OLD | NEW |
| (Empty) |
1 // Copyright 2010 the V8 project authors. All rights reserved. | |
2 // Redistribution and use in source and binary forms, with or without | |
3 // modification, are permitted provided that the following conditions are | |
4 // met: | |
5 // | |
6 // * Redistributions of source code must retain the above copyright | |
7 // notice, this list of conditions and the following disclaimer. | |
8 // * Redistributions in binary form must reproduce the above | |
9 // copyright notice, this list of conditions and the following | |
10 // disclaimer in the documentation and/or other materials provided | |
11 // with the distribution. | |
12 // * Neither the name of Google Inc. nor the names of its | |
13 // contributors may be used to endorse or promote products derived | |
14 // from this software without specific prior written permission. | |
15 // | |
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
27 | |
28 #include "fast-dtoa.h" | |
29 | |
30 #include "cached-powers.h" | |
31 #include "diy-fp.h" | |
32 #include "double.h" | |
33 | |
34 namespace WTF { | |
35 | |
36 namespace double_conversion { | |
37 | |
38 // The minimal and maximal target exponent define the range of w's binary | |
39 // exponent, where 'w' is the result of multiplying the input by a cached po
wer | |
40 // of ten. | |
41 // | |
42 // A different range might be chosen on a different platform, to optimize di
git | |
43 // generation, but a smaller range requires more powers of ten to be cached. | |
44 static const int kMinimalTargetExponent = -60; | |
45 static const int kMaximalTargetExponent = -32; | |
46 | |
47 | |
48 // Adjusts the last digit of the generated number, and screens out generated | |
49 // solutions that may be inaccurate. A solution may be inaccurate if it is | |
50 // outside the safe interval, or if we cannot prove that it is closer to the | |
51 // input than a neighboring representation of the same length. | |
52 // | |
53 // Input: * buffer containing the digits of too_high / 10^kappa | |
54 // * the buffer's length | |
55 // * distance_too_high_w == (too_high - w).f() * unit | |
56 // * unsafe_interval == (too_high - too_low).f() * unit | |
57 // * rest = (too_high - buffer * 10^kappa).f() * unit | |
58 // * ten_kappa = 10^kappa * unit | |
59 // * unit = the common multiplier | |
60 // Output: returns true if the buffer is guaranteed to contain the closest | |
61 // representable number to the input. | |
62 // Modifies the generated digits in the buffer to approach (round towards)
w. | |
63 static bool RoundWeed(Vector<char> buffer, | |
64 int length, | |
65 uint64_t distance_too_high_w, | |
66 uint64_t unsafe_interval, | |
67 uint64_t rest, | |
68 uint64_t ten_kappa, | |
69 uint64_t unit) { | |
70 uint64_t small_distance = distance_too_high_w - unit; | |
71 uint64_t big_distance = distance_too_high_w + unit; | |
72 // Let w_low = too_high - big_distance, and | |
73 // w_high = too_high - small_distance. | |
74 // Note: w_low < w < w_high | |
75 // | |
76 // The real w (* unit) must lie somewhere inside the interval | |
77 // ]w_low; w_high[ (often written as "(w_low; w_high)") | |
78 | |
79 // Basically the buffer currently contains a number in the unsafe interv
al | |
80 // ]too_low; too_high[ with too_low < w < too_high | |
81 // | |
82 // too_high - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - | |
83 // ^v 1 unit ^ ^ ^
^ | |
84 // boundary_high --------------------- . . .
. | |
85 // ^v 1 unit . . .
. | |
86 // - - - - - - - - - - - - - - - - - - - + - - + - - - - - - .
. | |
87 // . . ^ .
. | |
88 // . big_distance . .
. | |
89 // . . . .
rest | |
90 // small_distance . . .
. | |
91 // v . . .
. | |
92 // w_high - - - - - - - - - - - - - - - - - - . . .
. | |
93 // ^v 1 unit . . .
. | |
94 // w ---------------------------------------- . . .
. | |
95 // ^v 1 unit v . .
. | |
96 // w_low - - - - - - - - - - - - - - - - - - - - - . .
. | |
97 // . .
v | |
98 // buffer --------------------------------------------------+-------+--
------ | |
99 // . . | |
100 // safe_interval . | |
101 // v . | |
102 // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - . | |
103 // ^v 1 unit . | |
104 // boundary_low ------------------------- unsafe_in
terval | |
105 // ^v 1 unit v | |
106 // too_low - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
- - - | |
107 // | |
108 // | |
109 // Note that the value of buffer could lie anywhere inside the range too
_low | |
110 // to too_high. | |
111 // | |
112 // boundary_low, boundary_high and w are approximations of the real boun
daries | |
113 // and v (the input number). They are guaranteed to be precise up to one
unit. | |
114 // In fact the error is guaranteed to be strictly less than one unit. | |
115 // | |
116 // Anything that lies outside the unsafe interval is guaranteed not to r
ound | |
117 // to v when read again. | |
118 // Anything that lies inside the safe interval is guaranteed to round to
v | |
119 // when read again. | |
120 // If the number inside the buffer lies inside the unsafe interval but n
ot | |
121 // inside the safe interval then we simply do not know and bail out (ret
urning | |
122 // false). | |
123 // | |
124 // Similarly we have to take into account the imprecision of 'w' when fi
nding | |
125 // the closest representation of 'w'. If we have two potential | |
126 // representations, and one is closer to both w_low and w_high, then we
know | |
127 // it is closer to the actual value v. | |
128 // | |
129 // By generating the digits of too_high we got the largest (closest to | |
130 // too_high) buffer that is still in the unsafe interval. In the case wh
ere | |
131 // w_high < buffer < too_high we try to decrement the buffer. | |
132 // This way the buffer approaches (rounds towards) w. | |
133 // There are 3 conditions that stop the decrementation process: | |
134 // 1) the buffer is already below w_high | |
135 // 2) decrementing the buffer would make it leave the unsafe interval | |
136 // 3) decrementing the buffer would yield a number below w_high and fa
rther | |
137 // away than the current number. In other words: | |
138 // (buffer{-1} < w_high) && w_high - buffer{-1} > buffer -
w_high | |
139 // Instead of using the buffer directly we use its distance to too_high. | |
140 // Conceptually rest ~= too_high - buffer | |
141 // We need to do the following tests in this order to avoid over- and | |
142 // underflows. | |
143 ASSERT(rest <= unsafe_interval); | |
144 while (rest < small_distance && // Negated condition 1 | |
145 unsafe_interval - rest >= ten_kappa && // Negated condition 2 | |
146 (rest + ten_kappa < small_distance || // buffer{-1} > w_high | |
147 small_distance - rest >= rest + ten_kappa - small_distance)) { | |
148 buffer[length - 1]--; | |
149 rest += ten_kappa; | |
150 } | |
151 | |
152 // We have approached w+ as much as possible. We now test if approaching
w- | |
153 // would require changing the buffer. If yes, then we have two possible | |
154 // representations close to w, but we cannot decide which one is closer. | |
155 if (rest < big_distance && | |
156 unsafe_interval - rest >= ten_kappa && | |
157 (rest + ten_kappa < big_distance || | |
158 big_distance - rest > rest + ten_kappa - big_distance)) { | |
159 return false; | |
160 } | |
161 | |
162 // Weeding test. | |
163 // The safe interval is [too_low + 2 ulp; too_high - 2 ulp] | |
164 // Since too_low = too_high - unsafe_interval this is equivalent to | |
165 // [too_high - unsafe_interval + 4 ulp; too_high - 2 ulp] | |
166 // Conceptually we have: rest ~= too_high - buffer | |
167 return (2 * unit <= rest) && (rest <= unsafe_interval - 4 * unit); | |
168 } | |
169 | |
170 | |
171 // Rounds the buffer upwards if the result is closer to v by possibly adding | |
172 // 1 to the buffer. If the precision of the calculation is not sufficient to | |
173 // round correctly, return false. | |
174 // The rounding might shift the whole buffer in which case the kappa is | |
175 // adjusted. For example "99", kappa = 3 might become "10", kappa = 4. | |
176 // | |
177 // If 2*rest > ten_kappa then the buffer needs to be round up. | |
178 // rest can have an error of +/- 1 unit. This function accounts for the | |
179 // imprecision and returns false, if the rounding direction cannot be | |
180 // unambiguously determined. | |
181 // | |
182 // Precondition: rest < ten_kappa. | |
183 static bool RoundWeedCounted(Vector<char> buffer, | |
184 int length, | |
185 uint64_t rest, | |
186 uint64_t ten_kappa, | |
187 uint64_t unit, | |
188 int* kappa) { | |
189 ASSERT(rest < ten_kappa); | |
190 // The following tests are done in a specific order to avoid overflows.
They | |
191 // will work correctly with any uint64 values of rest < ten_kappa and un
it. | |
192 // | |
193 // If the unit is too big, then we don't know which way to round. For ex
ample | |
194 // a unit of 50 means that the real number lies within rest +/- 50. If | |
195 // 10^kappa == 40 then there is no way to tell which way to round. | |
196 if (unit >= ten_kappa) return false; | |
197 // Even if unit is just half the size of 10^kappa we are already complet
ely | |
198 // lost. (And after the previous test we know that the expression will n
ot | |
199 // over/underflow.) | |
200 if (ten_kappa - unit <= unit) return false; | |
201 // If 2 * (rest + unit) <= 10^kappa we can safely round down. | |
202 if ((ten_kappa - rest > rest) && (ten_kappa - 2 * rest >= 2 * unit)) { | |
203 return true; | |
204 } | |
205 // If 2 * (rest - unit) >= 10^kappa, then we can safely round up. | |
206 if ((rest > unit) && (ten_kappa - (rest - unit) <= (rest - unit))) { | |
207 // Increment the last digit recursively until we find a non '9' digi
t. | |
208 buffer[length - 1]++; | |
209 for (int i = length - 1; i > 0; --i) { | |
210 if (buffer[i] != '0' + 10) break; | |
211 buffer[i] = '0'; | |
212 buffer[i - 1]++; | |
213 } | |
214 // If the first digit is now '0'+ 10 we had a buffer with all '9's.
With the | |
215 // exception of the first digit all digits are now '0'. Simply switc
h the | |
216 // first digit to '1' and adjust the kappa. Example: "99" becomes "1
0" and | |
217 // the power (the kappa) is increased. | |
218 if (buffer[0] == '0' + 10) { | |
219 buffer[0] = '1'; | |
220 (*kappa) += 1; | |
221 } | |
222 return true; | |
223 } | |
224 return false; | |
225 } | |
226 | |
227 | |
228 static const uint32_t kTen4 = 10000; | |
229 static const uint32_t kTen5 = 100000; | |
230 static const uint32_t kTen6 = 1000000; | |
231 static const uint32_t kTen7 = 10000000; | |
232 static const uint32_t kTen8 = 100000000; | |
233 static const uint32_t kTen9 = 1000000000; | |
234 | |
235 // Returns the biggest power of ten that is less than or equal to the given | |
236 // number. We furthermore receive the maximum number of bits 'number' has. | |
237 // If number_bits == 0 then 0^-1 is returned | |
238 // The number of bits must be <= 32. | |
239 // Precondition: number < (1 << (number_bits + 1)). | |
240 static void BiggestPowerTen(uint32_t number, | |
241 int number_bits, | |
242 uint32_t* power, | |
243 int* exponent) { | |
244 ASSERT(number < (uint32_t)(1 << (number_bits + 1))); | |
245 | |
246 switch (number_bits) { | |
247 case 32: | |
248 case 31: | |
249 case 30: | |
250 if (kTen9 <= number) { | |
251 *power = kTen9; | |
252 *exponent = 9; | |
253 break; | |
254 } // else fallthrough | |
255 case 29: | |
256 case 28: | |
257 case 27: | |
258 if (kTen8 <= number) { | |
259 *power = kTen8; | |
260 *exponent = 8; | |
261 break; | |
262 } // else fallthrough | |
263 case 26: | |
264 case 25: | |
265 case 24: | |
266 if (kTen7 <= number) { | |
267 *power = kTen7; | |
268 *exponent = 7; | |
269 break; | |
270 } // else fallthrough | |
271 case 23: | |
272 case 22: | |
273 case 21: | |
274 case 20: | |
275 if (kTen6 <= number) { | |
276 *power = kTen6; | |
277 *exponent = 6; | |
278 break; | |
279 } // else fallthrough | |
280 case 19: | |
281 case 18: | |
282 case 17: | |
283 if (kTen5 <= number) { | |
284 *power = kTen5; | |
285 *exponent = 5; | |
286 break; | |
287 } // else fallthrough | |
288 case 16: | |
289 case 15: | |
290 case 14: | |
291 if (kTen4 <= number) { | |
292 *power = kTen4; | |
293 *exponent = 4; | |
294 break; | |
295 } // else fallthrough | |
296 case 13: | |
297 case 12: | |
298 case 11: | |
299 case 10: | |
300 if (1000 <= number) { | |
301 *power = 1000; | |
302 *exponent = 3; | |
303 break; | |
304 } // else fallthrough | |
305 case 9: | |
306 case 8: | |
307 case 7: | |
308 if (100 <= number) { | |
309 *power = 100; | |
310 *exponent = 2; | |
311 break; | |
312 } // else fallthrough | |
313 case 6: | |
314 case 5: | |
315 case 4: | |
316 if (10 <= number) { | |
317 *power = 10; | |
318 *exponent = 1; | |
319 break; | |
320 } // else fallthrough | |
321 case 3: | |
322 case 2: | |
323 case 1: | |
324 if (1 <= number) { | |
325 *power = 1; | |
326 *exponent = 0; | |
327 break; | |
328 } // else fallthrough | |
329 case 0: | |
330 *power = 0; | |
331 *exponent = -1; | |
332 break; | |
333 default: | |
334 // Following assignments are here to silence compiler warnings. | |
335 *power = 0; | |
336 *exponent = 0; | |
337 UNREACHABLE(); | |
338 } | |
339 } | |
340 | |
341 | |
342 // Generates the digits of input number w. | |
343 // w is a floating-point number (DiyFp), consisting of a significand and an | |
344 // exponent. Its exponent is bounded by kMinimalTargetExponent and | |
345 // kMaximalTargetExponent. | |
346 // Hence -60 <= w.e() <= -32. | |
347 // | |
348 // Returns false if it fails, in which case the generated digits in the buff
er | |
349 // should not be used. | |
350 // Preconditions: | |
351 // * low, w and high are correct up to 1 ulp (unit in the last place). That | |
352 // is, their error must be less than a unit of their last digits. | |
353 // * low.e() == w.e() == high.e() | |
354 // * low < w < high, and taking into account their error: low~ <= high~ | |
355 // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent | |
356 // Postconditions: returns false if procedure fails. | |
357 // otherwise: | |
358 // * buffer is not null-terminated, but len contains the number of digit
s. | |
359 // * buffer contains the shortest possible decimal digit-sequence | |
360 // such that LOW < buffer * 10^kappa < HIGH, where LOW and HIGH are th
e | |
361 // correct values of low and high (without their error). | |
362 // * if more than one decimal representation gives the minimal number of | |
363 // decimal digits then the one closest to W (where W is the correct va
lue | |
364 // of w) is chosen. | |
365 // Remark: this procedure takes into account the imprecision of its input | |
366 // numbers. If the precision is not enough to guarantee all the postcondit
ions | |
367 // then false is returned. This usually happens rarely (~0.5%). | |
368 // | |
369 // Say, for the sake of example, that | |
370 // w.e() == -48, and w.f() == 0x1234567890abcdef | |
371 // w's value can be computed by w.f() * 2^w.e() | |
372 // We can obtain w's integral digits by simply shifting w.f() by -w.e(). | |
373 // -> w's integral part is 0x1234 | |
374 // w's fractional part is therefore 0x567890abcdef. | |
375 // Printing w's integral part is easy (simply print 0x1234 in decimal). | |
376 // In order to print its fraction we repeatedly multiply the fraction by 10
and | |
377 // get each digit. Example the first digit after the point would be computed
by | |
378 // (0x567890abcdef * 10) >> 48. -> 3 | |
379 // The whole thing becomes slightly more complicated because we want to stop | |
380 // once we have enough digits. That is, once the digits inside the buffer | |
381 // represent 'w' we can stop. Everything inside the interval low - high | |
382 // represents w. However we have to pay attention to low, high and w's | |
383 // imprecision. | |
384 static bool DigitGen(DiyFp low, | |
385 DiyFp w, | |
386 DiyFp high, | |
387 Vector<char> buffer, | |
388 int* length, | |
389 int* kappa) { | |
390 ASSERT(low.e() == w.e() && w.e() == high.e()); | |
391 ASSERT(low.f() + 1 <= high.f() - 1); | |
392 ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponen
t); | |
393 // low, w and high are imprecise, but by less than one ulp (unit in the
last | |
394 // place). | |
395 // If we remove (resp. add) 1 ulp from low (resp. high) we are certain t
hat | |
396 // the new numbers are outside of the interval we want the final | |
397 // representation to lie in. | |
398 // Inversely adding (resp. removing) 1 ulp from low (resp. high) would y
ield | |
399 // numbers that are certain to lie in the interval. We will use this fac
t | |
400 // later on. | |
401 // We will now start by generating the digits within the uncertain | |
402 // interval. Later we will weed out representations that lie outside the
safe | |
403 // interval and thus _might_ lie outside the correct interval. | |
404 uint64_t unit = 1; | |
405 DiyFp too_low = DiyFp(low.f() - unit, low.e()); | |
406 DiyFp too_high = DiyFp(high.f() + unit, high.e()); | |
407 // too_low and too_high are guaranteed to lie outside the interval we wa
nt the | |
408 // generated number in. | |
409 DiyFp unsafe_interval = DiyFp::Minus(too_high, too_low); | |
410 // We now cut the input number into two parts: the integral digits and t
he | |
411 // fractionals. We will not write any decimal separator though, but adap
t | |
412 // kappa instead. | |
413 // Reminder: we are currently computing the digits (stored inside the bu
ffer) | |
414 // such that: too_low < buffer * 10^kappa < too_high | |
415 // We use too_high for the digit_generation and stop as soon as possible
. | |
416 // If we stop early we effectively round down. | |
417 DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e()); | |
418 // Division by one is a shift. | |
419 uint32_t integrals = static_cast<uint32_t>(too_high.f() >> -one.e()); | |
420 // Modulo by one is an and. | |
421 uint64_t fractionals = too_high.f() & (one.f() - 1); | |
422 uint32_t divisor; | |
423 int divisor_exponent; | |
424 BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), | |
425 &divisor, &divisor_exponent); | |
426 *kappa = divisor_exponent + 1; | |
427 *length = 0; | |
428 // Loop invariant: buffer = too_high / 10^kappa (integer division) | |
429 // The invariant holds for the first iteration: kappa has been initializ
ed | |
430 // with the divisor exponent + 1. And the divisor is the biggest power o
f ten | |
431 // that is smaller than integrals. | |
432 while (*kappa > 0) { | |
433 char digit = static_cast<char>(integrals / divisor); | |
434 buffer[*length] = '0' + digit; | |
435 (*length)++; | |
436 integrals %= divisor; | |
437 (*kappa)--; | |
438 // Note that kappa now equals the exponent of the divisor and that t
he | |
439 // invariant thus holds again. | |
440 uint64_t rest = | |
441 (static_cast<uint64_t>(integrals) << -one.e()) + fractionals; | |
442 // Invariant: too_high = buffer * 10^kappa + DiyFp(rest, one.e()) | |
443 // Reminder: unsafe_interval.e() == one.e() | |
444 if (rest < unsafe_interval.f()) { | |
445 // Rounding down (by not emitting the remaining digits) yields a
number | |
446 // that lies within the unsafe interval. | |
447 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f(), | |
448 unsafe_interval.f(), rest, | |
449 static_cast<uint64_t>(divisor) << -one.e(), uni
t); | |
450 } | |
451 divisor /= 10; | |
452 } | |
453 | |
454 // The integrals have been generated. We are at the point of the decimal | |
455 // separator. In the following loop we simply multiply the remaining dig
its by | |
456 // 10 and divide by one. We just need to pay attention to multiply assoc
iated | |
457 // data (like the interval or 'unit'), too. | |
458 // Note that the multiplication by 10 does not overflow, because w.e >=
-60 | |
459 // and thus one.e >= -60. | |
460 ASSERT(one.e() >= -60); | |
461 ASSERT(fractionals < one.f()); | |
462 ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f()); | |
463 while (true) { | |
464 fractionals *= 10; | |
465 unit *= 10; | |
466 unsafe_interval.set_f(unsafe_interval.f() * 10); | |
467 // Integer division by one. | |
468 char digit = static_cast<char>(fractionals >> -one.e()); | |
469 buffer[*length] = '0' + digit; | |
470 (*length)++; | |
471 fractionals &= one.f() - 1; // Modulo by one. | |
472 (*kappa)--; | |
473 if (fractionals < unsafe_interval.f()) { | |
474 return RoundWeed(buffer, *length, DiyFp::Minus(too_high, w).f()
* unit, | |
475 unsafe_interval.f(), fractionals, one.f(), unit
); | |
476 } | |
477 } | |
478 } | |
479 | |
480 | |
481 | |
482 // Generates (at most) requested_digits digits of input number w. | |
483 // w is a floating-point number (DiyFp), consisting of a significand and an | |
484 // exponent. Its exponent is bounded by kMinimalTargetExponent and | |
485 // kMaximalTargetExponent. | |
486 // Hence -60 <= w.e() <= -32. | |
487 // | |
488 // Returns false if it fails, in which case the generated digits in the buff
er | |
489 // should not be used. | |
490 // Preconditions: | |
491 // * w is correct up to 1 ulp (unit in the last place). That | |
492 // is, its error must be strictly less than a unit of its last digit. | |
493 // * kMinimalTargetExponent <= w.e() <= kMaximalTargetExponent | |
494 // | |
495 // Postconditions: returns false if procedure fails. | |
496 // otherwise: | |
497 // * buffer is not null-terminated, but length contains the number of | |
498 // digits. | |
499 // * the representation in buffer is the most precise representation of | |
500 // requested_digits digits. | |
501 // * buffer contains at most requested_digits digits of w. If there are
less | |
502 // than requested_digits digits then some trailing '0's have been remo
ved. | |
503 // * kappa is such that | |
504 // w = buffer * 10^kappa + eps with |eps| < 10^kappa / 2. | |
505 // | |
506 // Remark: This procedure takes into account the imprecision of its input | |
507 // numbers. If the precision is not enough to guarantee all the postcondit
ions | |
508 // then false is returned. This usually happens rarely, but the failure-ra
te | |
509 // increases with higher requested_digits. | |
510 static bool DigitGenCounted(DiyFp w, | |
511 int requested_digits, | |
512 Vector<char> buffer, | |
513 int* length, | |
514 int* kappa) { | |
515 ASSERT(kMinimalTargetExponent <= w.e() && w.e() <= kMaximalTargetExponen
t); | |
516 ASSERT(kMinimalTargetExponent >= -60); | |
517 ASSERT(kMaximalTargetExponent <= -32); | |
518 // w is assumed to have an error less than 1 unit. Whenever w is scaled
we | |
519 // also scale its error. | |
520 uint64_t w_error = 1; | |
521 // We cut the input number into two parts: the integral digits and the | |
522 // fractional digits. We don't emit any decimal separator, but adapt kap
pa | |
523 // instead. Example: instead of writing "1.2" we put "12" into the buffe
r and | |
524 // increase kappa by 1. | |
525 DiyFp one = DiyFp(static_cast<uint64_t>(1) << -w.e(), w.e()); | |
526 // Division by one is a shift. | |
527 uint32_t integrals = static_cast<uint32_t>(w.f() >> -one.e()); | |
528 // Modulo by one is an and. | |
529 uint64_t fractionals = w.f() & (one.f() - 1); | |
530 uint32_t divisor; | |
531 int divisor_exponent; | |
532 BiggestPowerTen(integrals, DiyFp::kSignificandSize - (-one.e()), | |
533 &divisor, &divisor_exponent); | |
534 *kappa = divisor_exponent + 1; | |
535 *length = 0; | |
536 | |
537 // Loop invariant: buffer = w / 10^kappa (integer division) | |
538 // The invariant holds for the first iteration: kappa has been initializ
ed | |
539 // with the divisor exponent + 1. And the divisor is the biggest power o
f ten | |
540 // that is smaller than 'integrals'. | |
541 while (*kappa > 0) { | |
542 char digit = static_cast<char>(integrals / divisor); | |
543 buffer[*length] = '0' + digit; | |
544 (*length)++; | |
545 requested_digits--; | |
546 integrals %= divisor; | |
547 (*kappa)--; | |
548 // Note that kappa now equals the exponent of the divisor and that t
he | |
549 // invariant thus holds again. | |
550 if (requested_digits == 0) break; | |
551 divisor /= 10; | |
552 } | |
553 | |
554 if (requested_digits == 0) { | |
555 uint64_t rest = | |
556 (static_cast<uint64_t>(integrals) << -one.e()) + fractionals; | |
557 return RoundWeedCounted(buffer, *length, rest, | |
558 static_cast<uint64_t>(divisor) << -one.e(),
w_error, | |
559 kappa); | |
560 } | |
561 | |
562 // The integrals have been generated. We are at the point of the decimal | |
563 // separator. In the following loop we simply multiply the remaining dig
its by | |
564 // 10 and divide by one. We just need to pay attention to multiply assoc
iated | |
565 // data (the 'unit'), too. | |
566 // Note that the multiplication by 10 does not overflow, because w.e >=
-60 | |
567 // and thus one.e >= -60. | |
568 ASSERT(one.e() >= -60); | |
569 ASSERT(fractionals < one.f()); | |
570 ASSERT(UINT64_2PART_C(0xFFFFFFFF, FFFFFFFF) / 10 >= one.f()); | |
571 while (requested_digits > 0 && fractionals > w_error) { | |
572 fractionals *= 10; | |
573 w_error *= 10; | |
574 // Integer division by one. | |
575 char digit = static_cast<char>(fractionals >> -one.e()); | |
576 buffer[*length] = '0' + digit; | |
577 (*length)++; | |
578 requested_digits--; | |
579 fractionals &= one.f() - 1; // Modulo by one. | |
580 (*kappa)--; | |
581 } | |
582 if (requested_digits != 0) return false; | |
583 return RoundWeedCounted(buffer, *length, fractionals, one.f(), w_error, | |
584 kappa); | |
585 } | |
586 | |
587 | |
588 // Provides a decimal representation of v. | |
589 // Returns true if it succeeds, otherwise the result cannot be trusted. | |
590 // There will be *length digits inside the buffer (not null-terminated). | |
591 // If the function returns true then | |
592 // v == (double) (buffer * 10^decimal_exponent). | |
593 // The digits in the buffer are the shortest representation possible: no | |
594 // 0.09999999999999999 instead of 0.1. The shorter representation will even
be | |
595 // chosen even if the longer one would be closer to v. | |
596 // The last digit will be closest to the actual v. That is, even if several | |
597 // digits might correctly yield 'v' when read again, the closest will be | |
598 // computed. | |
599 static bool Grisu3(double v, | |
600 Vector<char> buffer, | |
601 int* length, | |
602 int* decimal_exponent) { | |
603 DiyFp w = Double(v).AsNormalizedDiyFp(); | |
604 // boundary_minus and boundary_plus are the boundaries between v and its | |
605 // closest floating-point neighbors. Any number strictly between | |
606 // boundary_minus and boundary_plus will round to v when convert to a do
uble. | |
607 // Grisu3 will never output representations that lie exactly on a bounda
ry. | |
608 DiyFp boundary_minus, boundary_plus; | |
609 Double(v).NormalizedBoundaries(&boundary_minus, &boundary_plus); | |
610 ASSERT(boundary_plus.e() == w.e()); | |
611 DiyFp ten_mk; // Cached power of ten: 10^-k | |
612 int mk; // -k | |
613 int ten_mk_minimal_binary_exponent = | |
614 kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize); | |
615 int ten_mk_maximal_binary_exponent = | |
616 kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize); | |
617 PowersOfTenCache::GetCachedPowerForBinaryExponentRange( | |
618 ten_mk_minimal_bi
nary_exponent, | |
619 ten_mk_maximal_bi
nary_exponent, | |
620 &ten_mk, &mk); | |
621 ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() + | |
622 DiyFp::kSignificandSize) && | |
623 (kMaximalTargetExponent >= w.e() + ten_mk.e() + | |
624 DiyFp::kSignificandSize)); | |
625 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only cont
ains a | |
626 // 64 bit significand and ten_mk is thus only precise up to 64 bits. | |
627 | |
628 // The DiyFp::Times procedure rounds its result, and ten_mk is approxima
ted | |
629 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) ar
e now | |
630 // off by a small amount. | |
631 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_
w. | |
632 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then | |
633 // (f-1) * 2^e < w*10^k < (f+1) * 2^e | |
634 DiyFp scaled_w = DiyFp::Times(w, ten_mk); | |
635 ASSERT(scaled_w.e() == | |
636 boundary_plus.e() + ten_mk.e() + DiyFp::kSignificandSize); | |
637 // In theory it would be possible to avoid some recomputations by comput
ing | |
638 // the difference between w and boundary_minus/plus (a power of 2) and t
o | |
639 // compute scaled_boundary_minus/plus by subtracting/adding from | |
640 // scaled_w. However the code becomes much less readable and the speed | |
641 // enhancements are not terriffic. | |
642 DiyFp scaled_boundary_minus = DiyFp::Times(boundary_minus, ten_mk); | |
643 DiyFp scaled_boundary_plus = DiyFp::Times(boundary_plus, ten_mk); | |
644 | |
645 // DigitGen will generate the digits of scaled_w. Therefore we have | |
646 // v == (double) (scaled_w * 10^-mk). | |
647 // Set decimal_exponent == -mk and pass it to DigitGen. If scaled_w is n
ot an | |
648 // integer than it will be updated. For instance if scaled_w == 1.23 the
n | |
649 // the buffer will be filled with "123" und the decimal_exponent will be | |
650 // decreased by 2. | |
651 int kappa; | |
652 bool result = DigitGen(scaled_boundary_minus, scaled_w, scaled_boundary_
plus, | |
653 buffer, length, &kappa); | |
654 *decimal_exponent = -mk + kappa; | |
655 return result; | |
656 } | |
657 | |
658 | |
659 // The "counted" version of grisu3 (see above) only generates requested_digi
ts | |
660 // number of digits. This version does not generate the shortest representat
ion, | |
661 // and with enough requested digits 0.1 will at some point print as 0.999999
9... | |
662 // Grisu3 is too imprecise for real halfway cases (1.5 will not work) and | |
663 // therefore the rounding strategy for halfway cases is irrelevant. | |
664 static bool Grisu3Counted(double v, | |
665 int requested_digits, | |
666 Vector<char> buffer, | |
667 int* length, | |
668 int* decimal_exponent) { | |
669 DiyFp w = Double(v).AsNormalizedDiyFp(); | |
670 DiyFp ten_mk; // Cached power of ten: 10^-k | |
671 int mk; // -k | |
672 int ten_mk_minimal_binary_exponent = | |
673 kMinimalTargetExponent - (w.e() + DiyFp::kSignificandSize); | |
674 int ten_mk_maximal_binary_exponent = | |
675 kMaximalTargetExponent - (w.e() + DiyFp::kSignificandSize); | |
676 PowersOfTenCache::GetCachedPowerForBinaryExponentRange( | |
677 ten_mk_minimal_bi
nary_exponent, | |
678 ten_mk_maximal_bi
nary_exponent, | |
679 &ten_mk, &mk); | |
680 ASSERT((kMinimalTargetExponent <= w.e() + ten_mk.e() + | |
681 DiyFp::kSignificandSize) && | |
682 (kMaximalTargetExponent >= w.e() + ten_mk.e() + | |
683 DiyFp::kSignificandSize)); | |
684 // Note that ten_mk is only an approximation of 10^-k. A DiyFp only cont
ains a | |
685 // 64 bit significand and ten_mk is thus only precise up to 64 bits. | |
686 | |
687 // The DiyFp::Times procedure rounds its result, and ten_mk is approxima
ted | |
688 // too. The variable scaled_w (as well as scaled_boundary_minus/plus) ar
e now | |
689 // off by a small amount. | |
690 // In fact: scaled_w - w*10^k < 1ulp (unit in the last place) of scaled_
w. | |
691 // In other words: let f = scaled_w.f() and e = scaled_w.e(), then | |
692 // (f-1) * 2^e < w*10^k < (f+1) * 2^e | |
693 DiyFp scaled_w = DiyFp::Times(w, ten_mk); | |
694 | |
695 // We now have (double) (scaled_w * 10^-mk). | |
696 // DigitGen will generate the first requested_digits digits of scaled_w
and | |
697 // return together with a kappa such that scaled_w ~= buffer * 10^kappa.
(It | |
698 // will not always be exactly the same since DigitGenCounted only produc
es a | |
699 // limited number of digits.) | |
700 int kappa; | |
701 bool result = DigitGenCounted(scaled_w, requested_digits, | |
702 buffer, length, &kappa); | |
703 *decimal_exponent = -mk + kappa; | |
704 return result; | |
705 } | |
706 | |
707 | |
708 bool FastDtoa(double v, | |
709 FastDtoaMode mode, | |
710 int requested_digits, | |
711 Vector<char> buffer, | |
712 int* length, | |
713 int* decimal_point) { | |
714 ASSERT(v > 0); | |
715 ASSERT(!Double(v).IsSpecial()); | |
716 | |
717 bool result = false; | |
718 int decimal_exponent = 0; | |
719 switch (mode) { | |
720 case FAST_DTOA_SHORTEST: | |
721 result = Grisu3(v, buffer, length, &decimal_exponent); | |
722 break; | |
723 case FAST_DTOA_PRECISION: | |
724 result = Grisu3Counted(v, requested_digits, | |
725 buffer, length, &decimal_exponent); | |
726 break; | |
727 default: | |
728 UNREACHABLE(); | |
729 } | |
730 if (result) { | |
731 *decimal_point = *length + decimal_exponent; | |
732 buffer[*length] = '\0'; | |
733 } | |
734 return result; | |
735 } | |
736 | |
737 } // namespace double_conversion | |
738 | |
739 } // namespace WTF | |
OLD | NEW |