Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(21)

Side by Side Diff: third_party/WebKit/Source/wtf/dtoa/bignum-dtoa.cc

Issue 2764243002: Move files in wtf/ to platform/wtf/ (Part 9). (Closed)
Patch Set: Rebase. Created 3 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View unified diff | Download patch
OLDNEW
(Empty)
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 // * Redistributions of source code must retain the above copyright
7 // notice, this list of conditions and the following disclaimer.
8 // * Redistributions in binary form must reproduce the above
9 // copyright notice, this list of conditions and the following
10 // disclaimer in the documentation and/or other materials provided
11 // with the distribution.
12 // * Neither the name of Google Inc. nor the names of its
13 // contributors may be used to endorse or promote products derived
14 // from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27
28 #include "bignum-dtoa.h"
29
30 #include "bignum.h"
31 #include "double.h"
32 #include <math.h>
33
34 namespace WTF {
35
36 namespace double_conversion {
37
38 static int NormalizedExponent(uint64_t significand, int exponent) {
39 ASSERT(significand != 0);
40 while ((significand & Double::kHiddenBit) == 0) {
41 significand = significand << 1;
42 exponent = exponent - 1;
43 }
44 return exponent;
45 }
46
47
48 // Forward declarations:
49 // Returns an estimation of k such that 10^(k-1) <= v < 10^k.
50 static int EstimatePower(int exponent);
51 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numer ator
52 // and denominator.
53 static void InitialScaledStartValues(double v,
54 int estimated_power,
55 bool need_boundary_deltas,
56 Bignum* numerator,
57 Bignum* denominator,
58 Bignum* delta_minus,
59 Bignum* delta_plus);
60 // Multiplies numerator/denominator so that its values lies in the range 1-1 0.
61 // Returns decimal_point s.t.
62 // v = numerator'/denominator' * 10^(decimal_point-1)
63 // where numerator' and denominator' are the values of numerator and
64 // denominator after the call to this function.
65 static void FixupMultiply10(int estimated_power, bool is_even,
66 int* decimal_point,
67 Bignum* numerator, Bignum* denominator,
68 Bignum* delta_minus, Bignum* delta_plus);
69 // Generates digits from the left to the right and stops when the generated
70 // digits yield the shortest decimal representation of v.
71 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
72 Bignum* delta_minus, Bignum* delta_plus,
73 bool is_even,
74 Vector<char> buffer, int* length);
75 // Generates 'requested_digits' after the decimal point.
76 static void BignumToFixed(int requested_digits, int* decimal_point,
77 Bignum* numerator, Bignum* denominator,
78 Vector<char>(buffer), int* length);
79 // Generates 'count' digits of numerator/denominator.
80 // Once 'count' digits have been produced rounds the result depending on the
81 // remainder (remainders of exactly .5 round upwards). Might update the
82 // decimal_point when rounding up (for example for 0.9999).
83 static void GenerateCountedDigits(int count, int* decimal_point,
84 Bignum* numerator, Bignum* denominator,
85 Vector<char>(buffer), int* length);
86
87
88 void BignumDtoa(double v, BignumDtoaMode mode, int requested_digits,
89 Vector<char> buffer, int* length, int* decimal_point) {
90 ASSERT(v > 0);
91 ASSERT(!Double(v).IsSpecial());
92 uint64_t significand = Double(v).Significand();
93 bool is_even = (significand & 1) == 0;
94 int exponent = Double(v).Exponent();
95 int normalized_exponent = NormalizedExponent(significand, exponent);
96 // estimated_power might be too low by 1.
97 int estimated_power = EstimatePower(normalized_exponent);
98
99 // Shortcut for Fixed.
100 // The requested digits correspond to the digits after the point. If the
101 // number is much too small, then there is no need in trying to get any
102 // digits.
103 if (mode == BIGNUM_DTOA_FIXED && -estimated_power - 1 > requested_digits ) {
104 buffer[0] = '\0';
105 *length = 0;
106 // Set decimal-point to -requested_digits. This is what Gay does.
107 // Note that it should not have any effect anyways since the string is
108 // empty.
109 *decimal_point = -requested_digits;
110 return;
111 }
112
113 Bignum numerator;
114 Bignum denominator;
115 Bignum delta_minus;
116 Bignum delta_plus;
117 // Make sure the bignum can grow large enough. The smallest double equal s
118 // 4e-324. In this case the denominator needs fewer than 324*4 binary di gits.
119 // The maximum double is 1.7976931348623157e308 which needs fewer than
120 // 308*4 binary digits.
121 ASSERT(Bignum::kMaxSignificantBits >= 324*4);
122 bool need_boundary_deltas = (mode == BIGNUM_DTOA_SHORTEST);
123 InitialScaledStartValues(v, estimated_power, need_boundary_deltas,
124 &numerator, &denominator,
125 &delta_minus, &delta_plus);
126 // We now have v = (numerator / denominator) * 10^estimated_power.
127 FixupMultiply10(estimated_power, is_even, decimal_point,
128 &numerator, &denominator,
129 &delta_minus, &delta_plus);
130 // We now have v = (numerator / denominator) * 10^(decimal_point-1), and
131 // 1 <= (numerator + delta_plus) / denominator < 10
132 switch (mode) {
133 case BIGNUM_DTOA_SHORTEST:
134 GenerateShortestDigits(&numerator, &denominator,
135 &delta_minus, &delta_plus,
136 is_even, buffer, length);
137 break;
138 case BIGNUM_DTOA_FIXED:
139 BignumToFixed(requested_digits, decimal_point,
140 &numerator, &denominator,
141 buffer, length);
142 break;
143 case BIGNUM_DTOA_PRECISION:
144 GenerateCountedDigits(requested_digits, decimal_point,
145 &numerator, &denominator,
146 buffer, length);
147 break;
148 default:
149 UNREACHABLE();
150 }
151 buffer[*length] = '\0';
152 }
153
154
155 // The procedure starts generating digits from the left to the right and sto ps
156 // when the generated digits yield the shortest decimal representation of v. A
157 // decimal representation of v is a number lying closer to v than to any oth er
158 // double, so it converts to v when read.
159 //
160 // This is true if d, the decimal representation, is between m- and m+, the
161 // upper and lower boundaries. d must be strictly between them if !is_even.
162 // m- := (numerator - delta_minus) / denominator
163 // m+ := (numerator + delta_plus) / denominator
164 //
165 // Precondition: 0 <= (numerator+delta_plus) / denominator < 10.
166 // If 1 <= (numerator+delta_plus) / denominator < 10 then no leading 0 dig it
167 // will be produced. This should be the standard precondition.
168 static void GenerateShortestDigits(Bignum* numerator, Bignum* denominator,
169 Bignum* delta_minus, Bignum* delta_plus,
170 bool is_even,
171 Vector<char> buffer, int* length) {
172 // Small optimization: if delta_minus and delta_plus are the same just r euse
173 // one of the two bignums.
174 if (Bignum::Equal(*delta_minus, *delta_plus)) {
175 delta_plus = delta_minus;
176 }
177 *length = 0;
178 while (true) {
179 uint16_t digit;
180 digit = numerator->DivideModuloIntBignum(*denominator);
181 ASSERT(digit <= 9); // digit is a uint16_t and therefore always pos itive.
182 // digit = numerator / denominator (integer division).
183 // numerator = numerator % denominator.
184 buffer[(*length)++] = static_cast<char>(digit + '0');
185
186 // Can we stop already?
187 // If the remainder of the division is less than the distance to the lower
188 // boundary we can stop. In this case we simply round down (discardi ng the
189 // remainder).
190 // Similarly we test if we can round up (using the upper boundary).
191 bool in_delta_room_minus;
192 bool in_delta_room_plus;
193 if (is_even) {
194 in_delta_room_minus = Bignum::LessEqual(*numerator, *delta_minus );
195 } else {
196 in_delta_room_minus = Bignum::Less(*numerator, *delta_minus);
197 }
198 if (is_even) {
199 in_delta_room_plus =
200 Bignum::PlusCompare(*numerator, *delta_plus, *denominator) >= 0;
201 } else {
202 in_delta_room_plus =
203 Bignum::PlusCompare(*numerator, *delta_plus, *denominator) > 0;
204 }
205 if (!in_delta_room_minus && !in_delta_room_plus) {
206 // Prepare for next iteration.
207 numerator->Times10();
208 delta_minus->Times10();
209 // We optimized delta_plus to be equal to delta_minus (if they s hare the
210 // same value). So don't multiply delta_plus if they point to th e same
211 // object.
212 if (delta_minus != delta_plus) {
213 delta_plus->Times10();
214 }
215 } else if (in_delta_room_minus && in_delta_room_plus) {
216 // Let's see if 2*numerator < denominator.
217 // If yes, then the next digit would be < 5 and we can round dow n.
218 int compare = Bignum::PlusCompare(*numerator, *numerator, *denom inator);
219 if (compare < 0) {
220 // Remaining digits are less than .5. -> Round down (== do n othing).
221 } else if (compare > 0) {
222 // Remaining digits are more than .5 of denominator. -> Roun d up.
223 // Note that the last digit could not be a '9' as otherwise the whole
224 // loop would have stopped earlier.
225 // We still have an assert here in case the preconditions we re not
226 // satisfied.
227 ASSERT(buffer[(*length) - 1] != '9');
228 buffer[(*length) - 1]++;
229 } else {
230 // Halfway case.
231 // TODO(floitsch): need a way to solve half-way cases.
232 // For now let's round towards even (since this is what Ga y seems to
233 // do).
234
235 if ((buffer[(*length) - 1] - '0') % 2 == 0) {
236 // Round down => Do nothing.
237 } else {
238 ASSERT(buffer[(*length) - 1] != '9');
239 buffer[(*length) - 1]++;
240 }
241 }
242 return;
243 } else if (in_delta_room_minus) {
244 // Round down (== do nothing).
245 return;
246 } else { // in_delta_room_plus
247 // Round up.
248 // Note again that the last digit could not be '9' since this wo uld have
249 // stopped the loop earlier.
250 // We still have an ASSERT here, in case the preconditions were not
251 // satisfied.
252 ASSERT(buffer[(*length) -1] != '9');
253 buffer[(*length) - 1]++;
254 return;
255 }
256 }
257 }
258
259
260 // Let v = numerator / denominator < 10.
261 // Then we generate 'count' digits of d = x.xxxxx... (without the decimal po int)
262 // from left to right. Once 'count' digits have been produced we decide weth er
263 // to round up or down. Remainders of exactly .5 round upwards. Numbers such
264 // as 9.999999 propagate a carry all the way, and change the
265 // exponent (decimal_point), when rounding upwards.
266 static void GenerateCountedDigits(int count, int* decimal_point,
267 Bignum* numerator, Bignum* denominator,
268 Vector<char>(buffer), int* length) {
269 ASSERT(count >= 0);
270 for (int i = 0; i < count - 1; ++i) {
271 uint16_t digit;
272 digit = numerator->DivideModuloIntBignum(*denominator);
273 ASSERT(digit <= 9); // digit is a uint16_t and therefore always pos itive.
274 // digit = numerator / denominator (integer division).
275 // numerator = numerator % denominator.
276 buffer[i] = static_cast<char>(digit + '0');
277 // Prepare for next iteration.
278 numerator->Times10();
279 }
280 // Generate the last digit.
281 uint16_t digit;
282 digit = numerator->DivideModuloIntBignum(*denominator);
283 if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
284 digit++;
285 }
286 buffer[count - 1] = static_cast<char>(digit + '0');
287 // Correct bad digits (in case we had a sequence of '9's). Propagate the
288 // carry until we hat a non-'9' or til we reach the first digit.
289 for (int i = count - 1; i > 0; --i) {
290 if (buffer[i] != '0' + 10) break;
291 buffer[i] = '0';
292 buffer[i - 1]++;
293 }
294 if (buffer[0] == '0' + 10) {
295 // Propagate a carry past the top place.
296 buffer[0] = '1';
297 (*decimal_point)++;
298 }
299 *length = count;
300 }
301
302
303 // Generates 'requested_digits' after the decimal point. It might omit
304 // trailing '0's. If the input number is too small then no digits at all are
305 // generated (ex.: 2 fixed digits for 0.00001).
306 //
307 // Input verifies: 1 <= (numerator + delta) / denominator < 10.
308 static void BignumToFixed(int requested_digits, int* decimal_point,
309 Bignum* numerator, Bignum* denominator,
310 Vector<char>(buffer), int* length) {
311 // Note that we have to look at more than just the requested_digits, sin ce
312 // a number could be rounded up. Example: v=0.5 with requested_digits=0.
313 // Even though the power of v equals 0 we can't just stop here.
314 if (-(*decimal_point) > requested_digits) {
315 // The number is definitively too small.
316 // Ex: 0.001 with requested_digits == 1.
317 // Set decimal-point to -requested_digits. This is what Gay does.
318 // Note that it should not have any effect anyways since the string is
319 // empty.
320 *decimal_point = -requested_digits;
321 *length = 0;
322 return;
323 } else if (-(*decimal_point) == requested_digits) {
324 // We only need to verify if the number rounds down or up.
325 // Ex: 0.04 and 0.06 with requested_digits == 1.
326 ASSERT(*decimal_point == -requested_digits);
327 // Initially the fraction lies in range (1, 10]. Multiply the denomi nator
328 // by 10 so that we can compare more easily.
329 denominator->Times10();
330 if (Bignum::PlusCompare(*numerator, *numerator, *denominator) >= 0) {
331 // If the fraction is >= 0.5 then we have to include the rounded
332 // digit.
333 buffer[0] = '1';
334 *length = 1;
335 (*decimal_point)++;
336 } else {
337 // Note that we caught most of similar cases earlier.
338 *length = 0;
339 }
340 return;
341 } else {
342 // The requested digits correspond to the digits after the point.
343 // The variable 'needed_digits' includes the digits before the point .
344 int needed_digits = (*decimal_point) + requested_digits;
345 GenerateCountedDigits(needed_digits, decimal_point,
346 numerator, denominator,
347 buffer, length);
348 }
349 }
350
351
352 // Returns an estimation of k such that 10^(k-1) <= v < 10^k where
353 // v = f * 2^exponent and 2^52 <= f < 2^53.
354 // v is hence a normalized double with the given exponent. The output is an
355 // approximation for the exponent of the decimal approimation .digits * 10^k .
356 //
357 // The result might undershoot by 1 in which case 10^k <= v < 10^k+1.
358 // Note: this property holds for v's upper boundary m+ too.
359 // 10^k <= m+ < 10^k+1.
360 // (see explanation below).
361 //
362 // Examples:
363 // EstimatePower(0) => 16
364 // EstimatePower(-52) => 0
365 //
366 // Note: e >= 0 => EstimatedPower(e) > 0. No similar claim can be made for e <0.
367 static int EstimatePower(int exponent) {
368 // This function estimates log10 of v where v = f*2^e (with e == exponen t).
369 // Note that 10^floor(log10(v)) <= v, but v <= 10^ceil(log10(v)).
370 // Note that f is bounded by its container size. Let p = 53 (the double' s
371 // significand size). Then 2^(p-1) <= f < 2^p.
372 //
373 // Given that log10(v) == log2(v)/log2(10) and e+(len(f)-1) is quite clo se
374 // to log2(v) the function is simplified to (e+(len(f)-1)/log2(10)).
375 // The computed number undershoots by less than 0.631 (when we compute l og3
376 // and not log10).
377 //
378 // Optimization: since we only need an approximated result this computat ion
379 // can be performed on 64 bit integers. On x86/x64 architecture the spee dup is
380 // not really measurable, though.
381 //
382 // Since we want to avoid overshooting we decrement by 1e10 so that
383 // floating-point imprecisions don't affect us.
384 //
385 // Explanation for v's boundary m+: the computation takes advantage of
386 // the fact that 2^(p-1) <= f < 2^p. Boundaries still satisfy this requi rement
387 // (even for denormals where the delta can be much more important).
388
389 const double k1Log10 = 0.30102999566398114; // 1/lg(10)
390
391 // For doubles len(f) == 53 (don't forget the hidden bit).
392 const int kSignificandSize = 53;
393 double estimate = ceil((exponent + kSignificandSize - 1) * k1Log10 - 1e- 10);
394 return static_cast<int>(estimate);
395 }
396
397
398 // See comments for InitialScaledStartValues.
399 static void InitialScaledStartValuesPositiveExponent(
400 double v, int estimated _power, bool need_boundary_deltas,
401 Bignum* numerator, Bign um* denominator,
402 Bignum* delta_minus, Bi gnum* delta_plus) {
403 // A positive exponent implies a positive power.
404 ASSERT(estimated_power >= 0);
405 // Since the estimated_power is positive we simply multiply the denomina tor
406 // by 10^estimated_power.
407
408 // numerator = v.
409 numerator->AssignUInt64(Double(v).Significand());
410 numerator->ShiftLeft(Double(v).Exponent());
411 // denominator = 10^estimated_power.
412 denominator->AssignPowerUInt16(10, estimated_power);
413
414 if (need_boundary_deltas) {
415 // Introduce a common denominator so that the deltas to the boundari es are
416 // integers.
417 denominator->ShiftLeft(1);
418 numerator->ShiftLeft(1);
419 // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
420 // denominator (of 2) delta_plus equals 2^e.
421 delta_plus->AssignUInt16(1);
422 delta_plus->ShiftLeft(Double(v).Exponent());
423 // Same for delta_minus (with adjustments below if f == 2^p-1).
424 delta_minus->AssignUInt16(1);
425 delta_minus->ShiftLeft(Double(v).Exponent());
426
427 // If the significand (without the hidden bit) is 0, then the lower
428 // boundary is closer than just half a ulp (unit in the last place).
429 // There is only one exception: if the next lower number is a denorm al then
430 // the distance is 1 ulp. This cannot be the case for exponent >= 0 (but we
431 // have to test it in the other function where exponent < 0).
432 uint64_t v_bits = Double(v).AsUint64();
433 if ((v_bits & Double::kSignificandMask) == 0) {
434 // The lower boundary is closer at half the distance of "normal" numbers.
435 // Increase the common denominator and adapt all but the delta_m inus.
436 denominator->ShiftLeft(1); // *2
437 numerator->ShiftLeft(1); // *2
438 delta_plus->ShiftLeft(1); // *2
439 }
440 }
441 }
442
443
444 // See comments for InitialScaledStartValues
445 static void InitialScaledStartValuesNegativeExponentPositivePower(
446 double v, int estimated_power, bool need_boundary_deltas,
447 Bignum* nu merator, Bignum* denominator,
448 Bignum* de lta_minus, Bignum* delta_plus) {
449 uint64_t significand = Double(v).Significand();
450 int exponent = Double(v).Exponent();
451 // v = f * 2^e with e < 0, and with estimated_power >= 0.
452 // This means that e is close to 0 (have a look at how estimated_power i s
453 // computed).
454
455 // numerator = significand
456 // since v = significand * 2^exponent this is equivalent to
457 // numerator = v * / 2^-exponent
458 numerator->AssignUInt64(significand);
459 // denominator = 10^estimated_power * 2^-exponent (with exponent < 0)
460 denominator->AssignPowerUInt16(10, estimated_power);
461 denominator->ShiftLeft(-exponent);
462
463 if (need_boundary_deltas) {
464 // Introduce a common denominator so that the deltas to the boundari es are
465 // integers.
466 denominator->ShiftLeft(1);
467 numerator->ShiftLeft(1);
468 // Let v = f * 2^e, then m+ - v = 1/2 * 2^e; With the common
469 // denominator (of 2) delta_plus equals 2^e.
470 // Given that the denominator already includes v's exponent the dist ance
471 // to the boundaries is simply 1.
472 delta_plus->AssignUInt16(1);
473 // Same for delta_minus (with adjustments below if f == 2^p-1).
474 delta_minus->AssignUInt16(1);
475
476 // If the significand (without the hidden bit) is 0, then the lower
477 // boundary is closer than just one ulp (unit in the last place).
478 // There is only one exception: if the next lower number is a denorm al
479 // then the distance is 1 ulp. Since the exponent is close to zero
480 // (otherwise estimated_power would have been negative) this cannot happen
481 // here either.
482 uint64_t v_bits = Double(v).AsUint64();
483 if ((v_bits & Double::kSignificandMask) == 0) {
484 // The lower boundary is closer at half the distance of "normal" numbers.
485 // Increase the denominator and adapt all but the delta_minus.
486 denominator->ShiftLeft(1); // *2
487 numerator->ShiftLeft(1); // *2
488 delta_plus->ShiftLeft(1); // *2
489 }
490 }
491 }
492
493
494 // See comments for InitialScaledStartValues
495 static void InitialScaledStartValuesNegativeExponentNegativePower(
496 double v, int estimated_power, bool need_boundary_deltas,
497 Bignum* nu merator, Bignum* denominator,
498 Bignum* de lta_minus, Bignum* delta_plus) {
499 const uint64_t kMinimalNormalizedExponent =
500 UINT64_2PART_C(0x00100000, 00000000);
501 uint64_t significand = Double(v).Significand();
502 int exponent = Double(v).Exponent();
503 // Instead of multiplying the denominator with 10^estimated_power we
504 // multiply all values (numerator and deltas) by 10^-estimated_power.
505
506 // Use numerator as temporary container for power_ten.
507 Bignum* power_ten = numerator;
508 power_ten->AssignPowerUInt16(10, -estimated_power);
509
510 if (need_boundary_deltas) {
511 // Since power_ten == numerator we must make a copy of 10^estimated_ power
512 // before we complete the computation of the numerator.
513 // delta_plus = delta_minus = 10^estimated_power
514 delta_plus->AssignBignum(*power_ten);
515 delta_minus->AssignBignum(*power_ten);
516 }
517
518 // numerator = significand * 2 * 10^-estimated_power
519 // since v = significand * 2^exponent this is equivalent to
520 // numerator = v * 10^-estimated_power * 2 * 2^-exponent.
521 // Remember: numerator has been abused as power_ten. So no need to assig n it
522 // to itself.
523 ASSERT(numerator == power_ten);
524 numerator->MultiplyByUInt64(significand);
525
526 // denominator = 2 * 2^-exponent with exponent < 0.
527 denominator->AssignUInt16(1);
528 denominator->ShiftLeft(-exponent);
529
530 if (need_boundary_deltas) {
531 // Introduce a common denominator so that the deltas to the boundari es are
532 // integers.
533 numerator->ShiftLeft(1);
534 denominator->ShiftLeft(1);
535 // With this shift the boundaries have their correct value, since
536 // delta_plus = 10^-estimated_power, and
537 // delta_minus = 10^-estimated_power.
538 // These assignments have been done earlier.
539
540 // The special case where the lower boundary is twice as close.
541 // This time we have to look out for the exception too.
542 uint64_t v_bits = Double(v).AsUint64();
543 if ((v_bits & Double::kSignificandMask) == 0 &&
544 // The only exception where a significand == 0 has its boundarie s at
545 // "normal" distances:
546 (v_bits & Double::kExponentMask) != kMinimalNormalizedExponent) {
547 numerator->ShiftLeft(1); // *2
548 denominator->ShiftLeft(1); // *2
549 delta_plus->ShiftLeft(1); // *2
550 }
551 }
552 }
553
554
555 // Let v = significand * 2^exponent.
556 // Computes v / 10^estimated_power exactly, as a ratio of two bignums, numer ator
557 // and denominator. The functions GenerateShortestDigits and
558 // GenerateCountedDigits will then convert this ratio to its decimal
559 // representation d, with the required accuracy.
560 // Then d * 10^estimated_power is the representation of v.
561 // (Note: the fraction and the estimated_power might get adjusted before
562 // generating the decimal representation.)
563 //
564 // The initial start values consist of:
565 // - a scaled numerator: s.t. numerator/denominator == v / 10^estimated_pow er.
566 // - a scaled (common) denominator.
567 // optionally (used by GenerateShortestDigits to decide if it has the short est
568 // decimal converting back to v):
569 // - v - m-: the distance to the lower boundary.
570 // - m+ - v: the distance to the upper boundary.
571 //
572 // v, m+, m-, and therefore v - m- and m+ - v all share the same denominator .
573 //
574 // Let ep == estimated_power, then the returned values will satisfy:
575 // v / 10^ep = numerator / denominator.
576 // v's boundarys m- and m+:
577 // m- / 10^ep == v / 10^ep - delta_minus / denominator
578 // m+ / 10^ep == v / 10^ep + delta_plus / denominator
579 // Or in other words:
580 // m- == v - delta_minus * 10^ep / denominator;
581 // m+ == v + delta_plus * 10^ep / denominator;
582 //
583 // Since 10^(k-1) <= v < 10^k (with k == estimated_power)
584 // or 10^k <= v < 10^(k+1)
585 // we then have 0.1 <= numerator/denominator < 1
586 // or 1 <= numerator/denominator < 10
587 //
588 // It is then easy to kickstart the digit-generation routine.
589 //
590 // The boundary-deltas are only filled if need_boundary_deltas is set.
591 static void InitialScaledStartValues(double v,
592 int estimated_power,
593 bool need_boundary_deltas,
594 Bignum* numerator,
595 Bignum* denominator,
596 Bignum* delta_minus,
597 Bignum* delta_plus) {
598 if (Double(v).Exponent() >= 0) {
599 InitialScaledStartValuesPositiveExponent(
600 v, estimated_power, need_bo undary_deltas,
601 numerator, denominator, del ta_minus, delta_plus);
602 } else if (estimated_power >= 0) {
603 InitialScaledStartValuesNegativeExponentPositivePower(
604 v, estimated_p ower, need_boundary_deltas,
605 numerator, den ominator, delta_minus, delta_plus);
606 } else {
607 InitialScaledStartValuesNegativeExponentNegativePower(
608 v, estimated_p ower, need_boundary_deltas,
609 numerator, den ominator, delta_minus, delta_plus);
610 }
611 }
612
613
614 // This routine multiplies numerator/denominator so that its values lies in the
615 // range 1-10. That is after a call to this function we have:
616 // 1 <= (numerator + delta_plus) /denominator < 10.
617 // Let numerator the input before modification and numerator' the argument
618 // after modification, then the output-parameter decimal_point is such that
619 // numerator / denominator * 10^estimated_power ==
620 // numerator' / denominator' * 10^(decimal_point - 1)
621 // In some cases estimated_power was too low, and this is already the case. We
622 // then simply adjust the power so that 10^(k-1) <= v < 10^k (with k ==
623 // estimated_power) but do not touch the numerator or denominator.
624 // Otherwise the routine multiplies the numerator and the deltas by 10.
625 static void FixupMultiply10(int estimated_power, bool is_even,
626 int* decimal_point,
627 Bignum* numerator, Bignum* denominator,
628 Bignum* delta_minus, Bignum* delta_plus) {
629 bool in_range;
630 if (is_even) {
631 // For IEEE doubles half-way cases (in decimal system numbers ending with 5)
632 // are rounded to the closest floating-point number with even signif icand.
633 in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator ) >= 0;
634 } else {
635 in_range = Bignum::PlusCompare(*numerator, *delta_plus, *denominator ) > 0;
636 }
637 if (in_range) {
638 // Since numerator + delta_plus >= denominator we already have
639 // 1 <= numerator/denominator < 10. Simply update the estimated_powe r.
640 *decimal_point = estimated_power + 1;
641 } else {
642 *decimal_point = estimated_power;
643 numerator->Times10();
644 if (Bignum::Equal(*delta_minus, *delta_plus)) {
645 delta_minus->Times10();
646 delta_plus->AssignBignum(*delta_minus);
647 } else {
648 delta_minus->Times10();
649 delta_plus->Times10();
650 }
651 }
652 }
653
654 } // namespace double_conversion
655
656 } // namespace WTF
OLDNEW
« no previous file with comments | « third_party/WebKit/Source/wtf/dtoa/bignum-dtoa.h ('k') | third_party/WebKit/Source/wtf/dtoa/cached-powers.h » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698