OLD | NEW |
(Empty) | |
| 1 # ![Mojo Graphic](https://goo.gl/6CdlbH) Mojo C++ Bindings API |
| 2 This document is a subset of the [Mojo documentation](/mojo). |
| 3 |
| 4 [TOC] |
| 5 |
| 6 ## Overview |
| 7 The Mojo C++ Bindings API leverages the |
| 8 [C++ System API](/mojo/public/cpp/system) to provide a more natural set of |
| 9 primitives for communicating over Mojo message pipes. Combined with generated |
| 10 code from the [Mojom IDL and bindings generator](/mojo/public/tools/bindings), |
| 11 users can easily connect interface clients and implementations across arbitrary |
| 12 intra- and inter-process bounaries. |
| 13 |
| 14 This document provides a detailed guide to bindings API usage with example code |
| 15 snippets. For a detailed API references please consult the headers in |
| 16 [//mojo/public/cpp/bindings](https://cs.chromium.org/chromium/src/mojo/public/cp
p/bindings/). |
| 17 |
| 18 ## Getting Started |
| 19 |
| 20 When a Mojom IDL file is processed by the bindings generator, C++ code is |
| 21 emitted in a series of `.h` and `.cc` files with names based on the input |
| 22 `.mojom` file. Suppose we create the following Mojom file at |
| 23 `//services/db/public/interfaces/db.mojom`: |
| 24 |
| 25 ``` |
| 26 module db.mojom; |
| 27 |
| 28 interface Table { |
| 29 AddRow(int32 key, string data); |
| 30 }; |
| 31 |
| 32 interface Database { |
| 33 CreateTable(Table& table); |
| 34 }; |
| 35 ``` |
| 36 |
| 37 And a GN target to generate the bindings in |
| 38 `//services/db/public/interfaces/BUILD.gn`: |
| 39 |
| 40 ``` |
| 41 import("//mojo/public/tools/bindings/mojom.gni") |
| 42 |
| 43 mojom("interfaces") { |
| 44 sources = [ |
| 45 "db.mojom", |
| 46 ] |
| 47 } |
| 48 ``` |
| 49 |
| 50 If we then build this target: |
| 51 |
| 52 ``` |
| 53 ninja -C out/r services/db/public/interfaces |
| 54 ``` |
| 55 |
| 56 This will produce several generated source files, some of which are relevant to |
| 57 C++ bindings. Two of these files are: |
| 58 |
| 59 ``` |
| 60 out/gen/services/business/public/interfaces/factory.mojom.cc |
| 61 out/gen/services/business/public/interfaces/factory.mojom.h |
| 62 ``` |
| 63 |
| 64 You can include the above generated header in your sources in order to use the |
| 65 definitions therein: |
| 66 |
| 67 ``` cpp |
| 68 #include "services/business/public/interfaces/factory.mojom.h" |
| 69 |
| 70 class TableImpl : public db::mojom::Table { |
| 71 // ... |
| 72 }; |
| 73 ``` |
| 74 |
| 75 This document covers the different kinds of definitions generated by Mojom IDL |
| 76 for C++ consumers and how they can effectively be used to communicate across |
| 77 message pipes. |
| 78 |
| 79 *** note |
| 80 **NOTE:** Using C++ bindings from within Blink code is typically subject to |
| 81 special constraints which require the use of a different generated header. |
| 82 For details, see [Blink Type Mapping](#Blink-Type-Mapping). |
| 83 *** |
| 84 |
| 85 ## Interfaces |
| 86 |
| 87 Mojom IDL interfaces are translated to corresponding C++ (pure virtual) class |
| 88 interface definitions in the generated header, consisting of a single generated |
| 89 method signature for each request message on the interface. Internally there is |
| 90 also generated code for serialization and deserialization of messages, but this |
| 91 detail is hidden from bindings consumers. |
| 92 |
| 93 ### Basic Usage |
| 94 |
| 95 Let's consider a new `//sample/logger.mojom` to define a simple logging |
| 96 interface which clients can use to log simple string messages: |
| 97 |
| 98 ``` cpp |
| 99 module sample.mojom; |
| 100 |
| 101 interface Logger { |
| 102 Log(string message); |
| 103 }; |
| 104 ``` |
| 105 |
| 106 Running this through the bindings generator will produce a `logging.mojom.h` |
| 107 with the following definitions (modulo unimportant details): |
| 108 |
| 109 ``` cpp |
| 110 namespace sample { |
| 111 namespace mojom { |
| 112 |
| 113 class Logger { |
| 114 virtual ~Logger() {} |
| 115 |
| 116 virtual void Log(const std::string& message) = 0; |
| 117 }; |
| 118 |
| 119 using LoggerPtr = mojo::InterfacePtr<Logger>; |
| 120 using LoggerRequest = mojo::InterfaceRequest<Logger>; |
| 121 |
| 122 } // namespace mojom |
| 123 } // namespace sample |
| 124 ``` |
| 125 |
| 126 Makes sense. Let's take a closer look at those type aliases at the end. |
| 127 |
| 128 ### InterfacePtr and InterfaceRequest |
| 129 |
| 130 You will notice the type aliases for `LoggerPtr` and |
| 131 `LoggerRequest` are using two of the most fundamental template types in the C++ |
| 132 bindings library: **`InterfacePtr<T>`** and **`InterfaceRequest<T>`**. |
| 133 |
| 134 In the world of Mojo bindings libraries these are effectively strongly-typed |
| 135 message pipe endpoints. If an `InterfacePtr<T>` is bound to a message pipe |
| 136 endpoint, it can be dereferenced to make calls on an opaque `T` interface. These |
| 137 calls immediately serialize their arguments (using generated code) and write a |
| 138 corresponding message to the pipe. |
| 139 |
| 140 An `InterfaceRequest<T>` is essentially just a typed container to hold the other |
| 141 end of an `InterfacePtr<T>`'s pipe -- the receiving end -- until it can be |
| 142 routed to some implementation which will **bind** it. The `InterfaceRequest<T>` |
| 143 doesn't actually *do* anything other than hold onto a pipe endpoint and carry |
| 144 useful compile-time type information. |
| 145 |
| 146 ![Diagram illustrating InterfacePtr and InterfaceRequest on either end of a mess
age pipe](https://docs.google.com/drawings/d/17d5gvErbQ6DthEBMS7I1WhCh9bz0n12pvN
jydzuRfTI/pub?w=600&h=100) |
| 147 |
| 148 So how do we create a strongly-typed message pipe? |
| 149 |
| 150 ### Creating Interface Pipes |
| 151 |
| 152 One way to do this is by manually creating a pipe and binding each end: |
| 153 |
| 154 ``` cpp |
| 155 #include "sample/logger.mojom.h" |
| 156 |
| 157 mojo::MessagePipe pipe; |
| 158 sample::mojom::LoggerPtr logger; |
| 159 sample::mojom::LoggerRequest request; |
| 160 |
| 161 logger.Bind(sample::mojom::LoggerPtrInfo(std::move(pipe.handle0), 0u)); |
| 162 request.Bind(std::move(pipe.handle1)); |
| 163 ``` |
| 164 |
| 165 That's pretty verbose, but the C++ Bindings library provides more convenient |
| 166 ways to accomplish the same thing. [interface_request.h](https://cs.chromium.org
/chromium/src/mojo/public/cpp/bindings/interface_request.h) |
| 167 defines a `MakeRequest` function: |
| 168 |
| 169 ``` cpp |
| 170 sample::mojom::LoggerPtr logger; |
| 171 sample::mojom::LoggerRequest request = mojo::MakeRequest(&logger); |
| 172 ``` |
| 173 |
| 174 and the `InterfaceRequest<T>` constructor can also take an explicit |
| 175 `InterfacePtr<T>*` output argument: |
| 176 |
| 177 ``` cpp |
| 178 sample::mojom::LoggerPtr logger; |
| 179 sample::mojom::LoggerRequest request(&logger); |
| 180 ``` |
| 181 |
| 182 Both of these last two snippets are equivalent to the first one. |
| 183 |
| 184 *** note |
| 185 **NOTE:** In the first example above you may notice usage of the `LoggerPtrInfo` |
| 186 type, which is a generated alias for `mojo::InterfacePtrInfo<Logger>`. This is |
| 187 similar to an `InterfaceRequest<T>` in that it merely holds onto a pipe handle |
| 188 and cannot actually read or write messages on the pipe. Both this type and |
| 189 `InterfaceRequest<T>` are safe to move freely from thread to thread, whereas a |
| 190 bound `InterfacePtr<T>` is bound to a single thread. |
| 191 |
| 192 An `InterfacePtr<T>` may be unbound by calling its `PassInterface()` method, |
| 193 which returns a new `InterfacePtrInfo<T>`. Conversely, an `InterfacePtr<T>` may |
| 194 bind (and thus take ownership of) an `InterfacePtrInfo<T>` so that interface |
| 195 calls can be made on the pipe. |
| 196 |
| 197 The thread-bound nature of `InterfacePtr<T>` is necessary to support safe |
| 198 dispatch of its [message responses](#Receiving-Responses) and |
| 199 [connection error notifications](#Connection-Errors). |
| 200 *** |
| 201 |
| 202 Once the `LoggerPtr` is bound we can immediately begin calling `Logger` |
| 203 interface methods on it, which will immediately write messages into the pipe. |
| 204 These messages will stay queued on the receiving end of the pipe until someone |
| 205 binds to it and starts reading them. |
| 206 |
| 207 ``` cpp |
| 208 logger->Log("Hello!"); |
| 209 ``` |
| 210 |
| 211 This actually writes a `Log` message to the pipe. |
| 212 |
| 213 ![Diagram illustrating a message traveling on a pipe from LoggerPtr to LoggerReq
uest](https://docs.google.com/a/google.com/drawings/d/1jWEc6jJIP2ed77Gg4JJ3EVC7h
vnwcImNqQJywFwpT8g/pub?w=648&h=123) |
| 214 |
| 215 But as mentioned above, `InterfaceRequest` *doesn't actually do anything*, so |
| 216 that message will just sit on the pipe forever. We need a way to read messages |
| 217 off the other end of the pipe and dispatch them. We have to |
| 218 **bind the interface request**. |
| 219 |
| 220 ### Binding an Interface Request |
| 221 |
| 222 There are many different helper classes in the bindings library for binding the |
| 223 receiving end of a message pipe. The most primitive among them is the aptly |
| 224 named `mojo::Binding<T>`. A `mojo::Binding<T>` bridges an implementation of `T` |
| 225 with a single bound message pipe endpoint (via a `mojo::InterfaceRequest<T>`), |
| 226 which it continuously watches for readability. |
| 227 |
| 228 Any time the bound pipe becomes readable, the `Binding` will schedule a task to |
| 229 read, deserialize (using generated code), and dispatch all available messages to |
| 230 the bound `T` implementation. Below is a sample implementation of the `Logger` |
| 231 interface. Notice that the implementation itself owns a `mojo::Binding`. This is |
| 232 a common pattern, since a bound implementation must outlive any `mojo::Binding` |
| 233 which binds it. |
| 234 |
| 235 ``` cpp |
| 236 #include "base/logging.h" |
| 237 #include "base/macros.h" |
| 238 #include "sample/logger.mojom.h" |
| 239 |
| 240 class LoggerImpl : public sample::mojom::Logger { |
| 241 public: |
| 242 // NOTE: A common pattern for interface implementations which have one |
| 243 // instance per client is to take an InterfaceRequest in the constructor. |
| 244 |
| 245 explicit LoggerImpl(sample::mojom::LoggerRequest request) |
| 246 : binding_(this, std::move(request)) {} |
| 247 ~Logger() override {} |
| 248 |
| 249 // sample::mojom::Logger: |
| 250 void Log(const std::string& message) override { |
| 251 LOG(ERROR) << "[Logger] " << message; |
| 252 } |
| 253 |
| 254 private: |
| 255 mojo::Binding<sample::mojom::Logger> binding_; |
| 256 |
| 257 DISALLOW_COPY_AND_ASSIGN(LoggerImpl); |
| 258 }; |
| 259 ``` |
| 260 |
| 261 Now we can construct a `LoggerImpl` over our pending `LoggerRequest`, and the |
| 262 previously queued `Log` message will be dispatched ASAP on the `LoggerImpl`'s |
| 263 thread: |
| 264 |
| 265 ``` cpp |
| 266 LoggerImpl impl(std::move(request)); |
| 267 ``` |
| 268 |
| 269 The diagram below illustrates the following sequence of events, all set in |
| 270 motion by the above line of code: |
| 271 |
| 272 1. The `LoggerImpl` constructor is called, passing the `LoggerRequest` along |
| 273 to the `Binding`. |
| 274 2. The `Binding` takes ownership of the `LoggerRequest`'s pipe endpoint and |
| 275 begins watching it for readability. The pipe is readable immediately, so a |
| 276 task is scheduled to read the pending `Log` message from the pipe ASAP. |
| 277 3. The `Log` message is read and deserialized, causing the `Binding` to invoke |
| 278 the `Logger::Log` implementation on its bound `LoggerImpl`. |
| 279 |
| 280 ![Diagram illustrating the progression of binding a request, reading a pending m
essage, and dispatching it](https://docs.google.com/drawings/d/1c73-PegT4lmjfHox
hWrHTQXRvzxgb0wdeBa35WBwZ3Q/pub?w=550&h=500) |
| 281 |
| 282 As a result, our implementation will eventually log the client's `"Hello!"` |
| 283 message via `LOG(ERROR)`. |
| 284 |
| 285 *** note |
| 286 **NOTE:** Messages will only be read and dispatched from a pipe as long as the |
| 287 object which binds it (*i.e.* the `mojo::Binding` in the above example) remains |
| 288 alive. |
| 289 *** |
| 290 |
| 291 ### Receiving Responses |
| 292 |
| 293 Some Mojom interface methods expect a response. Suppose we modify our `Logger` |
| 294 interface so that the last logged line can be queried like so: |
| 295 |
| 296 ``` cpp |
| 297 module sample.mojom; |
| 298 |
| 299 interface Logger { |
| 300 Log(string message); |
| 301 GetTail() => (string message); |
| 302 }; |
| 303 ``` |
| 304 |
| 305 The generated C++ interface will now look like: |
| 306 |
| 307 ``` cpp |
| 308 namespace sample { |
| 309 namespace mojom { |
| 310 |
| 311 class Logger { |
| 312 public: |
| 313 virtual ~Logger() {} |
| 314 |
| 315 virtual void Log(const std::string& message) = 0; |
| 316 |
| 317 using GetTailCallback = base::Callback<void(const std::string& message)>; |
| 318 |
| 319 virtual void GetTail(const GetTailCallback& callback) = 0; |
| 320 } |
| 321 |
| 322 } // namespace mojom |
| 323 } // namespace sample |
| 324 ``` |
| 325 |
| 326 As before, both clients and implementations of this interface use the same |
| 327 signature for the `GetTail` method: implementations use the `callback` argument |
| 328 to *respond* to the request, while clients pass a `callback` argument to |
| 329 asynchronously `receive` the response. Here's an updated implementation: |
| 330 |
| 331 ```cpp |
| 332 class LoggerImpl : public sample::mojom::Logger { |
| 333 public: |
| 334 // NOTE: A common pattern for interface implementations which have one |
| 335 // instance per client is to take an InterfaceRequest in the constructor. |
| 336 |
| 337 explicit LoggerImpl(sample::mojom::LoggerRequest request) |
| 338 : binding_(this, std::move(request)) {} |
| 339 ~Logger() override {} |
| 340 |
| 341 // sample::mojom::Logger: |
| 342 void Log(const std::string& message) override { |
| 343 LOG(ERROR) << "[Logger] " << message; |
| 344 lines_.push_back(message); |
| 345 } |
| 346 |
| 347 void GetTail(const GetTailCallback& callback) override { |
| 348 callback.Run(lines_.back()); |
| 349 } |
| 350 |
| 351 private: |
| 352 mojo::Binding<sample::mojom::Logger> binding_; |
| 353 std::vector<std::string> lines_; |
| 354 |
| 355 DISALLOW_COPY_AND_ASSIGN(LoggerImpl); |
| 356 }; |
| 357 ``` |
| 358 |
| 359 And an updated client call: |
| 360 |
| 361 ``` cpp |
| 362 void OnGetTail(const std::string& message) { |
| 363 LOG(ERROR) << "Tail was: " << message; |
| 364 } |
| 365 |
| 366 logger->GetTail(base::Bind(&OnGetTail)); |
| 367 ``` |
| 368 |
| 369 Behind the scenes, the implementation-side callback is actually serializing the |
| 370 response arguments and writing them onto the pipe for delivery back to the |
| 371 client. Meanwhile the client-side callback is invoked by some internal logic |
| 372 which watches the pipe for an incoming response message, reads and deserializes |
| 373 it once it arrives, and then invokes the callback with the deserialized |
| 374 parameters. |
| 375 |
| 376 ### Connection Errors |
| 377 |
| 378 If there are no remaining messages available on a pipe and the remote end has |
| 379 been closed, a connection error will be triggered on the local end. Connection |
| 380 errors may also be triggered by automatic forced local pipe closure due to |
| 381 *e.g.* a validation error when processing a received message. |
| 382 |
| 383 Regardless of the underlying cause, when a connection error is encountered on |
| 384 a binding endpoint, that endpoint's **connection error handler** (if set) is |
| 385 invoked. This handler is a simple `base::Closure` and may only be invoked |
| 386 *once* as long as the endpoint is bound to the same pipe. Typically clients and |
| 387 implementations use this handler to do some kind of cleanup or -- particuarly if |
| 388 the error was unexpected -- create a new pipe and attempt to establish a new |
| 389 connection with it. |
| 390 |
| 391 All message pipe-binding C++ objects (*e.g.*, `mojo::Binding<T>`, |
| 392 `mojo::InterfacePtr<T>`, *etc.*) support setting their connection error handler |
| 393 via a `set_connection_error_handler` method. |
| 394 |
| 395 We can set up another end-to-end `Logger` example to demonstrate error handler |
| 396 invocation: |
| 397 |
| 398 ``` cpp |
| 399 sample::mojom::LoggerPtr logger; |
| 400 LoggerImpl impl(mojo::MakeRequest(&logger)); |
| 401 impl.set_connection_error_handler(base::Bind([] { LOG(ERROR) << "Bye."; })); |
| 402 logger->Log("OK cool"); |
| 403 logger.reset(); // Closes the client end. |
| 404 ``` |
| 405 |
| 406 As long as `impl` stays alive here, it will eventually receive the `Log` message |
| 407 followed immediately by an invocation of the bound callback which outputs |
| 408 `"Bye."`. Like all other bindings callbacks, a connection error handler will |
| 409 **never** be invoked once its corresponding binding object has been destroyed. |
| 410 |
| 411 In fact, suppose instead that `LoggerImpl` had set up the following error |
| 412 handler within its constructor: |
| 413 |
| 414 ``` cpp |
| 415 LoggerImpl::LoggerImpl(sample::mojom::LoggerRequest request) |
| 416 : binding_(this, std::move(request)) { |
| 417 binding_.set_connection_error_handler( |
| 418 base::Bind(&LoggerImpl::OnError, base::Unretained(this))); |
| 419 } |
| 420 |
| 421 void LoggerImpl::OnError() { |
| 422 LOG(ERROR) << "Client disconnected! Purging log lines."; |
| 423 lines_.clear(); |
| 424 } |
| 425 ``` |
| 426 |
| 427 The use of `base::Unretained` is *safe* because the error handler will never be |
| 428 invoked beyond the lifetime of `binding_`, and `this` owns `binding_`. |
| 429 |
| 430 ### A Note About Ordering |
| 431 |
| 432 As mentioned in the previous section, closing one end of a pipe will eventually |
| 433 trigger a connection error on the other end. However it's important to note that |
| 434 this event is itself ordered with respect to any other event (*e.g.* writing a |
| 435 message) on the pipe. |
| 436 |
| 437 This means that it's safe to write something contrived like: |
| 438 |
| 439 ``` cpp |
| 440 void GoBindALogger(sample::mojom::LoggerRequest request) { |
| 441 LoggerImpl impl(std::move(request)); |
| 442 base::RunLoop loop; |
| 443 impl.set_connection_error_handler(loop.QuitClosure()); |
| 444 loop.Run(); |
| 445 } |
| 446 |
| 447 void LogSomething() { |
| 448 sample::mojom::LoggerPtr logger; |
| 449 bg_thread->task_runner()->PostTask( |
| 450 FROM_HERE, base::BindOnce(&GoBindALogger, mojo::MakeRequest(&logger))); |
| 451 logger->Log("OK Computer"); |
| 452 } |
| 453 ``` |
| 454 |
| 455 When `logger` goes out of scope it immediately closes its end of the message |
| 456 pipe, but the impl-side won't notice this until it receives the sent `Log` |
| 457 message. Thus the `impl` above will first log our message and *then* see a |
| 458 connection error and break out of the run loop. |
| 459 |
| 460 ### Sending Interfaces Over Interfaces |
| 461 |
| 462 Now we know how to create interface pipes and use their Ptr and Request |
| 463 endpoints in some interesting ways. This still doesn't add up to interesting |
| 464 IPC! The bread and butter of Mojo IPC is the ability to transfer interface |
| 465 endpoints across other interfaces, so let's take a look at how to accomplish |
| 466 that. |
| 467 |
| 468 #### Sending Interface Requests |
| 469 |
| 470 Consider a new example Mojom in `//sample/db.mojom`: |
| 471 |
| 472 ``` cpp |
| 473 module db.mojom; |
| 474 |
| 475 interface Table { |
| 476 void AddRow(int32 key, string data); |
| 477 }; |
| 478 |
| 479 interface Database { |
| 480 AddTable(Table& table); |
| 481 }; |
| 482 ``` |
| 483 |
| 484 As noted in the |
| 485 [Mojom IDL documentation](/mojo/public/tools/bindings#Primitive-Types), |
| 486 the `Table&` syntax denotes a `Table` interface request. This corresponds |
| 487 precisely to the `InterfaceRequest<T>` type discussed in the sections above, and |
| 488 in fact the generated code for these interfaces is approximately: |
| 489 |
| 490 ``` cpp |
| 491 namespace db { |
| 492 namespace mojom { |
| 493 |
| 494 class Table { |
| 495 public: |
| 496 virtual ~Table() {} |
| 497 |
| 498 virtual void AddRow(int32_t key, const std::string& data) = 0; |
| 499 } |
| 500 |
| 501 using TablePtr = mojo::InterfacePtr<Table>; |
| 502 using TableRequest = mojo::InterfaceRequest<Table>; |
| 503 |
| 504 class Database { |
| 505 public: |
| 506 virtual ~Database() {} |
| 507 |
| 508 virtual void AddTable(TableRequest table); |
| 509 }; |
| 510 |
| 511 using DatabasePtr = mojo::InterfacePtr<Database>; |
| 512 using DatabaseRequest = mojo::InterfaceRequest<Database>; |
| 513 |
| 514 } // namespace mojom |
| 515 } // namespace db |
| 516 ``` |
| 517 |
| 518 We can put this all together now with an implementation of `Table` and |
| 519 `Database`: |
| 520 |
| 521 ``` cpp |
| 522 #include "sample/db.mojom.h" |
| 523 |
| 524 class TableImpl : public db::mojom:Table { |
| 525 public: |
| 526 explicit TableImpl(db::mojom::TableRequest request) |
| 527 : binding_(this, std::move(request)) {} |
| 528 ~TableImpl() override {} |
| 529 |
| 530 // db::mojom::Table: |
| 531 void AddRow(int32_t key, const std::string& data) override { |
| 532 rows_.insert({key, data}); |
| 533 } |
| 534 |
| 535 private: |
| 536 mojo::Binding<db::mojom::Table> binding_; |
| 537 std::map<int32_t, std::string> rows_; |
| 538 }; |
| 539 |
| 540 class DatabaseImpl : public db::mojom::Database { |
| 541 public: |
| 542 explicit DatabaseImpl(db::mojom::DatabaseRequest request) |
| 543 : binding_(this, std::move(request)) {} |
| 544 ~DatabaseImpl() override {} |
| 545 |
| 546 // db::mojom::Database: |
| 547 void AddTable(db::mojom::TableRequest table) { |
| 548 tables_.emplace_back(base::MakeUnique<TableImpl>(std::move(table))); |
| 549 } |
| 550 |
| 551 private: |
| 552 mojo::Binding<db::mojom::Database> binding_; |
| 553 std::vector<std::unique_ptr<TableImpl>> tables_; |
| 554 }; |
| 555 ``` |
| 556 |
| 557 Pretty straightforward. The `Table&` Mojom paramter to `AddTable` translates to |
| 558 a C++ `db::mojom::TableRequest`, aliased from |
| 559 `mojo::InterfaceRequest<db::mojom::Table>`, which we know is just a |
| 560 strongly-typed message pipe handle. When `DatabaseImpl` gets an `AddTable` call, |
| 561 it constructs a new `TableImpl` and binds it to the received `TableRequest`. |
| 562 |
| 563 Let's see how this can be used. |
| 564 |
| 565 ``` cpp |
| 566 db::mojom::DatabasePtr database; |
| 567 DatabaseImpl db_impl(mojo::MakeRequest(&database)); |
| 568 |
| 569 db::mojom::TablePtr table1, table2; |
| 570 database->AddTable(mojo::MakeRequest(&table1)); |
| 571 database->AddTable(mojo::MakeRequest(&table2)); |
| 572 |
| 573 table1->AddRow(1, "hiiiiiiii"); |
| 574 table2->AddRow(2, "heyyyyyy"); |
| 575 ``` |
| 576 |
| 577 Notice that we can again start using the new `Table` pipes immediately, even |
| 578 while their `TableRequest` endpoints are still in transit. |
| 579 |
| 580 #### Sending InterfacePtrs |
| 581 |
| 582 Of course we can also send `InterfacePtr`s: |
| 583 |
| 584 ``` cpp |
| 585 interface TableListener { |
| 586 OnRowAdded(int32 key, string data); |
| 587 }; |
| 588 |
| 589 interface Table { |
| 590 AddRow(int32 key, string data); |
| 591 |
| 592 AddListener(TableListener listener); |
| 593 }; |
| 594 ``` |
| 595 |
| 596 This would generate a `Table::AddListener` signature like so: |
| 597 |
| 598 ``` cpp |
| 599 virtual void AddListener(TableListenerPtr listener) = 0; |
| 600 ``` |
| 601 |
| 602 and this could be used like so: |
| 603 |
| 604 ``` cpp |
| 605 db::mojom::TableListenerPtr listener; |
| 606 TableListenerImpl impl(mojo::MakeRequest(&listener)); |
| 607 table->AddListener(std::move(listener)); |
| 608 ``` |
| 609 |
| 610 ## Other Interface Binding Types |
| 611 |
| 612 The [Interfaces](#Interfaces) section above covers basic usage of the most |
| 613 common bindings object types: `InterfacePtr`, `InterfaceRequest`, and `Binding`. |
| 614 While these types are probably the most commonly used in practice, there are |
| 615 several other ways of binding both client- and implementation-side interface |
| 616 pipes. |
| 617 |
| 618 ### Strong Bindings |
| 619 |
| 620 A **strong binding** exists as a standalone object which owns its interface |
| 621 implementation and automatically cleans itself up when its bound interface |
| 622 endpoint detects an error. The |
| 623 [**`MakeStrongBinding`**](https://cs.chromim.org/chromium/src//mojo/public/cpp/b
indings/strong_binding.h) |
| 624 function is used to create such a binding. |
| 625 . |
| 626 |
| 627 ``` cpp |
| 628 class LoggerImpl : public sample::mojom::Logger { |
| 629 public: |
| 630 LoggerImpl() {} |
| 631 ~LoggerImpl() override {} |
| 632 |
| 633 // sample::mojom::Logger: |
| 634 void Log(const std::string& message) override { |
| 635 LOG(ERROR) << "[Logger] " << message; |
| 636 } |
| 637 |
| 638 private: |
| 639 // NOTE: This doesn't own any Binding object! |
| 640 }; |
| 641 |
| 642 db::mojom::LoggerPtr logger; |
| 643 mojo::MakeStrongBinding(base::MakeUnique<DatabaseImpl>(), |
| 644 mojo::MakeRequest(&logger)); |
| 645 |
| 646 logger->Log("NOM NOM NOM MESSAGES"); |
| 647 ``` |
| 648 |
| 649 Now as long as `logger` remains open somewhere in the system, the bound |
| 650 `DatabaseImpl` on the other end will remain alive. |
| 651 |
| 652 ### Binding Sets |
| 653 |
| 654 Sometimes it's useful to share a single implementation instance with multiple |
| 655 clients. [**`BindingSet`**](https://cs.chromium.org/chromium/src/mojo/public/cpp
/bindings/binding_set.h) |
| 656 makes this easy. Consider the Mojom: |
| 657 |
| 658 ``` cpp |
| 659 module system.mojom; |
| 660 |
| 661 interface Logger { |
| 662 Log(string message); |
| 663 }; |
| 664 |
| 665 interface LoggerProvider { |
| 666 GetLogger(Logger& logger); |
| 667 }; |
| 668 ``` |
| 669 |
| 670 We can use `BindingSet` to bind multiple `Logger` requests to a single |
| 671 implementation instance: |
| 672 |
| 673 ``` cpp |
| 674 class LogManager : public system::mojom::LoggerProvider, |
| 675 public system::mojom::Logger { |
| 676 public: |
| 677 explicit LogManager(system::mojom::LoggerProviderRequest request) |
| 678 : provider_binding_(this, std::move(request)) {} |
| 679 ~LogManager() {} |
| 680 |
| 681 // system::mojom::LoggerProvider: |
| 682 void GetLogger(LoggerRequest request) override { |
| 683 logger_bindings_.AddBinding(this, std::move(request)); |
| 684 } |
| 685 |
| 686 // system::mojom::Logger: |
| 687 void Log(const std::string& message) override { |
| 688 LOG(ERROR) << "[Logger] " << message; |
| 689 } |
| 690 |
| 691 private: |
| 692 mojo::Binding<system::mojom::LoggerProvider> provider_binding_; |
| 693 mojo::BindingSet<system::mojom::Logger> logger_bindings_; |
| 694 }; |
| 695 |
| 696 ``` |
| 697 |
| 698 |
| 699 ### InterfacePtr Sets |
| 700 |
| 701 Similar to the `BindingSet` above, sometimes it's useful to maintain a set of |
| 702 `InterfacePtr`s for *e.g.* a set of clients observing some event. |
| 703 [**`InterfacePtrSet`**](https://cs.chromium.org/chromium/src/mojo/public/cpp/bin
dings/interface_ptr_set.h) |
| 704 is here to help. Take the Mojom: |
| 705 |
| 706 ``` cpp |
| 707 module db.mojom; |
| 708 |
| 709 interface TableListener { |
| 710 OnRowAdded(int32 key, string data); |
| 711 }; |
| 712 |
| 713 interface Table { |
| 714 AddRow(int32 key, string data); |
| 715 AddListener(TableListener listener); |
| 716 }; |
| 717 ``` |
| 718 |
| 719 An implementation of `Table` might look something like like this: |
| 720 |
| 721 ``` cpp |
| 722 class TableImpl : public db::mojom::Table { |
| 723 public: |
| 724 TableImpl() {} |
| 725 ~TableImpl() override {} |
| 726 |
| 727 // db::mojom::Table: |
| 728 void AddRow(int32_t key, const std::string& data) override { |
| 729 rows_.insert({key, data}); |
| 730 listeners_.ForEach([key, &data](db::mojom::TableListener* listener) { |
| 731 listener->OnRowAdded(key, data); |
| 732 }); |
| 733 } |
| 734 |
| 735 void AddListener(db::mojom::TableListenerPtr listener) { |
| 736 listeners_.AddPtr(std::move(listener)); |
| 737 } |
| 738 |
| 739 private: |
| 740 mojo::InterfacePtrSet<db::mojom::Table> listeners_; |
| 741 std::map<int32_t, std::string> rows_; |
| 742 }; |
| 743 ``` |
| 744 |
| 745 ## Associated Interfaces |
| 746 |
| 747 See [this document](https://www.chromium.org/developers/design-documents/mojo/as
sociated-interfaces). |
| 748 |
| 749 TODO: Move the above doc into the repository markdown docs. |
| 750 |
| 751 ## Synchronous Calls |
| 752 |
| 753 See [this document](https://www.chromium.org/developers/design-documents/mojo/sy
nchronous-calls) |
| 754 |
| 755 TODO: Move the above doc into the repository markdown docs. |
| 756 |
| 757 ## Type Mapping |
| 758 |
| 759 In many instances you might prefer that your generated C++ bindings use a more |
| 760 natural type to represent certain Mojom types in your interface methods. For one |
| 761 example consider a Mojom struct such as the `Rect` below: |
| 762 |
| 763 ``` cpp |
| 764 module gfx.mojom; |
| 765 |
| 766 struct Rect { |
| 767 int32 x; |
| 768 int32 y; |
| 769 int32 width; |
| 770 int32 height; |
| 771 }; |
| 772 |
| 773 interface Canvas { |
| 774 void FillRect(Rect rect); |
| 775 }; |
| 776 ``` |
| 777 |
| 778 The `Canvas` Mojom interface would normally generate a C++ interface like: |
| 779 |
| 780 ``` cpp |
| 781 class Canvas { |
| 782 public: |
| 783 virtual void FillRect(RectPtr rect) = 0; |
| 784 }; |
| 785 ``` |
| 786 |
| 787 However, the Chromium tree already defines a native |
| 788 [`gfx::Rect`](https://cs.chromium.org/chromium/src/ui/gfx/geometry/rect.h) which |
| 789 is equivalent in meaning but which also has useful helper methods. Instead of |
| 790 manually converting between a `gfx::Rect` and the Mojom-generated `RectPtr` at |
| 791 every message boundary, wouldn't it be nice if the Mojom bindings generator |
| 792 could instead generate: |
| 793 |
| 794 ``` cpp |
| 795 class Canvas { |
| 796 public: |
| 797 virtual void FillRect(const gfx::Rect& rect) = 0; |
| 798 } |
| 799 ``` |
| 800 |
| 801 The correct answer is, "Yes! That would be nice!" And fortunately, it can! |
| 802 |
| 803 ### Global Configuration |
| 804 |
| 805 While this feature is quite powerful, it introduces some unavoidable complexity |
| 806 into build system. This stems from the fact that type-mapping is an inherently |
| 807 viral concept: if `gfx::mojom::Rect` is mapped to `gfx::Rect` anywhere, the |
| 808 mapping needs to apply *everywhere*. |
| 809 |
| 810 For this reason we have a few global typemap configurations defined in |
| 811 [chromium_bindings_configuration.gni](https://cs.chromium.com/chromium/src/mojo/
public/tools/bindings/chromium_bindings_configuration.gni) |
| 812 and |
| 813 [blink_bindings_configuration.gni](https://cs.chromium.com/chromium/src/mojo/pub
lic/tools/bindings/blink_bindings_configuration.gni). These configure the two su
pported [variants](#Variants) of Mojom generated |
| 814 bindings in the repository. Read more on this in the sections that follow. |
| 815 |
| 816 For now, let's take a look at how to express the mapping from `gfx::mojom::Rect` |
| 817 to `gfx::Rect`. |
| 818 |
| 819 ### Defining `StructTraits` |
| 820 |
| 821 In order to teach generated bindings code how to serialize an arbitrary native |
| 822 type `T` as an arbitrary Mojom type `mojom::U`, we need to define an appropriate |
| 823 specialization of the |
| 824 [`mojo::StructTraits`](https://cs.chromium.org/chromium/src/mojo/public/cpp/bind
ings/struct_traits.h) |
| 825 template. |
| 826 |
| 827 A valid specialization of `StructTraits` MUST define the following static |
| 828 methods: |
| 829 |
| 830 * A single static accessor for every field of the Mojom struct, with the exact |
| 831 same name as the struct field. These accessors must all take a const ref to |
| 832 an object of the native type, and must return a value compatible with the |
| 833 Mojom struct field's type. This is used to safely and consistently extract |
| 834 data from the native type during message serialization without incurring extra |
| 835 copying costs. |
| 836 |
| 837 * A single static `Read` method which initializes an instance of the the native |
| 838 type given a serialized representation of the Mojom struct. The `Read` method |
| 839 must return a `bool` to indicate whether the incoming data is accepted |
| 840 (`true`) or rejected (`false`). |
| 841 |
| 842 There are other methods a `StructTraits` specialization may define to satisfy |
| 843 some less common requirements. See |
| 844 [Advanced StructTraits Usage](#Advanced-StructTraits-Usage) for details. |
| 845 |
| 846 In order to define the mapping for `gfx::Rect`, we want the following |
| 847 `StructTraits` specialization, which we'll define in |
| 848 `//ui/gfx/geometry/mojo/geometry_struct_traits.h`: |
| 849 |
| 850 ``` cpp |
| 851 #include "mojo/public/cpp/bindings/struct_traits.h" |
| 852 #include "ui/gfx/geometry/rect.h" |
| 853 #include "ui/gfx/geometry/mojo/geometry.mojom.h" |
| 854 |
| 855 namespace mojo { |
| 856 |
| 857 template <> |
| 858 class StructTraits<gfx::mojom::RectDataView, gfx::Rect> { |
| 859 public: |
| 860 static int32_t x(const gfx::Rect& r) { return r.x(); } |
| 861 static int32_t y(const gfx::Rect& r) { return r.y(); } |
| 862 static int32_t width(const gfx::Rect& r) { return r.width(); } |
| 863 static int32_t height(const gfx::Rect& r) { return r.height(); } |
| 864 |
| 865 static bool Read(gfx::mojom::RectDataView data, gfx::Rect* out_rect); |
| 866 }; |
| 867 |
| 868 } // namespace mojo |
| 869 ``` |
| 870 |
| 871 And in `//ui/gfx/geometry/mojo/geometry_struct_traits.cc`: |
| 872 |
| 873 ``` cpp |
| 874 #include "ui/gfx/geometry/mojo/geometry_struct_traits.h" |
| 875 |
| 876 namespace mojo { |
| 877 |
| 878 // static |
| 879 template <> |
| 880 bool StructTraits<gfx::mojom::RectDataView, gfx::Rect>::Read( |
| 881 gfx::mojom::RectDataView data, |
| 882 gfx::Rect* out_rect) { |
| 883 if (data.width() < 0 || data.height() < 0) |
| 884 return false; |
| 885 |
| 886 out_rect->SetRect(data.x(), data.y(), data.width(), data.height()); |
| 887 return true; |
| 888 }; |
| 889 |
| 890 } // namespace mojo |
| 891 ``` |
| 892 |
| 893 Note that the `Read()` method returns `false` if either the incoming `width` or |
| 894 `height` fields are negative. This acts as a validation step during |
| 895 deserialization: if a client sends a `gfx::Rect` with a negative width or |
| 896 height, its message will be rejected and the pipe will be closed. In this way, |
| 897 type mapping can serve to enable custom validation logic in addition to making |
| 898 callsites and interface implemention more convenient. |
| 899 |
| 900 ### Enabling a New Type Mapping |
| 901 |
| 902 We've defined the `StructTraits` necessary, but we still need to teach the |
| 903 bindings generator (and hence the build system) about the mapping. To do this we |
| 904 must create a **typemap** file, which uses familiar GN syntax to describe the |
| 905 new type mapping. |
| 906 |
| 907 Let's place this `geometry.typemap` file alongside our Mojom file: |
| 908 |
| 909 ``` |
| 910 mojom = "//ui/gfx/geometry/mojo/geometry.mojom" |
| 911 public_headers = [ "//ui/gfx/geometry/rect.h" ] |
| 912 traits_headers = [ "//ui/gfx/geometry/mojo/geometry_struct_traits.h" ] |
| 913 sources = [ "//ui/gfx/geometry/mojo/geometry_struct_traits.cc" ] |
| 914 public_deps = [ "//ui/gfx/geometry" ] |
| 915 type_mappings = [ |
| 916 "gfx.mojom.Rect=gfx::Rect", |
| 917 ] |
| 918 ``` |
| 919 |
| 920 Let's look at each of the variables above: |
| 921 |
| 922 * `mojom`: Specifies the `mojom` file to which the typemap applies. Many |
| 923 typemaps may apply to the same `mojom` file, but any given typemap may only |
| 924 apply to a single `mojom` file. |
| 925 * `public_headers`: Additional headers required by any code which would depend |
| 926 on the Mojom definition of `gfx.mojom.Rect` now that the typemap is applied. |
| 927 Any headers required for the native target type definition should be listed |
| 928 here. |
| 929 * `traits_headers`: Headers which contain the relevant `StructTraits` |
| 930 specialization(s) for any type mappings described by this file. |
| 931 * `sources`: Any private implementation sources needed for the `StructTraits` |
| 932 definition. |
| 933 * `public_deps`: Target dependencies exposed by the `public_headers` and |
| 934 `traits_headers`. |
| 935 * `deps`: Target dependencies exposed by `sources` but not already covered by |
| 936 `public_deps`. |
| 937 * `type_mappings`: A list of type mappings to be applied for this typemap. The |
| 938 strings in this list are of the format `"MojomType=CppType"`, where |
| 939 `MojomType` must be a fully qualified Mojom typename and `CppType` must be a |
| 940 fully qualified C++ typename. Additional attributes may be specified in square |
| 941 brackets following the `CppType`: |
| 942 * `move_only`: The `CppType` is move-only and should be passed by value |
| 943 in any generated method signatures. Note that `move_only` is transitive, |
| 944 so containers of `MojomType` will translate to containers of `CppType` |
| 945 also passed by value. |
| 946 * `copyable_pass_by_value`: Forces values of type `CppType` to be passed by |
| 947 value without moving them. Unlike `move_only`, this is not transitive. |
| 948 * `nullable_is_same_type`: By default a non-nullable `MojomType` will be |
| 949 mapped to `CppType` while a nullable `MojomType?` will be mapped to |
| 950 `base::Optional<CppType>`. If this attribute is set, the `base::Optional` |
| 951 wrapper is omitted for nullable `MojomType?` values, but the |
| 952 `StructTraits` definition for this type mapping must define additional |
| 953 `IsNull` and `SetToNull` methods. See |
| 954 [Specializing Nullability](#Specializing-Nullability) below. |
| 955 |
| 956 |
| 957 Now that we have the typemap file we need to add it to a local list of typemaps |
| 958 that can be added to the global configuration. We create a new |
| 959 `//ui/gfx/typemaps.gni` file with the following contents: |
| 960 |
| 961 ``` |
| 962 typemaps = [ |
| 963 "//ui/gfx/geometry/mojo/geometry.typemap", |
| 964 ] |
| 965 ``` |
| 966 |
| 967 And finally we can reference this file in the global default (Chromium) bindings |
| 968 configuration by adding it to `_typemap_imports` in |
| 969 [chromium_bindings_configuration.gni](https://cs.chromium.com/chromium/src/mojo/
public/tools/bindings/chromium_bindings_configuration.gni): |
| 970 |
| 971 ``` |
| 972 _typemap_imports = [ |
| 973 ..., |
| 974 "//ui/gfx/typemaps.gni", |
| 975 ..., |
| 976 ] |
| 977 ``` |
| 978 |
| 979 ### StructTraits Reference |
| 980 |
| 981 Each of a `StructTraits` specialization's static getter methods -- one per |
| 982 struct field -- must return a type which can be used as a data source for the |
| 983 field during serialization. This is a quick reference mapping Mojom field type |
| 984 to valid getter return types: |
| 985 |
| 986 | Mojom Field Type | C++ Getter Return Type | |
| 987 |------------------------------|------------------------| |
| 988 | `bool` | `bool` |
| 989 | `int8` | `int8_t` |
| 990 | `uint8` | `uint8_t` |
| 991 | `int16` | `int16_t` |
| 992 | `uint16` | `uint16_t` |
| 993 | `int32` | `int32_t` |
| 994 | `uint32` | `uint32_t` |
| 995 | `int64` | `int64_t` |
| 996 | `uint64` | `uint64_t` |
| 997 | `float` | `float` |
| 998 | `double` | `double` |
| 999 | `handle` | `mojo::ScopedHandle` |
| 1000 | `handle<message_pipe>` | `mojo::ScopedMessagePipeHandle` |
| 1001 | `handle<data_pipe_consumer>` | `mojo::ScopedDataPipeConsumerHandle` |
| 1002 | `handle<data_pipe_producer>` | `mojo::ScopedDataPipeProducerHandle` |
| 1003 | `handle<shared_buffer>` | `mojo::ScopedSharedBufferHandle` |
| 1004 | `FooInterface` | `FooInterfacePtr` |
| 1005 | `FooInterface&` | `FooInterfaceRequest` |
| 1006 | `associated FooInterface` | `FooAssociatedInterfacePtr` |
| 1007 | `associated FooInterface&` | `FooAssociatedInterfaceRequest` |
| 1008 | `string` | Value or reference to any type `T` that has a `
mojo::StringTraits` specialization defined. By default this includes `std::strin
g`, `base::StringPiece`, and `WTF::String` (Blink). |
| 1009 | `array<T>` | Value or reference to any type `T` that has a `
mojo::ArrayTraits` specialization defined. By default this includes `std::vector
<T>`, `mojo::CArray<T>`, and `WTF::Vector<T>` (Blink). |
| 1010 | `map<K, V>` | Value or reference to any type `T` that has a `
mojo::MapTraits` specialization defined. By default this includes `std::map<T>`,
`mojo::unordered_map<T>`, and `WTF::HashMap<T>` (Blink). |
| 1011 | `FooEnum` | Value of any type that has an appropriate `Enum
Traits` specialization defined. By default this inlcudes only the generated `Foo
Enum` type. |
| 1012 | `FooStruct` | Value or reference to any type that has an appr
opriate `StructTraits` specialization defined. By default this includes only the
generated `FooStructPtr` type. |
| 1013 | `FooUnion` | Value of reference to any type that has an appr
opriate `UnionTraits` specialization defined. By default this includes only the
generated `FooUnionPtr` type. |
| 1014 |
| 1015 ### Using Generated DataView Types |
| 1016 |
| 1017 Static `Read` methods on `StructTraits` specializations get a generated |
| 1018 `FooDataView` argument (such as the `RectDataView` in the example above) which |
| 1019 exposes a direct view of the serialized Mojom structure within an incoming |
| 1020 message's contents. In order to make this as easy to work with as possible, the |
| 1021 generated `FooDataView` types have a generated method corresponding to every |
| 1022 struct field: |
| 1023 |
| 1024 * For POD field types (*e.g.* bools, floats, integers) these are simple accessor |
| 1025 methods with names identical to the field name. Hence in the `Rect` example we |
| 1026 can access things like `data.x()` and `data.width()`. The return types |
| 1027 correspond exactly to the mappings listed in the table above, under |
| 1028 [StructTraits Reference](#StructTraits-Reference). |
| 1029 |
| 1030 * For handle and interface types (*e.g* `handle` or `FooInterface&`) these |
| 1031 are named `TakeFieldName` (for a field named `field_name`) and they return an |
| 1032 appropriate move-only handle type by value. The return types correspond |
| 1033 exactly to the mappings listed in the table above, under |
| 1034 [StructTraits Reference](#StructTraits-Reference). |
| 1035 |
| 1036 * For all other field types (*e.g.*, enums, strings, arrays, maps, structs) |
| 1037 these are named `ReadFieldName` (for a field named `field_name`) and they |
| 1038 return a `bool` (to indicate success or failure in reading). On success they |
| 1039 fill their output argument with the deserialized field value. The output |
| 1040 argument may be a pointer to any type with an appropriate `StructTraits` |
| 1041 specialization defined, as mentioned in the table above, under |
| 1042 [StructTraits Reference](#StructTraits-Reference). |
| 1043 |
| 1044 An example would be useful here. Suppose we introduced a new Mojom struct: |
| 1045 |
| 1046 ``` cpp |
| 1047 struct RectPair { |
| 1048 Rect left; |
| 1049 Rect right; |
| 1050 }; |
| 1051 ``` |
| 1052 |
| 1053 and a corresponding C++ type: |
| 1054 |
| 1055 ``` cpp |
| 1056 class RectPair { |
| 1057 public: |
| 1058 RectPair() {} |
| 1059 |
| 1060 const gfx::Rect& left() const { return left_; } |
| 1061 const gfx::Rect& right() const { return right_; } |
| 1062 |
| 1063 void Set(const gfx::Rect& left, const gfx::Rect& right) { |
| 1064 left_ = left; |
| 1065 right_ = right; |
| 1066 } |
| 1067 |
| 1068 // ... some other stuff |
| 1069 |
| 1070 private: |
| 1071 gfx::Rect left_; |
| 1072 gfx::Rect right_; |
| 1073 }; |
| 1074 ``` |
| 1075 |
| 1076 Our traits to map `gfx::mojom::RectPair` to `gfx::RectPair` might look like |
| 1077 this: |
| 1078 |
| 1079 ``` cpp |
| 1080 namespace mojo { |
| 1081 |
| 1082 template <> |
| 1083 class StructTraits |
| 1084 public: |
| 1085 static const gfx::Rect& left(const gfx::RectPair& pair) { |
| 1086 return pair.left(); |
| 1087 } |
| 1088 |
| 1089 static const gfx::Rect& right(const gfx::RectPair& pair) { |
| 1090 return pair.right(); |
| 1091 } |
| 1092 |
| 1093 static bool Read(gfx::mojom::RectPairDataView data, gfx::RectPair* out_pair) { |
| 1094 gfx::Rect left, right; |
| 1095 if (!data.ReadLeft(&left) || !data.ReadRight(&right)) |
| 1096 return false; |
| 1097 out_pair->Set(left, right); |
| 1098 return true; |
| 1099 } |
| 1100 } // namespace mojo |
| 1101 ``` |
| 1102 |
| 1103 Generated `ReadFoo` methods always convert `multi_word_field_name` fields to |
| 1104 `ReadMultiWordFieldName` methods. |
| 1105 |
| 1106 ### Variants |
| 1107 |
| 1108 By now you may have noticed that additional C++ sources are generated when a |
| 1109 Mojom is processed. These exist due to type mapping, and the source files we |
| 1110 refer to throughout this docuemnt (namely `foo.mojom.cc` and `foo.mojom.h`) are |
| 1111 really only one **variant** (the *default* or *chromium* variant) of the C++ |
| 1112 bindings for a given Mojom file. |
| 1113 |
| 1114 The only other variant currently defined in the tree is the *blink* variant, |
| 1115 which produces a few additional files: |
| 1116 |
| 1117 ``` |
| 1118 out/gen/sample/db.mojom-blink.cc |
| 1119 out/gen/sample/db.mojom-blink.h |
| 1120 ``` |
| 1121 |
| 1122 These files mirror the definitions in the default variant but with different |
| 1123 C++ types in place of certain builtin field and parameter types. For example, |
| 1124 Mojom strings are represented by `WTF::String` instead of `std::string`. To |
| 1125 avoid symbol collisions, the variant's symbols are nested in an extra inner |
| 1126 namespace, so Blink consumer of the interface might write something like: |
| 1127 |
| 1128 ``` |
| 1129 #include "sample/db.mojom-blink.h" |
| 1130 |
| 1131 class TableImpl : public db::mojom::blink::Table { |
| 1132 public: |
| 1133 void AddRow(int32_t key, const WTF::String& data) override { |
| 1134 // ... |
| 1135 } |
| 1136 }; |
| 1137 ``` |
| 1138 |
| 1139 In addition to using different C++ types for builtin strings, arrays, and maps, |
| 1140 the global typemap configuration for default and "blink" variants are completely |
| 1141 separate. To add a typemap for the Blink configuration, you can modify |
| 1142 [blink_bindings_configuration.gni](https://cs.chromium.org/chromium/src/mojo/pub
lic/tools/bindings/blink_bindings_configuration.gni). |
| 1143 |
| 1144 All variants share some definitions which are unaffected by differences in the |
| 1145 type mapping configuration (enums, for example). These definitions are generated |
| 1146 in *shared* sources: |
| 1147 |
| 1148 ``` |
| 1149 out/gen/sample/db.mojom-shared.cc |
| 1150 out/gen/sample/db.mojom-shared.h |
| 1151 out/gen/sample/db.mojom-shared-internal.h |
| 1152 ``` |
| 1153 |
| 1154 Including either variant's header (`db.mojom.h` or `db.mojom-blink.h`) |
| 1155 implicitly includes the shared header, but you have on some occasions wish to |
| 1156 include *only* the shared header in some instances. |
| 1157 |
| 1158 Finally, note that for `mojom` GN targets, there is implicitly a corresponding |
| 1159 `mojom_{variant}` target defined for any supported bindings configuration. So |
| 1160 for example if you've defined in `//sample/BUILD.gn`: |
| 1161 |
| 1162 ``` |
| 1163 import("mojo/public/tools/bindings/mojom.gni") |
| 1164 |
| 1165 mojom("interfaces") { |
| 1166 sources = [ |
| 1167 "db.mojom", |
| 1168 ] |
| 1169 } |
| 1170 ``` |
| 1171 |
| 1172 Code in Blink which wishes to use the generated Blink-variant definitions must |
| 1173 depend on `"//sample:interfaces_blink"`. |
| 1174 |
| 1175 ## Versioning Considerations |
| 1176 |
| 1177 For general documentation of versioning in the Mojom IDL see |
| 1178 [Versioning](/mojo/public/tools/bindings#Versioning). |
| 1179 |
| 1180 This section briefly discusses some C++-specific considerations relevant to |
| 1181 versioned Mojom types. |
| 1182 |
| 1183 ### Querying Interface Versions |
| 1184 |
| 1185 `InterfacePtr` defines the following methods to query or assert remote interface |
| 1186 version: |
| 1187 |
| 1188 ```cpp |
| 1189 void QueryVersion(const base::Callback<void(uint32_t)>& callback); |
| 1190 ``` |
| 1191 |
| 1192 This queries the remote endpoint for the version number of its binding. When a |
| 1193 response is received `callback` is invoked with the remote version number. Note |
| 1194 that this value is cached by the `InterfacePtr` instance to avoid redundant |
| 1195 queries. |
| 1196 |
| 1197 ```cpp |
| 1198 void RequireVersion(uint32_t version); |
| 1199 ``` |
| 1200 |
| 1201 Informs the remote endpoint that a minimum version of `version` is required by |
| 1202 the client. If the remote endpoint cannot support that version, it will close |
| 1203 its end of the pipe immediately, preventing any other requests from being |
| 1204 received. |
| 1205 |
| 1206 ### Versioned Enums |
| 1207 |
| 1208 For convenience, every extensible enum has a generated helper function to |
| 1209 determine whether a received enum value is known by the implementation's current |
| 1210 version of the enum definition. For example: |
| 1211 |
| 1212 ```cpp |
| 1213 [Extensible] |
| 1214 enum Department { |
| 1215 SALES, |
| 1216 DEV, |
| 1217 RESEARCH, |
| 1218 }; |
| 1219 ``` |
| 1220 |
| 1221 generates the function in the same namespace as the generated C++ enum type: |
| 1222 |
| 1223 ```cpp |
| 1224 inline bool IsKnownEnumValue(Department value); |
| 1225 ``` |
| 1226 |
| 1227 ### Additional Documentation |
| 1228 |
| 1229 [Calling Mojo From Blink](https://www.chromium.org/developers/design-documents/m
ojo/calling-mojo-from-blink) |
| 1230 : A brief overview of what it looks like to use Mojom C++ bindings from |
| 1231 within Blink code. |
OLD | NEW |