| Index: third_party/WebKit/Source/wtf/MathExtras.h
|
| diff --git a/third_party/WebKit/Source/wtf/MathExtras.h b/third_party/WebKit/Source/wtf/MathExtras.h
|
| index efcd871bb32a0639202c4fbc81e024b16cf7925c..b263df226ca6b1979ef34132c78f229238ff1a87 100644
|
| --- a/third_party/WebKit/Source/wtf/MathExtras.h
|
| +++ b/third_party/WebKit/Source/wtf/MathExtras.h
|
| @@ -1,435 +1,9 @@
|
| -/*
|
| - * Copyright (C) 2006, 2007, 2008, 2009, 2010 Apple Inc. All rights reserved.
|
| - *
|
| - * Redistribution and use in source and binary forms, with or without
|
| - * modification, are permitted provided that the following conditions
|
| - * are met:
|
| - * 1. Redistributions of source code must retain the above copyright
|
| - * notice, this list of conditions and the following disclaimer.
|
| - * 2. Redistributions in binary form must reproduce the above copyright
|
| - * notice, this list of conditions and the following disclaimer in the
|
| - * documentation and/or other materials provided with the distribution.
|
| - *
|
| - * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
|
| - * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
| - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
|
| - * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR
|
| - * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
|
| - * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
| - * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
|
| - * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
|
| - * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
| - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
| - * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
| - */
|
| +// Copyright 2017 The Chromium Authors. All rights reserved.
|
| +// Use of this source code is governed by a BSD-style license that can be
|
| +// found in the LICENSE file.
|
|
|
| -#ifndef WTF_MathExtras_h
|
| -#define WTF_MathExtras_h
|
| +#include "platform/wtf/MathExtras.h"
|
|
|
| -#include "wtf/Allocator.h"
|
| -#include "wtf/Assertions.h"
|
| -#include "wtf/CPU.h"
|
| -#include <cmath>
|
| -#include <cstddef>
|
| -#include <limits>
|
| -
|
| -#if COMPILER(MSVC)
|
| -// Make math.h behave like other platforms.
|
| -#define _USE_MATH_DEFINES
|
| -// Even if math.h was already included, including math.h again with
|
| -// _USE_MATH_DEFINES adds the extra defines.
|
| -#include <math.h>
|
| -#include <stdint.h>
|
| -#endif
|
| -
|
| -#if OS(OPENBSD)
|
| -#include <machine/ieee.h>
|
| -#include <sys/types.h>
|
| -#endif
|
| -
|
| -const double piDouble = M_PI;
|
| -const float piFloat = static_cast<float>(M_PI);
|
| -
|
| -const double piOverTwoDouble = M_PI_2;
|
| -const float piOverTwoFloat = static_cast<float>(M_PI_2);
|
| -
|
| -const double piOverFourDouble = M_PI_4;
|
| -const float piOverFourFloat = static_cast<float>(M_PI_4);
|
| -
|
| -const double twoPiDouble = piDouble * 2.0;
|
| -const float twoPiFloat = piFloat * 2.0f;
|
| -
|
| -#if COMPILER(MSVC)
|
| -
|
| -// VS2013 has most of the math functions now, but we still need to work
|
| -// around various differences in behavior of Inf.
|
| -
|
| -// Work around a bug in Win, where atan2(+-infinity, +-infinity) yields NaN
|
| -// instead of specific values.
|
| -inline double wtf_atan2(double x, double y) {
|
| - double posInf = std::numeric_limits<double>::infinity();
|
| - double negInf = -std::numeric_limits<double>::infinity();
|
| - double nan = std::numeric_limits<double>::quiet_NaN();
|
| -
|
| - double result = nan;
|
| -
|
| - if (x == posInf && y == posInf)
|
| - result = piOverFourDouble;
|
| - else if (x == posInf && y == negInf)
|
| - result = 3 * piOverFourDouble;
|
| - else if (x == negInf && y == posInf)
|
| - result = -piOverFourDouble;
|
| - else if (x == negInf && y == negInf)
|
| - result = -3 * piOverFourDouble;
|
| - else
|
| - result = ::atan2(x, y);
|
| -
|
| - return result;
|
| -}
|
| -
|
| -// Work around a bug in the Microsoft CRT, where fmod(x, +-infinity) yields NaN
|
| -// instead of x.
|
| -inline double wtf_fmod(double x, double y) {
|
| - return (!std::isinf(x) && std::isinf(y)) ? x : fmod(x, y);
|
| -}
|
| -
|
| -// Work around a bug in the Microsoft CRT, where pow(NaN, 0) yields NaN instead
|
| -// of 1.
|
| -inline double wtf_pow(double x, double y) {
|
| - return y == 0 ? 1 : pow(x, y);
|
| -}
|
| -
|
| -#define atan2(x, y) wtf_atan2(x, y)
|
| -#define fmod(x, y) wtf_fmod(x, y)
|
| -#define pow(x, y) wtf_pow(x, y)
|
| -
|
| -#endif // COMPILER(MSVC)
|
| -
|
| -inline double deg2rad(double d) {
|
| - return d * piDouble / 180.0;
|
| -}
|
| -inline double rad2deg(double r) {
|
| - return r * 180.0 / piDouble;
|
| -}
|
| -inline double deg2grad(double d) {
|
| - return d * 400.0 / 360.0;
|
| -}
|
| -inline double grad2deg(double g) {
|
| - return g * 360.0 / 400.0;
|
| -}
|
| -inline double turn2deg(double t) {
|
| - return t * 360.0;
|
| -}
|
| -inline double deg2turn(double d) {
|
| - return d / 360.0;
|
| -}
|
| -inline double rad2grad(double r) {
|
| - return r * 200.0 / piDouble;
|
| -}
|
| -inline double grad2rad(double g) {
|
| - return g * piDouble / 200.0;
|
| -}
|
| -inline double turn2grad(double t) {
|
| - return t * 400;
|
| -}
|
| -inline double grad2turn(double g) {
|
| - return g / 400;
|
| -}
|
| -
|
| -inline float deg2rad(float d) {
|
| - return d * piFloat / 180.0f;
|
| -}
|
| -inline float rad2deg(float r) {
|
| - return r * 180.0f / piFloat;
|
| -}
|
| -inline float deg2grad(float d) {
|
| - return d * 400.0f / 360.0f;
|
| -}
|
| -inline float grad2deg(float g) {
|
| - return g * 360.0f / 400.0f;
|
| -}
|
| -inline float turn2deg(float t) {
|
| - return t * 360.0f;
|
| -}
|
| -inline float deg2turn(float d) {
|
| - return d / 360.0f;
|
| -}
|
| -inline float rad2grad(float r) {
|
| - return r * 200.0f / piFloat;
|
| -}
|
| -inline float grad2rad(float g) {
|
| - return g * piFloat / 200.0f;
|
| -}
|
| -inline float turn2grad(float t) {
|
| - return t * 400;
|
| -}
|
| -inline float grad2turn(float g) {
|
| - return g / 400;
|
| -}
|
| -
|
| -// clampTo() is implemented by templated helper classes (to allow for partial
|
| -// template specialization) as well as several helper functions.
|
| -
|
| -// This helper function can be called when we know that:
|
| -// (1) The type signednesses match so the compiler will not produce signed vs.
|
| -// unsigned warnings
|
| -// (2) The default type promotions/conversions are sufficient to handle things
|
| -// correctly
|
| -template <typename LimitType, typename ValueType>
|
| -inline LimitType clampToDirectComparison(ValueType value,
|
| - LimitType min,
|
| - LimitType max) {
|
| - if (value >= max)
|
| - return max;
|
| - return (value <= min) ? min : static_cast<LimitType>(value);
|
| -}
|
| -
|
| -// For any floating-point limits, or integral limits smaller than long long, we
|
| -// can cast the limits to double without losing precision; then the only cases
|
| -// where |value| can't be represented accurately as a double are the ones where
|
| -// it's outside the limit range anyway. So doing all comparisons as doubles
|
| -// will give correct results.
|
| -//
|
| -// In some cases, we can get better performance by using
|
| -// clampToDirectComparison(). We use a templated class to switch between these
|
| -// two cases (instead of simply using a conditional within one function) in
|
| -// order to only compile the clampToDirectComparison() code for cases where it
|
| -// will actually be used; this prevents the compiler from emitting warnings
|
| -// about unsafe code (even though we wouldn't actually be executing that code).
|
| -template <bool canUseDirectComparison, typename LimitType, typename ValueType>
|
| -class ClampToNonLongLongHelper;
|
| -template <typename LimitType, typename ValueType>
|
| -class ClampToNonLongLongHelper<true, LimitType, ValueType> {
|
| - STATIC_ONLY(ClampToNonLongLongHelper);
|
| -
|
| - public:
|
| - static inline LimitType clampTo(ValueType value,
|
| - LimitType min,
|
| - LimitType max) {
|
| - return clampToDirectComparison(value, min, max);
|
| - }
|
| -};
|
| -
|
| -template <typename LimitType, typename ValueType>
|
| -class ClampToNonLongLongHelper<false, LimitType, ValueType> {
|
| - STATIC_ONLY(ClampToNonLongLongHelper);
|
| -
|
| - public:
|
| - static inline LimitType clampTo(ValueType value,
|
| - LimitType min,
|
| - LimitType max) {
|
| - const double doubleValue = static_cast<double>(value);
|
| - if (doubleValue >= static_cast<double>(max))
|
| - return max;
|
| - if (doubleValue <= static_cast<double>(min))
|
| - return min;
|
| - // If the limit type is integer, we might get better performance by
|
| - // casting |value| (as opposed to |doubleValue|) to the limit type.
|
| - return std::numeric_limits<LimitType>::is_integer
|
| - ? static_cast<LimitType>(value)
|
| - : static_cast<LimitType>(doubleValue);
|
| - }
|
| -};
|
| -
|
| -// The unspecialized version of this templated class handles clamping to
|
| -// anything other than [unsigned] long long int limits. It simply uses the
|
| -// class above to toggle between the "fast" and "safe" clamp implementations.
|
| -template <typename LimitType, typename ValueType>
|
| -class ClampToHelper {
|
| - public:
|
| - static inline LimitType clampTo(ValueType value,
|
| - LimitType min,
|
| - LimitType max) {
|
| - // We only use clampToDirectComparison() when the integerness and
|
| - // signedness of the two types matches.
|
| - //
|
| - // If the integerness of the types doesn't match, then at best
|
| - // clampToDirectComparison() won't be much more efficient than the
|
| - // cast-everything-to-double method, since we'll need to convert to
|
| - // floating point anyway; at worst, we risk incorrect results when
|
| - // clamping a float to a 32-bit integral type due to potential precision
|
| - // loss.
|
| - //
|
| - // If the signedness doesn't match, clampToDirectComparison() will
|
| - // produce warnings about comparing signed vs. unsigned, which are apt
|
| - // since negative signed values will be converted to large unsigned ones
|
| - // and we'll get incorrect results.
|
| - return ClampToNonLongLongHelper <
|
| - std::numeric_limits<LimitType>::is_integer ==
|
| - std::numeric_limits<ValueType>::is_integer &&
|
| - std::numeric_limits<LimitType>::is_signed ==
|
| - std::numeric_limits<ValueType>::is_signed,
|
| - LimitType, ValueType > ::clampTo(value, min, max);
|
| - }
|
| -};
|
| -
|
| -// Clamping to [unsigned] long long int limits requires more care. These may
|
| -// not be accurately representable as doubles, so instead we cast |value| to the
|
| -// limit type. But that cast is undefined if |value| is floating point and
|
| -// outside the representable range of the limit type, so we also have to check
|
| -// for that case explicitly.
|
| -template <typename ValueType>
|
| -class ClampToHelper<long long int, ValueType> {
|
| - STATIC_ONLY(ClampToHelper);
|
| -
|
| - public:
|
| - static inline long long int clampTo(ValueType value,
|
| - long long int min,
|
| - long long int max) {
|
| - if (!std::numeric_limits<ValueType>::is_integer) {
|
| - if (value > 0) {
|
| - if (static_cast<double>(value) >=
|
| - static_cast<double>(std::numeric_limits<long long int>::max()))
|
| - return max;
|
| - } else if (static_cast<double>(value) <=
|
| - static_cast<double>(
|
| - std::numeric_limits<long long int>::min())) {
|
| - return min;
|
| - }
|
| - }
|
| - // Note: If |value| were unsigned long long int, it could be larger than
|
| - // the largest long long int, and this code would be wrong; we handle
|
| - // this case with a separate full specialization below.
|
| - return clampToDirectComparison(static_cast<long long int>(value), min, max);
|
| - }
|
| -};
|
| -
|
| -// This specialization handles the case where the above partial specialization
|
| -// would be potentially incorrect.
|
| -template <>
|
| -class ClampToHelper<long long int, unsigned long long int> {
|
| - STATIC_ONLY(ClampToHelper);
|
| -
|
| - public:
|
| - static inline long long int clampTo(unsigned long long int value,
|
| - long long int min,
|
| - long long int max) {
|
| - if (max <= 0 || value >= static_cast<unsigned long long int>(max))
|
| - return max;
|
| - const long long int longLongValue = static_cast<long long int>(value);
|
| - return (longLongValue <= min) ? min : longLongValue;
|
| - }
|
| -};
|
| -
|
| -// This is similar to the partial specialization that clamps to long long int,
|
| -// but because the lower-bound check is done for integer value types as well, we
|
| -// don't need a <unsigned long long int, long long int> full specialization.
|
| -template <typename ValueType>
|
| -class ClampToHelper<unsigned long long int, ValueType> {
|
| - STATIC_ONLY(ClampToHelper);
|
| -
|
| - public:
|
| - static inline unsigned long long int clampTo(ValueType value,
|
| - unsigned long long int min,
|
| - unsigned long long int max) {
|
| - if (value <= 0)
|
| - return min;
|
| - if (!std::numeric_limits<ValueType>::is_integer) {
|
| - if (static_cast<double>(value) >=
|
| - static_cast<double>(
|
| - std::numeric_limits<unsigned long long int>::max()))
|
| - return max;
|
| - }
|
| - return clampToDirectComparison(static_cast<unsigned long long int>(value),
|
| - min, max);
|
| - }
|
| -};
|
| -
|
| -template <typename T>
|
| -inline T defaultMaximumForClamp() {
|
| - return std::numeric_limits<T>::max();
|
| -}
|
| -// This basically reimplements C++11's std::numeric_limits<T>::lowest().
|
| -template <typename T>
|
| -inline T defaultMinimumForClamp() {
|
| - return std::numeric_limits<T>::min();
|
| -}
|
| -template <>
|
| -inline float defaultMinimumForClamp<float>() {
|
| - return -std::numeric_limits<float>::max();
|
| -}
|
| -template <>
|
| -inline double defaultMinimumForClamp<double>() {
|
| - return -std::numeric_limits<double>::max();
|
| -}
|
| -
|
| -// And, finally, the actual function for people to call.
|
| -template <typename LimitType, typename ValueType>
|
| -inline LimitType clampTo(ValueType value,
|
| - LimitType min = defaultMinimumForClamp<LimitType>(),
|
| - LimitType max = defaultMaximumForClamp<LimitType>()) {
|
| - DCHECK(!std::isnan(static_cast<double>(value)));
|
| - DCHECK_LE(min, max); // This also ensures |min| and |max| aren't NaN.
|
| - return ClampToHelper<LimitType, ValueType>::clampTo(value, min, max);
|
| -}
|
| -
|
| -inline bool isWithinIntRange(float x) {
|
| - return x > static_cast<float>(std::numeric_limits<int>::min()) &&
|
| - x < static_cast<float>(std::numeric_limits<int>::max());
|
| -}
|
| -
|
| -static size_t greatestCommonDivisor(size_t a, size_t b) {
|
| - return b ? greatestCommonDivisor(b, a % b) : a;
|
| -}
|
| -
|
| -inline size_t lowestCommonMultiple(size_t a, size_t b) {
|
| - return a && b ? a / greatestCommonDivisor(a, b) * b : 0;
|
| -}
|
| -
|
| -#ifndef UINT64_C
|
| -#if COMPILER(MSVC)
|
| -#define UINT64_C(c) c##ui64
|
| -#else
|
| -#define UINT64_C(c) c##ull
|
| -#endif
|
| -#endif
|
| -
|
| -// Calculate d % 2^{64}.
|
| -inline void doubleToInteger(double d, unsigned long long& value) {
|
| - if (std::isnan(d) || std::isinf(d)) {
|
| - value = 0;
|
| - } else {
|
| - // -2^{64} < fmodValue < 2^{64}.
|
| - double fmodValue =
|
| - fmod(trunc(d), std::numeric_limits<unsigned long long>::max() + 1.0);
|
| - if (fmodValue >= 0) {
|
| - // 0 <= fmodValue < 2^{64}.
|
| - // 0 <= value < 2^{64}. This cast causes no loss.
|
| - value = static_cast<unsigned long long>(fmodValue);
|
| - } else {
|
| - // -2^{64} < fmodValue < 0.
|
| - // 0 < fmodValueInUnsignedLongLong < 2^{64}. This cast causes no loss.
|
| - unsigned long long fmodValueInUnsignedLongLong =
|
| - static_cast<unsigned long long>(-fmodValue);
|
| - // -1 < (std::numeric_limits<unsigned long long>::max() -
|
| - // fmodValueInUnsignedLongLong)
|
| - // < 2^{64} - 1.
|
| - // 0 < value < 2^{64}.
|
| - value = std::numeric_limits<unsigned long long>::max() -
|
| - fmodValueInUnsignedLongLong + 1;
|
| - }
|
| - }
|
| -}
|
| -
|
| -namespace WTF {
|
| -
|
| -inline unsigned fastLog2(unsigned i) {
|
| - unsigned log2 = 0;
|
| - if (i & (i - 1))
|
| - log2 += 1;
|
| - if (i >> 16)
|
| - log2 += 16, i >>= 16;
|
| - if (i >> 8)
|
| - log2 += 8, i >>= 8;
|
| - if (i >> 4)
|
| - log2 += 4, i >>= 4;
|
| - if (i >> 2)
|
| - log2 += 2, i >>= 2;
|
| - if (i >> 1)
|
| - log2 += 1;
|
| - return log2;
|
| -}
|
| -
|
| -} // namespace WTF
|
| -
|
| -#endif // #ifndef WTF_MathExtras_h
|
| +// The contents of this header was moved to platform/wtf as part of
|
| +// WTF migration project. See the following post for details:
|
| +// https://groups.google.com/a/chromium.org/d/msg/blink-dev/tLdAZCTlcAA/bYXVT8gYCAAJ
|
|
|