| Index: runtime/lib/bigint.dart | 
| diff --git a/runtime/lib/bigint.dart b/runtime/lib/bigint.dart | 
| index af03ea41fd62394b676623b0b59d6b2126c524e9..e4fc4ebb957ade8bb70dde710dfc53c5aa68249c 100644 | 
| --- a/runtime/lib/bigint.dart | 
| +++ b/runtime/lib/bigint.dart | 
| @@ -119,9 +119,9 @@ class _Bigint extends _IntegerImplementation implements int { | 
| // Allocate an array of the given length (+1 for at least one leading zero | 
| // digit if odd) and copy digits[from..to-1] starting at index 0, followed by | 
| // leading zero digits. | 
| -  static Uint32List _cloneDigits( | 
| -      Uint32List digits, int from, int to, int length) { | 
| -    length += length & 1; // Even number of digits. | 
| +  static Uint32List _cloneDigits(Uint32List digits, int from, int to, | 
| +                                 int length) { | 
| +    length += length & 1;  // Even number of digits. | 
| var r_digits = new Uint32List(length); | 
| var n = to - from; | 
| for (var i = 0; i < n; i++) { | 
| @@ -132,7 +132,7 @@ class _Bigint extends _IntegerImplementation implements int { | 
|  | 
| // Return most compact integer (i.e. possibly Smi or Mint). | 
| int _toValidInt() { | 
| -    assert(_DIGIT_BITS == 32); // Otherwise this code needs to be revised. | 
| +    assert(_DIGIT_BITS == 32);  // Otherwise this code needs to be revised. | 
| var used = _used; | 
| if (used == 0) return 0; | 
| var digits = _digits; | 
| @@ -174,25 +174,11 @@ class _Bigint extends _IntegerImplementation implements int { | 
| // Return the bit length of digit x. | 
| static int _nbits(int x) { | 
| var r = 1, t; | 
| -    if ((t = x >> 16) != 0) { | 
| -      x = t; | 
| -      r += 16; | 
| -    } | 
| -    if ((t = x >> 8) != 0) { | 
| -      x = t; | 
| -      r += 8; | 
| -    } | 
| -    if ((t = x >> 4) != 0) { | 
| -      x = t; | 
| -      r += 4; | 
| -    } | 
| -    if ((t = x >> 2) != 0) { | 
| -      x = t; | 
| -      r += 2; | 
| -    } | 
| -    if ((x >> 1) != 0) { | 
| -      r += 1; | 
| -    } | 
| +    if ((t = x >> 16) != 0) { x = t; r += 16; } | 
| +    if ((t = x >> 8) != 0) { x = t; r += 8; } | 
| +    if ((t = x >> 4) != 0) { x = t; r += 4; } | 
| +    if ((t = x >> 2) != 0) { x = t; r += 2; } | 
| +    if ((x >> 1) != 0) { r += 1; } | 
| return r; | 
| } | 
|  | 
| @@ -214,8 +200,8 @@ class _Bigint extends _IntegerImplementation implements int { | 
|  | 
| // r_digits[0..r_used-1] = x_digits[0..x_used-1] << n*_DIGIT_BITS. | 
| // Return r_used. | 
| -  static int _dlShiftDigits( | 
| -      Uint32List x_digits, int x_used, int n, Uint32List r_digits) { | 
| +  static int _dlShiftDigits(Uint32List x_digits, int x_used, int n, | 
| +                            Uint32List r_digits) { | 
| if (x_used == 0) { | 
| return 0; | 
| } | 
| @@ -267,8 +253,8 @@ class _Bigint extends _IntegerImplementation implements int { | 
|  | 
| // r_digits[0..r_used-1] = x_digits[0..x_used-1] >> n*_DIGIT_BITS. | 
| // Return r_used. | 
| -  static int _drShiftDigits( | 
| -      Uint32List x_digits, int x_used, int n, Uint32List r_digits) { | 
| +  static int _drShiftDigits(Uint32List x_digits, int x_used, int n, | 
| +                            Uint32List r_digits) { | 
| final r_used = x_used - n; | 
| if (r_used <= 0) { | 
| return 0; | 
| @@ -286,8 +272,8 @@ class _Bigint extends _IntegerImplementation implements int { | 
| // r_digits[ds..x_used+ds] = x_digits[0..x_used-1] << (n % _DIGIT_BITS) | 
| // where ds = ceil(n / _DIGIT_BITS) | 
| // Doesn't clear digits below ds. | 
| -  static void _lsh( | 
| -      Uint32List x_digits, int x_used, int n, Uint32List r_digits) { | 
| +  static void _lsh(Uint32List x_digits, int x_used, int n, | 
| +                   Uint32List r_digits) { | 
| final ds = n ~/ _DIGIT_BITS; | 
| final bs = n % _DIGIT_BITS; | 
| final cbs = _DIGIT_BITS - bs; | 
| @@ -310,29 +296,29 @@ class _Bigint extends _IntegerImplementation implements int { | 
| return _dlShift(ds); | 
| } | 
| var r_used = _used + ds + 1; | 
| -    var r_digits = new Uint32List(r_used + 2 - (r_used & 1)); // for 64-bit. | 
| +    var r_digits = new Uint32List(r_used + 2 - (r_used & 1));  // for 64-bit. | 
| _lsh(_digits, _used, n, r_digits); | 
| return new _Bigint(_neg, r_used, r_digits); | 
| } | 
|  | 
| // r_digits[0..r_used-1] = x_digits[0..x_used-1] << n. | 
| // Return r_used. | 
| -  static int _lShiftDigits( | 
| -      Uint32List x_digits, int x_used, int n, Uint32List r_digits) { | 
| +  static int _lShiftDigits(Uint32List x_digits, int x_used, int n, | 
| +                           Uint32List r_digits) { | 
| final ds = n ~/ _DIGIT_BITS; | 
| final bs = n % _DIGIT_BITS; | 
| if (bs == 0) { | 
| return _dlShiftDigits(x_digits, x_used, ds, r_digits); | 
| } | 
| var r_used = x_used + ds + 1; | 
| -    assert(r_digits.length >= r_used + 2 - (r_used & 1)); // for 64-bit. | 
| +    assert(r_digits.length >= r_used + 2 - (r_used & 1));  // for 64-bit. | 
| _lsh(x_digits, x_used, n, r_digits); | 
| var i = ds; | 
| while (--i >= 0) { | 
| r_digits[i] = 0; | 
| } | 
| if (r_digits[r_used - 1] == 0) { | 
| -      r_used--; // Clamp result. | 
| +      r_used--;  // Clamp result. | 
| } else if (r_used.isOdd) { | 
| r_digits[r_used] = 0; | 
| } | 
| @@ -340,8 +326,8 @@ class _Bigint extends _IntegerImplementation implements int { | 
| } | 
|  | 
| // r_digits[0..r_used-1] = x_digits[0..x_used-1] >> n. | 
| -  static void _rsh( | 
| -      Uint32List x_digits, int x_used, int n, Uint32List r_digits) { | 
| +  static void _rsh(Uint32List x_digits, int x_used, int n, | 
| +                   Uint32List r_digits) { | 
| final ds = n ~/ _DIGIT_BITS; | 
| final bs = n % _DIGIT_BITS; | 
| final cbs = _DIGIT_BITS - bs; | 
| @@ -388,8 +374,8 @@ class _Bigint extends _IntegerImplementation implements int { | 
|  | 
| // r_digits[0..r_used-1] = x_digits[0..x_used-1] >> n. | 
| // Return r_used. | 
| -  static int _rShiftDigits( | 
| -      Uint32List x_digits, int x_used, int n, Uint32List r_digits) { | 
| +  static int _rShiftDigits(Uint32List x_digits, int x_used, int n, | 
| +                           Uint32List r_digits) { | 
| final ds = n ~/ _DIGIT_BITS; | 
| final bs = n % _DIGIT_BITS; | 
| if (bs == 0) { | 
| @@ -402,7 +388,7 @@ class _Bigint extends _IntegerImplementation implements int { | 
| assert(r_digits.length >= r_used + (r_used & 1)); | 
| _rsh(x_digits, x_used, n, r_digits); | 
| if (r_digits[r_used - 1] == 0) { | 
| -      r_used--; // Clamp result. | 
| +      r_used--;  // Clamp result. | 
| } else if (r_used.isOdd) { | 
| r_digits[r_used] = 0; | 
| } | 
| @@ -438,8 +424,8 @@ class _Bigint extends _IntegerImplementation implements int { | 
| // Return 0 if equal. | 
| // Return a positive number if larger. | 
| // Return a negative number if smaller. | 
| -  static int _compareDigits( | 
| -      Uint32List digits, int used, Uint32List a_digits, int a_used) { | 
| +  static int _compareDigits(Uint32List digits, int used, | 
| +                            Uint32List a_digits, int a_used) { | 
| var r = used - a_used; | 
| if (r == 0) { | 
| var i = a_used; | 
| @@ -451,8 +437,9 @@ class _Bigint extends _IntegerImplementation implements int { | 
| // r_digits[0..used] = digits[0..used-1] + a_digits[0..a_used-1]. | 
| // used >= a_used > 0. | 
| // Note: Intrinsics on 64-bit platforms process digit pairs at even indices. | 
| -  static void _absAdd(Uint32List digits, int used, Uint32List a_digits, | 
| -      int a_used, Uint32List r_digits) { | 
| +  static void _absAdd(Uint32List digits, int used, | 
| +                      Uint32List a_digits, int a_used, | 
| +                      Uint32List r_digits) { | 
| assert(used >= a_used && a_used > 0); | 
| // Verify that digit pairs are accessible for 64-bit processing. | 
| assert(digits.length > ((used - 1) | 1)); | 
| @@ -475,8 +462,9 @@ class _Bigint extends _IntegerImplementation implements int { | 
| // r_digits[0..used-1] = digits[0..used-1] - a_digits[0..a_used-1]. | 
| // used >= a_used > 0. | 
| // Note: Intrinsics on 64-bit platforms process digit pairs at even indices. | 
| -  static void _absSub(Uint32List digits, int used, Uint32List a_digits, | 
| -      int a_used, Uint32List r_digits) { | 
| +  static void _absSub(Uint32List digits, int used, | 
| +                      Uint32List a_digits, int a_used, | 
| +                      Uint32List r_digits) { | 
| assert(used >= a_used && a_used > 0); | 
| // Verify that digit pairs are accessible for 64-bit processing. | 
| assert(digits.length > ((used - 1) | 1)); | 
| @@ -553,7 +541,7 @@ class _Bigint extends _IntegerImplementation implements int { | 
| var r_digits = new Uint32List(r_used + (r_used & 1)); | 
| var m = (r_used < a._used) ? r_used : a._used; | 
| for (var i = 0; i < m; i++) { | 
| -      r_digits[i] = digits[i] & ~a_digits[i]; | 
| +      r_digits[i] = digits[i] &~ a_digits[i]; | 
| } | 
| for (var i = m; i < r_used; i++) { | 
| r_digits[i] = digits[i]; | 
| @@ -632,8 +620,7 @@ class _Bigint extends _IntegerImplementation implements int { | 
| if (_neg) { | 
| p = a; | 
| n = this; | 
| -    } else { | 
| -      // & is symmetric. | 
| +    } else {  // & is symmetric. | 
| p = this; | 
| n = a; | 
| } | 
| @@ -688,8 +675,7 @@ class _Bigint extends _IntegerImplementation implements int { | 
| if (_neg) { | 
| p = a; | 
| n = this; | 
| -    } else { | 
| -      // | is symmetric. | 
| +    } else {  // | is symmetric. | 
| p = this; | 
| n = a; | 
| } | 
| @@ -715,8 +701,7 @@ class _Bigint extends _IntegerImplementation implements int { | 
| if (_neg) { | 
| p = a; | 
| n = this; | 
| -    } else { | 
| -      // ^ is symmetric. | 
| +    } else {  // ^ is symmetric. | 
| p = this; | 
| n = a; | 
| } | 
| @@ -779,8 +764,9 @@ class _Bigint extends _IntegerImplementation implements int { | 
| //   return 1. | 
| // Note: Intrinsics on 64-bit platforms process digit pairs at even indices | 
| //   and return 2. | 
| -  static int _mulAdd(Uint32List x_digits, int xi, Uint32List m_digits, int i, | 
| -      Uint32List a_digits, int j, int n) { | 
| +  static int _mulAdd(Uint32List x_digits, int xi, | 
| +                     Uint32List m_digits, int i, | 
| +                     Uint32List a_digits, int j, int n) { | 
| // Verify that digit pairs are accessible for 64-bit processing. | 
| assert(x_digits.length > (xi | 1)); | 
| assert(m_digits.length > ((i + n - 1) | 1)); | 
| @@ -796,9 +782,9 @@ class _Bigint extends _IntegerImplementation implements int { | 
| while (--n >= 0) { | 
| int l = m_digits[i] & _DIGIT2_MASK; | 
| int h = m_digits[i++] >> _DIGIT2_BITS; | 
| -      int m = xh * l + h * xl; | 
| -      l = xl * l + ((m & _DIGIT2_MASK) << _DIGIT2_BITS) + a_digits[j] + c; | 
| -      c = (l >> _DIGIT_BITS) + (m >> _DIGIT2_BITS) + xh * h; | 
| +      int m = xh*l + h*xl; | 
| +      l = xl*l + ((m & _DIGIT2_MASK) << _DIGIT2_BITS) + a_digits[j] + c; | 
| +      c = (l >> _DIGIT_BITS) + (m >> _DIGIT2_BITS) + xh*h; | 
| a_digits[j++] = l & _DIGIT_MASK; | 
| } | 
| while (c != 0) { | 
| @@ -819,20 +805,20 @@ class _Bigint extends _IntegerImplementation implements int { | 
| //   return 1. | 
| // Note: Intrinsics on 64-bit platforms process digit pairs at even indices | 
| //   and return 2. | 
| -  static int _sqrAdd( | 
| -      Uint32List x_digits, int i, Uint32List a_digits, int used) { | 
| +  static int _sqrAdd(Uint32List x_digits, int i, | 
| +                     Uint32List a_digits, int used) { | 
| // Verify that digit pairs are accessible for 64-bit processing. | 
| assert(x_digits.length > ((used - 1) | 1)); | 
| assert(a_digits.length > ((i + used - 1) | 1)); | 
| int x = x_digits[i]; | 
| if (x == 0) return 1; | 
| -    int j = 2 * i; | 
| +    int j = 2*i; | 
| int c = 0; | 
| int xl = x & _DIGIT2_MASK; | 
| int xh = x >> _DIGIT2_BITS; | 
| -    int m = 2 * xh * xl; | 
| -    int l = xl * xl + ((m & _DIGIT2_MASK) << _DIGIT2_BITS) + a_digits[j]; | 
| -    c = (l >> _DIGIT_BITS) + (m >> _DIGIT2_BITS) + xh * xh; | 
| +    int m = 2*xh*xl; | 
| +    int l = xl*xl + ((m & _DIGIT2_MASK) << _DIGIT2_BITS) + a_digits[j]; | 
| +    c = (l >> _DIGIT_BITS) + (m >> _DIGIT2_BITS) + xh*xh; | 
| a_digits[j] = l & _DIGIT_MASK; | 
| x <<= 1; | 
| xl = x & _DIGIT2_MASK; | 
| @@ -843,9 +829,9 @@ class _Bigint extends _IntegerImplementation implements int { | 
| while (--n >= 0) { | 
| int l = x_digits[k] & _DIGIT2_MASK; | 
| int h = x_digits[k++] >> _DIGIT2_BITS; | 
| -      int m = xh * l + h * xl; | 
| -      l = xl * l + ((m & _DIGIT2_MASK) << _DIGIT2_BITS) + a_digits[j] + c; | 
| -      c = (l >> _DIGIT_BITS) + (m >> _DIGIT2_BITS) + xh * h; | 
| +      int m = xh*l + h*xl; | 
| +      l = xl*l + ((m & _DIGIT2_MASK) << _DIGIT2_BITS) + a_digits[j] + c; | 
| +      c = (l >> _DIGIT_BITS) + (m >> _DIGIT2_BITS) + xh*h; | 
| a_digits[j++] = l & _DIGIT_MASK; | 
| } | 
| c += a_digits[i + used]; | 
| @@ -879,8 +865,9 @@ class _Bigint extends _IntegerImplementation implements int { | 
|  | 
| // r_digits[0..r_used-1] = x_digits[0..x_used-1]*a_digits[0..a_used-1]. | 
| // Return r_used = x_used + a_used. | 
| -  static int _mulDigits(Uint32List x_digits, int x_used, Uint32List a_digits, | 
| -      int a_used, Uint32List r_digits) { | 
| +  static int _mulDigits(Uint32List x_digits, int x_used, | 
| +                        Uint32List a_digits, int a_used, | 
| +                        Uint32List r_digits) { | 
| var r_used = x_used + a_used; | 
| var i = r_used + (r_used & 1); | 
| assert(r_digits.length >= i); | 
| @@ -910,7 +897,7 @@ class _Bigint extends _IntegerImplementation implements int { | 
| } | 
| // The last step is already done if digit pairs were processed above. | 
| if (i < used) { | 
| -      _mulAdd(digits, i, digits, i, r_digits, 2 * i, 1); | 
| +      _mulAdd(digits, i, digits, i, r_digits, 2*i, 1); | 
| } | 
| return new _Bigint(false, r_used, r_digits); | 
| } | 
| @@ -931,7 +918,7 @@ class _Bigint extends _IntegerImplementation implements int { | 
| } | 
| // The last step is already done if digit pairs were processed above. | 
| if (i < x_used) { | 
| -      _mulAdd(x_digits, i, x_digits, i, r_digits, 2 * i, 1); | 
| +      _mulAdd(x_digits, i, x_digits, i, r_digits, 2*i, 1); | 
| } | 
| return r_used; | 
| } | 
| @@ -941,10 +928,10 @@ class _Bigint extends _IntegerImplementation implements int { | 
| // of divisor y is provided in the args array, and a 64-bit estimated quotient | 
| // is returned. However, on 32-bit platforms, the low 32-bit digit is ignored | 
| // and only one 32-bit digit is returned as the estimated quotient. | 
| -  static const int _YT_LO = 0; // Low digit of top digit pair of y, for 64-bit. | 
| -  static const int _YT = 1; // Top digit of divisor y. | 
| -  static const int _QD = 2; // Estimated quotient. | 
| -  static const int _QD_HI = 3; // High digit of estimated quotient, for 64-bit. | 
| +  static const int _YT_LO = 0;  // Low digit of top digit pair of y, for 64-bit. | 
| +  static const int _YT = 1;  // Top digit of divisor y. | 
| +  static const int _QD = 2;  // Estimated quotient. | 
| +  static const int _QD_HI = 3;  // High digit of estimated quotient, for 64-bit. | 
|  | 
| // Operation: | 
| //   Estimate args[_QD] = digits[i-1..i] ~/ args[_YT] | 
| @@ -959,8 +946,8 @@ class _Bigint extends _IntegerImplementation implements int { | 
| args[_QD] = _DIGIT_MASK; | 
| } else { | 
| // Chop off one bit, since a Mint cannot hold 2 DIGITs. | 
| -      var qd = ((digits[i] << (_DIGIT_BITS - 1)) | (digits[i - 1] >> 1)) ~/ | 
| -          (args[_YT] >> 1); | 
| +      var qd = ((digits[i] << (_DIGIT_BITS - 1)) | (digits[i - 1] >> 1)) | 
| +          ~/ (args[_YT] >> 1); | 
| if (qd > _DIGIT_MASK) { | 
| args[_QD] = _DIGIT_MASK; | 
| } else { | 
| @@ -980,8 +967,10 @@ class _Bigint extends _IntegerImplementation implements int { | 
| // Return quotient, i.e. | 
| // _lastQuoRem_digits[_lastRem_used.._lastQuoRem_used-1] with proper sign. | 
| var lastQuo_used = _lastQuoRem_used - _lastRem_used; | 
| -    var quo_digits = _cloneDigits( | 
| -        _lastQuoRem_digits, _lastRem_used, _lastQuoRem_used, lastQuo_used); | 
| +    var quo_digits = _cloneDigits(_lastQuoRem_digits, | 
| +                                  _lastRem_used, | 
| +                                  _lastQuoRem_used, | 
| +                                  lastQuo_used); | 
| var quo = new _Bigint(false, lastQuo_used, quo_digits); | 
| if ((_neg != a._neg) && (quo._used > 0)) { | 
| quo = quo._negate(); | 
| @@ -998,11 +987,13 @@ class _Bigint extends _IntegerImplementation implements int { | 
| _divRem(a); | 
| // Return remainder, i.e. | 
| // denormalized _lastQuoRem_digits[0.._lastRem_used-1] with proper sign. | 
| -    var rem_digits = | 
| -        _cloneDigits(_lastQuoRem_digits, 0, _lastRem_used, _lastRem_used); | 
| +    var rem_digits = _cloneDigits(_lastQuoRem_digits, | 
| +                                  0, | 
| +                                  _lastRem_used, | 
| +                                  _lastRem_used); | 
| var rem = new _Bigint(false, _lastRem_used, rem_digits); | 
| if (_lastRem_nsh > 0) { | 
| -      rem = rem._rShift(_lastRem_nsh); // Denormalize remainder. | 
| +      rem = rem._rShift(_lastRem_nsh);  // Denormalize remainder. | 
| } | 
| if (_neg && (rem._used > 0)) { | 
| rem = rem._negate(); | 
| @@ -1031,9 +1022,9 @@ class _Bigint extends _IntegerImplementation implements int { | 
| var y_digits; | 
| var y_used; | 
| if (nsh > 0) { | 
| -      y_digits = new Uint32List(a._used + 5); // +5 for norm. and 64-bit. | 
| +      y_digits = new Uint32List(a._used + 5);  // +5 for norm. and 64-bit. | 
| y_used = _lShiftDigits(a._digits, a._used, nsh, y_digits); | 
| -      r_digits = new Uint32List(_used + 5); // +5 for normalization and 64-bit. | 
| +      r_digits = new Uint32List(_used + 5);  // +5 for normalization and 64-bit. | 
| r_used = _lShiftDigits(_digits, _used, nsh, r_digits); | 
| } else { | 
| y_digits = a._digits; | 
| @@ -1055,14 +1046,14 @@ class _Bigint extends _IntegerImplementation implements int { | 
| // equal to shifted normalized divisor. | 
| if (_compareDigits(r_digits, r_used, t_digits, t_used) >= 0) { | 
| assert(i == r_used); | 
| -      r_digits[r_used++] = 1; // Quotient = 1. | 
| +      r_digits[r_used++] = 1;  // Quotient = 1. | 
| // Subtract divisor from remainder. | 
| _absSub(r_digits, r_used, t_digits, t_used, r_digits); | 
| } else { | 
| // Account for possible carry in _mulAdd step. | 
| r_digits[r_used++] = 0; | 
| } | 
| -    r_digits[r_used] = 0; // Leading zero for 64-bit processing. | 
| +    r_digits[r_used] = 0;  // Leading zero for 64-bit processing. | 
| // Negate y so we can later use _mulAdd instead of non-existent _mulSub. | 
| var ny_digits = new Uint32List(y_used + 2); | 
| ny_digits[y_used] = 1; | 
| @@ -1091,7 +1082,7 @@ class _Bigint extends _IntegerImplementation implements int { | 
| } else { | 
| assert(d0 == 2); | 
| assert(r_digits[i] <= yt_qd[_QD_HI]); | 
| -        if ((r_digits[i] < yt_qd[_QD_HI]) || (r_digits[i - 1] < yt_qd[_QD])) { | 
| +        if ((r_digits[i] < yt_qd[_QD_HI]) || (r_digits[i-1] < yt_qd[_QD])) { | 
| var t_used = _dlShiftDigits(ny_digits, y_used, j, t_digits); | 
| _absSub(r_digits, r_used, t_digits, t_used, r_digits); | 
| if (yt_qd[_QD] == 0) { | 
| @@ -1099,8 +1090,8 @@ class _Bigint extends _IntegerImplementation implements int { | 
| } | 
| --yt_qd[_QD]; | 
| assert(r_digits[i] <= yt_qd[_QD_HI]); | 
| -          while ( | 
| -              (r_digits[i] < yt_qd[_QD_HI]) || (r_digits[i - 1] < yt_qd[_QD])) { | 
| +          while ((r_digits[i] < yt_qd[_QD_HI]) || | 
| +                 (r_digits[i-1] < yt_qd[_QD])) { | 
| _absSub(r_digits, r_used, t_digits, t_used, r_digits); | 
| if (yt_qd[_QD] == 0) { | 
| --yt_qd[_QD_HI]; | 
| @@ -1136,16 +1127,12 @@ class _Bigint extends _IntegerImplementation implements int { | 
| // Output: | 
| //   r_digits[0..r_used-1]: positive remainder. | 
| // Returns r_used. | 
| -  static int _remDigits( | 
| -      Uint32List x_digits, | 
| -      int x_used, | 
| -      Uint32List y_digits, | 
| -      int y_used, | 
| -      Uint32List ny_digits, | 
| -      int nsh, | 
| -      Uint32List yt_qd, | 
| -      Uint32List t_digits, | 
| -      Uint32List r_digits) { | 
| +  static int _remDigits(Uint32List x_digits, int x_used, | 
| +                        Uint32List y_digits, int y_used, Uint32List ny_digits, | 
| +                        int nsh, | 
| +                        Uint32List yt_qd, | 
| +                        Uint32List t_digits, | 
| +                        Uint32List r_digits) { | 
| // Initialize r_digits to normalized positive dividend. | 
| var r_used = _lShiftDigits(x_digits, x_used, nsh, r_digits); | 
| // For 64-bit processing, make sure y_used, i, and j are even. | 
| @@ -1157,14 +1144,14 @@ class _Bigint extends _IntegerImplementation implements int { | 
| // equal to shifted normalized divisor. | 
| if (_compareDigits(r_digits, r_used, t_digits, t_used) >= 0) { | 
| assert(i == r_used); | 
| -      r_digits[r_used++] = 1; // Quotient = 1. | 
| +      r_digits[r_used++] = 1;  // Quotient = 1. | 
| // Subtract divisor from remainder. | 
| _absSub(r_digits, r_used, t_digits, t_used, r_digits); | 
| } else { | 
| // Account for possible carry in _mulAdd step. | 
| r_digits[r_used++] = 0; | 
| } | 
| -    r_digits[r_used] = 0; // Leading zero for 64-bit processing. | 
| +    r_digits[r_used] = 0;  // Leading zero for 64-bit processing. | 
| // Negated y_digits passed in ny_digits allow the use of _mulAdd instead of | 
| // unimplemented _mulSub. | 
| // ny_digits is read-only and has y_used digits (possibly including several | 
| @@ -1191,7 +1178,7 @@ class _Bigint extends _IntegerImplementation implements int { | 
| } else { | 
| assert(d0 == 2); | 
| assert(r_digits[i] <= yt_qd[_QD_HI]); | 
| -        if ((r_digits[i] < yt_qd[_QD_HI]) || (r_digits[i - 1] < yt_qd[_QD])) { | 
| +        if ((r_digits[i] < yt_qd[_QD_HI]) || (r_digits[i-1] < yt_qd[_QD])) { | 
| var t_used = _dlShiftDigits(ny_digits, y_used, j, t_digits); | 
| _absSub(r_digits, r_used, t_digits, t_used, r_digits); | 
| if (yt_qd[_QD] == 0) { | 
| @@ -1199,8 +1186,8 @@ class _Bigint extends _IntegerImplementation implements int { | 
| } | 
| --yt_qd[_QD]; | 
| assert(r_digits[i] <= yt_qd[_QD_HI]); | 
| -          while ( | 
| -              (r_digits[i] < yt_qd[_QD_HI]) || (r_digits[i - 1] < yt_qd[_QD])) { | 
| +          while ((r_digits[i] < yt_qd[_QD_HI]) || | 
| +                 (r_digits[i-1] < yt_qd[_QD])) { | 
| _absSub(r_digits, r_used, t_digits, t_used, r_digits); | 
| if (yt_qd[_QD] == 0) { | 
| --yt_qd[_QD_HI]; | 
| @@ -1231,14 +1218,14 @@ class _Bigint extends _IntegerImplementation implements int { | 
| int get bitLength { | 
| if (_used == 0) return 0; | 
| if (_neg) return (~this).bitLength; | 
| -    return _DIGIT_BITS * (_used - 1) + _nbits(_digits[_used - 1]); | 
| +    return _DIGIT_BITS*(_used - 1) + _nbits(_digits[_used - 1]); | 
| } | 
|  | 
| // This method must support smi._toBigint()._shrFromInt(int). | 
| int _shrFromInt(int other) { | 
| -    if (_used == 0) return other; // Shift amount is zero. | 
| +    if (_used == 0) return other;  // Shift amount is zero. | 
| if (_neg) throw new RangeError.range(this, 0, null); | 
| -    assert(_DIGIT_BITS == 32); // Otherwise this code needs to be revised. | 
| +    assert(_DIGIT_BITS == 32);  // Otherwise this code needs to be revised. | 
| var shift; | 
| if ((_used > 2) || ((_used == 2) && (_digits[1] > 0x10000000))) { | 
| if (other < 0) { | 
| @@ -1255,12 +1242,12 @@ class _Bigint extends _IntegerImplementation implements int { | 
| // This method must support smi._toBigint()._shlFromInt(int). | 
| // An out of memory exception is thrown if the result cannot be allocated. | 
| int _shlFromInt(int other) { | 
| -    if (_used == 0) return other; // Shift amount is zero. | 
| +    if (_used == 0) return other;  // Shift amount is zero. | 
| if (_neg) throw new RangeError.range(this, 0, null); | 
| -    assert(_DIGIT_BITS == 32); // Otherwise this code needs to be revised. | 
| +    assert(_DIGIT_BITS == 32);  // Otherwise this code needs to be revised. | 
| var shift; | 
| if (_used > 2 || (_used == 2 && _digits[1] > 0x10000000)) { | 
| -      if (other == 0) return 0; // Shifted value is zero. | 
| +      if (other == 0) return 0;  // Shifted value is zero. | 
| throw new OutOfMemoryError(); | 
| } else { | 
| shift = ((_used == 2) ? (_digits[1] << _DIGIT_BITS) : 0) + _digits[0]; | 
| @@ -1276,39 +1263,30 @@ class _Bigint extends _IntegerImplementation implements int { | 
| num operator +(num other) { | 
| return other._toBigintOrDouble()._addFromInteger(this); | 
| } | 
| - | 
| num operator -(num other) { | 
| return other._toBigintOrDouble()._subFromInteger(this); | 
| } | 
| - | 
| num operator *(num other) { | 
| return other._toBigintOrDouble()._mulFromInteger(this); | 
| } | 
| - | 
| num operator ~/(num other) { | 
| return other._toBigintOrDouble()._truncDivFromInteger(this); | 
| } | 
| - | 
| num operator %(num other) { | 
| return other._toBigintOrDouble()._moduloFromInteger(this); | 
| } | 
| - | 
| int operator &(int other) { | 
| return other._toBigintOrDouble()._bitAndFromInteger(this); | 
| } | 
| - | 
| int operator |(int other) { | 
| return other._toBigintOrDouble()._bitOrFromInteger(this); | 
| } | 
| - | 
| int operator ^(int other) { | 
| return other._toBigintOrDouble()._bitXorFromInteger(this); | 
| } | 
| - | 
| int operator >>(int other) { | 
| return other._toBigintOrDouble()._shrFromInt(this); | 
| } | 
| - | 
| int operator <<(int other) { | 
| return other._toBigintOrDouble()._shlFromInt(this); | 
| } | 
| @@ -1329,16 +1307,16 @@ class _Bigint extends _IntegerImplementation implements int { | 
| if (_used == 0) return "0"; | 
| assert(radix & (radix - 1) == 0); | 
| final bitsPerChar = radix.bitLength - 1; | 
| -    final firstcx = _neg ? 1 : 0; // Index of first char in str after the sign. | 
| -    final lastdx = _used - 1; // Index of last digit in bigint. | 
| -    final bitLength = lastdx * _DIGIT_BITS + _nbits(_digits[lastdx]); | 
| +    final firstcx = _neg ? 1 : 0;  // Index of first char in str after the sign. | 
| +    final lastdx = _used - 1;  // Index of last digit in bigint. | 
| +    final bitLength = lastdx*_DIGIT_BITS + _nbits(_digits[lastdx]); | 
| // Index of char in str. Initialize with str length. | 
| var cx = firstcx + (bitLength + bitsPerChar - 1) ~/ bitsPerChar; | 
| _OneByteString str = _OneByteString._allocate(cx); | 
| -    str._setAt(0, 0x2d); // '-'. Is overwritten if not negative. | 
| +    str._setAt(0, 0x2d);  // '-'. Is overwritten if not negative. | 
| final mask = radix - 1; | 
| -    var dx = 0; // Digit index in bigint. | 
| -    var bx = 0; // Bit index in bigint digit. | 
| +    var dx = 0;  // Digit index in bigint. | 
| +    var bx = 0;  // Bit index in bigint digit. | 
| do { | 
| var ch; | 
| if (bx > (_DIGIT_BITS - bitsPerChar)) { | 
| @@ -1365,34 +1343,27 @@ class _Bigint extends _IntegerImplementation implements int { | 
| int _bitAndFromInteger(int other) { | 
| return other._toBigint()._and(this)._toValidInt(); | 
| } | 
| - | 
| int _bitOrFromInteger(int other) { | 
| return other._toBigint()._or(this)._toValidInt(); | 
| } | 
| - | 
| int _bitXorFromInteger(int other) { | 
| return other._toBigint()._xor(this)._toValidInt(); | 
| } | 
| - | 
| int _addFromInteger(int other) { | 
| return other._toBigint()._add(this)._toValidInt(); | 
| } | 
| - | 
| int _subFromInteger(int other) { | 
| return other._toBigint()._sub(this)._toValidInt(); | 
| } | 
| - | 
| int _mulFromInteger(int other) { | 
| return other._toBigint()._mul(this)._toValidInt(); | 
| } | 
| - | 
| int _truncDivFromInteger(int other) { | 
| if (_used == 0) { | 
| throw const IntegerDivisionByZeroException(); | 
| } | 
| return other._toBigint()._div(this)._toValidInt(); | 
| } | 
| - | 
| int _moduloFromInteger(int other) { | 
| if (_used == 0) { | 
| throw const IntegerDivisionByZeroException(); | 
| @@ -1407,18 +1378,15 @@ class _Bigint extends _IntegerImplementation implements int { | 
| } | 
| return result._toValidInt(); | 
| } | 
| - | 
| int _remainderFromInteger(int other) { | 
| if (_used == 0) { | 
| throw const IntegerDivisionByZeroException(); | 
| } | 
| return other._toBigint()._rem(this)._toValidInt(); | 
| } | 
| - | 
| bool _greaterThanFromInteger(int other) { | 
| return other._toBigint()._compare(this) > 0; | 
| } | 
| - | 
| bool _equalToInteger(int other) { | 
| return other._toBigint()._compare(this) == 0; | 
| } | 
| @@ -1441,9 +1409,8 @@ class _Bigint extends _IntegerImplementation implements int { | 
| if (e_bitlen <= 0) return 1; | 
| final bool cannotUseMontgomery = m.isEven || _abs() >= m; | 
| if (cannotUseMontgomery || e_bitlen < 64) { | 
| -      _Reduction z = (cannotUseMontgomery || e_bitlen < 8) | 
| -          ? new _Classic(m) | 
| -          : new _Montgomery(m); | 
| +      _Reduction z = (cannotUseMontgomery || e_bitlen < 8) ? | 
| +          new _Classic(m) : new _Montgomery(m); | 
| // TODO(regis): Should we use Barrett reduction for an even modulus and a | 
| // large exponent? | 
| var r_digits = new Uint32List(m_used2p4); | 
| @@ -1451,7 +1418,7 @@ class _Bigint extends _IntegerImplementation implements int { | 
| var g_digits = new Uint32List(m_used + (m_used & 1)); | 
| var g_used = z._convert(this, g_digits); | 
| // Initialize r with g. | 
| -      var j = g_used + (g_used & 1); // Copy leading zero if any. | 
| +      var j = g_used + (g_used & 1);  // Copy leading zero if any. | 
| while (--j >= 0) { | 
| r_digits[j] = g_digits[j]; | 
| } | 
| @@ -1475,16 +1442,11 @@ class _Bigint extends _IntegerImplementation implements int { | 
| } | 
| e = e._toBigint(); | 
| var k; | 
| -    if (e_bitlen < 18) | 
| -      k = 1; | 
| -    else if (e_bitlen < 48) | 
| -      k = 3; | 
| -    else if (e_bitlen < 144) | 
| -      k = 4; | 
| -    else if (e_bitlen < 768) | 
| -      k = 5; | 
| -    else | 
| -      k = 6; | 
| +    if (e_bitlen < 18) k = 1; | 
| +    else if (e_bitlen < 48) k = 3; | 
| +    else if (e_bitlen < 144) k = 4; | 
| +    else if (e_bitlen < 768) k = 5; | 
| +    else k = 6; | 
| _Reduction z = new _Montgomery(m); | 
| var n = 3; | 
| final k1 = k - 1; | 
| @@ -1498,8 +1460,9 @@ class _Bigint extends _IntegerImplementation implements int { | 
| var g2_used = z._sqr(g_digits[1], g_used[1], g2_digits); | 
| while (n <= km) { | 
| g_digits[n] = new Uint32List(m_used2p4); | 
| -        g_used[n] = z._mul( | 
| -            g2_digits, g2_used, g_digits[n - 2], g_used[n - 2], g_digits[n]); | 
| +        g_used[n] = z._mul(g2_digits, g2_used, | 
| +                           g_digits[n - 2], g_used[n - 2], | 
| +                           g_digits[n]); | 
| n += 2; | 
| } | 
| } | 
| @@ -1530,17 +1493,17 @@ class _Bigint extends _IntegerImplementation implements int { | 
| i += _DIGIT_BITS; | 
| --j; | 
| } | 
| -      if (is1) { | 
| -        // r == 1, don't bother squaring or multiplying it. | 
| +      if (is1) {  // r == 1, don't bother squaring or multiplying it. | 
| r_digits = new Uint32List(m_used2p4); | 
| r_used = g_used[w]; | 
| var gw_digits = g_digits[w]; | 
| -        var ri = r_used + (r_used & 1); // Copy leading zero if any. | 
| +        var ri = r_used + (r_used & 1);  // Copy leading zero if any. | 
| while (--ri >= 0) { | 
| r_digits[ri] = gw_digits[ri]; | 
| } | 
| is1 = false; | 
| -      } else { | 
| +      } | 
| +      else { | 
| while (n > 1) { | 
| r2_used = z._sqr(r_digits, r_used, r2_digits); | 
| r_used = z._sqr(r2_digits, r2_used, r_digits); | 
| @@ -1625,12 +1588,12 @@ class _Bigint extends _IntegerImplementation implements int { | 
| } | 
| } | 
| var u_digits = _cloneDigits(x_digits, 0, x_used, m_len); | 
| -    var v_digits = _cloneDigits(y_digits, 0, y_used, m_len + 2); // +2 for lsh. | 
| +    var v_digits = _cloneDigits(y_digits, 0, y_used, m_len + 2);  // +2 for lsh. | 
| final bool ac = (x_digits[0] & 1) == 0; | 
|  | 
| // Variables a, b, c, and d require one more digit. | 
| final abcd_used = m_used + 1; | 
| -    final abcd_len = abcd_used + (abcd_used & 1) + 2; // +2 to satisfy _absAdd. | 
| +    final abcd_len = abcd_used + (abcd_used & 1) + 2;  // +2 to satisfy _absAdd. | 
| var a_digits, b_digits, c_digits, d_digits; | 
| bool a_neg, b_neg, c_neg, d_neg; | 
| if (ac) { | 
| @@ -1677,7 +1640,7 @@ class _Bigint extends _IntegerImplementation implements int { | 
| if (b_neg) { | 
| _absAdd(b_digits, abcd_used, x_digits, m_used, b_digits); | 
| } else if ((b_digits[m_used] != 0) || | 
| -              (_compareDigits(b_digits, m_used, x_digits, m_used) > 0)) { | 
| +                     (_compareDigits(b_digits, m_used, x_digits, m_used) > 0)) { | 
| _absSub(b_digits, abcd_used, x_digits, m_used, b_digits); | 
| } else { | 
| _absSub(x_digits, m_used, b_digits, m_used, b_digits); | 
| @@ -1716,7 +1679,7 @@ class _Bigint extends _IntegerImplementation implements int { | 
| if (d_neg) { | 
| _absAdd(d_digits, abcd_used, x_digits, m_used, d_digits); | 
| } else if ((d_digits[m_used] != 0) || | 
| -              (_compareDigits(d_digits, m_used, x_digits, m_used) > 0)) { | 
| +                     (_compareDigits(d_digits, m_used, x_digits, m_used) > 0)) { | 
| _absSub(d_digits, abcd_used, x_digits, m_used, d_digits); | 
| } else { | 
| _absSub(x_digits, m_used, d_digits, m_used, d_digits); | 
| @@ -1816,7 +1779,7 @@ class _Bigint extends _IntegerImplementation implements int { | 
| d_neg = false; | 
| } | 
| } else if ((d_digits[m_used] != 0) || | 
| -        (_compareDigits(d_digits, m_used, x_digits, m_used) > 0)) { | 
| +               (_compareDigits(d_digits, m_used, x_digits, m_used) > 0)) { | 
| _absSub(d_digits, abcd_used, x_digits, m_used, d_digits); | 
| if ((d_digits[m_used] != 0) || | 
| (_compareDigits(d_digits, m_used, x_digits, m_used) > 0)) { | 
| @@ -1858,8 +1821,8 @@ class _Bigint extends _IntegerImplementation implements int { | 
| class _Reduction { | 
| // Return the number of digits used by r_digits. | 
| int _convert(_Bigint x, Uint32List r_digits); | 
| -  int _mul(Uint32List x_digits, int x_used, Uint32List y_digits, int y_used, | 
| -      Uint32List r_digits); | 
| +  int _mul(Uint32List x_digits, int x_used, | 
| +           Uint32List y_digits, int y_used, Uint32List r_digits); | 
| int _sqr(Uint32List x_digits, int x_used, Uint32List r_digits); | 
|  | 
| // Return x reverted to _Bigint. | 
| @@ -1868,20 +1831,20 @@ class _Reduction { | 
|  | 
| // Montgomery reduction on _Bigint. | 
| class _Montgomery implements _Reduction { | 
| -  _Bigint _m; // Modulus. | 
| +  _Bigint _m;  // Modulus. | 
| int _mused2p2; | 
| Uint32List _args; | 
| -  int _digits_per_step; // Number of digits processed in one step. 1 or 2. | 
| -  static const int _X = 0; // Index of x. | 
| -  static const int _X_HI = 1; // Index of high 32-bits of x (64-bit only). | 
| -  static const int _RHO = 2; // Index of rho. | 
| -  static const int _RHO_HI = 3; // Index of high 32-bits of rho (64-bit only). | 
| -  static const int _MU = 4; // Index of mu. | 
| -  static const int _MU_HI = 5; // Index of high 32-bits of mu (64-bit only). | 
| +  int _digits_per_step;  // Number of digits processed in one step. 1 or 2. | 
| +  static const int _X = 0;  // Index of x. | 
| +  static const int _X_HI = 1;  // Index of high 32-bits of x (64-bit only). | 
| +  static const int _RHO = 2;  // Index of rho. | 
| +  static const int _RHO_HI = 3;  // Index of high 32-bits of rho (64-bit only). | 
| +  static const int _MU = 4;  // Index of mu. | 
| +  static const int _MU_HI = 5;  // Index of high 32-bits of mu (64-bit only). | 
|  | 
| _Montgomery(m) { | 
| _m = m._toBigint(); | 
| -    _mused2p2 = 2 * _m._used + 2; | 
| +    _mused2p2 = 2*_m._used + 2; | 
| _args = new Uint32List(6); | 
| // Determine if we can process digit pairs by calling an intrinsic. | 
| _digits_per_step = _mulMod(_args, _args, 0); | 
| @@ -1908,15 +1871,15 @@ class _Montgomery implements _Reduction { | 
| //   args[_RHO] = 1/args[_X] mod _DIGIT_BASE. | 
| static void _invDigit(Uint32List args) { | 
| var x = args[_X]; | 
| -    var y = x & 3; // y == 1/x mod 2^2 | 
| -    y = (y * (2 - (x & 0xf) * y)) & 0xf; // y == 1/x mod 2^4 | 
| -    y = (y * (2 - (x & 0xff) * y)) & 0xff; // y == 1/x mod 2^8 | 
| -    y = (y * (2 - (((x & 0xffff) * y) & 0xffff))) & 0xffff; // y == 1/x mod 2^16 | 
| +    var y = x & 3;    // y == 1/x mod 2^2 | 
| +    y = (y*(2 - (x & 0xf)*y)) & 0xf;  // y == 1/x mod 2^4 | 
| +    y = (y*(2 - (x & 0xff)*y)) & 0xff;  // y == 1/x mod 2^8 | 
| +    y = (y*(2 - (((x & 0xffff)*y) & 0xffff))) & 0xffff; // y == 1/x mod 2^16 | 
| // Last step - calculate inverse mod _DIGIT_BASE directly; | 
| // Assumes 16 < _DIGIT_BITS <= 32 and assumes ability to handle 48-bit ints. | 
| -    y = (y * (2 - x * y % _Bigint._DIGIT_BASE)) % _Bigint._DIGIT_BASE; | 
| +    y = (y*(2 - x*y % _Bigint._DIGIT_BASE)) % _Bigint._DIGIT_BASE; | 
| // y == 1/x mod _DIGIT_BASE | 
| -    y = -y; // We really want the negative inverse. | 
| +    y = -y;  // We really want the negative inverse. | 
| args[_RHO] = y & _Bigint._DIGIT_MASK; | 
| } | 
|  | 
| @@ -1924,17 +1887,16 @@ class _Montgomery implements _Reduction { | 
| // Operation: | 
| //   args[_RHO.._RHO_HI] = 1/args[_X.._X_HI] mod _DIGIT_BASE^2. | 
| static void _invDigitPair(Uint32List args) { | 
| -    var xl = args[_X]; // Lower 32-bit digit of x. | 
| -    var y = xl & 3; // y == 1/x mod 2^2 | 
| -    y = (y * (2 - (xl & 0xf) * y)) & 0xf; // y == 1/x mod 2^4 | 
| -    y = (y * (2 - (xl & 0xff) * y)) & 0xff; // y == 1/x mod 2^8 | 
| -    y = (y * (2 - (((xl & 0xffff) * y) & 0xffff))) & | 
| -        0xffff; // y == 1/x mod 2^16 | 
| -    y = (y * (2 - ((xl * y) & 0xffffffff))) & 0xffffffff; // y == 1/x mod 2^32 | 
| +    var xl = args[_X];  // Lower 32-bit digit of x. | 
| +    var y = xl & 3;    // y == 1/x mod 2^2 | 
| +    y = (y*(2 - (xl & 0xf)*y)) & 0xf;  // y == 1/x mod 2^4 | 
| +    y = (y*(2 - (xl & 0xff)*y)) & 0xff;  // y == 1/x mod 2^8 | 
| +    y = (y*(2 - (((xl & 0xffff)*y) & 0xffff))) & 0xffff;  // y == 1/x mod 2^16 | 
| +    y = (y*(2 - ((xl*y) & 0xffffffff))) & 0xffffffff;  // y == 1/x mod 2^32 | 
| var x = (args[_X_HI] << _Bigint._DIGIT_BITS) | xl; | 
| -    y = (y * (2 - ((x * y) & 0xffffffffffffffff))) & 0xffffffffffffffff; | 
| +    y = (y*(2 - ((x*y) & 0xffffffffffffffff))) & 0xffffffffffffffff; | 
| // y == 1/x mod _DIGIT_BASE^2 | 
| -    y = -y; // We really want the negative inverse. | 
| +    y = -y;  // We really want the negative inverse. | 
| args[_RHO] = y & _Bigint._DIGIT_MASK; | 
| args[_RHO_HI] = (y >> _Bigint._DIGIT_BITS) & _Bigint._DIGIT_MASK; | 
| } | 
| @@ -1953,9 +1915,9 @@ class _Montgomery implements _Reduction { | 
| var rhoh = args[_RHO] >> _Bigint._DIGIT2_BITS; | 
| var dh = digits[i] >> _Bigint._DIGIT2_BITS; | 
| var dl = digits[i] & _Bigint._DIGIT2_MASK; | 
| -    args[_MU] = (dl * rhol + | 
| -            (((dl * rhoh + dh * rhol) & MU_MASK) << _Bigint._DIGIT2_BITS)) & | 
| -        _Bigint._DIGIT_MASK; | 
| +    args[_MU] = | 
| +        (dl*rhol + (((dl*rhoh + dh*rhol) & MU_MASK) << _Bigint._DIGIT2_BITS)) | 
| +        & _Bigint._DIGIT_MASK; | 
| return 1; | 
| } | 
|  | 
| @@ -1990,8 +1952,7 @@ class _Montgomery implements _Reduction { | 
| // x = x/R mod _m. | 
| // Return x_used. | 
| int _reduce(Uint32List x_digits, int x_used) { | 
| -    while (x_used < _mused2p2) { | 
| -      // Pad x so _mulAdd has enough room later. | 
| +    while (x_used < _mused2p2) {  // Pad x so _mulAdd has enough room later. | 
| x_digits[x_used++] = 0; | 
| } | 
| var m_used = _m._used; | 
| @@ -2025,23 +1986,25 @@ class _Montgomery implements _Reduction { | 
| return _reduce(r_digits, r_used); | 
| } | 
|  | 
| -  int _mul(Uint32List x_digits, int x_used, Uint32List y_digits, int y_used, | 
| -      Uint32List r_digits) { | 
| -    var r_used = | 
| -        _Bigint._mulDigits(x_digits, x_used, y_digits, y_used, r_digits); | 
| +  int _mul(Uint32List x_digits, int x_used, | 
| +           Uint32List y_digits, int y_used, | 
| +           Uint32List r_digits) { | 
| +    var r_used = _Bigint._mulDigits(x_digits, x_used, | 
| +                                    y_digits, y_used, | 
| +                                    r_digits); | 
| return _reduce(r_digits, r_used); | 
| } | 
| } | 
|  | 
| // Modular reduction using "classic" algorithm. | 
| class _Classic implements _Reduction { | 
| -  _Bigint _m; // Modulus. | 
| -  _Bigint _norm_m; // Normalized _m. | 
| -  Uint32List _neg_norm_m_digits; // Negated _norm_m digits. | 
| -  int _m_nsh; // Normalization shift amount. | 
| -  Uint32List _mt_qd; // Top _norm_m digit(s) and place holder for | 
| -  // estimated quotient digit(s). | 
| -  Uint32List _t_digits; // Temporary digits used during reduction. | 
| +  _Bigint _m;  // Modulus. | 
| +  _Bigint _norm_m;  // Normalized _m. | 
| +  Uint32List _neg_norm_m_digits;  // Negated _norm_m digits. | 
| +  int _m_nsh;  // Normalization shift amount. | 
| +  Uint32List _mt_qd;  // Top _norm_m digit(s) and place holder for | 
| +                      // estimated quotient digit(s). | 
| +  Uint32List _t_digits;  // Temporary digits used during reduction. | 
|  | 
| _Classic(int m) { | 
| _m = m._toBigint(); | 
| @@ -2070,7 +2033,7 @@ class _Classic implements _Reduction { | 
| // _neg_norm_m_digits is read-only and has nm_used digits (possibly | 
| // including several leading zeros) plus a leading zero for 64-bit | 
| // processing. | 
| -    _t_digits = new Uint32List(2 * nm_used); | 
| +    _t_digits = new Uint32List(2*nm_used); | 
| } | 
|  | 
| int _convert(_Bigint x, Uint32List r_digits) { | 
| @@ -2088,7 +2051,7 @@ class _Classic implements _Reduction { | 
| used = x._used; | 
| digits = x._digits; | 
| } | 
| -    var i = used + (used & 1); // Copy leading zero if any. | 
| +    var i = used + (used & 1);  // Copy leading zero if any. | 
| while (--i >= 0) { | 
| r_digits[i] = digits[i]; | 
| } | 
| @@ -2105,8 +2068,13 @@ class _Classic implements _Reduction { | 
| } | 
| // The function _remDigits(...) is optimized for reduction and equivalent to | 
| // calling _convert(_revert(x_digits, x_used)._rem(_m), x_digits); | 
| -    return _Bigint._remDigits(x_digits, x_used, _norm_m._digits, _norm_m._used, | 
| -        _neg_norm_m_digits, _m_nsh, _mt_qd, _t_digits, x_digits); | 
| +    return _Bigint._remDigits(x_digits, x_used, | 
| +                              _norm_m._digits, _norm_m._used, | 
| +                              _neg_norm_m_digits, | 
| +                              _m_nsh, | 
| +                              _mt_qd, | 
| +                              _t_digits, | 
| +                              x_digits); | 
| } | 
|  | 
| int _sqr(Uint32List x_digits, int x_used, Uint32List r_digits) { | 
| @@ -2114,10 +2082,12 @@ class _Classic implements _Reduction { | 
| return _reduce(r_digits, r_used); | 
| } | 
|  | 
| -  int _mul(Uint32List x_digits, int x_used, Uint32List y_digits, int y_used, | 
| -      Uint32List r_digits) { | 
| -    var r_used = | 
| -        _Bigint._mulDigits(x_digits, x_used, y_digits, y_used, r_digits); | 
| +  int _mul(Uint32List x_digits, int x_used, | 
| +           Uint32List y_digits, int y_used, | 
| +           Uint32List r_digits) { | 
| +    var r_used = _Bigint._mulDigits(x_digits, x_used, | 
| +                                    y_digits, y_used, | 
| +                                    r_digits); | 
| return _reduce(r_digits, r_used); | 
| } | 
| } | 
|  |