| Index: src/arm64/utils-arm64.cc
|
| diff --git a/src/arm64/utils-arm64.cc b/src/arm64/utils-arm64.cc
|
| index 1cd97854178851726d49d3e02c06dc1e55069002..38cf6e1405aeb24a5c6cf2ab523f6f37f5d32579 100644
|
| --- a/src/arm64/utils-arm64.cc
|
| +++ b/src/arm64/utils-arm64.cc
|
| @@ -12,23 +12,78 @@ namespace internal {
|
|
|
| #define __ assm->
|
|
|
| +uint32_t float_sign(float val) {
|
| + uint32_t bits = bit_cast<uint32_t>(val);
|
| + return unsigned_bitextract_32(31, 31, bits);
|
| +}
|
| +
|
| +uint32_t float_exp(float val) {
|
| + uint32_t bits = bit_cast<uint32_t>(val);
|
| + return unsigned_bitextract_32(30, 23, bits);
|
| +}
|
| +
|
| +uint32_t float_mantissa(float val) {
|
| + uint32_t bits = bit_cast<uint32_t>(val);
|
| + return unsigned_bitextract_32(22, 0, bits);
|
| +}
|
| +
|
| +uint32_t double_sign(double val) {
|
| + uint64_t bits = bit_cast<uint64_t>(val);
|
| + return static_cast<uint32_t>(unsigned_bitextract_64(63, 63, bits));
|
| +}
|
| +
|
| +uint32_t double_exp(double val) {
|
| + uint64_t bits = bit_cast<uint64_t>(val);
|
| + return static_cast<uint32_t>(unsigned_bitextract_64(62, 52, bits));
|
| +}
|
| +
|
| +uint64_t double_mantissa(double val) {
|
| + uint64_t bits = bit_cast<uint64_t>(val);
|
| + return unsigned_bitextract_64(51, 0, bits);
|
| +}
|
| +
|
| +float float_pack(uint32_t sign, uint32_t exp, uint32_t mantissa) {
|
| + uint32_t bits = sign << kFloatExponentBits | exp;
|
| + return bit_cast<float>((bits << kFloatMantissaBits) | mantissa);
|
| +}
|
| +
|
| +double double_pack(uint64_t sign, uint64_t exp, uint64_t mantissa) {
|
| + uint64_t bits = sign << kDoubleExponentBits | exp;
|
| + return bit_cast<double>((bits << kDoubleMantissaBits) | mantissa);
|
| +}
|
| +
|
| +int float16classify(float16 value) {
|
| + const uint16_t exponent_max = (1 << kFloat16ExponentBits) - 1;
|
| + const uint16_t exponent_mask = exponent_max << kFloat16MantissaBits;
|
| + const uint16_t mantissa_mask = (1 << kFloat16MantissaBits) - 1;
|
| +
|
| + const uint16_t exponent = (value & exponent_mask) >> kFloat16MantissaBits;
|
| + const uint16_t mantissa = value & mantissa_mask;
|
| + if (exponent == 0) {
|
| + if (mantissa == 0) {
|
| + return FP_ZERO;
|
| + }
|
| + return FP_SUBNORMAL;
|
| + } else if (exponent == exponent_max) {
|
| + if (mantissa == 0) {
|
| + return FP_INFINITE;
|
| + }
|
| + return FP_NAN;
|
| + }
|
| + return FP_NORMAL;
|
| +}
|
|
|
| int CountLeadingZeros(uint64_t value, int width) {
|
| - // TODO(jbramley): Optimize this for ARM64 hosts.
|
| - DCHECK((width == 32) || (width == 64));
|
| - int count = 0;
|
| - uint64_t bit_test = 1UL << (width - 1);
|
| - while ((count < width) && ((bit_test & value) == 0)) {
|
| - count++;
|
| - bit_test >>= 1;
|
| + DCHECK(base::bits::IsPowerOfTwo32(width) && (width <= 64));
|
| + if (value == 0) {
|
| + return width;
|
| }
|
| - return count;
|
| + return base::bits::CountLeadingZeros64(value << (64 - width));
|
| }
|
|
|
|
|
| int CountLeadingSignBits(int64_t value, int width) {
|
| - // TODO(jbramley): Optimize this for ARM64 hosts.
|
| - DCHECK((width == 32) || (width == 64));
|
| + DCHECK(base::bits::IsPowerOfTwo32(width) && (width <= 64));
|
| if (value >= 0) {
|
| return CountLeadingZeros(value, width) - 1;
|
| } else {
|
| @@ -38,43 +93,32 @@ int CountLeadingSignBits(int64_t value, int width) {
|
|
|
|
|
| int CountTrailingZeros(uint64_t value, int width) {
|
| - // TODO(jbramley): Optimize this for ARM64 hosts.
|
| DCHECK((width == 32) || (width == 64));
|
| - int count = 0;
|
| - while ((count < width) && (((value >> count) & 1) == 0)) {
|
| - count++;
|
| + if (width == 64) {
|
| + return static_cast<int>(base::bits::CountTrailingZeros64(value));
|
| }
|
| - return count;
|
| + return static_cast<int>(base::bits::CountTrailingZeros32(
|
| + static_cast<uint32_t>(value & 0xfffffffff)));
|
| }
|
|
|
|
|
| int CountSetBits(uint64_t value, int width) {
|
| - // TODO(jbramley): Would it be useful to allow other widths? The
|
| - // implementation already supports them.
|
| DCHECK((width == 32) || (width == 64));
|
| + if (width == 64) {
|
| + return static_cast<int>(base::bits::CountPopulation64(value));
|
| + }
|
| + return static_cast<int>(base::bits::CountPopulation32(
|
| + static_cast<uint32_t>(value & 0xfffffffff)));
|
| +}
|
|
|
| - // Mask out unused bits to ensure that they are not counted.
|
| - value &= (0xffffffffffffffffUL >> (64-width));
|
| -
|
| - // Add up the set bits.
|
| - // The algorithm works by adding pairs of bit fields together iteratively,
|
| - // where the size of each bit field doubles each time.
|
| - // An example for an 8-bit value:
|
| - // Bits: h g f e d c b a
|
| - // \ | \ | \ | \ |
|
| - // value = h+g f+e d+c b+a
|
| - // \ | \ |
|
| - // value = h+g+f+e d+c+b+a
|
| - // \ |
|
| - // value = h+g+f+e+d+c+b+a
|
| - value = ((value >> 1) & 0x5555555555555555) + (value & 0x5555555555555555);
|
| - value = ((value >> 2) & 0x3333333333333333) + (value & 0x3333333333333333);
|
| - value = ((value >> 4) & 0x0f0f0f0f0f0f0f0f) + (value & 0x0f0f0f0f0f0f0f0f);
|
| - value = ((value >> 8) & 0x00ff00ff00ff00ff) + (value & 0x00ff00ff00ff00ff);
|
| - value = ((value >> 16) & 0x0000ffff0000ffff) + (value & 0x0000ffff0000ffff);
|
| - value = ((value >> 32) & 0x00000000ffffffff) + (value & 0x00000000ffffffff);
|
| +int LowestSetBitPosition(uint64_t value) {
|
| + DCHECK_NE(value, 0U);
|
| + return CountTrailingZeros(value, 64) + 1;
|
| +}
|
|
|
| - return static_cast<int>(value);
|
| +int HighestSetBitPosition(uint64_t value) {
|
| + DCHECK_NE(value, 0U);
|
| + return 63 - CountLeadingZeros(value, 64);
|
| }
|
|
|
|
|
| @@ -84,7 +128,7 @@ uint64_t LargestPowerOf2Divisor(uint64_t value) {
|
|
|
|
|
| int MaskToBit(uint64_t mask) {
|
| - DCHECK(CountSetBits(mask, 64) == 1);
|
| + DCHECK_EQ(CountSetBits(mask, 64), 1);
|
| return CountTrailingZeros(mask, 64);
|
| }
|
|
|
|
|