OLD | NEW |
1 // Copyright 2010 the V8 project authors. All rights reserved. | 1 // Copyright 2017 The Chromium Authors. All rights reserved. |
2 // Redistribution and use in source and binary forms, with or without | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // modification, are permitted provided that the following conditions are | 3 // found in the LICENSE file. |
4 // met: | |
5 // | |
6 // * Redistributions of source code must retain the above copyright | |
7 // notice, this list of conditions and the following disclaimer. | |
8 // * Redistributions in binary form must reproduce the above | |
9 // copyright notice, this list of conditions and the following | |
10 // disclaimer in the documentation and/or other materials provided | |
11 // with the distribution. | |
12 // * Neither the name of Google Inc. nor the names of its | |
13 // contributors may be used to endorse or promote products derived | |
14 // from this software without specific prior written permission. | |
15 // | |
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS | |
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT | |
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR | |
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT | |
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, | |
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT | |
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, | |
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY | |
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT | |
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | |
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. | |
27 | 4 |
28 #ifndef DOUBLE_CONVERSION_DOUBLE_H_ | 5 #include "platform/wtf/dtoa/double.h" |
29 #define DOUBLE_CONVERSION_DOUBLE_H_ | |
30 | 6 |
31 #include "diy-fp.h" | 7 // The contents of this header was moved to platform/wtf as part of |
32 | 8 // WTF migration project. See the following post for details: |
33 namespace WTF { | 9 // https://groups.google.com/a/chromium.org/d/msg/blink-dev/tLdAZCTlcAA/bYXVT8gY
CAAJ |
34 | |
35 namespace double_conversion { | |
36 | |
37 // We assume that doubles and uint64_t have the same endianness. | |
38 static uint64_t double_to_uint64(double d) { | |
39 return BitCast<uint64_t>(d); | |
40 } | |
41 static double uint64_to_double(uint64_t d64) { | |
42 return BitCast<double>(d64); | |
43 } | |
44 | |
45 // Helper functions for doubles. | |
46 class Double { | |
47 public: | |
48 static const uint64_t kSignMask = UINT64_2PART_C(0x80000000, 00000000); | |
49 static const uint64_t kExponentMask = UINT64_2PART_C(0x7FF00000, 00000000); | |
50 static const uint64_t kSignificandMask = UINT64_2PART_C(0x000FFFFF, FFFFFFFF); | |
51 static const uint64_t kHiddenBit = UINT64_2PART_C(0x00100000, 00000000); | |
52 static const int kPhysicalSignificandSize = 52; // Excludes the hidden bit. | |
53 static const int kSignificandSize = 53; | |
54 | |
55 Double() : d64_(0) {} | |
56 explicit Double(double d) : d64_(double_to_uint64(d)) {} | |
57 explicit Double(uint64_t d64) : d64_(d64) {} | |
58 explicit Double(DiyFp diy_fp) : d64_(DiyFpToUint64(diy_fp)) {} | |
59 | |
60 // The value encoded by this Double must be greater or equal to +0.0. | |
61 // It must not be special (infinity, or NaN). | |
62 DiyFp AsDiyFp() const { | |
63 DCHECK_GT(Sign(), 0); | |
64 DCHECK(!IsSpecial()); | |
65 return DiyFp(Significand(), Exponent()); | |
66 } | |
67 | |
68 // The value encoded by this Double must be strictly greater than 0. | |
69 DiyFp AsNormalizedDiyFp() const { | |
70 DCHECK_GT(value(), 0.0); | |
71 uint64_t f = Significand(); | |
72 int e = Exponent(); | |
73 | |
74 // The current double could be a denormal. | |
75 while ((f & kHiddenBit) == 0) { | |
76 f <<= 1; | |
77 e--; | |
78 } | |
79 // Do the final shifts in one go. | |
80 f <<= DiyFp::kSignificandSize - kSignificandSize; | |
81 e -= DiyFp::kSignificandSize - kSignificandSize; | |
82 return DiyFp(f, e); | |
83 } | |
84 | |
85 // Returns the double's bit as uint64. | |
86 uint64_t AsUint64() const { return d64_; } | |
87 | |
88 // Returns the next greater double. Returns +infinity on input +infinity. | |
89 double NextDouble() const { | |
90 if (d64_ == kInfinity) | |
91 return Double(kInfinity).value(); | |
92 if (Sign() < 0 && Significand() == 0) { | |
93 // -0.0 | |
94 return 0.0; | |
95 } | |
96 if (Sign() < 0) { | |
97 return Double(d64_ - 1).value(); | |
98 } else { | |
99 return Double(d64_ + 1).value(); | |
100 } | |
101 } | |
102 | |
103 int Exponent() const { | |
104 if (IsDenormal()) | |
105 return kDenormalExponent; | |
106 | |
107 uint64_t d64 = AsUint64(); | |
108 int biased_e = | |
109 static_cast<int>((d64 & kExponentMask) >> kPhysicalSignificandSize); | |
110 return biased_e - kExponentBias; | |
111 } | |
112 | |
113 uint64_t Significand() const { | |
114 uint64_t d64 = AsUint64(); | |
115 uint64_t significand = d64 & kSignificandMask; | |
116 if (!IsDenormal()) { | |
117 return significand + kHiddenBit; | |
118 } else { | |
119 return significand; | |
120 } | |
121 } | |
122 | |
123 // Returns true if the double is a denormal. | |
124 bool IsDenormal() const { | |
125 uint64_t d64 = AsUint64(); | |
126 return (d64 & kExponentMask) == 0; | |
127 } | |
128 | |
129 // We consider denormals not to be special. | |
130 // Hence only Infinity and NaN are special. | |
131 bool IsSpecial() const { | |
132 uint64_t d64 = AsUint64(); | |
133 return (d64 & kExponentMask) == kExponentMask; | |
134 } | |
135 | |
136 bool IsNan() const { | |
137 uint64_t d64 = AsUint64(); | |
138 return ((d64 & kExponentMask) == kExponentMask) && | |
139 ((d64 & kSignificandMask) != 0); | |
140 } | |
141 | |
142 bool IsInfinite() const { | |
143 uint64_t d64 = AsUint64(); | |
144 return ((d64 & kExponentMask) == kExponentMask) && | |
145 ((d64 & kSignificandMask) == 0); | |
146 } | |
147 | |
148 int Sign() const { | |
149 uint64_t d64 = AsUint64(); | |
150 return (d64 & kSignMask) == 0 ? 1 : -1; | |
151 } | |
152 | |
153 // Precondition: the value encoded by this Double must be greater or equal | |
154 // than +0.0. | |
155 DiyFp UpperBoundary() const { | |
156 DCHECK_GT(Sign(), 0); | |
157 return DiyFp(Significand() * 2 + 1, Exponent() - 1); | |
158 } | |
159 | |
160 // Computes the two boundaries of this. | |
161 // The bigger boundary (m_plus) is normalized. The lower boundary has the same | |
162 // exponent as m_plus. | |
163 // Precondition: the value encoded by this Double must be greater than 0. | |
164 void NormalizedBoundaries(DiyFp* out_m_minus, DiyFp* out_m_plus) const { | |
165 DCHECK_GT(value(), 0.0); | |
166 DiyFp v = this->AsDiyFp(); | |
167 bool significand_is_zero = (v.f() == kHiddenBit); | |
168 DiyFp m_plus = DiyFp::Normalize(DiyFp((v.f() << 1) + 1, v.e() - 1)); | |
169 DiyFp m_minus; | |
170 if (significand_is_zero && v.e() != kDenormalExponent) { | |
171 // The boundary is closer. Think of v = 1000e10 and v- = 9999e9. | |
172 // Then the boundary (== (v - v-)/2) is not just at a distance of 1e9 but | |
173 // at a distance of 1e8. | |
174 // The only exception is for the smallest normal: the largest denormal is | |
175 // at the same distance as its successor. | |
176 // Note: denormals have the same exponent as the smallest normals. | |
177 m_minus = DiyFp((v.f() << 2) - 1, v.e() - 2); | |
178 } else { | |
179 m_minus = DiyFp((v.f() << 1) - 1, v.e() - 1); | |
180 } | |
181 m_minus.set_f(m_minus.f() << (m_minus.e() - m_plus.e())); | |
182 m_minus.set_e(m_plus.e()); | |
183 *out_m_plus = m_plus; | |
184 *out_m_minus = m_minus; | |
185 } | |
186 | |
187 double value() const { return uint64_to_double(d64_); } | |
188 | |
189 // Returns the significand size for a given order of magnitude. | |
190 // If v = f*2^e with 2^p-1 <= f <= 2^p then p+e is v's order of magnitude. | |
191 // This function returns the number of significant binary digits v will have | |
192 // once it's encoded into a double. In almost all cases this is equal to | |
193 // kSignificandSize. The only exceptions are denormals. They start with | |
194 // leading zeroes and their effective significand-size is hence smaller. | |
195 static int SignificandSizeForOrderOfMagnitude(int order) { | |
196 if (order >= (kDenormalExponent + kSignificandSize)) { | |
197 return kSignificandSize; | |
198 } | |
199 if (order <= kDenormalExponent) | |
200 return 0; | |
201 return order - kDenormalExponent; | |
202 } | |
203 | |
204 static double Infinity() { return Double(kInfinity).value(); } | |
205 | |
206 static double NaN() { return Double(kNaN).value(); } | |
207 | |
208 private: | |
209 static const int kExponentBias = 0x3FF + kPhysicalSignificandSize; | |
210 static const int kDenormalExponent = -kExponentBias + 1; | |
211 static const int kMaxExponent = 0x7FF - kExponentBias; | |
212 static const uint64_t kInfinity = UINT64_2PART_C(0x7FF00000, 00000000); | |
213 static const uint64_t kNaN = UINT64_2PART_C(0x7FF80000, 00000000); | |
214 | |
215 const uint64_t d64_; | |
216 | |
217 static uint64_t DiyFpToUint64(DiyFp diy_fp) { | |
218 uint64_t significand = diy_fp.f(); | |
219 int exponent = diy_fp.e(); | |
220 while (significand > kHiddenBit + kSignificandMask) { | |
221 significand >>= 1; | |
222 exponent++; | |
223 } | |
224 if (exponent >= kMaxExponent) { | |
225 return kInfinity; | |
226 } | |
227 if (exponent < kDenormalExponent) { | |
228 return 0; | |
229 } | |
230 while (exponent > kDenormalExponent && (significand & kHiddenBit) == 0) { | |
231 significand <<= 1; | |
232 exponent--; | |
233 } | |
234 uint64_t biased_exponent; | |
235 if (exponent == kDenormalExponent && (significand & kHiddenBit) == 0) { | |
236 biased_exponent = 0; | |
237 } else { | |
238 biased_exponent = static_cast<uint64_t>(exponent + kExponentBias); | |
239 } | |
240 return (significand & kSignificandMask) | | |
241 (biased_exponent << kPhysicalSignificandSize); | |
242 } | |
243 }; | |
244 | |
245 } // namespace double_conversion | |
246 | |
247 } // namespace WTF | |
248 | |
249 #endif // DOUBLE_CONVERSION_DOUBLE_H_ | |
OLD | NEW |