Index: third_party/WebKit/Source/wtf/MathExtras.h |
diff --git a/third_party/WebKit/Source/wtf/MathExtras.h b/third_party/WebKit/Source/wtf/MathExtras.h |
index efcd871bb32a0639202c4fbc81e024b16cf7925c..b263df226ca6b1979ef34132c78f229238ff1a87 100644 |
--- a/third_party/WebKit/Source/wtf/MathExtras.h |
+++ b/third_party/WebKit/Source/wtf/MathExtras.h |
@@ -1,435 +1,9 @@ |
-/* |
- * Copyright (C) 2006, 2007, 2008, 2009, 2010 Apple Inc. All rights reserved. |
- * |
- * Redistribution and use in source and binary forms, with or without |
- * modification, are permitted provided that the following conditions |
- * are met: |
- * 1. Redistributions of source code must retain the above copyright |
- * notice, this list of conditions and the following disclaimer. |
- * 2. Redistributions in binary form must reproduce the above copyright |
- * notice, this list of conditions and the following disclaimer in the |
- * documentation and/or other materials provided with the distribution. |
- * |
- * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY |
- * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR |
- * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR |
- * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
- * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
- * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
- * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY |
- * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
- * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
- * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
- */ |
+// Copyright 2017 The Chromium Authors. All rights reserved. |
+// Use of this source code is governed by a BSD-style license that can be |
+// found in the LICENSE file. |
-#ifndef WTF_MathExtras_h |
-#define WTF_MathExtras_h |
+#include "platform/wtf/MathExtras.h" |
-#include "wtf/Allocator.h" |
-#include "wtf/Assertions.h" |
-#include "wtf/CPU.h" |
-#include <cmath> |
-#include <cstddef> |
-#include <limits> |
- |
-#if COMPILER(MSVC) |
-// Make math.h behave like other platforms. |
-#define _USE_MATH_DEFINES |
-// Even if math.h was already included, including math.h again with |
-// _USE_MATH_DEFINES adds the extra defines. |
-#include <math.h> |
-#include <stdint.h> |
-#endif |
- |
-#if OS(OPENBSD) |
-#include <machine/ieee.h> |
-#include <sys/types.h> |
-#endif |
- |
-const double piDouble = M_PI; |
-const float piFloat = static_cast<float>(M_PI); |
- |
-const double piOverTwoDouble = M_PI_2; |
-const float piOverTwoFloat = static_cast<float>(M_PI_2); |
- |
-const double piOverFourDouble = M_PI_4; |
-const float piOverFourFloat = static_cast<float>(M_PI_4); |
- |
-const double twoPiDouble = piDouble * 2.0; |
-const float twoPiFloat = piFloat * 2.0f; |
- |
-#if COMPILER(MSVC) |
- |
-// VS2013 has most of the math functions now, but we still need to work |
-// around various differences in behavior of Inf. |
- |
-// Work around a bug in Win, where atan2(+-infinity, +-infinity) yields NaN |
-// instead of specific values. |
-inline double wtf_atan2(double x, double y) { |
- double posInf = std::numeric_limits<double>::infinity(); |
- double negInf = -std::numeric_limits<double>::infinity(); |
- double nan = std::numeric_limits<double>::quiet_NaN(); |
- |
- double result = nan; |
- |
- if (x == posInf && y == posInf) |
- result = piOverFourDouble; |
- else if (x == posInf && y == negInf) |
- result = 3 * piOverFourDouble; |
- else if (x == negInf && y == posInf) |
- result = -piOverFourDouble; |
- else if (x == negInf && y == negInf) |
- result = -3 * piOverFourDouble; |
- else |
- result = ::atan2(x, y); |
- |
- return result; |
-} |
- |
-// Work around a bug in the Microsoft CRT, where fmod(x, +-infinity) yields NaN |
-// instead of x. |
-inline double wtf_fmod(double x, double y) { |
- return (!std::isinf(x) && std::isinf(y)) ? x : fmod(x, y); |
-} |
- |
-// Work around a bug in the Microsoft CRT, where pow(NaN, 0) yields NaN instead |
-// of 1. |
-inline double wtf_pow(double x, double y) { |
- return y == 0 ? 1 : pow(x, y); |
-} |
- |
-#define atan2(x, y) wtf_atan2(x, y) |
-#define fmod(x, y) wtf_fmod(x, y) |
-#define pow(x, y) wtf_pow(x, y) |
- |
-#endif // COMPILER(MSVC) |
- |
-inline double deg2rad(double d) { |
- return d * piDouble / 180.0; |
-} |
-inline double rad2deg(double r) { |
- return r * 180.0 / piDouble; |
-} |
-inline double deg2grad(double d) { |
- return d * 400.0 / 360.0; |
-} |
-inline double grad2deg(double g) { |
- return g * 360.0 / 400.0; |
-} |
-inline double turn2deg(double t) { |
- return t * 360.0; |
-} |
-inline double deg2turn(double d) { |
- return d / 360.0; |
-} |
-inline double rad2grad(double r) { |
- return r * 200.0 / piDouble; |
-} |
-inline double grad2rad(double g) { |
- return g * piDouble / 200.0; |
-} |
-inline double turn2grad(double t) { |
- return t * 400; |
-} |
-inline double grad2turn(double g) { |
- return g / 400; |
-} |
- |
-inline float deg2rad(float d) { |
- return d * piFloat / 180.0f; |
-} |
-inline float rad2deg(float r) { |
- return r * 180.0f / piFloat; |
-} |
-inline float deg2grad(float d) { |
- return d * 400.0f / 360.0f; |
-} |
-inline float grad2deg(float g) { |
- return g * 360.0f / 400.0f; |
-} |
-inline float turn2deg(float t) { |
- return t * 360.0f; |
-} |
-inline float deg2turn(float d) { |
- return d / 360.0f; |
-} |
-inline float rad2grad(float r) { |
- return r * 200.0f / piFloat; |
-} |
-inline float grad2rad(float g) { |
- return g * piFloat / 200.0f; |
-} |
-inline float turn2grad(float t) { |
- return t * 400; |
-} |
-inline float grad2turn(float g) { |
- return g / 400; |
-} |
- |
-// clampTo() is implemented by templated helper classes (to allow for partial |
-// template specialization) as well as several helper functions. |
- |
-// This helper function can be called when we know that: |
-// (1) The type signednesses match so the compiler will not produce signed vs. |
-// unsigned warnings |
-// (2) The default type promotions/conversions are sufficient to handle things |
-// correctly |
-template <typename LimitType, typename ValueType> |
-inline LimitType clampToDirectComparison(ValueType value, |
- LimitType min, |
- LimitType max) { |
- if (value >= max) |
- return max; |
- return (value <= min) ? min : static_cast<LimitType>(value); |
-} |
- |
-// For any floating-point limits, or integral limits smaller than long long, we |
-// can cast the limits to double without losing precision; then the only cases |
-// where |value| can't be represented accurately as a double are the ones where |
-// it's outside the limit range anyway. So doing all comparisons as doubles |
-// will give correct results. |
-// |
-// In some cases, we can get better performance by using |
-// clampToDirectComparison(). We use a templated class to switch between these |
-// two cases (instead of simply using a conditional within one function) in |
-// order to only compile the clampToDirectComparison() code for cases where it |
-// will actually be used; this prevents the compiler from emitting warnings |
-// about unsafe code (even though we wouldn't actually be executing that code). |
-template <bool canUseDirectComparison, typename LimitType, typename ValueType> |
-class ClampToNonLongLongHelper; |
-template <typename LimitType, typename ValueType> |
-class ClampToNonLongLongHelper<true, LimitType, ValueType> { |
- STATIC_ONLY(ClampToNonLongLongHelper); |
- |
- public: |
- static inline LimitType clampTo(ValueType value, |
- LimitType min, |
- LimitType max) { |
- return clampToDirectComparison(value, min, max); |
- } |
-}; |
- |
-template <typename LimitType, typename ValueType> |
-class ClampToNonLongLongHelper<false, LimitType, ValueType> { |
- STATIC_ONLY(ClampToNonLongLongHelper); |
- |
- public: |
- static inline LimitType clampTo(ValueType value, |
- LimitType min, |
- LimitType max) { |
- const double doubleValue = static_cast<double>(value); |
- if (doubleValue >= static_cast<double>(max)) |
- return max; |
- if (doubleValue <= static_cast<double>(min)) |
- return min; |
- // If the limit type is integer, we might get better performance by |
- // casting |value| (as opposed to |doubleValue|) to the limit type. |
- return std::numeric_limits<LimitType>::is_integer |
- ? static_cast<LimitType>(value) |
- : static_cast<LimitType>(doubleValue); |
- } |
-}; |
- |
-// The unspecialized version of this templated class handles clamping to |
-// anything other than [unsigned] long long int limits. It simply uses the |
-// class above to toggle between the "fast" and "safe" clamp implementations. |
-template <typename LimitType, typename ValueType> |
-class ClampToHelper { |
- public: |
- static inline LimitType clampTo(ValueType value, |
- LimitType min, |
- LimitType max) { |
- // We only use clampToDirectComparison() when the integerness and |
- // signedness of the two types matches. |
- // |
- // If the integerness of the types doesn't match, then at best |
- // clampToDirectComparison() won't be much more efficient than the |
- // cast-everything-to-double method, since we'll need to convert to |
- // floating point anyway; at worst, we risk incorrect results when |
- // clamping a float to a 32-bit integral type due to potential precision |
- // loss. |
- // |
- // If the signedness doesn't match, clampToDirectComparison() will |
- // produce warnings about comparing signed vs. unsigned, which are apt |
- // since negative signed values will be converted to large unsigned ones |
- // and we'll get incorrect results. |
- return ClampToNonLongLongHelper < |
- std::numeric_limits<LimitType>::is_integer == |
- std::numeric_limits<ValueType>::is_integer && |
- std::numeric_limits<LimitType>::is_signed == |
- std::numeric_limits<ValueType>::is_signed, |
- LimitType, ValueType > ::clampTo(value, min, max); |
- } |
-}; |
- |
-// Clamping to [unsigned] long long int limits requires more care. These may |
-// not be accurately representable as doubles, so instead we cast |value| to the |
-// limit type. But that cast is undefined if |value| is floating point and |
-// outside the representable range of the limit type, so we also have to check |
-// for that case explicitly. |
-template <typename ValueType> |
-class ClampToHelper<long long int, ValueType> { |
- STATIC_ONLY(ClampToHelper); |
- |
- public: |
- static inline long long int clampTo(ValueType value, |
- long long int min, |
- long long int max) { |
- if (!std::numeric_limits<ValueType>::is_integer) { |
- if (value > 0) { |
- if (static_cast<double>(value) >= |
- static_cast<double>(std::numeric_limits<long long int>::max())) |
- return max; |
- } else if (static_cast<double>(value) <= |
- static_cast<double>( |
- std::numeric_limits<long long int>::min())) { |
- return min; |
- } |
- } |
- // Note: If |value| were unsigned long long int, it could be larger than |
- // the largest long long int, and this code would be wrong; we handle |
- // this case with a separate full specialization below. |
- return clampToDirectComparison(static_cast<long long int>(value), min, max); |
- } |
-}; |
- |
-// This specialization handles the case where the above partial specialization |
-// would be potentially incorrect. |
-template <> |
-class ClampToHelper<long long int, unsigned long long int> { |
- STATIC_ONLY(ClampToHelper); |
- |
- public: |
- static inline long long int clampTo(unsigned long long int value, |
- long long int min, |
- long long int max) { |
- if (max <= 0 || value >= static_cast<unsigned long long int>(max)) |
- return max; |
- const long long int longLongValue = static_cast<long long int>(value); |
- return (longLongValue <= min) ? min : longLongValue; |
- } |
-}; |
- |
-// This is similar to the partial specialization that clamps to long long int, |
-// but because the lower-bound check is done for integer value types as well, we |
-// don't need a <unsigned long long int, long long int> full specialization. |
-template <typename ValueType> |
-class ClampToHelper<unsigned long long int, ValueType> { |
- STATIC_ONLY(ClampToHelper); |
- |
- public: |
- static inline unsigned long long int clampTo(ValueType value, |
- unsigned long long int min, |
- unsigned long long int max) { |
- if (value <= 0) |
- return min; |
- if (!std::numeric_limits<ValueType>::is_integer) { |
- if (static_cast<double>(value) >= |
- static_cast<double>( |
- std::numeric_limits<unsigned long long int>::max())) |
- return max; |
- } |
- return clampToDirectComparison(static_cast<unsigned long long int>(value), |
- min, max); |
- } |
-}; |
- |
-template <typename T> |
-inline T defaultMaximumForClamp() { |
- return std::numeric_limits<T>::max(); |
-} |
-// This basically reimplements C++11's std::numeric_limits<T>::lowest(). |
-template <typename T> |
-inline T defaultMinimumForClamp() { |
- return std::numeric_limits<T>::min(); |
-} |
-template <> |
-inline float defaultMinimumForClamp<float>() { |
- return -std::numeric_limits<float>::max(); |
-} |
-template <> |
-inline double defaultMinimumForClamp<double>() { |
- return -std::numeric_limits<double>::max(); |
-} |
- |
-// And, finally, the actual function for people to call. |
-template <typename LimitType, typename ValueType> |
-inline LimitType clampTo(ValueType value, |
- LimitType min = defaultMinimumForClamp<LimitType>(), |
- LimitType max = defaultMaximumForClamp<LimitType>()) { |
- DCHECK(!std::isnan(static_cast<double>(value))); |
- DCHECK_LE(min, max); // This also ensures |min| and |max| aren't NaN. |
- return ClampToHelper<LimitType, ValueType>::clampTo(value, min, max); |
-} |
- |
-inline bool isWithinIntRange(float x) { |
- return x > static_cast<float>(std::numeric_limits<int>::min()) && |
- x < static_cast<float>(std::numeric_limits<int>::max()); |
-} |
- |
-static size_t greatestCommonDivisor(size_t a, size_t b) { |
- return b ? greatestCommonDivisor(b, a % b) : a; |
-} |
- |
-inline size_t lowestCommonMultiple(size_t a, size_t b) { |
- return a && b ? a / greatestCommonDivisor(a, b) * b : 0; |
-} |
- |
-#ifndef UINT64_C |
-#if COMPILER(MSVC) |
-#define UINT64_C(c) c##ui64 |
-#else |
-#define UINT64_C(c) c##ull |
-#endif |
-#endif |
- |
-// Calculate d % 2^{64}. |
-inline void doubleToInteger(double d, unsigned long long& value) { |
- if (std::isnan(d) || std::isinf(d)) { |
- value = 0; |
- } else { |
- // -2^{64} < fmodValue < 2^{64}. |
- double fmodValue = |
- fmod(trunc(d), std::numeric_limits<unsigned long long>::max() + 1.0); |
- if (fmodValue >= 0) { |
- // 0 <= fmodValue < 2^{64}. |
- // 0 <= value < 2^{64}. This cast causes no loss. |
- value = static_cast<unsigned long long>(fmodValue); |
- } else { |
- // -2^{64} < fmodValue < 0. |
- // 0 < fmodValueInUnsignedLongLong < 2^{64}. This cast causes no loss. |
- unsigned long long fmodValueInUnsignedLongLong = |
- static_cast<unsigned long long>(-fmodValue); |
- // -1 < (std::numeric_limits<unsigned long long>::max() - |
- // fmodValueInUnsignedLongLong) |
- // < 2^{64} - 1. |
- // 0 < value < 2^{64}. |
- value = std::numeric_limits<unsigned long long>::max() - |
- fmodValueInUnsignedLongLong + 1; |
- } |
- } |
-} |
- |
-namespace WTF { |
- |
-inline unsigned fastLog2(unsigned i) { |
- unsigned log2 = 0; |
- if (i & (i - 1)) |
- log2 += 1; |
- if (i >> 16) |
- log2 += 16, i >>= 16; |
- if (i >> 8) |
- log2 += 8, i >>= 8; |
- if (i >> 4) |
- log2 += 4, i >>= 4; |
- if (i >> 2) |
- log2 += 2, i >>= 2; |
- if (i >> 1) |
- log2 += 1; |
- return log2; |
-} |
- |
-} // namespace WTF |
- |
-#endif // #ifndef WTF_MathExtras_h |
+// The contents of this header was moved to platform/wtf as part of |
+// WTF migration project. See the following post for details: |
+// https://groups.google.com/a/chromium.org/d/msg/blink-dev/tLdAZCTlcAA/bYXVT8gYCAAJ |