGER`.",
1332 "format": "double",
1333 "type": "number"
1334 },
1335 "type": {
1336 "description": "Required. The type of the parameter.",
1337 "enum": [
1338 "PARAMETER_TYPE_UNSPECIFIED",
1339 "DOUBLE",
1340 "INTEGER",
1341 "CATEGORICAL",
1342 "DISCRETE"
1343 ],
1344 "enumDescriptions": [
1345 "You must specify a valid type. Using this unspecified t ype will result in\nan error.",
1346 "Type for real-valued parameters.",
1347 "Type for integral parameters.",
1348 "The parameter is categorical, with a value chosen from the categories\nfield.",
1349 "The parameter is real valued, with a fixed set of feasi ble points. If\n`type==DISCRETE`, feasible_points must be provided, and\n{`min_v alue`, `max_value`} will be ignored."
1350 ],
1351 "type": "string"
1352 },
1353 "parameterName": {
1354 "description": "Required. The parameter name must be unique amongst all ParameterConfigs in\na HyperparameterSpec message. E.g., \"learning_ rate\".",
1355 "type": "string"
1356 },
1357 "categoricalValues": {
1358 "description": "Required if type is `CATEGORICAL`. The list of possible categories.",
1359 "items": {
1360 "type": "string"
1361 },
1362 "type": "array"
1363 }
1364 },
1365 "type": "object"
1366 },
1367 "GoogleCloudMlV1__PredictionInput": {
1368 "description": "Represents input parameters for a prediction job.",
1369 "id": "GoogleCloudMlV1__PredictionInput",
1370 "properties": {
1371 "region": {
1372 "description": "Required. The Google Compute Engine region t o run the prediction job in.",
1373 "type": "string"
1374 },
1375 "versionName": {
1376 "description": "Use this field if you want to specify a vers ion of the model to use. The\nstring is formatted the same way as `model_version `, with the addition\nof the version information:\n\n`\"projects/<var>[YOUR_PROJ ECT]</var>/models/<var>YOUR_MODEL/versions/<var>[YOUR_VERSION]</var>\"`",
1377 "type": "string"
1378 },
1379 "modelName": {
1380 "description": "Use this field if you want to use the defaul t version for the specified\nmodel. The string must use the following format:\n\ n`\"projects/<var>[YOUR_PROJECT]</var>/models/<var>[YOUR_MODEL]</var>\"`",
1381 "type": "string"
1382 },
1383 "outputPath": {
1384 "description": "Required. The output Google Cloud Storage lo cation.",
1385 "type": "string"
1386 },
1387 "uri": {
1388 "description": "Use this field if you want to specify a Goog le Cloud Storage path for\nthe model to use.",
1389 "type": "string"
1390 },
1391 "maxWorkerCount": {
1392 "description": "Optional. The maximum number of workers to b e used for parallel processing.\nDefaults to 10 if not specified.",
1393 "format": "int64",
1394 "type": "string"
1395 },
1396 "dataFormat": {
1397 "description": "Required. The format of the input data files .",
1398 "enum": [
1399 "DATA_FORMAT_UNSPECIFIED",
1400 "TEXT",
1401 "TF_RECORD",
1402 "TF_RECORD_GZIP"
1403 ],
1404 "enumDescriptions": [
1405 "Unspecified format.",
1406 "The source file is a text file with instances separated by the\nnew-line character.",
1407 "The source file is a TFRecord file.",
1408 "The source file is a GZIP-compressed TFRecord file."
1409 ],
1410 "type": "string"
1411 },
1412 "runtimeVersion": {
1413 "description": "Optional. The Google Cloud ML runtime versio n to use for this batch\nprediction. If not set, Google Cloud ML will pick the r untime version used\nduring the CreateVersion request for this model version, or choose the\nlatest stable version when model version information is not availab le\nsuch as when the model is specified by uri.",
1414 "type": "string"
1415 },
1416 "inputPaths": {
1417 "description": "Required. The Google Cloud Storage location of the input data files.\nMay contain wildcards.",
1418 "items": {
1419 "type": "string"
1420 },
1421 "type": "array"
1422 }
1423 },
1424 "type": "object"
1425 },
1426 "GoogleCloudMlV1__OperationMetadata": {
1427 "description": "Represents the metadata of the long-running operatio n.",
1428 "id": "GoogleCloudMlV1__OperationMetadata",
1429 "properties": {
1430 "modelName": {
1431 "description": "Contains the name of the model associated wi th the operation.",
1432 "type": "string"
1433 },
1434 "version": {
1435 "$ref": "GoogleCloudMlV1__Version",
1436 "description": "Contains the version associated with the ope ration."
1437 },
1438 "endTime": {
1439 "description": "The time operation processing completed.",
1440 "format": "google-datetime",
1441 "type": "string"
1442 },
1443 "operationType": {
1444 "description": "The operation type.",
1445 "enum": [
1446 "OPERATION_TYPE_UNSPECIFIED",
1447 "CREATE_VERSION",
1448 "DELETE_VERSION",
1449 "DELETE_MODEL"
1450 ],
1451 "enumDescriptions": [
1452 "Unspecified operation type.",
1453 "An operation to create a new version.",
1454 "An operation to delete an existing version.",
1455 "An operation to delete an existing model."
1456 ],
1457 "type": "string"
1458 },
1459 "startTime": {
1460 "description": "The time operation processing started.",
1461 "format": "google-datetime",
1462 "type": "string"
1463 },
1464 "isCancellationRequested": {
1465 "description": "Indicates whether a request to cancel this o peration has been made.",
1466 "type": "boolean"
1467 },
1468 "createTime": {
1469 "description": "The time the operation was submitted.",
1470 "format": "google-datetime",
1471 "type": "string"
1472 }
1473 },
1474 "type": "object"
1475 },
1476 "GoogleCloudMlV1beta1__OperationMetadata": {
1477 "description": "Represents the metadata of the long-running operatio n.",
1478 "id": "GoogleCloudMlV1beta1__OperationMetadata",
1479 "properties": {
1480 "modelName": {
1481 "description": "Contains the name of the model associated wi th the operation.",
1482 "type": "string"
1483 },
1484 "version": {
1485 "$ref": "GoogleCloudMlV1beta1__Version",
1486 "description": "Contains the version associated with the ope ration."
1487 },
1488 "endTime": {
1489 "description": "The time operation processing completed.",
1490 "format": "google-datetime",
1491 "type": "string"
1492 },
1493 "operationType": {
1494 "description": "The operation type.",
1495 "enum": [
1496 "OPERATION_TYPE_UNSPECIFIED",
1497 "CREATE_VERSION",
1498 "DELETE_VERSION",
1499 "DELETE_MODEL"
1500 ],
1501 "enumDescriptions": [
1502 "Unspecified operation type.",
1503 "An operation to create a new version.",
1504 "An operation to delete an existing version.",
1505 "An operation to delete an existing model."
1506 ],
1507 "type": "string"
1508 },
1509 "startTime": {
1510 "description": "The time operation processing started.",
1511 "format": "google-datetime",
1512 "type": "string"
1513 },
1514 "isCancellationRequested": {
1515 "description": "Indicates whether a request to cancel this o peration has been made.",
1516 "type": "boolean"
1517 },
1518 "createTime": {
1519 "description": "The time the operation was submitted.",
1520 "format": "google-datetime",
1521 "type": "string"
1522 }
1523 },
1524 "type": "object" 1524 "type": "object"
1525 } 1525 }
1526 }, 1526 },
1527 "servicePath": "", 1527 "servicePath": "",
1528 "title": "Google Cloud Machine Learning Engine", 1528 "title": "Google Cloud Machine Learning Engine",
1529 "version": "v1" 1529 "version": "v1"
1530 } 1530 }
OLDNEW
« no previous file with comments | « discovery/googleapis/mirror__v1.json ('k') | discovery/googleapis/monitoring__v3.json » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698