Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(538)

Side by Side Diff: third_party/WebKit/Source/wtf/dtoa/fast-dtoa.cc

Issue 2764243002: Move files in wtf/ to platform/wtf/ (Part 9). (Closed)
Patch Set: Rebase. Created 3 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "fast-dtoa.h"
29
30 #include "cached-powers.h"
31 #include "diy-fp.h"
32 #include "double.h"
33
34 namespace WTF {
35
36 namespace double_conversion {
37
38 // The minimal and maximal target exponent define the range of w's binary
39 // exponent, where 'w' is the result of multiplying the input by a cached po wer
40 // of ten.
41 //
42 // A different range might be chosen on a different platform, to optimize di git
43 // generation, but a smaller range requires more powers of ten to be cached.
44 static const int kMinimalTargetExponent = -60;
45 static const int kMaximalTargetExponent = -32;
46
47
48 // Adjusts the last digit of the generated number, and screens out generated
49 // solutions that may be inaccurate. A solution may be inaccurate if it is
50 // outside the safe interval, or if we cannot prove that it is closer to the
51 // input than a neighboring representation of the same length.
52 //
53 // Input: * buffer containing the digits of too_high / 10^kappa
54 // * the buffer's length
55 // * distance_too_high_w == (too_high - w).f() * unit
56 // * unsafe_interval == (too_high - too_low).f() * unit
57 // * rest = (too_high - buffer * 10^kappa).f() * unit
58 // * ten_kappa = 10^kappa * unit
59 // * unit = the common multiplier
60 // Output: returns true if the buffer is guaranteed to contain the closest
61 // representable number to the input.
62 // Modifies the generated digits in the buffer to approach (round towards) w.
63 static bool RoundWeed(Vector<char> buffer,
64 int length,
65 uint64_t distance_too_high_w,
66 uint64_t unsafe_interval,
67 uint64_t rest,
68 uint64_t ten_kappa,
69 uint64_t unit) {
70 uint64_t small_distance = distance_too_high_w - unit;
71 uint64_t big_distance = distance_too_high_w + unit;
72 // Let w_low = too_high - big_distance, and
73 // w_high = too_high - small_distance.
74 // Note: w_low < w < w_high
75 //
76 // The real w (* unit) must lie somewhere inside the interval
77 // ]w_low; w_high[ (often written as "(w_low; w_high)")
78
79 // Basically the buffer currently contains a number in the unsafe interv al
80 // ]too_low; too_high[ with too_low < w < too_high
81 //
82 // too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
83 // ^v 1 unit ^ ^ ^ ^
84 // boundary_high --------------------- . . . .
85 // ^v 1 unit . . . .
86 // - - - - - - - - - - - - - - - - - - - + - - + - - - - - - . .
87 // . . ^ . .
88 // . big_distance . . .
89 // . . . . rest
90 // small_distance . . . .
91 // v . . . .
92 // w_high - - - - - - - - - - - - - - - - - - . . . .
93 // ^v 1 unit . . . .
94 // w ---------------------------------------- . . . .
95 // ^v 1 unit v . . .
96 // w_low - - - - - - - - - - - - - - - - - - - - - . . .
97 // . . v
98 // buffer --------------------------------------------------+-------+-- ------
99 // . .
100 // safe_interval .
101 // v .
102 // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - .
103 // ^v 1 unit .
104 // boundary_low ------------------------- unsafe_in terval
105 // ^v 1 unit v
106 // too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
107 //
108 //
109 // Note that the value of buffer could lie anywhere inside the range too _low
110 // to too_high.
111 //
112 // boundary_low, boundary_high and w are approximations of the real boun daries
113 // and v (the input number). They are guaranteed to be precise up to one unit.
114 // In fact the error is guaranteed to be strictly less than one unit.
115 //
116 // Anything that lies outside the unsafe interval is guaranteed not to r ound
117 // to v when read again.
118 // Anything that lies inside the safe interval is guaranteed to round to v
119 // when read again.
120 // If the number inside the buffer lies inside the unsafe interval but n ot
121 // inside the safe interval then we simply do not know and bail out (ret urning
122 // false).
123 //
124 // Similarly we have to take into account the imprecision of 'w' when fi nding
125 // the closest representation of 'w'. If we have two potential
126 // representations, and one is closer to both w_low and w_high, then we know
127 // it is closer to the actual value v.
128 //
129 // By generating the digits of too_high we got the largest (closest to
130 // too_high) buffer that is still in the unsafe interval. In the case wh ere
131 // w_high < buffer < too_high we try to decrement the buffer.
132 // This way the buffer approaches (rounds towards) w.
133 // There are 3 conditions that stop the decrementation process:
134 // 1) the buffer is already below w_high
135 // 2) decrementing the buffer would make it leave the unsafe interval
136 // 3) decrementing the buffer would yield a number below w_high and fa rther
137 // away than the current number. In other words:
138 // (buffer{-1} < w_high) && w_high - buffer{-1} > buffer - w_high
139 // Instead of using the buffer directly we use its distance to too_high.
140 // Conceptually rest ~= too_high - buffer
141 // We need to do the following tests in this order to avoid over- and
142 // underflows.
143 ASSERT(rest <= unsafe_interval);
144 while (rest < small_distance && // Negated condition 1
145 unsafe_interval - rest >= ten_kappa && // Negated condition 2
146 (rest + ten_kappa < small_distance || // buffer{-1} > w_high
147 small_distance - rest >= rest + ten_kappa - small_distance)) {
148 buffer[length - 1]--;
149 rest += ten_kappa;
150 }
151
152 // We have approached w+ as much as possible. We now test if approaching w-
153 // would require changing the buffer. If yes, then we have two possible
154 // representations close to w, but we cannot decide which one is closer.
155 if (rest < big_distance &&
156 unsafe_interval - rest >= ten_kappa &&
157 (rest + ten_kappa < big_distance ||
158 big_distance - rest > rest + ten_kappa - big_distance)) {
159 return false;
160 }
161
162 // Weeding test.
163 // The safe interval is [too_low + 2 ulp; too_high - 2 ulp]
164 // Since too_low = too_high - unsafe_interval this is equivalent to
165 // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp]
166 // Conceptually we have: rest ~= too_high - buffer
167 return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit);
168 }
169
170
171 // Rounds the buffer upwards if the result is closer to v by possibly adding
172 // 1 to the buffer. If the precision of the calculation is not sufficient to
173 // round correctly, return false.
174 // The rounding might shift the whole buffer in which case the kappa is
175 // adjusted. For example "99", kappa = 3 might become "10", kappa = 4.
176 //
177 // If 2*rest > ten_kappa then the buffer needs to be round up.
178 // rest can have an error of +/- 1 unit. This function accounts for the
179 // imprecision and returns false, if the rounding direction cannot be
180 // unambiguously determined.
181 //
182 // Precondition: rest < ten_kappa.
183 static bool RoundWeedCounted(Vector<char> buffer,
184 int length,
185 uint64_t rest,
186 uint64_t ten_kappa,
187 uint64_t unit,
188 int* kappa) {
189 ASSERT(rest < ten_kappa);
190 // The following tests are done in a specific order to avoid overflows. They
191 // will work correctly with any uint64 values of rest < ten_kappa and un it.
192 //
193 // If the unit is too big, then we don't know which way to round. For ex ample
194 // a unit of 50 means that the real number lies within rest +/- 50. If
195 // 10^kappa == 40 then there is no way to tell which way to round.
196 if (unit >= ten_kappa) return false;
197 // Even if unit is just half the size of 10^kappa we are already complet ely
198 // lost. (And after the previous test we know that the expression will n ot
199 // over/underflow.)
200 if (ten_kappa - unit <= unit) return false;
201 // If 2 * (rest + unit) <= 10^kappa we can safely round down.
202 if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) {
203 return true;
204 }
205 // If 2 * (rest - unit) >= 10^kappa, then we can safely round up.
206 if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) {
207 // Increment the last digit recursively until we find a non '9' digi t.
208 buffer[length - 1]++;
209 for (int i = length - 1; i > 0; --i) {
210 if (buffer[i] != '0' + 10) break;
211 buffer[i] = '0';
212 buffer[i - 1]++;
213 }
214 // If the first digit is now '0'+ 10 we had a buffer with all '9's. With the
215 // exception of the first digit all digits are now '0'. Simply switc h the
216 // first digit to '1' and adjust the kappa. Example: "99" becomes "1 0" and
217 // the power (the kappa) is increased.
218 if (buffer[0] == '0' + 10) {
219 buffer[0] = '1';
220 (*kappa) += 1;
221 }
222 return true;
223 }
224 return false;
225 }
226
227
228 static const uint32_t kTen4 = 10000;
229 static const uint32_t kTen5 = 100000;
230 static const uint32_t kTen6 = 1000000;
231 static const uint32_t kTen7 = 10000000;
232 static const uint32_t kTen8 = 100000000;
233 static const uint32_t kTen9 = 1000000000;
234
235 // Returns the biggest power of ten that is less than or equal to the given
236 // number. We furthermore receive the maximum number of bits 'number' has.
237 // If number_bits == 0 then 0^-1 is returned
238 // The number of bits must be <= 32.
239 // Precondition: number < (1 << (number_bits + 1)).
240 static void BiggestPowerTen(uint32_t number,
241 int number_bits,
242 uint32_t* power,
243 int* exponent) {
244 ASSERT(number < (uint32_t)(1 << (number_bits + 1)));
245
246 switch (number_bits) {
247 case 32:
248 case 31:
249 case 30:
250 if (kTen9 <= number) {
251 *power = kTen9;
252 *exponent = 9;
253 break;
254 } // else fallthrough
255 case 29:
256 case 28:
257 case 27:
258 if (kTen8 <= number) {
259 *power = kTen8;
260 *exponent = 8;
261 break;
262 } // else fallthrough
263 case 26:
264 case 25:
265 case 24:
266 if (kTen7 <= number) {
267 *power = kTen7;
268 *exponent = 7;
269 break;
270 } // else fallthrough
271 case 23:
272 case 22:
273 case 21:
274 case 20:
275 if (kTen6 <= number) {
276 *power = kTen6;
277 *exponent = 6;
278 break;
279 } // else fallthrough
280 case 19:
281 case 18:
282 case 17:
283 if (kTen5 <= number) {
284 *power = kTen5;
285 *exponent = 5;
286 break;
287 } // else fallthrough
288 case 16:
289 case 15:
290 case 14:
291 if (kTen4 <= number) {
292 *power = kTen4;
293 *exponent = 4;
294 break;
295 } // else fallthrough
296 case 13:
297 case 12:
298 case 11:
299 case 10:
300 if (1000 <= number) {
301 *power = 1000;
302 *exponent = 3;
303 break;
304 } // else fallthrough
305 case 9:
306 case 8:
307 case 7:
308 if (100 <= number) {
309 *power = 100;
310 *exponent = 2;
311 break;
312 } // else fallthrough
313 case 6:
314 case 5:
315 case 4:
316 if (10 <= number) {
317 *power = 10;
318 *exponent = 1;
319 break;
320 } // else fallthrough
321 case 3:
322 case 2:
323 case 1:
324 if (1 <= number) {
325 *power = 1;
326 *exponent = 0;
327 break;
328 } // else fallthrough
329 case 0:
330 *power = 0;
331 *exponent = -1;
332 break;
333 default:
334 // Following assignments are here to silence compiler warnings.
335 *power = 0;
336 *exponent = 0;
337 UNREACHABLE();
338 }
339 }
340
341
342 // Generates the digits of input number w.
343 // w is a floating-point number (DiyFp), consisting of a significand and an
344 // exponent. Its exponent is bounded by kMinimalTargetExponent and
345 // kMaximalTargetExponent.
346 // Hence -60 <= w.e() <= -32.
347 //
348 // Returns false if it fails, in which case the generated digits in the buff er
349 // should not be used.
350 // Preconditions:
351 // * low, w and high are correct up to 1 ulp (unit in the last place). That
352 // is, their error must be less than a unit of their last digits.
353 // * low.e() == w.e() == high.e()
354 // * low < w < high, and taking into account their error: low~ <= high~
355 // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
356 // Postconditions: returns false if procedure fails.
357 // otherwise:
358 // * buffer is not null-terminated, but len contains the number of digit s.
359 // * buffer contains the shortest possible decimal digit-sequence
360 // such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are th e
361 // correct values of low and high (without their error).
362 // * if more than one decimal representation gives the minimal number of
363 // decimal digits then the one closest to W (where W is the correct va lue
364 // of w) is chosen.
365 // Remark: this procedure takes into account the imprecision of its input
366 // numbers. If the precision is not enough to guarantee all the postcondit ions
367 // then false is returned. This usually happens rarely (~0.5%).
368 //
369 // Say, for the sake of example, that
370 // w.e() == -48, and w.f() == 0x1234567890abcdef
371 // w's value can be computed by w.f() * 2^w.e()
372 // We can obtain w's integral digits by simply shifting w.f() by -w.e().
373 // -> w's integral part is 0x1234
374 // w's fractional part is therefore 0x567890abcdef.
375 // Printing w's integral part is easy (simply print 0x1234 in decimal).
376 // In order to print its fraction we repeatedly multiply the fraction by 10 and
377 // get each digit. Example the first digit after the point would be computed by
378 // (0x567890abcdef * 10) >> 48. -> 3
379 // The whole thing becomes slightly more complicated because we want to stop
380 // once we have enough digits. That is, once the digits inside the buffer
381 // represent 'w' we can stop. Everything inside the interval low - high
382 // represents w. However we have to pay attention to low, high and w's
383 // imprecision.
384 static bool DigitGen(DiyFp low,
385 DiyFp w,
386 DiyFp high,
387 Vector<char> buffer,
388 int* length,
389 int* kappa) {
390 ASSERT(low.e() == w.e() && w.e() == high.e());
391 ASSERT(low.f() + 1 <= high.f() - 1);
392 ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponen t);
393 // low, w and high are imprecise, but by less than one ulp (unit in the last
394 // place).
395 // If we remove (resp. add) 1 ulp from low (resp. high) we are certain t hat
396 // the new numbers are outside of the interval we want the final
397 // representation to lie in.
398 // Inversely adding (resp. removing) 1 ulp from low (resp. high) would y ield
399 // numbers that are certain to lie in the interval. We will use this fac t
400 // later on.
401 // We will now start by generating the digits within the uncertain
402 // interval. Later we will weed out representations that lie outside the safe
403 // interval and thus _might_ lie outside the correct interval.
404 uint64_t unit = 1;
405 DiyFp too_low = DiyFp(low.f() - unit, low.e());
406 DiyFp too_high = DiyFp(high.f() + unit, high.e());
407 // too_low and too_high are guaranteed to lie outside the interval we wa nt the
408 // generated number in.
409 DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low);
410 // We now cut the input number into two parts: the integral digits and t he
411 // fractionals. We will not write any decimal separator though, but adap t
412 // kappa instead.
413 // Reminder: we are currently computing the digits (stored inside the bu ffer)
414 // such that: too_low < buffer * 10^kappa < too_high
415 // We use too_high for the digit_generation and stop as soon as possible .
416 // If we stop early we effectively round down.
417 DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
418 // Division by one is a shift.
419 uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e());
420 // Modulo by one is an and.
421 uint64_t fractionals = too_high.f() & (one.f() - 1);
422 uint32_t divisor;
423 int divisor_exponent;
424 BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
425 &divisor, &divisor_exponent);
426 *kappa = divisor_exponent + 1;
427 *length = 0;
428 // Loop invariant: buffer = too_high / 10^kappa (integer division)
429 // The invariant holds for the first iteration: kappa has been initializ ed
430 // with the divisor exponent + 1. And the divisor is the biggest power o f ten
431 // that is smaller than integrals.
432 while (*kappa > 0) {
433 char digit = static_cast<char>(integrals / divisor);
434 buffer[*length] = '0' + digit;
435 (*length)++;
436 integrals %= divisor;
437 (*kappa)--;
438 // Note that kappa now equals the exponent of the divisor and that t he
439 // invariant thus holds again.
440 uint64_t rest =
441 (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
442 // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e())
443 // Reminder: unsafe_interval.e() == one.e()
444 if (rest < unsafe_interval.f()) {
445 // Rounding down (by not emitting the remaining digits) yields a number
446 // that lies within the unsafe interval.
447 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(),
448 unsafe_interval.f(), rest,
449 static_cast<uint64_t>(divisor) << -one.e(), uni t);
450 }
451 divisor /= 10;
452 }
453
454 // The integrals have been generated. We are at the point of the decimal
455 // separator. In the following loop we simply multiply the remaining dig its by
456 // 10 and divide by one. We just need to pay attention to multiply assoc iated
457 // data (like the interval or 'unit'), too.
458 // Note that the multiplication by 10 does not overflow, because w.e >= -60
459 // and thus one.e >= -60.
460 ASSERT(one.e() >= -60);
461 ASSERT(fractionals < one.f());
462 ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
463 while (true) {
464 fractionals *= 10;
465 unit *= 10;
466 unsafe_interval.set_f(unsafe_interval.f() * 10);
467 // Integer division by one.
468 char digit = static_cast<char>(fractionals >> -one.e());
469 buffer[*length] = '0' + digit;
470 (*length)++;
471 fractionals &= one.f() - 1; // Modulo by one.
472 (*kappa)--;
473 if (fractionals < unsafe_interval.f()) {
474 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f() * unit,
475 unsafe_interval.f(), fractionals, one.f(), unit );
476 }
477 }
478 }
479
480
481
482 // Generates (at most) requested_digits digits of input number w.
483 // w is a floating-point number (DiyFp), consisting of a significand and an
484 // exponent. Its exponent is bounded by kMinimalTargetExponent and
485 // kMaximalTargetExponent.
486 // Hence -60 <= w.e() <= -32.
487 //
488 // Returns false if it fails, in which case the generated digits in the buff er
489 // should not be used.
490 // Preconditions:
491 // * w is correct up to 1 ulp (unit in the last place). That
492 // is, its error must be strictly less than a unit of its last digit.
493 // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent
494 //
495 // Postconditions: returns false if procedure fails.
496 // otherwise:
497 // * buffer is not null-terminated, but length contains the number of
498 // digits.
499 // * the representation in buffer is the most precise representation of
500 // requested_digits digits.
501 // * buffer contains at most requested_digits digits of w. If there are less
502 // than requested_digits digits then some trailing '0's have been remo ved.
503 // * kappa is such that
504 // w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2.
505 //
506 // Remark: This procedure takes into account the imprecision of its input
507 // numbers. If the precision is not enough to guarantee all the postcondit ions
508 // then false is returned. This usually happens rarely, but the failure-ra te
509 // increases with higher requested_digits.
510 static bool DigitGenCounted(DiyFp w,
511 int requested_digits,
512 Vector<char> buffer,
513 int* length,
514 int* kappa) {
515 ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponen t);
516 ASSERT(kMinimalTargetExponent >= -60);
517 ASSERT(kMaximalTargetExponent <= -32);
518 // w is assumed to have an error less than 1 unit. Whenever w is scaled we
519 // also scale its error.
520 uint64_t w_error = 1;
521 // We cut the input number into two parts: the integral digits and the
522 // fractional digits. We don't emit any decimal separator, but adapt kap pa
523 // instead. Example: instead of writing "1.2" we put "12" into the buffe r and
524 // increase kappa by 1.
525 DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e());
526 // Division by one is a shift.
527 uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e());
528 // Modulo by one is an and.
529 uint64_t fractionals = w.f() & (one.f() - 1);
530 uint32_t divisor;
531 int divisor_exponent;
532 BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()),
533 &divisor, &divisor_exponent);
534 *kappa = divisor_exponent + 1;
535 *length = 0;
536
537 // Loop invariant: buffer = w / 10^kappa (integer division)
538 // The invariant holds for the first iteration: kappa has been initializ ed
539 // with the divisor exponent + 1. And the divisor is the biggest power o f ten
540 // that is smaller than 'integrals'.
541 while (*kappa > 0) {
542 char digit = static_cast<char>(integrals / divisor);
543 buffer[*length] = '0' + digit;
544 (*length)++;
545 requested_digits--;
546 integrals %= divisor;
547 (*kappa)--;
548 // Note that kappa now equals the exponent of the divisor and that t he
549 // invariant thus holds again.
550 if (requested_digits == 0) break;
551 divisor /= 10;
552 }
553
554 if (requested_digits == 0) {
555 uint64_t rest =
556 (static_cast<uint64_t>(integrals) << -one.e()) + fractionals;
557 return RoundWeedCounted(buffer, *length, rest,
558 static_cast<uint64_t>(divisor) << -one.e(), w_error,
559 kappa);
560 }
561
562 // The integrals have been generated. We are at the point of the decimal
563 // separator. In the following loop we simply multiply the remaining dig its by
564 // 10 and divide by one. We just need to pay attention to multiply assoc iated
565 // data (the 'unit'), too.
566 // Note that the multiplication by 10 does not overflow, because w.e >= -60
567 // and thus one.e >= -60.
568 ASSERT(one.e() >= -60);
569 ASSERT(fractionals < one.f());
570 ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f());
571 while (requested_digits > 0 && fractionals > w_error) {
572 fractionals *= 10;
573 w_error *= 10;
574 // Integer division by one.
575 char digit = static_cast<char>(fractionals >> -one.e());
576 buffer[*length] = '0' + digit;
577 (*length)++;
578 requested_digits--;
579 fractionals &= one.f() - 1; // Modulo by one.
580 (*kappa)--;
581 }
582 if (requested_digits != 0) return false;
583 return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error,
584 kappa);
585 }
586
587
588 // Provides a decimal representation of v.
589 // Returns true if it succeeds, otherwise the result cannot be trusted.
590 // There will be *length digits inside the buffer (not null-terminated).
591 // If the function returns true then
592 // v == (double) (buffer * 10^decimal_exponent).
593 // The digits in the buffer are the shortest representation possible: no
594 // 0.09999999999999999 instead of 0.1. The shorter representation will even be
595 // chosen even if the longer one would be closer to v.
596 // The last digit will be closest to the actual v. That is, even if several
597 // digits might correctly yield 'v' when read again, the closest will be
598 // computed.
599 static bool Grisu3(double v,
600 Vector<char> buffer,
601 int* length,
602 int* decimal_exponent) {
603 DiyFp w = Double(v).AsNormalizedDiyFp();
604 // boundary_minus and boundary_plus are the boundaries between v and its
605 // closest floating-point neighbors. Any number strictly between
606 // boundary_minus and boundary_plus will round to v when convert to a do uble.
607 // Grisu3 will never output representations that lie exactly on a bounda ry.
608 DiyFp boundary_minus, boundary_plus;
609 Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus);
610 ASSERT(boundary_plus.e() == w.e());
611 DiyFp ten_mk; // Cached power of ten: 10^-k
612 int mk; // -k
613 int ten_mk_minimal_binary_exponent =
614 kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
615 int ten_mk_maximal_binary_exponent =
616 kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
617 PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
618 ten_mk_minimal_bi nary_exponent,
619 ten_mk_maximal_bi nary_exponent,
620 &ten_mk, &mk);
621 ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
622 DiyFp::kSignificandSize) &&
623 (kMaximalTargetExponent >= w.e() + ten_mk.e() +
624 DiyFp::kSignificandSize));
625 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only cont ains a
626 // 64 bit significand and ten_mk is thus only precise up to 64 bits.
627
628 // The DiyFp::Times procedure rounds its result, and ten_mk is approxima ted
629 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) ar e now
630 // off by a small amount.
631 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_ w.
632 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
633 // (f-1) * 2^e < w*10^k < (f+1) * 2^e
634 DiyFp scaled_w = DiyFp::Times(w, ten_mk);
635 ASSERT(scaled_w.e() ==
636 boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize);
637 // In theory it would be possible to avoid some recomputations by comput ing
638 // the difference between w and boundary_minus/plus (a power of 2) and t o
639 // compute scaled_boundary_minus/plus by subtracting/adding from
640 // scaled_w. However the code becomes much less readable and the speed
641 // enhancements are not terriffic.
642 DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk);
643 DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk);
644
645 // DigitGen will generate the digits of scaled_w. Therefore we have
646 // v == (double) (scaled_w * 10^-mk).
647 // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is n ot an
648 // integer than it will be updated. For instance if scaled_w == 1.23 the n
649 // the buffer will be filled with "123" und the decimal_exponent will be
650 // decreased by 2.
651 int kappa;
652 bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_ plus,
653 buffer, length, &kappa);
654 *decimal_exponent = -mk + kappa;
655 return result;
656 }
657
658
659 // The "counted" version of grisu3 (see above) only generates requested_digi ts
660 // number of digits. This version does not generate the shortest representat ion,
661 // and with enough requested digits 0.1 will at some point print as 0.999999 9...
662 // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and
663 // therefore the rounding strategy for halfway cases is irrelevant.
664 static bool Grisu3Counted(double v,
665 int requested_digits,
666 Vector<char> buffer,
667 int* length,
668 int* decimal_exponent) {
669 DiyFp w = Double(v).AsNormalizedDiyFp();
670 DiyFp ten_mk; // Cached power of ten: 10^-k
671 int mk; // -k
672 int ten_mk_minimal_binary_exponent =
673 kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize);
674 int ten_mk_maximal_binary_exponent =
675 kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize);
676 PowersOfTenCache::GetCachedPowerForBinaryExponentRange(
677 ten_mk_minimal_bi nary_exponent,
678 ten_mk_maximal_bi nary_exponent,
679 &ten_mk, &mk);
680 ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() +
681 DiyFp::kSignificandSize) &&
682 (kMaximalTargetExponent >= w.e() + ten_mk.e() +
683 DiyFp::kSignificandSize));
684 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only cont ains a
685 // 64 bit significand and ten_mk is thus only precise up to 64 bits.
686
687 // The DiyFp::Times procedure rounds its result, and ten_mk is approxima ted
688 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) ar e now
689 // off by a small amount.
690 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_ w.
691 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then
692 // (f-1) * 2^e < w*10^k < (f+1) * 2^e
693 DiyFp scaled_w = DiyFp::Times(w, ten_mk);
694
695 // We now have (double) (scaled_w * 10^-mk).
696 // DigitGen will generate the first requested_digits digits of scaled_w and
697 // return together with a kappa such that scaled_w ~= buffer * 10^kappa. (It
698 // will not always be exactly the same since DigitGenCounted only produc es a
699 // limited number of digits.)
700 int kappa;
701 bool result = DigitGenCounted(scaled_w, requested_digits,
702 buffer, length, &kappa);
703 *decimal_exponent = -mk + kappa;
704 return result;
705 }
706
707
708 bool FastDtoa(double v,
709 FastDtoaMode mode,
710 int requested_digits,
711 Vector<char> buffer,
712 int* length,
713 int* decimal_point) {
714 ASSERT(v > 0);
715 ASSERT(!Double(v).IsSpecial());
716
717 bool result = false;
718 int decimal_exponent = 0;
719 switch (mode) {
720 case FAST_DTOA_SHORTEST:
721 result = Grisu3(v, buffer, length, &decimal_exponent);
722 break;
723 case FAST_DTOA_PRECISION:
724 result = Grisu3Counted(v, requested_digits,
725 buffer, length, &decimal_exponent);
726 break;
727 default:
728 UNREACHABLE();
729 }
730 if (result) {
731 *decimal_point = *length + decimal_exponent;
732 buffer[*length] = '\0';
733 }
734 return result;
735 }
736
737 } // namespace double_conversion
738
739 } // namespace WTF
OLDNEW
« no previous file with comments | « third_party/WebKit/Source/wtf/dtoa/fast-dtoa.h ('k') | third_party/WebKit/Source/wtf/dtoa/fixed-dtoa.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698