| Index: chrome/browser/android/vr_shell/vr_math.cc
|
| diff --git a/chrome/browser/android/vr_shell/vr_math.cc b/chrome/browser/android/vr_shell/vr_math.cc
|
| deleted file mode 100644
|
| index 289a1458af4a8bfa8f7438baf6918bb58a14d872..0000000000000000000000000000000000000000
|
| --- a/chrome/browser/android/vr_shell/vr_math.cc
|
| +++ /dev/null
|
| @@ -1,250 +0,0 @@
|
| -// Copyright 2016 The Chromium Authors. All rights reserved.
|
| -// Use of this source code is governed by a BSD-style license that can be
|
| -// found in the LICENSE file.
|
| -
|
| -#include "chrome/browser/android/vr_shell/vr_math.h"
|
| -
|
| -#include <cmath>
|
| -
|
| -#include "base/logging.h"
|
| -
|
| -namespace vr_shell {
|
| -
|
| -// Internal matrix layout:
|
| -//
|
| -// m[0][0], m[0][1], m[0][2], m[0][3],
|
| -// m[1][0], m[1][1], m[1][2], m[1][3],
|
| -// m[2][0], m[2][1], m[2][2], m[2][3],
|
| -// m[3][0], m[3][1], m[3][2], m[3][3],
|
| -//
|
| -// The translation component is in the right column m[i][3].
|
| -//
|
| -// The bottom row m[3][i] is (0, 0, 0, 1) for non-perspective transforms.
|
| -//
|
| -// These matrices are intended to be used to premultiply column vectors
|
| -// for transforms, so successive transforms need to be left-multiplied.
|
| -
|
| -void SetIdentityM(gvr::Mat4f& mat) {
|
| - float* m = reinterpret_cast<float*>(mat.m);
|
| - for (int i = 0; i < 16; i++) {
|
| - m[i] = 0;
|
| - }
|
| - for (int i = 0; i < 16; i += 5) {
|
| - m[i] = 1.0f;
|
| - }
|
| -}
|
| -
|
| -// Left multiply a translation matrix.
|
| -void TranslateM(gvr::Mat4f& tmat, gvr::Mat4f& mat, float x, float y, float z) {
|
| - if (&tmat != &mat) {
|
| - for (int i = 0; i < 4; ++i) {
|
| - for (int j = 0; j < 4; ++j) {
|
| - tmat.m[i][j] = mat.m[i][j];
|
| - }
|
| - }
|
| - }
|
| - tmat.m[0][3] += x;
|
| - tmat.m[1][3] += y;
|
| - tmat.m[2][3] += z;
|
| -}
|
| -
|
| -// Left multiply a scale matrix.
|
| -void ScaleM(gvr::Mat4f& tmat,
|
| - const gvr::Mat4f& mat,
|
| - float x,
|
| - float y,
|
| - float z) {
|
| - if (&tmat != &mat) {
|
| - for (int i = 0; i < 4; ++i) {
|
| - for (int j = 0; j < 3; ++j) {
|
| - tmat.m[i][j] = mat.m[i][j];
|
| - }
|
| - }
|
| - }
|
| - // Multiply all rows including translation components.
|
| - for (int j = 0; j < 4; ++j) {
|
| - tmat.m[0][j] *= x;
|
| - tmat.m[1][j] *= y;
|
| - tmat.m[2][j] *= z;
|
| - }
|
| -}
|
| -
|
| -gvr::Vec3f MatrixVectorMul(const gvr::Mat4f& m, const gvr::Vec3f& v) {
|
| - gvr::Vec3f res;
|
| - res.x = m.m[0][0] * v.x + m.m[0][1] * v.y + m.m[0][2] * v.z + m.m[0][3];
|
| - res.y = m.m[1][0] * v.x + m.m[1][1] * v.y + m.m[1][2] * v.z + m.m[1][3];
|
| - res.z = m.m[2][0] * v.x + m.m[2][1] * v.y + m.m[2][2] * v.z + m.m[2][3];
|
| - return res;
|
| -}
|
| -
|
| -// Rotation only, ignore translation components.
|
| -gvr::Vec3f MatrixVectorRotate(const gvr::Mat4f& m, const gvr::Vec3f& v) {
|
| - gvr::Vec3f res;
|
| - res.x = m.m[0][0] * v.x + m.m[0][1] * v.y + m.m[0][2] * v.z;
|
| - res.y = m.m[1][0] * v.x + m.m[1][1] * v.y + m.m[1][2] * v.z;
|
| - res.z = m.m[2][0] * v.x + m.m[2][1] * v.y + m.m[2][2] * v.z;
|
| - return res;
|
| -}
|
| -
|
| -gvr::Mat4f MatrixMul(const gvr::Mat4f& matrix1, const gvr::Mat4f& matrix2) {
|
| - gvr::Mat4f result;
|
| - for (int i = 0; i < 4; ++i) {
|
| - for (int j = 0; j < 4; ++j) {
|
| - result.m[i][j] = 0.0f;
|
| - for (int k = 0; k < 4; ++k) {
|
| - result.m[i][j] += matrix1.m[i][k] * matrix2.m[k][j];
|
| - }
|
| - }
|
| - }
|
| - return result;
|
| -}
|
| -
|
| -gvr::Mat4f PerspectiveMatrixFromView(const gvr::Rectf& fov,
|
| - float z_near,
|
| - float z_far) {
|
| - gvr::Mat4f result;
|
| - const float x_left = -std::tan(fov.left * M_PI / 180.0f) * z_near;
|
| - const float x_right = std::tan(fov.right * M_PI / 180.0f) * z_near;
|
| - const float y_bottom = -std::tan(fov.bottom * M_PI / 180.0f) * z_near;
|
| - const float y_top = std::tan(fov.top * M_PI / 180.0f) * z_near;
|
| -
|
| - DCHECK(x_left < x_right && y_bottom < y_top && z_near < z_far &&
|
| - z_near > 0.0f && z_far > 0.0f);
|
| - const float X = (2 * z_near) / (x_right - x_left);
|
| - const float Y = (2 * z_near) / (y_top - y_bottom);
|
| - const float A = (x_right + x_left) / (x_right - x_left);
|
| - const float B = (y_top + y_bottom) / (y_top - y_bottom);
|
| - const float C = (z_near + z_far) / (z_near - z_far);
|
| - const float D = (2 * z_near * z_far) / (z_near - z_far);
|
| -
|
| - for (int i = 0; i < 4; ++i) {
|
| - for (int j = 0; j < 4; ++j) {
|
| - result.m[i][j] = 0.0f;
|
| - }
|
| - }
|
| - result.m[0][0] = X;
|
| - result.m[0][2] = A;
|
| - result.m[1][1] = Y;
|
| - result.m[1][2] = B;
|
| - result.m[2][2] = C;
|
| - result.m[2][3] = D;
|
| - result.m[3][2] = -1;
|
| -
|
| - return result;
|
| -}
|
| -
|
| -gvr::Vec3f GetForwardVector(const gvr::Mat4f& matrix) {
|
| - // Same as multiplying the inverse of the rotation component of the matrix by
|
| - // (0, 0, -1, 0).
|
| - return {-matrix.m[2][0], -matrix.m[2][1], -matrix.m[2][2]};
|
| -}
|
| -
|
| -gvr::Vec3f GetTranslation(const gvr::Mat4f& matrix) {
|
| - return {matrix.m[0][3], matrix.m[1][3], matrix.m[2][3]};
|
| -}
|
| -
|
| -float VectorLength(const gvr::Vec3f& vec) {
|
| - return sqrt(vec.x * vec.x + vec.y * vec.y + vec.z * vec.z);
|
| -}
|
| -
|
| -gvr::Vec3f VectorSubtract(const gvr::Vec3f& a, const gvr::Vec3f& b) {
|
| - return {a.x - b.x, a.y - b.y, a.z - b.z};
|
| -}
|
| -
|
| -float NormalizeVector(gvr::Vec3f& vec) {
|
| - float len = VectorLength(vec);
|
| - vec.x /= len;
|
| - vec.y /= len;
|
| - vec.z /= len;
|
| - return len;
|
| -}
|
| -
|
| -float VectorDot(const gvr::Vec3f& a, const gvr::Vec3f& b) {
|
| - return a.x * b.x + a.y * b.y + a.z * b.z;
|
| -}
|
| -
|
| -void NormalizeQuat(gvr::Quatf& quat) {
|
| - float len = sqrt(quat.qx * quat.qx + quat.qy * quat.qy + quat.qz * quat.qz +
|
| - quat.qw * quat.qw);
|
| - quat.qx /= len;
|
| - quat.qy /= len;
|
| - quat.qz /= len;
|
| - quat.qw /= len;
|
| -}
|
| -
|
| -gvr::Quatf QuatFromAxisAngle(const gvr::Vec3f& axis, float angle) {
|
| - // Rotation angle is the product of |angle| and the magnitude of |axis|.
|
| - gvr::Vec3f normal = axis;
|
| - float length = NormalizeVector(normal);
|
| - angle *= length;
|
| -
|
| - gvr::Quatf res;
|
| - float s = sin(angle / 2);
|
| - res.qx = normal.x * s;
|
| - res.qy = normal.y * s;
|
| - res.qz = normal.z * s;
|
| - res.qw = cos(angle / 2);
|
| - return res;
|
| -}
|
| -
|
| -gvr::Quatf QuatMultiply(const gvr::Quatf& a, const gvr::Quatf& b) {
|
| - gvr::Quatf res;
|
| - res.qw = a.qw * b.qw - a.qx * b.qx - a.qy * b.qy - a.qz * b.qz;
|
| - res.qx = a.qw * b.qx + a.qx * b.qw + a.qy * b.qz - a.qz * b.qy;
|
| - res.qy = a.qw * b.qy - a.qx * b.qz + a.qy * b.qw + a.qz * b.qx;
|
| - res.qz = a.qw * b.qz + a.qx * b.qy - a.qy * b.qx + a.qz * b.qw;
|
| - return res;
|
| -}
|
| -
|
| -gvr::Mat4f QuatToMatrix(const gvr::Quatf& quat) {
|
| - const float x2 = quat.qx * quat.qx;
|
| - const float y2 = quat.qy * quat.qy;
|
| - const float z2 = quat.qz * quat.qz;
|
| - const float xy = quat.qx * quat.qy;
|
| - const float xz = quat.qx * quat.qz;
|
| - const float xw = quat.qx * quat.qw;
|
| - const float yz = quat.qy * quat.qz;
|
| - const float yw = quat.qy * quat.qw;
|
| - const float zw = quat.qz * quat.qw;
|
| -
|
| - const float m11 = 1.0f - 2.0f * y2 - 2.0f * z2;
|
| - const float m12 = 2.0f * (xy - zw);
|
| - const float m13 = 2.0f * (xz + yw);
|
| - const float m21 = 2.0f * (xy + zw);
|
| - const float m22 = 1.0f - 2.0f * x2 - 2.0f * z2;
|
| - const float m23 = 2.0f * (yz - xw);
|
| - const float m31 = 2.0f * (xz - yw);
|
| - const float m32 = 2.0f * (yz + xw);
|
| - const float m33 = 1.0f - 2.0f * x2 - 2.0f * y2;
|
| -
|
| - return {{{m11, m12, m13, 0.0f},
|
| - {m21, m22, m23, 0.0f},
|
| - {m31, m32, m33, 0.0f},
|
| - {0.0f, 0.0f, 0.0f, 1.0f}}};
|
| -}
|
| -
|
| -gvr::Vec3f GetRayPoint(const gvr::Vec3f& rayOrigin,
|
| - const gvr::Vec3f& rayVector,
|
| - float scale) {
|
| - gvr::Vec3f v;
|
| - v.x = rayOrigin.x + scale * rayVector.x;
|
| - v.y = rayOrigin.y + scale * rayVector.y;
|
| - v.z = rayOrigin.z + scale * rayVector.z;
|
| - return v;
|
| -}
|
| -
|
| -float Distance(const gvr::Vec3f& vec1, const gvr::Vec3f& vec2) {
|
| - return VectorLength(VectorSubtract(vec1, vec2));
|
| -}
|
| -
|
| -bool XZAngle(const gvr::Vec3f& vec1, const gvr::Vec3f& vec2, float* angle) {
|
| - float len1 = VectorLength(vec1);
|
| - float len2 = VectorLength(vec2);
|
| - if (len1 == 0 || len2 == 0)
|
| - return false;
|
| - float cross_p = vec1.x * vec2.z - vec1.z * vec2.x;
|
| - *angle = asin(cross_p / (len1 * len2));
|
| - return true;
|
| -}
|
| -
|
| -} // namespace vr_shell
|
|
|