| OLD | NEW |
| (Empty) |
| 1 // Copyright 2010 the V8 project authors. All rights reserved. | |
| 2 // Redistribution and use in source and binary forms, with or without | |
| 3 // modification, are permitted provided that the following conditions are | |
| 4 // met: | |
| 5 // | |
| 6 // * Redistributions of source code must retain the above copyright | |
| 7 // notice, this list of conditions and the following disclaimer. | |
| 8 // * Redistributions in binary form must reproduce the above | |
| 9 // copyright notice, this list of conditions and the following | |
| 10 // disclaimer in the documentation and/or other materials provided | |
| 11 // with the distribution. | |
| 12 // * Neither the name of Google Inc. nor the names of its | |
| 13 // contributors may be used to endorse or promote products derived | |
| 14 // from this software without specific prior written permission. | |
| 15 // | |
| 16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
| 17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
| 18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
| 19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
| 20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
| 21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
| 22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
| 23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
| 24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
| 25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
| 26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
| 27 | |
| 28 #include "fast-dtoa.h" | |
| 29 | |
| 30 #include "cached-powers.h" | |
| 31 #include "diy-fp.h" | |
| 32 #include "double.h" | |
| 33 | |
| 34 namespace WTF { | |
| 35 | |
| 36 namespace double_conversion { | |
| 37 | |
| 38 // The minimal and maximal target exponent define the range of w's binary | |
| 39 // exponent, where 'w' is the result of multiplying the input by a cached po
wer | |
| 40 // of ten. | |
| 41 // | |
| 42 // A different range might be chosen on a different platform, to optimize di
git | |
| 43 // generation, but a smaller range requires more powers of ten to be cached. | |
| 44 static const int kMinimalTargetExponent = -60; | |
| 45 static const int kMaximalTargetExponent = -32; | |
| 46 | |
| 47 | |
| 48 // Adjusts the last digit of the generated number, and screens out generated | |
| 49 // solutions that may be inaccurate. A solution may be inaccurate if it is | |
| 50 // outside the safe interval, or if we cannot prove that it is closer to the | |
| 51 // input than a neighboring representation of the same length. | |
| 52 // | |
| 53 // Input: * buffer containing the digits of too_high / 10^kappa | |
| 54 // * the buffer's length | |
| 55 // * distance_too_high_w == (too_high - w).f() * unit | |
| 56 // * unsafe_interval == (too_high - too_low).f() * unit | |
| 57 // * rest = (too_high - buffer * 10^kappa).f() * unit | |
| 58 // * ten_kappa = 10^kappa * unit | |
| 59 // * unit = the common multiplier | |
| 60 // Output: returns true if the buffer is guaranteed to contain the closest | |
| 61 // representable number to the input. | |
| 62 // Modifies the generated digits in the buffer to approach (round towards)
w. | |
| 63 static bool RoundWeed(Vector<char> buffer, | |
| 64 int length, | |
| 65 uint64_t distance_too_high_w, | |
| 66 uint64_t unsafe_interval, | |
| 67 uint64_t rest, | |
| 68 uint64_t ten_kappa, | |
| 69 uint64_t unit) { | |
| 70 uint64_t small_distance = distance_too_high_w - unit; | |
| 71 uint64_t big_distance = distance_too_high_w + unit; | |
| 72 // Let w_low = too_high - big_distance, and | |
| 73 // w_high = too_high - small_distance. | |
| 74 // Note: w_low < w < w_high | |
| 75 // | |
| 76 // The real w (* unit) must lie somewhere inside the interval | |
| 77 // ]w_low; w_high[ (often written as "(w_low; w_high)") | |
| 78 | |
| 79 // Basically the buffer currently contains a number in the unsafe interv
al | |
| 80 // ]too_low; too_high[ with too_low < w < too_high | |
| 81 // | |
| 82 // too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - | |
| 83 // ^v 1 unit ^ ^ ^
^ | |
| 84 // boundary_high --------------------- . . .
. | |
| 85 // ^v 1 unit . . .
. | |
| 86 // - - - - - - - - - - - - - - - - - - - + - - + - - - - - - .
. | |
| 87 // . . ^ .
. | |
| 88 // . big_distance . .
. | |
| 89 // . . . .
rest | |
| 90 // small_distance . . .
. | |
| 91 // v . . .
. | |
| 92 // w_high - - - - - - - - - - - - - - - - - - . . .
. | |
| 93 // ^v 1 unit . . .
. | |
| 94 // w ---------------------------------------- . . .
. | |
| 95 // ^v 1 unit v . .
. | |
| 96 // w_low - - - - - - - - - - - - - - - - - - - - - . .
. | |
| 97 // . .
v | |
| 98 // buffer --------------------------------------------------+-------+--
------ | |
| 99 // . . | |
| 100 // safe_interval . | |
| 101 // v . | |
| 102 // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . | |
| 103 // ^v 1 unit . | |
| 104 // boundary_low ------------------------- unsafe_in
terval | |
| 105 // ^v 1 unit v | |
| 106 // too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - | |
| 107 // | |
| 108 // | |
| 109 // Note that the value of buffer could lie anywhere inside the range too
_low | |
| 110 // to too_high. | |
| 111 // | |
| 112 // boundary_low, boundary_high and w are approximations of the real boun
daries | |
| 113 // and v (the input number). They are guaranteed to be precise up to one
unit. | |
| 114 // In fact the error is guaranteed to be strictly less than one unit. | |
| 115 // | |
| 116 // Anything that lies outside the unsafe interval is guaranteed not to r
ound | |
| 117 // to v when read again. | |
| 118 // Anything that lies inside the safe interval is guaranteed to round to
v | |
| 119 // when read again. | |
| 120 // If the number inside the buffer lies inside the unsafe interval but n
ot | |
| 121 // inside the safe interval then we simply do not know and bail out (ret
urning | |
| 122 // false). | |
| 123 // | |
| 124 // Similarly we have to take into account the imprecision of 'w' when fi
nding | |
| 125 // the closest representation of 'w'. If we have two potential | |
| 126 // representations, and one is closer to both w_low and w_high, then we
know | |
| 127 // it is closer to the actual value v. | |
| 128 // | |
| 129 // By generating the digits of too_high we got the largest (closest to | |
| 130 // too_high) buffer that is still in the unsafe interval. In the case wh
ere | |
| 131 // w_high < buffer < too_high we try to decrement the buffer. | |
| 132 // This way the buffer approaches (rounds towards) w. | |
| 133 // There are 3 conditions that stop the decrementation process: | |
| 134 // 1) the buffer is already below w_high | |
| 135 // 2) decrementing the buffer would make it leave the unsafe interval | |
| 136 // 3) decrementing the buffer would yield a number below w_high and fa
rther | |
| 137 // away than the current number. In other words: | |
| 138 // (buffer{-1} < w_high) && w_high - buffer{-1} > buffer -
w_high | |
| 139 // Instead of using the buffer directly we use its distance to too_high. | |
| 140 // Conceptually rest ~= too_high - buffer | |
| 141 // We need to do the following tests in this order to avoid over- and | |
| 142 // underflows. | |
| 143 ASSERT(rest <= unsafe_interval); | |
| 144 while (rest < small_distance && // Negated condition 1 | |
| 145 unsafe_interval - rest >= ten_kappa && // Negated condition 2 | |
| 146 (rest + ten_kappa < small_distance || // buffer{-1} > w_high | |
| 147 small_distance - rest >= rest + ten_kappa - small_distance)) { | |
| 148 buffer[length - 1]--; | |
| 149 rest += ten_kappa; | |
| 150 } | |
| 151 | |
| 152 // We have approached w+ as much as possible. We now test if approaching
w- | |
| 153 // would require changing the buffer. If yes, then we have two possible | |
| 154 // representations close to w, but we cannot decide which one is closer. | |
| 155 if (rest < big_distance && | |
| 156 unsafe_interval - rest >= ten_kappa && | |
| 157 (rest + ten_kappa < big_distance || | |
| 158 big_distance - rest > rest + ten_kappa - big_distance)) { | |
| 159 return false; | |
| 160 } | |
| 161 | |
| 162 // Weeding test. | |
| 163 // The safe interval is [too_low + 2 ulp; too_high - 2 ulp] | |
| 164 // Since too_low = too_high - unsafe_interval this is equivalent to | |
| 165 // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp] | |
| 166 // Conceptually we have: rest ~= too_high - buffer | |
| 167 return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit); | |
| 168 } | |
| 169 | |
| 170 | |
| 171 // Rounds the buffer upwards if the result is closer to v by possibly adding | |
| 172 // 1 to the buffer. If the precision of the calculation is not sufficient to | |
| 173 // round correctly, return false. | |
| 174 // The rounding might shift the whole buffer in which case the kappa is | |
| 175 // adjusted. For example "99", kappa = 3 might become "10", kappa = 4. | |
| 176 // | |
| 177 // If 2*rest > ten_kappa then the buffer needs to be round up. | |
| 178 // rest can have an error of +/- 1 unit. This function accounts for the | |
| 179 // imprecision and returns false, if the rounding direction cannot be | |
| 180 // unambiguously determined. | |
| 181 // | |
| 182 // Precondition: rest < ten_kappa. | |
| 183 static bool RoundWeedCounted(Vector<char> buffer, | |
| 184 int length, | |
| 185 uint64_t rest, | |
| 186 uint64_t ten_kappa, | |
| 187 uint64_t unit, | |
| 188 int* kappa) { | |
| 189 ASSERT(rest < ten_kappa); | |
| 190 // The following tests are done in a specific order to avoid overflows.
They | |
| 191 // will work correctly with any uint64 values of rest < ten_kappa and un
it. | |
| 192 // | |
| 193 // If the unit is too big, then we don't know which way to round. For ex
ample | |
| 194 // a unit of 50 means that the real number lies within rest +/- 50. If | |
| 195 // 10^kappa == 40 then there is no way to tell which way to round. | |
| 196 if (unit >= ten_kappa) return false; | |
| 197 // Even if unit is just half the size of 10^kappa we are already complet
ely | |
| 198 // lost. (And after the previous test we know that the expression will n
ot | |
| 199 // over/underflow.) | |
| 200 if (ten_kappa - unit <= unit) return false; | |
| 201 // If 2 * (rest + unit) <= 10^kappa we can safely round down. | |
| 202 if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) { | |
| 203 return true; | |
| 204 } | |
| 205 // If 2 * (rest - unit) >= 10^kappa, then we can safely round up. | |
| 206 if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) { | |
| 207 // Increment the last digit recursively until we find a non '9' digi
t. | |
| 208 buffer[length - 1]++; | |
| 209 for (int i = length - 1; i > 0; --i) { | |
| 210 if (buffer[i] != '0' + 10) break; | |
| 211 buffer[i] = '0'; | |
| 212 buffer[i - 1]++; | |
| 213 } | |
| 214 // If the first digit is now '0'+ 10 we had a buffer with all '9's.
With the | |
| 215 // exception of the first digit all digits are now '0'. Simply switc
h the | |
| 216 // first digit to '1' and adjust the kappa. Example: "99" becomes "1
0" and | |
| 217 // the power (the kappa) is increased. | |
| 218 if (buffer[0] == '0' + 10) { | |
| 219 buffer[0] = '1'; | |
| 220 (*kappa) += 1; | |
| 221 } | |
| 222 return true; | |
| 223 } | |
| 224 return false; | |
| 225 } | |
| 226 | |
| 227 | |
| 228 static const uint32_t kTen4 = 10000; | |
| 229 static const uint32_t kTen5 = 100000; | |
| 230 static const uint32_t kTen6 = 1000000; | |
| 231 static const uint32_t kTen7 = 10000000; | |
| 232 static const uint32_t kTen8 = 100000000; | |
| 233 static const uint32_t kTen9 = 1000000000; | |
| 234 | |
| 235 // Returns the biggest power of ten that is less than or equal to the given | |
| 236 // number. We furthermore receive the maximum number of bits 'number' has. | |
| 237 // If number_bits == 0 then 0^-1 is returned | |
| 238 // The number of bits must be <= 32. | |
| 239 // Precondition: number < (1 << (number_bits + 1)). | |
| 240 static void BiggestPowerTen(uint32_t number, | |
| 241 int number_bits, | |
| 242 uint32_t* power, | |
| 243 int* exponent) { | |
| 244 ASSERT(number < (uint32_t)(1 << (number_bits + 1))); | |
| 245 | |
| 246 switch (number_bits) { | |
| 247 case 32: | |
| 248 case 31: | |
| 249 case 30: | |
| 250 if (kTen9 <= number) { | |
| 251 *power = kTen9; | |
| 252 *exponent = 9; | |
| 253 break; | |
| 254 } // else fallthrough | |
| 255 case 29: | |
| 256 case 28: | |
| 257 case 27: | |
| 258 if (kTen8 <= number) { | |
| 259 *power = kTen8; | |
| 260 *exponent = 8; | |
| 261 break; | |
| 262 } // else fallthrough | |
| 263 case 26: | |
| 264 case 25: | |
| 265 case 24: | |
| 266 if (kTen7 <= number) { | |
| 267 *power = kTen7; | |
| 268 *exponent = 7; | |
| 269 break; | |
| 270 } // else fallthrough | |
| 271 case 23: | |
| 272 case 22: | |
| 273 case 21: | |
| 274 case 20: | |
| 275 if (kTen6 <= number) { | |
| 276 *power = kTen6; | |
| 277 *exponent = 6; | |
| 278 break; | |
| 279 } // else fallthrough | |
| 280 case 19: | |
| 281 case 18: | |
| 282 case 17: | |
| 283 if (kTen5 <= number) { | |
| 284 *power = kTen5; | |
| 285 *exponent = 5; | |
| 286 break; | |
| 287 } // else fallthrough | |
| 288 case 16: | |
| 289 case 15: | |
| 290 case 14: | |
| 291 if (kTen4 <= number) { | |
| 292 *power = kTen4; | |
| 293 *exponent = 4; | |
| 294 break; | |
| 295 } // else fallthrough | |
| 296 case 13: | |
| 297 case 12: | |
| 298 case 11: | |
| 299 case 10: | |
| 300 if (1000 <= number) { | |
| 301 *power = 1000; | |
| 302 *exponent = 3; | |
| 303 break; | |
| 304 } // else fallthrough | |
| 305 case 9: | |
| 306 case 8: | |
| 307 case 7: | |
| 308 if (100 <= number) { | |
| 309 *power = 100; | |
| 310 *exponent = 2; | |
| 311 break; | |
| 312 } // else fallthrough | |
| 313 case 6: | |
| 314 case 5: | |
| 315 case 4: | |
| 316 if (10 <= number) { | |
| 317 *power = 10; | |
| 318 *exponent = 1; | |
| 319 break; | |
| 320 } // else fallthrough | |
| 321 case 3: | |
| 322 case 2: | |
| 323 case 1: | |
| 324 if (1 <= number) { | |
| 325 *power = 1; | |
| 326 *exponent = 0; | |
| 327 break; | |
| 328 } // else fallthrough | |
| 329 case 0: | |
| 330 *power = 0; | |
| 331 *exponent = -1; | |
| 332 break; | |
| 333 default: | |
| 334 // Following assignments are here to silence compiler warnings. | |
| 335 *power = 0; | |
| 336 *exponent = 0; | |
| 337 UNREACHABLE(); | |
| 338 } | |
| 339 } | |
| 340 | |
| 341 | |
| 342 // Generates the digits of input number w. | |
| 343 // w is a floating-point number (DiyFp), consisting of a significand and an | |
| 344 // exponent. Its exponent is bounded by kMinimalTargetExponent and | |
| 345 // kMaximalTargetExponent. | |
| 346 // Hence -60 <= w.e() <= -32. | |
| 347 // | |
| 348 // Returns false if it fails, in which case the generated digits in the buff
er | |
| 349 // should not be used. | |
| 350 // Preconditions: | |
| 351 // * low, w and high are correct up to 1 ulp (unit in the last place). That | |
| 352 // is, their error must be less than a unit of their last digits. | |
| 353 // * low.e() == w.e() == high.e() | |
| 354 // * low < w < high, and taking into account their error: low~ <= high~ | |
| 355 // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent | |
| 356 // Postconditions: returns false if procedure fails. | |
| 357 // otherwise: | |
| 358 // * buffer is not null-terminated, but len contains the number of digit
s. | |
| 359 // * buffer contains the shortest possible decimal digit-sequence | |
| 360 // such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are th
e | |
| 361 // correct values of low and high (without their error). | |
| 362 // * if more than one decimal representation gives the minimal number of | |
| 363 // decimal digits then the one closest to W (where W is the correct va
lue | |
| 364 // of w) is chosen. | |
| 365 // Remark: this procedure takes into account the imprecision of its input | |
| 366 // numbers. If the precision is not enough to guarantee all the postcondit
ions | |
| 367 // then false is returned. This usually happens rarely (~0.5%). | |
| 368 // | |
| 369 // Say, for the sake of example, that | |
| 370 // w.e() == -48, and w.f() == 0x1234567890abcdef | |
| 371 // w's value can be computed by w.f() * 2^w.e() | |
| 372 // We can obtain w's integral digits by simply shifting w.f() by -w.e(). | |
| 373 // -> w's integral part is 0x1234 | |
| 374 // w's fractional part is therefore 0x567890abcdef. | |
| 375 // Printing w's integral part is easy (simply print 0x1234 in decimal). | |
| 376 // In order to print its fraction we repeatedly multiply the fraction by 10
and | |
| 377 // get each digit. Example the first digit after the point would be computed
by | |
| 378 // (0x567890abcdef * 10) >> 48. -> 3 | |
| 379 // The whole thing becomes slightly more complicated because we want to stop | |
| 380 // once we have enough digits. That is, once the digits inside the buffer | |
| 381 // represent 'w' we can stop. Everything inside the interval low - high | |
| 382 // represents w. However we have to pay attention to low, high and w's | |
| 383 // imprecision. | |
| 384 static bool DigitGen(DiyFp low, | |
| 385 DiyFp w, | |
| 386 DiyFp high, | |
| 387 Vector<char> buffer, | |
| 388 int* length, | |
| 389 int* kappa) { | |
| 390 ASSERT(low.e() == w.e() && w.e() == high.e()); | |
| 391 ASSERT(low.f() + 1 <= high.f() - 1); | |
| 392 ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponen
t); | |
| 393 // low, w and high are imprecise, but by less than one ulp (unit in the
last | |
| 394 // place). | |
| 395 // If we remove (resp. add) 1 ulp from low (resp. high) we are certain t
hat | |
| 396 // the new numbers are outside of the interval we want the final | |
| 397 // representation to lie in. | |
| 398 // Inversely adding (resp. removing) 1 ulp from low (resp. high) would y
ield | |
| 399 // numbers that are certain to lie in the interval. We will use this fac
t | |
| 400 // later on. | |
| 401 // We will now start by generating the digits within the uncertain | |
| 402 // interval. Later we will weed out representations that lie outside the
safe | |
| 403 // interval and thus _might_ lie outside the correct interval. | |
| 404 uint64_t unit = 1; | |
| 405 DiyFp too_low = DiyFp(low.f() - unit, low.e()); | |
| 406 DiyFp too_high = DiyFp(high.f() + unit, high.e()); | |
| 407 // too_low and too_high are guaranteed to lie outside the interval we wa
nt the | |
| 408 // generated number in. | |
| 409 DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low); | |
| 410 // We now cut the input number into two parts: the integral digits and t
he | |
| 411 // fractionals. We will not write any decimal separator though, but adap
t | |
| 412 // kappa instead. | |
| 413 // Reminder: we are currently computing the digits (stored inside the bu
ffer) | |
| 414 // such that: too_low < buffer * 10^kappa < too_high | |
| 415 // We use too_high for the digit_generation and stop as soon as possible
. | |
| 416 // If we stop early we effectively round down. | |
| 417 DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e()); | |
| 418 // Division by one is a shift. | |
| 419 uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e()); | |
| 420 // Modulo by one is an and. | |
| 421 uint64_t fractionals = too_high.f() & (one.f() - 1); | |
| 422 uint32_t divisor; | |
| 423 int divisor_exponent; | |
| 424 BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), | |
| 425 &divisor, &divisor_exponent); | |
| 426 *kappa = divisor_exponent + 1; | |
| 427 *length = 0; | |
| 428 // Loop invariant: buffer = too_high / 10^kappa (integer division) | |
| 429 // The invariant holds for the first iteration: kappa has been initializ
ed | |
| 430 // with the divisor exponent + 1. And the divisor is the biggest power o
f ten | |
| 431 // that is smaller than integrals. | |
| 432 while (*kappa > 0) { | |
| 433 char digit = static_cast<char>(integrals / divisor); | |
| 434 buffer[*length] = '0' + digit; | |
| 435 (*length)++; | |
| 436 integrals %= divisor; | |
| 437 (*kappa)--; | |
| 438 // Note that kappa now equals the exponent of the divisor and that t
he | |
| 439 // invariant thus holds again. | |
| 440 uint64_t rest = | |
| 441 (static_cast<uint64_t>(integrals) << -one.e()) + fractionals; | |
| 442 // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e()) | |
| 443 // Reminder: unsafe_interval.e() == one.e() | |
| 444 if (rest < unsafe_interval.f()) { | |
| 445 // Rounding down (by not emitting the remaining digits) yields a
number | |
| 446 // that lies within the unsafe interval. | |
| 447 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(), | |
| 448 unsafe_interval.f(), rest, | |
| 449 static_cast<uint64_t>(divisor) << -one.e(), uni
t); | |
| 450 } | |
| 451 divisor /= 10; | |
| 452 } | |
| 453 | |
| 454 // The integrals have been generated. We are at the point of the decimal | |
| 455 // separator. In the following loop we simply multiply the remaining dig
its by | |
| 456 // 10 and divide by one. We just need to pay attention to multiply assoc
iated | |
| 457 // data (like the interval or 'unit'), too. | |
| 458 // Note that the multiplication by 10 does not overflow, because w.e >=
-60 | |
| 459 // and thus one.e >= -60. | |
| 460 ASSERT(one.e() >= -60); | |
| 461 ASSERT(fractionals < one.f()); | |
| 462 ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f()); | |
| 463 while (true) { | |
| 464 fractionals *= 10; | |
| 465 unit *= 10; | |
| 466 unsafe_interval.set_f(unsafe_interval.f() * 10); | |
| 467 // Integer division by one. | |
| 468 char digit = static_cast<char>(fractionals >> -one.e()); | |
| 469 buffer[*length] = '0' + digit; | |
| 470 (*length)++; | |
| 471 fractionals &= one.f() - 1; // Modulo by one. | |
| 472 (*kappa)--; | |
| 473 if (fractionals < unsafe_interval.f()) { | |
| 474 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f()
* unit, | |
| 475 unsafe_interval.f(), fractionals, one.f(), unit
); | |
| 476 } | |
| 477 } | |
| 478 } | |
| 479 | |
| 480 | |
| 481 | |
| 482 // Generates (at most) requested_digits digits of input number w. | |
| 483 // w is a floating-point number (DiyFp), consisting of a significand and an | |
| 484 // exponent. Its exponent is bounded by kMinimalTargetExponent and | |
| 485 // kMaximalTargetExponent. | |
| 486 // Hence -60 <= w.e() <= -32. | |
| 487 // | |
| 488 // Returns false if it fails, in which case the generated digits in the buff
er | |
| 489 // should not be used. | |
| 490 // Preconditions: | |
| 491 // * w is correct up to 1 ulp (unit in the last place). That | |
| 492 // is, its error must be strictly less than a unit of its last digit. | |
| 493 // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent | |
| 494 // | |
| 495 // Postconditions: returns false if procedure fails. | |
| 496 // otherwise: | |
| 497 // * buffer is not null-terminated, but length contains the number of | |
| 498 // digits. | |
| 499 // * the representation in buffer is the most precise representation of | |
| 500 // requested_digits digits. | |
| 501 // * buffer contains at most requested_digits digits of w. If there are
less | |
| 502 // than requested_digits digits then some trailing '0's have been remo
ved. | |
| 503 // * kappa is such that | |
| 504 // w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2. | |
| 505 // | |
| 506 // Remark: This procedure takes into account the imprecision of its input | |
| 507 // numbers. If the precision is not enough to guarantee all the postcondit
ions | |
| 508 // then false is returned. This usually happens rarely, but the failure-ra
te | |
| 509 // increases with higher requested_digits. | |
| 510 static bool DigitGenCounted(DiyFp w, | |
| 511 int requested_digits, | |
| 512 Vector<char> buffer, | |
| 513 int* length, | |
| 514 int* kappa) { | |
| 515 ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponen
t); | |
| 516 ASSERT(kMinimalTargetExponent >= -60); | |
| 517 ASSERT(kMaximalTargetExponent <= -32); | |
| 518 // w is assumed to have an error less than 1 unit. Whenever w is scaled
we | |
| 519 // also scale its error. | |
| 520 uint64_t w_error = 1; | |
| 521 // We cut the input number into two parts: the integral digits and the | |
| 522 // fractional digits. We don't emit any decimal separator, but adapt kap
pa | |
| 523 // instead. Example: instead of writing "1.2" we put "12" into the buffe
r and | |
| 524 // increase kappa by 1. | |
| 525 DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e()); | |
| 526 // Division by one is a shift. | |
| 527 uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e()); | |
| 528 // Modulo by one is an and. | |
| 529 uint64_t fractionals = w.f() & (one.f() - 1); | |
| 530 uint32_t divisor; | |
| 531 int divisor_exponent; | |
| 532 BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), | |
| 533 &divisor, &divisor_exponent); | |
| 534 *kappa = divisor_exponent + 1; | |
| 535 *length = 0; | |
| 536 | |
| 537 // Loop invariant: buffer = w / 10^kappa (integer division) | |
| 538 // The invariant holds for the first iteration: kappa has been initializ
ed | |
| 539 // with the divisor exponent + 1. And the divisor is the biggest power o
f ten | |
| 540 // that is smaller than 'integrals'. | |
| 541 while (*kappa > 0) { | |
| 542 char digit = static_cast<char>(integrals / divisor); | |
| 543 buffer[*length] = '0' + digit; | |
| 544 (*length)++; | |
| 545 requested_digits--; | |
| 546 integrals %= divisor; | |
| 547 (*kappa)--; | |
| 548 // Note that kappa now equals the exponent of the divisor and that t
he | |
| 549 // invariant thus holds again. | |
| 550 if (requested_digits == 0) break; | |
| 551 divisor /= 10; | |
| 552 } | |
| 553 | |
| 554 if (requested_digits == 0) { | |
| 555 uint64_t rest = | |
| 556 (static_cast<uint64_t>(integrals) << -one.e()) + fractionals; | |
| 557 return RoundWeedCounted(buffer, *length, rest, | |
| 558 static_cast<uint64_t>(divisor) << -one.e(),
w_error, | |
| 559 kappa); | |
| 560 } | |
| 561 | |
| 562 // The integrals have been generated. We are at the point of the decimal | |
| 563 // separator. In the following loop we simply multiply the remaining dig
its by | |
| 564 // 10 and divide by one. We just need to pay attention to multiply assoc
iated | |
| 565 // data (the 'unit'), too. | |
| 566 // Note that the multiplication by 10 does not overflow, because w.e >=
-60 | |
| 567 // and thus one.e >= -60. | |
| 568 ASSERT(one.e() >= -60); | |
| 569 ASSERT(fractionals < one.f()); | |
| 570 ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f()); | |
| 571 while (requested_digits > 0 && fractionals > w_error) { | |
| 572 fractionals *= 10; | |
| 573 w_error *= 10; | |
| 574 // Integer division by one. | |
| 575 char digit = static_cast<char>(fractionals >> -one.e()); | |
| 576 buffer[*length] = '0' + digit; | |
| 577 (*length)++; | |
| 578 requested_digits--; | |
| 579 fractionals &= one.f() - 1; // Modulo by one. | |
| 580 (*kappa)--; | |
| 581 } | |
| 582 if (requested_digits != 0) return false; | |
| 583 return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error, | |
| 584 kappa); | |
| 585 } | |
| 586 | |
| 587 | |
| 588 // Provides a decimal representation of v. | |
| 589 // Returns true if it succeeds, otherwise the result cannot be trusted. | |
| 590 // There will be *length digits inside the buffer (not null-terminated). | |
| 591 // If the function returns true then | |
| 592 // v == (double) (buffer * 10^decimal_exponent). | |
| 593 // The digits in the buffer are the shortest representation possible: no | |
| 594 // 0.09999999999999999 instead of 0.1. The shorter representation will even
be | |
| 595 // chosen even if the longer one would be closer to v. | |
| 596 // The last digit will be closest to the actual v. That is, even if several | |
| 597 // digits might correctly yield 'v' when read again, the closest will be | |
| 598 // computed. | |
| 599 static bool Grisu3(double v, | |
| 600 Vector<char> buffer, | |
| 601 int* length, | |
| 602 int* decimal_exponent) { | |
| 603 DiyFp w = Double(v).AsNormalizedDiyFp(); | |
| 604 // boundary_minus and boundary_plus are the boundaries between v and its | |
| 605 // closest floating-point neighbors. Any number strictly between | |
| 606 // boundary_minus and boundary_plus will round to v when convert to a do
uble. | |
| 607 // Grisu3 will never output representations that lie exactly on a bounda
ry. | |
| 608 DiyFp boundary_minus, boundary_plus; | |
| 609 Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus); | |
| 610 ASSERT(boundary_plus.e() == w.e()); | |
| 611 DiyFp ten_mk; // Cached power of ten: 10^-k | |
| 612 int mk; // -k | |
| 613 int ten_mk_minimal_binary_exponent = | |
| 614 kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize); | |
| 615 int ten_mk_maximal_binary_exponent = | |
| 616 kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize); | |
| 617 PowersOfTenCache::GetCachedPowerForBinaryExponentRange( | |
| 618 ten_mk_minimal_bi
nary_exponent, | |
| 619 ten_mk_maximal_bi
nary_exponent, | |
| 620 &ten_mk, &mk); | |
| 621 ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() + | |
| 622 DiyFp::kSignificandSize) && | |
| 623 (kMaximalTargetExponent >= w.e() + ten_mk.e() + | |
| 624 DiyFp::kSignificandSize)); | |
| 625 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only cont
ains a | |
| 626 // 64 bit significand and ten_mk is thus only precise up to 64 bits. | |
| 627 | |
| 628 // The DiyFp::Times procedure rounds its result, and ten_mk is approxima
ted | |
| 629 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) ar
e now | |
| 630 // off by a small amount. | |
| 631 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_
w. | |
| 632 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then | |
| 633 // (f-1) * 2^e < w*10^k < (f+1) * 2^e | |
| 634 DiyFp scaled_w = DiyFp::Times(w, ten_mk); | |
| 635 ASSERT(scaled_w.e() == | |
| 636 boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize); | |
| 637 // In theory it would be possible to avoid some recomputations by comput
ing | |
| 638 // the difference between w and boundary_minus/plus (a power of 2) and t
o | |
| 639 // compute scaled_boundary_minus/plus by subtracting/adding from | |
| 640 // scaled_w. However the code becomes much less readable and the speed | |
| 641 // enhancements are not terriffic. | |
| 642 DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk); | |
| 643 DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk); | |
| 644 | |
| 645 // DigitGen will generate the digits of scaled_w. Therefore we have | |
| 646 // v == (double) (scaled_w * 10^-mk). | |
| 647 // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is n
ot an | |
| 648 // integer than it will be updated. For instance if scaled_w == 1.23 the
n | |
| 649 // the buffer will be filled with "123" und the decimal_exponent will be | |
| 650 // decreased by 2. | |
| 651 int kappa; | |
| 652 bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_
plus, | |
| 653 buffer, length, &kappa); | |
| 654 *decimal_exponent = -mk + kappa; | |
| 655 return result; | |
| 656 } | |
| 657 | |
| 658 | |
| 659 // The "counted" version of grisu3 (see above) only generates requested_digi
ts | |
| 660 // number of digits. This version does not generate the shortest representat
ion, | |
| 661 // and with enough requested digits 0.1 will at some point print as 0.999999
9... | |
| 662 // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and | |
| 663 // therefore the rounding strategy for halfway cases is irrelevant. | |
| 664 static bool Grisu3Counted(double v, | |
| 665 int requested_digits, | |
| 666 Vector<char> buffer, | |
| 667 int* length, | |
| 668 int* decimal_exponent) { | |
| 669 DiyFp w = Double(v).AsNormalizedDiyFp(); | |
| 670 DiyFp ten_mk; // Cached power of ten: 10^-k | |
| 671 int mk; // -k | |
| 672 int ten_mk_minimal_binary_exponent = | |
| 673 kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize); | |
| 674 int ten_mk_maximal_binary_exponent = | |
| 675 kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize); | |
| 676 PowersOfTenCache::GetCachedPowerForBinaryExponentRange( | |
| 677 ten_mk_minimal_bi
nary_exponent, | |
| 678 ten_mk_maximal_bi
nary_exponent, | |
| 679 &ten_mk, &mk); | |
| 680 ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() + | |
| 681 DiyFp::kSignificandSize) && | |
| 682 (kMaximalTargetExponent >= w.e() + ten_mk.e() + | |
| 683 DiyFp::kSignificandSize)); | |
| 684 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only cont
ains a | |
| 685 // 64 bit significand and ten_mk is thus only precise up to 64 bits. | |
| 686 | |
| 687 // The DiyFp::Times procedure rounds its result, and ten_mk is approxima
ted | |
| 688 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) ar
e now | |
| 689 // off by a small amount. | |
| 690 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_
w. | |
| 691 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then | |
| 692 // (f-1) * 2^e < w*10^k < (f+1) * 2^e | |
| 693 DiyFp scaled_w = DiyFp::Times(w, ten_mk); | |
| 694 | |
| 695 // We now have (double) (scaled_w * 10^-mk). | |
| 696 // DigitGen will generate the first requested_digits digits of scaled_w
and | |
| 697 // return together with a kappa such that scaled_w ~= buffer * 10^kappa.
(It | |
| 698 // will not always be exactly the same since DigitGenCounted only produc
es a | |
| 699 // limited number of digits.) | |
| 700 int kappa; | |
| 701 bool result = DigitGenCounted(scaled_w, requested_digits, | |
| 702 buffer, length, &kappa); | |
| 703 *decimal_exponent = -mk + kappa; | |
| 704 return result; | |
| 705 } | |
| 706 | |
| 707 | |
| 708 bool FastDtoa(double v, | |
| 709 FastDtoaMode mode, | |
| 710 int requested_digits, | |
| 711 Vector<char> buffer, | |
| 712 int* length, | |
| 713 int* decimal_point) { | |
| 714 ASSERT(v > 0); | |
| 715 ASSERT(!Double(v).IsSpecial()); | |
| 716 | |
| 717 bool result = false; | |
| 718 int decimal_exponent = 0; | |
| 719 switch (mode) { | |
| 720 case FAST_DTOA_SHORTEST: | |
| 721 result = Grisu3(v, buffer, length, &decimal_exponent); | |
| 722 break; | |
| 723 case FAST_DTOA_PRECISION: | |
| 724 result = Grisu3Counted(v, requested_digits, | |
| 725 buffer, length, &decimal_exponent); | |
| 726 break; | |
| 727 default: | |
| 728 UNREACHABLE(); | |
| 729 } | |
| 730 if (result) { | |
| 731 *decimal_point = *length + decimal_exponent; | |
| 732 buffer[*length] = '\0'; | |
| 733 } | |
| 734 return result; | |
| 735 } | |
| 736 | |
| 737 } // namespace double_conversion | |
| 738 | |
| 739 } // namespace WTF | |
| OLD | NEW |