Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(3)

Side by Side Diff: third_party/WebKit/Source/wtf/dtoa/strtod.cc

Issue 2764243002: Move files in wtf/ to platform/wtf/ (Part 9). (Closed)
Patch Set: Rebase. Created 3 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
« no previous file with comments | « third_party/WebKit/Source/wtf/dtoa/strtod.h ('k') | third_party/WebKit/Source/wtf/dtoa/utils.h » ('j') | no next file with comments »
Toggle Intra-line Diffs ('i') | Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
OLDNEW
(Empty)
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "strtod.h"
29
30 #include "bignum.h"
31 #include "cached-powers.h"
32 #include "double.h"
33 #include <stdarg.h>
34 #include <limits.h>
35
36 namespace WTF {
37
38 namespace double_conversion {
39
40 // 2^53 = 9007199254740992.
41 // Any integer with at most 15 decimal digits will hence fit into a double
42 // (which has a 53bit significand) without loss of precision.
43 static const int kMaxExactDoubleIntegerDecimalDigits = 15;
44 // 2^64 = 18446744073709551616 > 10^19
45 static const int kMaxUint64DecimalDigits = 19;
46
47 // Max double: 1.7976931348623157 x 10^308
48 // Min non-zero double: 4.9406564584124654 x 10^-324
49 // Any x >= 10^309 is interpreted as +infinity.
50 // Any x <= 10^-324 is interpreted as 0.
51 // Note that 2.5e-324 (despite being smaller than the min double) will be re ad
52 // as non-zero (equal to the min non-zero double).
53 static const int kMaxDecimalPower = 309;
54 static const int kMinDecimalPower = -324;
55
56 // 2^64 = 18446744073709551616
57 static const uint64_t kMaxUint64 = UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF);
58
59
60 static const double exact_powers_of_ten[] = {
61 1.0, // 10^0
62 10.0,
63 100.0,
64 1000.0,
65 10000.0,
66 100000.0,
67 1000000.0,
68 10000000.0,
69 100000000.0,
70 1000000000.0,
71 10000000000.0, // 10^10
72 100000000000.0,
73 1000000000000.0,
74 10000000000000.0,
75 100000000000000.0,
76 1000000000000000.0,
77 10000000000000000.0,
78 100000000000000000.0,
79 1000000000000000000.0,
80 10000000000000000000.0,
81 100000000000000000000.0, // 10^20
82 1000000000000000000000.0,
83 // 10^22 = 0x21e19e0c9bab2400000 = 0x878678326eac9 * 2^22
84 10000000000000000000000.0
85 };
86 static const int kExactPowersOfTenSize = ARRAY_SIZE(exact_powers_of_ten);
87
88 // Maximum number of significant digits in the decimal representation.
89 // In fact the value is 772 (see conversions.cc), but to give us some margin
90 // we round up to 780.
91 static const int kMaxSignificantDecimalDigits = 780;
92
93 static Vector<const char> TrimLeadingZeros(Vector<const char> buffer) {
94 for (int i = 0; i < buffer.length(); i++) {
95 if (buffer[i] != '0') {
96 return buffer.SubVector(i, buffer.length());
97 }
98 }
99 return Vector<const char>(buffer.start(), 0);
100 }
101
102
103 static Vector<const char> TrimTrailingZeros(Vector<const char> buffer) {
104 for (int i = buffer.length() - 1; i >= 0; --i) {
105 if (buffer[i] != '0') {
106 return buffer.SubVector(0, i + 1);
107 }
108 }
109 return Vector<const char>(buffer.start(), 0);
110 }
111
112
113 static void TrimToMaxSignificantDigits(Vector<const char> buffer,
114 int exponent,
115 char* significant_buffer,
116 int* significant_exponent) {
117 for (int i = 0; i < kMaxSignificantDecimalDigits - 1; ++i) {
118 significant_buffer[i] = buffer[i];
119 }
120 // The input buffer has been trimmed. Therefore the last digit must be
121 // different from '0'.
122 ASSERT(buffer[buffer.length() - 1] != '0');
123 // Set the last digit to be non-zero. This is sufficient to guarantee
124 // correct rounding.
125 significant_buffer[kMaxSignificantDecimalDigits - 1] = '1';
126 *significant_exponent =
127 exponent + (buffer.length() - kMaxSignificantDecimalDigits);
128 }
129
130 // Reads digits from the buffer and converts them to a uint64.
131 // Reads in as many digits as fit into a uint64.
132 // When the string starts with "1844674407370955161" no further digit is rea d.
133 // Since 2^64 = 18446744073709551616 it would still be possible read another
134 // digit if it was less or equal than 6, but this would complicate the code.
135 static uint64_t ReadUint64(Vector<const char> buffer,
136 int* number_of_read_digits) {
137 uint64_t result = 0;
138 int i = 0;
139 while (i < buffer.length() && result <= (kMaxUint64 / 10 - 1)) {
140 int digit = buffer[i++] - '0';
141 ASSERT(0 <= digit && digit <= 9);
142 result = 10 * result + digit;
143 }
144 *number_of_read_digits = i;
145 return result;
146 }
147
148
149 // Reads a DiyFp from the buffer.
150 // The returned DiyFp is not necessarily normalized.
151 // If remaining_decimals is zero then the returned DiyFp is accurate.
152 // Otherwise it has been rounded and has error of at most 1/2 ulp.
153 static void ReadDiyFp(Vector<const char> buffer,
154 DiyFp* result,
155 int* remaining_decimals) {
156 int read_digits;
157 uint64_t significand = ReadUint64(buffer, &read_digits);
158 if (buffer.length() == read_digits) {
159 *result = DiyFp(significand, 0);
160 *remaining_decimals = 0;
161 } else {
162 // Round the significand.
163 if (buffer[read_digits] >= '5') {
164 significand++;
165 }
166 // Compute the binary exponent.
167 int exponent = 0;
168 *result = DiyFp(significand, exponent);
169 *remaining_decimals = buffer.length() - read_digits;
170 }
171 }
172
173
174 static bool DoubleStrtod(Vector<const char> trimmed,
175 int exponent,
176 double* result) {
177 #if !defined(DOUBLE_CONVERSION_CORRECT_DOUBLE_OPERATIONS)
178 // On x86 the floating-point stack can be 64 or 80 bits wide. If it is
179 // 80 bits wide (as is the case on Linux) then double-rounding occurs an d the
180 // result is not accurate.
181 // We know that Windows32 uses 64 bits and is therefore accurate.
182 // Note that the ARM simulator is compiled for 32bits. It therefore exhi bits
183 // the same problem.
184 return false;
185 #endif
186 if (trimmed.length() <= kMaxExactDoubleIntegerDecimalDigits) {
187 int read_digits;
188 // The trimmed input fits into a double.
189 // If the 10^exponent (resp. 10^-exponent) fits into a double too th en we
190 // can compute the result-double simply by multiplying (resp. dividi ng) the
191 // two numbers.
192 // This is possible because IEEE guarantees that floating-point oper ations
193 // return the best possible approximation.
194 if (exponent < 0 && -exponent < kExactPowersOfTenSize) {
195 // 10^-exponent fits into a double.
196 *result = static_cast<double>(ReadUint64(trimmed, &read_digits)) ;
197 ASSERT(read_digits == trimmed.length());
198 *result /= exact_powers_of_ten[-exponent];
199 return true;
200 }
201 if (0 <= exponent && exponent < kExactPowersOfTenSize) {
202 // 10^exponent fits into a double.
203 *result = static_cast<double>(ReadUint64(trimmed, &read_digits)) ;
204 ASSERT(read_digits == trimmed.length());
205 *result *= exact_powers_of_ten[exponent];
206 return true;
207 }
208 int remaining_digits =
209 kMaxExactDoubleIntegerDecimalDigits - trimmed.length();
210 if ((0 <= exponent) &&
211 (exponent - remaining_digits < kExactPowersOfTenSize)) {
212 // The trimmed string was short and we can multiply it with
213 // 10^remaining_digits. As a result the remaining exponent now f its
214 // into a double too.
215 *result = static_cast<double>(ReadUint64(trimmed, &read_digits)) ;
216 ASSERT(read_digits == trimmed.length());
217 *result *= exact_powers_of_ten[remaining_digits];
218 *result *= exact_powers_of_ten[exponent - remaining_digits];
219 return true;
220 }
221 }
222 return false;
223 }
224
225
226 // Returns 10^exponent as an exact DiyFp.
227 // The given exponent must be in the range [1; kDecimalExponentDistance[.
228 static DiyFp AdjustmentPowerOfTen(int exponent) {
229 ASSERT(0 < exponent);
230 ASSERT(exponent < PowersOfTenCache::kDecimalExponentDistance);
231 // Simply hardcode the remaining powers for the given decimal exponent
232 // distance.
233 ASSERT(PowersOfTenCache::kDecimalExponentDistance == 8);
234 switch (exponent) {
235 case 1: return DiyFp(UINT64_2PART_C(0xa0000000, 00000000), -60);
236 case 2: return DiyFp(UINT64_2PART_C(0xc8000000, 00000000), -57);
237 case 3: return DiyFp(UINT64_2PART_C(0xfa000000, 00000000), -54);
238 case 4: return DiyFp(UINT64_2PART_C(0x9c400000, 00000000), -50);
239 case 5: return DiyFp(UINT64_2PART_C(0xc3500000, 00000000), -47);
240 case 6: return DiyFp(UINT64_2PART_C(0xf4240000, 00000000), -44);
241 case 7: return DiyFp(UINT64_2PART_C(0x98968000, 00000000), -40);
242 default:
243 UNREACHABLE();
244 return DiyFp(0, 0);
245 }
246 }
247
248
249 // If the function returns true then the result is the correct double.
250 // Otherwise it is either the correct double or the double that is just belo w
251 // the correct double.
252 static bool DiyFpStrtod(Vector<const char> buffer,
253 int exponent,
254 double* result) {
255 DiyFp input;
256 int remaining_decimals;
257 ReadDiyFp(buffer, &input, &remaining_decimals);
258 // Since we may have dropped some digits the input is not accurate.
259 // If remaining_decimals is different than 0 than the error is at most
260 // .5 ulp (unit in the last place).
261 // We don't want to deal with fractions and therefore keep a common
262 // denominator.
263 const int kDenominatorLog = 3;
264 const int kDenominator = 1 << kDenominatorLog;
265 // Move the remaining decimals into the exponent.
266 exponent += remaining_decimals;
267 int64_t error = (remaining_decimals == 0 ? 0 : kDenominator / 2);
268
269 int old_e = input.e();
270 input.Normalize();
271 error <<= old_e - input.e();
272
273 ASSERT(exponent <= PowersOfTenCache::kMaxDecimalExponent);
274 if (exponent < PowersOfTenCache::kMinDecimalExponent) {
275 *result = 0.0;
276 return true;
277 }
278 DiyFp cached_power;
279 int cached_decimal_exponent;
280 PowersOfTenCache::GetCachedPowerForDecimalExponent(exponent,
281 &cached_power,
282 &cached_decimal_expon ent);
283
284 if (cached_decimal_exponent != exponent) {
285 int adjustment_exponent = exponent - cached_decimal_exponent;
286 DiyFp adjustment_power = AdjustmentPowerOfTen(adjustment_exponent);
287 input.Multiply(adjustment_power);
288 if (kMaxUint64DecimalDigits - buffer.length() >= adjustment_exponent ) {
289 // The product of input with the adjustment power fits into a 64 bit
290 // integer.
291 ASSERT(DiyFp::kSignificandSize == 64);
292 } else {
293 // The adjustment power is exact. There is hence only an error o f 0.5.
294 error += kDenominator / 2;
295 }
296 }
297
298 input.Multiply(cached_power);
299 // The error introduced by a multiplication of a*b equals
300 // error_a + error_b + error_a*error_b/2^64 + 0.5
301 // Substituting a with 'input' and b with 'cached_power' we have
302 // error_b = 0.5 (all cached powers have an error of less than 0.5 ul p),
303 // error_ab = 0 or 1 / kDenominator > error_a*error_b/ 2^64
304 int error_b = kDenominator / 2;
305 int error_ab = (error == 0 ? 0 : 1); // We round up to 1.
306 int fixed_error = kDenominator / 2;
307 error += error_b + error_ab + fixed_error;
308
309 old_e = input.e();
310 input.Normalize();
311 error <<= old_e - input.e();
312
313 // See if the double's significand changes if we add/subtract the error.
314 int order_of_magnitude = DiyFp::kSignificandSize + input.e();
315 int effective_significand_size =
316 Double::SignificandSizeForOrderOfMagnitude(order_of_magnitude);
317 int precision_digits_count =
318 DiyFp::kSignificandSize - effective_significand_size;
319 if (precision_digits_count + kDenominatorLog >= DiyFp::kSignificandSize) {
320 // This can only happen for very small denormals. In this case the
321 // half-way multiplied by the denominator exceeds the range of an ui nt64.
322 // Simply shift everything to the right.
323 int shift_amount = (precision_digits_count + kDenominatorLog) -
324 DiyFp::kSignificandSize + 1;
325 input.set_f(input.f() >> shift_amount);
326 input.set_e(input.e() + shift_amount);
327 // We add 1 for the lost precision of error, and kDenominator for
328 // the lost precision of input.f().
329 error = (error >> shift_amount) + 1 + kDenominator;
330 precision_digits_count -= shift_amount;
331 }
332 // We use uint64_ts now. This only works if the DiyFp uses uint64_ts too .
333 ASSERT(DiyFp::kSignificandSize == 64);
334 ASSERT(precision_digits_count < 64);
335 uint64_t one64 = 1;
336 uint64_t precision_bits_mask = (one64 << precision_digits_count) - 1;
337 uint64_t precision_bits = input.f() & precision_bits_mask;
338 uint64_t half_way = one64 << (precision_digits_count - 1);
339 precision_bits *= kDenominator;
340 half_way *= kDenominator;
341 DiyFp rounded_input(input.f() >> precision_digits_count,
342 input.e() + precision_digits_count);
343 if (precision_bits >= half_way + error) {
344 rounded_input.set_f(rounded_input.f() + 1);
345 }
346 // If the last_bits are too close to the half-way case than we are too
347 // inaccurate and round down. In this case we return false so that we ca n
348 // fall back to a more precise algorithm.
349
350 *result = Double(rounded_input).value();
351 if (half_way - error < precision_bits && precision_bits < half_way + err or) {
352 // Too imprecise. The caller will have to fall back to a slower vers ion.
353 // However the returned number is guaranteed to be either the correc t
354 // double, or the next-lower double.
355 return false;
356 } else {
357 return true;
358 }
359 }
360
361
362 // Returns the correct double for the buffer*10^exponent.
363 // The variable guess should be a close guess that is either the correct dou ble
364 // or its lower neighbor (the nearest double less than the correct one).
365 // Preconditions:
366 // buffer.length() + exponent <= kMaxDecimalPower + 1
367 // buffer.length() + exponent > kMinDecimalPower
368 // buffer.length() <= kMaxDecimalSignificantDigits
369 static double BignumStrtod(Vector<const char> buffer,
370 int exponent,
371 double guess) {
372 if (guess == Double::Infinity()) {
373 return guess;
374 }
375
376 DiyFp upper_boundary = Double(guess).UpperBoundary();
377
378 ASSERT(buffer.length() + exponent <= kMaxDecimalPower + 1);
379 ASSERT(buffer.length() + exponent > kMinDecimalPower);
380 ASSERT(buffer.length() <= kMaxSignificantDecimalDigits);
381 // Make sure that the Bignum will be able to hold all our numbers.
382 // Our Bignum implementation has a separate field for exponents. Shifts will
383 // consume at most one bigit (< 64 bits).
384 // ln(10) == 3.3219...
385 ASSERT(((kMaxDecimalPower + 1) * 333 / 100) < Bignum::kMaxSignificantBit s);
386 Bignum input;
387 Bignum boundary;
388 input.AssignDecimalString(buffer);
389 boundary.AssignUInt64(upper_boundary.f());
390 if (exponent >= 0) {
391 input.MultiplyByPowerOfTen(exponent);
392 } else {
393 boundary.MultiplyByPowerOfTen(-exponent);
394 }
395 if (upper_boundary.e() > 0) {
396 boundary.ShiftLeft(upper_boundary.e());
397 } else {
398 input.ShiftLeft(-upper_boundary.e());
399 }
400 int comparison = Bignum::Compare(input, boundary);
401 if (comparison < 0) {
402 return guess;
403 } else if (comparison > 0) {
404 return Double(guess).NextDouble();
405 } else if ((Double(guess).Significand() & 1) == 0) {
406 // Round towards even.
407 return guess;
408 } else {
409 return Double(guess).NextDouble();
410 }
411 }
412
413
414 double Strtod(Vector<const char> buffer, int exponent) {
415 Vector<const char> left_trimmed = TrimLeadingZeros(buffer);
416 Vector<const char> trimmed = TrimTrailingZeros(left_trimmed);
417 exponent += left_trimmed.length() - trimmed.length();
418 if (trimmed.length() == 0) return 0.0;
419 if (trimmed.length() > kMaxSignificantDecimalDigits) {
420 char significant_buffer[kMaxSignificantDecimalDigits];
421 int significant_exponent;
422 TrimToMaxSignificantDigits(trimmed, exponent,
423 significant_buffer, &significant_exponent );
424 return Strtod(Vector<const char>(significant_buffer,
425 kMaxSignificantDecimalDigits),
426 significant_exponent);
427 }
428 if (exponent + trimmed.length() - 1 >= kMaxDecimalPower) {
429 return Double::Infinity();
430 }
431 if (exponent + trimmed.length() <= kMinDecimalPower) {
432 return 0.0;
433 }
434
435 double guess;
436 if (DoubleStrtod(trimmed, exponent, &guess) ||
437 DiyFpStrtod(trimmed, exponent, &guess)) {
438 return guess;
439 }
440 return BignumStrtod(trimmed, exponent, guess);
441 }
442
443 } // namespace double_conversion
444
445 } // namespace WTF
OLDNEW
« no previous file with comments | « third_party/WebKit/Source/wtf/dtoa/strtod.h ('k') | third_party/WebKit/Source/wtf/dtoa/utils.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698