Index: third_party/WebKit/Source/wtf/dtoa/fixed-dtoa.cc |
diff --git a/third_party/WebKit/Source/wtf/dtoa/fixed-dtoa.cc b/third_party/WebKit/Source/wtf/dtoa/fixed-dtoa.cc |
deleted file mode 100644 |
index f01d3d9a93251882e7c007bce3251d9fd2e71df4..0000000000000000000000000000000000000000 |
--- a/third_party/WebKit/Source/wtf/dtoa/fixed-dtoa.cc |
+++ /dev/null |
@@ -1,406 +0,0 @@ |
-// Copyright 2010 the V8 project authors. All rights reserved. |
-// Redistribution and use in source and binary forms, with or without |
-// modification, are permitted provided that the following conditions are |
-// met: |
-// |
-// * Redistributions of source code must retain the above copyright |
-// notice, this list of conditions and the following disclaimer. |
-// * Redistributions in binary form must reproduce the above |
-// copyright notice, this list of conditions and the following |
-// disclaimer in the documentation and/or other materials provided |
-// with the distribution. |
-// * Neither the name of Google Inc. nor the names of its |
-// contributors may be used to endorse or promote products derived |
-// from this software without specific prior written permission. |
-// |
-// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
-// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
-// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
-// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
-// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
-// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
-// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
-// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
-// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
-// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
-// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
- |
-#include "fixed-dtoa.h" |
- |
-#include "double.h" |
-#include <math.h> |
- |
-namespace WTF { |
- |
-namespace double_conversion { |
- |
- // Represents a 128bit type. This class should be replaced by a native type on |
- // platforms that support 128bit integers. |
- class UInt128 { |
- public: |
- UInt128() : high_bits_(0), low_bits_(0) { } |
- UInt128(uint64_t high, uint64_t low) : high_bits_(high), low_bits_(low) { } |
- |
- void Multiply(uint32_t multiplicand) { |
- uint64_t accumulator; |
- |
- accumulator = (low_bits_ & kMask32) * multiplicand; |
- uint32_t part = static_cast<uint32_t>(accumulator & kMask32); |
- accumulator >>= 32; |
- accumulator = accumulator + (low_bits_ >> 32) * multiplicand; |
- low_bits_ = (accumulator << 32) + part; |
- accumulator >>= 32; |
- accumulator = accumulator + (high_bits_ & kMask32) * multiplicand; |
- part = static_cast<uint32_t>(accumulator & kMask32); |
- accumulator >>= 32; |
- accumulator = accumulator + (high_bits_ >> 32) * multiplicand; |
- high_bits_ = (accumulator << 32) + part; |
- ASSERT((accumulator >> 32) == 0); |
- } |
- |
- void Shift(int shift_amount) { |
- ASSERT(-64 <= shift_amount && shift_amount <= 64); |
- if (shift_amount == 0) { |
- return; |
- } else if (shift_amount == -64) { |
- high_bits_ = low_bits_; |
- low_bits_ = 0; |
- } else if (shift_amount == 64) { |
- low_bits_ = high_bits_; |
- high_bits_ = 0; |
- } else if (shift_amount <= 0) { |
- high_bits_ <<= -shift_amount; |
- high_bits_ += low_bits_ >> (64 + shift_amount); |
- low_bits_ <<= -shift_amount; |
- } else { |
- low_bits_ >>= shift_amount; |
- low_bits_ += high_bits_ << (64 - shift_amount); |
- high_bits_ >>= shift_amount; |
- } |
- } |
- |
- // Modifies *this to *this MOD (2^power). |
- // Returns *this DIV (2^power). |
- int DivModPowerOf2(int power) { |
- if (power >= 64) { |
- int result = static_cast<int>(high_bits_ >> (power - 64)); |
- high_bits_ -= static_cast<uint64_t>(result) << (power - 64); |
- return result; |
- } else { |
- uint64_t part_low = low_bits_ >> power; |
- uint64_t part_high = high_bits_ << (64 - power); |
- int result = static_cast<int>(part_low + part_high); |
- high_bits_ = 0; |
- low_bits_ -= part_low << power; |
- return result; |
- } |
- } |
- |
- bool IsZero() const { |
- return high_bits_ == 0 && low_bits_ == 0; |
- } |
- |
- int BitAt(int position) { |
- if (position >= 64) { |
- return static_cast<int>(high_bits_ >> (position - 64)) & 1; |
- } else { |
- return static_cast<int>(low_bits_ >> position) & 1; |
- } |
- } |
- |
- private: |
- static const uint64_t kMask32 = 0xFFFFFFFF; |
- // Value == (high_bits_ << 64) + low_bits_ |
- uint64_t high_bits_; |
- uint64_t low_bits_; |
- }; |
- |
- |
- static const int kDoubleSignificandSize = 53; // Includes the hidden bit. |
- |
- |
- static void FillDigits32FixedLength(uint32_t number, int requested_length, |
- Vector<char> buffer, int* length) { |
- for (int i = requested_length - 1; i >= 0; --i) { |
- buffer[(*length) + i] = '0' + number % 10; |
- number /= 10; |
- } |
- *length += requested_length; |
- } |
- |
- |
- static void FillDigits32(uint32_t number, Vector<char> buffer, int* length) { |
- int number_length = 0; |
- // We fill the digits in reverse order and exchange them afterwards. |
- while (number != 0) { |
- char digit = number % 10; |
- number /= 10; |
- buffer[(*length) + number_length] = '0' + digit; |
- number_length++; |
- } |
- // Exchange the digits. |
- int i = *length; |
- int j = *length + number_length - 1; |
- while (i < j) { |
- char tmp = buffer[i]; |
- buffer[i] = buffer[j]; |
- buffer[j] = tmp; |
- i++; |
- j--; |
- } |
- *length += number_length; |
- } |
- |
- |
- static void FillDigits64FixedLength(uint64_t number, int, |
- Vector<char> buffer, int* length) { |
- const uint32_t kTen7 = 10000000; |
- // For efficiency cut the number into 3 uint32_t parts, and print those. |
- uint32_t part2 = static_cast<uint32_t>(number % kTen7); |
- number /= kTen7; |
- uint32_t part1 = static_cast<uint32_t>(number % kTen7); |
- uint32_t part0 = static_cast<uint32_t>(number / kTen7); |
- |
- FillDigits32FixedLength(part0, 3, buffer, length); |
- FillDigits32FixedLength(part1, 7, buffer, length); |
- FillDigits32FixedLength(part2, 7, buffer, length); |
- } |
- |
- |
- static void FillDigits64(uint64_t number, Vector<char> buffer, int* length) { |
- const uint32_t kTen7 = 10000000; |
- // For efficiency cut the number into 3 uint32_t parts, and print those. |
- uint32_t part2 = static_cast<uint32_t>(number % kTen7); |
- number /= kTen7; |
- uint32_t part1 = static_cast<uint32_t>(number % kTen7); |
- uint32_t part0 = static_cast<uint32_t>(number / kTen7); |
- |
- if (part0 != 0) { |
- FillDigits32(part0, buffer, length); |
- FillDigits32FixedLength(part1, 7, buffer, length); |
- FillDigits32FixedLength(part2, 7, buffer, length); |
- } else if (part1 != 0) { |
- FillDigits32(part1, buffer, length); |
- FillDigits32FixedLength(part2, 7, buffer, length); |
- } else { |
- FillDigits32(part2, buffer, length); |
- } |
- } |
- |
- |
- static void RoundUp(Vector<char> buffer, int* length, int* decimal_point) { |
- // An empty buffer represents 0. |
- if (*length == 0) { |
- buffer[0] = '1'; |
- *decimal_point = 1; |
- *length = 1; |
- return; |
- } |
- // Round the last digit until we either have a digit that was not '9' or until |
- // we reached the first digit. |
- buffer[(*length) - 1]++; |
- for (int i = (*length) - 1; i > 0; --i) { |
- if (buffer[i] != '0' + 10) { |
- return; |
- } |
- buffer[i] = '0'; |
- buffer[i - 1]++; |
- } |
- // If the first digit is now '0' + 10, we would need to set it to '0' and add |
- // a '1' in front. However we reach the first digit only if all following |
- // digits had been '9' before rounding up. Now all trailing digits are '0' and |
- // we simply switch the first digit to '1' and update the decimal-point |
- // (indicating that the point is now one digit to the right). |
- if (buffer[0] == '0' + 10) { |
- buffer[0] = '1'; |
- (*decimal_point)++; |
- } |
- } |
- |
- |
- // The given fractionals number represents a fixed-point number with binary |
- // point at bit (-exponent). |
- // Preconditions: |
- // -128 <= exponent <= 0. |
- // 0 <= fractionals * 2^exponent < 1 |
- // The buffer holds the result. |
- // The function will round its result. During the rounding-process digits not |
- // generated by this function might be updated, and the decimal-point variable |
- // might be updated. If this function generates the digits 99 and the buffer |
- // already contained "199" (thus yielding a buffer of "19999") then a |
- // rounding-up will change the contents of the buffer to "20000". |
- static void FillFractionals(uint64_t fractionals, int exponent, |
- int fractional_count, Vector<char> buffer, |
- int* length, int* decimal_point) { |
- ASSERT(-128 <= exponent && exponent <= 0); |
- // 'fractionals' is a fixed-point number, with binary point at bit |
- // (-exponent). Inside the function the non-converted remainder of fractionals |
- // is a fixed-point number, with binary point at bit 'point'. |
- if (-exponent <= 64) { |
- // One 64 bit number is sufficient. |
- ASSERT(fractionals >> 56 == 0); |
- int point = -exponent; |
- for (int i = 0; i < fractional_count; ++i) { |
- if (fractionals == 0) break; |
- // Instead of multiplying by 10 we multiply by 5 and adjust the point |
- // location. This way the fractionals variable will not overflow. |
- // Invariant at the beginning of the loop: fractionals < 2^point. |
- // Initially we have: point <= 64 and fractionals < 2^56 |
- // After each iteration the point is decremented by one. |
- // Note that 5^3 = 125 < 128 = 2^7. |
- // Therefore three iterations of this loop will not overflow fractionals |
- // (even without the subtraction at the end of the loop body). At this |
- // time point will satisfy point <= 61 and therefore fractionals < 2^point |
- // and any further multiplication of fractionals by 5 will not overflow. |
- fractionals *= 5; |
- point--; |
- char digit = static_cast<char>(fractionals >> point); |
- buffer[*length] = '0' + digit; |
- (*length)++; |
- fractionals -= static_cast<uint64_t>(digit) << point; |
- } |
- // If the first bit after the point is set we have to round up. |
- if (((fractionals >> (point - 1)) & 1) == 1) { |
- RoundUp(buffer, length, decimal_point); |
- } |
- } else { // We need 128 bits. |
- ASSERT(64 < -exponent && -exponent <= 128); |
- UInt128 fractionals128 = UInt128(fractionals, 0); |
- fractionals128.Shift(-exponent - 64); |
- int point = 128; |
- for (int i = 0; i < fractional_count; ++i) { |
- if (fractionals128.IsZero()) break; |
- // As before: instead of multiplying by 10 we multiply by 5 and adjust the |
- // point location. |
- // This multiplication will not overflow for the same reasons as before. |
- fractionals128.Multiply(5); |
- point--; |
- char digit = static_cast<char>(fractionals128.DivModPowerOf2(point)); |
- buffer[*length] = '0' + digit; |
- (*length)++; |
- } |
- if (fractionals128.BitAt(point - 1) == 1) { |
- RoundUp(buffer, length, decimal_point); |
- } |
- } |
- } |
- |
- |
- // Removes leading and trailing zeros. |
- // If leading zeros are removed then the decimal point position is adjusted. |
- static void TrimZeros(Vector<char> buffer, int* length, int* decimal_point) { |
- while (*length > 0 && buffer[(*length) - 1] == '0') { |
- (*length)--; |
- } |
- int first_non_zero = 0; |
- while (first_non_zero < *length && buffer[first_non_zero] == '0') { |
- first_non_zero++; |
- } |
- if (first_non_zero != 0) { |
- for (int i = first_non_zero; i < *length; ++i) { |
- buffer[i - first_non_zero] = buffer[i]; |
- } |
- *length -= first_non_zero; |
- *decimal_point -= first_non_zero; |
- } |
- } |
- |
- |
- bool FastFixedDtoa(double v, |
- int fractional_count, |
- Vector<char> buffer, |
- int* length, |
- int* decimal_point) { |
- const uint32_t kMaxUInt32 = 0xFFFFFFFF; |
- uint64_t significand = Double(v).Significand(); |
- int exponent = Double(v).Exponent(); |
- // v = significand * 2^exponent (with significand a 53bit integer). |
- // If the exponent is larger than 20 (i.e. we may have a 73bit number) then we |
- // don't know how to compute the representation. 2^73 ~= 9.5*10^21. |
- // If necessary this limit could probably be increased, but we don't need |
- // more. |
- if (exponent > 20) return false; |
- if (fractional_count > 20) return false; |
- *length = 0; |
- // At most kDoubleSignificandSize bits of the significand are non-zero. |
- // Given a 64 bit integer we have 11 0s followed by 53 potentially non-zero |
- // bits: 0..11*..0xxx..53*..xx |
- if (exponent + kDoubleSignificandSize > 64) { |
- // The exponent must be > 11. |
- // |
- // We know that v = significand * 2^exponent. |
- // And the exponent > 11. |
- // We simplify the task by dividing v by 10^17. |
- // The quotient delivers the first digits, and the remainder fits into a 64 |
- // bit number. |
- // Dividing by 10^17 is equivalent to dividing by 5^17*2^17. |
- const uint64_t kFive17 = UINT64_2PART_C(0xB1, A2BC2EC5); // 5^17 |
- uint64_t divisor = kFive17; |
- int divisor_power = 17; |
- uint64_t dividend = significand; |
- uint32_t quotient; |
- uint64_t remainder; |
- // Let v = f * 2^e with f == significand and e == exponent. |
- // Then need q (quotient) and r (remainder) as follows: |
- // v = q * 10^17 + r |
- // f * 2^e = q * 10^17 + r |
- // f * 2^e = q * 5^17 * 2^17 + r |
- // If e > 17 then |
- // f * 2^(e-17) = q * 5^17 + r/2^17 |
- // else |
- // f = q * 5^17 * 2^(17-e) + r/2^e |
- if (exponent > divisor_power) { |
- // We only allow exponents of up to 20 and therefore (17 - e) <= 3 |
- dividend <<= exponent - divisor_power; |
- quotient = static_cast<uint32_t>(dividend / divisor); |
- remainder = (dividend % divisor) << divisor_power; |
- } else { |
- divisor <<= divisor_power - exponent; |
- quotient = static_cast<uint32_t>(dividend / divisor); |
- remainder = (dividend % divisor) << exponent; |
- } |
- FillDigits32(quotient, buffer, length); |
- FillDigits64FixedLength(remainder, divisor_power, buffer, length); |
- *decimal_point = *length; |
- } else if (exponent >= 0) { |
- // 0 <= exponent <= 11 |
- significand <<= exponent; |
- FillDigits64(significand, buffer, length); |
- *decimal_point = *length; |
- } else if (exponent > -kDoubleSignificandSize) { |
- // We have to cut the number. |
- uint64_t integrals = significand >> -exponent; |
- uint64_t fractionals = significand - (integrals << -exponent); |
- if (integrals > kMaxUInt32) { |
- FillDigits64(integrals, buffer, length); |
- } else { |
- FillDigits32(static_cast<uint32_t>(integrals), buffer, length); |
- } |
- *decimal_point = *length; |
- FillFractionals(fractionals, exponent, fractional_count, |
- buffer, length, decimal_point); |
- } else if (exponent < -128) { |
- // This configuration (with at most 20 digits) means that all digits must be |
- // 0. |
- ASSERT(fractional_count <= 20); |
- buffer[0] = '\0'; |
- *length = 0; |
- *decimal_point = -fractional_count; |
- } else { |
- *decimal_point = 0; |
- FillFractionals(significand, exponent, fractional_count, |
- buffer, length, decimal_point); |
- } |
- TrimZeros(buffer, length, decimal_point); |
- buffer[*length] = '\0'; |
- if ((*length) == 0) { |
- // The string is empty and the decimal_point thus has no importance. Mimick |
- // Gay's dtoa and and set it to -fractional_count. |
- *decimal_point = -fractional_count; |
- } |
- return true; |
- } |
- |
-} // namespace double_conversion |
- |
-} // namespace WTF |