| Index: third_party/WebKit/Source/wtf/MathExtras.h
 | 
| diff --git a/third_party/WebKit/Source/wtf/MathExtras.h b/third_party/WebKit/Source/wtf/MathExtras.h
 | 
| index efcd871bb32a0639202c4fbc81e024b16cf7925c..b263df226ca6b1979ef34132c78f229238ff1a87 100644
 | 
| --- a/third_party/WebKit/Source/wtf/MathExtras.h
 | 
| +++ b/third_party/WebKit/Source/wtf/MathExtras.h
 | 
| @@ -1,435 +1,9 @@
 | 
| -/*
 | 
| - * Copyright (C) 2006, 2007, 2008, 2009, 2010 Apple Inc. All rights reserved.
 | 
| - *
 | 
| - * Redistribution and use in source and binary forms, with or without
 | 
| - * modification, are permitted provided that the following conditions
 | 
| - * are met:
 | 
| - * 1. Redistributions of source code must retain the above copyright
 | 
| - *    notice, this list of conditions and the following disclaimer.
 | 
| - * 2. Redistributions in binary form must reproduce the above copyright
 | 
| - *    notice, this list of conditions and the following disclaimer in the
 | 
| - *    documentation and/or other materials provided with the distribution.
 | 
| - *
 | 
| - * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
 | 
| - * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 | 
| - * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 | 
| - * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE COMPUTER, INC. OR
 | 
| - * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 | 
| - * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 | 
| - * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 | 
| - * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 | 
| - * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 | 
| - * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 | 
| - * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 | 
| - */
 | 
| +// Copyright 2017 The Chromium Authors. All rights reserved.
 | 
| +// Use of this source code is governed by a BSD-style license that can be
 | 
| +// found in the LICENSE file.
 | 
|  
 | 
| -#ifndef WTF_MathExtras_h
 | 
| -#define WTF_MathExtras_h
 | 
| +#include "platform/wtf/MathExtras.h"
 | 
|  
 | 
| -#include "wtf/Allocator.h"
 | 
| -#include "wtf/Assertions.h"
 | 
| -#include "wtf/CPU.h"
 | 
| -#include <cmath>
 | 
| -#include <cstddef>
 | 
| -#include <limits>
 | 
| -
 | 
| -#if COMPILER(MSVC)
 | 
| -// Make math.h behave like other platforms.
 | 
| -#define _USE_MATH_DEFINES
 | 
| -// Even if math.h was already included, including math.h again with
 | 
| -// _USE_MATH_DEFINES adds the extra defines.
 | 
| -#include <math.h>
 | 
| -#include <stdint.h>
 | 
| -#endif
 | 
| -
 | 
| -#if OS(OPENBSD)
 | 
| -#include <machine/ieee.h>
 | 
| -#include <sys/types.h>
 | 
| -#endif
 | 
| -
 | 
| -const double piDouble = M_PI;
 | 
| -const float piFloat = static_cast<float>(M_PI);
 | 
| -
 | 
| -const double piOverTwoDouble = M_PI_2;
 | 
| -const float piOverTwoFloat = static_cast<float>(M_PI_2);
 | 
| -
 | 
| -const double piOverFourDouble = M_PI_4;
 | 
| -const float piOverFourFloat = static_cast<float>(M_PI_4);
 | 
| -
 | 
| -const double twoPiDouble = piDouble * 2.0;
 | 
| -const float twoPiFloat = piFloat * 2.0f;
 | 
| -
 | 
| -#if COMPILER(MSVC)
 | 
| -
 | 
| -// VS2013 has most of the math functions now, but we still need to work
 | 
| -// around various differences in behavior of Inf.
 | 
| -
 | 
| -// Work around a bug in Win, where atan2(+-infinity, +-infinity) yields NaN
 | 
| -// instead of specific values.
 | 
| -inline double wtf_atan2(double x, double y) {
 | 
| -  double posInf = std::numeric_limits<double>::infinity();
 | 
| -  double negInf = -std::numeric_limits<double>::infinity();
 | 
| -  double nan = std::numeric_limits<double>::quiet_NaN();
 | 
| -
 | 
| -  double result = nan;
 | 
| -
 | 
| -  if (x == posInf && y == posInf)
 | 
| -    result = piOverFourDouble;
 | 
| -  else if (x == posInf && y == negInf)
 | 
| -    result = 3 * piOverFourDouble;
 | 
| -  else if (x == negInf && y == posInf)
 | 
| -    result = -piOverFourDouble;
 | 
| -  else if (x == negInf && y == negInf)
 | 
| -    result = -3 * piOverFourDouble;
 | 
| -  else
 | 
| -    result = ::atan2(x, y);
 | 
| -
 | 
| -  return result;
 | 
| -}
 | 
| -
 | 
| -// Work around a bug in the Microsoft CRT, where fmod(x, +-infinity) yields NaN
 | 
| -// instead of x.
 | 
| -inline double wtf_fmod(double x, double y) {
 | 
| -  return (!std::isinf(x) && std::isinf(y)) ? x : fmod(x, y);
 | 
| -}
 | 
| -
 | 
| -// Work around a bug in the Microsoft CRT, where pow(NaN, 0) yields NaN instead
 | 
| -// of 1.
 | 
| -inline double wtf_pow(double x, double y) {
 | 
| -  return y == 0 ? 1 : pow(x, y);
 | 
| -}
 | 
| -
 | 
| -#define atan2(x, y) wtf_atan2(x, y)
 | 
| -#define fmod(x, y) wtf_fmod(x, y)
 | 
| -#define pow(x, y) wtf_pow(x, y)
 | 
| -
 | 
| -#endif  // COMPILER(MSVC)
 | 
| -
 | 
| -inline double deg2rad(double d) {
 | 
| -  return d * piDouble / 180.0;
 | 
| -}
 | 
| -inline double rad2deg(double r) {
 | 
| -  return r * 180.0 / piDouble;
 | 
| -}
 | 
| -inline double deg2grad(double d) {
 | 
| -  return d * 400.0 / 360.0;
 | 
| -}
 | 
| -inline double grad2deg(double g) {
 | 
| -  return g * 360.0 / 400.0;
 | 
| -}
 | 
| -inline double turn2deg(double t) {
 | 
| -  return t * 360.0;
 | 
| -}
 | 
| -inline double deg2turn(double d) {
 | 
| -  return d / 360.0;
 | 
| -}
 | 
| -inline double rad2grad(double r) {
 | 
| -  return r * 200.0 / piDouble;
 | 
| -}
 | 
| -inline double grad2rad(double g) {
 | 
| -  return g * piDouble / 200.0;
 | 
| -}
 | 
| -inline double turn2grad(double t) {
 | 
| -  return t * 400;
 | 
| -}
 | 
| -inline double grad2turn(double g) {
 | 
| -  return g / 400;
 | 
| -}
 | 
| -
 | 
| -inline float deg2rad(float d) {
 | 
| -  return d * piFloat / 180.0f;
 | 
| -}
 | 
| -inline float rad2deg(float r) {
 | 
| -  return r * 180.0f / piFloat;
 | 
| -}
 | 
| -inline float deg2grad(float d) {
 | 
| -  return d * 400.0f / 360.0f;
 | 
| -}
 | 
| -inline float grad2deg(float g) {
 | 
| -  return g * 360.0f / 400.0f;
 | 
| -}
 | 
| -inline float turn2deg(float t) {
 | 
| -  return t * 360.0f;
 | 
| -}
 | 
| -inline float deg2turn(float d) {
 | 
| -  return d / 360.0f;
 | 
| -}
 | 
| -inline float rad2grad(float r) {
 | 
| -  return r * 200.0f / piFloat;
 | 
| -}
 | 
| -inline float grad2rad(float g) {
 | 
| -  return g * piFloat / 200.0f;
 | 
| -}
 | 
| -inline float turn2grad(float t) {
 | 
| -  return t * 400;
 | 
| -}
 | 
| -inline float grad2turn(float g) {
 | 
| -  return g / 400;
 | 
| -}
 | 
| -
 | 
| -// clampTo() is implemented by templated helper classes (to allow for partial
 | 
| -// template specialization) as well as several helper functions.
 | 
| -
 | 
| -// This helper function can be called when we know that:
 | 
| -// (1) The type signednesses match so the compiler will not produce signed vs.
 | 
| -//     unsigned warnings
 | 
| -// (2) The default type promotions/conversions are sufficient to handle things
 | 
| -//     correctly
 | 
| -template <typename LimitType, typename ValueType>
 | 
| -inline LimitType clampToDirectComparison(ValueType value,
 | 
| -                                         LimitType min,
 | 
| -                                         LimitType max) {
 | 
| -  if (value >= max)
 | 
| -    return max;
 | 
| -  return (value <= min) ? min : static_cast<LimitType>(value);
 | 
| -}
 | 
| -
 | 
| -// For any floating-point limits, or integral limits smaller than long long, we
 | 
| -// can cast the limits to double without losing precision; then the only cases
 | 
| -// where |value| can't be represented accurately as a double are the ones where
 | 
| -// it's outside the limit range anyway.  So doing all comparisons as doubles
 | 
| -// will give correct results.
 | 
| -//
 | 
| -// In some cases, we can get better performance by using
 | 
| -// clampToDirectComparison().  We use a templated class to switch between these
 | 
| -// two cases (instead of simply using a conditional within one function) in
 | 
| -// order to only compile the clampToDirectComparison() code for cases where it
 | 
| -// will actually be used; this prevents the compiler from emitting warnings
 | 
| -// about unsafe code (even though we wouldn't actually be executing that code).
 | 
| -template <bool canUseDirectComparison, typename LimitType, typename ValueType>
 | 
| -class ClampToNonLongLongHelper;
 | 
| -template <typename LimitType, typename ValueType>
 | 
| -class ClampToNonLongLongHelper<true, LimitType, ValueType> {
 | 
| -  STATIC_ONLY(ClampToNonLongLongHelper);
 | 
| -
 | 
| - public:
 | 
| -  static inline LimitType clampTo(ValueType value,
 | 
| -                                  LimitType min,
 | 
| -                                  LimitType max) {
 | 
| -    return clampToDirectComparison(value, min, max);
 | 
| -  }
 | 
| -};
 | 
| -
 | 
| -template <typename LimitType, typename ValueType>
 | 
| -class ClampToNonLongLongHelper<false, LimitType, ValueType> {
 | 
| -  STATIC_ONLY(ClampToNonLongLongHelper);
 | 
| -
 | 
| - public:
 | 
| -  static inline LimitType clampTo(ValueType value,
 | 
| -                                  LimitType min,
 | 
| -                                  LimitType max) {
 | 
| -    const double doubleValue = static_cast<double>(value);
 | 
| -    if (doubleValue >= static_cast<double>(max))
 | 
| -      return max;
 | 
| -    if (doubleValue <= static_cast<double>(min))
 | 
| -      return min;
 | 
| -    // If the limit type is integer, we might get better performance by
 | 
| -    // casting |value| (as opposed to |doubleValue|) to the limit type.
 | 
| -    return std::numeric_limits<LimitType>::is_integer
 | 
| -               ? static_cast<LimitType>(value)
 | 
| -               : static_cast<LimitType>(doubleValue);
 | 
| -  }
 | 
| -};
 | 
| -
 | 
| -// The unspecialized version of this templated class handles clamping to
 | 
| -// anything other than [unsigned] long long int limits.  It simply uses the
 | 
| -// class above to toggle between the "fast" and "safe" clamp implementations.
 | 
| -template <typename LimitType, typename ValueType>
 | 
| -class ClampToHelper {
 | 
| - public:
 | 
| -  static inline LimitType clampTo(ValueType value,
 | 
| -                                  LimitType min,
 | 
| -                                  LimitType max) {
 | 
| -    // We only use clampToDirectComparison() when the integerness and
 | 
| -    // signedness of the two types matches.
 | 
| -    //
 | 
| -    // If the integerness of the types doesn't match, then at best
 | 
| -    // clampToDirectComparison() won't be much more efficient than the
 | 
| -    // cast-everything-to-double method, since we'll need to convert to
 | 
| -    // floating point anyway; at worst, we risk incorrect results when
 | 
| -    // clamping a float to a 32-bit integral type due to potential precision
 | 
| -    // loss.
 | 
| -    //
 | 
| -    // If the signedness doesn't match, clampToDirectComparison() will
 | 
| -    // produce warnings about comparing signed vs. unsigned, which are apt
 | 
| -    // since negative signed values will be converted to large unsigned ones
 | 
| -    // and we'll get incorrect results.
 | 
| -    return ClampToNonLongLongHelper <
 | 
| -                       std::numeric_limits<LimitType>::is_integer ==
 | 
| -                   std::numeric_limits<ValueType>::is_integer &&
 | 
| -               std::numeric_limits<LimitType>::is_signed ==
 | 
| -                   std::numeric_limits<ValueType>::is_signed,
 | 
| -           LimitType, ValueType > ::clampTo(value, min, max);
 | 
| -  }
 | 
| -};
 | 
| -
 | 
| -// Clamping to [unsigned] long long int limits requires more care.  These may
 | 
| -// not be accurately representable as doubles, so instead we cast |value| to the
 | 
| -// limit type.  But that cast is undefined if |value| is floating point and
 | 
| -// outside the representable range of the limit type, so we also have to check
 | 
| -// for that case explicitly.
 | 
| -template <typename ValueType>
 | 
| -class ClampToHelper<long long int, ValueType> {
 | 
| -  STATIC_ONLY(ClampToHelper);
 | 
| -
 | 
| - public:
 | 
| -  static inline long long int clampTo(ValueType value,
 | 
| -                                      long long int min,
 | 
| -                                      long long int max) {
 | 
| -    if (!std::numeric_limits<ValueType>::is_integer) {
 | 
| -      if (value > 0) {
 | 
| -        if (static_cast<double>(value) >=
 | 
| -            static_cast<double>(std::numeric_limits<long long int>::max()))
 | 
| -          return max;
 | 
| -      } else if (static_cast<double>(value) <=
 | 
| -                 static_cast<double>(
 | 
| -                     std::numeric_limits<long long int>::min())) {
 | 
| -        return min;
 | 
| -      }
 | 
| -    }
 | 
| -    // Note: If |value| were unsigned long long int, it could be larger than
 | 
| -    // the largest long long int, and this code would be wrong; we handle
 | 
| -    // this case with a separate full specialization below.
 | 
| -    return clampToDirectComparison(static_cast<long long int>(value), min, max);
 | 
| -  }
 | 
| -};
 | 
| -
 | 
| -// This specialization handles the case where the above partial specialization
 | 
| -// would be potentially incorrect.
 | 
| -template <>
 | 
| -class ClampToHelper<long long int, unsigned long long int> {
 | 
| -  STATIC_ONLY(ClampToHelper);
 | 
| -
 | 
| - public:
 | 
| -  static inline long long int clampTo(unsigned long long int value,
 | 
| -                                      long long int min,
 | 
| -                                      long long int max) {
 | 
| -    if (max <= 0 || value >= static_cast<unsigned long long int>(max))
 | 
| -      return max;
 | 
| -    const long long int longLongValue = static_cast<long long int>(value);
 | 
| -    return (longLongValue <= min) ? min : longLongValue;
 | 
| -  }
 | 
| -};
 | 
| -
 | 
| -// This is similar to the partial specialization that clamps to long long int,
 | 
| -// but because the lower-bound check is done for integer value types as well, we
 | 
| -// don't need a <unsigned long long int, long long int> full specialization.
 | 
| -template <typename ValueType>
 | 
| -class ClampToHelper<unsigned long long int, ValueType> {
 | 
| -  STATIC_ONLY(ClampToHelper);
 | 
| -
 | 
| - public:
 | 
| -  static inline unsigned long long int clampTo(ValueType value,
 | 
| -                                               unsigned long long int min,
 | 
| -                                               unsigned long long int max) {
 | 
| -    if (value <= 0)
 | 
| -      return min;
 | 
| -    if (!std::numeric_limits<ValueType>::is_integer) {
 | 
| -      if (static_cast<double>(value) >=
 | 
| -          static_cast<double>(
 | 
| -              std::numeric_limits<unsigned long long int>::max()))
 | 
| -        return max;
 | 
| -    }
 | 
| -    return clampToDirectComparison(static_cast<unsigned long long int>(value),
 | 
| -                                   min, max);
 | 
| -  }
 | 
| -};
 | 
| -
 | 
| -template <typename T>
 | 
| -inline T defaultMaximumForClamp() {
 | 
| -  return std::numeric_limits<T>::max();
 | 
| -}
 | 
| -// This basically reimplements C++11's std::numeric_limits<T>::lowest().
 | 
| -template <typename T>
 | 
| -inline T defaultMinimumForClamp() {
 | 
| -  return std::numeric_limits<T>::min();
 | 
| -}
 | 
| -template <>
 | 
| -inline float defaultMinimumForClamp<float>() {
 | 
| -  return -std::numeric_limits<float>::max();
 | 
| -}
 | 
| -template <>
 | 
| -inline double defaultMinimumForClamp<double>() {
 | 
| -  return -std::numeric_limits<double>::max();
 | 
| -}
 | 
| -
 | 
| -// And, finally, the actual function for people to call.
 | 
| -template <typename LimitType, typename ValueType>
 | 
| -inline LimitType clampTo(ValueType value,
 | 
| -                         LimitType min = defaultMinimumForClamp<LimitType>(),
 | 
| -                         LimitType max = defaultMaximumForClamp<LimitType>()) {
 | 
| -  DCHECK(!std::isnan(static_cast<double>(value)));
 | 
| -  DCHECK_LE(min, max);  // This also ensures |min| and |max| aren't NaN.
 | 
| -  return ClampToHelper<LimitType, ValueType>::clampTo(value, min, max);
 | 
| -}
 | 
| -
 | 
| -inline bool isWithinIntRange(float x) {
 | 
| -  return x > static_cast<float>(std::numeric_limits<int>::min()) &&
 | 
| -         x < static_cast<float>(std::numeric_limits<int>::max());
 | 
| -}
 | 
| -
 | 
| -static size_t greatestCommonDivisor(size_t a, size_t b) {
 | 
| -  return b ? greatestCommonDivisor(b, a % b) : a;
 | 
| -}
 | 
| -
 | 
| -inline size_t lowestCommonMultiple(size_t a, size_t b) {
 | 
| -  return a && b ? a / greatestCommonDivisor(a, b) * b : 0;
 | 
| -}
 | 
| -
 | 
| -#ifndef UINT64_C
 | 
| -#if COMPILER(MSVC)
 | 
| -#define UINT64_C(c) c##ui64
 | 
| -#else
 | 
| -#define UINT64_C(c) c##ull
 | 
| -#endif
 | 
| -#endif
 | 
| -
 | 
| -// Calculate d % 2^{64}.
 | 
| -inline void doubleToInteger(double d, unsigned long long& value) {
 | 
| -  if (std::isnan(d) || std::isinf(d)) {
 | 
| -    value = 0;
 | 
| -  } else {
 | 
| -    // -2^{64} < fmodValue < 2^{64}.
 | 
| -    double fmodValue =
 | 
| -        fmod(trunc(d), std::numeric_limits<unsigned long long>::max() + 1.0);
 | 
| -    if (fmodValue >= 0) {
 | 
| -      // 0 <= fmodValue < 2^{64}.
 | 
| -      // 0 <= value < 2^{64}. This cast causes no loss.
 | 
| -      value = static_cast<unsigned long long>(fmodValue);
 | 
| -    } else {
 | 
| -      // -2^{64} < fmodValue < 0.
 | 
| -      // 0 < fmodValueInUnsignedLongLong < 2^{64}. This cast causes no loss.
 | 
| -      unsigned long long fmodValueInUnsignedLongLong =
 | 
| -          static_cast<unsigned long long>(-fmodValue);
 | 
| -      // -1 < (std::numeric_limits<unsigned long long>::max() -
 | 
| -      //       fmodValueInUnsignedLongLong)
 | 
| -      //    < 2^{64} - 1.
 | 
| -      // 0 < value < 2^{64}.
 | 
| -      value = std::numeric_limits<unsigned long long>::max() -
 | 
| -              fmodValueInUnsignedLongLong + 1;
 | 
| -    }
 | 
| -  }
 | 
| -}
 | 
| -
 | 
| -namespace WTF {
 | 
| -
 | 
| -inline unsigned fastLog2(unsigned i) {
 | 
| -  unsigned log2 = 0;
 | 
| -  if (i & (i - 1))
 | 
| -    log2 += 1;
 | 
| -  if (i >> 16)
 | 
| -    log2 += 16, i >>= 16;
 | 
| -  if (i >> 8)
 | 
| -    log2 += 8, i >>= 8;
 | 
| -  if (i >> 4)
 | 
| -    log2 += 4, i >>= 4;
 | 
| -  if (i >> 2)
 | 
| -    log2 += 2, i >>= 2;
 | 
| -  if (i >> 1)
 | 
| -    log2 += 1;
 | 
| -  return log2;
 | 
| -}
 | 
| -
 | 
| -}  // namespace WTF
 | 
| -
 | 
| -#endif  // #ifndef WTF_MathExtras_h
 | 
| +// The contents of this header was moved to platform/wtf as part of
 | 
| +// WTF migration project. See the following post for details:
 | 
| +// https://groups.google.com/a/chromium.org/d/msg/blink-dev/tLdAZCTlcAA/bYXVT8gYCAAJ
 | 
| 
 |