| Index: src/arm64/assembler-arm64.cc
|
| diff --git a/src/arm64/assembler-arm64.cc b/src/arm64/assembler-arm64.cc
|
| index ac6931dec76d3e95aa3f8ab86eb64f6faef9a857..a8cb93a5c73bed7013bdfbd39417e6469ea458d4 100644
|
| --- a/src/arm64/assembler-arm64.cc
|
| +++ b/src/arm64/assembler-arm64.cc
|
| @@ -89,8 +89,8 @@ CPURegister CPURegList::PopHighestIndex() {
|
| void CPURegList::RemoveCalleeSaved() {
|
| if (type() == CPURegister::kRegister) {
|
| Remove(GetCalleeSaved(RegisterSizeInBits()));
|
| - } else if (type() == CPURegister::kFPRegister) {
|
| - Remove(GetCalleeSavedFP(RegisterSizeInBits()));
|
| + } else if (type() == CPURegister::kVRegister) {
|
| + Remove(GetCalleeSavedV(RegisterSizeInBits()));
|
| } else {
|
| DCHECK(type() == CPURegister::kNoRegister);
|
| DCHECK(IsEmpty());
|
| @@ -103,9 +103,8 @@ CPURegList CPURegList::GetCalleeSaved(int size) {
|
| return CPURegList(CPURegister::kRegister, size, 19, 29);
|
| }
|
|
|
| -
|
| -CPURegList CPURegList::GetCalleeSavedFP(int size) {
|
| - return CPURegList(CPURegister::kFPRegister, size, 8, 15);
|
| +CPURegList CPURegList::GetCalleeSavedV(int size) {
|
| + return CPURegList(CPURegister::kVRegister, size, 8, 15);
|
| }
|
|
|
|
|
| @@ -116,11 +115,10 @@ CPURegList CPURegList::GetCallerSaved(int size) {
|
| return list;
|
| }
|
|
|
| -
|
| -CPURegList CPURegList::GetCallerSavedFP(int size) {
|
| +CPURegList CPURegList::GetCallerSavedV(int size) {
|
| // Registers d0-d7 and d16-d31 are caller-saved.
|
| - CPURegList list = CPURegList(CPURegister::kFPRegister, size, 0, 7);
|
| - list.Combine(CPURegList(CPURegister::kFPRegister, size, 16, 31));
|
| + CPURegList list = CPURegList(CPURegister::kVRegister, size, 0, 7);
|
| + list.Combine(CPURegList(CPURegister::kVRegister, size, 16, 31));
|
| return list;
|
| }
|
|
|
| @@ -240,7 +238,7 @@ bool AreAliased(const CPURegister& reg1, const CPURegister& reg2,
|
| if (regs[i].IsRegister()) {
|
| number_of_valid_regs++;
|
| unique_regs |= regs[i].Bit();
|
| - } else if (regs[i].IsFPRegister()) {
|
| + } else if (regs[i].IsVRegister()) {
|
| number_of_valid_fpregs++;
|
| unique_fpregs |= regs[i].Bit();
|
| } else {
|
| @@ -277,6 +275,39 @@ bool AreSameSizeAndType(const CPURegister& reg1, const CPURegister& reg2,
|
| return match;
|
| }
|
|
|
| +bool AreSameFormat(const VRegister& reg1, const VRegister& reg2,
|
| + const VRegister& reg3, const VRegister& reg4) {
|
| + DCHECK(reg1.IsValid());
|
| + return (!reg2.IsValid() || reg2.IsSameFormat(reg1)) &&
|
| + (!reg3.IsValid() || reg3.IsSameFormat(reg1)) &&
|
| + (!reg4.IsValid() || reg4.IsSameFormat(reg1));
|
| +}
|
| +
|
| +bool AreConsecutive(const VRegister& reg1, const VRegister& reg2,
|
| + const VRegister& reg3, const VRegister& reg4) {
|
| + DCHECK(reg1.IsValid());
|
| + if (!reg2.IsValid()) {
|
| + DCHECK(!reg3.IsValid() && !reg4.IsValid());
|
| + return true;
|
| + } else if (reg2.code() != ((reg1.code() + 1) % kNumberOfVRegisters)) {
|
| + return false;
|
| + }
|
| +
|
| + if (!reg3.IsValid()) {
|
| + DCHECK(!reg4.IsValid());
|
| + return true;
|
| + } else if (reg3.code() != ((reg2.code() + 1) % kNumberOfVRegisters)) {
|
| + return false;
|
| + }
|
| +
|
| + if (!reg4.IsValid()) {
|
| + return true;
|
| + } else if (reg4.code() != ((reg3.code() + 1) % kNumberOfVRegisters)) {
|
| + return false;
|
| + }
|
| +
|
| + return true;
|
| +}
|
|
|
| void Immediate::InitializeHandle(Handle<Object> handle) {
|
| AllowDeferredHandleDereference using_raw_address;
|
| @@ -1773,446 +1804,2163 @@ void Assembler::stlxrh(const Register& rs, const Register& rt,
|
| Emit(STLXR_h | Rs(rs) | Rt2(x31) | RnSP(rn) | Rt(rt));
|
| }
|
|
|
| -void Assembler::mov(const Register& rd, const Register& rm) {
|
| - // Moves involving the stack pointer are encoded as add immediate with
|
| - // second operand of zero. Otherwise, orr with first operand zr is
|
| - // used.
|
| - if (rd.IsSP() || rm.IsSP()) {
|
| - add(rd, rm, 0);
|
| +void Assembler::NEON3DifferentL(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vm, NEON3DifferentOp vop) {
|
| + DCHECK(AreSameFormat(vn, vm));
|
| + DCHECK((vn.Is1H() && vd.Is1S()) || (vn.Is1S() && vd.Is1D()) ||
|
| + (vn.Is8B() && vd.Is8H()) || (vn.Is4H() && vd.Is4S()) ||
|
| + (vn.Is2S() && vd.Is2D()) || (vn.Is16B() && vd.Is8H()) ||
|
| + (vn.Is8H() && vd.Is4S()) || (vn.Is4S() && vd.Is2D()));
|
| + Instr format, op = vop;
|
| + if (vd.IsScalar()) {
|
| + op |= NEON_Q | NEONScalar;
|
| + format = SFormat(vn);
|
| } else {
|
| - orr(rd, AppropriateZeroRegFor(rd), rm);
|
| + format = VFormat(vn);
|
| }
|
| + Emit(format | op | Rm(vm) | Rn(vn) | Rd(vd));
|
| +}
|
| +
|
| +void Assembler::NEON3DifferentW(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vm, NEON3DifferentOp vop) {
|
| + DCHECK(AreSameFormat(vd, vn));
|
| + DCHECK((vm.Is8B() && vd.Is8H()) || (vm.Is4H() && vd.Is4S()) ||
|
| + (vm.Is2S() && vd.Is2D()) || (vm.Is16B() && vd.Is8H()) ||
|
| + (vm.Is8H() && vd.Is4S()) || (vm.Is4S() && vd.Is2D()));
|
| + Emit(VFormat(vm) | vop | Rm(vm) | Rn(vn) | Rd(vd));
|
| +}
|
| +
|
| +void Assembler::NEON3DifferentHN(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vm, NEON3DifferentOp vop) {
|
| + DCHECK(AreSameFormat(vm, vn));
|
| + DCHECK((vd.Is8B() && vn.Is8H()) || (vd.Is4H() && vn.Is4S()) ||
|
| + (vd.Is2S() && vn.Is2D()) || (vd.Is16B() && vn.Is8H()) ||
|
| + (vd.Is8H() && vn.Is4S()) || (vd.Is4S() && vn.Is2D()));
|
| + Emit(VFormat(vd) | vop | Rm(vm) | Rn(vn) | Rd(vd));
|
| +}
|
| +
|
| +#define NEON_3DIFF_LONG_LIST(V) \
|
| + V(pmull, NEON_PMULL, vn.IsVector() && vn.Is8B()) \
|
| + V(pmull2, NEON_PMULL2, vn.IsVector() && vn.Is16B()) \
|
| + V(saddl, NEON_SADDL, vn.IsVector() && vn.IsD()) \
|
| + V(saddl2, NEON_SADDL2, vn.IsVector() && vn.IsQ()) \
|
| + V(sabal, NEON_SABAL, vn.IsVector() && vn.IsD()) \
|
| + V(sabal2, NEON_SABAL2, vn.IsVector() && vn.IsQ()) \
|
| + V(uabal, NEON_UABAL, vn.IsVector() && vn.IsD()) \
|
| + V(uabal2, NEON_UABAL2, vn.IsVector() && vn.IsQ()) \
|
| + V(sabdl, NEON_SABDL, vn.IsVector() && vn.IsD()) \
|
| + V(sabdl2, NEON_SABDL2, vn.IsVector() && vn.IsQ()) \
|
| + V(uabdl, NEON_UABDL, vn.IsVector() && vn.IsD()) \
|
| + V(uabdl2, NEON_UABDL2, vn.IsVector() && vn.IsQ()) \
|
| + V(smlal, NEON_SMLAL, vn.IsVector() && vn.IsD()) \
|
| + V(smlal2, NEON_SMLAL2, vn.IsVector() && vn.IsQ()) \
|
| + V(umlal, NEON_UMLAL, vn.IsVector() && vn.IsD()) \
|
| + V(umlal2, NEON_UMLAL2, vn.IsVector() && vn.IsQ()) \
|
| + V(smlsl, NEON_SMLSL, vn.IsVector() && vn.IsD()) \
|
| + V(smlsl2, NEON_SMLSL2, vn.IsVector() && vn.IsQ()) \
|
| + V(umlsl, NEON_UMLSL, vn.IsVector() && vn.IsD()) \
|
| + V(umlsl2, NEON_UMLSL2, vn.IsVector() && vn.IsQ()) \
|
| + V(smull, NEON_SMULL, vn.IsVector() && vn.IsD()) \
|
| + V(smull2, NEON_SMULL2, vn.IsVector() && vn.IsQ()) \
|
| + V(umull, NEON_UMULL, vn.IsVector() && vn.IsD()) \
|
| + V(umull2, NEON_UMULL2, vn.IsVector() && vn.IsQ()) \
|
| + V(ssubl, NEON_SSUBL, vn.IsVector() && vn.IsD()) \
|
| + V(ssubl2, NEON_SSUBL2, vn.IsVector() && vn.IsQ()) \
|
| + V(uaddl, NEON_UADDL, vn.IsVector() && vn.IsD()) \
|
| + V(uaddl2, NEON_UADDL2, vn.IsVector() && vn.IsQ()) \
|
| + V(usubl, NEON_USUBL, vn.IsVector() && vn.IsD()) \
|
| + V(usubl2, NEON_USUBL2, vn.IsVector() && vn.IsQ()) \
|
| + V(sqdmlal, NEON_SQDMLAL, vn.Is1H() || vn.Is1S() || vn.Is4H() || vn.Is2S()) \
|
| + V(sqdmlal2, NEON_SQDMLAL2, vn.Is1H() || vn.Is1S() || vn.Is8H() || vn.Is4S()) \
|
| + V(sqdmlsl, NEON_SQDMLSL, vn.Is1H() || vn.Is1S() || vn.Is4H() || vn.Is2S()) \
|
| + V(sqdmlsl2, NEON_SQDMLSL2, vn.Is1H() || vn.Is1S() || vn.Is8H() || vn.Is4S()) \
|
| + V(sqdmull, NEON_SQDMULL, vn.Is1H() || vn.Is1S() || vn.Is4H() || vn.Is2S()) \
|
| + V(sqdmull2, NEON_SQDMULL2, vn.Is1H() || vn.Is1S() || vn.Is8H() || vn.Is4S())
|
| +
|
| +#define DEFINE_ASM_FUNC(FN, OP, AS) \
|
| + void Assembler::FN(const VRegister& vd, const VRegister& vn, \
|
| + const VRegister& vm) { \
|
| + DCHECK(AS); \
|
| + NEON3DifferentL(vd, vn, vm, OP); \
|
| + }
|
| +NEON_3DIFF_LONG_LIST(DEFINE_ASM_FUNC)
|
| +#undef DEFINE_ASM_FUNC
|
| +
|
| +#define NEON_3DIFF_HN_LIST(V) \
|
| + V(addhn, NEON_ADDHN, vd.IsD()) \
|
| + V(addhn2, NEON_ADDHN2, vd.IsQ()) \
|
| + V(raddhn, NEON_RADDHN, vd.IsD()) \
|
| + V(raddhn2, NEON_RADDHN2, vd.IsQ()) \
|
| + V(subhn, NEON_SUBHN, vd.IsD()) \
|
| + V(subhn2, NEON_SUBHN2, vd.IsQ()) \
|
| + V(rsubhn, NEON_RSUBHN, vd.IsD()) \
|
| + V(rsubhn2, NEON_RSUBHN2, vd.IsQ())
|
| +
|
| +#define DEFINE_ASM_FUNC(FN, OP, AS) \
|
| + void Assembler::FN(const VRegister& vd, const VRegister& vn, \
|
| + const VRegister& vm) { \
|
| + DCHECK(AS); \
|
| + NEON3DifferentHN(vd, vn, vm, OP); \
|
| + }
|
| +NEON_3DIFF_HN_LIST(DEFINE_ASM_FUNC)
|
| +#undef DEFINE_ASM_FUNC
|
| +
|
| +void Assembler::NEONPerm(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vm, NEONPermOp op) {
|
| + DCHECK(AreSameFormat(vd, vn, vm));
|
| + DCHECK(!vd.Is1D());
|
| + Emit(VFormat(vd) | op | Rm(vm) | Rn(vn) | Rd(vd));
|
| }
|
|
|
| +void Assembler::trn1(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vm) {
|
| + NEONPerm(vd, vn, vm, NEON_TRN1);
|
| +}
|
|
|
| -void Assembler::mvn(const Register& rd, const Operand& operand) {
|
| - orn(rd, AppropriateZeroRegFor(rd), operand);
|
| +void Assembler::trn2(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vm) {
|
| + NEONPerm(vd, vn, vm, NEON_TRN2);
|
| }
|
|
|
| +void Assembler::uzp1(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vm) {
|
| + NEONPerm(vd, vn, vm, NEON_UZP1);
|
| +}
|
|
|
| -void Assembler::mrs(const Register& rt, SystemRegister sysreg) {
|
| - DCHECK(rt.Is64Bits());
|
| - Emit(MRS | ImmSystemRegister(sysreg) | Rt(rt));
|
| +void Assembler::uzp2(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vm) {
|
| + NEONPerm(vd, vn, vm, NEON_UZP2);
|
| }
|
|
|
| +void Assembler::zip1(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vm) {
|
| + NEONPerm(vd, vn, vm, NEON_ZIP1);
|
| +}
|
|
|
| -void Assembler::msr(SystemRegister sysreg, const Register& rt) {
|
| - DCHECK(rt.Is64Bits());
|
| - Emit(MSR | Rt(rt) | ImmSystemRegister(sysreg));
|
| +void Assembler::zip2(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vm) {
|
| + NEONPerm(vd, vn, vm, NEON_ZIP2);
|
| }
|
|
|
| +void Assembler::NEONShiftImmediate(const VRegister& vd, const VRegister& vn,
|
| + NEONShiftImmediateOp op, int immh_immb) {
|
| + DCHECK(AreSameFormat(vd, vn));
|
| + Instr q, scalar;
|
| + if (vn.IsScalar()) {
|
| + q = NEON_Q;
|
| + scalar = NEONScalar;
|
| + } else {
|
| + q = vd.IsD() ? 0 : NEON_Q;
|
| + scalar = 0;
|
| + }
|
| + Emit(q | op | scalar | immh_immb | Rn(vn) | Rd(vd));
|
| +}
|
| +
|
| +void Assembler::NEONShiftLeftImmediate(const VRegister& vd, const VRegister& vn,
|
| + int shift, NEONShiftImmediateOp op) {
|
| + int laneSizeInBits = vn.LaneSizeInBits();
|
| + DCHECK((shift >= 0) && (shift < laneSizeInBits));
|
| + NEONShiftImmediate(vd, vn, op, (laneSizeInBits + shift) << 16);
|
| +}
|
| +
|
| +void Assembler::NEONShiftRightImmediate(const VRegister& vd,
|
| + const VRegister& vn, int shift,
|
| + NEONShiftImmediateOp op) {
|
| + int laneSizeInBits = vn.LaneSizeInBits();
|
| + DCHECK((shift >= 1) && (shift <= laneSizeInBits));
|
| + NEONShiftImmediate(vd, vn, op, ((2 * laneSizeInBits) - shift) << 16);
|
| +}
|
| +
|
| +void Assembler::NEONShiftImmediateL(const VRegister& vd, const VRegister& vn,
|
| + int shift, NEONShiftImmediateOp op) {
|
| + int laneSizeInBits = vn.LaneSizeInBits();
|
| + DCHECK((shift >= 0) && (shift < laneSizeInBits));
|
| + int immh_immb = (laneSizeInBits + shift) << 16;
|
| +
|
| + DCHECK((vn.Is8B() && vd.Is8H()) || (vn.Is4H() && vd.Is4S()) ||
|
| + (vn.Is2S() && vd.Is2D()) || (vn.Is16B() && vd.Is8H()) ||
|
| + (vn.Is8H() && vd.Is4S()) || (vn.Is4S() && vd.Is2D()));
|
| + Instr q;
|
| + q = vn.IsD() ? 0 : NEON_Q;
|
| + Emit(q | op | immh_immb | Rn(vn) | Rd(vd));
|
| +}
|
| +
|
| +void Assembler::NEONShiftImmediateN(const VRegister& vd, const VRegister& vn,
|
| + int shift, NEONShiftImmediateOp op) {
|
| + Instr q, scalar;
|
| + int laneSizeInBits = vd.LaneSizeInBits();
|
| + DCHECK((shift >= 1) && (shift <= laneSizeInBits));
|
| + int immh_immb = (2 * laneSizeInBits - shift) << 16;
|
| +
|
| + if (vn.IsScalar()) {
|
| + DCHECK((vd.Is1B() && vn.Is1H()) || (vd.Is1H() && vn.Is1S()) ||
|
| + (vd.Is1S() && vn.Is1D()));
|
| + q = NEON_Q;
|
| + scalar = NEONScalar;
|
| + } else {
|
| + DCHECK((vd.Is8B() && vn.Is8H()) || (vd.Is4H() && vn.Is4S()) ||
|
| + (vd.Is2S() && vn.Is2D()) || (vd.Is16B() && vn.Is8H()) ||
|
| + (vd.Is8H() && vn.Is4S()) || (vd.Is4S() && vn.Is2D()));
|
| + scalar = 0;
|
| + q = vd.IsD() ? 0 : NEON_Q;
|
| + }
|
| + Emit(q | op | scalar | immh_immb | Rn(vn) | Rd(vd));
|
| +}
|
|
|
| -void Assembler::hint(SystemHint code) {
|
| - Emit(HINT | ImmHint(code) | Rt(xzr));
|
| +void Assembler::shl(const VRegister& vd, const VRegister& vn, int shift) {
|
| + DCHECK(vd.IsVector() || vd.Is1D());
|
| + NEONShiftLeftImmediate(vd, vn, shift, NEON_SHL);
|
| }
|
|
|
| +void Assembler::sli(const VRegister& vd, const VRegister& vn, int shift) {
|
| + DCHECK(vd.IsVector() || vd.Is1D());
|
| + NEONShiftLeftImmediate(vd, vn, shift, NEON_SLI);
|
| +}
|
|
|
| -void Assembler::dmb(BarrierDomain domain, BarrierType type) {
|
| - Emit(DMB | ImmBarrierDomain(domain) | ImmBarrierType(type));
|
| +void Assembler::sqshl(const VRegister& vd, const VRegister& vn, int shift) {
|
| + NEONShiftLeftImmediate(vd, vn, shift, NEON_SQSHL_imm);
|
| }
|
|
|
| +void Assembler::sqshlu(const VRegister& vd, const VRegister& vn, int shift) {
|
| + NEONShiftLeftImmediate(vd, vn, shift, NEON_SQSHLU);
|
| +}
|
|
|
| -void Assembler::dsb(BarrierDomain domain, BarrierType type) {
|
| - Emit(DSB | ImmBarrierDomain(domain) | ImmBarrierType(type));
|
| +void Assembler::uqshl(const VRegister& vd, const VRegister& vn, int shift) {
|
| + NEONShiftLeftImmediate(vd, vn, shift, NEON_UQSHL_imm);
|
| }
|
|
|
| +void Assembler::sshll(const VRegister& vd, const VRegister& vn, int shift) {
|
| + DCHECK(vn.IsD());
|
| + NEONShiftImmediateL(vd, vn, shift, NEON_SSHLL);
|
| +}
|
|
|
| -void Assembler::isb() {
|
| - Emit(ISB | ImmBarrierDomain(FullSystem) | ImmBarrierType(BarrierAll));
|
| +void Assembler::sshll2(const VRegister& vd, const VRegister& vn, int shift) {
|
| + DCHECK(vn.IsQ());
|
| + NEONShiftImmediateL(vd, vn, shift, NEON_SSHLL);
|
| }
|
|
|
| +void Assembler::sxtl(const VRegister& vd, const VRegister& vn) {
|
| + sshll(vd, vn, 0);
|
| +}
|
|
|
| -void Assembler::fmov(FPRegister fd, double imm) {
|
| - DCHECK(fd.Is64Bits());
|
| - DCHECK(IsImmFP64(imm));
|
| - Emit(FMOV_d_imm | Rd(fd) | ImmFP64(imm));
|
| +void Assembler::sxtl2(const VRegister& vd, const VRegister& vn) {
|
| + sshll2(vd, vn, 0);
|
| }
|
|
|
| +void Assembler::ushll(const VRegister& vd, const VRegister& vn, int shift) {
|
| + DCHECK(vn.IsD());
|
| + NEONShiftImmediateL(vd, vn, shift, NEON_USHLL);
|
| +}
|
|
|
| -void Assembler::fmov(FPRegister fd, float imm) {
|
| - DCHECK(fd.Is32Bits());
|
| - DCHECK(IsImmFP32(imm));
|
| - Emit(FMOV_s_imm | Rd(fd) | ImmFP32(imm));
|
| +void Assembler::ushll2(const VRegister& vd, const VRegister& vn, int shift) {
|
| + DCHECK(vn.IsQ());
|
| + NEONShiftImmediateL(vd, vn, shift, NEON_USHLL);
|
| }
|
|
|
| +void Assembler::uxtl(const VRegister& vd, const VRegister& vn) {
|
| + ushll(vd, vn, 0);
|
| +}
|
|
|
| -void Assembler::fmov(Register rd, FPRegister fn) {
|
| - DCHECK(rd.SizeInBits() == fn.SizeInBits());
|
| - FPIntegerConvertOp op = rd.Is32Bits() ? FMOV_ws : FMOV_xd;
|
| - Emit(op | Rd(rd) | Rn(fn));
|
| +void Assembler::uxtl2(const VRegister& vd, const VRegister& vn) {
|
| + ushll2(vd, vn, 0);
|
| }
|
|
|
| +void Assembler::sri(const VRegister& vd, const VRegister& vn, int shift) {
|
| + DCHECK(vd.IsVector() || vd.Is1D());
|
| + NEONShiftRightImmediate(vd, vn, shift, NEON_SRI);
|
| +}
|
|
|
| -void Assembler::fmov(FPRegister fd, Register rn) {
|
| - DCHECK(fd.SizeInBits() == rn.SizeInBits());
|
| - FPIntegerConvertOp op = fd.Is32Bits() ? FMOV_sw : FMOV_dx;
|
| - Emit(op | Rd(fd) | Rn(rn));
|
| +void Assembler::sshr(const VRegister& vd, const VRegister& vn, int shift) {
|
| + DCHECK(vd.IsVector() || vd.Is1D());
|
| + NEONShiftRightImmediate(vd, vn, shift, NEON_SSHR);
|
| }
|
|
|
| +void Assembler::ushr(const VRegister& vd, const VRegister& vn, int shift) {
|
| + DCHECK(vd.IsVector() || vd.Is1D());
|
| + NEONShiftRightImmediate(vd, vn, shift, NEON_USHR);
|
| +}
|
|
|
| -void Assembler::fmov(FPRegister fd, FPRegister fn) {
|
| - DCHECK(fd.SizeInBits() == fn.SizeInBits());
|
| - Emit(FPType(fd) | FMOV | Rd(fd) | Rn(fn));
|
| +void Assembler::srshr(const VRegister& vd, const VRegister& vn, int shift) {
|
| + DCHECK(vd.IsVector() || vd.Is1D());
|
| + NEONShiftRightImmediate(vd, vn, shift, NEON_SRSHR);
|
| }
|
|
|
| +void Assembler::urshr(const VRegister& vd, const VRegister& vn, int shift) {
|
| + DCHECK(vd.IsVector() || vd.Is1D());
|
| + NEONShiftRightImmediate(vd, vn, shift, NEON_URSHR);
|
| +}
|
|
|
| -void Assembler::fadd(const FPRegister& fd,
|
| - const FPRegister& fn,
|
| - const FPRegister& fm) {
|
| - FPDataProcessing2Source(fd, fn, fm, FADD);
|
| +void Assembler::ssra(const VRegister& vd, const VRegister& vn, int shift) {
|
| + DCHECK(vd.IsVector() || vd.Is1D());
|
| + NEONShiftRightImmediate(vd, vn, shift, NEON_SSRA);
|
| }
|
|
|
| +void Assembler::usra(const VRegister& vd, const VRegister& vn, int shift) {
|
| + DCHECK(vd.IsVector() || vd.Is1D());
|
| + NEONShiftRightImmediate(vd, vn, shift, NEON_USRA);
|
| +}
|
|
|
| -void Assembler::fsub(const FPRegister& fd,
|
| - const FPRegister& fn,
|
| - const FPRegister& fm) {
|
| - FPDataProcessing2Source(fd, fn, fm, FSUB);
|
| +void Assembler::srsra(const VRegister& vd, const VRegister& vn, int shift) {
|
| + DCHECK(vd.IsVector() || vd.Is1D());
|
| + NEONShiftRightImmediate(vd, vn, shift, NEON_SRSRA);
|
| }
|
|
|
| +void Assembler::ursra(const VRegister& vd, const VRegister& vn, int shift) {
|
| + DCHECK(vd.IsVector() || vd.Is1D());
|
| + NEONShiftRightImmediate(vd, vn, shift, NEON_URSRA);
|
| +}
|
|
|
| -void Assembler::fmul(const FPRegister& fd,
|
| - const FPRegister& fn,
|
| - const FPRegister& fm) {
|
| - FPDataProcessing2Source(fd, fn, fm, FMUL);
|
| +void Assembler::shrn(const VRegister& vd, const VRegister& vn, int shift) {
|
| + DCHECK(vn.IsVector() && vd.IsD());
|
| + NEONShiftImmediateN(vd, vn, shift, NEON_SHRN);
|
| }
|
|
|
| +void Assembler::shrn2(const VRegister& vd, const VRegister& vn, int shift) {
|
| + DCHECK(vn.IsVector() && vd.IsQ());
|
| + NEONShiftImmediateN(vd, vn, shift, NEON_SHRN);
|
| +}
|
|
|
| -void Assembler::fmadd(const FPRegister& fd,
|
| - const FPRegister& fn,
|
| - const FPRegister& fm,
|
| - const FPRegister& fa) {
|
| - FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMADD_s : FMADD_d);
|
| +void Assembler::rshrn(const VRegister& vd, const VRegister& vn, int shift) {
|
| + DCHECK(vn.IsVector() && vd.IsD());
|
| + NEONShiftImmediateN(vd, vn, shift, NEON_RSHRN);
|
| }
|
|
|
| +void Assembler::rshrn2(const VRegister& vd, const VRegister& vn, int shift) {
|
| + DCHECK(vn.IsVector() && vd.IsQ());
|
| + NEONShiftImmediateN(vd, vn, shift, NEON_RSHRN);
|
| +}
|
|
|
| -void Assembler::fmsub(const FPRegister& fd,
|
| - const FPRegister& fn,
|
| - const FPRegister& fm,
|
| - const FPRegister& fa) {
|
| - FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMSUB_s : FMSUB_d);
|
| +void Assembler::sqshrn(const VRegister& vd, const VRegister& vn, int shift) {
|
| + DCHECK(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
|
| + NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRN);
|
| }
|
|
|
| +void Assembler::sqshrn2(const VRegister& vd, const VRegister& vn, int shift) {
|
| + DCHECK(vn.IsVector() && vd.IsQ());
|
| + NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRN);
|
| +}
|
|
|
| -void Assembler::fnmadd(const FPRegister& fd,
|
| - const FPRegister& fn,
|
| - const FPRegister& fm,
|
| - const FPRegister& fa) {
|
| - FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMADD_s : FNMADD_d);
|
| +void Assembler::sqrshrn(const VRegister& vd, const VRegister& vn, int shift) {
|
| + DCHECK(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
|
| + NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRN);
|
| }
|
|
|
| +void Assembler::sqrshrn2(const VRegister& vd, const VRegister& vn, int shift) {
|
| + DCHECK(vn.IsVector() && vd.IsQ());
|
| + NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRN);
|
| +}
|
|
|
| -void Assembler::fnmsub(const FPRegister& fd,
|
| - const FPRegister& fn,
|
| - const FPRegister& fm,
|
| - const FPRegister& fa) {
|
| - FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMSUB_s : FNMSUB_d);
|
| +void Assembler::sqshrun(const VRegister& vd, const VRegister& vn, int shift) {
|
| + DCHECK(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
|
| + NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRUN);
|
| }
|
|
|
| +void Assembler::sqshrun2(const VRegister& vd, const VRegister& vn, int shift) {
|
| + DCHECK(vn.IsVector() && vd.IsQ());
|
| + NEONShiftImmediateN(vd, vn, shift, NEON_SQSHRUN);
|
| +}
|
|
|
| -void Assembler::fdiv(const FPRegister& fd,
|
| - const FPRegister& fn,
|
| - const FPRegister& fm) {
|
| - FPDataProcessing2Source(fd, fn, fm, FDIV);
|
| +void Assembler::sqrshrun(const VRegister& vd, const VRegister& vn, int shift) {
|
| + DCHECK(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
|
| + NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRUN);
|
| }
|
|
|
| +void Assembler::sqrshrun2(const VRegister& vd, const VRegister& vn, int shift) {
|
| + DCHECK(vn.IsVector() && vd.IsQ());
|
| + NEONShiftImmediateN(vd, vn, shift, NEON_SQRSHRUN);
|
| +}
|
|
|
| -void Assembler::fmax(const FPRegister& fd,
|
| - const FPRegister& fn,
|
| - const FPRegister& fm) {
|
| - FPDataProcessing2Source(fd, fn, fm, FMAX);
|
| +void Assembler::uqshrn(const VRegister& vd, const VRegister& vn, int shift) {
|
| + DCHECK(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
|
| + NEONShiftImmediateN(vd, vn, shift, NEON_UQSHRN);
|
| }
|
|
|
| +void Assembler::uqshrn2(const VRegister& vd, const VRegister& vn, int shift) {
|
| + DCHECK(vn.IsVector() && vd.IsQ());
|
| + NEONShiftImmediateN(vd, vn, shift, NEON_UQSHRN);
|
| +}
|
|
|
| -void Assembler::fmaxnm(const FPRegister& fd,
|
| - const FPRegister& fn,
|
| - const FPRegister& fm) {
|
| - FPDataProcessing2Source(fd, fn, fm, FMAXNM);
|
| +void Assembler::uqrshrn(const VRegister& vd, const VRegister& vn, int shift) {
|
| + DCHECK(vd.IsD() || (vn.IsScalar() && vd.IsScalar()));
|
| + NEONShiftImmediateN(vd, vn, shift, NEON_UQRSHRN);
|
| }
|
|
|
| +void Assembler::uqrshrn2(const VRegister& vd, const VRegister& vn, int shift) {
|
| + DCHECK(vn.IsVector() && vd.IsQ());
|
| + NEONShiftImmediateN(vd, vn, shift, NEON_UQRSHRN);
|
| +}
|
|
|
| -void Assembler::fmin(const FPRegister& fd,
|
| - const FPRegister& fn,
|
| - const FPRegister& fm) {
|
| - FPDataProcessing2Source(fd, fn, fm, FMIN);
|
| +void Assembler::uaddw(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vm) {
|
| + DCHECK(vm.IsD());
|
| + NEON3DifferentW(vd, vn, vm, NEON_UADDW);
|
| }
|
|
|
| +void Assembler::uaddw2(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vm) {
|
| + DCHECK(vm.IsQ());
|
| + NEON3DifferentW(vd, vn, vm, NEON_UADDW2);
|
| +}
|
|
|
| -void Assembler::fminnm(const FPRegister& fd,
|
| - const FPRegister& fn,
|
| - const FPRegister& fm) {
|
| - FPDataProcessing2Source(fd, fn, fm, FMINNM);
|
| +void Assembler::saddw(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vm) {
|
| + DCHECK(vm.IsD());
|
| + NEON3DifferentW(vd, vn, vm, NEON_SADDW);
|
| }
|
|
|
| +void Assembler::saddw2(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vm) {
|
| + DCHECK(vm.IsQ());
|
| + NEON3DifferentW(vd, vn, vm, NEON_SADDW2);
|
| +}
|
|
|
| -void Assembler::fabs(const FPRegister& fd,
|
| - const FPRegister& fn) {
|
| - DCHECK(fd.SizeInBits() == fn.SizeInBits());
|
| - FPDataProcessing1Source(fd, fn, FABS);
|
| +void Assembler::usubw(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vm) {
|
| + DCHECK(vm.IsD());
|
| + NEON3DifferentW(vd, vn, vm, NEON_USUBW);
|
| }
|
|
|
| +void Assembler::usubw2(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vm) {
|
| + DCHECK(vm.IsQ());
|
| + NEON3DifferentW(vd, vn, vm, NEON_USUBW2);
|
| +}
|
|
|
| -void Assembler::fneg(const FPRegister& fd,
|
| - const FPRegister& fn) {
|
| - DCHECK(fd.SizeInBits() == fn.SizeInBits());
|
| - FPDataProcessing1Source(fd, fn, FNEG);
|
| +void Assembler::ssubw(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vm) {
|
| + DCHECK(vm.IsD());
|
| + NEON3DifferentW(vd, vn, vm, NEON_SSUBW);
|
| }
|
|
|
| +void Assembler::ssubw2(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vm) {
|
| + DCHECK(vm.IsQ());
|
| + NEON3DifferentW(vd, vn, vm, NEON_SSUBW2);
|
| +}
|
|
|
| -void Assembler::fsqrt(const FPRegister& fd,
|
| - const FPRegister& fn) {
|
| - DCHECK(fd.SizeInBits() == fn.SizeInBits());
|
| - FPDataProcessing1Source(fd, fn, FSQRT);
|
| +void Assembler::mov(const Register& rd, const Register& rm) {
|
| + // Moves involving the stack pointer are encoded as add immediate with
|
| + // second operand of zero. Otherwise, orr with first operand zr is
|
| + // used.
|
| + if (rd.IsSP() || rm.IsSP()) {
|
| + add(rd, rm, 0);
|
| + } else {
|
| + orr(rd, AppropriateZeroRegFor(rd), rm);
|
| + }
|
| }
|
|
|
| +void Assembler::ins(const VRegister& vd, int vd_index, const Register& rn) {
|
| + // We support vd arguments of the form vd.VxT() or vd.T(), where x is the
|
| + // number of lanes, and T is b, h, s or d.
|
| + int lane_size = vd.LaneSizeInBytes();
|
| + NEONFormatField format;
|
| + switch (lane_size) {
|
| + case 1:
|
| + format = NEON_16B;
|
| + DCHECK(rn.IsW());
|
| + break;
|
| + case 2:
|
| + format = NEON_8H;
|
| + DCHECK(rn.IsW());
|
| + break;
|
| + case 4:
|
| + format = NEON_4S;
|
| + DCHECK(rn.IsW());
|
| + break;
|
| + default:
|
| + DCHECK_EQ(lane_size, 8);
|
| + DCHECK(rn.IsX());
|
| + format = NEON_2D;
|
| + break;
|
| + }
|
|
|
| -void Assembler::frinta(const FPRegister& fd,
|
| - const FPRegister& fn) {
|
| - DCHECK(fd.SizeInBits() == fn.SizeInBits());
|
| - FPDataProcessing1Source(fd, fn, FRINTA);
|
| + DCHECK((0 <= vd_index) &&
|
| + (vd_index < LaneCountFromFormat(static_cast<VectorFormat>(format))));
|
| + Emit(NEON_INS_GENERAL | ImmNEON5(format, vd_index) | Rn(rn) | Rd(vd));
|
| }
|
|
|
| +void Assembler::mov(const Register& rd, const VRegister& vn, int vn_index) {
|
| + DCHECK_GE(vn.SizeInBytes(), 4);
|
| + umov(rd, vn, vn_index);
|
| +}
|
|
|
| -void Assembler::frintm(const FPRegister& fd,
|
| - const FPRegister& fn) {
|
| - DCHECK(fd.SizeInBits() == fn.SizeInBits());
|
| - FPDataProcessing1Source(fd, fn, FRINTM);
|
| +void Assembler::smov(const Register& rd, const VRegister& vn, int vn_index) {
|
| + // We support vn arguments of the form vn.VxT() or vn.T(), where x is the
|
| + // number of lanes, and T is b, h, s.
|
| + int lane_size = vn.LaneSizeInBytes();
|
| + NEONFormatField format;
|
| + Instr q = 0;
|
| + switch (lane_size) {
|
| + case 1:
|
| + format = NEON_16B;
|
| + break;
|
| + case 2:
|
| + format = NEON_8H;
|
| + break;
|
| + default:
|
| + DCHECK_EQ(lane_size, 4);
|
| + DCHECK(rd.IsX());
|
| + format = NEON_4S;
|
| + break;
|
| + }
|
| + q = rd.IsW() ? 0 : NEON_Q;
|
| + DCHECK((0 <= vn_index) &&
|
| + (vn_index < LaneCountFromFormat(static_cast<VectorFormat>(format))));
|
| + Emit(q | NEON_SMOV | ImmNEON5(format, vn_index) | Rn(vn) | Rd(rd));
|
| }
|
|
|
| +void Assembler::cls(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK(AreSameFormat(vd, vn));
|
| + DCHECK(!vd.Is1D() && !vd.Is2D());
|
| + Emit(VFormat(vn) | NEON_CLS | Rn(vn) | Rd(vd));
|
| +}
|
|
|
| -void Assembler::frintn(const FPRegister& fd,
|
| - const FPRegister& fn) {
|
| - DCHECK(fd.SizeInBits() == fn.SizeInBits());
|
| - FPDataProcessing1Source(fd, fn, FRINTN);
|
| +void Assembler::clz(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK(AreSameFormat(vd, vn));
|
| + DCHECK(!vd.Is1D() && !vd.Is2D());
|
| + Emit(VFormat(vn) | NEON_CLZ | Rn(vn) | Rd(vd));
|
| }
|
|
|
| +void Assembler::cnt(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK(AreSameFormat(vd, vn));
|
| + DCHECK(vd.Is8B() || vd.Is16B());
|
| + Emit(VFormat(vn) | NEON_CNT | Rn(vn) | Rd(vd));
|
| +}
|
|
|
| -void Assembler::frintp(const FPRegister& fd, const FPRegister& fn) {
|
| - DCHECK(fd.SizeInBits() == fn.SizeInBits());
|
| - FPDataProcessing1Source(fd, fn, FRINTP);
|
| +void Assembler::rev16(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK(AreSameFormat(vd, vn));
|
| + DCHECK(vd.Is8B() || vd.Is16B());
|
| + Emit(VFormat(vn) | NEON_REV16 | Rn(vn) | Rd(vd));
|
| }
|
|
|
| +void Assembler::rev32(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK(AreSameFormat(vd, vn));
|
| + DCHECK(vd.Is8B() || vd.Is16B() || vd.Is4H() || vd.Is8H());
|
| + Emit(VFormat(vn) | NEON_REV32 | Rn(vn) | Rd(vd));
|
| +}
|
|
|
| -void Assembler::frintz(const FPRegister& fd,
|
| - const FPRegister& fn) {
|
| - DCHECK(fd.SizeInBits() == fn.SizeInBits());
|
| - FPDataProcessing1Source(fd, fn, FRINTZ);
|
| +void Assembler::rev64(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK(AreSameFormat(vd, vn));
|
| + DCHECK(!vd.Is1D() && !vd.Is2D());
|
| + Emit(VFormat(vn) | NEON_REV64 | Rn(vn) | Rd(vd));
|
| }
|
|
|
| +void Assembler::ursqrte(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK(AreSameFormat(vd, vn));
|
| + DCHECK(vd.Is2S() || vd.Is4S());
|
| + Emit(VFormat(vn) | NEON_URSQRTE | Rn(vn) | Rd(vd));
|
| +}
|
|
|
| -void Assembler::fcmp(const FPRegister& fn,
|
| - const FPRegister& fm) {
|
| - DCHECK(fn.SizeInBits() == fm.SizeInBits());
|
| - Emit(FPType(fn) | FCMP | Rm(fm) | Rn(fn));
|
| +void Assembler::urecpe(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK(AreSameFormat(vd, vn));
|
| + DCHECK(vd.Is2S() || vd.Is4S());
|
| + Emit(VFormat(vn) | NEON_URECPE | Rn(vn) | Rd(vd));
|
| }
|
|
|
| +void Assembler::NEONAddlp(const VRegister& vd, const VRegister& vn,
|
| + NEON2RegMiscOp op) {
|
| + DCHECK((op == NEON_SADDLP) || (op == NEON_UADDLP) || (op == NEON_SADALP) ||
|
| + (op == NEON_UADALP));
|
|
|
| -void Assembler::fcmp(const FPRegister& fn,
|
| - double value) {
|
| - USE(value);
|
| - // Although the fcmp instruction can strictly only take an immediate value of
|
| - // +0.0, we don't need to check for -0.0 because the sign of 0.0 doesn't
|
| - // affect the result of the comparison.
|
| - DCHECK(value == 0.0);
|
| - Emit(FPType(fn) | FCMP_zero | Rn(fn));
|
| + DCHECK((vn.Is8B() && vd.Is4H()) || (vn.Is4H() && vd.Is2S()) ||
|
| + (vn.Is2S() && vd.Is1D()) || (vn.Is16B() && vd.Is8H()) ||
|
| + (vn.Is8H() && vd.Is4S()) || (vn.Is4S() && vd.Is2D()));
|
| + Emit(VFormat(vn) | op | Rn(vn) | Rd(vd));
|
| }
|
|
|
| +void Assembler::saddlp(const VRegister& vd, const VRegister& vn) {
|
| + NEONAddlp(vd, vn, NEON_SADDLP);
|
| +}
|
|
|
| -void Assembler::fccmp(const FPRegister& fn,
|
| - const FPRegister& fm,
|
| - StatusFlags nzcv,
|
| - Condition cond) {
|
| - DCHECK(fn.SizeInBits() == fm.SizeInBits());
|
| - Emit(FPType(fn) | FCCMP | Rm(fm) | Cond(cond) | Rn(fn) | Nzcv(nzcv));
|
| +void Assembler::uaddlp(const VRegister& vd, const VRegister& vn) {
|
| + NEONAddlp(vd, vn, NEON_UADDLP);
|
| }
|
|
|
| +void Assembler::sadalp(const VRegister& vd, const VRegister& vn) {
|
| + NEONAddlp(vd, vn, NEON_SADALP);
|
| +}
|
|
|
| -void Assembler::fcsel(const FPRegister& fd,
|
| - const FPRegister& fn,
|
| - const FPRegister& fm,
|
| - Condition cond) {
|
| - DCHECK(fd.SizeInBits() == fn.SizeInBits());
|
| - DCHECK(fd.SizeInBits() == fm.SizeInBits());
|
| - Emit(FPType(fd) | FCSEL | Rm(fm) | Cond(cond) | Rn(fn) | Rd(fd));
|
| +void Assembler::uadalp(const VRegister& vd, const VRegister& vn) {
|
| + NEONAddlp(vd, vn, NEON_UADALP);
|
| }
|
|
|
| +void Assembler::NEONAcrossLanesL(const VRegister& vd, const VRegister& vn,
|
| + NEONAcrossLanesOp op) {
|
| + DCHECK((vn.Is8B() && vd.Is1H()) || (vn.Is16B() && vd.Is1H()) ||
|
| + (vn.Is4H() && vd.Is1S()) || (vn.Is8H() && vd.Is1S()) ||
|
| + (vn.Is4S() && vd.Is1D()));
|
| + Emit(VFormat(vn) | op | Rn(vn) | Rd(vd));
|
| +}
|
|
|
| -void Assembler::FPConvertToInt(const Register& rd,
|
| - const FPRegister& fn,
|
| - FPIntegerConvertOp op) {
|
| - Emit(SF(rd) | FPType(fn) | op | Rn(fn) | Rd(rd));
|
| +void Assembler::saddlv(const VRegister& vd, const VRegister& vn) {
|
| + NEONAcrossLanesL(vd, vn, NEON_SADDLV);
|
| }
|
|
|
| +void Assembler::uaddlv(const VRegister& vd, const VRegister& vn) {
|
| + NEONAcrossLanesL(vd, vn, NEON_UADDLV);
|
| +}
|
|
|
| -void Assembler::fcvt(const FPRegister& fd,
|
| - const FPRegister& fn) {
|
| - if (fd.Is64Bits()) {
|
| - // Convert float to double.
|
| - DCHECK(fn.Is32Bits());
|
| - FPDataProcessing1Source(fd, fn, FCVT_ds);
|
| +void Assembler::NEONAcrossLanes(const VRegister& vd, const VRegister& vn,
|
| + NEONAcrossLanesOp op) {
|
| + DCHECK((vn.Is8B() && vd.Is1B()) || (vn.Is16B() && vd.Is1B()) ||
|
| + (vn.Is4H() && vd.Is1H()) || (vn.Is8H() && vd.Is1H()) ||
|
| + (vn.Is4S() && vd.Is1S()));
|
| + if ((op & NEONAcrossLanesFPFMask) == NEONAcrossLanesFPFixed) {
|
| + Emit(FPFormat(vn) | op | Rn(vn) | Rd(vd));
|
| } else {
|
| - // Convert double to float.
|
| - DCHECK(fn.Is64Bits());
|
| - FPDataProcessing1Source(fd, fn, FCVT_sd);
|
| + Emit(VFormat(vn) | op | Rn(vn) | Rd(vd));
|
| }
|
| }
|
|
|
| +#define NEON_ACROSSLANES_LIST(V) \
|
| + V(fmaxv, NEON_FMAXV, vd.Is1S()) \
|
| + V(fminv, NEON_FMINV, vd.Is1S()) \
|
| + V(fmaxnmv, NEON_FMAXNMV, vd.Is1S()) \
|
| + V(fminnmv, NEON_FMINNMV, vd.Is1S()) \
|
| + V(addv, NEON_ADDV, true) \
|
| + V(smaxv, NEON_SMAXV, true) \
|
| + V(sminv, NEON_SMINV, true) \
|
| + V(umaxv, NEON_UMAXV, true) \
|
| + V(uminv, NEON_UMINV, true)
|
| +
|
| +#define DEFINE_ASM_FUNC(FN, OP, AS) \
|
| + void Assembler::FN(const VRegister& vd, const VRegister& vn) { \
|
| + DCHECK(AS); \
|
| + NEONAcrossLanes(vd, vn, OP); \
|
| + }
|
| +NEON_ACROSSLANES_LIST(DEFINE_ASM_FUNC)
|
| +#undef DEFINE_ASM_FUNC
|
| +
|
| +void Assembler::mov(const VRegister& vd, int vd_index, const Register& rn) {
|
| + ins(vd, vd_index, rn);
|
| +}
|
| +
|
| +void Assembler::umov(const Register& rd, const VRegister& vn, int vn_index) {
|
| + // We support vn arguments of the form vn.VxT() or vn.T(), where x is the
|
| + // number of lanes, and T is b, h, s or d.
|
| + int lane_size = vn.LaneSizeInBytes();
|
| + NEONFormatField format;
|
| + Instr q = 0;
|
| + switch (lane_size) {
|
| + case 1:
|
| + format = NEON_16B;
|
| + DCHECK(rd.IsW());
|
| + break;
|
| + case 2:
|
| + format = NEON_8H;
|
| + DCHECK(rd.IsW());
|
| + break;
|
| + case 4:
|
| + format = NEON_4S;
|
| + DCHECK(rd.IsW());
|
| + break;
|
| + default:
|
| + DCHECK_EQ(lane_size, 8);
|
| + DCHECK(rd.IsX());
|
| + format = NEON_2D;
|
| + q = NEON_Q;
|
| + break;
|
| + }
|
|
|
| -void Assembler::fcvtau(const Register& rd, const FPRegister& fn) {
|
| - FPConvertToInt(rd, fn, FCVTAU);
|
| + DCHECK((0 <= vn_index) &&
|
| + (vn_index < LaneCountFromFormat(static_cast<VectorFormat>(format))));
|
| + Emit(q | NEON_UMOV | ImmNEON5(format, vn_index) | Rn(vn) | Rd(rd));
|
| }
|
|
|
| +void Assembler::mov(const VRegister& vd, const VRegister& vn, int vn_index) {
|
| + DCHECK(vd.IsScalar());
|
| + dup(vd, vn, vn_index);
|
| +}
|
|
|
| -void Assembler::fcvtas(const Register& rd, const FPRegister& fn) {
|
| - FPConvertToInt(rd, fn, FCVTAS);
|
| +void Assembler::dup(const VRegister& vd, const Register& rn) {
|
| + DCHECK(!vd.Is1D());
|
| + DCHECK_EQ(vd.Is2D(), rn.IsX());
|
| + Instr q = vd.IsD() ? 0 : NEON_Q;
|
| + Emit(q | NEON_DUP_GENERAL | ImmNEON5(VFormat(vd), 0) | Rn(rn) | Rd(vd));
|
| }
|
|
|
| +void Assembler::ins(const VRegister& vd, int vd_index, const VRegister& vn,
|
| + int vn_index) {
|
| + DCHECK(AreSameFormat(vd, vn));
|
| + // We support vd arguments of the form vd.VxT() or vd.T(), where x is the
|
| + // number of lanes, and T is b, h, s or d.
|
| + int lane_size = vd.LaneSizeInBytes();
|
| + NEONFormatField format;
|
| + switch (lane_size) {
|
| + case 1:
|
| + format = NEON_16B;
|
| + break;
|
| + case 2:
|
| + format = NEON_8H;
|
| + break;
|
| + case 4:
|
| + format = NEON_4S;
|
| + break;
|
| + default:
|
| + DCHECK_EQ(lane_size, 8);
|
| + format = NEON_2D;
|
| + break;
|
| + }
|
|
|
| -void Assembler::fcvtmu(const Register& rd, const FPRegister& fn) {
|
| - FPConvertToInt(rd, fn, FCVTMU);
|
| + DCHECK((0 <= vd_index) &&
|
| + (vd_index < LaneCountFromFormat(static_cast<VectorFormat>(format))));
|
| + DCHECK((0 <= vn_index) &&
|
| + (vn_index < LaneCountFromFormat(static_cast<VectorFormat>(format))));
|
| + Emit(NEON_INS_ELEMENT | ImmNEON5(format, vd_index) |
|
| + ImmNEON4(format, vn_index) | Rn(vn) | Rd(vd));
|
| }
|
|
|
| +void Assembler::NEONTable(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vm, NEONTableOp op) {
|
| + DCHECK(vd.Is16B() || vd.Is8B());
|
| + DCHECK(vn.Is16B());
|
| + DCHECK(AreSameFormat(vd, vm));
|
| + Emit(op | (vd.IsQ() ? NEON_Q : 0) | Rm(vm) | Rn(vn) | Rd(vd));
|
| +}
|
|
|
| -void Assembler::fcvtms(const Register& rd, const FPRegister& fn) {
|
| - FPConvertToInt(rd, fn, FCVTMS);
|
| +void Assembler::tbl(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vm) {
|
| + NEONTable(vd, vn, vm, NEON_TBL_1v);
|
| }
|
|
|
| +void Assembler::tbl(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vn2, const VRegister& vm) {
|
| + USE(vn2);
|
| + DCHECK(AreSameFormat(vn, vn2));
|
| + DCHECK(AreConsecutive(vn, vn2));
|
| + NEONTable(vd, vn, vm, NEON_TBL_2v);
|
| +}
|
|
|
| -void Assembler::fcvtnu(const Register& rd, const FPRegister& fn) {
|
| - FPConvertToInt(rd, fn, FCVTNU);
|
| +void Assembler::tbl(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vn2, const VRegister& vn3,
|
| + const VRegister& vm) {
|
| + USE(vn2);
|
| + USE(vn3);
|
| + DCHECK(AreSameFormat(vn, vn2, vn3));
|
| + DCHECK(AreConsecutive(vn, vn2, vn3));
|
| + NEONTable(vd, vn, vm, NEON_TBL_3v);
|
| }
|
|
|
| +void Assembler::tbl(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vn2, const VRegister& vn3,
|
| + const VRegister& vn4, const VRegister& vm) {
|
| + USE(vn2);
|
| + USE(vn3);
|
| + USE(vn4);
|
| + DCHECK(AreSameFormat(vn, vn2, vn3, vn4));
|
| + DCHECK(AreConsecutive(vn, vn2, vn3, vn4));
|
| + NEONTable(vd, vn, vm, NEON_TBL_4v);
|
| +}
|
|
|
| -void Assembler::fcvtns(const Register& rd, const FPRegister& fn) {
|
| - FPConvertToInt(rd, fn, FCVTNS);
|
| +void Assembler::tbx(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vm) {
|
| + NEONTable(vd, vn, vm, NEON_TBX_1v);
|
| }
|
|
|
| +void Assembler::tbx(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vn2, const VRegister& vm) {
|
| + USE(vn2);
|
| + DCHECK(AreSameFormat(vn, vn2));
|
| + DCHECK(AreConsecutive(vn, vn2));
|
| + NEONTable(vd, vn, vm, NEON_TBX_2v);
|
| +}
|
|
|
| -void Assembler::fcvtzu(const Register& rd, const FPRegister& fn) {
|
| - FPConvertToInt(rd, fn, FCVTZU);
|
| +void Assembler::tbx(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vn2, const VRegister& vn3,
|
| + const VRegister& vm) {
|
| + USE(vn2);
|
| + USE(vn3);
|
| + DCHECK(AreSameFormat(vn, vn2, vn3));
|
| + DCHECK(AreConsecutive(vn, vn2, vn3));
|
| + NEONTable(vd, vn, vm, NEON_TBX_3v);
|
| }
|
|
|
| +void Assembler::tbx(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vn2, const VRegister& vn3,
|
| + const VRegister& vn4, const VRegister& vm) {
|
| + USE(vn2);
|
| + USE(vn3);
|
| + USE(vn4);
|
| + DCHECK(AreSameFormat(vn, vn2, vn3, vn4));
|
| + DCHECK(AreConsecutive(vn, vn2, vn3, vn4));
|
| + NEONTable(vd, vn, vm, NEON_TBX_4v);
|
| +}
|
|
|
| -void Assembler::fcvtzs(const Register& rd, const FPRegister& fn) {
|
| - FPConvertToInt(rd, fn, FCVTZS);
|
| +void Assembler::mov(const VRegister& vd, int vd_index, const VRegister& vn,
|
| + int vn_index) {
|
| + ins(vd, vd_index, vn, vn_index);
|
| }
|
|
|
| +void Assembler::mvn(const Register& rd, const Operand& operand) {
|
| + orn(rd, AppropriateZeroRegFor(rd), operand);
|
| +}
|
|
|
| -void Assembler::scvtf(const FPRegister& fd,
|
| - const Register& rn,
|
| - unsigned fbits) {
|
| - if (fbits == 0) {
|
| - Emit(SF(rn) | FPType(fd) | SCVTF | Rn(rn) | Rd(fd));
|
| - } else {
|
| - Emit(SF(rn) | FPType(fd) | SCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
|
| - Rd(fd));
|
| - }
|
| +void Assembler::mrs(const Register& rt, SystemRegister sysreg) {
|
| + DCHECK(rt.Is64Bits());
|
| + Emit(MRS | ImmSystemRegister(sysreg) | Rt(rt));
|
| +}
|
| +
|
| +void Assembler::msr(SystemRegister sysreg, const Register& rt) {
|
| + DCHECK(rt.Is64Bits());
|
| + Emit(MSR | Rt(rt) | ImmSystemRegister(sysreg));
|
| }
|
|
|
| +void Assembler::hint(SystemHint code) { Emit(HINT | ImmHint(code) | Rt(xzr)); }
|
|
|
| -void Assembler::ucvtf(const FPRegister& fd,
|
| - const Register& rn,
|
| - unsigned fbits) {
|
| - if (fbits == 0) {
|
| - Emit(SF(rn) | FPType(fd) | UCVTF | Rn(rn) | Rd(fd));
|
| +// NEON structure loads and stores.
|
| +Instr Assembler::LoadStoreStructAddrModeField(const MemOperand& addr) {
|
| + Instr addr_field = RnSP(addr.base());
|
| +
|
| + if (addr.IsPostIndex()) {
|
| + static_assert(NEONLoadStoreMultiStructPostIndex ==
|
| + static_cast<NEONLoadStoreMultiStructPostIndexOp>(
|
| + NEONLoadStoreSingleStructPostIndex),
|
| + "Opcodes must match for NEON post index memop.");
|
| +
|
| + addr_field |= NEONLoadStoreMultiStructPostIndex;
|
| + if (addr.offset() == 0) {
|
| + addr_field |= RmNot31(addr.regoffset());
|
| + } else {
|
| + // The immediate post index addressing mode is indicated by rm = 31.
|
| + // The immediate is implied by the number of vector registers used.
|
| + addr_field |= (0x1f << Rm_offset);
|
| + }
|
| } else {
|
| - Emit(SF(rn) | FPType(fd) | UCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
|
| - Rd(fd));
|
| + DCHECK(addr.IsImmediateOffset() && (addr.offset() == 0));
|
| }
|
| + return addr_field;
|
| }
|
|
|
| -
|
| -void Assembler::dcptr(Label* label) {
|
| - RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
|
| - if (label->is_bound()) {
|
| - // The label is bound, so it does not need to be updated and the internal
|
| - // reference should be emitted.
|
| - //
|
| - // In this case, label->pos() returns the offset of the label from the
|
| - // start of the buffer.
|
| - internal_reference_positions_.push_back(pc_offset());
|
| - dc64(reinterpret_cast<uintptr_t>(buffer_ + label->pos()));
|
| +void Assembler::LoadStoreStructVerify(const VRegister& vt,
|
| + const MemOperand& addr, Instr op) {
|
| +#ifdef DEBUG
|
| + // Assert that addressing mode is either offset (with immediate 0), post
|
| + // index by immediate of the size of the register list, or post index by a
|
| + // value in a core register.
|
| + if (addr.IsImmediateOffset()) {
|
| + DCHECK_EQ(addr.offset(), 0);
|
| } else {
|
| - int32_t offset;
|
| - if (label->is_linked()) {
|
| - // The label is linked, so the internal reference should be added
|
| - // onto the end of the label's link chain.
|
| - //
|
| - // In this case, label->pos() returns the offset of the last linked
|
| - // instruction from the start of the buffer.
|
| - offset = label->pos() - pc_offset();
|
| - DCHECK(offset != kStartOfLabelLinkChain);
|
| - } else {
|
| - // The label is unused, so it now becomes linked and the internal
|
| - // reference is at the start of the new link chain.
|
| - offset = kStartOfLabelLinkChain;
|
| - }
|
| - // The instruction at pc is now the last link in the label's chain.
|
| - label->link_to(pc_offset());
|
| + int offset = vt.SizeInBytes();
|
| + switch (op) {
|
| + case NEON_LD1_1v:
|
| + case NEON_ST1_1v:
|
| + offset *= 1;
|
| + break;
|
| + case NEONLoadStoreSingleStructLoad1:
|
| + case NEONLoadStoreSingleStructStore1:
|
| + case NEON_LD1R:
|
| + offset = (offset / vt.LaneCount()) * 1;
|
| + break;
|
|
|
| - // Traditionally the offset to the previous instruction in the chain is
|
| - // encoded in the instruction payload (e.g. branch range) but internal
|
| - // references are not instructions so while unbound they are encoded as
|
| - // two consecutive brk instructions. The two 16-bit immediates are used
|
| - // to encode the offset.
|
| - offset >>= kInstructionSizeLog2;
|
| - DCHECK(is_int32(offset));
|
| - uint32_t high16 = unsigned_bitextract_32(31, 16, offset);
|
| - uint32_t low16 = unsigned_bitextract_32(15, 0, offset);
|
| + case NEON_LD1_2v:
|
| + case NEON_ST1_2v:
|
| + case NEON_LD2:
|
| + case NEON_ST2:
|
| + offset *= 2;
|
| + break;
|
| + case NEONLoadStoreSingleStructLoad2:
|
| + case NEONLoadStoreSingleStructStore2:
|
| + case NEON_LD2R:
|
| + offset = (offset / vt.LaneCount()) * 2;
|
| + break;
|
|
|
| - brk(high16);
|
| - brk(low16);
|
| + case NEON_LD1_3v:
|
| + case NEON_ST1_3v:
|
| + case NEON_LD3:
|
| + case NEON_ST3:
|
| + offset *= 3;
|
| + break;
|
| + case NEONLoadStoreSingleStructLoad3:
|
| + case NEONLoadStoreSingleStructStore3:
|
| + case NEON_LD3R:
|
| + offset = (offset / vt.LaneCount()) * 3;
|
| + break;
|
| +
|
| + case NEON_LD1_4v:
|
| + case NEON_ST1_4v:
|
| + case NEON_LD4:
|
| + case NEON_ST4:
|
| + offset *= 4;
|
| + break;
|
| + case NEONLoadStoreSingleStructLoad4:
|
| + case NEONLoadStoreSingleStructStore4:
|
| + case NEON_LD4R:
|
| + offset = (offset / vt.LaneCount()) * 4;
|
| + break;
|
| + default:
|
| + UNREACHABLE();
|
| + }
|
| + DCHECK(!addr.regoffset().Is(NoReg) || addr.offset() == offset);
|
| }
|
| +#else
|
| + USE(vt);
|
| + USE(addr);
|
| + USE(op);
|
| +#endif
|
| }
|
|
|
| +void Assembler::LoadStoreStruct(const VRegister& vt, const MemOperand& addr,
|
| + NEONLoadStoreMultiStructOp op) {
|
| + LoadStoreStructVerify(vt, addr, op);
|
| + DCHECK(vt.IsVector() || vt.Is1D());
|
| + Emit(op | LoadStoreStructAddrModeField(addr) | LSVFormat(vt) | Rt(vt));
|
| +}
|
|
|
| -// Note:
|
| -// Below, a difference in case for the same letter indicates a
|
| -// negated bit.
|
| -// If b is 1, then B is 0.
|
| -Instr Assembler::ImmFP32(float imm) {
|
| - DCHECK(IsImmFP32(imm));
|
| - // bits: aBbb.bbbc.defg.h000.0000.0000.0000.0000
|
| - uint32_t bits = float_to_rawbits(imm);
|
| - // bit7: a000.0000
|
| - uint32_t bit7 = ((bits >> 31) & 0x1) << 7;
|
| - // bit6: 0b00.0000
|
| - uint32_t bit6 = ((bits >> 29) & 0x1) << 6;
|
| - // bit5_to_0: 00cd.efgh
|
| - uint32_t bit5_to_0 = (bits >> 19) & 0x3f;
|
| -
|
| - return (bit7 | bit6 | bit5_to_0) << ImmFP_offset;
|
| +void Assembler::LoadStoreStructSingleAllLanes(const VRegister& vt,
|
| + const MemOperand& addr,
|
| + NEONLoadStoreSingleStructOp op) {
|
| + LoadStoreStructVerify(vt, addr, op);
|
| + Emit(op | LoadStoreStructAddrModeField(addr) | LSVFormat(vt) | Rt(vt));
|
| }
|
|
|
| +void Assembler::ld1(const VRegister& vt, const MemOperand& src) {
|
| + LoadStoreStruct(vt, src, NEON_LD1_1v);
|
| +}
|
|
|
| -Instr Assembler::ImmFP64(double imm) {
|
| - DCHECK(IsImmFP64(imm));
|
| - // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
|
| - // 0000.0000.0000.0000.0000.0000.0000.0000
|
| - uint64_t bits = double_to_rawbits(imm);
|
| - // bit7: a000.0000
|
| - uint64_t bit7 = ((bits >> 63) & 0x1) << 7;
|
| - // bit6: 0b00.0000
|
| - uint64_t bit6 = ((bits >> 61) & 0x1) << 6;
|
| - // bit5_to_0: 00cd.efgh
|
| - uint64_t bit5_to_0 = (bits >> 48) & 0x3f;
|
| +void Assembler::ld1(const VRegister& vt, const VRegister& vt2,
|
| + const MemOperand& src) {
|
| + USE(vt2);
|
| + DCHECK(AreSameFormat(vt, vt2));
|
| + DCHECK(AreConsecutive(vt, vt2));
|
| + LoadStoreStruct(vt, src, NEON_LD1_2v);
|
| +}
|
|
|
| - return static_cast<Instr>((bit7 | bit6 | bit5_to_0) << ImmFP_offset);
|
| +void Assembler::ld1(const VRegister& vt, const VRegister& vt2,
|
| + const VRegister& vt3, const MemOperand& src) {
|
| + USE(vt2);
|
| + USE(vt3);
|
| + DCHECK(AreSameFormat(vt, vt2, vt3));
|
| + DCHECK(AreConsecutive(vt, vt2, vt3));
|
| + LoadStoreStruct(vt, src, NEON_LD1_3v);
|
| }
|
|
|
| +void Assembler::ld1(const VRegister& vt, const VRegister& vt2,
|
| + const VRegister& vt3, const VRegister& vt4,
|
| + const MemOperand& src) {
|
| + USE(vt2);
|
| + USE(vt3);
|
| + USE(vt4);
|
| + DCHECK(AreSameFormat(vt, vt2, vt3, vt4));
|
| + DCHECK(AreConsecutive(vt, vt2, vt3, vt4));
|
| + LoadStoreStruct(vt, src, NEON_LD1_4v);
|
| +}
|
|
|
| -// Code generation helpers.
|
| -void Assembler::MoveWide(const Register& rd,
|
| - uint64_t imm,
|
| - int shift,
|
| - MoveWideImmediateOp mov_op) {
|
| - // Ignore the top 32 bits of an immediate if we're moving to a W register.
|
| - if (rd.Is32Bits()) {
|
| - // Check that the top 32 bits are zero (a positive 32-bit number) or top
|
| - // 33 bits are one (a negative 32-bit number, sign extended to 64 bits).
|
| - DCHECK(((imm >> kWRegSizeInBits) == 0) ||
|
| - ((imm >> (kWRegSizeInBits - 1)) == 0x1ffffffff));
|
| - imm &= kWRegMask;
|
| - }
|
| +void Assembler::ld2(const VRegister& vt, const VRegister& vt2,
|
| + const MemOperand& src) {
|
| + USE(vt2);
|
| + DCHECK(AreSameFormat(vt, vt2));
|
| + DCHECK(AreConsecutive(vt, vt2));
|
| + LoadStoreStruct(vt, src, NEON_LD2);
|
| +}
|
| +
|
| +void Assembler::ld2(const VRegister& vt, const VRegister& vt2, int lane,
|
| + const MemOperand& src) {
|
| + USE(vt2);
|
| + DCHECK(AreSameFormat(vt, vt2));
|
| + DCHECK(AreConsecutive(vt, vt2));
|
| + LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad2);
|
| +}
|
| +
|
| +void Assembler::ld2r(const VRegister& vt, const VRegister& vt2,
|
| + const MemOperand& src) {
|
| + USE(vt2);
|
| + DCHECK(AreSameFormat(vt, vt2));
|
| + DCHECK(AreConsecutive(vt, vt2));
|
| + LoadStoreStructSingleAllLanes(vt, src, NEON_LD2R);
|
| +}
|
| +
|
| +void Assembler::ld3(const VRegister& vt, const VRegister& vt2,
|
| + const VRegister& vt3, const MemOperand& src) {
|
| + USE(vt2);
|
| + USE(vt3);
|
| + DCHECK(AreSameFormat(vt, vt2, vt3));
|
| + DCHECK(AreConsecutive(vt, vt2, vt3));
|
| + LoadStoreStruct(vt, src, NEON_LD3);
|
| +}
|
| +
|
| +void Assembler::ld3(const VRegister& vt, const VRegister& vt2,
|
| + const VRegister& vt3, int lane, const MemOperand& src) {
|
| + USE(vt2);
|
| + USE(vt3);
|
| + DCHECK(AreSameFormat(vt, vt2, vt3));
|
| + DCHECK(AreConsecutive(vt, vt2, vt3));
|
| + LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad3);
|
| +}
|
| +
|
| +void Assembler::ld3r(const VRegister& vt, const VRegister& vt2,
|
| + const VRegister& vt3, const MemOperand& src) {
|
| + USE(vt2);
|
| + USE(vt3);
|
| + DCHECK(AreSameFormat(vt, vt2, vt3));
|
| + DCHECK(AreConsecutive(vt, vt2, vt3));
|
| + LoadStoreStructSingleAllLanes(vt, src, NEON_LD3R);
|
| +}
|
| +
|
| +void Assembler::ld4(const VRegister& vt, const VRegister& vt2,
|
| + const VRegister& vt3, const VRegister& vt4,
|
| + const MemOperand& src) {
|
| + USE(vt2);
|
| + USE(vt3);
|
| + USE(vt4);
|
| + DCHECK(AreSameFormat(vt, vt2, vt3, vt4));
|
| + DCHECK(AreConsecutive(vt, vt2, vt3, vt4));
|
| + LoadStoreStruct(vt, src, NEON_LD4);
|
| +}
|
| +
|
| +void Assembler::ld4(const VRegister& vt, const VRegister& vt2,
|
| + const VRegister& vt3, const VRegister& vt4, int lane,
|
| + const MemOperand& src) {
|
| + USE(vt2);
|
| + USE(vt3);
|
| + USE(vt4);
|
| + DCHECK(AreSameFormat(vt, vt2, vt3, vt4));
|
| + DCHECK(AreConsecutive(vt, vt2, vt3, vt4));
|
| + LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad4);
|
| +}
|
| +
|
| +void Assembler::ld4r(const VRegister& vt, const VRegister& vt2,
|
| + const VRegister& vt3, const VRegister& vt4,
|
| + const MemOperand& src) {
|
| + USE(vt2);
|
| + USE(vt3);
|
| + USE(vt4);
|
| + DCHECK(AreSameFormat(vt, vt2, vt3, vt4));
|
| + DCHECK(AreConsecutive(vt, vt2, vt3, vt4));
|
| + LoadStoreStructSingleAllLanes(vt, src, NEON_LD4R);
|
| +}
|
| +
|
| +void Assembler::st1(const VRegister& vt, const MemOperand& src) {
|
| + LoadStoreStruct(vt, src, NEON_ST1_1v);
|
| +}
|
| +
|
| +void Assembler::st1(const VRegister& vt, const VRegister& vt2,
|
| + const MemOperand& src) {
|
| + USE(vt2);
|
| + DCHECK(AreSameFormat(vt, vt2));
|
| + DCHECK(AreConsecutive(vt, vt2));
|
| + LoadStoreStruct(vt, src, NEON_ST1_2v);
|
| +}
|
| +
|
| +void Assembler::st1(const VRegister& vt, const VRegister& vt2,
|
| + const VRegister& vt3, const MemOperand& src) {
|
| + USE(vt2);
|
| + USE(vt3);
|
| + DCHECK(AreSameFormat(vt, vt2, vt3));
|
| + DCHECK(AreConsecutive(vt, vt2, vt3));
|
| + LoadStoreStruct(vt, src, NEON_ST1_3v);
|
| +}
|
| +
|
| +void Assembler::st1(const VRegister& vt, const VRegister& vt2,
|
| + const VRegister& vt3, const VRegister& vt4,
|
| + const MemOperand& src) {
|
| + USE(vt2);
|
| + USE(vt3);
|
| + USE(vt4);
|
| + DCHECK(AreSameFormat(vt, vt2, vt3, vt4));
|
| + DCHECK(AreConsecutive(vt, vt2, vt3, vt4));
|
| + LoadStoreStruct(vt, src, NEON_ST1_4v);
|
| +}
|
| +
|
| +void Assembler::st2(const VRegister& vt, const VRegister& vt2,
|
| + const MemOperand& dst) {
|
| + USE(vt2);
|
| + DCHECK(AreSameFormat(vt, vt2));
|
| + DCHECK(AreConsecutive(vt, vt2));
|
| + LoadStoreStruct(vt, dst, NEON_ST2);
|
| +}
|
| +
|
| +void Assembler::st2(const VRegister& vt, const VRegister& vt2, int lane,
|
| + const MemOperand& dst) {
|
| + USE(vt2);
|
| + DCHECK(AreSameFormat(vt, vt2));
|
| + DCHECK(AreConsecutive(vt, vt2));
|
| + LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore2);
|
| +}
|
| +
|
| +void Assembler::st3(const VRegister& vt, const VRegister& vt2,
|
| + const VRegister& vt3, const MemOperand& dst) {
|
| + USE(vt2);
|
| + USE(vt3);
|
| + DCHECK(AreSameFormat(vt, vt2, vt3));
|
| + DCHECK(AreConsecutive(vt, vt2, vt3));
|
| + LoadStoreStruct(vt, dst, NEON_ST3);
|
| +}
|
| +
|
| +void Assembler::st3(const VRegister& vt, const VRegister& vt2,
|
| + const VRegister& vt3, int lane, const MemOperand& dst) {
|
| + USE(vt2);
|
| + USE(vt3);
|
| + DCHECK(AreSameFormat(vt, vt2, vt3));
|
| + DCHECK(AreConsecutive(vt, vt2, vt3));
|
| + LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore3);
|
| +}
|
| +
|
| +void Assembler::st4(const VRegister& vt, const VRegister& vt2,
|
| + const VRegister& vt3, const VRegister& vt4,
|
| + const MemOperand& dst) {
|
| + USE(vt2);
|
| + USE(vt3);
|
| + USE(vt4);
|
| + DCHECK(AreSameFormat(vt, vt2, vt3, vt4));
|
| + DCHECK(AreConsecutive(vt, vt2, vt3, vt4));
|
| + LoadStoreStruct(vt, dst, NEON_ST4);
|
| +}
|
| +
|
| +void Assembler::st4(const VRegister& vt, const VRegister& vt2,
|
| + const VRegister& vt3, const VRegister& vt4, int lane,
|
| + const MemOperand& dst) {
|
| + USE(vt2);
|
| + USE(vt3);
|
| + USE(vt4);
|
| + DCHECK(AreSameFormat(vt, vt2, vt3, vt4));
|
| + DCHECK(AreConsecutive(vt, vt2, vt3, vt4));
|
| + LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore4);
|
| +}
|
| +
|
| +void Assembler::LoadStoreStructSingle(const VRegister& vt, uint32_t lane,
|
| + const MemOperand& addr,
|
| + NEONLoadStoreSingleStructOp op) {
|
| + LoadStoreStructVerify(vt, addr, op);
|
| +
|
| + // We support vt arguments of the form vt.VxT() or vt.T(), where x is the
|
| + // number of lanes, and T is b, h, s or d.
|
| + unsigned lane_size = vt.LaneSizeInBytes();
|
| + DCHECK_LT(lane, kQRegSize / lane_size);
|
| +
|
| + // Lane size is encoded in the opcode field. Lane index is encoded in the Q,
|
| + // S and size fields.
|
| + lane *= lane_size;
|
| +
|
| + // Encodings for S[0]/D[0] and S[2]/D[1] are distinguished using the least-
|
| + // significant bit of the size field, so we increment lane here to account for
|
| + // that.
|
| + if (lane_size == 8) lane++;
|
| +
|
| + Instr size = (lane << NEONLSSize_offset) & NEONLSSize_mask;
|
| + Instr s = (lane << (NEONS_offset - 2)) & NEONS_mask;
|
| + Instr q = (lane << (NEONQ_offset - 3)) & NEONQ_mask;
|
| +
|
| + Instr instr = op;
|
| + switch (lane_size) {
|
| + case 1:
|
| + instr |= NEONLoadStoreSingle_b;
|
| + break;
|
| + case 2:
|
| + instr |= NEONLoadStoreSingle_h;
|
| + break;
|
| + case 4:
|
| + instr |= NEONLoadStoreSingle_s;
|
| + break;
|
| + default:
|
| + DCHECK_EQ(lane_size, 8U);
|
| + instr |= NEONLoadStoreSingle_d;
|
| + }
|
| +
|
| + Emit(instr | LoadStoreStructAddrModeField(addr) | q | size | s | Rt(vt));
|
| +}
|
| +
|
| +void Assembler::ld1(const VRegister& vt, int lane, const MemOperand& src) {
|
| + LoadStoreStructSingle(vt, lane, src, NEONLoadStoreSingleStructLoad1);
|
| +}
|
| +
|
| +void Assembler::ld1r(const VRegister& vt, const MemOperand& src) {
|
| + LoadStoreStructSingleAllLanes(vt, src, NEON_LD1R);
|
| +}
|
| +
|
| +void Assembler::st1(const VRegister& vt, int lane, const MemOperand& dst) {
|
| + LoadStoreStructSingle(vt, lane, dst, NEONLoadStoreSingleStructStore1);
|
| +}
|
| +
|
| +void Assembler::dmb(BarrierDomain domain, BarrierType type) {
|
| + Emit(DMB | ImmBarrierDomain(domain) | ImmBarrierType(type));
|
| +}
|
| +
|
| +void Assembler::dsb(BarrierDomain domain, BarrierType type) {
|
| + Emit(DSB | ImmBarrierDomain(domain) | ImmBarrierType(type));
|
| +}
|
| +
|
| +void Assembler::isb() {
|
| + Emit(ISB | ImmBarrierDomain(FullSystem) | ImmBarrierType(BarrierAll));
|
| +}
|
| +
|
| +void Assembler::fmov(const VRegister& vd, double imm) {
|
| + if (vd.IsScalar()) {
|
| + DCHECK(vd.Is1D());
|
| + Emit(FMOV_d_imm | Rd(vd) | ImmFP(imm));
|
| + } else {
|
| + DCHECK(vd.Is2D());
|
| + Instr op = NEONModifiedImmediate_MOVI | NEONModifiedImmediateOpBit;
|
| + Emit(NEON_Q | op | ImmNEONFP(imm) | NEONCmode(0xf) | Rd(vd));
|
| + }
|
| +}
|
| +
|
| +void Assembler::fmov(const VRegister& vd, float imm) {
|
| + if (vd.IsScalar()) {
|
| + DCHECK(vd.Is1S());
|
| + Emit(FMOV_s_imm | Rd(vd) | ImmFP(imm));
|
| + } else {
|
| + DCHECK(vd.Is2S() | vd.Is4S());
|
| + Instr op = NEONModifiedImmediate_MOVI;
|
| + Instr q = vd.Is4S() ? NEON_Q : 0;
|
| + Emit(q | op | ImmNEONFP(imm) | NEONCmode(0xf) | Rd(vd));
|
| + }
|
| +}
|
| +
|
| +void Assembler::fmov(const Register& rd, const VRegister& fn) {
|
| + DCHECK_EQ(rd.SizeInBits(), fn.SizeInBits());
|
| + FPIntegerConvertOp op = rd.Is32Bits() ? FMOV_ws : FMOV_xd;
|
| + Emit(op | Rd(rd) | Rn(fn));
|
| +}
|
| +
|
| +void Assembler::fmov(const VRegister& vd, const Register& rn) {
|
| + DCHECK_EQ(vd.SizeInBits(), rn.SizeInBits());
|
| + FPIntegerConvertOp op = vd.Is32Bits() ? FMOV_sw : FMOV_dx;
|
| + Emit(op | Rd(vd) | Rn(rn));
|
| +}
|
| +
|
| +void Assembler::fmov(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK_EQ(vd.SizeInBits(), vn.SizeInBits());
|
| + Emit(FPType(vd) | FMOV | Rd(vd) | Rn(vn));
|
| +}
|
| +
|
| +void Assembler::fmov(const VRegister& vd, int index, const Register& rn) {
|
| + DCHECK((index == 1) && vd.Is1D() && rn.IsX());
|
| + USE(index);
|
| + Emit(FMOV_d1_x | Rd(vd) | Rn(rn));
|
| +}
|
| +
|
| +void Assembler::fmov(const Register& rd, const VRegister& vn, int index) {
|
| + DCHECK((index == 1) && vn.Is1D() && rd.IsX());
|
| + USE(index);
|
| + Emit(FMOV_x_d1 | Rd(rd) | Rn(vn));
|
| +}
|
| +
|
| +void Assembler::fmadd(const VRegister& fd, const VRegister& fn,
|
| + const VRegister& fm, const VRegister& fa) {
|
| + FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMADD_s : FMADD_d);
|
| +}
|
| +
|
| +void Assembler::fmsub(const VRegister& fd, const VRegister& fn,
|
| + const VRegister& fm, const VRegister& fa) {
|
| + FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FMSUB_s : FMSUB_d);
|
| +}
|
| +
|
| +void Assembler::fnmadd(const VRegister& fd, const VRegister& fn,
|
| + const VRegister& fm, const VRegister& fa) {
|
| + FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMADD_s : FNMADD_d);
|
| +}
|
| +
|
| +void Assembler::fnmsub(const VRegister& fd, const VRegister& fn,
|
| + const VRegister& fm, const VRegister& fa) {
|
| + FPDataProcessing3Source(fd, fn, fm, fa, fd.Is32Bits() ? FNMSUB_s : FNMSUB_d);
|
| +}
|
| +
|
| +void Assembler::fnmul(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vm) {
|
| + DCHECK(AreSameSizeAndType(vd, vn, vm));
|
| + Instr op = vd.Is1S() ? FNMUL_s : FNMUL_d;
|
| + Emit(FPType(vd) | op | Rm(vm) | Rn(vn) | Rd(vd));
|
| +}
|
| +
|
| +void Assembler::fcmp(const VRegister& fn, const VRegister& fm) {
|
| + DCHECK_EQ(fn.SizeInBits(), fm.SizeInBits());
|
| + Emit(FPType(fn) | FCMP | Rm(fm) | Rn(fn));
|
| +}
|
| +
|
| +void Assembler::fcmp(const VRegister& fn, double value) {
|
| + USE(value);
|
| + // Although the fcmp instruction can strictly only take an immediate value of
|
| + // +0.0, we don't need to check for -0.0 because the sign of 0.0 doesn't
|
| + // affect the result of the comparison.
|
| + DCHECK_EQ(value, 0.0);
|
| + Emit(FPType(fn) | FCMP_zero | Rn(fn));
|
| +}
|
| +
|
| +void Assembler::fccmp(const VRegister& fn, const VRegister& fm,
|
| + StatusFlags nzcv, Condition cond) {
|
| + DCHECK_EQ(fn.SizeInBits(), fm.SizeInBits());
|
| + Emit(FPType(fn) | FCCMP | Rm(fm) | Cond(cond) | Rn(fn) | Nzcv(nzcv));
|
| +}
|
| +
|
| +void Assembler::fcsel(const VRegister& fd, const VRegister& fn,
|
| + const VRegister& fm, Condition cond) {
|
| + DCHECK_EQ(fd.SizeInBits(), fn.SizeInBits());
|
| + DCHECK_EQ(fd.SizeInBits(), fm.SizeInBits());
|
| + Emit(FPType(fd) | FCSEL | Rm(fm) | Cond(cond) | Rn(fn) | Rd(fd));
|
| +}
|
| +
|
| +void Assembler::NEONFPConvertToInt(const Register& rd, const VRegister& vn,
|
| + Instr op) {
|
| + Emit(SF(rd) | FPType(vn) | op | Rn(vn) | Rd(rd));
|
| +}
|
| +
|
| +void Assembler::NEONFPConvertToInt(const VRegister& vd, const VRegister& vn,
|
| + Instr op) {
|
| + if (vn.IsScalar()) {
|
| + DCHECK((vd.Is1S() && vn.Is1S()) || (vd.Is1D() && vn.Is1D()));
|
| + op |= NEON_Q | NEONScalar;
|
| + }
|
| + Emit(FPFormat(vn) | op | Rn(vn) | Rd(vd));
|
| +}
|
| +
|
| +void Assembler::fcvt(const VRegister& vd, const VRegister& vn) {
|
| + FPDataProcessing1SourceOp op;
|
| + if (vd.Is1D()) {
|
| + DCHECK(vn.Is1S() || vn.Is1H());
|
| + op = vn.Is1S() ? FCVT_ds : FCVT_dh;
|
| + } else if (vd.Is1S()) {
|
| + DCHECK(vn.Is1D() || vn.Is1H());
|
| + op = vn.Is1D() ? FCVT_sd : FCVT_sh;
|
| + } else {
|
| + DCHECK(vd.Is1H());
|
| + DCHECK(vn.Is1D() || vn.Is1S());
|
| + op = vn.Is1D() ? FCVT_hd : FCVT_hs;
|
| + }
|
| + FPDataProcessing1Source(vd, vn, op);
|
| +}
|
| +
|
| +void Assembler::fcvtl(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK((vd.Is4S() && vn.Is4H()) || (vd.Is2D() && vn.Is2S()));
|
| + Instr format = vd.Is2D() ? (1 << NEONSize_offset) : 0;
|
| + Emit(format | NEON_FCVTL | Rn(vn) | Rd(vd));
|
| +}
|
| +
|
| +void Assembler::fcvtl2(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK((vd.Is4S() && vn.Is8H()) || (vd.Is2D() && vn.Is4S()));
|
| + Instr format = vd.Is2D() ? (1 << NEONSize_offset) : 0;
|
| + Emit(NEON_Q | format | NEON_FCVTL | Rn(vn) | Rd(vd));
|
| +}
|
| +
|
| +void Assembler::fcvtn(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK((vn.Is4S() && vd.Is4H()) || (vn.Is2D() && vd.Is2S()));
|
| + Instr format = vn.Is2D() ? (1 << NEONSize_offset) : 0;
|
| + Emit(format | NEON_FCVTN | Rn(vn) | Rd(vd));
|
| +}
|
| +
|
| +void Assembler::fcvtn2(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK((vn.Is4S() && vd.Is8H()) || (vn.Is2D() && vd.Is4S()));
|
| + Instr format = vn.Is2D() ? (1 << NEONSize_offset) : 0;
|
| + Emit(NEON_Q | format | NEON_FCVTN | Rn(vn) | Rd(vd));
|
| +}
|
| +
|
| +void Assembler::fcvtxn(const VRegister& vd, const VRegister& vn) {
|
| + Instr format = 1 << NEONSize_offset;
|
| + if (vd.IsScalar()) {
|
| + DCHECK(vd.Is1S() && vn.Is1D());
|
| + Emit(format | NEON_FCVTXN_scalar | Rn(vn) | Rd(vd));
|
| + } else {
|
| + DCHECK(vd.Is2S() && vn.Is2D());
|
| + Emit(format | NEON_FCVTXN | Rn(vn) | Rd(vd));
|
| + }
|
| +}
|
| +
|
| +void Assembler::fcvtxn2(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK(vd.Is4S() && vn.Is2D());
|
| + Instr format = 1 << NEONSize_offset;
|
| + Emit(NEON_Q | format | NEON_FCVTXN | Rn(vn) | Rd(vd));
|
| +}
|
| +
|
| +#define NEON_FP2REGMISC_FCVT_LIST(V) \
|
| + V(fcvtnu, NEON_FCVTNU, FCVTNU) \
|
| + V(fcvtns, NEON_FCVTNS, FCVTNS) \
|
| + V(fcvtpu, NEON_FCVTPU, FCVTPU) \
|
| + V(fcvtps, NEON_FCVTPS, FCVTPS) \
|
| + V(fcvtmu, NEON_FCVTMU, FCVTMU) \
|
| + V(fcvtms, NEON_FCVTMS, FCVTMS) \
|
| + V(fcvtau, NEON_FCVTAU, FCVTAU) \
|
| + V(fcvtas, NEON_FCVTAS, FCVTAS)
|
| +
|
| +#define DEFINE_ASM_FUNCS(FN, VEC_OP, SCA_OP) \
|
| + void Assembler::FN(const Register& rd, const VRegister& vn) { \
|
| + NEONFPConvertToInt(rd, vn, SCA_OP); \
|
| + } \
|
| + void Assembler::FN(const VRegister& vd, const VRegister& vn) { \
|
| + NEONFPConvertToInt(vd, vn, VEC_OP); \
|
| + }
|
| +NEON_FP2REGMISC_FCVT_LIST(DEFINE_ASM_FUNCS)
|
| +#undef DEFINE_ASM_FUNCS
|
| +
|
| +void Assembler::scvtf(const VRegister& vd, const VRegister& vn, int fbits) {
|
| + DCHECK_GE(fbits, 0);
|
| + if (fbits == 0) {
|
| + NEONFP2RegMisc(vd, vn, NEON_SCVTF);
|
| + } else {
|
| + DCHECK(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S());
|
| + NEONShiftRightImmediate(vd, vn, fbits, NEON_SCVTF_imm);
|
| + }
|
| +}
|
| +
|
| +void Assembler::ucvtf(const VRegister& vd, const VRegister& vn, int fbits) {
|
| + DCHECK_GE(fbits, 0);
|
| + if (fbits == 0) {
|
| + NEONFP2RegMisc(vd, vn, NEON_UCVTF);
|
| + } else {
|
| + DCHECK(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S());
|
| + NEONShiftRightImmediate(vd, vn, fbits, NEON_UCVTF_imm);
|
| + }
|
| +}
|
| +
|
| +void Assembler::scvtf(const VRegister& vd, const Register& rn, int fbits) {
|
| + DCHECK_GE(fbits, 0);
|
| + if (fbits == 0) {
|
| + Emit(SF(rn) | FPType(vd) | SCVTF | Rn(rn) | Rd(vd));
|
| + } else {
|
| + Emit(SF(rn) | FPType(vd) | SCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
|
| + Rd(vd));
|
| + }
|
| +}
|
| +
|
| +void Assembler::ucvtf(const VRegister& fd, const Register& rn, int fbits) {
|
| + DCHECK_GE(fbits, 0);
|
| + if (fbits == 0) {
|
| + Emit(SF(rn) | FPType(fd) | UCVTF | Rn(rn) | Rd(fd));
|
| + } else {
|
| + Emit(SF(rn) | FPType(fd) | UCVTF_fixed | FPScale(64 - fbits) | Rn(rn) |
|
| + Rd(fd));
|
| + }
|
| +}
|
| +
|
| +void Assembler::NEON3Same(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vm, NEON3SameOp vop) {
|
| + DCHECK(AreSameFormat(vd, vn, vm));
|
| + DCHECK(vd.IsVector() || !vd.IsQ());
|
| +
|
| + Instr format, op = vop;
|
| + if (vd.IsScalar()) {
|
| + op |= NEON_Q | NEONScalar;
|
| + format = SFormat(vd);
|
| + } else {
|
| + format = VFormat(vd);
|
| + }
|
| +
|
| + Emit(format | op | Rm(vm) | Rn(vn) | Rd(vd));
|
| +}
|
| +
|
| +void Assembler::NEONFP3Same(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vm, Instr op) {
|
| + DCHECK(AreSameFormat(vd, vn, vm));
|
| + Emit(FPFormat(vd) | op | Rm(vm) | Rn(vn) | Rd(vd));
|
| +}
|
| +
|
| +#define NEON_FP2REGMISC_LIST(V) \
|
| + V(fabs, NEON_FABS, FABS) \
|
| + V(fneg, NEON_FNEG, FNEG) \
|
| + V(fsqrt, NEON_FSQRT, FSQRT) \
|
| + V(frintn, NEON_FRINTN, FRINTN) \
|
| + V(frinta, NEON_FRINTA, FRINTA) \
|
| + V(frintp, NEON_FRINTP, FRINTP) \
|
| + V(frintm, NEON_FRINTM, FRINTM) \
|
| + V(frintx, NEON_FRINTX, FRINTX) \
|
| + V(frintz, NEON_FRINTZ, FRINTZ) \
|
| + V(frinti, NEON_FRINTI, FRINTI) \
|
| + V(frsqrte, NEON_FRSQRTE, NEON_FRSQRTE_scalar) \
|
| + V(frecpe, NEON_FRECPE, NEON_FRECPE_scalar)
|
| +
|
| +#define DEFINE_ASM_FUNC(FN, VEC_OP, SCA_OP) \
|
| + void Assembler::FN(const VRegister& vd, const VRegister& vn) { \
|
| + Instr op; \
|
| + if (vd.IsScalar()) { \
|
| + DCHECK(vd.Is1S() || vd.Is1D()); \
|
| + op = SCA_OP; \
|
| + } else { \
|
| + DCHECK(vd.Is2S() || vd.Is2D() || vd.Is4S()); \
|
| + op = VEC_OP; \
|
| + } \
|
| + NEONFP2RegMisc(vd, vn, op); \
|
| + }
|
| +NEON_FP2REGMISC_LIST(DEFINE_ASM_FUNC)
|
| +#undef DEFINE_ASM_FUNC
|
| +
|
| +void Assembler::shll(const VRegister& vd, const VRegister& vn, int shift) {
|
| + DCHECK((vd.Is8H() && vn.Is8B() && shift == 8) ||
|
| + (vd.Is4S() && vn.Is4H() && shift == 16) ||
|
| + (vd.Is2D() && vn.Is2S() && shift == 32));
|
| + USE(shift);
|
| + Emit(VFormat(vn) | NEON_SHLL | Rn(vn) | Rd(vd));
|
| +}
|
| +
|
| +void Assembler::shll2(const VRegister& vd, const VRegister& vn, int shift) {
|
| + USE(shift);
|
| + DCHECK((vd.Is8H() && vn.Is16B() && shift == 8) ||
|
| + (vd.Is4S() && vn.Is8H() && shift == 16) ||
|
| + (vd.Is2D() && vn.Is4S() && shift == 32));
|
| + Emit(VFormat(vn) | NEON_SHLL | Rn(vn) | Rd(vd));
|
| +}
|
| +
|
| +void Assembler::NEONFP2RegMisc(const VRegister& vd, const VRegister& vn,
|
| + NEON2RegMiscOp vop, double value) {
|
| + DCHECK(AreSameFormat(vd, vn));
|
| + DCHECK_EQ(value, 0.0);
|
| + USE(value);
|
| +
|
| + Instr op = vop;
|
| + if (vd.IsScalar()) {
|
| + DCHECK(vd.Is1S() || vd.Is1D());
|
| + op |= NEON_Q | NEONScalar;
|
| + } else {
|
| + DCHECK(vd.Is2S() || vd.Is2D() || vd.Is4S());
|
| + }
|
| +
|
| + Emit(FPFormat(vd) | op | Rn(vn) | Rd(vd));
|
| +}
|
| +
|
| +void Assembler::fcmeq(const VRegister& vd, const VRegister& vn, double value) {
|
| + NEONFP2RegMisc(vd, vn, NEON_FCMEQ_zero, value);
|
| +}
|
| +
|
| +void Assembler::fcmge(const VRegister& vd, const VRegister& vn, double value) {
|
| + NEONFP2RegMisc(vd, vn, NEON_FCMGE_zero, value);
|
| +}
|
| +
|
| +void Assembler::fcmgt(const VRegister& vd, const VRegister& vn, double value) {
|
| + NEONFP2RegMisc(vd, vn, NEON_FCMGT_zero, value);
|
| +}
|
| +
|
| +void Assembler::fcmle(const VRegister& vd, const VRegister& vn, double value) {
|
| + NEONFP2RegMisc(vd, vn, NEON_FCMLE_zero, value);
|
| +}
|
| +
|
| +void Assembler::fcmlt(const VRegister& vd, const VRegister& vn, double value) {
|
| + NEONFP2RegMisc(vd, vn, NEON_FCMLT_zero, value);
|
| +}
|
| +
|
| +void Assembler::frecpx(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK(vd.IsScalar());
|
| + DCHECK(AreSameFormat(vd, vn));
|
| + DCHECK(vd.Is1S() || vd.Is1D());
|
| + Emit(FPFormat(vd) | NEON_FRECPX_scalar | Rn(vn) | Rd(vd));
|
| +}
|
| +
|
| +void Assembler::fcvtzs(const Register& rd, const VRegister& vn, int fbits) {
|
| + DCHECK(vn.Is1S() || vn.Is1D());
|
| + DCHECK((fbits >= 0) && (fbits <= rd.SizeInBits()));
|
| + if (fbits == 0) {
|
| + Emit(SF(rd) | FPType(vn) | FCVTZS | Rn(vn) | Rd(rd));
|
| + } else {
|
| + Emit(SF(rd) | FPType(vn) | FCVTZS_fixed | FPScale(64 - fbits) | Rn(vn) |
|
| + Rd(rd));
|
| + }
|
| +}
|
| +
|
| +void Assembler::fcvtzs(const VRegister& vd, const VRegister& vn, int fbits) {
|
| + DCHECK_GE(fbits, 0);
|
| + if (fbits == 0) {
|
| + NEONFP2RegMisc(vd, vn, NEON_FCVTZS);
|
| + } else {
|
| + DCHECK(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S());
|
| + NEONShiftRightImmediate(vd, vn, fbits, NEON_FCVTZS_imm);
|
| + }
|
| +}
|
| +
|
| +void Assembler::fcvtzu(const Register& rd, const VRegister& vn, int fbits) {
|
| + DCHECK(vn.Is1S() || vn.Is1D());
|
| + DCHECK((fbits >= 0) && (fbits <= rd.SizeInBits()));
|
| + if (fbits == 0) {
|
| + Emit(SF(rd) | FPType(vn) | FCVTZU | Rn(vn) | Rd(rd));
|
| + } else {
|
| + Emit(SF(rd) | FPType(vn) | FCVTZU_fixed | FPScale(64 - fbits) | Rn(vn) |
|
| + Rd(rd));
|
| + }
|
| +}
|
| +
|
| +void Assembler::fcvtzu(const VRegister& vd, const VRegister& vn, int fbits) {
|
| + DCHECK_GE(fbits, 0);
|
| + if (fbits == 0) {
|
| + NEONFP2RegMisc(vd, vn, NEON_FCVTZU);
|
| + } else {
|
| + DCHECK(vd.Is1D() || vd.Is1S() || vd.Is2D() || vd.Is2S() || vd.Is4S());
|
| + NEONShiftRightImmediate(vd, vn, fbits, NEON_FCVTZU_imm);
|
| + }
|
| +}
|
| +
|
| +void Assembler::NEONFP2RegMisc(const VRegister& vd, const VRegister& vn,
|
| + Instr op) {
|
| + DCHECK(AreSameFormat(vd, vn));
|
| + Emit(FPFormat(vd) | op | Rn(vn) | Rd(vd));
|
| +}
|
| +
|
| +void Assembler::NEON2RegMisc(const VRegister& vd, const VRegister& vn,
|
| + NEON2RegMiscOp vop, int value) {
|
| + DCHECK(AreSameFormat(vd, vn));
|
| + DCHECK_EQ(value, 0);
|
| + USE(value);
|
| +
|
| + Instr format, op = vop;
|
| + if (vd.IsScalar()) {
|
| + op |= NEON_Q | NEONScalar;
|
| + format = SFormat(vd);
|
| + } else {
|
| + format = VFormat(vd);
|
| + }
|
| +
|
| + Emit(format | op | Rn(vn) | Rd(vd));
|
| +}
|
| +
|
| +void Assembler::cmeq(const VRegister& vd, const VRegister& vn, int value) {
|
| + DCHECK(vd.IsVector() || vd.Is1D());
|
| + NEON2RegMisc(vd, vn, NEON_CMEQ_zero, value);
|
| +}
|
| +
|
| +void Assembler::cmge(const VRegister& vd, const VRegister& vn, int value) {
|
| + DCHECK(vd.IsVector() || vd.Is1D());
|
| + NEON2RegMisc(vd, vn, NEON_CMGE_zero, value);
|
| +}
|
| +
|
| +void Assembler::cmgt(const VRegister& vd, const VRegister& vn, int value) {
|
| + DCHECK(vd.IsVector() || vd.Is1D());
|
| + NEON2RegMisc(vd, vn, NEON_CMGT_zero, value);
|
| +}
|
| +
|
| +void Assembler::cmle(const VRegister& vd, const VRegister& vn, int value) {
|
| + DCHECK(vd.IsVector() || vd.Is1D());
|
| + NEON2RegMisc(vd, vn, NEON_CMLE_zero, value);
|
| +}
|
| +
|
| +void Assembler::cmlt(const VRegister& vd, const VRegister& vn, int value) {
|
| + DCHECK(vd.IsVector() || vd.Is1D());
|
| + NEON2RegMisc(vd, vn, NEON_CMLT_zero, value);
|
| +}
|
| +
|
| +#define NEON_3SAME_LIST(V) \
|
| + V(add, NEON_ADD, vd.IsVector() || vd.Is1D()) \
|
| + V(addp, NEON_ADDP, vd.IsVector() || vd.Is1D()) \
|
| + V(sub, NEON_SUB, vd.IsVector() || vd.Is1D()) \
|
| + V(cmeq, NEON_CMEQ, vd.IsVector() || vd.Is1D()) \
|
| + V(cmge, NEON_CMGE, vd.IsVector() || vd.Is1D()) \
|
| + V(cmgt, NEON_CMGT, vd.IsVector() || vd.Is1D()) \
|
| + V(cmhi, NEON_CMHI, vd.IsVector() || vd.Is1D()) \
|
| + V(cmhs, NEON_CMHS, vd.IsVector() || vd.Is1D()) \
|
| + V(cmtst, NEON_CMTST, vd.IsVector() || vd.Is1D()) \
|
| + V(sshl, NEON_SSHL, vd.IsVector() || vd.Is1D()) \
|
| + V(ushl, NEON_USHL, vd.IsVector() || vd.Is1D()) \
|
| + V(srshl, NEON_SRSHL, vd.IsVector() || vd.Is1D()) \
|
| + V(urshl, NEON_URSHL, vd.IsVector() || vd.Is1D()) \
|
| + V(sqdmulh, NEON_SQDMULH, vd.IsLaneSizeH() || vd.IsLaneSizeS()) \
|
| + V(sqrdmulh, NEON_SQRDMULH, vd.IsLaneSizeH() || vd.IsLaneSizeS()) \
|
| + V(shadd, NEON_SHADD, vd.IsVector() && !vd.IsLaneSizeD()) \
|
| + V(uhadd, NEON_UHADD, vd.IsVector() && !vd.IsLaneSizeD()) \
|
| + V(srhadd, NEON_SRHADD, vd.IsVector() && !vd.IsLaneSizeD()) \
|
| + V(urhadd, NEON_URHADD, vd.IsVector() && !vd.IsLaneSizeD()) \
|
| + V(shsub, NEON_SHSUB, vd.IsVector() && !vd.IsLaneSizeD()) \
|
| + V(uhsub, NEON_UHSUB, vd.IsVector() && !vd.IsLaneSizeD()) \
|
| + V(smax, NEON_SMAX, vd.IsVector() && !vd.IsLaneSizeD()) \
|
| + V(smaxp, NEON_SMAXP, vd.IsVector() && !vd.IsLaneSizeD()) \
|
| + V(smin, NEON_SMIN, vd.IsVector() && !vd.IsLaneSizeD()) \
|
| + V(sminp, NEON_SMINP, vd.IsVector() && !vd.IsLaneSizeD()) \
|
| + V(umax, NEON_UMAX, vd.IsVector() && !vd.IsLaneSizeD()) \
|
| + V(umaxp, NEON_UMAXP, vd.IsVector() && !vd.IsLaneSizeD()) \
|
| + V(umin, NEON_UMIN, vd.IsVector() && !vd.IsLaneSizeD()) \
|
| + V(uminp, NEON_UMINP, vd.IsVector() && !vd.IsLaneSizeD()) \
|
| + V(saba, NEON_SABA, vd.IsVector() && !vd.IsLaneSizeD()) \
|
| + V(sabd, NEON_SABD, vd.IsVector() && !vd.IsLaneSizeD()) \
|
| + V(uaba, NEON_UABA, vd.IsVector() && !vd.IsLaneSizeD()) \
|
| + V(uabd, NEON_UABD, vd.IsVector() && !vd.IsLaneSizeD()) \
|
| + V(mla, NEON_MLA, vd.IsVector() && !vd.IsLaneSizeD()) \
|
| + V(mls, NEON_MLS, vd.IsVector() && !vd.IsLaneSizeD()) \
|
| + V(mul, NEON_MUL, vd.IsVector() && !vd.IsLaneSizeD()) \
|
| + V(and_, NEON_AND, vd.Is8B() || vd.Is16B()) \
|
| + V(orr, NEON_ORR, vd.Is8B() || vd.Is16B()) \
|
| + V(orn, NEON_ORN, vd.Is8B() || vd.Is16B()) \
|
| + V(eor, NEON_EOR, vd.Is8B() || vd.Is16B()) \
|
| + V(bic, NEON_BIC, vd.Is8B() || vd.Is16B()) \
|
| + V(bit, NEON_BIT, vd.Is8B() || vd.Is16B()) \
|
| + V(bif, NEON_BIF, vd.Is8B() || vd.Is16B()) \
|
| + V(bsl, NEON_BSL, vd.Is8B() || vd.Is16B()) \
|
| + V(pmul, NEON_PMUL, vd.Is8B() || vd.Is16B()) \
|
| + V(uqadd, NEON_UQADD, true) \
|
| + V(sqadd, NEON_SQADD, true) \
|
| + V(uqsub, NEON_UQSUB, true) \
|
| + V(sqsub, NEON_SQSUB, true) \
|
| + V(sqshl, NEON_SQSHL, true) \
|
| + V(uqshl, NEON_UQSHL, true) \
|
| + V(sqrshl, NEON_SQRSHL, true) \
|
| + V(uqrshl, NEON_UQRSHL, true)
|
| +
|
| +#define DEFINE_ASM_FUNC(FN, OP, AS) \
|
| + void Assembler::FN(const VRegister& vd, const VRegister& vn, \
|
| + const VRegister& vm) { \
|
| + DCHECK(AS); \
|
| + NEON3Same(vd, vn, vm, OP); \
|
| + }
|
| +NEON_3SAME_LIST(DEFINE_ASM_FUNC)
|
| +#undef DEFINE_ASM_FUNC
|
| +
|
| +#define NEON_FP3SAME_LIST(V) \
|
| + V(fadd, NEON_FADD, FADD) \
|
| + V(fsub, NEON_FSUB, FSUB) \
|
| + V(fmul, NEON_FMUL, FMUL) \
|
| + V(fdiv, NEON_FDIV, FDIV) \
|
| + V(fmax, NEON_FMAX, FMAX) \
|
| + V(fmaxnm, NEON_FMAXNM, FMAXNM) \
|
| + V(fmin, NEON_FMIN, FMIN) \
|
| + V(fminnm, NEON_FMINNM, FMINNM) \
|
| + V(fmulx, NEON_FMULX, NEON_FMULX_scalar) \
|
| + V(frecps, NEON_FRECPS, NEON_FRECPS_scalar) \
|
| + V(frsqrts, NEON_FRSQRTS, NEON_FRSQRTS_scalar) \
|
| + V(fabd, NEON_FABD, NEON_FABD_scalar) \
|
| + V(fmla, NEON_FMLA, 0) \
|
| + V(fmls, NEON_FMLS, 0) \
|
| + V(facge, NEON_FACGE, NEON_FACGE_scalar) \
|
| + V(facgt, NEON_FACGT, NEON_FACGT_scalar) \
|
| + V(fcmeq, NEON_FCMEQ, NEON_FCMEQ_scalar) \
|
| + V(fcmge, NEON_FCMGE, NEON_FCMGE_scalar) \
|
| + V(fcmgt, NEON_FCMGT, NEON_FCMGT_scalar) \
|
| + V(faddp, NEON_FADDP, 0) \
|
| + V(fmaxp, NEON_FMAXP, 0) \
|
| + V(fminp, NEON_FMINP, 0) \
|
| + V(fmaxnmp, NEON_FMAXNMP, 0) \
|
| + V(fminnmp, NEON_FMINNMP, 0)
|
| +
|
| +#define DEFINE_ASM_FUNC(FN, VEC_OP, SCA_OP) \
|
| + void Assembler::FN(const VRegister& vd, const VRegister& vn, \
|
| + const VRegister& vm) { \
|
| + Instr op; \
|
| + if ((SCA_OP != 0) && vd.IsScalar()) { \
|
| + DCHECK(vd.Is1S() || vd.Is1D()); \
|
| + op = SCA_OP; \
|
| + } else { \
|
| + DCHECK(vd.IsVector()); \
|
| + DCHECK(vd.Is2S() || vd.Is2D() || vd.Is4S()); \
|
| + op = VEC_OP; \
|
| + } \
|
| + NEONFP3Same(vd, vn, vm, op); \
|
| + }
|
| +NEON_FP3SAME_LIST(DEFINE_ASM_FUNC)
|
| +#undef DEFINE_ASM_FUNC
|
| +
|
| +void Assembler::addp(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK((vd.Is1D() && vn.Is2D()));
|
| + Emit(SFormat(vd) | NEON_ADDP_scalar | Rn(vn) | Rd(vd));
|
| +}
|
| +
|
| +void Assembler::faddp(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D()));
|
| + Emit(FPFormat(vd) | NEON_FADDP_scalar | Rn(vn) | Rd(vd));
|
| +}
|
| +
|
| +void Assembler::fmaxp(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D()));
|
| + Emit(FPFormat(vd) | NEON_FMAXP_scalar | Rn(vn) | Rd(vd));
|
| +}
|
| +
|
| +void Assembler::fminp(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D()));
|
| + Emit(FPFormat(vd) | NEON_FMINP_scalar | Rn(vn) | Rd(vd));
|
| +}
|
| +
|
| +void Assembler::fmaxnmp(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D()));
|
| + Emit(FPFormat(vd) | NEON_FMAXNMP_scalar | Rn(vn) | Rd(vd));
|
| +}
|
| +
|
| +void Assembler::fminnmp(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK((vd.Is1S() && vn.Is2S()) || (vd.Is1D() && vn.Is2D()));
|
| + Emit(FPFormat(vd) | NEON_FMINNMP_scalar | Rn(vn) | Rd(vd));
|
| +}
|
| +
|
| +void Assembler::orr(const VRegister& vd, const int imm8, const int left_shift) {
|
| + NEONModifiedImmShiftLsl(vd, imm8, left_shift, NEONModifiedImmediate_ORR);
|
| +}
|
| +
|
| +void Assembler::mov(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK(AreSameFormat(vd, vn));
|
| + if (vd.IsD()) {
|
| + orr(vd.V8B(), vn.V8B(), vn.V8B());
|
| + } else {
|
| + DCHECK(vd.IsQ());
|
| + orr(vd.V16B(), vn.V16B(), vn.V16B());
|
| + }
|
| +}
|
| +
|
| +void Assembler::bic(const VRegister& vd, const int imm8, const int left_shift) {
|
| + NEONModifiedImmShiftLsl(vd, imm8, left_shift, NEONModifiedImmediate_BIC);
|
| +}
|
| +
|
| +void Assembler::movi(const VRegister& vd, const uint64_t imm, Shift shift,
|
| + const int shift_amount) {
|
| + DCHECK((shift == LSL) || (shift == MSL));
|
| + if (vd.Is2D() || vd.Is1D()) {
|
| + DCHECK_EQ(shift_amount, 0);
|
| + int imm8 = 0;
|
| + for (int i = 0; i < 8; ++i) {
|
| + int byte = (imm >> (i * 8)) & 0xff;
|
| + DCHECK((byte == 0) || (byte == 0xff));
|
| + if (byte == 0xff) {
|
| + imm8 |= (1 << i);
|
| + }
|
| + }
|
| + Instr q = vd.Is2D() ? NEON_Q : 0;
|
| + Emit(q | NEONModImmOp(1) | NEONModifiedImmediate_MOVI |
|
| + ImmNEONabcdefgh(imm8) | NEONCmode(0xe) | Rd(vd));
|
| + } else if (shift == LSL) {
|
| + NEONModifiedImmShiftLsl(vd, static_cast<int>(imm), shift_amount,
|
| + NEONModifiedImmediate_MOVI);
|
| + } else {
|
| + NEONModifiedImmShiftMsl(vd, static_cast<int>(imm), shift_amount,
|
| + NEONModifiedImmediate_MOVI);
|
| + }
|
| +}
|
| +
|
| +void Assembler::mvn(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK(AreSameFormat(vd, vn));
|
| + if (vd.IsD()) {
|
| + not_(vd.V8B(), vn.V8B());
|
| + } else {
|
| + DCHECK(vd.IsQ());
|
| + not_(vd.V16B(), vn.V16B());
|
| + }
|
| +}
|
| +
|
| +void Assembler::mvni(const VRegister& vd, const int imm8, Shift shift,
|
| + const int shift_amount) {
|
| + DCHECK((shift == LSL) || (shift == MSL));
|
| + if (shift == LSL) {
|
| + NEONModifiedImmShiftLsl(vd, imm8, shift_amount, NEONModifiedImmediate_MVNI);
|
| + } else {
|
| + NEONModifiedImmShiftMsl(vd, imm8, shift_amount, NEONModifiedImmediate_MVNI);
|
| + }
|
| +}
|
| +
|
| +void Assembler::NEONFPByElement(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vm, int vm_index,
|
| + NEONByIndexedElementOp vop) {
|
| + DCHECK(AreSameFormat(vd, vn));
|
| + DCHECK((vd.Is2S() && vm.Is1S()) || (vd.Is4S() && vm.Is1S()) ||
|
| + (vd.Is1S() && vm.Is1S()) || (vd.Is2D() && vm.Is1D()) ||
|
| + (vd.Is1D() && vm.Is1D()));
|
| + DCHECK((vm.Is1S() && (vm_index < 4)) || (vm.Is1D() && (vm_index < 2)));
|
| +
|
| + Instr op = vop;
|
| + int index_num_bits = vm.Is1S() ? 2 : 1;
|
| + if (vd.IsScalar()) {
|
| + op |= NEON_Q | NEONScalar;
|
| + }
|
| +
|
| + Emit(FPFormat(vd) | op | ImmNEONHLM(vm_index, index_num_bits) | Rm(vm) |
|
| + Rn(vn) | Rd(vd));
|
| +}
|
| +
|
| +void Assembler::NEONByElement(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vm, int vm_index,
|
| + NEONByIndexedElementOp vop) {
|
| + DCHECK(AreSameFormat(vd, vn));
|
| + DCHECK((vd.Is4H() && vm.Is1H()) || (vd.Is8H() && vm.Is1H()) ||
|
| + (vd.Is1H() && vm.Is1H()) || (vd.Is2S() && vm.Is1S()) ||
|
| + (vd.Is4S() && vm.Is1S()) || (vd.Is1S() && vm.Is1S()));
|
| + DCHECK((vm.Is1H() && (vm.code() < 16) && (vm_index < 8)) ||
|
| + (vm.Is1S() && (vm_index < 4)));
|
| +
|
| + Instr format, op = vop;
|
| + int index_num_bits = vm.Is1H() ? 3 : 2;
|
| + if (vd.IsScalar()) {
|
| + op |= NEONScalar | NEON_Q;
|
| + format = SFormat(vn);
|
| + } else {
|
| + format = VFormat(vn);
|
| + }
|
| + Emit(format | op | ImmNEONHLM(vm_index, index_num_bits) | Rm(vm) | Rn(vn) |
|
| + Rd(vd));
|
| +}
|
| +
|
| +void Assembler::NEONByElementL(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vm, int vm_index,
|
| + NEONByIndexedElementOp vop) {
|
| + DCHECK((vd.Is4S() && vn.Is4H() && vm.Is1H()) ||
|
| + (vd.Is4S() && vn.Is8H() && vm.Is1H()) ||
|
| + (vd.Is1S() && vn.Is1H() && vm.Is1H()) ||
|
| + (vd.Is2D() && vn.Is2S() && vm.Is1S()) ||
|
| + (vd.Is2D() && vn.Is4S() && vm.Is1S()) ||
|
| + (vd.Is1D() && vn.Is1S() && vm.Is1S()));
|
| +
|
| + DCHECK((vm.Is1H() && (vm.code() < 16) && (vm_index < 8)) ||
|
| + (vm.Is1S() && (vm_index < 4)));
|
| +
|
| + Instr format, op = vop;
|
| + int index_num_bits = vm.Is1H() ? 3 : 2;
|
| + if (vd.IsScalar()) {
|
| + op |= NEONScalar | NEON_Q;
|
| + format = SFormat(vn);
|
| + } else {
|
| + format = VFormat(vn);
|
| + }
|
| + Emit(format | op | ImmNEONHLM(vm_index, index_num_bits) | Rm(vm) | Rn(vn) |
|
| + Rd(vd));
|
| +}
|
| +
|
| +#define NEON_BYELEMENT_LIST(V) \
|
| + V(mul, NEON_MUL_byelement, vn.IsVector()) \
|
| + V(mla, NEON_MLA_byelement, vn.IsVector()) \
|
| + V(mls, NEON_MLS_byelement, vn.IsVector()) \
|
| + V(sqdmulh, NEON_SQDMULH_byelement, true) \
|
| + V(sqrdmulh, NEON_SQRDMULH_byelement, true)
|
| +
|
| +#define DEFINE_ASM_FUNC(FN, OP, AS) \
|
| + void Assembler::FN(const VRegister& vd, const VRegister& vn, \
|
| + const VRegister& vm, int vm_index) { \
|
| + DCHECK(AS); \
|
| + NEONByElement(vd, vn, vm, vm_index, OP); \
|
| + }
|
| +NEON_BYELEMENT_LIST(DEFINE_ASM_FUNC)
|
| +#undef DEFINE_ASM_FUNC
|
| +
|
| +#define NEON_FPBYELEMENT_LIST(V) \
|
| + V(fmul, NEON_FMUL_byelement) \
|
| + V(fmla, NEON_FMLA_byelement) \
|
| + V(fmls, NEON_FMLS_byelement) \
|
| + V(fmulx, NEON_FMULX_byelement)
|
| +
|
| +#define DEFINE_ASM_FUNC(FN, OP) \
|
| + void Assembler::FN(const VRegister& vd, const VRegister& vn, \
|
| + const VRegister& vm, int vm_index) { \
|
| + NEONFPByElement(vd, vn, vm, vm_index, OP); \
|
| + }
|
| +NEON_FPBYELEMENT_LIST(DEFINE_ASM_FUNC)
|
| +#undef DEFINE_ASM_FUNC
|
| +
|
| +#define NEON_BYELEMENT_LONG_LIST(V) \
|
| + V(sqdmull, NEON_SQDMULL_byelement, vn.IsScalar() || vn.IsD()) \
|
| + V(sqdmull2, NEON_SQDMULL_byelement, vn.IsVector() && vn.IsQ()) \
|
| + V(sqdmlal, NEON_SQDMLAL_byelement, vn.IsScalar() || vn.IsD()) \
|
| + V(sqdmlal2, NEON_SQDMLAL_byelement, vn.IsVector() && vn.IsQ()) \
|
| + V(sqdmlsl, NEON_SQDMLSL_byelement, vn.IsScalar() || vn.IsD()) \
|
| + V(sqdmlsl2, NEON_SQDMLSL_byelement, vn.IsVector() && vn.IsQ()) \
|
| + V(smull, NEON_SMULL_byelement, vn.IsVector() && vn.IsD()) \
|
| + V(smull2, NEON_SMULL_byelement, vn.IsVector() && vn.IsQ()) \
|
| + V(umull, NEON_UMULL_byelement, vn.IsVector() && vn.IsD()) \
|
| + V(umull2, NEON_UMULL_byelement, vn.IsVector() && vn.IsQ()) \
|
| + V(smlal, NEON_SMLAL_byelement, vn.IsVector() && vn.IsD()) \
|
| + V(smlal2, NEON_SMLAL_byelement, vn.IsVector() && vn.IsQ()) \
|
| + V(umlal, NEON_UMLAL_byelement, vn.IsVector() && vn.IsD()) \
|
| + V(umlal2, NEON_UMLAL_byelement, vn.IsVector() && vn.IsQ()) \
|
| + V(smlsl, NEON_SMLSL_byelement, vn.IsVector() && vn.IsD()) \
|
| + V(smlsl2, NEON_SMLSL_byelement, vn.IsVector() && vn.IsQ()) \
|
| + V(umlsl, NEON_UMLSL_byelement, vn.IsVector() && vn.IsD()) \
|
| + V(umlsl2, NEON_UMLSL_byelement, vn.IsVector() && vn.IsQ())
|
| +
|
| +#define DEFINE_ASM_FUNC(FN, OP, AS) \
|
| + void Assembler::FN(const VRegister& vd, const VRegister& vn, \
|
| + const VRegister& vm, int vm_index) { \
|
| + DCHECK(AS); \
|
| + NEONByElementL(vd, vn, vm, vm_index, OP); \
|
| + }
|
| +NEON_BYELEMENT_LONG_LIST(DEFINE_ASM_FUNC)
|
| +#undef DEFINE_ASM_FUNC
|
| +
|
| +void Assembler::suqadd(const VRegister& vd, const VRegister& vn) {
|
| + NEON2RegMisc(vd, vn, NEON_SUQADD);
|
| +}
|
| +
|
| +void Assembler::usqadd(const VRegister& vd, const VRegister& vn) {
|
| + NEON2RegMisc(vd, vn, NEON_USQADD);
|
| +}
|
| +
|
| +void Assembler::abs(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK(vd.IsVector() || vd.Is1D());
|
| + NEON2RegMisc(vd, vn, NEON_ABS);
|
| +}
|
| +
|
| +void Assembler::sqabs(const VRegister& vd, const VRegister& vn) {
|
| + NEON2RegMisc(vd, vn, NEON_SQABS);
|
| +}
|
| +
|
| +void Assembler::neg(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK(vd.IsVector() || vd.Is1D());
|
| + NEON2RegMisc(vd, vn, NEON_NEG);
|
| +}
|
| +
|
| +void Assembler::sqneg(const VRegister& vd, const VRegister& vn) {
|
| + NEON2RegMisc(vd, vn, NEON_SQNEG);
|
| +}
|
| +
|
| +void Assembler::NEONXtn(const VRegister& vd, const VRegister& vn,
|
| + NEON2RegMiscOp vop) {
|
| + Instr format, op = vop;
|
| + if (vd.IsScalar()) {
|
| + DCHECK((vd.Is1B() && vn.Is1H()) || (vd.Is1H() && vn.Is1S()) ||
|
| + (vd.Is1S() && vn.Is1D()));
|
| + op |= NEON_Q | NEONScalar;
|
| + format = SFormat(vd);
|
| + } else {
|
| + DCHECK((vd.Is8B() && vn.Is8H()) || (vd.Is4H() && vn.Is4S()) ||
|
| + (vd.Is2S() && vn.Is2D()) || (vd.Is16B() && vn.Is8H()) ||
|
| + (vd.Is8H() && vn.Is4S()) || (vd.Is4S() && vn.Is2D()));
|
| + format = VFormat(vd);
|
| + }
|
| + Emit(format | op | Rn(vn) | Rd(vd));
|
| +}
|
| +
|
| +void Assembler::xtn(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK(vd.IsVector() && vd.IsD());
|
| + NEONXtn(vd, vn, NEON_XTN);
|
| +}
|
| +
|
| +void Assembler::xtn2(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK(vd.IsVector() && vd.IsQ());
|
| + NEONXtn(vd, vn, NEON_XTN);
|
| +}
|
| +
|
| +void Assembler::sqxtn(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK(vd.IsScalar() || vd.IsD());
|
| + NEONXtn(vd, vn, NEON_SQXTN);
|
| +}
|
| +
|
| +void Assembler::sqxtn2(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK(vd.IsVector() && vd.IsQ());
|
| + NEONXtn(vd, vn, NEON_SQXTN);
|
| +}
|
| +
|
| +void Assembler::sqxtun(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK(vd.IsScalar() || vd.IsD());
|
| + NEONXtn(vd, vn, NEON_SQXTUN);
|
| +}
|
| +
|
| +void Assembler::sqxtun2(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK(vd.IsVector() && vd.IsQ());
|
| + NEONXtn(vd, vn, NEON_SQXTUN);
|
| +}
|
| +
|
| +void Assembler::uqxtn(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK(vd.IsScalar() || vd.IsD());
|
| + NEONXtn(vd, vn, NEON_UQXTN);
|
| +}
|
| +
|
| +void Assembler::uqxtn2(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK(vd.IsVector() && vd.IsQ());
|
| + NEONXtn(vd, vn, NEON_UQXTN);
|
| +}
|
| +
|
| +// NEON NOT and RBIT are distinguised by bit 22, the bottom bit of "size".
|
| +void Assembler::not_(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK(AreSameFormat(vd, vn));
|
| + DCHECK(vd.Is8B() || vd.Is16B());
|
| + Emit(VFormat(vd) | NEON_RBIT_NOT | Rn(vn) | Rd(vd));
|
| +}
|
| +
|
| +void Assembler::rbit(const VRegister& vd, const VRegister& vn) {
|
| + DCHECK(AreSameFormat(vd, vn));
|
| + DCHECK(vd.Is8B() || vd.Is16B());
|
| + Emit(VFormat(vn) | (1 << NEONSize_offset) | NEON_RBIT_NOT | Rn(vn) | Rd(vd));
|
| +}
|
| +
|
| +void Assembler::ext(const VRegister& vd, const VRegister& vn,
|
| + const VRegister& vm, int index) {
|
| + DCHECK(AreSameFormat(vd, vn, vm));
|
| + DCHECK(vd.Is8B() || vd.Is16B());
|
| + DCHECK((0 <= index) && (index < vd.LaneCount()));
|
| + Emit(VFormat(vd) | NEON_EXT | Rm(vm) | ImmNEONExt(index) | Rn(vn) | Rd(vd));
|
| +}
|
| +
|
| +void Assembler::dup(const VRegister& vd, const VRegister& vn, int vn_index) {
|
| + Instr q, scalar;
|
| +
|
| + // We support vn arguments of the form vn.VxT() or vn.T(), where x is the
|
| + // number of lanes, and T is b, h, s or d.
|
| + int lane_size = vn.LaneSizeInBytes();
|
| + NEONFormatField format;
|
| + switch (lane_size) {
|
| + case 1:
|
| + format = NEON_16B;
|
| + break;
|
| + case 2:
|
| + format = NEON_8H;
|
| + break;
|
| + case 4:
|
| + format = NEON_4S;
|
| + break;
|
| + default:
|
| + DCHECK_EQ(lane_size, 8);
|
| + format = NEON_2D;
|
| + break;
|
| + }
|
| +
|
| + if (vd.IsScalar()) {
|
| + q = NEON_Q;
|
| + scalar = NEONScalar;
|
| + } else {
|
| + DCHECK(!vd.Is1D());
|
| + q = vd.IsD() ? 0 : NEON_Q;
|
| + scalar = 0;
|
| + }
|
| + Emit(q | scalar | NEON_DUP_ELEMENT | ImmNEON5(format, vn_index) | Rn(vn) |
|
| + Rd(vd));
|
| +}
|
| +
|
| +void Assembler::dcptr(Label* label) {
|
| + RecordRelocInfo(RelocInfo::INTERNAL_REFERENCE);
|
| + if (label->is_bound()) {
|
| + // The label is bound, so it does not need to be updated and the internal
|
| + // reference should be emitted.
|
| + //
|
| + // In this case, label->pos() returns the offset of the label from the
|
| + // start of the buffer.
|
| + internal_reference_positions_.push_back(pc_offset());
|
| + dc64(reinterpret_cast<uintptr_t>(buffer_ + label->pos()));
|
| + } else {
|
| + int32_t offset;
|
| + if (label->is_linked()) {
|
| + // The label is linked, so the internal reference should be added
|
| + // onto the end of the label's link chain.
|
| + //
|
| + // In this case, label->pos() returns the offset of the last linked
|
| + // instruction from the start of the buffer.
|
| + offset = label->pos() - pc_offset();
|
| + DCHECK(offset != kStartOfLabelLinkChain);
|
| + } else {
|
| + // The label is unused, so it now becomes linked and the internal
|
| + // reference is at the start of the new link chain.
|
| + offset = kStartOfLabelLinkChain;
|
| + }
|
| + // The instruction at pc is now the last link in the label's chain.
|
| + label->link_to(pc_offset());
|
| +
|
| + // Traditionally the offset to the previous instruction in the chain is
|
| + // encoded in the instruction payload (e.g. branch range) but internal
|
| + // references are not instructions so while unbound they are encoded as
|
| + // two consecutive brk instructions. The two 16-bit immediates are used
|
| + // to encode the offset.
|
| + offset >>= kInstructionSizeLog2;
|
| + DCHECK(is_int32(offset));
|
| + uint32_t high16 = unsigned_bitextract_32(31, 16, offset);
|
| + uint32_t low16 = unsigned_bitextract_32(15, 0, offset);
|
| +
|
| + brk(high16);
|
| + brk(low16);
|
| + }
|
| +}
|
| +
|
| +// Below, a difference in case for the same letter indicates a
|
| +// negated bit. If b is 1, then B is 0.
|
| +uint32_t Assembler::FPToImm8(double imm) {
|
| + DCHECK(IsImmFP64(imm));
|
| + // bits: aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
|
| + // 0000.0000.0000.0000.0000.0000.0000.0000
|
| + uint64_t bits = bit_cast<uint64_t>(imm);
|
| + // bit7: a000.0000
|
| + uint64_t bit7 = ((bits >> 63) & 0x1) << 7;
|
| + // bit6: 0b00.0000
|
| + uint64_t bit6 = ((bits >> 61) & 0x1) << 6;
|
| + // bit5_to_0: 00cd.efgh
|
| + uint64_t bit5_to_0 = (bits >> 48) & 0x3f;
|
| +
|
| + return static_cast<uint32_t>(bit7 | bit6 | bit5_to_0);
|
| +}
|
| +
|
| +Instr Assembler::ImmFP(double imm) { return FPToImm8(imm) << ImmFP_offset; }
|
| +Instr Assembler::ImmNEONFP(double imm) {
|
| + return ImmNEONabcdefgh(FPToImm8(imm));
|
| +}
|
| +
|
| +// Code generation helpers.
|
| +void Assembler::MoveWide(const Register& rd, uint64_t imm, int shift,
|
| + MoveWideImmediateOp mov_op) {
|
| + // Ignore the top 32 bits of an immediate if we're moving to a W register.
|
| + if (rd.Is32Bits()) {
|
| + // Check that the top 32 bits are zero (a positive 32-bit number) or top
|
| + // 33 bits are one (a negative 32-bit number, sign extended to 64 bits).
|
| + DCHECK(((imm >> kWRegSizeInBits) == 0) ||
|
| + ((imm >> (kWRegSizeInBits - 1)) == 0x1ffffffff));
|
| + imm &= kWRegMask;
|
| + }
|
|
|
| if (shift >= 0) {
|
| // Explicit shift specified.
|
| @@ -2245,13 +3993,9 @@ void Assembler::MoveWide(const Register& rd,
|
| ImmMoveWide(static_cast<int>(imm)) | ShiftMoveWide(shift));
|
| }
|
|
|
| -
|
| -void Assembler::AddSub(const Register& rd,
|
| - const Register& rn,
|
| - const Operand& operand,
|
| - FlagsUpdate S,
|
| - AddSubOp op) {
|
| - DCHECK(rd.SizeInBits() == rn.SizeInBits());
|
| +void Assembler::AddSub(const Register& rd, const Register& rn,
|
| + const Operand& operand, FlagsUpdate S, AddSubOp op) {
|
| + DCHECK_EQ(rd.SizeInBits(), rn.SizeInBits());
|
| DCHECK(!operand.NeedsRelocation(this));
|
| if (operand.IsImmediate()) {
|
| int64_t immediate = operand.ImmediateValue();
|
| @@ -2260,8 +4004,8 @@ void Assembler::AddSub(const Register& rd,
|
| Emit(SF(rd) | AddSubImmediateFixed | op | Flags(S) |
|
| ImmAddSub(static_cast<int>(immediate)) | dest_reg | RnSP(rn));
|
| } else if (operand.IsShiftedRegister()) {
|
| - DCHECK(operand.reg().SizeInBits() == rd.SizeInBits());
|
| - DCHECK(operand.shift() != ROR);
|
| + DCHECK_EQ(operand.reg().SizeInBits(), rd.SizeInBits());
|
| + DCHECK_NE(operand.shift(), ROR);
|
|
|
| // For instructions of the form:
|
| // add/sub wsp, <Wn>, <Wm> [, LSL #0-3 ]
|
| @@ -2283,39 +4027,34 @@ void Assembler::AddSub(const Register& rd,
|
| }
|
| }
|
|
|
| -
|
| -void Assembler::AddSubWithCarry(const Register& rd,
|
| - const Register& rn,
|
| - const Operand& operand,
|
| - FlagsUpdate S,
|
| +void Assembler::AddSubWithCarry(const Register& rd, const Register& rn,
|
| + const Operand& operand, FlagsUpdate S,
|
| AddSubWithCarryOp op) {
|
| - DCHECK(rd.SizeInBits() == rn.SizeInBits());
|
| - DCHECK(rd.SizeInBits() == operand.reg().SizeInBits());
|
| + DCHECK_EQ(rd.SizeInBits(), rn.SizeInBits());
|
| + DCHECK_EQ(rd.SizeInBits(), operand.reg().SizeInBits());
|
| DCHECK(operand.IsShiftedRegister() && (operand.shift_amount() == 0));
|
| DCHECK(!operand.NeedsRelocation(this));
|
| Emit(SF(rd) | op | Flags(S) | Rm(operand.reg()) | Rn(rn) | Rd(rd));
|
| }
|
|
|
| -
|
| void Assembler::hlt(int code) {
|
| DCHECK(is_uint16(code));
|
| Emit(HLT | ImmException(code));
|
| }
|
|
|
| -
|
| void Assembler::brk(int code) {
|
| DCHECK(is_uint16(code));
|
| Emit(BRK | ImmException(code));
|
| }
|
|
|
| -
|
| void Assembler::EmitStringData(const char* string) {
|
| size_t len = strlen(string) + 1;
|
| - DCHECK(RoundUp(len, kInstructionSize) <= static_cast<size_t>(kGap));
|
| + DCHECK_LE(RoundUp(len, kInstructionSize), static_cast<size_t>(kGap));
|
| EmitData(string, static_cast<int>(len));
|
| // Pad with NULL characters until pc_ is aligned.
|
| const char pad[] = {'\0', '\0', '\0', '\0'};
|
| - STATIC_ASSERT(sizeof(pad) == kInstructionSize);
|
| + static_assert(sizeof(pad) == kInstructionSize,
|
| + "Size of padding must match instruction size.");
|
| EmitData(pad, RoundUp(pc_offset(), kInstructionSize) - pc_offset());
|
| }
|
|
|
| @@ -2432,33 +4171,75 @@ void Assembler::DataProcessing1Source(const Register& rd,
|
| Emit(SF(rn) | op | Rn(rn) | Rd(rd));
|
| }
|
|
|
| -
|
| -void Assembler::FPDataProcessing1Source(const FPRegister& fd,
|
| - const FPRegister& fn,
|
| +void Assembler::FPDataProcessing1Source(const VRegister& vd,
|
| + const VRegister& vn,
|
| FPDataProcessing1SourceOp op) {
|
| - Emit(FPType(fn) | op | Rn(fn) | Rd(fd));
|
| + Emit(FPType(vn) | op | Rn(vn) | Rd(vd));
|
| }
|
|
|
| -
|
| -void Assembler::FPDataProcessing2Source(const FPRegister& fd,
|
| - const FPRegister& fn,
|
| - const FPRegister& fm,
|
| +void Assembler::FPDataProcessing2Source(const VRegister& fd,
|
| + const VRegister& fn,
|
| + const VRegister& fm,
|
| FPDataProcessing2SourceOp op) {
|
| DCHECK(fd.SizeInBits() == fn.SizeInBits());
|
| DCHECK(fd.SizeInBits() == fm.SizeInBits());
|
| Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd));
|
| }
|
|
|
| -
|
| -void Assembler::FPDataProcessing3Source(const FPRegister& fd,
|
| - const FPRegister& fn,
|
| - const FPRegister& fm,
|
| - const FPRegister& fa,
|
| +void Assembler::FPDataProcessing3Source(const VRegister& fd,
|
| + const VRegister& fn,
|
| + const VRegister& fm,
|
| + const VRegister& fa,
|
| FPDataProcessing3SourceOp op) {
|
| DCHECK(AreSameSizeAndType(fd, fn, fm, fa));
|
| Emit(FPType(fd) | op | Rm(fm) | Rn(fn) | Rd(fd) | Ra(fa));
|
| }
|
|
|
| +void Assembler::NEONModifiedImmShiftLsl(const VRegister& vd, const int imm8,
|
| + const int left_shift,
|
| + NEONModifiedImmediateOp op) {
|
| + DCHECK(vd.Is8B() || vd.Is16B() || vd.Is4H() || vd.Is8H() || vd.Is2S() ||
|
| + vd.Is4S());
|
| + DCHECK((left_shift == 0) || (left_shift == 8) || (left_shift == 16) ||
|
| + (left_shift == 24));
|
| + DCHECK(is_uint8(imm8));
|
| +
|
| + int cmode_1, cmode_2, cmode_3;
|
| + if (vd.Is8B() || vd.Is16B()) {
|
| + DCHECK_EQ(op, NEONModifiedImmediate_MOVI);
|
| + cmode_1 = 1;
|
| + cmode_2 = 1;
|
| + cmode_3 = 1;
|
| + } else {
|
| + cmode_1 = (left_shift >> 3) & 1;
|
| + cmode_2 = left_shift >> 4;
|
| + cmode_3 = 0;
|
| + if (vd.Is4H() || vd.Is8H()) {
|
| + DCHECK((left_shift == 0) || (left_shift == 8));
|
| + cmode_3 = 1;
|
| + }
|
| + }
|
| + int cmode = (cmode_3 << 3) | (cmode_2 << 2) | (cmode_1 << 1);
|
| +
|
| + Instr q = vd.IsQ() ? NEON_Q : 0;
|
| +
|
| + Emit(q | op | ImmNEONabcdefgh(imm8) | NEONCmode(cmode) | Rd(vd));
|
| +}
|
| +
|
| +void Assembler::NEONModifiedImmShiftMsl(const VRegister& vd, const int imm8,
|
| + const int shift_amount,
|
| + NEONModifiedImmediateOp op) {
|
| + DCHECK(vd.Is2S() || vd.Is4S());
|
| + DCHECK((shift_amount == 8) || (shift_amount == 16));
|
| + DCHECK(is_uint8(imm8));
|
| +
|
| + int cmode_0 = (shift_amount >> 4) & 1;
|
| + int cmode = 0xc | cmode_0;
|
| +
|
| + Instr q = vd.IsQ() ? NEON_Q : 0;
|
| +
|
| + Emit(q | op | ImmNEONabcdefgh(imm8) | NEONCmode(cmode) | Rd(vd));
|
| +}
|
|
|
| void Assembler::EmitShift(const Register& rd,
|
| const Register& rn,
|
| @@ -2558,7 +4339,7 @@ void Assembler::LoadStore(const CPURegister& rt,
|
| Instr memop = op | Rt(rt) | RnSP(addr.base());
|
|
|
| if (addr.IsImmediateOffset()) {
|
| - LSDataSize size = CalcLSDataSize(op);
|
| + unsigned size = CalcLSDataSize(op);
|
| if (IsImmLSScaled(addr.offset(), size)) {
|
| int offset = static_cast<int>(addr.offset());
|
| // Use the scaled addressing mode.
|
| @@ -2611,14 +4392,12 @@ bool Assembler::IsImmLSUnscaled(int64_t offset) {
|
| return is_int9(offset);
|
| }
|
|
|
| -
|
| -bool Assembler::IsImmLSScaled(int64_t offset, LSDataSize size) {
|
| +bool Assembler::IsImmLSScaled(int64_t offset, unsigned size) {
|
| bool offset_is_size_multiple = (((offset >> size) << size) == offset);
|
| return offset_is_size_multiple && is_uint12(offset >> size);
|
| }
|
|
|
| -
|
| -bool Assembler::IsImmLSPair(int64_t offset, LSDataSize size) {
|
| +bool Assembler::IsImmLSPair(int64_t offset, unsigned size) {
|
| bool offset_is_size_multiple = (((offset >> size) << size) == offset);
|
| return offset_is_size_multiple && is_int7(offset >> size);
|
| }
|
| @@ -2849,7 +4628,7 @@ bool Assembler::IsImmConditionalCompare(int64_t immediate) {
|
| bool Assembler::IsImmFP32(float imm) {
|
| // Valid values will have the form:
|
| // aBbb.bbbc.defg.h000.0000.0000.0000.0000
|
| - uint32_t bits = float_to_rawbits(imm);
|
| + uint32_t bits = bit_cast<uint32_t>(imm);
|
| // bits[19..0] are cleared.
|
| if ((bits & 0x7ffff) != 0) {
|
| return false;
|
| @@ -2874,7 +4653,7 @@ bool Assembler::IsImmFP64(double imm) {
|
| // Valid values will have the form:
|
| // aBbb.bbbb.bbcd.efgh.0000.0000.0000.0000
|
| // 0000.0000.0000.0000.0000.0000.0000.0000
|
| - uint64_t bits = double_to_rawbits(imm);
|
| + uint64_t bits = bit_cast<uint64_t>(imm);
|
| // bits[47..0] are cleared.
|
| if ((bits & 0xffffffffffffL) != 0) {
|
| return false;
|
|
|