Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(531)

Unified Diff: third_party/sqlite/amalgamation/sqlite3.02.c

Issue 2755803002: NCI: trybot test for sqlite 3.17 import. (Closed)
Patch Set: also clang on Linux i386 Created 3 years, 9 months ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « third_party/sqlite/amalgamation/sqlite3.01.c ('k') | third_party/sqlite/amalgamation/sqlite3.03.c » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: third_party/sqlite/amalgamation/sqlite3.02.c
diff --git a/third_party/sqlite/amalgamation/sqlite3.02.c b/third_party/sqlite/amalgamation/sqlite3.02.c
new file mode 100644
index 0000000000000000000000000000000000000000..d27f6f1a05ab3ab19f7f12fe1c94eb6daf84f942
--- /dev/null
+++ b/third_party/sqlite/amalgamation/sqlite3.02.c
@@ -0,0 +1,14005 @@
+/************** Begin file pcache1.c *****************************************/
+/*
+** 2008 November 05
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file implements the default page cache implementation (the
+** sqlite3_pcache interface). It also contains part of the implementation
+** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
+** If the default page cache implementation is overridden, then neither of
+** these two features are available.
+**
+** A Page cache line looks like this:
+**
+** -------------------------------------------------------------
+** | database page content | PgHdr1 | MemPage | PgHdr |
+** -------------------------------------------------------------
+**
+** The database page content is up front (so that buffer overreads tend to
+** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions). MemPage
+** is the extension added by the btree.c module containing information such
+** as the database page number and how that database page is used. PgHdr
+** is added by the pcache.c layer and contains information used to keep track
+** of which pages are "dirty". PgHdr1 is an extension added by this
+** module (pcache1.c). The PgHdr1 header is a subclass of sqlite3_pcache_page.
+** PgHdr1 contains information needed to look up a page by its page number.
+** The superclass sqlite3_pcache_page.pBuf points to the start of the
+** database page content and sqlite3_pcache_page.pExtra points to PgHdr.
+**
+** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at
+** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size). The
+** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this
+** size can vary according to architecture, compile-time options, and
+** SQLite library version number.
+**
+** If SQLITE_PCACHE_SEPARATE_HEADER is defined, then the extension is obtained
+** using a separate memory allocation from the database page content. This
+** seeks to overcome the "clownshoe" problem (also called "internal
+** fragmentation" in academic literature) of allocating a few bytes more
+** than a power of two with the memory allocator rounding up to the next
+** power of two, and leaving the rounded-up space unused.
+**
+** This module tracks pointers to PgHdr1 objects. Only pcache.c communicates
+** with this module. Information is passed back and forth as PgHdr1 pointers.
+**
+** The pcache.c and pager.c modules deal pointers to PgHdr objects.
+** The btree.c module deals with pointers to MemPage objects.
+**
+** SOURCE OF PAGE CACHE MEMORY:
+**
+** Memory for a page might come from any of three sources:
+**
+** (1) The general-purpose memory allocator - sqlite3Malloc()
+** (2) Global page-cache memory provided using sqlite3_config() with
+** SQLITE_CONFIG_PAGECACHE.
+** (3) PCache-local bulk allocation.
+**
+** The third case is a chunk of heap memory (defaulting to 100 pages worth)
+** that is allocated when the page cache is created. The size of the local
+** bulk allocation can be adjusted using
+**
+** sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N).
+**
+** If N is positive, then N pages worth of memory are allocated using a single
+** sqlite3Malloc() call and that memory is used for the first N pages allocated.
+** Or if N is negative, then -1024*N bytes of memory are allocated and used
+** for as many pages as can be accomodated.
+**
+** Only one of (2) or (3) can be used. Once the memory available to (2) or
+** (3) is exhausted, subsequent allocations fail over to the general-purpose
+** memory allocator (1).
+**
+** Earlier versions of SQLite used only methods (1) and (2). But experiments
+** show that method (3) with N==100 provides about a 5% performance boost for
+** common workloads.
+*/
+/* #include "sqliteInt.h" */
+
+typedef struct PCache1 PCache1;
+typedef struct PgHdr1 PgHdr1;
+typedef struct PgFreeslot PgFreeslot;
+typedef struct PGroup PGroup;
+
+/*
+** Each cache entry is represented by an instance of the following
+** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of
+** PgHdr1.pCache->szPage bytes is allocated directly before this structure
+** in memory.
+*/
+struct PgHdr1 {
+ sqlite3_pcache_page page; /* Base class. Must be first. pBuf & pExtra */
+ unsigned int iKey; /* Key value (page number) */
+ u8 isPinned; /* Page in use, not on the LRU list */
+ u8 isBulkLocal; /* This page from bulk local storage */
+ u8 isAnchor; /* This is the PGroup.lru element */
+ PgHdr1 *pNext; /* Next in hash table chain */
+ PCache1 *pCache; /* Cache that currently owns this page */
+ PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */
+ PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */
+};
+
+/* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set
+** of one or more PCaches that are able to recycle each other's unpinned
+** pages when they are under memory pressure. A PGroup is an instance of
+** the following object.
+**
+** This page cache implementation works in one of two modes:
+**
+** (1) Every PCache is the sole member of its own PGroup. There is
+** one PGroup per PCache.
+**
+** (2) There is a single global PGroup that all PCaches are a member
+** of.
+**
+** Mode 1 uses more memory (since PCache instances are not able to rob
+** unused pages from other PCaches) but it also operates without a mutex,
+** and is therefore often faster. Mode 2 requires a mutex in order to be
+** threadsafe, but recycles pages more efficiently.
+**
+** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single
+** PGroup which is the pcache1.grp global variable and its mutex is
+** SQLITE_MUTEX_STATIC_LRU.
+*/
+struct PGroup {
+ sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */
+ unsigned int nMaxPage; /* Sum of nMax for purgeable caches */
+ unsigned int nMinPage; /* Sum of nMin for purgeable caches */
+ unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */
+ unsigned int nCurrentPage; /* Number of purgeable pages allocated */
+ PgHdr1 lru; /* The beginning and end of the LRU list */
+};
+
+/* Each page cache is an instance of the following object. Every
+** open database file (including each in-memory database and each
+** temporary or transient database) has a single page cache which
+** is an instance of this object.
+**
+** Pointers to structures of this type are cast and returned as
+** opaque sqlite3_pcache* handles.
+*/
+struct PCache1 {
+ /* Cache configuration parameters. Page size (szPage) and the purgeable
+ ** flag (bPurgeable) are set when the cache is created. nMax may be
+ ** modified at any time by a call to the pcache1Cachesize() method.
+ ** The PGroup mutex must be held when accessing nMax.
+ */
+ PGroup *pGroup; /* PGroup this cache belongs to */
+ int szPage; /* Size of database content section */
+ int szExtra; /* sizeof(MemPage)+sizeof(PgHdr) */
+ int szAlloc; /* Total size of one pcache line */
+ int bPurgeable; /* True if cache is purgeable */
+ unsigned int nMin; /* Minimum number of pages reserved */
+ unsigned int nMax; /* Configured "cache_size" value */
+ unsigned int n90pct; /* nMax*9/10 */
+ unsigned int iMaxKey; /* Largest key seen since xTruncate() */
+
+ /* Hash table of all pages. The following variables may only be accessed
+ ** when the accessor is holding the PGroup mutex.
+ */
+ unsigned int nRecyclable; /* Number of pages in the LRU list */
+ unsigned int nPage; /* Total number of pages in apHash */
+ unsigned int nHash; /* Number of slots in apHash[] */
+ PgHdr1 **apHash; /* Hash table for fast lookup by key */
+ PgHdr1 *pFree; /* List of unused pcache-local pages */
+ void *pBulk; /* Bulk memory used by pcache-local */
+};
+
+/*
+** Free slots in the allocator used to divide up the global page cache
+** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism.
+*/
+struct PgFreeslot {
+ PgFreeslot *pNext; /* Next free slot */
+};
+
+/*
+** Global data used by this cache.
+*/
+static SQLITE_WSD struct PCacheGlobal {
+ PGroup grp; /* The global PGroup for mode (2) */
+
+ /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The
+ ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
+ ** fixed at sqlite3_initialize() time and do not require mutex protection.
+ ** The nFreeSlot and pFree values do require mutex protection.
+ */
+ int isInit; /* True if initialized */
+ int separateCache; /* Use a new PGroup for each PCache */
+ int nInitPage; /* Initial bulk allocation size */
+ int szSlot; /* Size of each free slot */
+ int nSlot; /* The number of pcache slots */
+ int nReserve; /* Try to keep nFreeSlot above this */
+ void *pStart, *pEnd; /* Bounds of global page cache memory */
+ /* Above requires no mutex. Use mutex below for variable that follow. */
+ sqlite3_mutex *mutex; /* Mutex for accessing the following: */
+ PgFreeslot *pFree; /* Free page blocks */
+ int nFreeSlot; /* Number of unused pcache slots */
+ /* The following value requires a mutex to change. We skip the mutex on
+ ** reading because (1) most platforms read a 32-bit integer atomically and
+ ** (2) even if an incorrect value is read, no great harm is done since this
+ ** is really just an optimization. */
+ int bUnderPressure; /* True if low on PAGECACHE memory */
+} pcache1_g;
+
+/*
+** All code in this file should access the global structure above via the
+** alias "pcache1". This ensures that the WSD emulation is used when
+** compiling for systems that do not support real WSD.
+*/
+#define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
+
+/*
+** Macros to enter and leave the PCache LRU mutex.
+*/
+#if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
+# define pcache1EnterMutex(X) assert((X)->mutex==0)
+# define pcache1LeaveMutex(X) assert((X)->mutex==0)
+# define PCACHE1_MIGHT_USE_GROUP_MUTEX 0
+#else
+# define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
+# define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
+# define PCACHE1_MIGHT_USE_GROUP_MUTEX 1
+#endif
+
+/******************************************************************************/
+/******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
+
+
+/*
+** This function is called during initialization if a static buffer is
+** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
+** verb to sqlite3_config(). Parameter pBuf points to an allocation large
+** enough to contain 'n' buffers of 'sz' bytes each.
+**
+** This routine is called from sqlite3_initialize() and so it is guaranteed
+** to be serialized already. There is no need for further mutexing.
+*/
+SQLITE_PRIVATE void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
+ if( pcache1.isInit ){
+ PgFreeslot *p;
+ if( pBuf==0 ) sz = n = 0;
+ sz = ROUNDDOWN8(sz);
+ pcache1.szSlot = sz;
+ pcache1.nSlot = pcache1.nFreeSlot = n;
+ pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
+ pcache1.pStart = pBuf;
+ pcache1.pFree = 0;
+ pcache1.bUnderPressure = 0;
+ while( n-- ){
+ p = (PgFreeslot*)pBuf;
+ p->pNext = pcache1.pFree;
+ pcache1.pFree = p;
+ pBuf = (void*)&((char*)pBuf)[sz];
+ }
+ pcache1.pEnd = pBuf;
+ }
+}
+
+/*
+** Try to initialize the pCache->pFree and pCache->pBulk fields. Return
+** true if pCache->pFree ends up containing one or more free pages.
+*/
+static int pcache1InitBulk(PCache1 *pCache){
+ i64 szBulk;
+ char *zBulk;
+ if( pcache1.nInitPage==0 ) return 0;
+ /* Do not bother with a bulk allocation if the cache size very small */
+ if( pCache->nMax<3 ) return 0;
+ sqlite3BeginBenignMalloc();
+ if( pcache1.nInitPage>0 ){
+ szBulk = pCache->szAlloc * (i64)pcache1.nInitPage;
+ }else{
+ szBulk = -1024 * (i64)pcache1.nInitPage;
+ }
+ if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){
+ szBulk = pCache->szAlloc*(i64)pCache->nMax;
+ }
+ zBulk = pCache->pBulk = sqlite3Malloc( szBulk );
+ sqlite3EndBenignMalloc();
+ if( zBulk ){
+ int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc;
+ int i;
+ for(i=0; i<nBulk; i++){
+ PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage];
+ pX->page.pBuf = zBulk;
+ pX->page.pExtra = &pX[1];
+ pX->isBulkLocal = 1;
+ pX->isAnchor = 0;
+ pX->pNext = pCache->pFree;
+ pCache->pFree = pX;
+ zBulk += pCache->szAlloc;
+ }
+ }
+ return pCache->pFree!=0;
+}
+
+/*
+** Malloc function used within this file to allocate space from the buffer
+** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
+** such buffer exists or there is no space left in it, this function falls
+** back to sqlite3Malloc().
+**
+** Multiple threads can run this routine at the same time. Global variables
+** in pcache1 need to be protected via mutex.
+*/
+static void *pcache1Alloc(int nByte){
+ void *p = 0;
+ assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
+ if( nByte<=pcache1.szSlot ){
+ sqlite3_mutex_enter(pcache1.mutex);
+ p = (PgHdr1 *)pcache1.pFree;
+ if( p ){
+ pcache1.pFree = pcache1.pFree->pNext;
+ pcache1.nFreeSlot--;
+ pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
+ assert( pcache1.nFreeSlot>=0 );
+ sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
+ sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1);
+ }
+ sqlite3_mutex_leave(pcache1.mutex);
+ }
+ if( p==0 ){
+ /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get
+ ** it from sqlite3Malloc instead.
+ */
+ p = sqlite3Malloc(nByte);
+#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
+ if( p ){
+ int sz = sqlite3MallocSize(p);
+ sqlite3_mutex_enter(pcache1.mutex);
+ sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
+ sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
+ sqlite3_mutex_leave(pcache1.mutex);
+ }
+#endif
+ sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
+ }
+ return p;
+}
+
+/*
+** Free an allocated buffer obtained from pcache1Alloc().
+*/
+static void pcache1Free(void *p){
+ if( p==0 ) return;
+ if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){
+ PgFreeslot *pSlot;
+ sqlite3_mutex_enter(pcache1.mutex);
+ sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1);
+ pSlot = (PgFreeslot*)p;
+ pSlot->pNext = pcache1.pFree;
+ pcache1.pFree = pSlot;
+ pcache1.nFreeSlot++;
+ pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
+ assert( pcache1.nFreeSlot<=pcache1.nSlot );
+ sqlite3_mutex_leave(pcache1.mutex);
+ }else{
+ assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
+ sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
+#ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
+ {
+ int nFreed = 0;
+ nFreed = sqlite3MallocSize(p);
+ sqlite3_mutex_enter(pcache1.mutex);
+ sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed);
+ sqlite3_mutex_leave(pcache1.mutex);
+ }
+#endif
+ sqlite3_free(p);
+ }
+}
+
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+/*
+** Return the size of a pcache allocation
+*/
+static int pcache1MemSize(void *p){
+ if( p>=pcache1.pStart && p<pcache1.pEnd ){
+ return pcache1.szSlot;
+ }else{
+ int iSize;
+ assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
+ sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
+ iSize = sqlite3MallocSize(p);
+ sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
+ return iSize;
+ }
+}
+#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
+
+/*
+** Allocate a new page object initially associated with cache pCache.
+*/
+static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){
+ PgHdr1 *p = 0;
+ void *pPg;
+
+ assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
+ if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){
+ p = pCache->pFree;
+ pCache->pFree = p->pNext;
+ p->pNext = 0;
+ }else{
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+ /* The group mutex must be released before pcache1Alloc() is called. This
+ ** is because it might call sqlite3_release_memory(), which assumes that
+ ** this mutex is not held. */
+ assert( pcache1.separateCache==0 );
+ assert( pCache->pGroup==&pcache1.grp );
+ pcache1LeaveMutex(pCache->pGroup);
+#endif
+ if( benignMalloc ){ sqlite3BeginBenignMalloc(); }
+#ifdef SQLITE_PCACHE_SEPARATE_HEADER
+ pPg = pcache1Alloc(pCache->szPage);
+ p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra);
+ if( !pPg || !p ){
+ pcache1Free(pPg);
+ sqlite3_free(p);
+ pPg = 0;
+ }
+#else
+ pPg = pcache1Alloc(pCache->szAlloc);
+ p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage];
+#endif
+ if( benignMalloc ){ sqlite3EndBenignMalloc(); }
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+ pcache1EnterMutex(pCache->pGroup);
+#endif
+ if( pPg==0 ) return 0;
+ p->page.pBuf = pPg;
+ p->page.pExtra = &p[1];
+ p->isBulkLocal = 0;
+ p->isAnchor = 0;
+ }
+ if( pCache->bPurgeable ){
+ pCache->pGroup->nCurrentPage++;
+ }
+ return p;
+}
+
+/*
+** Free a page object allocated by pcache1AllocPage().
+*/
+static void pcache1FreePage(PgHdr1 *p){
+ PCache1 *pCache;
+ assert( p!=0 );
+ pCache = p->pCache;
+ assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) );
+ if( p->isBulkLocal ){
+ p->pNext = pCache->pFree;
+ pCache->pFree = p;
+ }else{
+ pcache1Free(p->page.pBuf);
+#ifdef SQLITE_PCACHE_SEPARATE_HEADER
+ sqlite3_free(p);
+#endif
+ }
+ if( pCache->bPurgeable ){
+ pCache->pGroup->nCurrentPage--;
+ }
+}
+
+/*
+** Malloc function used by SQLite to obtain space from the buffer configured
+** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
+** exists, this function falls back to sqlite3Malloc().
+*/
+SQLITE_PRIVATE void *sqlite3PageMalloc(int sz){
+ return pcache1Alloc(sz);
+}
+
+/*
+** Free an allocated buffer obtained from sqlite3PageMalloc().
+*/
+SQLITE_PRIVATE void sqlite3PageFree(void *p){
+ pcache1Free(p);
+}
+
+
+/*
+** Return true if it desirable to avoid allocating a new page cache
+** entry.
+**
+** If memory was allocated specifically to the page cache using
+** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
+** it is desirable to avoid allocating a new page cache entry because
+** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
+** for all page cache needs and we should not need to spill the
+** allocation onto the heap.
+**
+** Or, the heap is used for all page cache memory but the heap is
+** under memory pressure, then again it is desirable to avoid
+** allocating a new page cache entry in order to avoid stressing
+** the heap even further.
+*/
+static int pcache1UnderMemoryPressure(PCache1 *pCache){
+ if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){
+ return pcache1.bUnderPressure;
+ }else{
+ return sqlite3HeapNearlyFull();
+ }
+}
+
+/******************************************************************************/
+/******** General Implementation Functions ************************************/
+
+/*
+** This function is used to resize the hash table used by the cache passed
+** as the first argument.
+**
+** The PCache mutex must be held when this function is called.
+*/
+static void pcache1ResizeHash(PCache1 *p){
+ PgHdr1 **apNew;
+ unsigned int nNew;
+ unsigned int i;
+
+ assert( sqlite3_mutex_held(p->pGroup->mutex) );
+
+ nNew = p->nHash*2;
+ if( nNew<256 ){
+ nNew = 256;
+ }
+
+ pcache1LeaveMutex(p->pGroup);
+ if( p->nHash ){ sqlite3BeginBenignMalloc(); }
+ apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew);
+ if( p->nHash ){ sqlite3EndBenignMalloc(); }
+ pcache1EnterMutex(p->pGroup);
+ if( apNew ){
+ for(i=0; i<p->nHash; i++){
+ PgHdr1 *pPage;
+ PgHdr1 *pNext = p->apHash[i];
+ while( (pPage = pNext)!=0 ){
+ unsigned int h = pPage->iKey % nNew;
+ pNext = pPage->pNext;
+ pPage->pNext = apNew[h];
+ apNew[h] = pPage;
+ }
+ }
+ sqlite3_free(p->apHash);
+ p->apHash = apNew;
+ p->nHash = nNew;
+ }
+}
+
+/*
+** This function is used internally to remove the page pPage from the
+** PGroup LRU list, if is part of it. If pPage is not part of the PGroup
+** LRU list, then this function is a no-op.
+**
+** The PGroup mutex must be held when this function is called.
+*/
+static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){
+ PCache1 *pCache;
+
+ assert( pPage!=0 );
+ assert( pPage->isPinned==0 );
+ pCache = pPage->pCache;
+ assert( pPage->pLruNext );
+ assert( pPage->pLruPrev );
+ assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
+ pPage->pLruPrev->pLruNext = pPage->pLruNext;
+ pPage->pLruNext->pLruPrev = pPage->pLruPrev;
+ pPage->pLruNext = 0;
+ pPage->pLruPrev = 0;
+ pPage->isPinned = 1;
+ assert( pPage->isAnchor==0 );
+ assert( pCache->pGroup->lru.isAnchor==1 );
+ pCache->nRecyclable--;
+ return pPage;
+}
+
+
+/*
+** Remove the page supplied as an argument from the hash table
+** (PCache1.apHash structure) that it is currently stored in.
+** Also free the page if freePage is true.
+**
+** The PGroup mutex must be held when this function is called.
+*/
+static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){
+ unsigned int h;
+ PCache1 *pCache = pPage->pCache;
+ PgHdr1 **pp;
+
+ assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
+ h = pPage->iKey % pCache->nHash;
+ for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
+ *pp = (*pp)->pNext;
+
+ pCache->nPage--;
+ if( freeFlag ) pcache1FreePage(pPage);
+}
+
+/*
+** If there are currently more than nMaxPage pages allocated, try
+** to recycle pages to reduce the number allocated to nMaxPage.
+*/
+static void pcache1EnforceMaxPage(PCache1 *pCache){
+ PGroup *pGroup = pCache->pGroup;
+ PgHdr1 *p;
+ assert( sqlite3_mutex_held(pGroup->mutex) );
+ while( pGroup->nCurrentPage>pGroup->nMaxPage
+ && (p=pGroup->lru.pLruPrev)->isAnchor==0
+ ){
+ assert( p->pCache->pGroup==pGroup );
+ assert( p->isPinned==0 );
+ pcache1PinPage(p);
+ pcache1RemoveFromHash(p, 1);
+ }
+ if( pCache->nPage==0 && pCache->pBulk ){
+ sqlite3_free(pCache->pBulk);
+ pCache->pBulk = pCache->pFree = 0;
+ }
+}
+
+/*
+** Discard all pages from cache pCache with a page number (key value)
+** greater than or equal to iLimit. Any pinned pages that meet this
+** criteria are unpinned before they are discarded.
+**
+** The PCache mutex must be held when this function is called.
+*/
+static void pcache1TruncateUnsafe(
+ PCache1 *pCache, /* The cache to truncate */
+ unsigned int iLimit /* Drop pages with this pgno or larger */
+){
+ TESTONLY( int nPage = 0; ) /* To assert pCache->nPage is correct */
+ unsigned int h, iStop;
+ assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
+ assert( pCache->iMaxKey >= iLimit );
+ assert( pCache->nHash > 0 );
+ if( pCache->iMaxKey - iLimit < pCache->nHash ){
+ /* If we are just shaving the last few pages off the end of the
+ ** cache, then there is no point in scanning the entire hash table.
+ ** Only scan those hash slots that might contain pages that need to
+ ** be removed. */
+ h = iLimit % pCache->nHash;
+ iStop = pCache->iMaxKey % pCache->nHash;
+ TESTONLY( nPage = -10; ) /* Disable the pCache->nPage validity check */
+ }else{
+ /* This is the general case where many pages are being removed.
+ ** It is necessary to scan the entire hash table */
+ h = pCache->nHash/2;
+ iStop = h - 1;
+ }
+ for(;;){
+ PgHdr1 **pp;
+ PgHdr1 *pPage;
+ assert( h<pCache->nHash );
+ pp = &pCache->apHash[h];
+ while( (pPage = *pp)!=0 ){
+ if( pPage->iKey>=iLimit ){
+ pCache->nPage--;
+ *pp = pPage->pNext;
+ if( !pPage->isPinned ) pcache1PinPage(pPage);
+ pcache1FreePage(pPage);
+ }else{
+ pp = &pPage->pNext;
+ TESTONLY( if( nPage>=0 ) nPage++; )
+ }
+ }
+ if( h==iStop ) break;
+ h = (h+1) % pCache->nHash;
+ }
+ assert( nPage<0 || pCache->nPage==(unsigned)nPage );
+}
+
+/******************************************************************************/
+/******** sqlite3_pcache Methods **********************************************/
+
+/*
+** Implementation of the sqlite3_pcache.xInit method.
+*/
+static int pcache1Init(void *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
+ assert( pcache1.isInit==0 );
+ memset(&pcache1, 0, sizeof(pcache1));
+
+
+ /*
+ ** The pcache1.separateCache variable is true if each PCache has its own
+ ** private PGroup (mode-1). pcache1.separateCache is false if the single
+ ** PGroup in pcache1.grp is used for all page caches (mode-2).
+ **
+ ** * Always use separate caches (mode-1) if SQLITE_SEPARATE_CACHE_POOLS
+ **
+ ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
+ **
+ ** * Use a unified cache in single-threaded applications that have
+ ** configured a start-time buffer for use as page-cache memory using
+ ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL
+ ** pBuf argument.
+ **
+ ** * Otherwise use separate caches (mode-1)
+ */
+#ifdef SQLITE_SEPARATE_CACHE_POOLS
+ pcache1.separateCache = 1;
+#elif defined(SQLITE_ENABLE_MEMORY_MANAGEMENT)
+ pcache1.separateCache = 0;
+#elif SQLITE_THREADSAFE
+ pcache1.separateCache = sqlite3GlobalConfig.pPage==0
+ || sqlite3GlobalConfig.bCoreMutex>0;
+#else
+ pcache1.separateCache = sqlite3GlobalConfig.pPage==0;
+#endif
+
+#if SQLITE_THREADSAFE
+ if( sqlite3GlobalConfig.bCoreMutex ){
+ pcache1.grp.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU);
+ pcache1.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PMEM);
+ }
+#endif
+ if( pcache1.separateCache
+ && sqlite3GlobalConfig.nPage!=0
+ && sqlite3GlobalConfig.pPage==0
+ ){
+ pcache1.nInitPage = sqlite3GlobalConfig.nPage;
+ }else{
+ pcache1.nInitPage = 0;
+ }
+ pcache1.grp.mxPinned = 10;
+ pcache1.isInit = 1;
+ return SQLITE_OK;
+}
+
+/*
+** Implementation of the sqlite3_pcache.xShutdown method.
+** Note that the static mutex allocated in xInit does
+** not need to be freed.
+*/
+static void pcache1Shutdown(void *NotUsed){
+ UNUSED_PARAMETER(NotUsed);
+ assert( pcache1.isInit!=0 );
+ memset(&pcache1, 0, sizeof(pcache1));
+}
+
+/* forward declaration */
+static void pcache1Destroy(sqlite3_pcache *p);
+
+/*
+** Implementation of the sqlite3_pcache.xCreate method.
+**
+** Allocate a new cache.
+*/
+static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){
+ PCache1 *pCache; /* The newly created page cache */
+ PGroup *pGroup; /* The group the new page cache will belong to */
+ int sz; /* Bytes of memory required to allocate the new cache */
+
+ assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 );
+ assert( szExtra < 300 );
+
+ sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache;
+ pCache = (PCache1 *)sqlite3MallocZero(sz);
+ if( pCache ){
+ if( pcache1.separateCache ){
+ pGroup = (PGroup*)&pCache[1];
+ pGroup->mxPinned = 10;
+ }else{
+ pGroup = &pcache1.grp;
+ }
+ if( pGroup->lru.isAnchor==0 ){
+ pGroup->lru.isAnchor = 1;
+ pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru;
+ }
+ pCache->pGroup = pGroup;
+ pCache->szPage = szPage;
+ pCache->szExtra = szExtra;
+ pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1));
+ pCache->bPurgeable = (bPurgeable ? 1 : 0);
+ pcache1EnterMutex(pGroup);
+ pcache1ResizeHash(pCache);
+ if( bPurgeable ){
+ pCache->nMin = 10;
+ pGroup->nMinPage += pCache->nMin;
+ pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
+ }
+ pcache1LeaveMutex(pGroup);
+ if( pCache->nHash==0 ){
+ pcache1Destroy((sqlite3_pcache*)pCache);
+ pCache = 0;
+ }
+ }
+ return (sqlite3_pcache *)pCache;
+}
+
+/*
+** Implementation of the sqlite3_pcache.xCachesize method.
+**
+** Configure the cache_size limit for a cache.
+*/
+static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
+ PCache1 *pCache = (PCache1 *)p;
+ if( pCache->bPurgeable ){
+ PGroup *pGroup = pCache->pGroup;
+ pcache1EnterMutex(pGroup);
+ pGroup->nMaxPage += (nMax - pCache->nMax);
+ pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
+ pCache->nMax = nMax;
+ pCache->n90pct = pCache->nMax*9/10;
+ pcache1EnforceMaxPage(pCache);
+ pcache1LeaveMutex(pGroup);
+ }
+}
+
+/*
+** Implementation of the sqlite3_pcache.xShrink method.
+**
+** Free up as much memory as possible.
+*/
+static void pcache1Shrink(sqlite3_pcache *p){
+ PCache1 *pCache = (PCache1*)p;
+ if( pCache->bPurgeable ){
+ PGroup *pGroup = pCache->pGroup;
+ int savedMaxPage;
+ pcache1EnterMutex(pGroup);
+ savedMaxPage = pGroup->nMaxPage;
+ pGroup->nMaxPage = 0;
+ pcache1EnforceMaxPage(pCache);
+ pGroup->nMaxPage = savedMaxPage;
+ pcache1LeaveMutex(pGroup);
+ }
+}
+
+/*
+** Implementation of the sqlite3_pcache.xPagecount method.
+*/
+static int pcache1Pagecount(sqlite3_pcache *p){
+ int n;
+ PCache1 *pCache = (PCache1*)p;
+ pcache1EnterMutex(pCache->pGroup);
+ n = pCache->nPage;
+ pcache1LeaveMutex(pCache->pGroup);
+ return n;
+}
+
+
+/*
+** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described
+** in the header of the pcache1Fetch() procedure.
+**
+** This steps are broken out into a separate procedure because they are
+** usually not needed, and by avoiding the stack initialization required
+** for these steps, the main pcache1Fetch() procedure can run faster.
+*/
+static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2(
+ PCache1 *pCache,
+ unsigned int iKey,
+ int createFlag
+){
+ unsigned int nPinned;
+ PGroup *pGroup = pCache->pGroup;
+ PgHdr1 *pPage = 0;
+
+ /* Step 3: Abort if createFlag is 1 but the cache is nearly full */
+ assert( pCache->nPage >= pCache->nRecyclable );
+ nPinned = pCache->nPage - pCache->nRecyclable;
+ assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage );
+ assert( pCache->n90pct == pCache->nMax*9/10 );
+ if( createFlag==1 && (
+ nPinned>=pGroup->mxPinned
+ || nPinned>=pCache->n90pct
+ || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned)
+ )){
+ return 0;
+ }
+
+ if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache);
+ assert( pCache->nHash>0 && pCache->apHash );
+
+ /* Step 4. Try to recycle a page. */
+ if( pCache->bPurgeable
+ && !pGroup->lru.pLruPrev->isAnchor
+ && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache))
+ ){
+ PCache1 *pOther;
+ pPage = pGroup->lru.pLruPrev;
+ assert( pPage->isPinned==0 );
+ pcache1RemoveFromHash(pPage, 0);
+ pcache1PinPage(pPage);
+ pOther = pPage->pCache;
+ if( pOther->szAlloc != pCache->szAlloc ){
+ pcache1FreePage(pPage);
+ pPage = 0;
+ }else{
+ pGroup->nCurrentPage -= (pOther->bPurgeable - pCache->bPurgeable);
+ }
+ }
+
+ /* Step 5. If a usable page buffer has still not been found,
+ ** attempt to allocate a new one.
+ */
+ if( !pPage ){
+ pPage = pcache1AllocPage(pCache, createFlag==1);
+ }
+
+ if( pPage ){
+ unsigned int h = iKey % pCache->nHash;
+ pCache->nPage++;
+ pPage->iKey = iKey;
+ pPage->pNext = pCache->apHash[h];
+ pPage->pCache = pCache;
+ pPage->pLruPrev = 0;
+ pPage->pLruNext = 0;
+ pPage->isPinned = 1;
+ *(void **)pPage->page.pExtra = 0;
+ pCache->apHash[h] = pPage;
+ if( iKey>pCache->iMaxKey ){
+ pCache->iMaxKey = iKey;
+ }
+ }
+ return pPage;
+}
+
+/*
+** Implementation of the sqlite3_pcache.xFetch method.
+**
+** Fetch a page by key value.
+**
+** Whether or not a new page may be allocated by this function depends on
+** the value of the createFlag argument. 0 means do not allocate a new
+** page. 1 means allocate a new page if space is easily available. 2
+** means to try really hard to allocate a new page.
+**
+** For a non-purgeable cache (a cache used as the storage for an in-memory
+** database) there is really no difference between createFlag 1 and 2. So
+** the calling function (pcache.c) will never have a createFlag of 1 on
+** a non-purgeable cache.
+**
+** There are three different approaches to obtaining space for a page,
+** depending on the value of parameter createFlag (which may be 0, 1 or 2).
+**
+** 1. Regardless of the value of createFlag, the cache is searched for a
+** copy of the requested page. If one is found, it is returned.
+**
+** 2. If createFlag==0 and the page is not already in the cache, NULL is
+** returned.
+**
+** 3. If createFlag is 1, and the page is not already in the cache, then
+** return NULL (do not allocate a new page) if any of the following
+** conditions are true:
+**
+** (a) the number of pages pinned by the cache is greater than
+** PCache1.nMax, or
+**
+** (b) the number of pages pinned by the cache is greater than
+** the sum of nMax for all purgeable caches, less the sum of
+** nMin for all other purgeable caches, or
+**
+** 4. If none of the first three conditions apply and the cache is marked
+** as purgeable, and if one of the following is true:
+**
+** (a) The number of pages allocated for the cache is already
+** PCache1.nMax, or
+**
+** (b) The number of pages allocated for all purgeable caches is
+** already equal to or greater than the sum of nMax for all
+** purgeable caches,
+**
+** (c) The system is under memory pressure and wants to avoid
+** unnecessary pages cache entry allocations
+**
+** then attempt to recycle a page from the LRU list. If it is the right
+** size, return the recycled buffer. Otherwise, free the buffer and
+** proceed to step 5.
+**
+** 5. Otherwise, allocate and return a new page buffer.
+**
+** There are two versions of this routine. pcache1FetchWithMutex() is
+** the general case. pcache1FetchNoMutex() is a faster implementation for
+** the common case where pGroup->mutex is NULL. The pcache1Fetch() wrapper
+** invokes the appropriate routine.
+*/
+static PgHdr1 *pcache1FetchNoMutex(
+ sqlite3_pcache *p,
+ unsigned int iKey,
+ int createFlag
+){
+ PCache1 *pCache = (PCache1 *)p;
+ PgHdr1 *pPage = 0;
+
+ /* Step 1: Search the hash table for an existing entry. */
+ pPage = pCache->apHash[iKey % pCache->nHash];
+ while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; }
+
+ /* Step 2: If the page was found in the hash table, then return it.
+ ** If the page was not in the hash table and createFlag is 0, abort.
+ ** Otherwise (page not in hash and createFlag!=0) continue with
+ ** subsequent steps to try to create the page. */
+ if( pPage ){
+ if( !pPage->isPinned ){
+ return pcache1PinPage(pPage);
+ }else{
+ return pPage;
+ }
+ }else if( createFlag ){
+ /* Steps 3, 4, and 5 implemented by this subroutine */
+ return pcache1FetchStage2(pCache, iKey, createFlag);
+ }else{
+ return 0;
+ }
+}
+#if PCACHE1_MIGHT_USE_GROUP_MUTEX
+static PgHdr1 *pcache1FetchWithMutex(
+ sqlite3_pcache *p,
+ unsigned int iKey,
+ int createFlag
+){
+ PCache1 *pCache = (PCache1 *)p;
+ PgHdr1 *pPage;
+
+ pcache1EnterMutex(pCache->pGroup);
+ pPage = pcache1FetchNoMutex(p, iKey, createFlag);
+ assert( pPage==0 || pCache->iMaxKey>=iKey );
+ pcache1LeaveMutex(pCache->pGroup);
+ return pPage;
+}
+#endif
+static sqlite3_pcache_page *pcache1Fetch(
+ sqlite3_pcache *p,
+ unsigned int iKey,
+ int createFlag
+){
+#if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG)
+ PCache1 *pCache = (PCache1 *)p;
+#endif
+
+ assert( offsetof(PgHdr1,page)==0 );
+ assert( pCache->bPurgeable || createFlag!=1 );
+ assert( pCache->bPurgeable || pCache->nMin==0 );
+ assert( pCache->bPurgeable==0 || pCache->nMin==10 );
+ assert( pCache->nMin==0 || pCache->bPurgeable );
+ assert( pCache->nHash>0 );
+#if PCACHE1_MIGHT_USE_GROUP_MUTEX
+ if( pCache->pGroup->mutex ){
+ return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag);
+ }else
+#endif
+ {
+ return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag);
+ }
+}
+
+
+/*
+** Implementation of the sqlite3_pcache.xUnpin method.
+**
+** Mark a page as unpinned (eligible for asynchronous recycling).
+*/
+static void pcache1Unpin(
+ sqlite3_pcache *p,
+ sqlite3_pcache_page *pPg,
+ int reuseUnlikely
+){
+ PCache1 *pCache = (PCache1 *)p;
+ PgHdr1 *pPage = (PgHdr1 *)pPg;
+ PGroup *pGroup = pCache->pGroup;
+
+ assert( pPage->pCache==pCache );
+ pcache1EnterMutex(pGroup);
+
+ /* It is an error to call this function if the page is already
+ ** part of the PGroup LRU list.
+ */
+ assert( pPage->pLruPrev==0 && pPage->pLruNext==0 );
+ assert( pPage->isPinned==1 );
+
+ if( reuseUnlikely || pGroup->nCurrentPage>pGroup->nMaxPage ){
+ pcache1RemoveFromHash(pPage, 1);
+ }else{
+ /* Add the page to the PGroup LRU list. */
+ PgHdr1 **ppFirst = &pGroup->lru.pLruNext;
+ pPage->pLruPrev = &pGroup->lru;
+ (pPage->pLruNext = *ppFirst)->pLruPrev = pPage;
+ *ppFirst = pPage;
+ pCache->nRecyclable++;
+ pPage->isPinned = 0;
+ }
+
+ pcache1LeaveMutex(pCache->pGroup);
+}
+
+/*
+** Implementation of the sqlite3_pcache.xRekey method.
+*/
+static void pcache1Rekey(
+ sqlite3_pcache *p,
+ sqlite3_pcache_page *pPg,
+ unsigned int iOld,
+ unsigned int iNew
+){
+ PCache1 *pCache = (PCache1 *)p;
+ PgHdr1 *pPage = (PgHdr1 *)pPg;
+ PgHdr1 **pp;
+ unsigned int h;
+ assert( pPage->iKey==iOld );
+ assert( pPage->pCache==pCache );
+
+ pcache1EnterMutex(pCache->pGroup);
+
+ h = iOld%pCache->nHash;
+ pp = &pCache->apHash[h];
+ while( (*pp)!=pPage ){
+ pp = &(*pp)->pNext;
+ }
+ *pp = pPage->pNext;
+
+ h = iNew%pCache->nHash;
+ pPage->iKey = iNew;
+ pPage->pNext = pCache->apHash[h];
+ pCache->apHash[h] = pPage;
+ if( iNew>pCache->iMaxKey ){
+ pCache->iMaxKey = iNew;
+ }
+
+ pcache1LeaveMutex(pCache->pGroup);
+}
+
+/*
+** Implementation of the sqlite3_pcache.xTruncate method.
+**
+** Discard all unpinned pages in the cache with a page number equal to
+** or greater than parameter iLimit. Any pinned pages with a page number
+** equal to or greater than iLimit are implicitly unpinned.
+*/
+static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
+ PCache1 *pCache = (PCache1 *)p;
+ pcache1EnterMutex(pCache->pGroup);
+ if( iLimit<=pCache->iMaxKey ){
+ pcache1TruncateUnsafe(pCache, iLimit);
+ pCache->iMaxKey = iLimit-1;
+ }
+ pcache1LeaveMutex(pCache->pGroup);
+}
+
+/*
+** Implementation of the sqlite3_pcache.xDestroy method.
+**
+** Destroy a cache allocated using pcache1Create().
+*/
+static void pcache1Destroy(sqlite3_pcache *p){
+ PCache1 *pCache = (PCache1 *)p;
+ PGroup *pGroup = pCache->pGroup;
+ assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) );
+ pcache1EnterMutex(pGroup);
+ if( pCache->nPage ) pcache1TruncateUnsafe(pCache, 0);
+ assert( pGroup->nMaxPage >= pCache->nMax );
+ pGroup->nMaxPage -= pCache->nMax;
+ assert( pGroup->nMinPage >= pCache->nMin );
+ pGroup->nMinPage -= pCache->nMin;
+ pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
+ pcache1EnforceMaxPage(pCache);
+ pcache1LeaveMutex(pGroup);
+ sqlite3_free(pCache->pBulk);
+ sqlite3_free(pCache->apHash);
+ sqlite3_free(pCache);
+}
+
+/*
+** This function is called during initialization (sqlite3_initialize()) to
+** install the default pluggable cache module, assuming the user has not
+** already provided an alternative.
+*/
+SQLITE_PRIVATE void sqlite3PCacheSetDefault(void){
+ static const sqlite3_pcache_methods2 defaultMethods = {
+ 1, /* iVersion */
+ 0, /* pArg */
+ pcache1Init, /* xInit */
+ pcache1Shutdown, /* xShutdown */
+ pcache1Create, /* xCreate */
+ pcache1Cachesize, /* xCachesize */
+ pcache1Pagecount, /* xPagecount */
+ pcache1Fetch, /* xFetch */
+ pcache1Unpin, /* xUnpin */
+ pcache1Rekey, /* xRekey */
+ pcache1Truncate, /* xTruncate */
+ pcache1Destroy, /* xDestroy */
+ pcache1Shrink /* xShrink */
+ };
+ sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
+}
+
+/*
+** Return the size of the header on each page of this PCACHE implementation.
+*/
+SQLITE_PRIVATE int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); }
+
+/*
+** Return the global mutex used by this PCACHE implementation. The
+** sqlite3_status() routine needs access to this mutex.
+*/
+SQLITE_PRIVATE sqlite3_mutex *sqlite3Pcache1Mutex(void){
+ return pcache1.mutex;
+}
+
+#ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
+/*
+** This function is called to free superfluous dynamically allocated memory
+** held by the pager system. Memory in use by any SQLite pager allocated
+** by the current thread may be sqlite3_free()ed.
+**
+** nReq is the number of bytes of memory required. Once this much has
+** been released, the function returns. The return value is the total number
+** of bytes of memory released.
+*/
+SQLITE_PRIVATE int sqlite3PcacheReleaseMemory(int nReq){
+ int nFree = 0;
+ assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
+ assert( sqlite3_mutex_notheld(pcache1.mutex) );
+ if( sqlite3GlobalConfig.nPage==0 ){
+ PgHdr1 *p;
+ pcache1EnterMutex(&pcache1.grp);
+ while( (nReq<0 || nFree<nReq)
+ && (p=pcache1.grp.lru.pLruPrev)!=0
+ && p->isAnchor==0
+ ){
+ nFree += pcache1MemSize(p->page.pBuf);
+#ifdef SQLITE_PCACHE_SEPARATE_HEADER
+ nFree += sqlite3MemSize(p);
+#endif
+ assert( p->isPinned==0 );
+ pcache1PinPage(p);
+ pcache1RemoveFromHash(p, 1);
+ }
+ pcache1LeaveMutex(&pcache1.grp);
+ }
+ return nFree;
+}
+#endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
+
+#ifdef SQLITE_TEST
+/*
+** This function is used by test procedures to inspect the internal state
+** of the global cache.
+*/
+SQLITE_PRIVATE void sqlite3PcacheStats(
+ int *pnCurrent, /* OUT: Total number of pages cached */
+ int *pnMax, /* OUT: Global maximum cache size */
+ int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */
+ int *pnRecyclable /* OUT: Total number of pages available for recycling */
+){
+ PgHdr1 *p;
+ int nRecyclable = 0;
+ for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){
+ assert( p->isPinned==0 );
+ nRecyclable++;
+ }
+ *pnCurrent = pcache1.grp.nCurrentPage;
+ *pnMax = (int)pcache1.grp.nMaxPage;
+ *pnMin = (int)pcache1.grp.nMinPage;
+ *pnRecyclable = nRecyclable;
+}
+#endif
+
+/************** End of pcache1.c *********************************************/
+/************** Begin file rowset.c ******************************************/
+/*
+** 2008 December 3
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This module implements an object we call a "RowSet".
+**
+** The RowSet object is a collection of rowids. Rowids
+** are inserted into the RowSet in an arbitrary order. Inserts
+** can be intermixed with tests to see if a given rowid has been
+** previously inserted into the RowSet.
+**
+** After all inserts are finished, it is possible to extract the
+** elements of the RowSet in sorted order. Once this extraction
+** process has started, no new elements may be inserted.
+**
+** Hence, the primitive operations for a RowSet are:
+**
+** CREATE
+** INSERT
+** TEST
+** SMALLEST
+** DESTROY
+**
+** The CREATE and DESTROY primitives are the constructor and destructor,
+** obviously. The INSERT primitive adds a new element to the RowSet.
+** TEST checks to see if an element is already in the RowSet. SMALLEST
+** extracts the least value from the RowSet.
+**
+** The INSERT primitive might allocate additional memory. Memory is
+** allocated in chunks so most INSERTs do no allocation. There is an
+** upper bound on the size of allocated memory. No memory is freed
+** until DESTROY.
+**
+** The TEST primitive includes a "batch" number. The TEST primitive
+** will only see elements that were inserted before the last change
+** in the batch number. In other words, if an INSERT occurs between
+** two TESTs where the TESTs have the same batch nubmer, then the
+** value added by the INSERT will not be visible to the second TEST.
+** The initial batch number is zero, so if the very first TEST contains
+** a non-zero batch number, it will see all prior INSERTs.
+**
+** No INSERTs may occurs after a SMALLEST. An assertion will fail if
+** that is attempted.
+**
+** The cost of an INSERT is roughly constant. (Sometimes new memory
+** has to be allocated on an INSERT.) The cost of a TEST with a new
+** batch number is O(NlogN) where N is the number of elements in the RowSet.
+** The cost of a TEST using the same batch number is O(logN). The cost
+** of the first SMALLEST is O(NlogN). Second and subsequent SMALLEST
+** primitives are constant time. The cost of DESTROY is O(N).
+**
+** TEST and SMALLEST may not be used by the same RowSet. This used to
+** be possible, but the feature was not used, so it was removed in order
+** to simplify the code.
+*/
+/* #include "sqliteInt.h" */
+
+
+/*
+** Target size for allocation chunks.
+*/
+#define ROWSET_ALLOCATION_SIZE 1024
+
+/*
+** The number of rowset entries per allocation chunk.
+*/
+#define ROWSET_ENTRY_PER_CHUNK \
+ ((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry))
+
+/*
+** Each entry in a RowSet is an instance of the following object.
+**
+** This same object is reused to store a linked list of trees of RowSetEntry
+** objects. In that alternative use, pRight points to the next entry
+** in the list, pLeft points to the tree, and v is unused. The
+** RowSet.pForest value points to the head of this forest list.
+*/
+struct RowSetEntry {
+ i64 v; /* ROWID value for this entry */
+ struct RowSetEntry *pRight; /* Right subtree (larger entries) or list */
+ struct RowSetEntry *pLeft; /* Left subtree (smaller entries) */
+};
+
+/*
+** RowSetEntry objects are allocated in large chunks (instances of the
+** following structure) to reduce memory allocation overhead. The
+** chunks are kept on a linked list so that they can be deallocated
+** when the RowSet is destroyed.
+*/
+struct RowSetChunk {
+ struct RowSetChunk *pNextChunk; /* Next chunk on list of them all */
+ struct RowSetEntry aEntry[ROWSET_ENTRY_PER_CHUNK]; /* Allocated entries */
+};
+
+/*
+** A RowSet in an instance of the following structure.
+**
+** A typedef of this structure if found in sqliteInt.h.
+*/
+struct RowSet {
+ struct RowSetChunk *pChunk; /* List of all chunk allocations */
+ sqlite3 *db; /* The database connection */
+ struct RowSetEntry *pEntry; /* List of entries using pRight */
+ struct RowSetEntry *pLast; /* Last entry on the pEntry list */
+ struct RowSetEntry *pFresh; /* Source of new entry objects */
+ struct RowSetEntry *pForest; /* List of binary trees of entries */
+ u16 nFresh; /* Number of objects on pFresh */
+ u16 rsFlags; /* Various flags */
+ int iBatch; /* Current insert batch */
+};
+
+/*
+** Allowed values for RowSet.rsFlags
+*/
+#define ROWSET_SORTED 0x01 /* True if RowSet.pEntry is sorted */
+#define ROWSET_NEXT 0x02 /* True if sqlite3RowSetNext() has been called */
+
+/*
+** Turn bulk memory into a RowSet object. N bytes of memory
+** are available at pSpace. The db pointer is used as a memory context
+** for any subsequent allocations that need to occur.
+** Return a pointer to the new RowSet object.
+**
+** It must be the case that N is sufficient to make a Rowset. If not
+** an assertion fault occurs.
+**
+** If N is larger than the minimum, use the surplus as an initial
+** allocation of entries available to be filled.
+*/
+SQLITE_PRIVATE RowSet *sqlite3RowSetInit(sqlite3 *db, void *pSpace, unsigned int N){
+ RowSet *p;
+ assert( N >= ROUND8(sizeof(*p)) );
+ p = pSpace;
+ p->pChunk = 0;
+ p->db = db;
+ p->pEntry = 0;
+ p->pLast = 0;
+ p->pForest = 0;
+ p->pFresh = (struct RowSetEntry*)(ROUND8(sizeof(*p)) + (char*)p);
+ p->nFresh = (u16)((N - ROUND8(sizeof(*p)))/sizeof(struct RowSetEntry));
+ p->rsFlags = ROWSET_SORTED;
+ p->iBatch = 0;
+ return p;
+}
+
+/*
+** Deallocate all chunks from a RowSet. This frees all memory that
+** the RowSet has allocated over its lifetime. This routine is
+** the destructor for the RowSet.
+*/
+SQLITE_PRIVATE void sqlite3RowSetClear(RowSet *p){
+ struct RowSetChunk *pChunk, *pNextChunk;
+ for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){
+ pNextChunk = pChunk->pNextChunk;
+ sqlite3DbFree(p->db, pChunk);
+ }
+ p->pChunk = 0;
+ p->nFresh = 0;
+ p->pEntry = 0;
+ p->pLast = 0;
+ p->pForest = 0;
+ p->rsFlags = ROWSET_SORTED;
+}
+
+/*
+** Allocate a new RowSetEntry object that is associated with the
+** given RowSet. Return a pointer to the new and completely uninitialized
+** objected.
+**
+** In an OOM situation, the RowSet.db->mallocFailed flag is set and this
+** routine returns NULL.
+*/
+static struct RowSetEntry *rowSetEntryAlloc(RowSet *p){
+ assert( p!=0 );
+ if( p->nFresh==0 ){ /*OPTIMIZATION-IF-FALSE*/
+ /* We could allocate a fresh RowSetEntry each time one is needed, but it
+ ** is more efficient to pull a preallocated entry from the pool */
+ struct RowSetChunk *pNew;
+ pNew = sqlite3DbMallocRawNN(p->db, sizeof(*pNew));
+ if( pNew==0 ){
+ return 0;
+ }
+ pNew->pNextChunk = p->pChunk;
+ p->pChunk = pNew;
+ p->pFresh = pNew->aEntry;
+ p->nFresh = ROWSET_ENTRY_PER_CHUNK;
+ }
+ p->nFresh--;
+ return p->pFresh++;
+}
+
+/*
+** Insert a new value into a RowSet.
+**
+** The mallocFailed flag of the database connection is set if a
+** memory allocation fails.
+*/
+SQLITE_PRIVATE void sqlite3RowSetInsert(RowSet *p, i64 rowid){
+ struct RowSetEntry *pEntry; /* The new entry */
+ struct RowSetEntry *pLast; /* The last prior entry */
+
+ /* This routine is never called after sqlite3RowSetNext() */
+ assert( p!=0 && (p->rsFlags & ROWSET_NEXT)==0 );
+
+ pEntry = rowSetEntryAlloc(p);
+ if( pEntry==0 ) return;
+ pEntry->v = rowid;
+ pEntry->pRight = 0;
+ pLast = p->pLast;
+ if( pLast ){
+ if( rowid<=pLast->v ){ /*OPTIMIZATION-IF-FALSE*/
+ /* Avoid unnecessary sorts by preserving the ROWSET_SORTED flags
+ ** where possible */
+ p->rsFlags &= ~ROWSET_SORTED;
+ }
+ pLast->pRight = pEntry;
+ }else{
+ p->pEntry = pEntry;
+ }
+ p->pLast = pEntry;
+}
+
+/*
+** Merge two lists of RowSetEntry objects. Remove duplicates.
+**
+** The input lists are connected via pRight pointers and are
+** assumed to each already be in sorted order.
+*/
+static struct RowSetEntry *rowSetEntryMerge(
+ struct RowSetEntry *pA, /* First sorted list to be merged */
+ struct RowSetEntry *pB /* Second sorted list to be merged */
+){
+ struct RowSetEntry head;
+ struct RowSetEntry *pTail;
+
+ pTail = &head;
+ assert( pA!=0 && pB!=0 );
+ for(;;){
+ assert( pA->pRight==0 || pA->v<=pA->pRight->v );
+ assert( pB->pRight==0 || pB->v<=pB->pRight->v );
+ if( pA->v<=pB->v ){
+ if( pA->v<pB->v ) pTail = pTail->pRight = pA;
+ pA = pA->pRight;
+ if( pA==0 ){
+ pTail->pRight = pB;
+ break;
+ }
+ }else{
+ pTail = pTail->pRight = pB;
+ pB = pB->pRight;
+ if( pB==0 ){
+ pTail->pRight = pA;
+ break;
+ }
+ }
+ }
+ return head.pRight;
+}
+
+/*
+** Sort all elements on the list of RowSetEntry objects into order of
+** increasing v.
+*/
+static struct RowSetEntry *rowSetEntrySort(struct RowSetEntry *pIn){
+ unsigned int i;
+ struct RowSetEntry *pNext, *aBucket[40];
+
+ memset(aBucket, 0, sizeof(aBucket));
+ while( pIn ){
+ pNext = pIn->pRight;
+ pIn->pRight = 0;
+ for(i=0; aBucket[i]; i++){
+ pIn = rowSetEntryMerge(aBucket[i], pIn);
+ aBucket[i] = 0;
+ }
+ aBucket[i] = pIn;
+ pIn = pNext;
+ }
+ pIn = aBucket[0];
+ for(i=1; i<sizeof(aBucket)/sizeof(aBucket[0]); i++){
+ if( aBucket[i]==0 ) continue;
+ pIn = pIn ? rowSetEntryMerge(pIn, aBucket[i]) : aBucket[i];
+ }
+ return pIn;
+}
+
+
+/*
+** The input, pIn, is a binary tree (or subtree) of RowSetEntry objects.
+** Convert this tree into a linked list connected by the pRight pointers
+** and return pointers to the first and last elements of the new list.
+*/
+static void rowSetTreeToList(
+ struct RowSetEntry *pIn, /* Root of the input tree */
+ struct RowSetEntry **ppFirst, /* Write head of the output list here */
+ struct RowSetEntry **ppLast /* Write tail of the output list here */
+){
+ assert( pIn!=0 );
+ if( pIn->pLeft ){
+ struct RowSetEntry *p;
+ rowSetTreeToList(pIn->pLeft, ppFirst, &p);
+ p->pRight = pIn;
+ }else{
+ *ppFirst = pIn;
+ }
+ if( pIn->pRight ){
+ rowSetTreeToList(pIn->pRight, &pIn->pRight, ppLast);
+ }else{
+ *ppLast = pIn;
+ }
+ assert( (*ppLast)->pRight==0 );
+}
+
+
+/*
+** Convert a sorted list of elements (connected by pRight) into a binary
+** tree with depth of iDepth. A depth of 1 means the tree contains a single
+** node taken from the head of *ppList. A depth of 2 means a tree with
+** three nodes. And so forth.
+**
+** Use as many entries from the input list as required and update the
+** *ppList to point to the unused elements of the list. If the input
+** list contains too few elements, then construct an incomplete tree
+** and leave *ppList set to NULL.
+**
+** Return a pointer to the root of the constructed binary tree.
+*/
+static struct RowSetEntry *rowSetNDeepTree(
+ struct RowSetEntry **ppList,
+ int iDepth
+){
+ struct RowSetEntry *p; /* Root of the new tree */
+ struct RowSetEntry *pLeft; /* Left subtree */
+ if( *ppList==0 ){ /*OPTIMIZATION-IF-TRUE*/
+ /* Prevent unnecessary deep recursion when we run out of entries */
+ return 0;
+ }
+ if( iDepth>1 ){ /*OPTIMIZATION-IF-TRUE*/
+ /* This branch causes a *balanced* tree to be generated. A valid tree
+ ** is still generated without this branch, but the tree is wildly
+ ** unbalanced and inefficient. */
+ pLeft = rowSetNDeepTree(ppList, iDepth-1);
+ p = *ppList;
+ if( p==0 ){ /*OPTIMIZATION-IF-FALSE*/
+ /* It is safe to always return here, but the resulting tree
+ ** would be unbalanced */
+ return pLeft;
+ }
+ p->pLeft = pLeft;
+ *ppList = p->pRight;
+ p->pRight = rowSetNDeepTree(ppList, iDepth-1);
+ }else{
+ p = *ppList;
+ *ppList = p->pRight;
+ p->pLeft = p->pRight = 0;
+ }
+ return p;
+}
+
+/*
+** Convert a sorted list of elements into a binary tree. Make the tree
+** as deep as it needs to be in order to contain the entire list.
+*/
+static struct RowSetEntry *rowSetListToTree(struct RowSetEntry *pList){
+ int iDepth; /* Depth of the tree so far */
+ struct RowSetEntry *p; /* Current tree root */
+ struct RowSetEntry *pLeft; /* Left subtree */
+
+ assert( pList!=0 );
+ p = pList;
+ pList = p->pRight;
+ p->pLeft = p->pRight = 0;
+ for(iDepth=1; pList; iDepth++){
+ pLeft = p;
+ p = pList;
+ pList = p->pRight;
+ p->pLeft = pLeft;
+ p->pRight = rowSetNDeepTree(&pList, iDepth);
+ }
+ return p;
+}
+
+/*
+** Extract the smallest element from the RowSet.
+** Write the element into *pRowid. Return 1 on success. Return
+** 0 if the RowSet is already empty.
+**
+** After this routine has been called, the sqlite3RowSetInsert()
+** routine may not be called again.
+**
+** This routine may not be called after sqlite3RowSetTest() has
+** been used. Older versions of RowSet allowed that, but as the
+** capability was not used by the code generator, it was removed
+** for code economy.
+*/
+SQLITE_PRIVATE int sqlite3RowSetNext(RowSet *p, i64 *pRowid){
+ assert( p!=0 );
+ assert( p->pForest==0 ); /* Cannot be used with sqlite3RowSetText() */
+
+ /* Merge the forest into a single sorted list on first call */
+ if( (p->rsFlags & ROWSET_NEXT)==0 ){ /*OPTIMIZATION-IF-FALSE*/
+ if( (p->rsFlags & ROWSET_SORTED)==0 ){ /*OPTIMIZATION-IF-FALSE*/
+ p->pEntry = rowSetEntrySort(p->pEntry);
+ }
+ p->rsFlags |= ROWSET_SORTED|ROWSET_NEXT;
+ }
+
+ /* Return the next entry on the list */
+ if( p->pEntry ){
+ *pRowid = p->pEntry->v;
+ p->pEntry = p->pEntry->pRight;
+ if( p->pEntry==0 ){ /*OPTIMIZATION-IF-TRUE*/
+ /* Free memory immediately, rather than waiting on sqlite3_finalize() */
+ sqlite3RowSetClear(p);
+ }
+ return 1;
+ }else{
+ return 0;
+ }
+}
+
+/*
+** Check to see if element iRowid was inserted into the rowset as
+** part of any insert batch prior to iBatch. Return 1 or 0.
+**
+** If this is the first test of a new batch and if there exist entries
+** on pRowSet->pEntry, then sort those entries into the forest at
+** pRowSet->pForest so that they can be tested.
+*/
+SQLITE_PRIVATE int sqlite3RowSetTest(RowSet *pRowSet, int iBatch, sqlite3_int64 iRowid){
+ struct RowSetEntry *p, *pTree;
+
+ /* This routine is never called after sqlite3RowSetNext() */
+ assert( pRowSet!=0 && (pRowSet->rsFlags & ROWSET_NEXT)==0 );
+
+ /* Sort entries into the forest on the first test of a new batch.
+ ** To save unnecessary work, only do this when the batch number changes.
+ */
+ if( iBatch!=pRowSet->iBatch ){ /*OPTIMIZATION-IF-FALSE*/
+ p = pRowSet->pEntry;
+ if( p ){
+ struct RowSetEntry **ppPrevTree = &pRowSet->pForest;
+ if( (pRowSet->rsFlags & ROWSET_SORTED)==0 ){ /*OPTIMIZATION-IF-FALSE*/
+ /* Only sort the current set of entiries if they need it */
+ p = rowSetEntrySort(p);
+ }
+ for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){
+ ppPrevTree = &pTree->pRight;
+ if( pTree->pLeft==0 ){
+ pTree->pLeft = rowSetListToTree(p);
+ break;
+ }else{
+ struct RowSetEntry *pAux, *pTail;
+ rowSetTreeToList(pTree->pLeft, &pAux, &pTail);
+ pTree->pLeft = 0;
+ p = rowSetEntryMerge(pAux, p);
+ }
+ }
+ if( pTree==0 ){
+ *ppPrevTree = pTree = rowSetEntryAlloc(pRowSet);
+ if( pTree ){
+ pTree->v = 0;
+ pTree->pRight = 0;
+ pTree->pLeft = rowSetListToTree(p);
+ }
+ }
+ pRowSet->pEntry = 0;
+ pRowSet->pLast = 0;
+ pRowSet->rsFlags |= ROWSET_SORTED;
+ }
+ pRowSet->iBatch = iBatch;
+ }
+
+ /* Test to see if the iRowid value appears anywhere in the forest.
+ ** Return 1 if it does and 0 if not.
+ */
+ for(pTree = pRowSet->pForest; pTree; pTree=pTree->pRight){
+ p = pTree->pLeft;
+ while( p ){
+ if( p->v<iRowid ){
+ p = p->pRight;
+ }else if( p->v>iRowid ){
+ p = p->pLeft;
+ }else{
+ return 1;
+ }
+ }
+ }
+ return 0;
+}
+
+/************** End of rowset.c **********************************************/
+/************** Begin file pager.c *******************************************/
+/*
+** 2001 September 15
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This is the implementation of the page cache subsystem or "pager".
+**
+** The pager is used to access a database disk file. It implements
+** atomic commit and rollback through the use of a journal file that
+** is separate from the database file. The pager also implements file
+** locking to prevent two processes from writing the same database
+** file simultaneously, or one process from reading the database while
+** another is writing.
+*/
+#ifndef SQLITE_OMIT_DISKIO
+/* #include "sqliteInt.h" */
+/************** Include wal.h in the middle of pager.c ***********************/
+/************** Begin file wal.h *********************************************/
+/*
+** 2010 February 1
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This header file defines the interface to the write-ahead logging
+** system. Refer to the comments below and the header comment attached to
+** the implementation of each function in log.c for further details.
+*/
+
+#ifndef SQLITE_WAL_H
+#define SQLITE_WAL_H
+
+/* #include "sqliteInt.h" */
+
+/* Additional values that can be added to the sync_flags argument of
+** sqlite3WalFrames():
+*/
+#define WAL_SYNC_TRANSACTIONS 0x20 /* Sync at the end of each transaction */
+#define SQLITE_SYNC_MASK 0x13 /* Mask off the SQLITE_SYNC_* values */
+
+#ifdef SQLITE_OMIT_WAL
+# define sqlite3WalOpen(x,y,z) 0
+# define sqlite3WalLimit(x,y)
+# define sqlite3WalClose(v,w,x,y,z) 0
+# define sqlite3WalBeginReadTransaction(y,z) 0
+# define sqlite3WalEndReadTransaction(z)
+# define sqlite3WalDbsize(y) 0
+# define sqlite3WalBeginWriteTransaction(y) 0
+# define sqlite3WalEndWriteTransaction(x) 0
+# define sqlite3WalUndo(x,y,z) 0
+# define sqlite3WalSavepoint(y,z)
+# define sqlite3WalSavepointUndo(y,z) 0
+# define sqlite3WalFrames(u,v,w,x,y,z) 0
+# define sqlite3WalCheckpoint(q,r,s,t,u,v,w,x,y,z) 0
+# define sqlite3WalCallback(z) 0
+# define sqlite3WalExclusiveMode(y,z) 0
+# define sqlite3WalHeapMemory(z) 0
+# define sqlite3WalFramesize(z) 0
+# define sqlite3WalFindFrame(x,y,z) 0
+# define sqlite3WalFile(x) 0
+#else
+
+#define WAL_SAVEPOINT_NDATA 4
+
+/* Connection to a write-ahead log (WAL) file.
+** There is one object of this type for each pager.
+*/
+typedef struct Wal Wal;
+
+/* Open and close a connection to a write-ahead log. */
+SQLITE_PRIVATE int sqlite3WalOpen(sqlite3_vfs*, sqlite3_file*, const char *, int, i64, Wal**);
+SQLITE_PRIVATE int sqlite3WalClose(Wal *pWal, sqlite3*, int sync_flags, int, u8 *);
+
+/* Set the limiting size of a WAL file. */
+SQLITE_PRIVATE void sqlite3WalLimit(Wal*, i64);
+
+/* Used by readers to open (lock) and close (unlock) a snapshot. A
+** snapshot is like a read-transaction. It is the state of the database
+** at an instant in time. sqlite3WalOpenSnapshot gets a read lock and
+** preserves the current state even if the other threads or processes
+** write to or checkpoint the WAL. sqlite3WalCloseSnapshot() closes the
+** transaction and releases the lock.
+*/
+SQLITE_PRIVATE int sqlite3WalBeginReadTransaction(Wal *pWal, int *);
+SQLITE_PRIVATE void sqlite3WalEndReadTransaction(Wal *pWal);
+
+/* Read a page from the write-ahead log, if it is present. */
+SQLITE_PRIVATE int sqlite3WalFindFrame(Wal *, Pgno, u32 *);
+SQLITE_PRIVATE int sqlite3WalReadFrame(Wal *, u32, int, u8 *);
+
+/* If the WAL is not empty, return the size of the database. */
+SQLITE_PRIVATE Pgno sqlite3WalDbsize(Wal *pWal);
+
+/* Obtain or release the WRITER lock. */
+SQLITE_PRIVATE int sqlite3WalBeginWriteTransaction(Wal *pWal);
+SQLITE_PRIVATE int sqlite3WalEndWriteTransaction(Wal *pWal);
+
+/* Undo any frames written (but not committed) to the log */
+SQLITE_PRIVATE int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx);
+
+/* Return an integer that records the current (uncommitted) write
+** position in the WAL */
+SQLITE_PRIVATE void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData);
+
+/* Move the write position of the WAL back to iFrame. Called in
+** response to a ROLLBACK TO command. */
+SQLITE_PRIVATE int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData);
+
+/* Write a frame or frames to the log. */
+SQLITE_PRIVATE int sqlite3WalFrames(Wal *pWal, int, PgHdr *, Pgno, int, int);
+
+/* Copy pages from the log to the database file */
+SQLITE_PRIVATE int sqlite3WalCheckpoint(
+ Wal *pWal, /* Write-ahead log connection */
+ sqlite3 *db, /* Check this handle's interrupt flag */
+ int eMode, /* One of PASSIVE, FULL and RESTART */
+ int (*xBusy)(void*), /* Function to call when busy */
+ void *pBusyArg, /* Context argument for xBusyHandler */
+ int sync_flags, /* Flags to sync db file with (or 0) */
+ int nBuf, /* Size of buffer nBuf */
+ u8 *zBuf, /* Temporary buffer to use */
+ int *pnLog, /* OUT: Number of frames in WAL */
+ int *pnCkpt /* OUT: Number of backfilled frames in WAL */
+);
+
+/* Return the value to pass to a sqlite3_wal_hook callback, the
+** number of frames in the WAL at the point of the last commit since
+** sqlite3WalCallback() was called. If no commits have occurred since
+** the last call, then return 0.
+*/
+SQLITE_PRIVATE int sqlite3WalCallback(Wal *pWal);
+
+/* Tell the wal layer that an EXCLUSIVE lock has been obtained (or released)
+** by the pager layer on the database file.
+*/
+SQLITE_PRIVATE int sqlite3WalExclusiveMode(Wal *pWal, int op);
+
+/* Return true if the argument is non-NULL and the WAL module is using
+** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
+** WAL module is using shared-memory, return false.
+*/
+SQLITE_PRIVATE int sqlite3WalHeapMemory(Wal *pWal);
+
+#ifdef SQLITE_ENABLE_SNAPSHOT
+SQLITE_PRIVATE int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot);
+SQLITE_PRIVATE void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot);
+SQLITE_PRIVATE int sqlite3WalSnapshotRecover(Wal *pWal);
+#endif
+
+#ifdef SQLITE_ENABLE_ZIPVFS
+/* If the WAL file is not empty, return the number of bytes of content
+** stored in each frame (i.e. the db page-size when the WAL was created).
+*/
+SQLITE_PRIVATE int sqlite3WalFramesize(Wal *pWal);
+#endif
+
+/* Return the sqlite3_file object for the WAL file */
+SQLITE_PRIVATE sqlite3_file *sqlite3WalFile(Wal *pWal);
+
+#endif /* ifndef SQLITE_OMIT_WAL */
+#endif /* SQLITE_WAL_H */
+
+/************** End of wal.h *************************************************/
+/************** Continuing where we left off in pager.c **********************/
+
+
+/******************* NOTES ON THE DESIGN OF THE PAGER ************************
+**
+** This comment block describes invariants that hold when using a rollback
+** journal. These invariants do not apply for journal_mode=WAL,
+** journal_mode=MEMORY, or journal_mode=OFF.
+**
+** Within this comment block, a page is deemed to have been synced
+** automatically as soon as it is written when PRAGMA synchronous=OFF.
+** Otherwise, the page is not synced until the xSync method of the VFS
+** is called successfully on the file containing the page.
+**
+** Definition: A page of the database file is said to be "overwriteable" if
+** one or more of the following are true about the page:
+**
+** (a) The original content of the page as it was at the beginning of
+** the transaction has been written into the rollback journal and
+** synced.
+**
+** (b) The page was a freelist leaf page at the start of the transaction.
+**
+** (c) The page number is greater than the largest page that existed in
+** the database file at the start of the transaction.
+**
+** (1) A page of the database file is never overwritten unless one of the
+** following are true:
+**
+** (a) The page and all other pages on the same sector are overwriteable.
+**
+** (b) The atomic page write optimization is enabled, and the entire
+** transaction other than the update of the transaction sequence
+** number consists of a single page change.
+**
+** (2) The content of a page written into the rollback journal exactly matches
+** both the content in the database when the rollback journal was written
+** and the content in the database at the beginning of the current
+** transaction.
+**
+** (3) Writes to the database file are an integer multiple of the page size
+** in length and are aligned on a page boundary.
+**
+** (4) Reads from the database file are either aligned on a page boundary and
+** an integer multiple of the page size in length or are taken from the
+** first 100 bytes of the database file.
+**
+** (5) All writes to the database file are synced prior to the rollback journal
+** being deleted, truncated, or zeroed.
+**
+** (6) If a master journal file is used, then all writes to the database file
+** are synced prior to the master journal being deleted.
+**
+** Definition: Two databases (or the same database at two points it time)
+** are said to be "logically equivalent" if they give the same answer to
+** all queries. Note in particular the content of freelist leaf
+** pages can be changed arbitrarily without affecting the logical equivalence
+** of the database.
+**
+** (7) At any time, if any subset, including the empty set and the total set,
+** of the unsynced changes to a rollback journal are removed and the
+** journal is rolled back, the resulting database file will be logically
+** equivalent to the database file at the beginning of the transaction.
+**
+** (8) When a transaction is rolled back, the xTruncate method of the VFS
+** is called to restore the database file to the same size it was at
+** the beginning of the transaction. (In some VFSes, the xTruncate
+** method is a no-op, but that does not change the fact the SQLite will
+** invoke it.)
+**
+** (9) Whenever the database file is modified, at least one bit in the range
+** of bytes from 24 through 39 inclusive will be changed prior to releasing
+** the EXCLUSIVE lock, thus signaling other connections on the same
+** database to flush their caches.
+**
+** (10) The pattern of bits in bytes 24 through 39 shall not repeat in less
+** than one billion transactions.
+**
+** (11) A database file is well-formed at the beginning and at the conclusion
+** of every transaction.
+**
+** (12) An EXCLUSIVE lock is held on the database file when writing to
+** the database file.
+**
+** (13) A SHARED lock is held on the database file while reading any
+** content out of the database file.
+**
+******************************************************************************/
+
+/*
+** Macros for troubleshooting. Normally turned off
+*/
+#if 0
+int sqlite3PagerTrace=1; /* True to enable tracing */
+#define sqlite3DebugPrintf printf
+#define PAGERTRACE(X) if( sqlite3PagerTrace ){ sqlite3DebugPrintf X; }
+#else
+#define PAGERTRACE(X)
+#endif
+
+/*
+** The following two macros are used within the PAGERTRACE() macros above
+** to print out file-descriptors.
+**
+** PAGERID() takes a pointer to a Pager struct as its argument. The
+** associated file-descriptor is returned. FILEHANDLEID() takes an sqlite3_file
+** struct as its argument.
+*/
+#define PAGERID(p) ((int)(p->fd))
+#define FILEHANDLEID(fd) ((int)fd)
+
+/*
+** The Pager.eState variable stores the current 'state' of a pager. A
+** pager may be in any one of the seven states shown in the following
+** state diagram.
+**
+** OPEN <------+------+
+** | | |
+** V | |
+** +---------> READER-------+ |
+** | | |
+** | V |
+** |<-------WRITER_LOCKED------> ERROR
+** | | ^
+** | V |
+** |<------WRITER_CACHEMOD-------->|
+** | | |
+** | V |
+** |<-------WRITER_DBMOD---------->|
+** | | |
+** | V |
+** +<------WRITER_FINISHED-------->+
+**
+**
+** List of state transitions and the C [function] that performs each:
+**
+** OPEN -> READER [sqlite3PagerSharedLock]
+** READER -> OPEN [pager_unlock]
+**
+** READER -> WRITER_LOCKED [sqlite3PagerBegin]
+** WRITER_LOCKED -> WRITER_CACHEMOD [pager_open_journal]
+** WRITER_CACHEMOD -> WRITER_DBMOD [syncJournal]
+** WRITER_DBMOD -> WRITER_FINISHED [sqlite3PagerCommitPhaseOne]
+** WRITER_*** -> READER [pager_end_transaction]
+**
+** WRITER_*** -> ERROR [pager_error]
+** ERROR -> OPEN [pager_unlock]
+**
+**
+** OPEN:
+**
+** The pager starts up in this state. Nothing is guaranteed in this
+** state - the file may or may not be locked and the database size is
+** unknown. The database may not be read or written.
+**
+** * No read or write transaction is active.
+** * Any lock, or no lock at all, may be held on the database file.
+** * The dbSize, dbOrigSize and dbFileSize variables may not be trusted.
+**
+** READER:
+**
+** In this state all the requirements for reading the database in
+** rollback (non-WAL) mode are met. Unless the pager is (or recently
+** was) in exclusive-locking mode, a user-level read transaction is
+** open. The database size is known in this state.
+**
+** A connection running with locking_mode=normal enters this state when
+** it opens a read-transaction on the database and returns to state
+** OPEN after the read-transaction is completed. However a connection
+** running in locking_mode=exclusive (including temp databases) remains in
+** this state even after the read-transaction is closed. The only way
+** a locking_mode=exclusive connection can transition from READER to OPEN
+** is via the ERROR state (see below).
+**
+** * A read transaction may be active (but a write-transaction cannot).
+** * A SHARED or greater lock is held on the database file.
+** * The dbSize variable may be trusted (even if a user-level read
+** transaction is not active). The dbOrigSize and dbFileSize variables
+** may not be trusted at this point.
+** * If the database is a WAL database, then the WAL connection is open.
+** * Even if a read-transaction is not open, it is guaranteed that
+** there is no hot-journal in the file-system.
+**
+** WRITER_LOCKED:
+**
+** The pager moves to this state from READER when a write-transaction
+** is first opened on the database. In WRITER_LOCKED state, all locks
+** required to start a write-transaction are held, but no actual
+** modifications to the cache or database have taken place.
+**
+** In rollback mode, a RESERVED or (if the transaction was opened with
+** BEGIN EXCLUSIVE) EXCLUSIVE lock is obtained on the database file when
+** moving to this state, but the journal file is not written to or opened
+** to in this state. If the transaction is committed or rolled back while
+** in WRITER_LOCKED state, all that is required is to unlock the database
+** file.
+**
+** IN WAL mode, WalBeginWriteTransaction() is called to lock the log file.
+** If the connection is running with locking_mode=exclusive, an attempt
+** is made to obtain an EXCLUSIVE lock on the database file.
+**
+** * A write transaction is active.
+** * If the connection is open in rollback-mode, a RESERVED or greater
+** lock is held on the database file.
+** * If the connection is open in WAL-mode, a WAL write transaction
+** is open (i.e. sqlite3WalBeginWriteTransaction() has been successfully
+** called).
+** * The dbSize, dbOrigSize and dbFileSize variables are all valid.
+** * The contents of the pager cache have not been modified.
+** * The journal file may or may not be open.
+** * Nothing (not even the first header) has been written to the journal.
+**
+** WRITER_CACHEMOD:
+**
+** A pager moves from WRITER_LOCKED state to this state when a page is
+** first modified by the upper layer. In rollback mode the journal file
+** is opened (if it is not already open) and a header written to the
+** start of it. The database file on disk has not been modified.
+**
+** * A write transaction is active.
+** * A RESERVED or greater lock is held on the database file.
+** * The journal file is open and the first header has been written
+** to it, but the header has not been synced to disk.
+** * The contents of the page cache have been modified.
+**
+** WRITER_DBMOD:
+**
+** The pager transitions from WRITER_CACHEMOD into WRITER_DBMOD state
+** when it modifies the contents of the database file. WAL connections
+** never enter this state (since they do not modify the database file,
+** just the log file).
+**
+** * A write transaction is active.
+** * An EXCLUSIVE or greater lock is held on the database file.
+** * The journal file is open and the first header has been written
+** and synced to disk.
+** * The contents of the page cache have been modified (and possibly
+** written to disk).
+**
+** WRITER_FINISHED:
+**
+** It is not possible for a WAL connection to enter this state.
+**
+** A rollback-mode pager changes to WRITER_FINISHED state from WRITER_DBMOD
+** state after the entire transaction has been successfully written into the
+** database file. In this state the transaction may be committed simply
+** by finalizing the journal file. Once in WRITER_FINISHED state, it is
+** not possible to modify the database further. At this point, the upper
+** layer must either commit or rollback the transaction.
+**
+** * A write transaction is active.
+** * An EXCLUSIVE or greater lock is held on the database file.
+** * All writing and syncing of journal and database data has finished.
+** If no error occurred, all that remains is to finalize the journal to
+** commit the transaction. If an error did occur, the caller will need
+** to rollback the transaction.
+**
+** ERROR:
+**
+** The ERROR state is entered when an IO or disk-full error (including
+** SQLITE_IOERR_NOMEM) occurs at a point in the code that makes it
+** difficult to be sure that the in-memory pager state (cache contents,
+** db size etc.) are consistent with the contents of the file-system.
+**
+** Temporary pager files may enter the ERROR state, but in-memory pagers
+** cannot.
+**
+** For example, if an IO error occurs while performing a rollback,
+** the contents of the page-cache may be left in an inconsistent state.
+** At this point it would be dangerous to change back to READER state
+** (as usually happens after a rollback). Any subsequent readers might
+** report database corruption (due to the inconsistent cache), and if
+** they upgrade to writers, they may inadvertently corrupt the database
+** file. To avoid this hazard, the pager switches into the ERROR state
+** instead of READER following such an error.
+**
+** Once it has entered the ERROR state, any attempt to use the pager
+** to read or write data returns an error. Eventually, once all
+** outstanding transactions have been abandoned, the pager is able to
+** transition back to OPEN state, discarding the contents of the
+** page-cache and any other in-memory state at the same time. Everything
+** is reloaded from disk (and, if necessary, hot-journal rollback peformed)
+** when a read-transaction is next opened on the pager (transitioning
+** the pager into READER state). At that point the system has recovered
+** from the error.
+**
+** Specifically, the pager jumps into the ERROR state if:
+**
+** 1. An error occurs while attempting a rollback. This happens in
+** function sqlite3PagerRollback().
+**
+** 2. An error occurs while attempting to finalize a journal file
+** following a commit in function sqlite3PagerCommitPhaseTwo().
+**
+** 3. An error occurs while attempting to write to the journal or
+** database file in function pagerStress() in order to free up
+** memory.
+**
+** In other cases, the error is returned to the b-tree layer. The b-tree
+** layer then attempts a rollback operation. If the error condition
+** persists, the pager enters the ERROR state via condition (1) above.
+**
+** Condition (3) is necessary because it can be triggered by a read-only
+** statement executed within a transaction. In this case, if the error
+** code were simply returned to the user, the b-tree layer would not
+** automatically attempt a rollback, as it assumes that an error in a
+** read-only statement cannot leave the pager in an internally inconsistent
+** state.
+**
+** * The Pager.errCode variable is set to something other than SQLITE_OK.
+** * There are one or more outstanding references to pages (after the
+** last reference is dropped the pager should move back to OPEN state).
+** * The pager is not an in-memory pager.
+**
+**
+** Notes:
+**
+** * A pager is never in WRITER_DBMOD or WRITER_FINISHED state if the
+** connection is open in WAL mode. A WAL connection is always in one
+** of the first four states.
+**
+** * Normally, a connection open in exclusive mode is never in PAGER_OPEN
+** state. There are two exceptions: immediately after exclusive-mode has
+** been turned on (and before any read or write transactions are
+** executed), and when the pager is leaving the "error state".
+**
+** * See also: assert_pager_state().
+*/
+#define PAGER_OPEN 0
+#define PAGER_READER 1
+#define PAGER_WRITER_LOCKED 2
+#define PAGER_WRITER_CACHEMOD 3
+#define PAGER_WRITER_DBMOD 4
+#define PAGER_WRITER_FINISHED 5
+#define PAGER_ERROR 6
+
+/*
+** The Pager.eLock variable is almost always set to one of the
+** following locking-states, according to the lock currently held on
+** the database file: NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK.
+** This variable is kept up to date as locks are taken and released by
+** the pagerLockDb() and pagerUnlockDb() wrappers.
+**
+** If the VFS xLock() or xUnlock() returns an error other than SQLITE_BUSY
+** (i.e. one of the SQLITE_IOERR subtypes), it is not clear whether or not
+** the operation was successful. In these circumstances pagerLockDb() and
+** pagerUnlockDb() take a conservative approach - eLock is always updated
+** when unlocking the file, and only updated when locking the file if the
+** VFS call is successful. This way, the Pager.eLock variable may be set
+** to a less exclusive (lower) value than the lock that is actually held
+** at the system level, but it is never set to a more exclusive value.
+**
+** This is usually safe. If an xUnlock fails or appears to fail, there may
+** be a few redundant xLock() calls or a lock may be held for longer than
+** required, but nothing really goes wrong.
+**
+** The exception is when the database file is unlocked as the pager moves
+** from ERROR to OPEN state. At this point there may be a hot-journal file
+** in the file-system that needs to be rolled back (as part of an OPEN->SHARED
+** transition, by the same pager or any other). If the call to xUnlock()
+** fails at this point and the pager is left holding an EXCLUSIVE lock, this
+** can confuse the call to xCheckReservedLock() call made later as part
+** of hot-journal detection.
+**
+** xCheckReservedLock() is defined as returning true "if there is a RESERVED
+** lock held by this process or any others". So xCheckReservedLock may
+** return true because the caller itself is holding an EXCLUSIVE lock (but
+** doesn't know it because of a previous error in xUnlock). If this happens
+** a hot-journal may be mistaken for a journal being created by an active
+** transaction in another process, causing SQLite to read from the database
+** without rolling it back.
+**
+** To work around this, if a call to xUnlock() fails when unlocking the
+** database in the ERROR state, Pager.eLock is set to UNKNOWN_LOCK. It
+** is only changed back to a real locking state after a successful call
+** to xLock(EXCLUSIVE). Also, the code to do the OPEN->SHARED state transition
+** omits the check for a hot-journal if Pager.eLock is set to UNKNOWN_LOCK
+** lock. Instead, it assumes a hot-journal exists and obtains an EXCLUSIVE
+** lock on the database file before attempting to roll it back. See function
+** PagerSharedLock() for more detail.
+**
+** Pager.eLock may only be set to UNKNOWN_LOCK when the pager is in
+** PAGER_OPEN state.
+*/
+#define UNKNOWN_LOCK (EXCLUSIVE_LOCK+1)
+
+/*
+** A macro used for invoking the codec if there is one
+*/
+#ifdef SQLITE_HAS_CODEC
+# define CODEC1(P,D,N,X,E) \
+ if( P->xCodec && P->xCodec(P->pCodec,D,N,X)==0 ){ E; }
+# define CODEC2(P,D,N,X,E,O) \
+ if( P->xCodec==0 ){ O=(char*)D; }else \
+ if( (O=(char*)(P->xCodec(P->pCodec,D,N,X)))==0 ){ E; }
+#else
+# define CODEC1(P,D,N,X,E) /* NO-OP */
+# define CODEC2(P,D,N,X,E,O) O=(char*)D
+#endif
+
+/*
+** The maximum allowed sector size. 64KiB. If the xSectorsize() method
+** returns a value larger than this, then MAX_SECTOR_SIZE is used instead.
+** This could conceivably cause corruption following a power failure on
+** such a system. This is currently an undocumented limit.
+*/
+#define MAX_SECTOR_SIZE 0x10000
+
+
+/*
+** An instance of the following structure is allocated for each active
+** savepoint and statement transaction in the system. All such structures
+** are stored in the Pager.aSavepoint[] array, which is allocated and
+** resized using sqlite3Realloc().
+**
+** When a savepoint is created, the PagerSavepoint.iHdrOffset field is
+** set to 0. If a journal-header is written into the main journal while
+** the savepoint is active, then iHdrOffset is set to the byte offset
+** immediately following the last journal record written into the main
+** journal before the journal-header. This is required during savepoint
+** rollback (see pagerPlaybackSavepoint()).
+*/
+typedef struct PagerSavepoint PagerSavepoint;
+struct PagerSavepoint {
+ i64 iOffset; /* Starting offset in main journal */
+ i64 iHdrOffset; /* See above */
+ Bitvec *pInSavepoint; /* Set of pages in this savepoint */
+ Pgno nOrig; /* Original number of pages in file */
+ Pgno iSubRec; /* Index of first record in sub-journal */
+#ifndef SQLITE_OMIT_WAL
+ u32 aWalData[WAL_SAVEPOINT_NDATA]; /* WAL savepoint context */
+#endif
+};
+
+/*
+** Bits of the Pager.doNotSpill flag. See further description below.
+*/
+#define SPILLFLAG_OFF 0x01 /* Never spill cache. Set via pragma */
+#define SPILLFLAG_ROLLBACK 0x02 /* Current rolling back, so do not spill */
+#define SPILLFLAG_NOSYNC 0x04 /* Spill is ok, but do not sync */
+
+/*
+** An open page cache is an instance of struct Pager. A description of
+** some of the more important member variables follows:
+**
+** eState
+**
+** The current 'state' of the pager object. See the comment and state
+** diagram above for a description of the pager state.
+**
+** eLock
+**
+** For a real on-disk database, the current lock held on the database file -
+** NO_LOCK, SHARED_LOCK, RESERVED_LOCK or EXCLUSIVE_LOCK.
+**
+** For a temporary or in-memory database (neither of which require any
+** locks), this variable is always set to EXCLUSIVE_LOCK. Since such
+** databases always have Pager.exclusiveMode==1, this tricks the pager
+** logic into thinking that it already has all the locks it will ever
+** need (and no reason to release them).
+**
+** In some (obscure) circumstances, this variable may also be set to
+** UNKNOWN_LOCK. See the comment above the #define of UNKNOWN_LOCK for
+** details.
+**
+** changeCountDone
+**
+** This boolean variable is used to make sure that the change-counter
+** (the 4-byte header field at byte offset 24 of the database file) is
+** not updated more often than necessary.
+**
+** It is set to true when the change-counter field is updated, which
+** can only happen if an exclusive lock is held on the database file.
+** It is cleared (set to false) whenever an exclusive lock is
+** relinquished on the database file. Each time a transaction is committed,
+** The changeCountDone flag is inspected. If it is true, the work of
+** updating the change-counter is omitted for the current transaction.
+**
+** This mechanism means that when running in exclusive mode, a connection
+** need only update the change-counter once, for the first transaction
+** committed.
+**
+** setMaster
+**
+** When PagerCommitPhaseOne() is called to commit a transaction, it may
+** (or may not) specify a master-journal name to be written into the
+** journal file before it is synced to disk.
+**
+** Whether or not a journal file contains a master-journal pointer affects
+** the way in which the journal file is finalized after the transaction is
+** committed or rolled back when running in "journal_mode=PERSIST" mode.
+** If a journal file does not contain a master-journal pointer, it is
+** finalized by overwriting the first journal header with zeroes. If
+** it does contain a master-journal pointer the journal file is finalized
+** by truncating it to zero bytes, just as if the connection were
+** running in "journal_mode=truncate" mode.
+**
+** Journal files that contain master journal pointers cannot be finalized
+** simply by overwriting the first journal-header with zeroes, as the
+** master journal pointer could interfere with hot-journal rollback of any
+** subsequently interrupted transaction that reuses the journal file.
+**
+** The flag is cleared as soon as the journal file is finalized (either
+** by PagerCommitPhaseTwo or PagerRollback). If an IO error prevents the
+** journal file from being successfully finalized, the setMaster flag
+** is cleared anyway (and the pager will move to ERROR state).
+**
+** doNotSpill
+**
+** This variables control the behavior of cache-spills (calls made by
+** the pcache module to the pagerStress() routine to write cached data
+** to the file-system in order to free up memory).
+**
+** When bits SPILLFLAG_OFF or SPILLFLAG_ROLLBACK of doNotSpill are set,
+** writing to the database from pagerStress() is disabled altogether.
+** The SPILLFLAG_ROLLBACK case is done in a very obscure case that
+** comes up during savepoint rollback that requires the pcache module
+** to allocate a new page to prevent the journal file from being written
+** while it is being traversed by code in pager_playback(). The SPILLFLAG_OFF
+** case is a user preference.
+**
+** If the SPILLFLAG_NOSYNC bit is set, writing to the database from
+** pagerStress() is permitted, but syncing the journal file is not.
+** This flag is set by sqlite3PagerWrite() when the file-system sector-size
+** is larger than the database page-size in order to prevent a journal sync
+** from happening in between the journalling of two pages on the same sector.
+**
+** subjInMemory
+**
+** This is a boolean variable. If true, then any required sub-journal
+** is opened as an in-memory journal file. If false, then in-memory
+** sub-journals are only used for in-memory pager files.
+**
+** This variable is updated by the upper layer each time a new
+** write-transaction is opened.
+**
+** dbSize, dbOrigSize, dbFileSize
+**
+** Variable dbSize is set to the number of pages in the database file.
+** It is valid in PAGER_READER and higher states (all states except for
+** OPEN and ERROR).
+**
+** dbSize is set based on the size of the database file, which may be
+** larger than the size of the database (the value stored at offset
+** 28 of the database header by the btree). If the size of the file
+** is not an integer multiple of the page-size, the value stored in
+** dbSize is rounded down (i.e. a 5KB file with 2K page-size has dbSize==2).
+** Except, any file that is greater than 0 bytes in size is considered
+** to have at least one page. (i.e. a 1KB file with 2K page-size leads
+** to dbSize==1).
+**
+** During a write-transaction, if pages with page-numbers greater than
+** dbSize are modified in the cache, dbSize is updated accordingly.
+** Similarly, if the database is truncated using PagerTruncateImage(),
+** dbSize is updated.
+**
+** Variables dbOrigSize and dbFileSize are valid in states
+** PAGER_WRITER_LOCKED and higher. dbOrigSize is a copy of the dbSize
+** variable at the start of the transaction. It is used during rollback,
+** and to determine whether or not pages need to be journalled before
+** being modified.
+**
+** Throughout a write-transaction, dbFileSize contains the size of
+** the file on disk in pages. It is set to a copy of dbSize when the
+** write-transaction is first opened, and updated when VFS calls are made
+** to write or truncate the database file on disk.
+**
+** The only reason the dbFileSize variable is required is to suppress
+** unnecessary calls to xTruncate() after committing a transaction. If,
+** when a transaction is committed, the dbFileSize variable indicates
+** that the database file is larger than the database image (Pager.dbSize),
+** pager_truncate() is called. The pager_truncate() call uses xFilesize()
+** to measure the database file on disk, and then truncates it if required.
+** dbFileSize is not used when rolling back a transaction. In this case
+** pager_truncate() is called unconditionally (which means there may be
+** a call to xFilesize() that is not strictly required). In either case,
+** pager_truncate() may cause the file to become smaller or larger.
+**
+** dbHintSize
+**
+** The dbHintSize variable is used to limit the number of calls made to
+** the VFS xFileControl(FCNTL_SIZE_HINT) method.
+**
+** dbHintSize is set to a copy of the dbSize variable when a
+** write-transaction is opened (at the same time as dbFileSize and
+** dbOrigSize). If the xFileControl(FCNTL_SIZE_HINT) method is called,
+** dbHintSize is increased to the number of pages that correspond to the
+** size-hint passed to the method call. See pager_write_pagelist() for
+** details.
+**
+** errCode
+**
+** The Pager.errCode variable is only ever used in PAGER_ERROR state. It
+** is set to zero in all other states. In PAGER_ERROR state, Pager.errCode
+** is always set to SQLITE_FULL, SQLITE_IOERR or one of the SQLITE_IOERR_XXX
+** sub-codes.
+*/
+struct Pager {
+ sqlite3_vfs *pVfs; /* OS functions to use for IO */
+ u8 exclusiveMode; /* Boolean. True if locking_mode==EXCLUSIVE */
+ u8 journalMode; /* One of the PAGER_JOURNALMODE_* values */
+ u8 useJournal; /* Use a rollback journal on this file */
+ u8 noSync; /* Do not sync the journal if true */
+ u8 fullSync; /* Do extra syncs of the journal for robustness */
+ u8 extraSync; /* sync directory after journal delete */
+ u8 ckptSyncFlags; /* SYNC_NORMAL or SYNC_FULL for checkpoint */
+ u8 walSyncFlags; /* SYNC_NORMAL or SYNC_FULL for wal writes */
+ u8 syncFlags; /* SYNC_NORMAL or SYNC_FULL otherwise */
+ u8 tempFile; /* zFilename is a temporary or immutable file */
+ u8 noLock; /* Do not lock (except in WAL mode) */
+ u8 readOnly; /* True for a read-only database */
+ u8 memDb; /* True to inhibit all file I/O */
+
+ /**************************************************************************
+ ** The following block contains those class members that change during
+ ** routine operation. Class members not in this block are either fixed
+ ** when the pager is first created or else only change when there is a
+ ** significant mode change (such as changing the page_size, locking_mode,
+ ** or the journal_mode). From another view, these class members describe
+ ** the "state" of the pager, while other class members describe the
+ ** "configuration" of the pager.
+ */
+ u8 eState; /* Pager state (OPEN, READER, WRITER_LOCKED..) */
+ u8 eLock; /* Current lock held on database file */
+ u8 changeCountDone; /* Set after incrementing the change-counter */
+ u8 setMaster; /* True if a m-j name has been written to jrnl */
+ u8 doNotSpill; /* Do not spill the cache when non-zero */
+ u8 subjInMemory; /* True to use in-memory sub-journals */
+ u8 bUseFetch; /* True to use xFetch() */
+ u8 hasHeldSharedLock; /* True if a shared lock has ever been held */
+ Pgno dbSize; /* Number of pages in the database */
+ Pgno dbOrigSize; /* dbSize before the current transaction */
+ Pgno dbFileSize; /* Number of pages in the database file */
+ Pgno dbHintSize; /* Value passed to FCNTL_SIZE_HINT call */
+ int errCode; /* One of several kinds of errors */
+ int nRec; /* Pages journalled since last j-header written */
+ u32 cksumInit; /* Quasi-random value added to every checksum */
+ u32 nSubRec; /* Number of records written to sub-journal */
+ Bitvec *pInJournal; /* One bit for each page in the database file */
+ sqlite3_file *fd; /* File descriptor for database */
+ sqlite3_file *jfd; /* File descriptor for main journal */
+ sqlite3_file *sjfd; /* File descriptor for sub-journal */
+ i64 journalOff; /* Current write offset in the journal file */
+ i64 journalHdr; /* Byte offset to previous journal header */
+ sqlite3_backup *pBackup; /* Pointer to list of ongoing backup processes */
+ PagerSavepoint *aSavepoint; /* Array of active savepoints */
+ int nSavepoint; /* Number of elements in aSavepoint[] */
+ u32 iDataVersion; /* Changes whenever database content changes */
+ char dbFileVers[16]; /* Changes whenever database file changes */
+
+ int nMmapOut; /* Number of mmap pages currently outstanding */
+ sqlite3_int64 szMmap; /* Desired maximum mmap size */
+ PgHdr *pMmapFreelist; /* List of free mmap page headers (pDirty) */
+ /*
+ ** End of the routinely-changing class members
+ ***************************************************************************/
+
+ u16 nExtra; /* Add this many bytes to each in-memory page */
+ i16 nReserve; /* Number of unused bytes at end of each page */
+ u32 vfsFlags; /* Flags for sqlite3_vfs.xOpen() */
+ u32 sectorSize; /* Assumed sector size during rollback */
+ int pageSize; /* Number of bytes in a page */
+ Pgno mxPgno; /* Maximum allowed size of the database */
+ i64 journalSizeLimit; /* Size limit for persistent journal files */
+ char *zFilename; /* Name of the database file */
+ char *zJournal; /* Name of the journal file */
+ int (*xBusyHandler)(void*); /* Function to call when busy */
+ void *pBusyHandlerArg; /* Context argument for xBusyHandler */
+ int aStat[3]; /* Total cache hits, misses and writes */
+#ifdef SQLITE_TEST
+ int nRead; /* Database pages read */
+#endif
+ void (*xReiniter)(DbPage*); /* Call this routine when reloading pages */
+ int (*xGet)(Pager*,Pgno,DbPage**,int); /* Routine to fetch a patch */
+#ifdef SQLITE_HAS_CODEC
+ void *(*xCodec)(void*,void*,Pgno,int); /* Routine for en/decoding data */
+ void (*xCodecSizeChng)(void*,int,int); /* Notify of page size changes */
+ void (*xCodecFree)(void*); /* Destructor for the codec */
+ void *pCodec; /* First argument to xCodec... methods */
+#endif
+ char *pTmpSpace; /* Pager.pageSize bytes of space for tmp use */
+ PCache *pPCache; /* Pointer to page cache object */
+#ifndef SQLITE_OMIT_WAL
+ Wal *pWal; /* Write-ahead log used by "journal_mode=wal" */
+ char *zWal; /* File name for write-ahead log */
+#endif
+};
+
+/*
+** Indexes for use with Pager.aStat[]. The Pager.aStat[] array contains
+** the values accessed by passing SQLITE_DBSTATUS_CACHE_HIT, CACHE_MISS
+** or CACHE_WRITE to sqlite3_db_status().
+*/
+#define PAGER_STAT_HIT 0
+#define PAGER_STAT_MISS 1
+#define PAGER_STAT_WRITE 2
+
+/*
+** The following global variables hold counters used for
+** testing purposes only. These variables do not exist in
+** a non-testing build. These variables are not thread-safe.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_pager_readdb_count = 0; /* Number of full pages read from DB */
+SQLITE_API int sqlite3_pager_writedb_count = 0; /* Number of full pages written to DB */
+SQLITE_API int sqlite3_pager_writej_count = 0; /* Number of pages written to journal */
+# define PAGER_INCR(v) v++
+#else
+# define PAGER_INCR(v)
+#endif
+
+
+
+/*
+** Journal files begin with the following magic string. The data
+** was obtained from /dev/random. It is used only as a sanity check.
+**
+** Since version 2.8.0, the journal format contains additional sanity
+** checking information. If the power fails while the journal is being
+** written, semi-random garbage data might appear in the journal
+** file after power is restored. If an attempt is then made
+** to roll the journal back, the database could be corrupted. The additional
+** sanity checking data is an attempt to discover the garbage in the
+** journal and ignore it.
+**
+** The sanity checking information for the new journal format consists
+** of a 32-bit checksum on each page of data. The checksum covers both
+** the page number and the pPager->pageSize bytes of data for the page.
+** This cksum is initialized to a 32-bit random value that appears in the
+** journal file right after the header. The random initializer is important,
+** because garbage data that appears at the end of a journal is likely
+** data that was once in other files that have now been deleted. If the
+** garbage data came from an obsolete journal file, the checksums might
+** be correct. But by initializing the checksum to random value which
+** is different for every journal, we minimize that risk.
+*/
+static const unsigned char aJournalMagic[] = {
+ 0xd9, 0xd5, 0x05, 0xf9, 0x20, 0xa1, 0x63, 0xd7,
+};
+
+/*
+** The size of the of each page record in the journal is given by
+** the following macro.
+*/
+#define JOURNAL_PG_SZ(pPager) ((pPager->pageSize) + 8)
+
+/*
+** The journal header size for this pager. This is usually the same
+** size as a single disk sector. See also setSectorSize().
+*/
+#define JOURNAL_HDR_SZ(pPager) (pPager->sectorSize)
+
+/*
+** The macro MEMDB is true if we are dealing with an in-memory database.
+** We do this as a macro so that if the SQLITE_OMIT_MEMORYDB macro is set,
+** the value of MEMDB will be a constant and the compiler will optimize
+** out code that would never execute.
+*/
+#ifdef SQLITE_OMIT_MEMORYDB
+# define MEMDB 0
+#else
+# define MEMDB pPager->memDb
+#endif
+
+/*
+** The macro USEFETCH is true if we are allowed to use the xFetch and xUnfetch
+** interfaces to access the database using memory-mapped I/O.
+*/
+#if SQLITE_MAX_MMAP_SIZE>0
+# define USEFETCH(x) ((x)->bUseFetch)
+#else
+# define USEFETCH(x) 0
+#endif
+
+/*
+** The maximum legal page number is (2^31 - 1).
+*/
+#define PAGER_MAX_PGNO 2147483647
+
+/*
+** The argument to this macro is a file descriptor (type sqlite3_file*).
+** Return 0 if it is not open, or non-zero (but not 1) if it is.
+**
+** This is so that expressions can be written as:
+**
+** if( isOpen(pPager->jfd) ){ ...
+**
+** instead of
+**
+** if( pPager->jfd->pMethods ){ ...
+*/
+#define isOpen(pFd) ((pFd)->pMethods!=0)
+
+/*
+** Return true if this pager uses a write-ahead log to read page pgno.
+** Return false if the pager reads pgno directly from the database.
+*/
+#if !defined(SQLITE_OMIT_WAL) && defined(SQLITE_DIRECT_OVERFLOW_READ)
+SQLITE_PRIVATE int sqlite3PagerUseWal(Pager *pPager, Pgno pgno){
+ u32 iRead = 0;
+ int rc;
+ if( pPager->pWal==0 ) return 0;
+ rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iRead);
+ return rc || iRead;
+}
+#endif
+#ifndef SQLITE_OMIT_WAL
+# define pagerUseWal(x) ((x)->pWal!=0)
+#else
+# define pagerUseWal(x) 0
+# define pagerRollbackWal(x) 0
+# define pagerWalFrames(v,w,x,y) 0
+# define pagerOpenWalIfPresent(z) SQLITE_OK
+# define pagerBeginReadTransaction(z) SQLITE_OK
+#endif
+
+#ifndef NDEBUG
+/*
+** Usage:
+**
+** assert( assert_pager_state(pPager) );
+**
+** This function runs many asserts to try to find inconsistencies in
+** the internal state of the Pager object.
+*/
+static int assert_pager_state(Pager *p){
+ Pager *pPager = p;
+
+ /* State must be valid. */
+ assert( p->eState==PAGER_OPEN
+ || p->eState==PAGER_READER
+ || p->eState==PAGER_WRITER_LOCKED
+ || p->eState==PAGER_WRITER_CACHEMOD
+ || p->eState==PAGER_WRITER_DBMOD
+ || p->eState==PAGER_WRITER_FINISHED
+ || p->eState==PAGER_ERROR
+ );
+
+ /* Regardless of the current state, a temp-file connection always behaves
+ ** as if it has an exclusive lock on the database file. It never updates
+ ** the change-counter field, so the changeCountDone flag is always set.
+ */
+ assert( p->tempFile==0 || p->eLock==EXCLUSIVE_LOCK );
+ assert( p->tempFile==0 || pPager->changeCountDone );
+
+ /* If the useJournal flag is clear, the journal-mode must be "OFF".
+ ** And if the journal-mode is "OFF", the journal file must not be open.
+ */
+ assert( p->journalMode==PAGER_JOURNALMODE_OFF || p->useJournal );
+ assert( p->journalMode!=PAGER_JOURNALMODE_OFF || !isOpen(p->jfd) );
+
+ /* Check that MEMDB implies noSync. And an in-memory journal. Since
+ ** this means an in-memory pager performs no IO at all, it cannot encounter
+ ** either SQLITE_IOERR or SQLITE_FULL during rollback or while finalizing
+ ** a journal file. (although the in-memory journal implementation may
+ ** return SQLITE_IOERR_NOMEM while the journal file is being written). It
+ ** is therefore not possible for an in-memory pager to enter the ERROR
+ ** state.
+ */
+ if( MEMDB ){
+ assert( !isOpen(p->fd) );
+ assert( p->noSync );
+ assert( p->journalMode==PAGER_JOURNALMODE_OFF
+ || p->journalMode==PAGER_JOURNALMODE_MEMORY
+ );
+ assert( p->eState!=PAGER_ERROR && p->eState!=PAGER_OPEN );
+ assert( pagerUseWal(p)==0 );
+ }
+
+ /* If changeCountDone is set, a RESERVED lock or greater must be held
+ ** on the file.
+ */
+ assert( pPager->changeCountDone==0 || pPager->eLock>=RESERVED_LOCK );
+ assert( p->eLock!=PENDING_LOCK );
+
+ switch( p->eState ){
+ case PAGER_OPEN:
+ assert( !MEMDB );
+ assert( pPager->errCode==SQLITE_OK );
+ assert( sqlite3PcacheRefCount(pPager->pPCache)==0 || pPager->tempFile );
+ break;
+
+ case PAGER_READER:
+ assert( pPager->errCode==SQLITE_OK );
+ assert( p->eLock!=UNKNOWN_LOCK );
+ assert( p->eLock>=SHARED_LOCK );
+ break;
+
+ case PAGER_WRITER_LOCKED:
+ assert( p->eLock!=UNKNOWN_LOCK );
+ assert( pPager->errCode==SQLITE_OK );
+ if( !pagerUseWal(pPager) ){
+ assert( p->eLock>=RESERVED_LOCK );
+ }
+ assert( pPager->dbSize==pPager->dbOrigSize );
+ assert( pPager->dbOrigSize==pPager->dbFileSize );
+ assert( pPager->dbOrigSize==pPager->dbHintSize );
+ assert( pPager->setMaster==0 );
+ break;
+
+ case PAGER_WRITER_CACHEMOD:
+ assert( p->eLock!=UNKNOWN_LOCK );
+ assert( pPager->errCode==SQLITE_OK );
+ if( !pagerUseWal(pPager) ){
+ /* It is possible that if journal_mode=wal here that neither the
+ ** journal file nor the WAL file are open. This happens during
+ ** a rollback transaction that switches from journal_mode=off
+ ** to journal_mode=wal.
+ */
+ assert( p->eLock>=RESERVED_LOCK );
+ assert( isOpen(p->jfd)
+ || p->journalMode==PAGER_JOURNALMODE_OFF
+ || p->journalMode==PAGER_JOURNALMODE_WAL
+ );
+ }
+ assert( pPager->dbOrigSize==pPager->dbFileSize );
+ assert( pPager->dbOrigSize==pPager->dbHintSize );
+ break;
+
+ case PAGER_WRITER_DBMOD:
+ assert( p->eLock==EXCLUSIVE_LOCK );
+ assert( pPager->errCode==SQLITE_OK );
+ assert( !pagerUseWal(pPager) );
+ assert( p->eLock>=EXCLUSIVE_LOCK );
+ assert( isOpen(p->jfd)
+ || p->journalMode==PAGER_JOURNALMODE_OFF
+ || p->journalMode==PAGER_JOURNALMODE_WAL
+ );
+ assert( pPager->dbOrigSize<=pPager->dbHintSize );
+ break;
+
+ case PAGER_WRITER_FINISHED:
+ assert( p->eLock==EXCLUSIVE_LOCK );
+ assert( pPager->errCode==SQLITE_OK );
+ assert( !pagerUseWal(pPager) );
+ assert( isOpen(p->jfd)
+ || p->journalMode==PAGER_JOURNALMODE_OFF
+ || p->journalMode==PAGER_JOURNALMODE_WAL
+ );
+ break;
+
+ case PAGER_ERROR:
+ /* There must be at least one outstanding reference to the pager if
+ ** in ERROR state. Otherwise the pager should have already dropped
+ ** back to OPEN state.
+ */
+ assert( pPager->errCode!=SQLITE_OK );
+ assert( sqlite3PcacheRefCount(pPager->pPCache)>0 || pPager->tempFile );
+ break;
+ }
+
+ return 1;
+}
+#endif /* ifndef NDEBUG */
+
+#ifdef SQLITE_DEBUG
+/*
+** Return a pointer to a human readable string in a static buffer
+** containing the state of the Pager object passed as an argument. This
+** is intended to be used within debuggers. For example, as an alternative
+** to "print *pPager" in gdb:
+**
+** (gdb) printf "%s", print_pager_state(pPager)
+*/
+static char *print_pager_state(Pager *p){
+ static char zRet[1024];
+
+ sqlite3_snprintf(1024, zRet,
+ "Filename: %s\n"
+ "State: %s errCode=%d\n"
+ "Lock: %s\n"
+ "Locking mode: locking_mode=%s\n"
+ "Journal mode: journal_mode=%s\n"
+ "Backing store: tempFile=%d memDb=%d useJournal=%d\n"
+ "Journal: journalOff=%lld journalHdr=%lld\n"
+ "Size: dbsize=%d dbOrigSize=%d dbFileSize=%d\n"
+ , p->zFilename
+ , p->eState==PAGER_OPEN ? "OPEN" :
+ p->eState==PAGER_READER ? "READER" :
+ p->eState==PAGER_WRITER_LOCKED ? "WRITER_LOCKED" :
+ p->eState==PAGER_WRITER_CACHEMOD ? "WRITER_CACHEMOD" :
+ p->eState==PAGER_WRITER_DBMOD ? "WRITER_DBMOD" :
+ p->eState==PAGER_WRITER_FINISHED ? "WRITER_FINISHED" :
+ p->eState==PAGER_ERROR ? "ERROR" : "?error?"
+ , (int)p->errCode
+ , p->eLock==NO_LOCK ? "NO_LOCK" :
+ p->eLock==RESERVED_LOCK ? "RESERVED" :
+ p->eLock==EXCLUSIVE_LOCK ? "EXCLUSIVE" :
+ p->eLock==SHARED_LOCK ? "SHARED" :
+ p->eLock==UNKNOWN_LOCK ? "UNKNOWN" : "?error?"
+ , p->exclusiveMode ? "exclusive" : "normal"
+ , p->journalMode==PAGER_JOURNALMODE_MEMORY ? "memory" :
+ p->journalMode==PAGER_JOURNALMODE_OFF ? "off" :
+ p->journalMode==PAGER_JOURNALMODE_DELETE ? "delete" :
+ p->journalMode==PAGER_JOURNALMODE_PERSIST ? "persist" :
+ p->journalMode==PAGER_JOURNALMODE_TRUNCATE ? "truncate" :
+ p->journalMode==PAGER_JOURNALMODE_WAL ? "wal" : "?error?"
+ , (int)p->tempFile, (int)p->memDb, (int)p->useJournal
+ , p->journalOff, p->journalHdr
+ , (int)p->dbSize, (int)p->dbOrigSize, (int)p->dbFileSize
+ );
+
+ return zRet;
+}
+#endif
+
+/* Forward references to the various page getters */
+static int getPageNormal(Pager*,Pgno,DbPage**,int);
+static int getPageError(Pager*,Pgno,DbPage**,int);
+#if SQLITE_MAX_MMAP_SIZE>0
+static int getPageMMap(Pager*,Pgno,DbPage**,int);
+#endif
+
+/*
+** Set the Pager.xGet method for the appropriate routine used to fetch
+** content from the pager.
+*/
+static void setGetterMethod(Pager *pPager){
+ if( pPager->errCode ){
+ pPager->xGet = getPageError;
+#if SQLITE_MAX_MMAP_SIZE>0
+ }else if( USEFETCH(pPager)
+#ifdef SQLITE_HAS_CODEC
+ && pPager->xCodec==0
+#endif
+ ){
+ pPager->xGet = getPageMMap;
+#endif /* SQLITE_MAX_MMAP_SIZE>0 */
+ }else{
+ pPager->xGet = getPageNormal;
+ }
+}
+
+/*
+** Return true if it is necessary to write page *pPg into the sub-journal.
+** A page needs to be written into the sub-journal if there exists one
+** or more open savepoints for which:
+**
+** * The page-number is less than or equal to PagerSavepoint.nOrig, and
+** * The bit corresponding to the page-number is not set in
+** PagerSavepoint.pInSavepoint.
+*/
+static int subjRequiresPage(PgHdr *pPg){
+ Pager *pPager = pPg->pPager;
+ PagerSavepoint *p;
+ Pgno pgno = pPg->pgno;
+ int i;
+ for(i=0; i<pPager->nSavepoint; i++){
+ p = &pPager->aSavepoint[i];
+ if( p->nOrig>=pgno && 0==sqlite3BitvecTestNotNull(p->pInSavepoint, pgno) ){
+ return 1;
+ }
+ }
+ return 0;
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** Return true if the page is already in the journal file.
+*/
+static int pageInJournal(Pager *pPager, PgHdr *pPg){
+ return sqlite3BitvecTest(pPager->pInJournal, pPg->pgno);
+}
+#endif
+
+/*
+** Read a 32-bit integer from the given file descriptor. Store the integer
+** that is read in *pRes. Return SQLITE_OK if everything worked, or an
+** error code is something goes wrong.
+**
+** All values are stored on disk as big-endian.
+*/
+static int read32bits(sqlite3_file *fd, i64 offset, u32 *pRes){
+ unsigned char ac[4];
+ int rc = sqlite3OsRead(fd, ac, sizeof(ac), offset);
+ if( rc==SQLITE_OK ){
+ *pRes = sqlite3Get4byte(ac);
+ }
+ return rc;
+}
+
+/*
+** Write a 32-bit integer into a string buffer in big-endian byte order.
+*/
+#define put32bits(A,B) sqlite3Put4byte((u8*)A,B)
+
+
+/*
+** Write a 32-bit integer into the given file descriptor. Return SQLITE_OK
+** on success or an error code is something goes wrong.
+*/
+static int write32bits(sqlite3_file *fd, i64 offset, u32 val){
+ char ac[4];
+ put32bits(ac, val);
+ return sqlite3OsWrite(fd, ac, 4, offset);
+}
+
+/*
+** Unlock the database file to level eLock, which must be either NO_LOCK
+** or SHARED_LOCK. Regardless of whether or not the call to xUnlock()
+** succeeds, set the Pager.eLock variable to match the (attempted) new lock.
+**
+** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is
+** called, do not modify it. See the comment above the #define of
+** UNKNOWN_LOCK for an explanation of this.
+*/
+static int pagerUnlockDb(Pager *pPager, int eLock){
+ int rc = SQLITE_OK;
+
+ assert( !pPager->exclusiveMode || pPager->eLock==eLock );
+ assert( eLock==NO_LOCK || eLock==SHARED_LOCK );
+ assert( eLock!=NO_LOCK || pagerUseWal(pPager)==0 );
+ if( isOpen(pPager->fd) ){
+ assert( pPager->eLock>=eLock );
+ rc = pPager->noLock ? SQLITE_OK : sqlite3OsUnlock(pPager->fd, eLock);
+ if( pPager->eLock!=UNKNOWN_LOCK ){
+ pPager->eLock = (u8)eLock;
+ }
+ IOTRACE(("UNLOCK %p %d\n", pPager, eLock))
+ }
+ return rc;
+}
+
+/*
+** Lock the database file to level eLock, which must be either SHARED_LOCK,
+** RESERVED_LOCK or EXCLUSIVE_LOCK. If the caller is successful, set the
+** Pager.eLock variable to the new locking state.
+**
+** Except, if Pager.eLock is set to UNKNOWN_LOCK when this function is
+** called, do not modify it unless the new locking state is EXCLUSIVE_LOCK.
+** See the comment above the #define of UNKNOWN_LOCK for an explanation
+** of this.
+*/
+static int pagerLockDb(Pager *pPager, int eLock){
+ int rc = SQLITE_OK;
+
+ assert( eLock==SHARED_LOCK || eLock==RESERVED_LOCK || eLock==EXCLUSIVE_LOCK );
+ if( pPager->eLock<eLock || pPager->eLock==UNKNOWN_LOCK ){
+ rc = pPager->noLock ? SQLITE_OK : sqlite3OsLock(pPager->fd, eLock);
+ if( rc==SQLITE_OK && (pPager->eLock!=UNKNOWN_LOCK||eLock==EXCLUSIVE_LOCK) ){
+ pPager->eLock = (u8)eLock;
+ IOTRACE(("LOCK %p %d\n", pPager, eLock))
+ }
+ }
+ return rc;
+}
+
+/*
+** This function determines whether or not the atomic-write optimization
+** can be used with this pager. The optimization can be used if:
+**
+** (a) the value returned by OsDeviceCharacteristics() indicates that
+** a database page may be written atomically, and
+** (b) the value returned by OsSectorSize() is less than or equal
+** to the page size.
+**
+** The optimization is also always enabled for temporary files. It is
+** an error to call this function if pPager is opened on an in-memory
+** database.
+**
+** If the optimization cannot be used, 0 is returned. If it can be used,
+** then the value returned is the size of the journal file when it
+** contains rollback data for exactly one page.
+*/
+#ifdef SQLITE_ENABLE_ATOMIC_WRITE
+static int jrnlBufferSize(Pager *pPager){
+ assert( !MEMDB );
+ if( !pPager->tempFile ){
+ int dc; /* Device characteristics */
+ int nSector; /* Sector size */
+ int szPage; /* Page size */
+
+ assert( isOpen(pPager->fd) );
+ dc = sqlite3OsDeviceCharacteristics(pPager->fd);
+ nSector = pPager->sectorSize;
+ szPage = pPager->pageSize;
+
+ assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
+ assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
+ if( 0==(dc&(SQLITE_IOCAP_ATOMIC|(szPage>>8)) || nSector>szPage) ){
+ return 0;
+ }
+ }
+
+ return JOURNAL_HDR_SZ(pPager) + JOURNAL_PG_SZ(pPager);
+}
+#else
+# define jrnlBufferSize(x) 0
+#endif
+
+/*
+** If SQLITE_CHECK_PAGES is defined then we do some sanity checking
+** on the cache using a hash function. This is used for testing
+** and debugging only.
+*/
+#ifdef SQLITE_CHECK_PAGES
+/*
+** Return a 32-bit hash of the page data for pPage.
+*/
+static u32 pager_datahash(int nByte, unsigned char *pData){
+ u32 hash = 0;
+ int i;
+ for(i=0; i<nByte; i++){
+ hash = (hash*1039) + pData[i];
+ }
+ return hash;
+}
+static u32 pager_pagehash(PgHdr *pPage){
+ return pager_datahash(pPage->pPager->pageSize, (unsigned char *)pPage->pData);
+}
+static void pager_set_pagehash(PgHdr *pPage){
+ pPage->pageHash = pager_pagehash(pPage);
+}
+
+/*
+** The CHECK_PAGE macro takes a PgHdr* as an argument. If SQLITE_CHECK_PAGES
+** is defined, and NDEBUG is not defined, an assert() statement checks
+** that the page is either dirty or still matches the calculated page-hash.
+*/
+#define CHECK_PAGE(x) checkPage(x)
+static void checkPage(PgHdr *pPg){
+ Pager *pPager = pPg->pPager;
+ assert( pPager->eState!=PAGER_ERROR );
+ assert( (pPg->flags&PGHDR_DIRTY) || pPg->pageHash==pager_pagehash(pPg) );
+}
+
+#else
+#define pager_datahash(X,Y) 0
+#define pager_pagehash(X) 0
+#define pager_set_pagehash(X)
+#define CHECK_PAGE(x)
+#endif /* SQLITE_CHECK_PAGES */
+
+/*
+** When this is called the journal file for pager pPager must be open.
+** This function attempts to read a master journal file name from the
+** end of the file and, if successful, copies it into memory supplied
+** by the caller. See comments above writeMasterJournal() for the format
+** used to store a master journal file name at the end of a journal file.
+**
+** zMaster must point to a buffer of at least nMaster bytes allocated by
+** the caller. This should be sqlite3_vfs.mxPathname+1 (to ensure there is
+** enough space to write the master journal name). If the master journal
+** name in the journal is longer than nMaster bytes (including a
+** nul-terminator), then this is handled as if no master journal name
+** were present in the journal.
+**
+** If a master journal file name is present at the end of the journal
+** file, then it is copied into the buffer pointed to by zMaster. A
+** nul-terminator byte is appended to the buffer following the master
+** journal file name.
+**
+** If it is determined that no master journal file name is present
+** zMaster[0] is set to 0 and SQLITE_OK returned.
+**
+** If an error occurs while reading from the journal file, an SQLite
+** error code is returned.
+*/
+static int readMasterJournal(sqlite3_file *pJrnl, char *zMaster, u32 nMaster){
+ int rc; /* Return code */
+ u32 len; /* Length in bytes of master journal name */
+ i64 szJ; /* Total size in bytes of journal file pJrnl */
+ u32 cksum; /* MJ checksum value read from journal */
+ u32 u; /* Unsigned loop counter */
+ unsigned char aMagic[8]; /* A buffer to hold the magic header */
+ zMaster[0] = '\0';
+
+ if( SQLITE_OK!=(rc = sqlite3OsFileSize(pJrnl, &szJ))
+ || szJ<16
+ || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-16, &len))
+ || len>=nMaster
+ || len==0
+ || SQLITE_OK!=(rc = read32bits(pJrnl, szJ-12, &cksum))
+ || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, aMagic, 8, szJ-8))
+ || memcmp(aMagic, aJournalMagic, 8)
+ || SQLITE_OK!=(rc = sqlite3OsRead(pJrnl, zMaster, len, szJ-16-len))
+ ){
+ return rc;
+ }
+
+ /* See if the checksum matches the master journal name */
+ for(u=0; u<len; u++){
+ cksum -= zMaster[u];
+ }
+ if( cksum ){
+ /* If the checksum doesn't add up, then one or more of the disk sectors
+ ** containing the master journal filename is corrupted. This means
+ ** definitely roll back, so just return SQLITE_OK and report a (nul)
+ ** master-journal filename.
+ */
+ len = 0;
+ }
+ zMaster[len] = '\0';
+
+ return SQLITE_OK;
+}
+
+/*
+** Return the offset of the sector boundary at or immediately
+** following the value in pPager->journalOff, assuming a sector
+** size of pPager->sectorSize bytes.
+**
+** i.e for a sector size of 512:
+**
+** Pager.journalOff Return value
+** ---------------------------------------
+** 0 0
+** 512 512
+** 100 512
+** 2000 2048
+**
+*/
+static i64 journalHdrOffset(Pager *pPager){
+ i64 offset = 0;
+ i64 c = pPager->journalOff;
+ if( c ){
+ offset = ((c-1)/JOURNAL_HDR_SZ(pPager) + 1) * JOURNAL_HDR_SZ(pPager);
+ }
+ assert( offset%JOURNAL_HDR_SZ(pPager)==0 );
+ assert( offset>=c );
+ assert( (offset-c)<JOURNAL_HDR_SZ(pPager) );
+ return offset;
+}
+
+/*
+** The journal file must be open when this function is called.
+**
+** This function is a no-op if the journal file has not been written to
+** within the current transaction (i.e. if Pager.journalOff==0).
+**
+** If doTruncate is non-zero or the Pager.journalSizeLimit variable is
+** set to 0, then truncate the journal file to zero bytes in size. Otherwise,
+** zero the 28-byte header at the start of the journal file. In either case,
+** if the pager is not in no-sync mode, sync the journal file immediately
+** after writing or truncating it.
+**
+** If Pager.journalSizeLimit is set to a positive, non-zero value, and
+** following the truncation or zeroing described above the size of the
+** journal file in bytes is larger than this value, then truncate the
+** journal file to Pager.journalSizeLimit bytes. The journal file does
+** not need to be synced following this operation.
+**
+** If an IO error occurs, abandon processing and return the IO error code.
+** Otherwise, return SQLITE_OK.
+*/
+static int zeroJournalHdr(Pager *pPager, int doTruncate){
+ int rc = SQLITE_OK; /* Return code */
+ assert( isOpen(pPager->jfd) );
+ assert( !sqlite3JournalIsInMemory(pPager->jfd) );
+ if( pPager->journalOff ){
+ const i64 iLimit = pPager->journalSizeLimit; /* Local cache of jsl */
+
+ IOTRACE(("JZEROHDR %p\n", pPager))
+ if( doTruncate || iLimit==0 ){
+ rc = sqlite3OsTruncate(pPager->jfd, 0);
+ }else{
+ static const char zeroHdr[28] = {0};
+ rc = sqlite3OsWrite(pPager->jfd, zeroHdr, sizeof(zeroHdr), 0);
+ }
+ if( rc==SQLITE_OK && !pPager->noSync ){
+ rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_DATAONLY|pPager->syncFlags);
+ }
+
+ /* At this point the transaction is committed but the write lock
+ ** is still held on the file. If there is a size limit configured for
+ ** the persistent journal and the journal file currently consumes more
+ ** space than that limit allows for, truncate it now. There is no need
+ ** to sync the file following this operation.
+ */
+ if( rc==SQLITE_OK && iLimit>0 ){
+ i64 sz;
+ rc = sqlite3OsFileSize(pPager->jfd, &sz);
+ if( rc==SQLITE_OK && sz>iLimit ){
+ rc = sqlite3OsTruncate(pPager->jfd, iLimit);
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** The journal file must be open when this routine is called. A journal
+** header (JOURNAL_HDR_SZ bytes) is written into the journal file at the
+** current location.
+**
+** The format for the journal header is as follows:
+** - 8 bytes: Magic identifying journal format.
+** - 4 bytes: Number of records in journal, or -1 no-sync mode is on.
+** - 4 bytes: Random number used for page hash.
+** - 4 bytes: Initial database page count.
+** - 4 bytes: Sector size used by the process that wrote this journal.
+** - 4 bytes: Database page size.
+**
+** Followed by (JOURNAL_HDR_SZ - 28) bytes of unused space.
+*/
+static int writeJournalHdr(Pager *pPager){
+ int rc = SQLITE_OK; /* Return code */
+ char *zHeader = pPager->pTmpSpace; /* Temporary space used to build header */
+ u32 nHeader = (u32)pPager->pageSize;/* Size of buffer pointed to by zHeader */
+ u32 nWrite; /* Bytes of header sector written */
+ int ii; /* Loop counter */
+
+ assert( isOpen(pPager->jfd) ); /* Journal file must be open. */
+
+ if( nHeader>JOURNAL_HDR_SZ(pPager) ){
+ nHeader = JOURNAL_HDR_SZ(pPager);
+ }
+
+ /* If there are active savepoints and any of them were created
+ ** since the most recent journal header was written, update the
+ ** PagerSavepoint.iHdrOffset fields now.
+ */
+ for(ii=0; ii<pPager->nSavepoint; ii++){
+ if( pPager->aSavepoint[ii].iHdrOffset==0 ){
+ pPager->aSavepoint[ii].iHdrOffset = pPager->journalOff;
+ }
+ }
+
+ pPager->journalHdr = pPager->journalOff = journalHdrOffset(pPager);
+
+ /*
+ ** Write the nRec Field - the number of page records that follow this
+ ** journal header. Normally, zero is written to this value at this time.
+ ** After the records are added to the journal (and the journal synced,
+ ** if in full-sync mode), the zero is overwritten with the true number
+ ** of records (see syncJournal()).
+ **
+ ** A faster alternative is to write 0xFFFFFFFF to the nRec field. When
+ ** reading the journal this value tells SQLite to assume that the
+ ** rest of the journal file contains valid page records. This assumption
+ ** is dangerous, as if a failure occurred whilst writing to the journal
+ ** file it may contain some garbage data. There are two scenarios
+ ** where this risk can be ignored:
+ **
+ ** * When the pager is in no-sync mode. Corruption can follow a
+ ** power failure in this case anyway.
+ **
+ ** * When the SQLITE_IOCAP_SAFE_APPEND flag is set. This guarantees
+ ** that garbage data is never appended to the journal file.
+ */
+ assert( isOpen(pPager->fd) || pPager->noSync );
+ if( pPager->noSync || (pPager->journalMode==PAGER_JOURNALMODE_MEMORY)
+ || (sqlite3OsDeviceCharacteristics(pPager->fd)&SQLITE_IOCAP_SAFE_APPEND)
+ ){
+ memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic));
+ put32bits(&zHeader[sizeof(aJournalMagic)], 0xffffffff);
+ }else{
+ memset(zHeader, 0, sizeof(aJournalMagic)+4);
+ }
+
+ /* The random check-hash initializer */
+ sqlite3_randomness(sizeof(pPager->cksumInit), &pPager->cksumInit);
+ put32bits(&zHeader[sizeof(aJournalMagic)+4], pPager->cksumInit);
+ /* The initial database size */
+ put32bits(&zHeader[sizeof(aJournalMagic)+8], pPager->dbOrigSize);
+ /* The assumed sector size for this process */
+ put32bits(&zHeader[sizeof(aJournalMagic)+12], pPager->sectorSize);
+
+ /* The page size */
+ put32bits(&zHeader[sizeof(aJournalMagic)+16], pPager->pageSize);
+
+ /* Initializing the tail of the buffer is not necessary. Everything
+ ** works find if the following memset() is omitted. But initializing
+ ** the memory prevents valgrind from complaining, so we are willing to
+ ** take the performance hit.
+ */
+ memset(&zHeader[sizeof(aJournalMagic)+20], 0,
+ nHeader-(sizeof(aJournalMagic)+20));
+
+ /* In theory, it is only necessary to write the 28 bytes that the
+ ** journal header consumes to the journal file here. Then increment the
+ ** Pager.journalOff variable by JOURNAL_HDR_SZ so that the next
+ ** record is written to the following sector (leaving a gap in the file
+ ** that will be implicitly filled in by the OS).
+ **
+ ** However it has been discovered that on some systems this pattern can
+ ** be significantly slower than contiguously writing data to the file,
+ ** even if that means explicitly writing data to the block of
+ ** (JOURNAL_HDR_SZ - 28) bytes that will not be used. So that is what
+ ** is done.
+ **
+ ** The loop is required here in case the sector-size is larger than the
+ ** database page size. Since the zHeader buffer is only Pager.pageSize
+ ** bytes in size, more than one call to sqlite3OsWrite() may be required
+ ** to populate the entire journal header sector.
+ */
+ for(nWrite=0; rc==SQLITE_OK&&nWrite<JOURNAL_HDR_SZ(pPager); nWrite+=nHeader){
+ IOTRACE(("JHDR %p %lld %d\n", pPager, pPager->journalHdr, nHeader))
+ rc = sqlite3OsWrite(pPager->jfd, zHeader, nHeader, pPager->journalOff);
+ assert( pPager->journalHdr <= pPager->journalOff );
+ pPager->journalOff += nHeader;
+ }
+
+ return rc;
+}
+
+/*
+** The journal file must be open when this is called. A journal header file
+** (JOURNAL_HDR_SZ bytes) is read from the current location in the journal
+** file. The current location in the journal file is given by
+** pPager->journalOff. See comments above function writeJournalHdr() for
+** a description of the journal header format.
+**
+** If the header is read successfully, *pNRec is set to the number of
+** page records following this header and *pDbSize is set to the size of the
+** database before the transaction began, in pages. Also, pPager->cksumInit
+** is set to the value read from the journal header. SQLITE_OK is returned
+** in this case.
+**
+** If the journal header file appears to be corrupted, SQLITE_DONE is
+** returned and *pNRec and *PDbSize are undefined. If JOURNAL_HDR_SZ bytes
+** cannot be read from the journal file an error code is returned.
+*/
+static int readJournalHdr(
+ Pager *pPager, /* Pager object */
+ int isHot,
+ i64 journalSize, /* Size of the open journal file in bytes */
+ u32 *pNRec, /* OUT: Value read from the nRec field */
+ u32 *pDbSize /* OUT: Value of original database size field */
+){
+ int rc; /* Return code */
+ unsigned char aMagic[8]; /* A buffer to hold the magic header */
+ i64 iHdrOff; /* Offset of journal header being read */
+
+ assert( isOpen(pPager->jfd) ); /* Journal file must be open. */
+
+ /* Advance Pager.journalOff to the start of the next sector. If the
+ ** journal file is too small for there to be a header stored at this
+ ** point, return SQLITE_DONE.
+ */
+ pPager->journalOff = journalHdrOffset(pPager);
+ if( pPager->journalOff+JOURNAL_HDR_SZ(pPager) > journalSize ){
+ return SQLITE_DONE;
+ }
+ iHdrOff = pPager->journalOff;
+
+ /* Read in the first 8 bytes of the journal header. If they do not match
+ ** the magic string found at the start of each journal header, return
+ ** SQLITE_DONE. If an IO error occurs, return an error code. Otherwise,
+ ** proceed.
+ */
+ if( isHot || iHdrOff!=pPager->journalHdr ){
+ rc = sqlite3OsRead(pPager->jfd, aMagic, sizeof(aMagic), iHdrOff);
+ if( rc ){
+ return rc;
+ }
+ if( memcmp(aMagic, aJournalMagic, sizeof(aMagic))!=0 ){
+ return SQLITE_DONE;
+ }
+ }
+
+ /* Read the first three 32-bit fields of the journal header: The nRec
+ ** field, the checksum-initializer and the database size at the start
+ ** of the transaction. Return an error code if anything goes wrong.
+ */
+ if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+8, pNRec))
+ || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+12, &pPager->cksumInit))
+ || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+16, pDbSize))
+ ){
+ return rc;
+ }
+
+ if( pPager->journalOff==0 ){
+ u32 iPageSize; /* Page-size field of journal header */
+ u32 iSectorSize; /* Sector-size field of journal header */
+
+ /* Read the page-size and sector-size journal header fields. */
+ if( SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+20, &iSectorSize))
+ || SQLITE_OK!=(rc = read32bits(pPager->jfd, iHdrOff+24, &iPageSize))
+ ){
+ return rc;
+ }
+
+ /* Versions of SQLite prior to 3.5.8 set the page-size field of the
+ ** journal header to zero. In this case, assume that the Pager.pageSize
+ ** variable is already set to the correct page size.
+ */
+ if( iPageSize==0 ){
+ iPageSize = pPager->pageSize;
+ }
+
+ /* Check that the values read from the page-size and sector-size fields
+ ** are within range. To be 'in range', both values need to be a power
+ ** of two greater than or equal to 512 or 32, and not greater than their
+ ** respective compile time maximum limits.
+ */
+ if( iPageSize<512 || iSectorSize<32
+ || iPageSize>SQLITE_MAX_PAGE_SIZE || iSectorSize>MAX_SECTOR_SIZE
+ || ((iPageSize-1)&iPageSize)!=0 || ((iSectorSize-1)&iSectorSize)!=0
+ ){
+ /* If the either the page-size or sector-size in the journal-header is
+ ** invalid, then the process that wrote the journal-header must have
+ ** crashed before the header was synced. In this case stop reading
+ ** the journal file here.
+ */
+ return SQLITE_DONE;
+ }
+
+ /* Update the page-size to match the value read from the journal.
+ ** Use a testcase() macro to make sure that malloc failure within
+ ** PagerSetPagesize() is tested.
+ */
+ rc = sqlite3PagerSetPagesize(pPager, &iPageSize, -1);
+ testcase( rc!=SQLITE_OK );
+
+ /* Update the assumed sector-size to match the value used by
+ ** the process that created this journal. If this journal was
+ ** created by a process other than this one, then this routine
+ ** is being called from within pager_playback(). The local value
+ ** of Pager.sectorSize is restored at the end of that routine.
+ */
+ pPager->sectorSize = iSectorSize;
+ }
+
+ pPager->journalOff += JOURNAL_HDR_SZ(pPager);
+ return rc;
+}
+
+
+/*
+** Write the supplied master journal name into the journal file for pager
+** pPager at the current location. The master journal name must be the last
+** thing written to a journal file. If the pager is in full-sync mode, the
+** journal file descriptor is advanced to the next sector boundary before
+** anything is written. The format is:
+**
+** + 4 bytes: PAGER_MJ_PGNO.
+** + N bytes: Master journal filename in utf-8.
+** + 4 bytes: N (length of master journal name in bytes, no nul-terminator).
+** + 4 bytes: Master journal name checksum.
+** + 8 bytes: aJournalMagic[].
+**
+** The master journal page checksum is the sum of the bytes in the master
+** journal name, where each byte is interpreted as a signed 8-bit integer.
+**
+** If zMaster is a NULL pointer (occurs for a single database transaction),
+** this call is a no-op.
+*/
+static int writeMasterJournal(Pager *pPager, const char *zMaster){
+ int rc; /* Return code */
+ int nMaster; /* Length of string zMaster */
+ i64 iHdrOff; /* Offset of header in journal file */
+ i64 jrnlSize; /* Size of journal file on disk */
+ u32 cksum = 0; /* Checksum of string zMaster */
+
+ assert( pPager->setMaster==0 );
+ assert( !pagerUseWal(pPager) );
+
+ if( !zMaster
+ || pPager->journalMode==PAGER_JOURNALMODE_MEMORY
+ || !isOpen(pPager->jfd)
+ ){
+ return SQLITE_OK;
+ }
+ pPager->setMaster = 1;
+ assert( pPager->journalHdr <= pPager->journalOff );
+
+ /* Calculate the length in bytes and the checksum of zMaster */
+ for(nMaster=0; zMaster[nMaster]; nMaster++){
+ cksum += zMaster[nMaster];
+ }
+
+ /* If in full-sync mode, advance to the next disk sector before writing
+ ** the master journal name. This is in case the previous page written to
+ ** the journal has already been synced.
+ */
+ if( pPager->fullSync ){
+ pPager->journalOff = journalHdrOffset(pPager);
+ }
+ iHdrOff = pPager->journalOff;
+
+ /* Write the master journal data to the end of the journal file. If
+ ** an error occurs, return the error code to the caller.
+ */
+ if( (0 != (rc = write32bits(pPager->jfd, iHdrOff, PAGER_MJ_PGNO(pPager))))
+ || (0 != (rc = sqlite3OsWrite(pPager->jfd, zMaster, nMaster, iHdrOff+4)))
+ || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster, nMaster)))
+ || (0 != (rc = write32bits(pPager->jfd, iHdrOff+4+nMaster+4, cksum)))
+ || (0 != (rc = sqlite3OsWrite(pPager->jfd, aJournalMagic, 8,
+ iHdrOff+4+nMaster+8)))
+ ){
+ return rc;
+ }
+ pPager->journalOff += (nMaster+20);
+
+ /* If the pager is in peristent-journal mode, then the physical
+ ** journal-file may extend past the end of the master-journal name
+ ** and 8 bytes of magic data just written to the file. This is
+ ** dangerous because the code to rollback a hot-journal file
+ ** will not be able to find the master-journal name to determine
+ ** whether or not the journal is hot.
+ **
+ ** Easiest thing to do in this scenario is to truncate the journal
+ ** file to the required size.
+ */
+ if( SQLITE_OK==(rc = sqlite3OsFileSize(pPager->jfd, &jrnlSize))
+ && jrnlSize>pPager->journalOff
+ ){
+ rc = sqlite3OsTruncate(pPager->jfd, pPager->journalOff);
+ }
+ return rc;
+}
+
+/*
+** Discard the entire contents of the in-memory page-cache.
+*/
+static void pager_reset(Pager *pPager){
+ pPager->iDataVersion++;
+ sqlite3BackupRestart(pPager->pBackup);
+ sqlite3PcacheClear(pPager->pPCache);
+}
+
+/*
+** Return the pPager->iDataVersion value
+*/
+SQLITE_PRIVATE u32 sqlite3PagerDataVersion(Pager *pPager){
+ assert( pPager->eState>PAGER_OPEN );
+ return pPager->iDataVersion;
+}
+
+/*
+** Free all structures in the Pager.aSavepoint[] array and set both
+** Pager.aSavepoint and Pager.nSavepoint to zero. Close the sub-journal
+** if it is open and the pager is not in exclusive mode.
+*/
+static void releaseAllSavepoints(Pager *pPager){
+ int ii; /* Iterator for looping through Pager.aSavepoint */
+ for(ii=0; ii<pPager->nSavepoint; ii++){
+ sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint);
+ }
+ if( !pPager->exclusiveMode || sqlite3JournalIsInMemory(pPager->sjfd) ){
+ sqlite3OsClose(pPager->sjfd);
+ }
+ sqlite3_free(pPager->aSavepoint);
+ pPager->aSavepoint = 0;
+ pPager->nSavepoint = 0;
+ pPager->nSubRec = 0;
+}
+
+/*
+** Set the bit number pgno in the PagerSavepoint.pInSavepoint
+** bitvecs of all open savepoints. Return SQLITE_OK if successful
+** or SQLITE_NOMEM if a malloc failure occurs.
+*/
+static int addToSavepointBitvecs(Pager *pPager, Pgno pgno){
+ int ii; /* Loop counter */
+ int rc = SQLITE_OK; /* Result code */
+
+ for(ii=0; ii<pPager->nSavepoint; ii++){
+ PagerSavepoint *p = &pPager->aSavepoint[ii];
+ if( pgno<=p->nOrig ){
+ rc |= sqlite3BitvecSet(p->pInSavepoint, pgno);
+ testcase( rc==SQLITE_NOMEM );
+ assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
+ }
+ }
+ return rc;
+}
+
+/*
+** This function is a no-op if the pager is in exclusive mode and not
+** in the ERROR state. Otherwise, it switches the pager to PAGER_OPEN
+** state.
+**
+** If the pager is not in exclusive-access mode, the database file is
+** completely unlocked. If the file is unlocked and the file-system does
+** not exhibit the UNDELETABLE_WHEN_OPEN property, the journal file is
+** closed (if it is open).
+**
+** If the pager is in ERROR state when this function is called, the
+** contents of the pager cache are discarded before switching back to
+** the OPEN state. Regardless of whether the pager is in exclusive-mode
+** or not, any journal file left in the file-system will be treated
+** as a hot-journal and rolled back the next time a read-transaction
+** is opened (by this or by any other connection).
+*/
+static void pager_unlock(Pager *pPager){
+
+ assert( pPager->eState==PAGER_READER
+ || pPager->eState==PAGER_OPEN
+ || pPager->eState==PAGER_ERROR
+ );
+
+ sqlite3BitvecDestroy(pPager->pInJournal);
+ pPager->pInJournal = 0;
+ releaseAllSavepoints(pPager);
+
+ if( pagerUseWal(pPager) ){
+ assert( !isOpen(pPager->jfd) );
+ sqlite3WalEndReadTransaction(pPager->pWal);
+ pPager->eState = PAGER_OPEN;
+ }else if( !pPager->exclusiveMode ){
+ int rc; /* Error code returned by pagerUnlockDb() */
+ int iDc = isOpen(pPager->fd)?sqlite3OsDeviceCharacteristics(pPager->fd):0;
+
+ /* If the operating system support deletion of open files, then
+ ** close the journal file when dropping the database lock. Otherwise
+ ** another connection with journal_mode=delete might delete the file
+ ** out from under us.
+ */
+ assert( (PAGER_JOURNALMODE_MEMORY & 5)!=1 );
+ assert( (PAGER_JOURNALMODE_OFF & 5)!=1 );
+ assert( (PAGER_JOURNALMODE_WAL & 5)!=1 );
+ assert( (PAGER_JOURNALMODE_DELETE & 5)!=1 );
+ assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 );
+ assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 );
+ if( 0==(iDc & SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN)
+ || 1!=(pPager->journalMode & 5)
+ ){
+ sqlite3OsClose(pPager->jfd);
+ }
+
+ /* If the pager is in the ERROR state and the call to unlock the database
+ ** file fails, set the current lock to UNKNOWN_LOCK. See the comment
+ ** above the #define for UNKNOWN_LOCK for an explanation of why this
+ ** is necessary.
+ */
+ rc = pagerUnlockDb(pPager, NO_LOCK);
+ if( rc!=SQLITE_OK && pPager->eState==PAGER_ERROR ){
+ pPager->eLock = UNKNOWN_LOCK;
+ }
+
+ /* The pager state may be changed from PAGER_ERROR to PAGER_OPEN here
+ ** without clearing the error code. This is intentional - the error
+ ** code is cleared and the cache reset in the block below.
+ */
+ assert( pPager->errCode || pPager->eState!=PAGER_ERROR );
+ pPager->changeCountDone = 0;
+ pPager->eState = PAGER_OPEN;
+ }
+
+ /* If Pager.errCode is set, the contents of the pager cache cannot be
+ ** trusted. Now that there are no outstanding references to the pager,
+ ** it can safely move back to PAGER_OPEN state. This happens in both
+ ** normal and exclusive-locking mode.
+ */
+ assert( pPager->errCode==SQLITE_OK || !MEMDB );
+ if( pPager->errCode ){
+ if( pPager->tempFile==0 ){
+ pager_reset(pPager);
+ pPager->changeCountDone = 0;
+ pPager->eState = PAGER_OPEN;
+ }else{
+ pPager->eState = (isOpen(pPager->jfd) ? PAGER_OPEN : PAGER_READER);
+ }
+ if( USEFETCH(pPager) ) sqlite3OsUnfetch(pPager->fd, 0, 0);
+ pPager->errCode = SQLITE_OK;
+ setGetterMethod(pPager);
+ }
+
+ pPager->journalOff = 0;
+ pPager->journalHdr = 0;
+ pPager->setMaster = 0;
+}
+
+/*
+** This function is called whenever an IOERR or FULL error that requires
+** the pager to transition into the ERROR state may ahve occurred.
+** The first argument is a pointer to the pager structure, the second
+** the error-code about to be returned by a pager API function. The
+** value returned is a copy of the second argument to this function.
+**
+** If the second argument is SQLITE_FULL, SQLITE_IOERR or one of the
+** IOERR sub-codes, the pager enters the ERROR state and the error code
+** is stored in Pager.errCode. While the pager remains in the ERROR state,
+** all major API calls on the Pager will immediately return Pager.errCode.
+**
+** The ERROR state indicates that the contents of the pager-cache
+** cannot be trusted. This state can be cleared by completely discarding
+** the contents of the pager-cache. If a transaction was active when
+** the persistent error occurred, then the rollback journal may need
+** to be replayed to restore the contents of the database file (as if
+** it were a hot-journal).
+*/
+static int pager_error(Pager *pPager, int rc){
+ int rc2 = rc & 0xff;
+ assert( rc==SQLITE_OK || !MEMDB );
+ assert(
+ pPager->errCode==SQLITE_FULL ||
+ pPager->errCode==SQLITE_OK ||
+ (pPager->errCode & 0xff)==SQLITE_IOERR
+ );
+ if( rc2==SQLITE_FULL || rc2==SQLITE_IOERR ){
+ pPager->errCode = rc;
+ pPager->eState = PAGER_ERROR;
+ setGetterMethod(pPager);
+ }
+ return rc;
+}
+
+static int pager_truncate(Pager *pPager, Pgno nPage);
+
+/*
+** The write transaction open on pPager is being committed (bCommit==1)
+** or rolled back (bCommit==0).
+**
+** Return TRUE if and only if all dirty pages should be flushed to disk.
+**
+** Rules:
+**
+** * For non-TEMP databases, always sync to disk. This is necessary
+** for transactions to be durable.
+**
+** * Sync TEMP database only on a COMMIT (not a ROLLBACK) when the backing
+** file has been created already (via a spill on pagerStress()) and
+** when the number of dirty pages in memory exceeds 25% of the total
+** cache size.
+*/
+static int pagerFlushOnCommit(Pager *pPager, int bCommit){
+ if( pPager->tempFile==0 ) return 1;
+ if( !bCommit ) return 0;
+ if( !isOpen(pPager->fd) ) return 0;
+ return (sqlite3PCachePercentDirty(pPager->pPCache)>=25);
+}
+
+/*
+** This routine ends a transaction. A transaction is usually ended by
+** either a COMMIT or a ROLLBACK operation. This routine may be called
+** after rollback of a hot-journal, or if an error occurs while opening
+** the journal file or writing the very first journal-header of a
+** database transaction.
+**
+** This routine is never called in PAGER_ERROR state. If it is called
+** in PAGER_NONE or PAGER_SHARED state and the lock held is less
+** exclusive than a RESERVED lock, it is a no-op.
+**
+** Otherwise, any active savepoints are released.
+**
+** If the journal file is open, then it is "finalized". Once a journal
+** file has been finalized it is not possible to use it to roll back a
+** transaction. Nor will it be considered to be a hot-journal by this
+** or any other database connection. Exactly how a journal is finalized
+** depends on whether or not the pager is running in exclusive mode and
+** the current journal-mode (Pager.journalMode value), as follows:
+**
+** journalMode==MEMORY
+** Journal file descriptor is simply closed. This destroys an
+** in-memory journal.
+**
+** journalMode==TRUNCATE
+** Journal file is truncated to zero bytes in size.
+**
+** journalMode==PERSIST
+** The first 28 bytes of the journal file are zeroed. This invalidates
+** the first journal header in the file, and hence the entire journal
+** file. An invalid journal file cannot be rolled back.
+**
+** journalMode==DELETE
+** The journal file is closed and deleted using sqlite3OsDelete().
+**
+** If the pager is running in exclusive mode, this method of finalizing
+** the journal file is never used. Instead, if the journalMode is
+** DELETE and the pager is in exclusive mode, the method described under
+** journalMode==PERSIST is used instead.
+**
+** After the journal is finalized, the pager moves to PAGER_READER state.
+** If running in non-exclusive rollback mode, the lock on the file is
+** downgraded to a SHARED_LOCK.
+**
+** SQLITE_OK is returned if no error occurs. If an error occurs during
+** any of the IO operations to finalize the journal file or unlock the
+** database then the IO error code is returned to the user. If the
+** operation to finalize the journal file fails, then the code still
+** tries to unlock the database file if not in exclusive mode. If the
+** unlock operation fails as well, then the first error code related
+** to the first error encountered (the journal finalization one) is
+** returned.
+*/
+static int pager_end_transaction(Pager *pPager, int hasMaster, int bCommit){
+ int rc = SQLITE_OK; /* Error code from journal finalization operation */
+ int rc2 = SQLITE_OK; /* Error code from db file unlock operation */
+
+ /* Do nothing if the pager does not have an open write transaction
+ ** or at least a RESERVED lock. This function may be called when there
+ ** is no write-transaction active but a RESERVED or greater lock is
+ ** held under two circumstances:
+ **
+ ** 1. After a successful hot-journal rollback, it is called with
+ ** eState==PAGER_NONE and eLock==EXCLUSIVE_LOCK.
+ **
+ ** 2. If a connection with locking_mode=exclusive holding an EXCLUSIVE
+ ** lock switches back to locking_mode=normal and then executes a
+ ** read-transaction, this function is called with eState==PAGER_READER
+ ** and eLock==EXCLUSIVE_LOCK when the read-transaction is closed.
+ */
+ assert( assert_pager_state(pPager) );
+ assert( pPager->eState!=PAGER_ERROR );
+ if( pPager->eState<PAGER_WRITER_LOCKED && pPager->eLock<RESERVED_LOCK ){
+ return SQLITE_OK;
+ }
+
+ releaseAllSavepoints(pPager);
+ assert( isOpen(pPager->jfd) || pPager->pInJournal==0 );
+ if( isOpen(pPager->jfd) ){
+ assert( !pagerUseWal(pPager) );
+
+ /* Finalize the journal file. */
+ if( sqlite3JournalIsInMemory(pPager->jfd) ){
+ /* assert( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ); */
+ sqlite3OsClose(pPager->jfd);
+ }else if( pPager->journalMode==PAGER_JOURNALMODE_TRUNCATE ){
+ if( pPager->journalOff==0 ){
+ rc = SQLITE_OK;
+ }else{
+ rc = sqlite3OsTruncate(pPager->jfd, 0);
+ if( rc==SQLITE_OK && pPager->fullSync ){
+ /* Make sure the new file size is written into the inode right away.
+ ** Otherwise the journal might resurrect following a power loss and
+ ** cause the last transaction to roll back. See
+ ** https://bugzilla.mozilla.org/show_bug.cgi?id=1072773
+ */
+ rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags);
+ }
+ }
+ pPager->journalOff = 0;
+ }else if( pPager->journalMode==PAGER_JOURNALMODE_PERSIST
+ || (pPager->exclusiveMode && pPager->journalMode!=PAGER_JOURNALMODE_WAL)
+ ){
+ rc = zeroJournalHdr(pPager, hasMaster||pPager->tempFile);
+ pPager->journalOff = 0;
+ }else{
+ /* This branch may be executed with Pager.journalMode==MEMORY if
+ ** a hot-journal was just rolled back. In this case the journal
+ ** file should be closed and deleted. If this connection writes to
+ ** the database file, it will do so using an in-memory journal.
+ */
+ int bDelete = !pPager->tempFile;
+ assert( sqlite3JournalIsInMemory(pPager->jfd)==0 );
+ assert( pPager->journalMode==PAGER_JOURNALMODE_DELETE
+ || pPager->journalMode==PAGER_JOURNALMODE_MEMORY
+ || pPager->journalMode==PAGER_JOURNALMODE_WAL
+ );
+ sqlite3OsClose(pPager->jfd);
+ if( bDelete ){
+ rc = sqlite3OsDelete(pPager->pVfs, pPager->zJournal, pPager->extraSync);
+ }
+ }
+ }
+
+#ifdef SQLITE_CHECK_PAGES
+ sqlite3PcacheIterateDirty(pPager->pPCache, pager_set_pagehash);
+ if( pPager->dbSize==0 && sqlite3PcacheRefCount(pPager->pPCache)>0 ){
+ PgHdr *p = sqlite3PagerLookup(pPager, 1);
+ if( p ){
+ p->pageHash = 0;
+ sqlite3PagerUnrefNotNull(p);
+ }
+ }
+#endif
+
+ sqlite3BitvecDestroy(pPager->pInJournal);
+ pPager->pInJournal = 0;
+ pPager->nRec = 0;
+ if( rc==SQLITE_OK ){
+ if( MEMDB || pagerFlushOnCommit(pPager, bCommit) ){
+ sqlite3PcacheCleanAll(pPager->pPCache);
+ }else{
+ sqlite3PcacheClearWritable(pPager->pPCache);
+ }
+ sqlite3PcacheTruncate(pPager->pPCache, pPager->dbSize);
+ }
+
+ if( pagerUseWal(pPager) ){
+ /* Drop the WAL write-lock, if any. Also, if the connection was in
+ ** locking_mode=exclusive mode but is no longer, drop the EXCLUSIVE
+ ** lock held on the database file.
+ */
+ rc2 = sqlite3WalEndWriteTransaction(pPager->pWal);
+ assert( rc2==SQLITE_OK );
+ }else if( rc==SQLITE_OK && bCommit && pPager->dbFileSize>pPager->dbSize ){
+ /* This branch is taken when committing a transaction in rollback-journal
+ ** mode if the database file on disk is larger than the database image.
+ ** At this point the journal has been finalized and the transaction
+ ** successfully committed, but the EXCLUSIVE lock is still held on the
+ ** file. So it is safe to truncate the database file to its minimum
+ ** required size. */
+ assert( pPager->eLock==EXCLUSIVE_LOCK );
+ rc = pager_truncate(pPager, pPager->dbSize);
+ }
+
+ if( rc==SQLITE_OK && bCommit && isOpen(pPager->fd) ){
+ rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_COMMIT_PHASETWO, 0);
+ if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
+ }
+
+ if( !pPager->exclusiveMode
+ && (!pagerUseWal(pPager) || sqlite3WalExclusiveMode(pPager->pWal, 0))
+ ){
+ rc2 = pagerUnlockDb(pPager, SHARED_LOCK);
+ pPager->changeCountDone = 0;
+ }
+ pPager->eState = PAGER_READER;
+ pPager->setMaster = 0;
+
+ return (rc==SQLITE_OK?rc2:rc);
+}
+
+/*
+** Execute a rollback if a transaction is active and unlock the
+** database file.
+**
+** If the pager has already entered the ERROR state, do not attempt
+** the rollback at this time. Instead, pager_unlock() is called. The
+** call to pager_unlock() will discard all in-memory pages, unlock
+** the database file and move the pager back to OPEN state. If this
+** means that there is a hot-journal left in the file-system, the next
+** connection to obtain a shared lock on the pager (which may be this one)
+** will roll it back.
+**
+** If the pager has not already entered the ERROR state, but an IO or
+** malloc error occurs during a rollback, then this will itself cause
+** the pager to enter the ERROR state. Which will be cleared by the
+** call to pager_unlock(), as described above.
+*/
+static void pagerUnlockAndRollback(Pager *pPager){
+ if( pPager->eState!=PAGER_ERROR && pPager->eState!=PAGER_OPEN ){
+ assert( assert_pager_state(pPager) );
+ if( pPager->eState>=PAGER_WRITER_LOCKED ){
+ sqlite3BeginBenignMalloc();
+ sqlite3PagerRollback(pPager);
+ sqlite3EndBenignMalloc();
+ }else if( !pPager->exclusiveMode ){
+ assert( pPager->eState==PAGER_READER );
+ pager_end_transaction(pPager, 0, 0);
+ }
+ }
+ pager_unlock(pPager);
+}
+
+/*
+** Parameter aData must point to a buffer of pPager->pageSize bytes
+** of data. Compute and return a checksum based ont the contents of the
+** page of data and the current value of pPager->cksumInit.
+**
+** This is not a real checksum. It is really just the sum of the
+** random initial value (pPager->cksumInit) and every 200th byte
+** of the page data, starting with byte offset (pPager->pageSize%200).
+** Each byte is interpreted as an 8-bit unsigned integer.
+**
+** Changing the formula used to compute this checksum results in an
+** incompatible journal file format.
+**
+** If journal corruption occurs due to a power failure, the most likely
+** scenario is that one end or the other of the record will be changed.
+** It is much less likely that the two ends of the journal record will be
+** correct and the middle be corrupt. Thus, this "checksum" scheme,
+** though fast and simple, catches the mostly likely kind of corruption.
+*/
+static u32 pager_cksum(Pager *pPager, const u8 *aData){
+ u32 cksum = pPager->cksumInit; /* Checksum value to return */
+ int i = pPager->pageSize-200; /* Loop counter */
+ while( i>0 ){
+ cksum += aData[i];
+ i -= 200;
+ }
+ return cksum;
+}
+
+/*
+** Report the current page size and number of reserved bytes back
+** to the codec.
+*/
+#ifdef SQLITE_HAS_CODEC
+static void pagerReportSize(Pager *pPager){
+ if( pPager->xCodecSizeChng ){
+ pPager->xCodecSizeChng(pPager->pCodec, pPager->pageSize,
+ (int)pPager->nReserve);
+ }
+}
+#else
+# define pagerReportSize(X) /* No-op if we do not support a codec */
+#endif
+
+#ifdef SQLITE_HAS_CODEC
+/*
+** Make sure the number of reserved bits is the same in the destination
+** pager as it is in the source. This comes up when a VACUUM changes the
+** number of reserved bits to the "optimal" amount.
+*/
+SQLITE_PRIVATE void sqlite3PagerAlignReserve(Pager *pDest, Pager *pSrc){
+ if( pDest->nReserve!=pSrc->nReserve ){
+ pDest->nReserve = pSrc->nReserve;
+ pagerReportSize(pDest);
+ }
+}
+#endif
+
+/*
+** Read a single page from either the journal file (if isMainJrnl==1) or
+** from the sub-journal (if isMainJrnl==0) and playback that page.
+** The page begins at offset *pOffset into the file. The *pOffset
+** value is increased to the start of the next page in the journal.
+**
+** The main rollback journal uses checksums - the statement journal does
+** not.
+**
+** If the page number of the page record read from the (sub-)journal file
+** is greater than the current value of Pager.dbSize, then playback is
+** skipped and SQLITE_OK is returned.
+**
+** If pDone is not NULL, then it is a record of pages that have already
+** been played back. If the page at *pOffset has already been played back
+** (if the corresponding pDone bit is set) then skip the playback.
+** Make sure the pDone bit corresponding to the *pOffset page is set
+** prior to returning.
+**
+** If the page record is successfully read from the (sub-)journal file
+** and played back, then SQLITE_OK is returned. If an IO error occurs
+** while reading the record from the (sub-)journal file or while writing
+** to the database file, then the IO error code is returned. If data
+** is successfully read from the (sub-)journal file but appears to be
+** corrupted, SQLITE_DONE is returned. Data is considered corrupted in
+** two circumstances:
+**
+** * If the record page-number is illegal (0 or PAGER_MJ_PGNO), or
+** * If the record is being rolled back from the main journal file
+** and the checksum field does not match the record content.
+**
+** Neither of these two scenarios are possible during a savepoint rollback.
+**
+** If this is a savepoint rollback, then memory may have to be dynamically
+** allocated by this function. If this is the case and an allocation fails,
+** SQLITE_NOMEM is returned.
+*/
+static int pager_playback_one_page(
+ Pager *pPager, /* The pager being played back */
+ i64 *pOffset, /* Offset of record to playback */
+ Bitvec *pDone, /* Bitvec of pages already played back */
+ int isMainJrnl, /* 1 -> main journal. 0 -> sub-journal. */
+ int isSavepnt /* True for a savepoint rollback */
+){
+ int rc;
+ PgHdr *pPg; /* An existing page in the cache */
+ Pgno pgno; /* The page number of a page in journal */
+ u32 cksum; /* Checksum used for sanity checking */
+ char *aData; /* Temporary storage for the page */
+ sqlite3_file *jfd; /* The file descriptor for the journal file */
+ int isSynced; /* True if journal page is synced */
+
+ assert( (isMainJrnl&~1)==0 ); /* isMainJrnl is 0 or 1 */
+ assert( (isSavepnt&~1)==0 ); /* isSavepnt is 0 or 1 */
+ assert( isMainJrnl || pDone ); /* pDone always used on sub-journals */
+ assert( isSavepnt || pDone==0 ); /* pDone never used on non-savepoint */
+
+ aData = pPager->pTmpSpace;
+ assert( aData ); /* Temp storage must have already been allocated */
+ assert( pagerUseWal(pPager)==0 || (!isMainJrnl && isSavepnt) );
+
+ /* Either the state is greater than PAGER_WRITER_CACHEMOD (a transaction
+ ** or savepoint rollback done at the request of the caller) or this is
+ ** a hot-journal rollback. If it is a hot-journal rollback, the pager
+ ** is in state OPEN and holds an EXCLUSIVE lock. Hot-journal rollback
+ ** only reads from the main journal, not the sub-journal.
+ */
+ assert( pPager->eState>=PAGER_WRITER_CACHEMOD
+ || (pPager->eState==PAGER_OPEN && pPager->eLock==EXCLUSIVE_LOCK)
+ );
+ assert( pPager->eState>=PAGER_WRITER_CACHEMOD || isMainJrnl );
+
+ /* Read the page number and page data from the journal or sub-journal
+ ** file. Return an error code to the caller if an IO error occurs.
+ */
+ jfd = isMainJrnl ? pPager->jfd : pPager->sjfd;
+ rc = read32bits(jfd, *pOffset, &pgno);
+ if( rc!=SQLITE_OK ) return rc;
+ rc = sqlite3OsRead(jfd, (u8*)aData, pPager->pageSize, (*pOffset)+4);
+ if( rc!=SQLITE_OK ) return rc;
+ *pOffset += pPager->pageSize + 4 + isMainJrnl*4;
+
+ /* Sanity checking on the page. This is more important that I originally
+ ** thought. If a power failure occurs while the journal is being written,
+ ** it could cause invalid data to be written into the journal. We need to
+ ** detect this invalid data (with high probability) and ignore it.
+ */
+ if( pgno==0 || pgno==PAGER_MJ_PGNO(pPager) ){
+ assert( !isSavepnt );
+ return SQLITE_DONE;
+ }
+ if( pgno>(Pgno)pPager->dbSize || sqlite3BitvecTest(pDone, pgno) ){
+ return SQLITE_OK;
+ }
+ if( isMainJrnl ){
+ rc = read32bits(jfd, (*pOffset)-4, &cksum);
+ if( rc ) return rc;
+ if( !isSavepnt && pager_cksum(pPager, (u8*)aData)!=cksum ){
+ return SQLITE_DONE;
+ }
+ }
+
+ /* If this page has already been played back before during the current
+ ** rollback, then don't bother to play it back again.
+ */
+ if( pDone && (rc = sqlite3BitvecSet(pDone, pgno))!=SQLITE_OK ){
+ return rc;
+ }
+
+ /* When playing back page 1, restore the nReserve setting
+ */
+ if( pgno==1 && pPager->nReserve!=((u8*)aData)[20] ){
+ pPager->nReserve = ((u8*)aData)[20];
+ pagerReportSize(pPager);
+ }
+
+ /* If the pager is in CACHEMOD state, then there must be a copy of this
+ ** page in the pager cache. In this case just update the pager cache,
+ ** not the database file. The page is left marked dirty in this case.
+ **
+ ** An exception to the above rule: If the database is in no-sync mode
+ ** and a page is moved during an incremental vacuum then the page may
+ ** not be in the pager cache. Later: if a malloc() or IO error occurs
+ ** during a Movepage() call, then the page may not be in the cache
+ ** either. So the condition described in the above paragraph is not
+ ** assert()able.
+ **
+ ** If in WRITER_DBMOD, WRITER_FINISHED or OPEN state, then we update the
+ ** pager cache if it exists and the main file. The page is then marked
+ ** not dirty. Since this code is only executed in PAGER_OPEN state for
+ ** a hot-journal rollback, it is guaranteed that the page-cache is empty
+ ** if the pager is in OPEN state.
+ **
+ ** Ticket #1171: The statement journal might contain page content that is
+ ** different from the page content at the start of the transaction.
+ ** This occurs when a page is changed prior to the start of a statement
+ ** then changed again within the statement. When rolling back such a
+ ** statement we must not write to the original database unless we know
+ ** for certain that original page contents are synced into the main rollback
+ ** journal. Otherwise, a power loss might leave modified data in the
+ ** database file without an entry in the rollback journal that can
+ ** restore the database to its original form. Two conditions must be
+ ** met before writing to the database files. (1) the database must be
+ ** locked. (2) we know that the original page content is fully synced
+ ** in the main journal either because the page is not in cache or else
+ ** the page is marked as needSync==0.
+ **
+ ** 2008-04-14: When attempting to vacuum a corrupt database file, it
+ ** is possible to fail a statement on a database that does not yet exist.
+ ** Do not attempt to write if database file has never been opened.
+ */
+ if( pagerUseWal(pPager) ){
+ pPg = 0;
+ }else{
+ pPg = sqlite3PagerLookup(pPager, pgno);
+ }
+ assert( pPg || !MEMDB );
+ assert( pPager->eState!=PAGER_OPEN || pPg==0 || pPager->tempFile );
+ PAGERTRACE(("PLAYBACK %d page %d hash(%08x) %s\n",
+ PAGERID(pPager), pgno, pager_datahash(pPager->pageSize, (u8*)aData),
+ (isMainJrnl?"main-journal":"sub-journal")
+ ));
+ if( isMainJrnl ){
+ isSynced = pPager->noSync || (*pOffset <= pPager->journalHdr);
+ }else{
+ isSynced = (pPg==0 || 0==(pPg->flags & PGHDR_NEED_SYNC));
+ }
+ if( isOpen(pPager->fd)
+ && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN)
+ && isSynced
+ ){
+ i64 ofst = (pgno-1)*(i64)pPager->pageSize;
+ testcase( !isSavepnt && pPg!=0 && (pPg->flags&PGHDR_NEED_SYNC)!=0 );
+ assert( !pagerUseWal(pPager) );
+ rc = sqlite3OsWrite(pPager->fd, (u8 *)aData, pPager->pageSize, ofst);
+ if( pgno>pPager->dbFileSize ){
+ pPager->dbFileSize = pgno;
+ }
+ if( pPager->pBackup ){
+ CODEC1(pPager, aData, pgno, 3, rc=SQLITE_NOMEM_BKPT);
+ sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)aData);
+ CODEC2(pPager, aData, pgno, 7, rc=SQLITE_NOMEM_BKPT, aData);
+ }
+ }else if( !isMainJrnl && pPg==0 ){
+ /* If this is a rollback of a savepoint and data was not written to
+ ** the database and the page is not in-memory, there is a potential
+ ** problem. When the page is next fetched by the b-tree layer, it
+ ** will be read from the database file, which may or may not be
+ ** current.
+ **
+ ** There are a couple of different ways this can happen. All are quite
+ ** obscure. When running in synchronous mode, this can only happen
+ ** if the page is on the free-list at the start of the transaction, then
+ ** populated, then moved using sqlite3PagerMovepage().
+ **
+ ** The solution is to add an in-memory page to the cache containing
+ ** the data just read from the sub-journal. Mark the page as dirty
+ ** and if the pager requires a journal-sync, then mark the page as
+ ** requiring a journal-sync before it is written.
+ */
+ assert( isSavepnt );
+ assert( (pPager->doNotSpill & SPILLFLAG_ROLLBACK)==0 );
+ pPager->doNotSpill |= SPILLFLAG_ROLLBACK;
+ rc = sqlite3PagerGet(pPager, pgno, &pPg, 1);
+ assert( (pPager->doNotSpill & SPILLFLAG_ROLLBACK)!=0 );
+ pPager->doNotSpill &= ~SPILLFLAG_ROLLBACK;
+ if( rc!=SQLITE_OK ) return rc;
+ sqlite3PcacheMakeDirty(pPg);
+ }
+ if( pPg ){
+ /* No page should ever be explicitly rolled back that is in use, except
+ ** for page 1 which is held in use in order to keep the lock on the
+ ** database active. However such a page may be rolled back as a result
+ ** of an internal error resulting in an automatic call to
+ ** sqlite3PagerRollback().
+ */
+ void *pData;
+ pData = pPg->pData;
+ memcpy(pData, (u8*)aData, pPager->pageSize);
+ pPager->xReiniter(pPg);
+ /* It used to be that sqlite3PcacheMakeClean(pPg) was called here. But
+ ** that call was dangerous and had no detectable benefit since the cache
+ ** is normally cleaned by sqlite3PcacheCleanAll() after rollback and so
+ ** has been removed. */
+ pager_set_pagehash(pPg);
+
+ /* If this was page 1, then restore the value of Pager.dbFileVers.
+ ** Do this before any decoding. */
+ if( pgno==1 ){
+ memcpy(&pPager->dbFileVers, &((u8*)pData)[24],sizeof(pPager->dbFileVers));
+ }
+
+ /* Decode the page just read from disk */
+ CODEC1(pPager, pData, pPg->pgno, 3, rc=SQLITE_NOMEM_BKPT);
+ sqlite3PcacheRelease(pPg);
+ }
+ return rc;
+}
+
+/*
+** Parameter zMaster is the name of a master journal file. A single journal
+** file that referred to the master journal file has just been rolled back.
+** This routine checks if it is possible to delete the master journal file,
+** and does so if it is.
+**
+** Argument zMaster may point to Pager.pTmpSpace. So that buffer is not
+** available for use within this function.
+**
+** When a master journal file is created, it is populated with the names
+** of all of its child journals, one after another, formatted as utf-8
+** encoded text. The end of each child journal file is marked with a
+** nul-terminator byte (0x00). i.e. the entire contents of a master journal
+** file for a transaction involving two databases might be:
+**
+** "/home/bill/a.db-journal\x00/home/bill/b.db-journal\x00"
+**
+** A master journal file may only be deleted once all of its child
+** journals have been rolled back.
+**
+** This function reads the contents of the master-journal file into
+** memory and loops through each of the child journal names. For
+** each child journal, it checks if:
+**
+** * if the child journal exists, and if so
+** * if the child journal contains a reference to master journal
+** file zMaster
+**
+** If a child journal can be found that matches both of the criteria
+** above, this function returns without doing anything. Otherwise, if
+** no such child journal can be found, file zMaster is deleted from
+** the file-system using sqlite3OsDelete().
+**
+** If an IO error within this function, an error code is returned. This
+** function allocates memory by calling sqlite3Malloc(). If an allocation
+** fails, SQLITE_NOMEM is returned. Otherwise, if no IO or malloc errors
+** occur, SQLITE_OK is returned.
+**
+** TODO: This function allocates a single block of memory to load
+** the entire contents of the master journal file. This could be
+** a couple of kilobytes or so - potentially larger than the page
+** size.
+*/
+static int pager_delmaster(Pager *pPager, const char *zMaster){
+ sqlite3_vfs *pVfs = pPager->pVfs;
+ int rc; /* Return code */
+ sqlite3_file *pMaster; /* Malloc'd master-journal file descriptor */
+ sqlite3_file *pJournal; /* Malloc'd child-journal file descriptor */
+ char *zMasterJournal = 0; /* Contents of master journal file */
+ i64 nMasterJournal; /* Size of master journal file */
+ char *zJournal; /* Pointer to one journal within MJ file */
+ char *zMasterPtr; /* Space to hold MJ filename from a journal file */
+ int nMasterPtr; /* Amount of space allocated to zMasterPtr[] */
+
+ /* Allocate space for both the pJournal and pMaster file descriptors.
+ ** If successful, open the master journal file for reading.
+ */
+ pMaster = (sqlite3_file *)sqlite3MallocZero(pVfs->szOsFile * 2);
+ pJournal = (sqlite3_file *)(((u8 *)pMaster) + pVfs->szOsFile);
+ if( !pMaster ){
+ rc = SQLITE_NOMEM_BKPT;
+ }else{
+ const int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MASTER_JOURNAL);
+ rc = sqlite3OsOpen(pVfs, zMaster, pMaster, flags, 0);
+ }
+ if( rc!=SQLITE_OK ) goto delmaster_out;
+
+ /* Load the entire master journal file into space obtained from
+ ** sqlite3_malloc() and pointed to by zMasterJournal. Also obtain
+ ** sufficient space (in zMasterPtr) to hold the names of master
+ ** journal files extracted from regular rollback-journals.
+ */
+ rc = sqlite3OsFileSize(pMaster, &nMasterJournal);
+ if( rc!=SQLITE_OK ) goto delmaster_out;
+ nMasterPtr = pVfs->mxPathname+1;
+ zMasterJournal = sqlite3Malloc(nMasterJournal + nMasterPtr + 1);
+ if( !zMasterJournal ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto delmaster_out;
+ }
+ zMasterPtr = &zMasterJournal[nMasterJournal+1];
+ rc = sqlite3OsRead(pMaster, zMasterJournal, (int)nMasterJournal, 0);
+ if( rc!=SQLITE_OK ) goto delmaster_out;
+ zMasterJournal[nMasterJournal] = 0;
+
+ zJournal = zMasterJournal;
+ while( (zJournal-zMasterJournal)<nMasterJournal ){
+ int exists;
+ rc = sqlite3OsAccess(pVfs, zJournal, SQLITE_ACCESS_EXISTS, &exists);
+ if( rc!=SQLITE_OK ){
+ goto delmaster_out;
+ }
+ if( exists ){
+ /* One of the journals pointed to by the master journal exists.
+ ** Open it and check if it points at the master journal. If
+ ** so, return without deleting the master journal file.
+ */
+ int c;
+ int flags = (SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL);
+ rc = sqlite3OsOpen(pVfs, zJournal, pJournal, flags, 0);
+ if( rc!=SQLITE_OK ){
+ goto delmaster_out;
+ }
+
+ rc = readMasterJournal(pJournal, zMasterPtr, nMasterPtr);
+ sqlite3OsClose(pJournal);
+ if( rc!=SQLITE_OK ){
+ goto delmaster_out;
+ }
+
+ c = zMasterPtr[0]!=0 && strcmp(zMasterPtr, zMaster)==0;
+ if( c ){
+ /* We have a match. Do not delete the master journal file. */
+ goto delmaster_out;
+ }
+ }
+ zJournal += (sqlite3Strlen30(zJournal)+1);
+ }
+
+ sqlite3OsClose(pMaster);
+ rc = sqlite3OsDelete(pVfs, zMaster, 0);
+
+delmaster_out:
+ sqlite3_free(zMasterJournal);
+ if( pMaster ){
+ sqlite3OsClose(pMaster);
+ assert( !isOpen(pJournal) );
+ sqlite3_free(pMaster);
+ }
+ return rc;
+}
+
+
+/*
+** This function is used to change the actual size of the database
+** file in the file-system. This only happens when committing a transaction,
+** or rolling back a transaction (including rolling back a hot-journal).
+**
+** If the main database file is not open, or the pager is not in either
+** DBMOD or OPEN state, this function is a no-op. Otherwise, the size
+** of the file is changed to nPage pages (nPage*pPager->pageSize bytes).
+** If the file on disk is currently larger than nPage pages, then use the VFS
+** xTruncate() method to truncate it.
+**
+** Or, it might be the case that the file on disk is smaller than
+** nPage pages. Some operating system implementations can get confused if
+** you try to truncate a file to some size that is larger than it
+** currently is, so detect this case and write a single zero byte to
+** the end of the new file instead.
+**
+** If successful, return SQLITE_OK. If an IO error occurs while modifying
+** the database file, return the error code to the caller.
+*/
+static int pager_truncate(Pager *pPager, Pgno nPage){
+ int rc = SQLITE_OK;
+ assert( pPager->eState!=PAGER_ERROR );
+ assert( pPager->eState!=PAGER_READER );
+
+ if( isOpen(pPager->fd)
+ && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN)
+ ){
+ i64 currentSize, newSize;
+ int szPage = pPager->pageSize;
+ assert( pPager->eLock==EXCLUSIVE_LOCK );
+ /* TODO: Is it safe to use Pager.dbFileSize here? */
+ rc = sqlite3OsFileSize(pPager->fd, &currentSize);
+ newSize = szPage*(i64)nPage;
+ if( rc==SQLITE_OK && currentSize!=newSize ){
+ if( currentSize>newSize ){
+ rc = sqlite3OsTruncate(pPager->fd, newSize);
+ }else if( (currentSize+szPage)<=newSize ){
+ char *pTmp = pPager->pTmpSpace;
+ memset(pTmp, 0, szPage);
+ testcase( (newSize-szPage) == currentSize );
+ testcase( (newSize-szPage) > currentSize );
+ rc = sqlite3OsWrite(pPager->fd, pTmp, szPage, newSize-szPage);
+ }
+ if( rc==SQLITE_OK ){
+ pPager->dbFileSize = nPage;
+ }
+ }
+ }
+ return rc;
+}
+
+/*
+** Return a sanitized version of the sector-size of OS file pFile. The
+** return value is guaranteed to lie between 32 and MAX_SECTOR_SIZE.
+*/
+SQLITE_PRIVATE int sqlite3SectorSize(sqlite3_file *pFile){
+ int iRet = sqlite3OsSectorSize(pFile);
+ if( iRet<32 ){
+ iRet = 512;
+ }else if( iRet>MAX_SECTOR_SIZE ){
+ assert( MAX_SECTOR_SIZE>=512 );
+ iRet = MAX_SECTOR_SIZE;
+ }
+ return iRet;
+}
+
+/*
+** Set the value of the Pager.sectorSize variable for the given
+** pager based on the value returned by the xSectorSize method
+** of the open database file. The sector size will be used
+** to determine the size and alignment of journal header and
+** master journal pointers within created journal files.
+**
+** For temporary files the effective sector size is always 512 bytes.
+**
+** Otherwise, for non-temporary files, the effective sector size is
+** the value returned by the xSectorSize() method rounded up to 32 if
+** it is less than 32, or rounded down to MAX_SECTOR_SIZE if it
+** is greater than MAX_SECTOR_SIZE.
+**
+** If the file has the SQLITE_IOCAP_POWERSAFE_OVERWRITE property, then set
+** the effective sector size to its minimum value (512). The purpose of
+** pPager->sectorSize is to define the "blast radius" of bytes that
+** might change if a crash occurs while writing to a single byte in
+** that range. But with POWERSAFE_OVERWRITE, the blast radius is zero
+** (that is what POWERSAFE_OVERWRITE means), so we minimize the sector
+** size. For backwards compatibility of the rollback journal file format,
+** we cannot reduce the effective sector size below 512.
+*/
+static void setSectorSize(Pager *pPager){
+ assert( isOpen(pPager->fd) || pPager->tempFile );
+
+ if( pPager->tempFile
+ || (sqlite3OsDeviceCharacteristics(pPager->fd) &
+ SQLITE_IOCAP_POWERSAFE_OVERWRITE)!=0
+ ){
+ /* Sector size doesn't matter for temporary files. Also, the file
+ ** may not have been opened yet, in which case the OsSectorSize()
+ ** call will segfault. */
+ pPager->sectorSize = 512;
+ }else{
+ pPager->sectorSize = sqlite3SectorSize(pPager->fd);
+ }
+}
+
+/*
+** Playback the journal and thus restore the database file to
+** the state it was in before we started making changes.
+**
+** The journal file format is as follows:
+**
+** (1) 8 byte prefix. A copy of aJournalMagic[].
+** (2) 4 byte big-endian integer which is the number of valid page records
+** in the journal. If this value is 0xffffffff, then compute the
+** number of page records from the journal size.
+** (3) 4 byte big-endian integer which is the initial value for the
+** sanity checksum.
+** (4) 4 byte integer which is the number of pages to truncate the
+** database to during a rollback.
+** (5) 4 byte big-endian integer which is the sector size. The header
+** is this many bytes in size.
+** (6) 4 byte big-endian integer which is the page size.
+** (7) zero padding out to the next sector size.
+** (8) Zero or more pages instances, each as follows:
+** + 4 byte page number.
+** + pPager->pageSize bytes of data.
+** + 4 byte checksum
+**
+** When we speak of the journal header, we mean the first 7 items above.
+** Each entry in the journal is an instance of the 8th item.
+**
+** Call the value from the second bullet "nRec". nRec is the number of
+** valid page entries in the journal. In most cases, you can compute the
+** value of nRec from the size of the journal file. But if a power
+** failure occurred while the journal was being written, it could be the
+** case that the size of the journal file had already been increased but
+** the extra entries had not yet made it safely to disk. In such a case,
+** the value of nRec computed from the file size would be too large. For
+** that reason, we always use the nRec value in the header.
+**
+** If the nRec value is 0xffffffff it means that nRec should be computed
+** from the file size. This value is used when the user selects the
+** no-sync option for the journal. A power failure could lead to corruption
+** in this case. But for things like temporary table (which will be
+** deleted when the power is restored) we don't care.
+**
+** If the file opened as the journal file is not a well-formed
+** journal file then all pages up to the first corrupted page are rolled
+** back (or no pages if the journal header is corrupted). The journal file
+** is then deleted and SQLITE_OK returned, just as if no corruption had
+** been encountered.
+**
+** If an I/O or malloc() error occurs, the journal-file is not deleted
+** and an error code is returned.
+**
+** The isHot parameter indicates that we are trying to rollback a journal
+** that might be a hot journal. Or, it could be that the journal is
+** preserved because of JOURNALMODE_PERSIST or JOURNALMODE_TRUNCATE.
+** If the journal really is hot, reset the pager cache prior rolling
+** back any content. If the journal is merely persistent, no reset is
+** needed.
+*/
+static int pager_playback(Pager *pPager, int isHot){
+ sqlite3_vfs *pVfs = pPager->pVfs;
+ i64 szJ; /* Size of the journal file in bytes */
+ u32 nRec; /* Number of Records in the journal */
+ u32 u; /* Unsigned loop counter */
+ Pgno mxPg = 0; /* Size of the original file in pages */
+ int rc; /* Result code of a subroutine */
+ int res = 1; /* Value returned by sqlite3OsAccess() */
+ char *zMaster = 0; /* Name of master journal file if any */
+ int needPagerReset; /* True to reset page prior to first page rollback */
+ int nPlayback = 0; /* Total number of pages restored from journal */
+
+ /* Figure out how many records are in the journal. Abort early if
+ ** the journal is empty.
+ */
+ assert( isOpen(pPager->jfd) );
+ rc = sqlite3OsFileSize(pPager->jfd, &szJ);
+ if( rc!=SQLITE_OK ){
+ goto end_playback;
+ }
+
+ /* Read the master journal name from the journal, if it is present.
+ ** If a master journal file name is specified, but the file is not
+ ** present on disk, then the journal is not hot and does not need to be
+ ** played back.
+ **
+ ** TODO: Technically the following is an error because it assumes that
+ ** buffer Pager.pTmpSpace is (mxPathname+1) bytes or larger. i.e. that
+ ** (pPager->pageSize >= pPager->pVfs->mxPathname+1). Using os_unix.c,
+ ** mxPathname is 512, which is the same as the minimum allowable value
+ ** for pageSize.
+ */
+ zMaster = pPager->pTmpSpace;
+ rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1);
+ if( rc==SQLITE_OK && zMaster[0] ){
+ rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
+ }
+ zMaster = 0;
+ if( rc!=SQLITE_OK || !res ){
+ goto end_playback;
+ }
+ pPager->journalOff = 0;
+ needPagerReset = isHot;
+
+ /* This loop terminates either when a readJournalHdr() or
+ ** pager_playback_one_page() call returns SQLITE_DONE or an IO error
+ ** occurs.
+ */
+ while( 1 ){
+ /* Read the next journal header from the journal file. If there are
+ ** not enough bytes left in the journal file for a complete header, or
+ ** it is corrupted, then a process must have failed while writing it.
+ ** This indicates nothing more needs to be rolled back.
+ */
+ rc = readJournalHdr(pPager, isHot, szJ, &nRec, &mxPg);
+ if( rc!=SQLITE_OK ){
+ if( rc==SQLITE_DONE ){
+ rc = SQLITE_OK;
+ }
+ goto end_playback;
+ }
+
+ /* If nRec is 0xffffffff, then this journal was created by a process
+ ** working in no-sync mode. This means that the rest of the journal
+ ** file consists of pages, there are no more journal headers. Compute
+ ** the value of nRec based on this assumption.
+ */
+ if( nRec==0xffffffff ){
+ assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) );
+ nRec = (int)((szJ - JOURNAL_HDR_SZ(pPager))/JOURNAL_PG_SZ(pPager));
+ }
+
+ /* If nRec is 0 and this rollback is of a transaction created by this
+ ** process and if this is the final header in the journal, then it means
+ ** that this part of the journal was being filled but has not yet been
+ ** synced to disk. Compute the number of pages based on the remaining
+ ** size of the file.
+ **
+ ** The third term of the test was added to fix ticket #2565.
+ ** When rolling back a hot journal, nRec==0 always means that the next
+ ** chunk of the journal contains zero pages to be rolled back. But
+ ** when doing a ROLLBACK and the nRec==0 chunk is the last chunk in
+ ** the journal, it means that the journal might contain additional
+ ** pages that need to be rolled back and that the number of pages
+ ** should be computed based on the journal file size.
+ */
+ if( nRec==0 && !isHot &&
+ pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff ){
+ nRec = (int)((szJ - pPager->journalOff) / JOURNAL_PG_SZ(pPager));
+ }
+
+ /* If this is the first header read from the journal, truncate the
+ ** database file back to its original size.
+ */
+ if( pPager->journalOff==JOURNAL_HDR_SZ(pPager) ){
+ rc = pager_truncate(pPager, mxPg);
+ if( rc!=SQLITE_OK ){
+ goto end_playback;
+ }
+ pPager->dbSize = mxPg;
+ }
+
+ /* Copy original pages out of the journal and back into the
+ ** database file and/or page cache.
+ */
+ for(u=0; u<nRec; u++){
+ if( needPagerReset ){
+ pager_reset(pPager);
+ needPagerReset = 0;
+ }
+ rc = pager_playback_one_page(pPager,&pPager->journalOff,0,1,0);
+ if( rc==SQLITE_OK ){
+ nPlayback++;
+ }else{
+ if( rc==SQLITE_DONE ){
+ pPager->journalOff = szJ;
+ break;
+ }else if( rc==SQLITE_IOERR_SHORT_READ ){
+ /* If the journal has been truncated, simply stop reading and
+ ** processing the journal. This might happen if the journal was
+ ** not completely written and synced prior to a crash. In that
+ ** case, the database should have never been written in the
+ ** first place so it is OK to simply abandon the rollback. */
+ rc = SQLITE_OK;
+ goto end_playback;
+ }else{
+ /* If we are unable to rollback, quit and return the error
+ ** code. This will cause the pager to enter the error state
+ ** so that no further harm will be done. Perhaps the next
+ ** process to come along will be able to rollback the database.
+ */
+ goto end_playback;
+ }
+ }
+ }
+ }
+ /*NOTREACHED*/
+ assert( 0 );
+
+end_playback:
+ /* Following a rollback, the database file should be back in its original
+ ** state prior to the start of the transaction, so invoke the
+ ** SQLITE_FCNTL_DB_UNCHANGED file-control method to disable the
+ ** assertion that the transaction counter was modified.
+ */
+#ifdef SQLITE_DEBUG
+ if( pPager->fd->pMethods ){
+ sqlite3OsFileControlHint(pPager->fd,SQLITE_FCNTL_DB_UNCHANGED,0);
+ }
+#endif
+
+ /* If this playback is happening automatically as a result of an IO or
+ ** malloc error that occurred after the change-counter was updated but
+ ** before the transaction was committed, then the change-counter
+ ** modification may just have been reverted. If this happens in exclusive
+ ** mode, then subsequent transactions performed by the connection will not
+ ** update the change-counter at all. This may lead to cache inconsistency
+ ** problems for other processes at some point in the future. So, just
+ ** in case this has happened, clear the changeCountDone flag now.
+ */
+ pPager->changeCountDone = pPager->tempFile;
+
+ if( rc==SQLITE_OK ){
+ zMaster = pPager->pTmpSpace;
+ rc = readMasterJournal(pPager->jfd, zMaster, pPager->pVfs->mxPathname+1);
+ testcase( rc!=SQLITE_OK );
+ }
+ if( rc==SQLITE_OK
+ && (pPager->eState>=PAGER_WRITER_DBMOD || pPager->eState==PAGER_OPEN)
+ ){
+ rc = sqlite3PagerSync(pPager, 0);
+ }
+ if( rc==SQLITE_OK ){
+ rc = pager_end_transaction(pPager, zMaster[0]!='\0', 0);
+ testcase( rc!=SQLITE_OK );
+ }
+ if( rc==SQLITE_OK && zMaster[0] && res ){
+ /* If there was a master journal and this routine will return success,
+ ** see if it is possible to delete the master journal.
+ */
+ rc = pager_delmaster(pPager, zMaster);
+ testcase( rc!=SQLITE_OK );
+ }
+ if( isHot && nPlayback ){
+ sqlite3_log(SQLITE_NOTICE_RECOVER_ROLLBACK, "recovered %d pages from %s",
+ nPlayback, pPager->zJournal);
+ }
+
+ /* The Pager.sectorSize variable may have been updated while rolling
+ ** back a journal created by a process with a different sector size
+ ** value. Reset it to the correct value for this process.
+ */
+ setSectorSize(pPager);
+ return rc;
+}
+
+
+/*
+** Read the content for page pPg out of the database file and into
+** pPg->pData. A shared lock or greater must be held on the database
+** file before this function is called.
+**
+** If page 1 is read, then the value of Pager.dbFileVers[] is set to
+** the value read from the database file.
+**
+** If an IO error occurs, then the IO error is returned to the caller.
+** Otherwise, SQLITE_OK is returned.
+*/
+static int readDbPage(PgHdr *pPg, u32 iFrame){
+ Pager *pPager = pPg->pPager; /* Pager object associated with page pPg */
+ Pgno pgno = pPg->pgno; /* Page number to read */
+ int rc = SQLITE_OK; /* Return code */
+ int pgsz = pPager->pageSize; /* Number of bytes to read */
+
+ assert( pPager->eState>=PAGER_READER && !MEMDB );
+ assert( isOpen(pPager->fd) );
+
+#ifndef SQLITE_OMIT_WAL
+ if( iFrame ){
+ /* Try to pull the page from the write-ahead log. */
+ rc = sqlite3WalReadFrame(pPager->pWal, iFrame, pgsz, pPg->pData);
+ }else
+#endif
+ {
+ i64 iOffset = (pgno-1)*(i64)pPager->pageSize;
+ rc = sqlite3OsRead(pPager->fd, pPg->pData, pgsz, iOffset);
+ if( rc==SQLITE_IOERR_SHORT_READ ){
+ rc = SQLITE_OK;
+ }
+ }
+
+ if( pgno==1 ){
+ if( rc ){
+ /* If the read is unsuccessful, set the dbFileVers[] to something
+ ** that will never be a valid file version. dbFileVers[] is a copy
+ ** of bytes 24..39 of the database. Bytes 28..31 should always be
+ ** zero or the size of the database in page. Bytes 32..35 and 35..39
+ ** should be page numbers which are never 0xffffffff. So filling
+ ** pPager->dbFileVers[] with all 0xff bytes should suffice.
+ **
+ ** For an encrypted database, the situation is more complex: bytes
+ ** 24..39 of the database are white noise. But the probability of
+ ** white noise equaling 16 bytes of 0xff is vanishingly small so
+ ** we should still be ok.
+ */
+ memset(pPager->dbFileVers, 0xff, sizeof(pPager->dbFileVers));
+ }else{
+ u8 *dbFileVers = &((u8*)pPg->pData)[24];
+ memcpy(&pPager->dbFileVers, dbFileVers, sizeof(pPager->dbFileVers));
+ }
+ }
+ CODEC1(pPager, pPg->pData, pgno, 3, rc = SQLITE_NOMEM_BKPT);
+
+ PAGER_INCR(sqlite3_pager_readdb_count);
+ PAGER_INCR(pPager->nRead);
+ IOTRACE(("PGIN %p %d\n", pPager, pgno));
+ PAGERTRACE(("FETCH %d page %d hash(%08x)\n",
+ PAGERID(pPager), pgno, pager_pagehash(pPg)));
+
+ return rc;
+}
+
+/*
+** Update the value of the change-counter at offsets 24 and 92 in
+** the header and the sqlite version number at offset 96.
+**
+** This is an unconditional update. See also the pager_incr_changecounter()
+** routine which only updates the change-counter if the update is actually
+** needed, as determined by the pPager->changeCountDone state variable.
+*/
+static void pager_write_changecounter(PgHdr *pPg){
+ u32 change_counter;
+
+ /* Increment the value just read and write it back to byte 24. */
+ change_counter = sqlite3Get4byte((u8*)pPg->pPager->dbFileVers)+1;
+ put32bits(((char*)pPg->pData)+24, change_counter);
+
+ /* Also store the SQLite version number in bytes 96..99 and in
+ ** bytes 92..95 store the change counter for which the version number
+ ** is valid. */
+ put32bits(((char*)pPg->pData)+92, change_counter);
+ put32bits(((char*)pPg->pData)+96, SQLITE_VERSION_NUMBER);
+}
+
+#ifndef SQLITE_OMIT_WAL
+/*
+** This function is invoked once for each page that has already been
+** written into the log file when a WAL transaction is rolled back.
+** Parameter iPg is the page number of said page. The pCtx argument
+** is actually a pointer to the Pager structure.
+**
+** If page iPg is present in the cache, and has no outstanding references,
+** it is discarded. Otherwise, if there are one or more outstanding
+** references, the page content is reloaded from the database. If the
+** attempt to reload content from the database is required and fails,
+** return an SQLite error code. Otherwise, SQLITE_OK.
+*/
+static int pagerUndoCallback(void *pCtx, Pgno iPg){
+ int rc = SQLITE_OK;
+ Pager *pPager = (Pager *)pCtx;
+ PgHdr *pPg;
+
+ assert( pagerUseWal(pPager) );
+ pPg = sqlite3PagerLookup(pPager, iPg);
+ if( pPg ){
+ if( sqlite3PcachePageRefcount(pPg)==1 ){
+ sqlite3PcacheDrop(pPg);
+ }else{
+ u32 iFrame = 0;
+ rc = sqlite3WalFindFrame(pPager->pWal, pPg->pgno, &iFrame);
+ if( rc==SQLITE_OK ){
+ rc = readDbPage(pPg, iFrame);
+ }
+ if( rc==SQLITE_OK ){
+ pPager->xReiniter(pPg);
+ }
+ sqlite3PagerUnrefNotNull(pPg);
+ }
+ }
+
+ /* Normally, if a transaction is rolled back, any backup processes are
+ ** updated as data is copied out of the rollback journal and into the
+ ** database. This is not generally possible with a WAL database, as
+ ** rollback involves simply truncating the log file. Therefore, if one
+ ** or more frames have already been written to the log (and therefore
+ ** also copied into the backup databases) as part of this transaction,
+ ** the backups must be restarted.
+ */
+ sqlite3BackupRestart(pPager->pBackup);
+
+ return rc;
+}
+
+/*
+** This function is called to rollback a transaction on a WAL database.
+*/
+static int pagerRollbackWal(Pager *pPager){
+ int rc; /* Return Code */
+ PgHdr *pList; /* List of dirty pages to revert */
+
+ /* For all pages in the cache that are currently dirty or have already
+ ** been written (but not committed) to the log file, do one of the
+ ** following:
+ **
+ ** + Discard the cached page (if refcount==0), or
+ ** + Reload page content from the database (if refcount>0).
+ */
+ pPager->dbSize = pPager->dbOrigSize;
+ rc = sqlite3WalUndo(pPager->pWal, pagerUndoCallback, (void *)pPager);
+ pList = sqlite3PcacheDirtyList(pPager->pPCache);
+ while( pList && rc==SQLITE_OK ){
+ PgHdr *pNext = pList->pDirty;
+ rc = pagerUndoCallback((void *)pPager, pList->pgno);
+ pList = pNext;
+ }
+
+ return rc;
+}
+
+/*
+** This function is a wrapper around sqlite3WalFrames(). As well as logging
+** the contents of the list of pages headed by pList (connected by pDirty),
+** this function notifies any active backup processes that the pages have
+** changed.
+**
+** The list of pages passed into this routine is always sorted by page number.
+** Hence, if page 1 appears anywhere on the list, it will be the first page.
+*/
+static int pagerWalFrames(
+ Pager *pPager, /* Pager object */
+ PgHdr *pList, /* List of frames to log */
+ Pgno nTruncate, /* Database size after this commit */
+ int isCommit /* True if this is a commit */
+){
+ int rc; /* Return code */
+ int nList; /* Number of pages in pList */
+ PgHdr *p; /* For looping over pages */
+
+ assert( pPager->pWal );
+ assert( pList );
+#ifdef SQLITE_DEBUG
+ /* Verify that the page list is in accending order */
+ for(p=pList; p && p->pDirty; p=p->pDirty){
+ assert( p->pgno < p->pDirty->pgno );
+ }
+#endif
+
+ assert( pList->pDirty==0 || isCommit );
+ if( isCommit ){
+ /* If a WAL transaction is being committed, there is no point in writing
+ ** any pages with page numbers greater than nTruncate into the WAL file.
+ ** They will never be read by any client. So remove them from the pDirty
+ ** list here. */
+ PgHdr **ppNext = &pList;
+ nList = 0;
+ for(p=pList; (*ppNext = p)!=0; p=p->pDirty){
+ if( p->pgno<=nTruncate ){
+ ppNext = &p->pDirty;
+ nList++;
+ }
+ }
+ assert( pList );
+ }else{
+ nList = 1;
+ }
+ pPager->aStat[PAGER_STAT_WRITE] += nList;
+
+ if( pList->pgno==1 ) pager_write_changecounter(pList);
+ rc = sqlite3WalFrames(pPager->pWal,
+ pPager->pageSize, pList, nTruncate, isCommit, pPager->walSyncFlags
+ );
+ if( rc==SQLITE_OK && pPager->pBackup ){
+ for(p=pList; p; p=p->pDirty){
+ sqlite3BackupUpdate(pPager->pBackup, p->pgno, (u8 *)p->pData);
+ }
+ }
+
+#ifdef SQLITE_CHECK_PAGES
+ pList = sqlite3PcacheDirtyList(pPager->pPCache);
+ for(p=pList; p; p=p->pDirty){
+ pager_set_pagehash(p);
+ }
+#endif
+
+ return rc;
+}
+
+/*
+** Begin a read transaction on the WAL.
+**
+** This routine used to be called "pagerOpenSnapshot()" because it essentially
+** makes a snapshot of the database at the current point in time and preserves
+** that snapshot for use by the reader in spite of concurrently changes by
+** other writers or checkpointers.
+*/
+static int pagerBeginReadTransaction(Pager *pPager){
+ int rc; /* Return code */
+ int changed = 0; /* True if cache must be reset */
+
+ assert( pagerUseWal(pPager) );
+ assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER );
+
+ /* sqlite3WalEndReadTransaction() was not called for the previous
+ ** transaction in locking_mode=EXCLUSIVE. So call it now. If we
+ ** are in locking_mode=NORMAL and EndRead() was previously called,
+ ** the duplicate call is harmless.
+ */
+ sqlite3WalEndReadTransaction(pPager->pWal);
+
+ rc = sqlite3WalBeginReadTransaction(pPager->pWal, &changed);
+ if( rc!=SQLITE_OK || changed ){
+ pager_reset(pPager);
+ if( USEFETCH(pPager) ) sqlite3OsUnfetch(pPager->fd, 0, 0);
+ }
+
+ return rc;
+}
+#endif
+
+/*
+** This function is called as part of the transition from PAGER_OPEN
+** to PAGER_READER state to determine the size of the database file
+** in pages (assuming the page size currently stored in Pager.pageSize).
+**
+** If no error occurs, SQLITE_OK is returned and the size of the database
+** in pages is stored in *pnPage. Otherwise, an error code (perhaps
+** SQLITE_IOERR_FSTAT) is returned and *pnPage is left unmodified.
+*/
+static int pagerPagecount(Pager *pPager, Pgno *pnPage){
+ Pgno nPage; /* Value to return via *pnPage */
+
+ /* Query the WAL sub-system for the database size. The WalDbsize()
+ ** function returns zero if the WAL is not open (i.e. Pager.pWal==0), or
+ ** if the database size is not available. The database size is not
+ ** available from the WAL sub-system if the log file is empty or
+ ** contains no valid committed transactions.
+ */
+ assert( pPager->eState==PAGER_OPEN );
+ assert( pPager->eLock>=SHARED_LOCK );
+ assert( isOpen(pPager->fd) );
+ assert( pPager->tempFile==0 );
+ nPage = sqlite3WalDbsize(pPager->pWal);
+
+ /* If the number of pages in the database is not available from the
+ ** WAL sub-system, determine the page counte based on the size of
+ ** the database file. If the size of the database file is not an
+ ** integer multiple of the page-size, round up the result.
+ */
+ if( nPage==0 && ALWAYS(isOpen(pPager->fd)) ){
+ i64 n = 0; /* Size of db file in bytes */
+ int rc = sqlite3OsFileSize(pPager->fd, &n);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ nPage = (Pgno)((n+pPager->pageSize-1) / pPager->pageSize);
+ }
+
+ /* If the current number of pages in the file is greater than the
+ ** configured maximum pager number, increase the allowed limit so
+ ** that the file can be read.
+ */
+ if( nPage>pPager->mxPgno ){
+ pPager->mxPgno = (Pgno)nPage;
+ }
+
+ *pnPage = nPage;
+ return SQLITE_OK;
+}
+
+#ifndef SQLITE_OMIT_WAL
+/*
+** Check if the *-wal file that corresponds to the database opened by pPager
+** exists if the database is not empy, or verify that the *-wal file does
+** not exist (by deleting it) if the database file is empty.
+**
+** If the database is not empty and the *-wal file exists, open the pager
+** in WAL mode. If the database is empty or if no *-wal file exists and
+** if no error occurs, make sure Pager.journalMode is not set to
+** PAGER_JOURNALMODE_WAL.
+**
+** Return SQLITE_OK or an error code.
+**
+** The caller must hold a SHARED lock on the database file to call this
+** function. Because an EXCLUSIVE lock on the db file is required to delete
+** a WAL on a none-empty database, this ensures there is no race condition
+** between the xAccess() below and an xDelete() being executed by some
+** other connection.
+*/
+static int pagerOpenWalIfPresent(Pager *pPager){
+ int rc = SQLITE_OK;
+ assert( pPager->eState==PAGER_OPEN );
+ assert( pPager->eLock>=SHARED_LOCK );
+
+ if( !pPager->tempFile ){
+ int isWal; /* True if WAL file exists */
+ Pgno nPage; /* Size of the database file */
+
+ rc = pagerPagecount(pPager, &nPage);
+ if( rc ) return rc;
+ if( nPage==0 ){
+ rc = sqlite3OsDelete(pPager->pVfs, pPager->zWal, 0);
+ if( rc==SQLITE_IOERR_DELETE_NOENT ) rc = SQLITE_OK;
+ isWal = 0;
+ }else{
+ rc = sqlite3OsAccess(
+ pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &isWal
+ );
+ }
+ if( rc==SQLITE_OK ){
+ if( isWal ){
+ testcase( sqlite3PcachePagecount(pPager->pPCache)==0 );
+ rc = sqlite3PagerOpenWal(pPager, 0);
+ }else if( pPager->journalMode==PAGER_JOURNALMODE_WAL ){
+ pPager->journalMode = PAGER_JOURNALMODE_DELETE;
+ }
+ }
+ }
+ return rc;
+}
+#endif
+
+/*
+** Playback savepoint pSavepoint. Or, if pSavepoint==NULL, then playback
+** the entire master journal file. The case pSavepoint==NULL occurs when
+** a ROLLBACK TO command is invoked on a SAVEPOINT that is a transaction
+** savepoint.
+**
+** When pSavepoint is not NULL (meaning a non-transaction savepoint is
+** being rolled back), then the rollback consists of up to three stages,
+** performed in the order specified:
+**
+** * Pages are played back from the main journal starting at byte
+** offset PagerSavepoint.iOffset and continuing to
+** PagerSavepoint.iHdrOffset, or to the end of the main journal
+** file if PagerSavepoint.iHdrOffset is zero.
+**
+** * If PagerSavepoint.iHdrOffset is not zero, then pages are played
+** back starting from the journal header immediately following
+** PagerSavepoint.iHdrOffset to the end of the main journal file.
+**
+** * Pages are then played back from the sub-journal file, starting
+** with the PagerSavepoint.iSubRec and continuing to the end of
+** the journal file.
+**
+** Throughout the rollback process, each time a page is rolled back, the
+** corresponding bit is set in a bitvec structure (variable pDone in the
+** implementation below). This is used to ensure that a page is only
+** rolled back the first time it is encountered in either journal.
+**
+** If pSavepoint is NULL, then pages are only played back from the main
+** journal file. There is no need for a bitvec in this case.
+**
+** In either case, before playback commences the Pager.dbSize variable
+** is reset to the value that it held at the start of the savepoint
+** (or transaction). No page with a page-number greater than this value
+** is played back. If one is encountered it is simply skipped.
+*/
+static int pagerPlaybackSavepoint(Pager *pPager, PagerSavepoint *pSavepoint){
+ i64 szJ; /* Effective size of the main journal */
+ i64 iHdrOff; /* End of first segment of main-journal records */
+ int rc = SQLITE_OK; /* Return code */
+ Bitvec *pDone = 0; /* Bitvec to ensure pages played back only once */
+
+ assert( pPager->eState!=PAGER_ERROR );
+ assert( pPager->eState>=PAGER_WRITER_LOCKED );
+
+ /* Allocate a bitvec to use to store the set of pages rolled back */
+ if( pSavepoint ){
+ pDone = sqlite3BitvecCreate(pSavepoint->nOrig);
+ if( !pDone ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ }
+
+ /* Set the database size back to the value it was before the savepoint
+ ** being reverted was opened.
+ */
+ pPager->dbSize = pSavepoint ? pSavepoint->nOrig : pPager->dbOrigSize;
+ pPager->changeCountDone = pPager->tempFile;
+
+ if( !pSavepoint && pagerUseWal(pPager) ){
+ return pagerRollbackWal(pPager);
+ }
+
+ /* Use pPager->journalOff as the effective size of the main rollback
+ ** journal. The actual file might be larger than this in
+ ** PAGER_JOURNALMODE_TRUNCATE or PAGER_JOURNALMODE_PERSIST. But anything
+ ** past pPager->journalOff is off-limits to us.
+ */
+ szJ = pPager->journalOff;
+ assert( pagerUseWal(pPager)==0 || szJ==0 );
+
+ /* Begin by rolling back records from the main journal starting at
+ ** PagerSavepoint.iOffset and continuing to the next journal header.
+ ** There might be records in the main journal that have a page number
+ ** greater than the current database size (pPager->dbSize) but those
+ ** will be skipped automatically. Pages are added to pDone as they
+ ** are played back.
+ */
+ if( pSavepoint && !pagerUseWal(pPager) ){
+ iHdrOff = pSavepoint->iHdrOffset ? pSavepoint->iHdrOffset : szJ;
+ pPager->journalOff = pSavepoint->iOffset;
+ while( rc==SQLITE_OK && pPager->journalOff<iHdrOff ){
+ rc = pager_playback_one_page(pPager, &pPager->journalOff, pDone, 1, 1);
+ }
+ assert( rc!=SQLITE_DONE );
+ }else{
+ pPager->journalOff = 0;
+ }
+
+ /* Continue rolling back records out of the main journal starting at
+ ** the first journal header seen and continuing until the effective end
+ ** of the main journal file. Continue to skip out-of-range pages and
+ ** continue adding pages rolled back to pDone.
+ */
+ while( rc==SQLITE_OK && pPager->journalOff<szJ ){
+ u32 ii; /* Loop counter */
+ u32 nJRec = 0; /* Number of Journal Records */
+ u32 dummy;
+ rc = readJournalHdr(pPager, 0, szJ, &nJRec, &dummy);
+ assert( rc!=SQLITE_DONE );
+
+ /*
+ ** The "pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff"
+ ** test is related to ticket #2565. See the discussion in the
+ ** pager_playback() function for additional information.
+ */
+ if( nJRec==0
+ && pPager->journalHdr+JOURNAL_HDR_SZ(pPager)==pPager->journalOff
+ ){
+ nJRec = (u32)((szJ - pPager->journalOff)/JOURNAL_PG_SZ(pPager));
+ }
+ for(ii=0; rc==SQLITE_OK && ii<nJRec && pPager->journalOff<szJ; ii++){
+ rc = pager_playback_one_page(pPager, &pPager->journalOff, pDone, 1, 1);
+ }
+ assert( rc!=SQLITE_DONE );
+ }
+ assert( rc!=SQLITE_OK || pPager->journalOff>=szJ );
+
+ /* Finally, rollback pages from the sub-journal. Page that were
+ ** previously rolled back out of the main journal (and are hence in pDone)
+ ** will be skipped. Out-of-range pages are also skipped.
+ */
+ if( pSavepoint ){
+ u32 ii; /* Loop counter */
+ i64 offset = (i64)pSavepoint->iSubRec*(4+pPager->pageSize);
+
+ if( pagerUseWal(pPager) ){
+ rc = sqlite3WalSavepointUndo(pPager->pWal, pSavepoint->aWalData);
+ }
+ for(ii=pSavepoint->iSubRec; rc==SQLITE_OK && ii<pPager->nSubRec; ii++){
+ assert( offset==(i64)ii*(4+pPager->pageSize) );
+ rc = pager_playback_one_page(pPager, &offset, pDone, 0, 1);
+ }
+ assert( rc!=SQLITE_DONE );
+ }
+
+ sqlite3BitvecDestroy(pDone);
+ if( rc==SQLITE_OK ){
+ pPager->journalOff = szJ;
+ }
+
+ return rc;
+}
+
+/*
+** Change the maximum number of in-memory pages that are allowed
+** before attempting to recycle clean and unused pages.
+*/
+SQLITE_PRIVATE void sqlite3PagerSetCachesize(Pager *pPager, int mxPage){
+ sqlite3PcacheSetCachesize(pPager->pPCache, mxPage);
+}
+
+/*
+** Change the maximum number of in-memory pages that are allowed
+** before attempting to spill pages to journal.
+*/
+SQLITE_PRIVATE int sqlite3PagerSetSpillsize(Pager *pPager, int mxPage){
+ return sqlite3PcacheSetSpillsize(pPager->pPCache, mxPage);
+}
+
+/*
+** Invoke SQLITE_FCNTL_MMAP_SIZE based on the current value of szMmap.
+*/
+static void pagerFixMaplimit(Pager *pPager){
+#if SQLITE_MAX_MMAP_SIZE>0
+ sqlite3_file *fd = pPager->fd;
+ if( isOpen(fd) && fd->pMethods->iVersion>=3 ){
+ sqlite3_int64 sz;
+ sz = pPager->szMmap;
+ pPager->bUseFetch = (sz>0);
+ setGetterMethod(pPager);
+ sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_MMAP_SIZE, &sz);
+ }
+#endif
+}
+
+/*
+** Change the maximum size of any memory mapping made of the database file.
+*/
+SQLITE_PRIVATE void sqlite3PagerSetMmapLimit(Pager *pPager, sqlite3_int64 szMmap){
+ pPager->szMmap = szMmap;
+ pagerFixMaplimit(pPager);
+}
+
+/*
+** Free as much memory as possible from the pager.
+*/
+SQLITE_PRIVATE void sqlite3PagerShrink(Pager *pPager){
+ sqlite3PcacheShrink(pPager->pPCache);
+}
+
+/*
+** Adjust settings of the pager to those specified in the pgFlags parameter.
+**
+** The "level" in pgFlags & PAGER_SYNCHRONOUS_MASK sets the robustness
+** of the database to damage due to OS crashes or power failures by
+** changing the number of syncs()s when writing the journals.
+** There are four levels:
+**
+** OFF sqlite3OsSync() is never called. This is the default
+** for temporary and transient files.
+**
+** NORMAL The journal is synced once before writes begin on the
+** database. This is normally adequate protection, but
+** it is theoretically possible, though very unlikely,
+** that an inopertune power failure could leave the journal
+** in a state which would cause damage to the database
+** when it is rolled back.
+**
+** FULL The journal is synced twice before writes begin on the
+** database (with some additional information - the nRec field
+** of the journal header - being written in between the two
+** syncs). If we assume that writing a
+** single disk sector is atomic, then this mode provides
+** assurance that the journal will not be corrupted to the
+** point of causing damage to the database during rollback.
+**
+** EXTRA This is like FULL except that is also syncs the directory
+** that contains the rollback journal after the rollback
+** journal is unlinked.
+**
+** The above is for a rollback-journal mode. For WAL mode, OFF continues
+** to mean that no syncs ever occur. NORMAL means that the WAL is synced
+** prior to the start of checkpoint and that the database file is synced
+** at the conclusion of the checkpoint if the entire content of the WAL
+** was written back into the database. But no sync operations occur for
+** an ordinary commit in NORMAL mode with WAL. FULL means that the WAL
+** file is synced following each commit operation, in addition to the
+** syncs associated with NORMAL. There is no difference between FULL
+** and EXTRA for WAL mode.
+**
+** Do not confuse synchronous=FULL with SQLITE_SYNC_FULL. The
+** SQLITE_SYNC_FULL macro means to use the MacOSX-style full-fsync
+** using fcntl(F_FULLFSYNC). SQLITE_SYNC_NORMAL means to do an
+** ordinary fsync() call. There is no difference between SQLITE_SYNC_FULL
+** and SQLITE_SYNC_NORMAL on platforms other than MacOSX. But the
+** synchronous=FULL versus synchronous=NORMAL setting determines when
+** the xSync primitive is called and is relevant to all platforms.
+**
+** Numeric values associated with these states are OFF==1, NORMAL=2,
+** and FULL=3.
+*/
+#ifndef SQLITE_OMIT_PAGER_PRAGMAS
+SQLITE_PRIVATE void sqlite3PagerSetFlags(
+ Pager *pPager, /* The pager to set safety level for */
+ unsigned pgFlags /* Various flags */
+){
+ unsigned level = pgFlags & PAGER_SYNCHRONOUS_MASK;
+ if( pPager->tempFile ){
+ pPager->noSync = 1;
+ pPager->fullSync = 0;
+ pPager->extraSync = 0;
+ }else{
+ pPager->noSync = level==PAGER_SYNCHRONOUS_OFF ?1:0;
+ pPager->fullSync = level>=PAGER_SYNCHRONOUS_FULL ?1:0;
+ pPager->extraSync = level==PAGER_SYNCHRONOUS_EXTRA ?1:0;
+ }
+ if( pPager->noSync ){
+ pPager->syncFlags = 0;
+ pPager->ckptSyncFlags = 0;
+ }else if( pgFlags & PAGER_FULLFSYNC ){
+ pPager->syncFlags = SQLITE_SYNC_FULL;
+ pPager->ckptSyncFlags = SQLITE_SYNC_FULL;
+ }else if( pgFlags & PAGER_CKPT_FULLFSYNC ){
+ pPager->syncFlags = SQLITE_SYNC_NORMAL;
+ pPager->ckptSyncFlags = SQLITE_SYNC_FULL;
+ }else{
+ pPager->syncFlags = SQLITE_SYNC_NORMAL;
+ pPager->ckptSyncFlags = SQLITE_SYNC_NORMAL;
+ }
+ pPager->walSyncFlags = pPager->syncFlags;
+ if( pPager->fullSync ){
+ pPager->walSyncFlags |= WAL_SYNC_TRANSACTIONS;
+ }
+ if( pgFlags & PAGER_CACHESPILL ){
+ pPager->doNotSpill &= ~SPILLFLAG_OFF;
+ }else{
+ pPager->doNotSpill |= SPILLFLAG_OFF;
+ }
+}
+#endif
+
+/*
+** The following global variable is incremented whenever the library
+** attempts to open a temporary file. This information is used for
+** testing and analysis only.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API int sqlite3_opentemp_count = 0;
+#endif
+
+/*
+** Open a temporary file.
+**
+** Write the file descriptor into *pFile. Return SQLITE_OK on success
+** or some other error code if we fail. The OS will automatically
+** delete the temporary file when it is closed.
+**
+** The flags passed to the VFS layer xOpen() call are those specified
+** by parameter vfsFlags ORed with the following:
+**
+** SQLITE_OPEN_READWRITE
+** SQLITE_OPEN_CREATE
+** SQLITE_OPEN_EXCLUSIVE
+** SQLITE_OPEN_DELETEONCLOSE
+*/
+static int pagerOpentemp(
+ Pager *pPager, /* The pager object */
+ sqlite3_file *pFile, /* Write the file descriptor here */
+ int vfsFlags /* Flags passed through to the VFS */
+){
+ int rc; /* Return code */
+
+#ifdef SQLITE_TEST
+ sqlite3_opentemp_count++; /* Used for testing and analysis only */
+#endif
+
+ vfsFlags |= SQLITE_OPEN_READWRITE | SQLITE_OPEN_CREATE |
+ SQLITE_OPEN_EXCLUSIVE | SQLITE_OPEN_DELETEONCLOSE;
+ rc = sqlite3OsOpen(pPager->pVfs, 0, pFile, vfsFlags, 0);
+ assert( rc!=SQLITE_OK || isOpen(pFile) );
+ return rc;
+}
+
+/*
+** Set the busy handler function.
+**
+** The pager invokes the busy-handler if sqlite3OsLock() returns
+** SQLITE_BUSY when trying to upgrade from no-lock to a SHARED lock,
+** or when trying to upgrade from a RESERVED lock to an EXCLUSIVE
+** lock. It does *not* invoke the busy handler when upgrading from
+** SHARED to RESERVED, or when upgrading from SHARED to EXCLUSIVE
+** (which occurs during hot-journal rollback). Summary:
+**
+** Transition | Invokes xBusyHandler
+** --------------------------------------------------------
+** NO_LOCK -> SHARED_LOCK | Yes
+** SHARED_LOCK -> RESERVED_LOCK | No
+** SHARED_LOCK -> EXCLUSIVE_LOCK | No
+** RESERVED_LOCK -> EXCLUSIVE_LOCK | Yes
+**
+** If the busy-handler callback returns non-zero, the lock is
+** retried. If it returns zero, then the SQLITE_BUSY error is
+** returned to the caller of the pager API function.
+*/
+SQLITE_PRIVATE void sqlite3PagerSetBusyhandler(
+ Pager *pPager, /* Pager object */
+ int (*xBusyHandler)(void *), /* Pointer to busy-handler function */
+ void *pBusyHandlerArg /* Argument to pass to xBusyHandler */
+){
+ pPager->xBusyHandler = xBusyHandler;
+ pPager->pBusyHandlerArg = pBusyHandlerArg;
+
+ if( isOpen(pPager->fd) ){
+ void **ap = (void **)&pPager->xBusyHandler;
+ assert( ((int(*)(void *))(ap[0]))==xBusyHandler );
+ assert( ap[1]==pBusyHandlerArg );
+ sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_BUSYHANDLER, (void *)ap);
+ }
+}
+
+/*
+** Change the page size used by the Pager object. The new page size
+** is passed in *pPageSize.
+**
+** If the pager is in the error state when this function is called, it
+** is a no-op. The value returned is the error state error code (i.e.
+** one of SQLITE_IOERR, an SQLITE_IOERR_xxx sub-code or SQLITE_FULL).
+**
+** Otherwise, if all of the following are true:
+**
+** * the new page size (value of *pPageSize) is valid (a power
+** of two between 512 and SQLITE_MAX_PAGE_SIZE, inclusive), and
+**
+** * there are no outstanding page references, and
+**
+** * the database is either not an in-memory database or it is
+** an in-memory database that currently consists of zero pages.
+**
+** then the pager object page size is set to *pPageSize.
+**
+** If the page size is changed, then this function uses sqlite3PagerMalloc()
+** to obtain a new Pager.pTmpSpace buffer. If this allocation attempt
+** fails, SQLITE_NOMEM is returned and the page size remains unchanged.
+** In all other cases, SQLITE_OK is returned.
+**
+** If the page size is not changed, either because one of the enumerated
+** conditions above is not true, the pager was in error state when this
+** function was called, or because the memory allocation attempt failed,
+** then *pPageSize is set to the old, retained page size before returning.
+*/
+SQLITE_PRIVATE int sqlite3PagerSetPagesize(Pager *pPager, u32 *pPageSize, int nReserve){
+ int rc = SQLITE_OK;
+
+ /* It is not possible to do a full assert_pager_state() here, as this
+ ** function may be called from within PagerOpen(), before the state
+ ** of the Pager object is internally consistent.
+ **
+ ** At one point this function returned an error if the pager was in
+ ** PAGER_ERROR state. But since PAGER_ERROR state guarantees that
+ ** there is at least one outstanding page reference, this function
+ ** is a no-op for that case anyhow.
+ */
+
+ u32 pageSize = *pPageSize;
+ assert( pageSize==0 || (pageSize>=512 && pageSize<=SQLITE_MAX_PAGE_SIZE) );
+ if( (pPager->memDb==0 || pPager->dbSize==0)
+ && sqlite3PcacheRefCount(pPager->pPCache)==0
+ && pageSize && pageSize!=(u32)pPager->pageSize
+ ){
+ char *pNew = NULL; /* New temp space */
+ i64 nByte = 0;
+
+ if( pPager->eState>PAGER_OPEN && isOpen(pPager->fd) ){
+ rc = sqlite3OsFileSize(pPager->fd, &nByte);
+ }
+ if( rc==SQLITE_OK ){
+ pNew = (char *)sqlite3PageMalloc(pageSize);
+ if( !pNew ) rc = SQLITE_NOMEM_BKPT;
+ }
+
+ if( rc==SQLITE_OK ){
+ pager_reset(pPager);
+ rc = sqlite3PcacheSetPageSize(pPager->pPCache, pageSize);
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3PageFree(pPager->pTmpSpace);
+ pPager->pTmpSpace = pNew;
+ pPager->dbSize = (Pgno)((nByte+pageSize-1)/pageSize);
+ pPager->pageSize = pageSize;
+ }else{
+ sqlite3PageFree(pNew);
+ }
+ }
+
+ *pPageSize = pPager->pageSize;
+ if( rc==SQLITE_OK ){
+ if( nReserve<0 ) nReserve = pPager->nReserve;
+ assert( nReserve>=0 && nReserve<1000 );
+ pPager->nReserve = (i16)nReserve;
+ pagerReportSize(pPager);
+ pagerFixMaplimit(pPager);
+ }
+ return rc;
+}
+
+/*
+** Return a pointer to the "temporary page" buffer held internally
+** by the pager. This is a buffer that is big enough to hold the
+** entire content of a database page. This buffer is used internally
+** during rollback and will be overwritten whenever a rollback
+** occurs. But other modules are free to use it too, as long as
+** no rollbacks are happening.
+*/
+SQLITE_PRIVATE void *sqlite3PagerTempSpace(Pager *pPager){
+ return pPager->pTmpSpace;
+}
+
+/*
+** Attempt to set the maximum database page count if mxPage is positive.
+** Make no changes if mxPage is zero or negative. And never reduce the
+** maximum page count below the current size of the database.
+**
+** Regardless of mxPage, return the current maximum page count.
+*/
+SQLITE_PRIVATE int sqlite3PagerMaxPageCount(Pager *pPager, int mxPage){
+ if( mxPage>0 ){
+ pPager->mxPgno = mxPage;
+ }
+ assert( pPager->eState!=PAGER_OPEN ); /* Called only by OP_MaxPgcnt */
+ assert( pPager->mxPgno>=pPager->dbSize ); /* OP_MaxPgcnt enforces this */
+ return pPager->mxPgno;
+}
+
+/*
+** The following set of routines are used to disable the simulated
+** I/O error mechanism. These routines are used to avoid simulated
+** errors in places where we do not care about errors.
+**
+** Unless -DSQLITE_TEST=1 is used, these routines are all no-ops
+** and generate no code.
+*/
+#ifdef SQLITE_TEST
+SQLITE_API extern int sqlite3_io_error_pending;
+SQLITE_API extern int sqlite3_io_error_hit;
+static int saved_cnt;
+void disable_simulated_io_errors(void){
+ saved_cnt = sqlite3_io_error_pending;
+ sqlite3_io_error_pending = -1;
+}
+void enable_simulated_io_errors(void){
+ sqlite3_io_error_pending = saved_cnt;
+}
+#else
+# define disable_simulated_io_errors()
+# define enable_simulated_io_errors()
+#endif
+
+/*
+** Read the first N bytes from the beginning of the file into memory
+** that pDest points to.
+**
+** If the pager was opened on a transient file (zFilename==""), or
+** opened on a file less than N bytes in size, the output buffer is
+** zeroed and SQLITE_OK returned. The rationale for this is that this
+** function is used to read database headers, and a new transient or
+** zero sized database has a header than consists entirely of zeroes.
+**
+** If any IO error apart from SQLITE_IOERR_SHORT_READ is encountered,
+** the error code is returned to the caller and the contents of the
+** output buffer undefined.
+*/
+SQLITE_PRIVATE int sqlite3PagerReadFileheader(Pager *pPager, int N, unsigned char *pDest){
+ int rc = SQLITE_OK;
+ memset(pDest, 0, N);
+ assert( isOpen(pPager->fd) || pPager->tempFile );
+
+ /* This routine is only called by btree immediately after creating
+ ** the Pager object. There has not been an opportunity to transition
+ ** to WAL mode yet.
+ */
+ assert( !pagerUseWal(pPager) );
+
+ if( isOpen(pPager->fd) ){
+ IOTRACE(("DBHDR %p 0 %d\n", pPager, N))
+ rc = sqlite3OsRead(pPager->fd, pDest, N, 0);
+ if( rc==SQLITE_IOERR_SHORT_READ ){
+ rc = SQLITE_OK;
+ }
+ }
+ return rc;
+}
+
+/*
+** This function may only be called when a read-transaction is open on
+** the pager. It returns the total number of pages in the database.
+**
+** However, if the file is between 1 and <page-size> bytes in size, then
+** this is considered a 1 page file.
+*/
+SQLITE_PRIVATE void sqlite3PagerPagecount(Pager *pPager, int *pnPage){
+ assert( pPager->eState>=PAGER_READER );
+ assert( pPager->eState!=PAGER_WRITER_FINISHED );
+ *pnPage = (int)pPager->dbSize;
+}
+
+
+/*
+** Try to obtain a lock of type locktype on the database file. If
+** a similar or greater lock is already held, this function is a no-op
+** (returning SQLITE_OK immediately).
+**
+** Otherwise, attempt to obtain the lock using sqlite3OsLock(). Invoke
+** the busy callback if the lock is currently not available. Repeat
+** until the busy callback returns false or until the attempt to
+** obtain the lock succeeds.
+**
+** Return SQLITE_OK on success and an error code if we cannot obtain
+** the lock. If the lock is obtained successfully, set the Pager.state
+** variable to locktype before returning.
+*/
+static int pager_wait_on_lock(Pager *pPager, int locktype){
+ int rc; /* Return code */
+
+ /* Check that this is either a no-op (because the requested lock is
+ ** already held), or one of the transitions that the busy-handler
+ ** may be invoked during, according to the comment above
+ ** sqlite3PagerSetBusyhandler().
+ */
+ assert( (pPager->eLock>=locktype)
+ || (pPager->eLock==NO_LOCK && locktype==SHARED_LOCK)
+ || (pPager->eLock==RESERVED_LOCK && locktype==EXCLUSIVE_LOCK)
+ );
+
+ do {
+ rc = pagerLockDb(pPager, locktype);
+ }while( rc==SQLITE_BUSY && pPager->xBusyHandler(pPager->pBusyHandlerArg) );
+ return rc;
+}
+
+/*
+** Function assertTruncateConstraint(pPager) checks that one of the
+** following is true for all dirty pages currently in the page-cache:
+**
+** a) The page number is less than or equal to the size of the
+** current database image, in pages, OR
+**
+** b) if the page content were written at this time, it would not
+** be necessary to write the current content out to the sub-journal
+** (as determined by function subjRequiresPage()).
+**
+** If the condition asserted by this function were not true, and the
+** dirty page were to be discarded from the cache via the pagerStress()
+** routine, pagerStress() would not write the current page content to
+** the database file. If a savepoint transaction were rolled back after
+** this happened, the correct behavior would be to restore the current
+** content of the page. However, since this content is not present in either
+** the database file or the portion of the rollback journal and
+** sub-journal rolled back the content could not be restored and the
+** database image would become corrupt. It is therefore fortunate that
+** this circumstance cannot arise.
+*/
+#if defined(SQLITE_DEBUG)
+static void assertTruncateConstraintCb(PgHdr *pPg){
+ assert( pPg->flags&PGHDR_DIRTY );
+ assert( !subjRequiresPage(pPg) || pPg->pgno<=pPg->pPager->dbSize );
+}
+static void assertTruncateConstraint(Pager *pPager){
+ sqlite3PcacheIterateDirty(pPager->pPCache, assertTruncateConstraintCb);
+}
+#else
+# define assertTruncateConstraint(pPager)
+#endif
+
+/*
+** Truncate the in-memory database file image to nPage pages. This
+** function does not actually modify the database file on disk. It
+** just sets the internal state of the pager object so that the
+** truncation will be done when the current transaction is committed.
+**
+** This function is only called right before committing a transaction.
+** Once this function has been called, the transaction must either be
+** rolled back or committed. It is not safe to call this function and
+** then continue writing to the database.
+*/
+SQLITE_PRIVATE void sqlite3PagerTruncateImage(Pager *pPager, Pgno nPage){
+ assert( pPager->dbSize>=nPage );
+ assert( pPager->eState>=PAGER_WRITER_CACHEMOD );
+ pPager->dbSize = nPage;
+
+ /* At one point the code here called assertTruncateConstraint() to
+ ** ensure that all pages being truncated away by this operation are,
+ ** if one or more savepoints are open, present in the savepoint
+ ** journal so that they can be restored if the savepoint is rolled
+ ** back. This is no longer necessary as this function is now only
+ ** called right before committing a transaction. So although the
+ ** Pager object may still have open savepoints (Pager.nSavepoint!=0),
+ ** they cannot be rolled back. So the assertTruncateConstraint() call
+ ** is no longer correct. */
+}
+
+
+/*
+** This function is called before attempting a hot-journal rollback. It
+** syncs the journal file to disk, then sets pPager->journalHdr to the
+** size of the journal file so that the pager_playback() routine knows
+** that the entire journal file has been synced.
+**
+** Syncing a hot-journal to disk before attempting to roll it back ensures
+** that if a power-failure occurs during the rollback, the process that
+** attempts rollback following system recovery sees the same journal
+** content as this process.
+**
+** If everything goes as planned, SQLITE_OK is returned. Otherwise,
+** an SQLite error code.
+*/
+static int pagerSyncHotJournal(Pager *pPager){
+ int rc = SQLITE_OK;
+ if( !pPager->noSync ){
+ rc = sqlite3OsSync(pPager->jfd, SQLITE_SYNC_NORMAL);
+ }
+ if( rc==SQLITE_OK ){
+ rc = sqlite3OsFileSize(pPager->jfd, &pPager->journalHdr);
+ }
+ return rc;
+}
+
+#if SQLITE_MAX_MMAP_SIZE>0
+/*
+** Obtain a reference to a memory mapped page object for page number pgno.
+** The new object will use the pointer pData, obtained from xFetch().
+** If successful, set *ppPage to point to the new page reference
+** and return SQLITE_OK. Otherwise, return an SQLite error code and set
+** *ppPage to zero.
+**
+** Page references obtained by calling this function should be released
+** by calling pagerReleaseMapPage().
+*/
+static int pagerAcquireMapPage(
+ Pager *pPager, /* Pager object */
+ Pgno pgno, /* Page number */
+ void *pData, /* xFetch()'d data for this page */
+ PgHdr **ppPage /* OUT: Acquired page object */
+){
+ PgHdr *p; /* Memory mapped page to return */
+
+ if( pPager->pMmapFreelist ){
+ *ppPage = p = pPager->pMmapFreelist;
+ pPager->pMmapFreelist = p->pDirty;
+ p->pDirty = 0;
+ assert( pPager->nExtra>=8 );
+ memset(p->pExtra, 0, 8);
+ }else{
+ *ppPage = p = (PgHdr *)sqlite3MallocZero(sizeof(PgHdr) + pPager->nExtra);
+ if( p==0 ){
+ sqlite3OsUnfetch(pPager->fd, (i64)(pgno-1) * pPager->pageSize, pData);
+ return SQLITE_NOMEM_BKPT;
+ }
+ p->pExtra = (void *)&p[1];
+ p->flags = PGHDR_MMAP;
+ p->nRef = 1;
+ p->pPager = pPager;
+ }
+
+ assert( p->pExtra==(void *)&p[1] );
+ assert( p->pPage==0 );
+ assert( p->flags==PGHDR_MMAP );
+ assert( p->pPager==pPager );
+ assert( p->nRef==1 );
+
+ p->pgno = pgno;
+ p->pData = pData;
+ pPager->nMmapOut++;
+
+ return SQLITE_OK;
+}
+#endif
+
+/*
+** Release a reference to page pPg. pPg must have been returned by an
+** earlier call to pagerAcquireMapPage().
+*/
+static void pagerReleaseMapPage(PgHdr *pPg){
+ Pager *pPager = pPg->pPager;
+ pPager->nMmapOut--;
+ pPg->pDirty = pPager->pMmapFreelist;
+ pPager->pMmapFreelist = pPg;
+
+ assert( pPager->fd->pMethods->iVersion>=3 );
+ sqlite3OsUnfetch(pPager->fd, (i64)(pPg->pgno-1)*pPager->pageSize, pPg->pData);
+}
+
+/*
+** Free all PgHdr objects stored in the Pager.pMmapFreelist list.
+*/
+static void pagerFreeMapHdrs(Pager *pPager){
+ PgHdr *p;
+ PgHdr *pNext;
+ for(p=pPager->pMmapFreelist; p; p=pNext){
+ pNext = p->pDirty;
+ sqlite3_free(p);
+ }
+}
+
+
+/*
+** Shutdown the page cache. Free all memory and close all files.
+**
+** If a transaction was in progress when this routine is called, that
+** transaction is rolled back. All outstanding pages are invalidated
+** and their memory is freed. Any attempt to use a page associated
+** with this page cache after this function returns will likely
+** result in a coredump.
+**
+** This function always succeeds. If a transaction is active an attempt
+** is made to roll it back. If an error occurs during the rollback
+** a hot journal may be left in the filesystem but no error is returned
+** to the caller.
+*/
+SQLITE_PRIVATE int sqlite3PagerClose(Pager *pPager, sqlite3 *db){
+ u8 *pTmp = (u8 *)pPager->pTmpSpace;
+
+ assert( db || pagerUseWal(pPager)==0 );
+ assert( assert_pager_state(pPager) );
+ disable_simulated_io_errors();
+ sqlite3BeginBenignMalloc();
+ pagerFreeMapHdrs(pPager);
+ /* pPager->errCode = 0; */
+ pPager->exclusiveMode = 0;
+#ifndef SQLITE_OMIT_WAL
+ assert( db || pPager->pWal==0 );
+ sqlite3WalClose(pPager->pWal, db, pPager->ckptSyncFlags, pPager->pageSize,
+ (db && (db->flags & SQLITE_NoCkptOnClose) ? 0 : pTmp)
+ );
+ pPager->pWal = 0;
+#endif
+ pager_reset(pPager);
+ if( MEMDB ){
+ pager_unlock(pPager);
+ }else{
+ /* If it is open, sync the journal file before calling UnlockAndRollback.
+ ** If this is not done, then an unsynced portion of the open journal
+ ** file may be played back into the database. If a power failure occurs
+ ** while this is happening, the database could become corrupt.
+ **
+ ** If an error occurs while trying to sync the journal, shift the pager
+ ** into the ERROR state. This causes UnlockAndRollback to unlock the
+ ** database and close the journal file without attempting to roll it
+ ** back or finalize it. The next database user will have to do hot-journal
+ ** rollback before accessing the database file.
+ */
+ if( isOpen(pPager->jfd) ){
+ pager_error(pPager, pagerSyncHotJournal(pPager));
+ }
+ pagerUnlockAndRollback(pPager);
+ }
+ sqlite3EndBenignMalloc();
+ enable_simulated_io_errors();
+ PAGERTRACE(("CLOSE %d\n", PAGERID(pPager)));
+ IOTRACE(("CLOSE %p\n", pPager))
+ sqlite3OsClose(pPager->jfd);
+ sqlite3OsClose(pPager->fd);
+ sqlite3PageFree(pTmp);
+ sqlite3PcacheClose(pPager->pPCache);
+
+#ifdef SQLITE_HAS_CODEC
+ if( pPager->xCodecFree ) pPager->xCodecFree(pPager->pCodec);
+#endif
+
+ assert( !pPager->aSavepoint && !pPager->pInJournal );
+ assert( !isOpen(pPager->jfd) && !isOpen(pPager->sjfd) );
+
+ sqlite3_free(pPager);
+ return SQLITE_OK;
+}
+
+#if !defined(NDEBUG) || defined(SQLITE_TEST)
+/*
+** Return the page number for page pPg.
+*/
+SQLITE_PRIVATE Pgno sqlite3PagerPagenumber(DbPage *pPg){
+ return pPg->pgno;
+}
+#endif
+
+/*
+** Increment the reference count for page pPg.
+*/
+SQLITE_PRIVATE void sqlite3PagerRef(DbPage *pPg){
+ sqlite3PcacheRef(pPg);
+}
+
+/*
+** Sync the journal. In other words, make sure all the pages that have
+** been written to the journal have actually reached the surface of the
+** disk and can be restored in the event of a hot-journal rollback.
+**
+** If the Pager.noSync flag is set, then this function is a no-op.
+** Otherwise, the actions required depend on the journal-mode and the
+** device characteristics of the file-system, as follows:
+**
+** * If the journal file is an in-memory journal file, no action need
+** be taken.
+**
+** * Otherwise, if the device does not support the SAFE_APPEND property,
+** then the nRec field of the most recently written journal header
+** is updated to contain the number of journal records that have
+** been written following it. If the pager is operating in full-sync
+** mode, then the journal file is synced before this field is updated.
+**
+** * If the device does not support the SEQUENTIAL property, then
+** journal file is synced.
+**
+** Or, in pseudo-code:
+**
+** if( NOT <in-memory journal> ){
+** if( NOT SAFE_APPEND ){
+** if( <full-sync mode> ) xSync(<journal file>);
+** <update nRec field>
+** }
+** if( NOT SEQUENTIAL ) xSync(<journal file>);
+** }
+**
+** If successful, this routine clears the PGHDR_NEED_SYNC flag of every
+** page currently held in memory before returning SQLITE_OK. If an IO
+** error is encountered, then the IO error code is returned to the caller.
+*/
+static int syncJournal(Pager *pPager, int newHdr){
+ int rc; /* Return code */
+
+ assert( pPager->eState==PAGER_WRITER_CACHEMOD
+ || pPager->eState==PAGER_WRITER_DBMOD
+ );
+ assert( assert_pager_state(pPager) );
+ assert( !pagerUseWal(pPager) );
+
+ rc = sqlite3PagerExclusiveLock(pPager);
+ if( rc!=SQLITE_OK ) return rc;
+
+ if( !pPager->noSync ){
+ assert( !pPager->tempFile );
+ if( isOpen(pPager->jfd) && pPager->journalMode!=PAGER_JOURNALMODE_MEMORY ){
+ const int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
+ assert( isOpen(pPager->jfd) );
+
+ if( 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){
+ /* This block deals with an obscure problem. If the last connection
+ ** that wrote to this database was operating in persistent-journal
+ ** mode, then the journal file may at this point actually be larger
+ ** than Pager.journalOff bytes. If the next thing in the journal
+ ** file happens to be a journal-header (written as part of the
+ ** previous connection's transaction), and a crash or power-failure
+ ** occurs after nRec is updated but before this connection writes
+ ** anything else to the journal file (or commits/rolls back its
+ ** transaction), then SQLite may become confused when doing the
+ ** hot-journal rollback following recovery. It may roll back all
+ ** of this connections data, then proceed to rolling back the old,
+ ** out-of-date data that follows it. Database corruption.
+ **
+ ** To work around this, if the journal file does appear to contain
+ ** a valid header following Pager.journalOff, then write a 0x00
+ ** byte to the start of it to prevent it from being recognized.
+ **
+ ** Variable iNextHdrOffset is set to the offset at which this
+ ** problematic header will occur, if it exists. aMagic is used
+ ** as a temporary buffer to inspect the first couple of bytes of
+ ** the potential journal header.
+ */
+ i64 iNextHdrOffset;
+ u8 aMagic[8];
+ u8 zHeader[sizeof(aJournalMagic)+4];
+
+ memcpy(zHeader, aJournalMagic, sizeof(aJournalMagic));
+ put32bits(&zHeader[sizeof(aJournalMagic)], pPager->nRec);
+
+ iNextHdrOffset = journalHdrOffset(pPager);
+ rc = sqlite3OsRead(pPager->jfd, aMagic, 8, iNextHdrOffset);
+ if( rc==SQLITE_OK && 0==memcmp(aMagic, aJournalMagic, 8) ){
+ static const u8 zerobyte = 0;
+ rc = sqlite3OsWrite(pPager->jfd, &zerobyte, 1, iNextHdrOffset);
+ }
+ if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){
+ return rc;
+ }
+
+ /* Write the nRec value into the journal file header. If in
+ ** full-synchronous mode, sync the journal first. This ensures that
+ ** all data has really hit the disk before nRec is updated to mark
+ ** it as a candidate for rollback.
+ **
+ ** This is not required if the persistent media supports the
+ ** SAFE_APPEND property. Because in this case it is not possible
+ ** for garbage data to be appended to the file, the nRec field
+ ** is populated with 0xFFFFFFFF when the journal header is written
+ ** and never needs to be updated.
+ */
+ if( pPager->fullSync && 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){
+ PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager)));
+ IOTRACE(("JSYNC %p\n", pPager))
+ rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ IOTRACE(("JHDR %p %lld\n", pPager, pPager->journalHdr));
+ rc = sqlite3OsWrite(
+ pPager->jfd, zHeader, sizeof(zHeader), pPager->journalHdr
+ );
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ if( 0==(iDc&SQLITE_IOCAP_SEQUENTIAL) ){
+ PAGERTRACE(("SYNC journal of %d\n", PAGERID(pPager)));
+ IOTRACE(("JSYNC %p\n", pPager))
+ rc = sqlite3OsSync(pPager->jfd, pPager->syncFlags|
+ (pPager->syncFlags==SQLITE_SYNC_FULL?SQLITE_SYNC_DATAONLY:0)
+ );
+ if( rc!=SQLITE_OK ) return rc;
+ }
+
+ pPager->journalHdr = pPager->journalOff;
+ if( newHdr && 0==(iDc&SQLITE_IOCAP_SAFE_APPEND) ){
+ pPager->nRec = 0;
+ rc = writeJournalHdr(pPager);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ }else{
+ pPager->journalHdr = pPager->journalOff;
+ }
+ }
+
+ /* Unless the pager is in noSync mode, the journal file was just
+ ** successfully synced. Either way, clear the PGHDR_NEED_SYNC flag on
+ ** all pages.
+ */
+ sqlite3PcacheClearSyncFlags(pPager->pPCache);
+ pPager->eState = PAGER_WRITER_DBMOD;
+ assert( assert_pager_state(pPager) );
+ return SQLITE_OK;
+}
+
+/*
+** The argument is the first in a linked list of dirty pages connected
+** by the PgHdr.pDirty pointer. This function writes each one of the
+** in-memory pages in the list to the database file. The argument may
+** be NULL, representing an empty list. In this case this function is
+** a no-op.
+**
+** The pager must hold at least a RESERVED lock when this function
+** is called. Before writing anything to the database file, this lock
+** is upgraded to an EXCLUSIVE lock. If the lock cannot be obtained,
+** SQLITE_BUSY is returned and no data is written to the database file.
+**
+** If the pager is a temp-file pager and the actual file-system file
+** is not yet open, it is created and opened before any data is
+** written out.
+**
+** Once the lock has been upgraded and, if necessary, the file opened,
+** the pages are written out to the database file in list order. Writing
+** a page is skipped if it meets either of the following criteria:
+**
+** * The page number is greater than Pager.dbSize, or
+** * The PGHDR_DONT_WRITE flag is set on the page.
+**
+** If writing out a page causes the database file to grow, Pager.dbFileSize
+** is updated accordingly. If page 1 is written out, then the value cached
+** in Pager.dbFileVers[] is updated to match the new value stored in
+** the database file.
+**
+** If everything is successful, SQLITE_OK is returned. If an IO error
+** occurs, an IO error code is returned. Or, if the EXCLUSIVE lock cannot
+** be obtained, SQLITE_BUSY is returned.
+*/
+static int pager_write_pagelist(Pager *pPager, PgHdr *pList){
+ int rc = SQLITE_OK; /* Return code */
+
+ /* This function is only called for rollback pagers in WRITER_DBMOD state. */
+ assert( !pagerUseWal(pPager) );
+ assert( pPager->tempFile || pPager->eState==PAGER_WRITER_DBMOD );
+ assert( pPager->eLock==EXCLUSIVE_LOCK );
+ assert( isOpen(pPager->fd) || pList->pDirty==0 );
+
+ /* If the file is a temp-file has not yet been opened, open it now. It
+ ** is not possible for rc to be other than SQLITE_OK if this branch
+ ** is taken, as pager_wait_on_lock() is a no-op for temp-files.
+ */
+ if( !isOpen(pPager->fd) ){
+ assert( pPager->tempFile && rc==SQLITE_OK );
+ rc = pagerOpentemp(pPager, pPager->fd, pPager->vfsFlags);
+ }
+
+ /* Before the first write, give the VFS a hint of what the final
+ ** file size will be.
+ */
+ assert( rc!=SQLITE_OK || isOpen(pPager->fd) );
+ if( rc==SQLITE_OK
+ && pPager->dbHintSize<pPager->dbSize
+ && (pList->pDirty || pList->pgno>pPager->dbHintSize)
+ ){
+ sqlite3_int64 szFile = pPager->pageSize * (sqlite3_int64)pPager->dbSize;
+ sqlite3OsFileControlHint(pPager->fd, SQLITE_FCNTL_SIZE_HINT, &szFile);
+ pPager->dbHintSize = pPager->dbSize;
+ }
+
+ while( rc==SQLITE_OK && pList ){
+ Pgno pgno = pList->pgno;
+
+ /* If there are dirty pages in the page cache with page numbers greater
+ ** than Pager.dbSize, this means sqlite3PagerTruncateImage() was called to
+ ** make the file smaller (presumably by auto-vacuum code). Do not write
+ ** any such pages to the file.
+ **
+ ** Also, do not write out any page that has the PGHDR_DONT_WRITE flag
+ ** set (set by sqlite3PagerDontWrite()).
+ */
+ if( pgno<=pPager->dbSize && 0==(pList->flags&PGHDR_DONT_WRITE) ){
+ i64 offset = (pgno-1)*(i64)pPager->pageSize; /* Offset to write */
+ char *pData; /* Data to write */
+
+ assert( (pList->flags&PGHDR_NEED_SYNC)==0 );
+ if( pList->pgno==1 ) pager_write_changecounter(pList);
+
+ /* Encode the database */
+ CODEC2(pPager, pList->pData, pgno, 6, return SQLITE_NOMEM_BKPT, pData);
+
+ /* Write out the page data. */
+ rc = sqlite3OsWrite(pPager->fd, pData, pPager->pageSize, offset);
+
+ /* If page 1 was just written, update Pager.dbFileVers to match
+ ** the value now stored in the database file. If writing this
+ ** page caused the database file to grow, update dbFileSize.
+ */
+ if( pgno==1 ){
+ memcpy(&pPager->dbFileVers, &pData[24], sizeof(pPager->dbFileVers));
+ }
+ if( pgno>pPager->dbFileSize ){
+ pPager->dbFileSize = pgno;
+ }
+ pPager->aStat[PAGER_STAT_WRITE]++;
+
+ /* Update any backup objects copying the contents of this pager. */
+ sqlite3BackupUpdate(pPager->pBackup, pgno, (u8*)pList->pData);
+
+ PAGERTRACE(("STORE %d page %d hash(%08x)\n",
+ PAGERID(pPager), pgno, pager_pagehash(pList)));
+ IOTRACE(("PGOUT %p %d\n", pPager, pgno));
+ PAGER_INCR(sqlite3_pager_writedb_count);
+ }else{
+ PAGERTRACE(("NOSTORE %d page %d\n", PAGERID(pPager), pgno));
+ }
+ pager_set_pagehash(pList);
+ pList = pList->pDirty;
+ }
+
+ return rc;
+}
+
+/*
+** Ensure that the sub-journal file is open. If it is already open, this
+** function is a no-op.
+**
+** SQLITE_OK is returned if everything goes according to plan. An
+** SQLITE_IOERR_XXX error code is returned if a call to sqlite3OsOpen()
+** fails.
+*/
+static int openSubJournal(Pager *pPager){
+ int rc = SQLITE_OK;
+ if( !isOpen(pPager->sjfd) ){
+ const int flags = SQLITE_OPEN_SUBJOURNAL | SQLITE_OPEN_READWRITE
+ | SQLITE_OPEN_CREATE | SQLITE_OPEN_EXCLUSIVE
+ | SQLITE_OPEN_DELETEONCLOSE;
+ int nStmtSpill = sqlite3Config.nStmtSpill;
+ if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY || pPager->subjInMemory ){
+ nStmtSpill = -1;
+ }
+ rc = sqlite3JournalOpen(pPager->pVfs, 0, pPager->sjfd, flags, nStmtSpill);
+ }
+ return rc;
+}
+
+/*
+** Append a record of the current state of page pPg to the sub-journal.
+**
+** If successful, set the bit corresponding to pPg->pgno in the bitvecs
+** for all open savepoints before returning.
+**
+** This function returns SQLITE_OK if everything is successful, an IO
+** error code if the attempt to write to the sub-journal fails, or
+** SQLITE_NOMEM if a malloc fails while setting a bit in a savepoint
+** bitvec.
+*/
+static int subjournalPage(PgHdr *pPg){
+ int rc = SQLITE_OK;
+ Pager *pPager = pPg->pPager;
+ if( pPager->journalMode!=PAGER_JOURNALMODE_OFF ){
+
+ /* Open the sub-journal, if it has not already been opened */
+ assert( pPager->useJournal );
+ assert( isOpen(pPager->jfd) || pagerUseWal(pPager) );
+ assert( isOpen(pPager->sjfd) || pPager->nSubRec==0 );
+ assert( pagerUseWal(pPager)
+ || pageInJournal(pPager, pPg)
+ || pPg->pgno>pPager->dbOrigSize
+ );
+ rc = openSubJournal(pPager);
+
+ /* If the sub-journal was opened successfully (or was already open),
+ ** write the journal record into the file. */
+ if( rc==SQLITE_OK ){
+ void *pData = pPg->pData;
+ i64 offset = (i64)pPager->nSubRec*(4+pPager->pageSize);
+ char *pData2;
+
+ CODEC2(pPager, pData, pPg->pgno, 7, return SQLITE_NOMEM_BKPT, pData2);
+ PAGERTRACE(("STMT-JOURNAL %d page %d\n", PAGERID(pPager), pPg->pgno));
+ rc = write32bits(pPager->sjfd, offset, pPg->pgno);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3OsWrite(pPager->sjfd, pData2, pPager->pageSize, offset+4);
+ }
+ }
+ }
+ if( rc==SQLITE_OK ){
+ pPager->nSubRec++;
+ assert( pPager->nSavepoint>0 );
+ rc = addToSavepointBitvecs(pPager, pPg->pgno);
+ }
+ return rc;
+}
+static int subjournalPageIfRequired(PgHdr *pPg){
+ if( subjRequiresPage(pPg) ){
+ return subjournalPage(pPg);
+ }else{
+ return SQLITE_OK;
+ }
+}
+
+/*
+** This function is called by the pcache layer when it has reached some
+** soft memory limit. The first argument is a pointer to a Pager object
+** (cast as a void*). The pager is always 'purgeable' (not an in-memory
+** database). The second argument is a reference to a page that is
+** currently dirty but has no outstanding references. The page
+** is always associated with the Pager object passed as the first
+** argument.
+**
+** The job of this function is to make pPg clean by writing its contents
+** out to the database file, if possible. This may involve syncing the
+** journal file.
+**
+** If successful, sqlite3PcacheMakeClean() is called on the page and
+** SQLITE_OK returned. If an IO error occurs while trying to make the
+** page clean, the IO error code is returned. If the page cannot be
+** made clean for some other reason, but no error occurs, then SQLITE_OK
+** is returned by sqlite3PcacheMakeClean() is not called.
+*/
+static int pagerStress(void *p, PgHdr *pPg){
+ Pager *pPager = (Pager *)p;
+ int rc = SQLITE_OK;
+
+ assert( pPg->pPager==pPager );
+ assert( pPg->flags&PGHDR_DIRTY );
+
+ /* The doNotSpill NOSYNC bit is set during times when doing a sync of
+ ** journal (and adding a new header) is not allowed. This occurs
+ ** during calls to sqlite3PagerWrite() while trying to journal multiple
+ ** pages belonging to the same sector.
+ **
+ ** The doNotSpill ROLLBACK and OFF bits inhibits all cache spilling
+ ** regardless of whether or not a sync is required. This is set during
+ ** a rollback or by user request, respectively.
+ **
+ ** Spilling is also prohibited when in an error state since that could
+ ** lead to database corruption. In the current implementation it
+ ** is impossible for sqlite3PcacheFetch() to be called with createFlag==3
+ ** while in the error state, hence it is impossible for this routine to
+ ** be called in the error state. Nevertheless, we include a NEVER()
+ ** test for the error state as a safeguard against future changes.
+ */
+ if( NEVER(pPager->errCode) ) return SQLITE_OK;
+ testcase( pPager->doNotSpill & SPILLFLAG_ROLLBACK );
+ testcase( pPager->doNotSpill & SPILLFLAG_OFF );
+ testcase( pPager->doNotSpill & SPILLFLAG_NOSYNC );
+ if( pPager->doNotSpill
+ && ((pPager->doNotSpill & (SPILLFLAG_ROLLBACK|SPILLFLAG_OFF))!=0
+ || (pPg->flags & PGHDR_NEED_SYNC)!=0)
+ ){
+ return SQLITE_OK;
+ }
+
+ pPg->pDirty = 0;
+ if( pagerUseWal(pPager) ){
+ /* Write a single frame for this page to the log. */
+ rc = subjournalPageIfRequired(pPg);
+ if( rc==SQLITE_OK ){
+ rc = pagerWalFrames(pPager, pPg, 0, 0);
+ }
+ }else{
+
+ /* Sync the journal file if required. */
+ if( pPg->flags&PGHDR_NEED_SYNC
+ || pPager->eState==PAGER_WRITER_CACHEMOD
+ ){
+ rc = syncJournal(pPager, 1);
+ }
+
+ /* Write the contents of the page out to the database file. */
+ if( rc==SQLITE_OK ){
+ assert( (pPg->flags&PGHDR_NEED_SYNC)==0 );
+ rc = pager_write_pagelist(pPager, pPg);
+ }
+ }
+
+ /* Mark the page as clean. */
+ if( rc==SQLITE_OK ){
+ PAGERTRACE(("STRESS %d page %d\n", PAGERID(pPager), pPg->pgno));
+ sqlite3PcacheMakeClean(pPg);
+ }
+
+ return pager_error(pPager, rc);
+}
+
+/*
+** Flush all unreferenced dirty pages to disk.
+*/
+SQLITE_PRIVATE int sqlite3PagerFlush(Pager *pPager){
+ int rc = pPager->errCode;
+ if( !MEMDB ){
+ PgHdr *pList = sqlite3PcacheDirtyList(pPager->pPCache);
+ assert( assert_pager_state(pPager) );
+ while( rc==SQLITE_OK && pList ){
+ PgHdr *pNext = pList->pDirty;
+ if( pList->nRef==0 ){
+ rc = pagerStress((void*)pPager, pList);
+ }
+ pList = pNext;
+ }
+ }
+
+ return rc;
+}
+
+/*
+** Allocate and initialize a new Pager object and put a pointer to it
+** in *ppPager. The pager should eventually be freed by passing it
+** to sqlite3PagerClose().
+**
+** The zFilename argument is the path to the database file to open.
+** If zFilename is NULL then a randomly-named temporary file is created
+** and used as the file to be cached. Temporary files are be deleted
+** automatically when they are closed. If zFilename is ":memory:" then
+** all information is held in cache. It is never written to disk.
+** This can be used to implement an in-memory database.
+**
+** The nExtra parameter specifies the number of bytes of space allocated
+** along with each page reference. This space is available to the user
+** via the sqlite3PagerGetExtra() API. When a new page is allocated, the
+** first 8 bytes of this space are zeroed but the remainder is uninitialized.
+** (The extra space is used by btree as the MemPage object.)
+**
+** The flags argument is used to specify properties that affect the
+** operation of the pager. It should be passed some bitwise combination
+** of the PAGER_* flags.
+**
+** The vfsFlags parameter is a bitmask to pass to the flags parameter
+** of the xOpen() method of the supplied VFS when opening files.
+**
+** If the pager object is allocated and the specified file opened
+** successfully, SQLITE_OK is returned and *ppPager set to point to
+** the new pager object. If an error occurs, *ppPager is set to NULL
+** and error code returned. This function may return SQLITE_NOMEM
+** (sqlite3Malloc() is used to allocate memory), SQLITE_CANTOPEN or
+** various SQLITE_IO_XXX errors.
+*/
+SQLITE_PRIVATE int sqlite3PagerOpen(
+ sqlite3_vfs *pVfs, /* The virtual file system to use */
+ Pager **ppPager, /* OUT: Return the Pager structure here */
+ const char *zFilename, /* Name of the database file to open */
+ int nExtra, /* Extra bytes append to each in-memory page */
+ int flags, /* flags controlling this file */
+ int vfsFlags, /* flags passed through to sqlite3_vfs.xOpen() */
+ void (*xReinit)(DbPage*) /* Function to reinitialize pages */
+){
+ u8 *pPtr;
+ Pager *pPager = 0; /* Pager object to allocate and return */
+ int rc = SQLITE_OK; /* Return code */
+ int tempFile = 0; /* True for temp files (incl. in-memory files) */
+ int memDb = 0; /* True if this is an in-memory file */
+ int readOnly = 0; /* True if this is a read-only file */
+ int journalFileSize; /* Bytes to allocate for each journal fd */
+ char *zPathname = 0; /* Full path to database file */
+ int nPathname = 0; /* Number of bytes in zPathname */
+ int useJournal = (flags & PAGER_OMIT_JOURNAL)==0; /* False to omit journal */
+ int pcacheSize = sqlite3PcacheSize(); /* Bytes to allocate for PCache */
+ u32 szPageDflt = SQLITE_DEFAULT_PAGE_SIZE; /* Default page size */
+ const char *zUri = 0; /* URI args to copy */
+ int nUri = 0; /* Number of bytes of URI args at *zUri */
+
+ /* Figure out how much space is required for each journal file-handle
+ ** (there are two of them, the main journal and the sub-journal). */
+ journalFileSize = ROUND8(sqlite3JournalSize(pVfs));
+
+ /* Set the output variable to NULL in case an error occurs. */
+ *ppPager = 0;
+
+#ifndef SQLITE_OMIT_MEMORYDB
+ if( flags & PAGER_MEMORY ){
+ memDb = 1;
+ if( zFilename && zFilename[0] ){
+ zPathname = sqlite3DbStrDup(0, zFilename);
+ if( zPathname==0 ) return SQLITE_NOMEM_BKPT;
+ nPathname = sqlite3Strlen30(zPathname);
+ zFilename = 0;
+ }
+ }
+#endif
+
+ /* Compute and store the full pathname in an allocated buffer pointed
+ ** to by zPathname, length nPathname. Or, if this is a temporary file,
+ ** leave both nPathname and zPathname set to 0.
+ */
+ if( zFilename && zFilename[0] ){
+ const char *z;
+ nPathname = pVfs->mxPathname+1;
+ zPathname = sqlite3DbMallocRaw(0, nPathname*2);
+ if( zPathname==0 ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ zPathname[0] = 0; /* Make sure initialized even if FullPathname() fails */
+ rc = sqlite3OsFullPathname(pVfs, zFilename, nPathname, zPathname);
+ nPathname = sqlite3Strlen30(zPathname);
+ z = zUri = &zFilename[sqlite3Strlen30(zFilename)+1];
+ while( *z ){
+ z += sqlite3Strlen30(z)+1;
+ z += sqlite3Strlen30(z)+1;
+ }
+ nUri = (int)(&z[1] - zUri);
+ assert( nUri>=0 );
+ if( rc==SQLITE_OK && nPathname+8>pVfs->mxPathname ){
+ /* This branch is taken when the journal path required by
+ ** the database being opened will be more than pVfs->mxPathname
+ ** bytes in length. This means the database cannot be opened,
+ ** as it will not be possible to open the journal file or even
+ ** check for a hot-journal before reading.
+ */
+ rc = SQLITE_CANTOPEN_BKPT;
+ }
+ if( rc!=SQLITE_OK ){
+ sqlite3DbFree(0, zPathname);
+ return rc;
+ }
+ }
+
+ /* Allocate memory for the Pager structure, PCache object, the
+ ** three file descriptors, the database file name and the journal
+ ** file name. The layout in memory is as follows:
+ **
+ ** Pager object (sizeof(Pager) bytes)
+ ** PCache object (sqlite3PcacheSize() bytes)
+ ** Database file handle (pVfs->szOsFile bytes)
+ ** Sub-journal file handle (journalFileSize bytes)
+ ** Main journal file handle (journalFileSize bytes)
+ ** Database file name (nPathname+1 bytes)
+ ** Journal file name (nPathname+8+1 bytes)
+ */
+ pPtr = (u8 *)sqlite3MallocZero(
+ ROUND8(sizeof(*pPager)) + /* Pager structure */
+ ROUND8(pcacheSize) + /* PCache object */
+ ROUND8(pVfs->szOsFile) + /* The main db file */
+ journalFileSize * 2 + /* The two journal files */
+ nPathname + 1 + nUri + /* zFilename */
+ nPathname + 8 + 2 /* zJournal */
+#ifndef SQLITE_OMIT_WAL
+ + nPathname + 4 + 2 /* zWal */
+#endif
+ );
+ assert( EIGHT_BYTE_ALIGNMENT(SQLITE_INT_TO_PTR(journalFileSize)) );
+ if( !pPtr ){
+ sqlite3DbFree(0, zPathname);
+ return SQLITE_NOMEM_BKPT;
+ }
+ pPager = (Pager*)(pPtr);
+ pPager->pPCache = (PCache*)(pPtr += ROUND8(sizeof(*pPager)));
+ pPager->fd = (sqlite3_file*)(pPtr += ROUND8(pcacheSize));
+ pPager->sjfd = (sqlite3_file*)(pPtr += ROUND8(pVfs->szOsFile));
+ pPager->jfd = (sqlite3_file*)(pPtr += journalFileSize);
+ pPager->zFilename = (char*)(pPtr += journalFileSize);
+ assert( EIGHT_BYTE_ALIGNMENT(pPager->jfd) );
+
+ /* Fill in the Pager.zFilename and Pager.zJournal buffers, if required. */
+ if( zPathname ){
+ assert( nPathname>0 );
+ pPager->zJournal = (char*)(pPtr += nPathname + 1 + nUri);
+ memcpy(pPager->zFilename, zPathname, nPathname);
+ if( nUri ) memcpy(&pPager->zFilename[nPathname+1], zUri, nUri);
+ memcpy(pPager->zJournal, zPathname, nPathname);
+ memcpy(&pPager->zJournal[nPathname], "-journal\000", 8+2);
+ sqlite3FileSuffix3(pPager->zFilename, pPager->zJournal);
+#ifndef SQLITE_OMIT_WAL
+ pPager->zWal = &pPager->zJournal[nPathname+8+1];
+ memcpy(pPager->zWal, zPathname, nPathname);
+ memcpy(&pPager->zWal[nPathname], "-wal\000", 4+1);
+ sqlite3FileSuffix3(pPager->zFilename, pPager->zWal);
+#endif
+ sqlite3DbFree(0, zPathname);
+ }
+ pPager->pVfs = pVfs;
+ pPager->vfsFlags = vfsFlags;
+
+ /* Open the pager file.
+ */
+ if( zFilename && zFilename[0] ){
+ int fout = 0; /* VFS flags returned by xOpen() */
+ rc = sqlite3OsOpen(pVfs, pPager->zFilename, pPager->fd, vfsFlags, &fout);
+ assert( !memDb );
+ readOnly = (fout&SQLITE_OPEN_READONLY);
+
+ /* If the file was successfully opened for read/write access,
+ ** choose a default page size in case we have to create the
+ ** database file. The default page size is the maximum of:
+ **
+ ** + SQLITE_DEFAULT_PAGE_SIZE,
+ ** + The value returned by sqlite3OsSectorSize()
+ ** + The largest page size that can be written atomically.
+ */
+ if( rc==SQLITE_OK ){
+ int iDc = sqlite3OsDeviceCharacteristics(pPager->fd);
+ if( !readOnly ){
+ setSectorSize(pPager);
+ assert(SQLITE_DEFAULT_PAGE_SIZE<=SQLITE_MAX_DEFAULT_PAGE_SIZE);
+ if( szPageDflt<pPager->sectorSize ){
+ if( pPager->sectorSize>SQLITE_MAX_DEFAULT_PAGE_SIZE ){
+ szPageDflt = SQLITE_MAX_DEFAULT_PAGE_SIZE;
+ }else{
+ szPageDflt = (u32)pPager->sectorSize;
+ }
+ }
+#ifdef SQLITE_ENABLE_ATOMIC_WRITE
+ {
+ int ii;
+ assert(SQLITE_IOCAP_ATOMIC512==(512>>8));
+ assert(SQLITE_IOCAP_ATOMIC64K==(65536>>8));
+ assert(SQLITE_MAX_DEFAULT_PAGE_SIZE<=65536);
+ for(ii=szPageDflt; ii<=SQLITE_MAX_DEFAULT_PAGE_SIZE; ii=ii*2){
+ if( iDc&(SQLITE_IOCAP_ATOMIC|(ii>>8)) ){
+ szPageDflt = ii;
+ }
+ }
+ }
+#endif
+ }
+ pPager->noLock = sqlite3_uri_boolean(zFilename, "nolock", 0);
+ if( (iDc & SQLITE_IOCAP_IMMUTABLE)!=0
+ || sqlite3_uri_boolean(zFilename, "immutable", 0) ){
+ vfsFlags |= SQLITE_OPEN_READONLY;
+ goto act_like_temp_file;
+ }
+ }
+ }else{
+ /* If a temporary file is requested, it is not opened immediately.
+ ** In this case we accept the default page size and delay actually
+ ** opening the file until the first call to OsWrite().
+ **
+ ** This branch is also run for an in-memory database. An in-memory
+ ** database is the same as a temp-file that is never written out to
+ ** disk and uses an in-memory rollback journal.
+ **
+ ** This branch also runs for files marked as immutable.
+ */
+act_like_temp_file:
+ tempFile = 1;
+ pPager->eState = PAGER_READER; /* Pretend we already have a lock */
+ pPager->eLock = EXCLUSIVE_LOCK; /* Pretend we are in EXCLUSIVE mode */
+ pPager->noLock = 1; /* Do no locking */
+ readOnly = (vfsFlags&SQLITE_OPEN_READONLY);
+ }
+
+ /* The following call to PagerSetPagesize() serves to set the value of
+ ** Pager.pageSize and to allocate the Pager.pTmpSpace buffer.
+ */
+ if( rc==SQLITE_OK ){
+ assert( pPager->memDb==0 );
+ rc = sqlite3PagerSetPagesize(pPager, &szPageDflt, -1);
+ testcase( rc!=SQLITE_OK );
+ }
+
+ /* Initialize the PCache object. */
+ if( rc==SQLITE_OK ){
+ nExtra = ROUND8(nExtra);
+ assert( nExtra>=8 && nExtra<1000 );
+ rc = sqlite3PcacheOpen(szPageDflt, nExtra, !memDb,
+ !memDb?pagerStress:0, (void *)pPager, pPager->pPCache);
+ }
+
+ /* If an error occurred above, free the Pager structure and close the file.
+ */
+ if( rc!=SQLITE_OK ){
+ sqlite3OsClose(pPager->fd);
+ sqlite3PageFree(pPager->pTmpSpace);
+ sqlite3_free(pPager);
+ return rc;
+ }
+
+ PAGERTRACE(("OPEN %d %s\n", FILEHANDLEID(pPager->fd), pPager->zFilename));
+ IOTRACE(("OPEN %p %s\n", pPager, pPager->zFilename))
+
+ pPager->useJournal = (u8)useJournal;
+ /* pPager->stmtOpen = 0; */
+ /* pPager->stmtInUse = 0; */
+ /* pPager->nRef = 0; */
+ /* pPager->stmtSize = 0; */
+ /* pPager->stmtJSize = 0; */
+ /* pPager->nPage = 0; */
+ pPager->mxPgno = SQLITE_MAX_PAGE_COUNT;
+ /* pPager->state = PAGER_UNLOCK; */
+ /* pPager->errMask = 0; */
+ pPager->tempFile = (u8)tempFile;
+ assert( tempFile==PAGER_LOCKINGMODE_NORMAL
+ || tempFile==PAGER_LOCKINGMODE_EXCLUSIVE );
+ assert( PAGER_LOCKINGMODE_EXCLUSIVE==1 );
+ pPager->exclusiveMode = (u8)tempFile;
+ pPager->changeCountDone = pPager->tempFile;
+ pPager->memDb = (u8)memDb;
+ pPager->readOnly = (u8)readOnly;
+ assert( useJournal || pPager->tempFile );
+ pPager->noSync = pPager->tempFile;
+ if( pPager->noSync ){
+ assert( pPager->fullSync==0 );
+ assert( pPager->extraSync==0 );
+ assert( pPager->syncFlags==0 );
+ assert( pPager->walSyncFlags==0 );
+ assert( pPager->ckptSyncFlags==0 );
+ }else{
+ pPager->fullSync = 1;
+ pPager->extraSync = 0;
+ pPager->syncFlags = SQLITE_SYNC_NORMAL;
+ pPager->walSyncFlags = SQLITE_SYNC_NORMAL | WAL_SYNC_TRANSACTIONS;
+ pPager->ckptSyncFlags = SQLITE_SYNC_NORMAL;
+ }
+ /* pPager->pFirst = 0; */
+ /* pPager->pFirstSynced = 0; */
+ /* pPager->pLast = 0; */
+ pPager->nExtra = (u16)nExtra;
+ pPager->journalSizeLimit = SQLITE_DEFAULT_JOURNAL_SIZE_LIMIT;
+ assert( isOpen(pPager->fd) || tempFile );
+ setSectorSize(pPager);
+ if( !useJournal ){
+ pPager->journalMode = PAGER_JOURNALMODE_OFF;
+ }else if( memDb ){
+ pPager->journalMode = PAGER_JOURNALMODE_MEMORY;
+ }
+ /* pPager->xBusyHandler = 0; */
+ /* pPager->pBusyHandlerArg = 0; */
+ pPager->xReiniter = xReinit;
+ setGetterMethod(pPager);
+ /* memset(pPager->aHash, 0, sizeof(pPager->aHash)); */
+ /* pPager->szMmap = SQLITE_DEFAULT_MMAP_SIZE // will be set by btree.c */
+
+ *ppPager = pPager;
+ return SQLITE_OK;
+}
+
+
+/* Verify that the database file has not be deleted or renamed out from
+** under the pager. Return SQLITE_OK if the database is still were it ought
+** to be on disk. Return non-zero (SQLITE_READONLY_DBMOVED or some other error
+** code from sqlite3OsAccess()) if the database has gone missing.
+*/
+static int databaseIsUnmoved(Pager *pPager){
+ int bHasMoved = 0;
+ int rc;
+
+ if( pPager->tempFile ) return SQLITE_OK;
+ if( pPager->dbSize==0 ) return SQLITE_OK;
+ assert( pPager->zFilename && pPager->zFilename[0] );
+ rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_HAS_MOVED, &bHasMoved);
+ if( rc==SQLITE_NOTFOUND ){
+ /* If the HAS_MOVED file-control is unimplemented, assume that the file
+ ** has not been moved. That is the historical behavior of SQLite: prior to
+ ** version 3.8.3, it never checked */
+ rc = SQLITE_OK;
+ }else if( rc==SQLITE_OK && bHasMoved ){
+ rc = SQLITE_READONLY_DBMOVED;
+ }
+ return rc;
+}
+
+
+/*
+** This function is called after transitioning from PAGER_UNLOCK to
+** PAGER_SHARED state. It tests if there is a hot journal present in
+** the file-system for the given pager. A hot journal is one that
+** needs to be played back. According to this function, a hot-journal
+** file exists if the following criteria are met:
+**
+** * The journal file exists in the file system, and
+** * No process holds a RESERVED or greater lock on the database file, and
+** * The database file itself is greater than 0 bytes in size, and
+** * The first byte of the journal file exists and is not 0x00.
+**
+** If the current size of the database file is 0 but a journal file
+** exists, that is probably an old journal left over from a prior
+** database with the same name. In this case the journal file is
+** just deleted using OsDelete, *pExists is set to 0 and SQLITE_OK
+** is returned.
+**
+** This routine does not check if there is a master journal filename
+** at the end of the file. If there is, and that master journal file
+** does not exist, then the journal file is not really hot. In this
+** case this routine will return a false-positive. The pager_playback()
+** routine will discover that the journal file is not really hot and
+** will not roll it back.
+**
+** If a hot-journal file is found to exist, *pExists is set to 1 and
+** SQLITE_OK returned. If no hot-journal file is present, *pExists is
+** set to 0 and SQLITE_OK returned. If an IO error occurs while trying
+** to determine whether or not a hot-journal file exists, the IO error
+** code is returned and the value of *pExists is undefined.
+*/
+static int hasHotJournal(Pager *pPager, int *pExists){
+ sqlite3_vfs * const pVfs = pPager->pVfs;
+ int rc = SQLITE_OK; /* Return code */
+ int exists = 1; /* True if a journal file is present */
+ int jrnlOpen = !!isOpen(pPager->jfd);
+
+ assert( pPager->useJournal );
+ assert( isOpen(pPager->fd) );
+ assert( pPager->eState==PAGER_OPEN );
+
+ assert( jrnlOpen==0 || ( sqlite3OsDeviceCharacteristics(pPager->jfd) &
+ SQLITE_IOCAP_UNDELETABLE_WHEN_OPEN
+ ));
+
+ *pExists = 0;
+ if( !jrnlOpen ){
+ rc = sqlite3OsAccess(pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &exists);
+ }
+ if( rc==SQLITE_OK && exists ){
+ int locked = 0; /* True if some process holds a RESERVED lock */
+
+ /* Race condition here: Another process might have been holding the
+ ** the RESERVED lock and have a journal open at the sqlite3OsAccess()
+ ** call above, but then delete the journal and drop the lock before
+ ** we get to the following sqlite3OsCheckReservedLock() call. If that
+ ** is the case, this routine might think there is a hot journal when
+ ** in fact there is none. This results in a false-positive which will
+ ** be dealt with by the playback routine. Ticket #3883.
+ */
+ rc = sqlite3OsCheckReservedLock(pPager->fd, &locked);
+ if( rc==SQLITE_OK && !locked ){
+ Pgno nPage; /* Number of pages in database file */
+
+ assert( pPager->tempFile==0 );
+ rc = pagerPagecount(pPager, &nPage);
+ if( rc==SQLITE_OK ){
+ /* If the database is zero pages in size, that means that either (1) the
+ ** journal is a remnant from a prior database with the same name where
+ ** the database file but not the journal was deleted, or (2) the initial
+ ** transaction that populates a new database is being rolled back.
+ ** In either case, the journal file can be deleted. However, take care
+ ** not to delete the journal file if it is already open due to
+ ** journal_mode=PERSIST.
+ */
+ if( nPage==0 && !jrnlOpen ){
+ sqlite3BeginBenignMalloc();
+ if( pagerLockDb(pPager, RESERVED_LOCK)==SQLITE_OK ){
+ sqlite3OsDelete(pVfs, pPager->zJournal, 0);
+ if( !pPager->exclusiveMode ) pagerUnlockDb(pPager, SHARED_LOCK);
+ }
+ sqlite3EndBenignMalloc();
+ }else{
+ /* The journal file exists and no other connection has a reserved
+ ** or greater lock on the database file. Now check that there is
+ ** at least one non-zero bytes at the start of the journal file.
+ ** If there is, then we consider this journal to be hot. If not,
+ ** it can be ignored.
+ */
+ if( !jrnlOpen ){
+ int f = SQLITE_OPEN_READONLY|SQLITE_OPEN_MAIN_JOURNAL;
+ rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &f);
+ }
+ if( rc==SQLITE_OK ){
+ u8 first = 0;
+ rc = sqlite3OsRead(pPager->jfd, (void *)&first, 1, 0);
+ if( rc==SQLITE_IOERR_SHORT_READ ){
+ rc = SQLITE_OK;
+ }
+ if( !jrnlOpen ){
+ sqlite3OsClose(pPager->jfd);
+ }
+ *pExists = (first!=0);
+ }else if( rc==SQLITE_CANTOPEN ){
+ /* If we cannot open the rollback journal file in order to see if
+ ** it has a zero header, that might be due to an I/O error, or
+ ** it might be due to the race condition described above and in
+ ** ticket #3883. Either way, assume that the journal is hot.
+ ** This might be a false positive. But if it is, then the
+ ** automatic journal playback and recovery mechanism will deal
+ ** with it under an EXCLUSIVE lock where we do not need to
+ ** worry so much with race conditions.
+ */
+ *pExists = 1;
+ rc = SQLITE_OK;
+ }
+ }
+ }
+ }
+ }
+
+ return rc;
+}
+
+/*
+** This function is called to obtain a shared lock on the database file.
+** It is illegal to call sqlite3PagerGet() until after this function
+** has been successfully called. If a shared-lock is already held when
+** this function is called, it is a no-op.
+**
+** The following operations are also performed by this function.
+**
+** 1) If the pager is currently in PAGER_OPEN state (no lock held
+** on the database file), then an attempt is made to obtain a
+** SHARED lock on the database file. Immediately after obtaining
+** the SHARED lock, the file-system is checked for a hot-journal,
+** which is played back if present. Following any hot-journal
+** rollback, the contents of the cache are validated by checking
+** the 'change-counter' field of the database file header and
+** discarded if they are found to be invalid.
+**
+** 2) If the pager is running in exclusive-mode, and there are currently
+** no outstanding references to any pages, and is in the error state,
+** then an attempt is made to clear the error state by discarding
+** the contents of the page cache and rolling back any open journal
+** file.
+**
+** If everything is successful, SQLITE_OK is returned. If an IO error
+** occurs while locking the database, checking for a hot-journal file or
+** rolling back a journal file, the IO error code is returned.
+*/
+SQLITE_PRIVATE int sqlite3PagerSharedLock(Pager *pPager){
+ int rc = SQLITE_OK; /* Return code */
+
+ /* This routine is only called from b-tree and only when there are no
+ ** outstanding pages. This implies that the pager state should either
+ ** be OPEN or READER. READER is only possible if the pager is or was in
+ ** exclusive access mode. */
+ assert( sqlite3PcacheRefCount(pPager->pPCache)==0 );
+ assert( assert_pager_state(pPager) );
+ assert( pPager->eState==PAGER_OPEN || pPager->eState==PAGER_READER );
+ assert( pPager->errCode==SQLITE_OK );
+
+ if( !pagerUseWal(pPager) && pPager->eState==PAGER_OPEN ){
+ int bHotJournal = 1; /* True if there exists a hot journal-file */
+
+ assert( !MEMDB );
+ assert( pPager->tempFile==0 || pPager->eLock==EXCLUSIVE_LOCK );
+
+ rc = pager_wait_on_lock(pPager, SHARED_LOCK);
+ if( rc!=SQLITE_OK ){
+ assert( pPager->eLock==NO_LOCK || pPager->eLock==UNKNOWN_LOCK );
+ goto failed;
+ }
+
+ /* If a journal file exists, and there is no RESERVED lock on the
+ ** database file, then it either needs to be played back or deleted.
+ */
+ if( pPager->eLock<=SHARED_LOCK ){
+ rc = hasHotJournal(pPager, &bHotJournal);
+ }
+ if( rc!=SQLITE_OK ){
+ goto failed;
+ }
+ if( bHotJournal ){
+ if( pPager->readOnly ){
+ rc = SQLITE_READONLY_ROLLBACK;
+ goto failed;
+ }
+
+ /* Get an EXCLUSIVE lock on the database file. At this point it is
+ ** important that a RESERVED lock is not obtained on the way to the
+ ** EXCLUSIVE lock. If it were, another process might open the
+ ** database file, detect the RESERVED lock, and conclude that the
+ ** database is safe to read while this process is still rolling the
+ ** hot-journal back.
+ **
+ ** Because the intermediate RESERVED lock is not requested, any
+ ** other process attempting to access the database file will get to
+ ** this point in the code and fail to obtain its own EXCLUSIVE lock
+ ** on the database file.
+ **
+ ** Unless the pager is in locking_mode=exclusive mode, the lock is
+ ** downgraded to SHARED_LOCK before this function returns.
+ */
+ rc = pagerLockDb(pPager, EXCLUSIVE_LOCK);
+ if( rc!=SQLITE_OK ){
+ goto failed;
+ }
+
+ /* If it is not already open and the file exists on disk, open the
+ ** journal for read/write access. Write access is required because
+ ** in exclusive-access mode the file descriptor will be kept open
+ ** and possibly used for a transaction later on. Also, write-access
+ ** is usually required to finalize the journal in journal_mode=persist
+ ** mode (and also for journal_mode=truncate on some systems).
+ **
+ ** If the journal does not exist, it usually means that some
+ ** other connection managed to get in and roll it back before
+ ** this connection obtained the exclusive lock above. Or, it
+ ** may mean that the pager was in the error-state when this
+ ** function was called and the journal file does not exist.
+ */
+ if( !isOpen(pPager->jfd) ){
+ sqlite3_vfs * const pVfs = pPager->pVfs;
+ int bExists; /* True if journal file exists */
+ rc = sqlite3OsAccess(
+ pVfs, pPager->zJournal, SQLITE_ACCESS_EXISTS, &bExists);
+ if( rc==SQLITE_OK && bExists ){
+ int fout = 0;
+ int f = SQLITE_OPEN_READWRITE|SQLITE_OPEN_MAIN_JOURNAL;
+ assert( !pPager->tempFile );
+ rc = sqlite3OsOpen(pVfs, pPager->zJournal, pPager->jfd, f, &fout);
+ assert( rc!=SQLITE_OK || isOpen(pPager->jfd) );
+ if( rc==SQLITE_OK && fout&SQLITE_OPEN_READONLY ){
+ rc = SQLITE_CANTOPEN_BKPT;
+ sqlite3OsClose(pPager->jfd);
+ }
+ }
+ }
+
+ /* Playback and delete the journal. Drop the database write
+ ** lock and reacquire the read lock. Purge the cache before
+ ** playing back the hot-journal so that we don't end up with
+ ** an inconsistent cache. Sync the hot journal before playing
+ ** it back since the process that crashed and left the hot journal
+ ** probably did not sync it and we are required to always sync
+ ** the journal before playing it back.
+ */
+ if( isOpen(pPager->jfd) ){
+ assert( rc==SQLITE_OK );
+ rc = pagerSyncHotJournal(pPager);
+ if( rc==SQLITE_OK ){
+ rc = pager_playback(pPager, !pPager->tempFile);
+ pPager->eState = PAGER_OPEN;
+ }
+ }else if( !pPager->exclusiveMode ){
+ pagerUnlockDb(pPager, SHARED_LOCK);
+ }
+
+ if( rc!=SQLITE_OK ){
+ /* This branch is taken if an error occurs while trying to open
+ ** or roll back a hot-journal while holding an EXCLUSIVE lock. The
+ ** pager_unlock() routine will be called before returning to unlock
+ ** the file. If the unlock attempt fails, then Pager.eLock must be
+ ** set to UNKNOWN_LOCK (see the comment above the #define for
+ ** UNKNOWN_LOCK above for an explanation).
+ **
+ ** In order to get pager_unlock() to do this, set Pager.eState to
+ ** PAGER_ERROR now. This is not actually counted as a transition
+ ** to ERROR state in the state diagram at the top of this file,
+ ** since we know that the same call to pager_unlock() will very
+ ** shortly transition the pager object to the OPEN state. Calling
+ ** assert_pager_state() would fail now, as it should not be possible
+ ** to be in ERROR state when there are zero outstanding page
+ ** references.
+ */
+ pager_error(pPager, rc);
+ goto failed;
+ }
+
+ assert( pPager->eState==PAGER_OPEN );
+ assert( (pPager->eLock==SHARED_LOCK)
+ || (pPager->exclusiveMode && pPager->eLock>SHARED_LOCK)
+ );
+ }
+
+ if( !pPager->tempFile && pPager->hasHeldSharedLock ){
+ /* The shared-lock has just been acquired then check to
+ ** see if the database has been modified. If the database has changed,
+ ** flush the cache. The hasHeldSharedLock flag prevents this from
+ ** occurring on the very first access to a file, in order to save a
+ ** single unnecessary sqlite3OsRead() call at the start-up.
+ **
+ ** Database changes are detected by looking at 15 bytes beginning
+ ** at offset 24 into the file. The first 4 of these 16 bytes are
+ ** a 32-bit counter that is incremented with each change. The
+ ** other bytes change randomly with each file change when
+ ** a codec is in use.
+ **
+ ** There is a vanishingly small chance that a change will not be
+ ** detected. The chance of an undetected change is so small that
+ ** it can be neglected.
+ */
+ Pgno nPage = 0;
+ char dbFileVers[sizeof(pPager->dbFileVers)];
+
+ rc = pagerPagecount(pPager, &nPage);
+ if( rc ) goto failed;
+
+ if( nPage>0 ){
+ IOTRACE(("CKVERS %p %d\n", pPager, sizeof(dbFileVers)));
+ rc = sqlite3OsRead(pPager->fd, &dbFileVers, sizeof(dbFileVers), 24);
+ if( rc!=SQLITE_OK && rc!=SQLITE_IOERR_SHORT_READ ){
+ goto failed;
+ }
+ }else{
+ memset(dbFileVers, 0, sizeof(dbFileVers));
+ }
+
+ if( memcmp(pPager->dbFileVers, dbFileVers, sizeof(dbFileVers))!=0 ){
+ pager_reset(pPager);
+
+ /* Unmap the database file. It is possible that external processes
+ ** may have truncated the database file and then extended it back
+ ** to its original size while this process was not holding a lock.
+ ** In this case there may exist a Pager.pMap mapping that appears
+ ** to be the right size but is not actually valid. Avoid this
+ ** possibility by unmapping the db here. */
+ if( USEFETCH(pPager) ){
+ sqlite3OsUnfetch(pPager->fd, 0, 0);
+ }
+ }
+ }
+
+ /* If there is a WAL file in the file-system, open this database in WAL
+ ** mode. Otherwise, the following function call is a no-op.
+ */
+ rc = pagerOpenWalIfPresent(pPager);
+#ifndef SQLITE_OMIT_WAL
+ assert( pPager->pWal==0 || rc==SQLITE_OK );
+#endif
+ }
+
+ if( pagerUseWal(pPager) ){
+ assert( rc==SQLITE_OK );
+ rc = pagerBeginReadTransaction(pPager);
+ }
+
+ if( pPager->tempFile==0 && pPager->eState==PAGER_OPEN && rc==SQLITE_OK ){
+ rc = pagerPagecount(pPager, &pPager->dbSize);
+ }
+
+ failed:
+ if( rc!=SQLITE_OK ){
+ assert( !MEMDB );
+ pager_unlock(pPager);
+ assert( pPager->eState==PAGER_OPEN );
+ }else{
+ pPager->eState = PAGER_READER;
+ pPager->hasHeldSharedLock = 1;
+ }
+ return rc;
+}
+
+/*
+** If the reference count has reached zero, rollback any active
+** transaction and unlock the pager.
+**
+** Except, in locking_mode=EXCLUSIVE when there is nothing to in
+** the rollback journal, the unlock is not performed and there is
+** nothing to rollback, so this routine is a no-op.
+*/
+static void pagerUnlockIfUnused(Pager *pPager){
+ if( pPager->nMmapOut==0 && (sqlite3PcacheRefCount(pPager->pPCache)==0) ){
+ pagerUnlockAndRollback(pPager);
+ }
+}
+
+/*
+** The page getter methods each try to acquire a reference to a
+** page with page number pgno. If the requested reference is
+** successfully obtained, it is copied to *ppPage and SQLITE_OK returned.
+**
+** There are different implementations of the getter method depending
+** on the current state of the pager.
+**
+** getPageNormal() -- The normal getter
+** getPageError() -- Used if the pager is in an error state
+** getPageMmap() -- Used if memory-mapped I/O is enabled
+**
+** If the requested page is already in the cache, it is returned.
+** Otherwise, a new page object is allocated and populated with data
+** read from the database file. In some cases, the pcache module may
+** choose not to allocate a new page object and may reuse an existing
+** object with no outstanding references.
+**
+** The extra data appended to a page is always initialized to zeros the
+** first time a page is loaded into memory. If the page requested is
+** already in the cache when this function is called, then the extra
+** data is left as it was when the page object was last used.
+**
+** If the database image is smaller than the requested page or if
+** the flags parameter contains the PAGER_GET_NOCONTENT bit and the
+** requested page is not already stored in the cache, then no
+** actual disk read occurs. In this case the memory image of the
+** page is initialized to all zeros.
+**
+** If PAGER_GET_NOCONTENT is true, it means that we do not care about
+** the contents of the page. This occurs in two scenarios:
+**
+** a) When reading a free-list leaf page from the database, and
+**
+** b) When a savepoint is being rolled back and we need to load
+** a new page into the cache to be filled with the data read
+** from the savepoint journal.
+**
+** If PAGER_GET_NOCONTENT is true, then the data returned is zeroed instead
+** of being read from the database. Additionally, the bits corresponding
+** to pgno in Pager.pInJournal (bitvec of pages already written to the
+** journal file) and the PagerSavepoint.pInSavepoint bitvecs of any open
+** savepoints are set. This means if the page is made writable at any
+** point in the future, using a call to sqlite3PagerWrite(), its contents
+** will not be journaled. This saves IO.
+**
+** The acquisition might fail for several reasons. In all cases,
+** an appropriate error code is returned and *ppPage is set to NULL.
+**
+** See also sqlite3PagerLookup(). Both this routine and Lookup() attempt
+** to find a page in the in-memory cache first. If the page is not already
+** in memory, this routine goes to disk to read it in whereas Lookup()
+** just returns 0. This routine acquires a read-lock the first time it
+** has to go to disk, and could also playback an old journal if necessary.
+** Since Lookup() never goes to disk, it never has to deal with locks
+** or journal files.
+*/
+static int getPageNormal(
+ Pager *pPager, /* The pager open on the database file */
+ Pgno pgno, /* Page number to fetch */
+ DbPage **ppPage, /* Write a pointer to the page here */
+ int flags /* PAGER_GET_XXX flags */
+){
+ int rc = SQLITE_OK;
+ PgHdr *pPg;
+ u8 noContent; /* True if PAGER_GET_NOCONTENT is set */
+ sqlite3_pcache_page *pBase;
+
+ assert( pPager->errCode==SQLITE_OK );
+ assert( pPager->eState>=PAGER_READER );
+ assert( assert_pager_state(pPager) );
+ assert( pPager->hasHeldSharedLock==1 );
+
+ if( pgno==0 ) return SQLITE_CORRUPT_BKPT;
+ pBase = sqlite3PcacheFetch(pPager->pPCache, pgno, 3);
+ if( pBase==0 ){
+ pPg = 0;
+ rc = sqlite3PcacheFetchStress(pPager->pPCache, pgno, &pBase);
+ if( rc!=SQLITE_OK ) goto pager_acquire_err;
+ if( pBase==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto pager_acquire_err;
+ }
+ }
+ pPg = *ppPage = sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pBase);
+ assert( pPg==(*ppPage) );
+ assert( pPg->pgno==pgno );
+ assert( pPg->pPager==pPager || pPg->pPager==0 );
+
+ noContent = (flags & PAGER_GET_NOCONTENT)!=0;
+ if( pPg->pPager && !noContent ){
+ /* In this case the pcache already contains an initialized copy of
+ ** the page. Return without further ado. */
+ assert( pgno<=PAGER_MAX_PGNO && pgno!=PAGER_MJ_PGNO(pPager) );
+ pPager->aStat[PAGER_STAT_HIT]++;
+ return SQLITE_OK;
+
+ }else{
+ /* The pager cache has created a new page. Its content needs to
+ ** be initialized. But first some error checks:
+ **
+ ** (1) The maximum page number is 2^31
+ ** (2) Never try to fetch the locking page
+ */
+ if( pgno>PAGER_MAX_PGNO || pgno==PAGER_MJ_PGNO(pPager) ){
+ rc = SQLITE_CORRUPT_BKPT;
+ goto pager_acquire_err;
+ }
+
+ pPg->pPager = pPager;
+
+ assert( !isOpen(pPager->fd) || !MEMDB );
+ if( !isOpen(pPager->fd) || pPager->dbSize<pgno || noContent ){
+ if( pgno>pPager->mxPgno ){
+ rc = SQLITE_FULL;
+ goto pager_acquire_err;
+ }
+ if( noContent ){
+ /* Failure to set the bits in the InJournal bit-vectors is benign.
+ ** It merely means that we might do some extra work to journal a
+ ** page that does not need to be journaled. Nevertheless, be sure
+ ** to test the case where a malloc error occurs while trying to set
+ ** a bit in a bit vector.
+ */
+ sqlite3BeginBenignMalloc();
+ if( pgno<=pPager->dbOrigSize ){
+ TESTONLY( rc = ) sqlite3BitvecSet(pPager->pInJournal, pgno);
+ testcase( rc==SQLITE_NOMEM );
+ }
+ TESTONLY( rc = ) addToSavepointBitvecs(pPager, pgno);
+ testcase( rc==SQLITE_NOMEM );
+ sqlite3EndBenignMalloc();
+ }
+ memset(pPg->pData, 0, pPager->pageSize);
+ IOTRACE(("ZERO %p %d\n", pPager, pgno));
+ }else{
+ u32 iFrame = 0; /* Frame to read from WAL file */
+ if( pagerUseWal(pPager) ){
+ rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iFrame);
+ if( rc!=SQLITE_OK ) goto pager_acquire_err;
+ }
+ assert( pPg->pPager==pPager );
+ pPager->aStat[PAGER_STAT_MISS]++;
+ rc = readDbPage(pPg, iFrame);
+ if( rc!=SQLITE_OK ){
+ goto pager_acquire_err;
+ }
+ }
+ pager_set_pagehash(pPg);
+ }
+ return SQLITE_OK;
+
+pager_acquire_err:
+ assert( rc!=SQLITE_OK );
+ if( pPg ){
+ sqlite3PcacheDrop(pPg);
+ }
+ pagerUnlockIfUnused(pPager);
+ *ppPage = 0;
+ return rc;
+}
+
+#if SQLITE_MAX_MMAP_SIZE>0
+/* The page getter for when memory-mapped I/O is enabled */
+static int getPageMMap(
+ Pager *pPager, /* The pager open on the database file */
+ Pgno pgno, /* Page number to fetch */
+ DbPage **ppPage, /* Write a pointer to the page here */
+ int flags /* PAGER_GET_XXX flags */
+){
+ int rc = SQLITE_OK;
+ PgHdr *pPg = 0;
+ u32 iFrame = 0; /* Frame to read from WAL file */
+
+ /* It is acceptable to use a read-only (mmap) page for any page except
+ ** page 1 if there is no write-transaction open or the ACQUIRE_READONLY
+ ** flag was specified by the caller. And so long as the db is not a
+ ** temporary or in-memory database. */
+ const int bMmapOk = (pgno>1
+ && (pPager->eState==PAGER_READER || (flags & PAGER_GET_READONLY))
+ );
+
+ assert( USEFETCH(pPager) );
+#ifdef SQLITE_HAS_CODEC
+ assert( pPager->xCodec==0 );
+#endif
+
+ /* Optimization note: Adding the "pgno<=1" term before "pgno==0" here
+ ** allows the compiler optimizer to reuse the results of the "pgno>1"
+ ** test in the previous statement, and avoid testing pgno==0 in the
+ ** common case where pgno is large. */
+ if( pgno<=1 && pgno==0 ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ assert( pPager->eState>=PAGER_READER );
+ assert( assert_pager_state(pPager) );
+ assert( pPager->hasHeldSharedLock==1 );
+ assert( pPager->errCode==SQLITE_OK );
+
+ if( bMmapOk && pagerUseWal(pPager) ){
+ rc = sqlite3WalFindFrame(pPager->pWal, pgno, &iFrame);
+ if( rc!=SQLITE_OK ){
+ *ppPage = 0;
+ return rc;
+ }
+ }
+ if( bMmapOk && iFrame==0 ){
+ void *pData = 0;
+ rc = sqlite3OsFetch(pPager->fd,
+ (i64)(pgno-1) * pPager->pageSize, pPager->pageSize, &pData
+ );
+ if( rc==SQLITE_OK && pData ){
+ if( pPager->eState>PAGER_READER || pPager->tempFile ){
+ pPg = sqlite3PagerLookup(pPager, pgno);
+ }
+ if( pPg==0 ){
+ rc = pagerAcquireMapPage(pPager, pgno, pData, &pPg);
+ }else{
+ sqlite3OsUnfetch(pPager->fd, (i64)(pgno-1)*pPager->pageSize, pData);
+ }
+ if( pPg ){
+ assert( rc==SQLITE_OK );
+ *ppPage = pPg;
+ return SQLITE_OK;
+ }
+ }
+ if( rc!=SQLITE_OK ){
+ *ppPage = 0;
+ return rc;
+ }
+ }
+ return getPageNormal(pPager, pgno, ppPage, flags);
+}
+#endif /* SQLITE_MAX_MMAP_SIZE>0 */
+
+/* The page getter method for when the pager is an error state */
+static int getPageError(
+ Pager *pPager, /* The pager open on the database file */
+ Pgno pgno, /* Page number to fetch */
+ DbPage **ppPage, /* Write a pointer to the page here */
+ int flags /* PAGER_GET_XXX flags */
+){
+ UNUSED_PARAMETER(pgno);
+ UNUSED_PARAMETER(flags);
+ assert( pPager->errCode!=SQLITE_OK );
+ *ppPage = 0;
+ return pPager->errCode;
+}
+
+
+/* Dispatch all page fetch requests to the appropriate getter method.
+*/
+SQLITE_PRIVATE int sqlite3PagerGet(
+ Pager *pPager, /* The pager open on the database file */
+ Pgno pgno, /* Page number to fetch */
+ DbPage **ppPage, /* Write a pointer to the page here */
+ int flags /* PAGER_GET_XXX flags */
+){
+ return pPager->xGet(pPager, pgno, ppPage, flags);
+}
+
+/*
+** Acquire a page if it is already in the in-memory cache. Do
+** not read the page from disk. Return a pointer to the page,
+** or 0 if the page is not in cache.
+**
+** See also sqlite3PagerGet(). The difference between this routine
+** and sqlite3PagerGet() is that _get() will go to the disk and read
+** in the page if the page is not already in cache. This routine
+** returns NULL if the page is not in cache or if a disk I/O error
+** has ever happened.
+*/
+SQLITE_PRIVATE DbPage *sqlite3PagerLookup(Pager *pPager, Pgno pgno){
+ sqlite3_pcache_page *pPage;
+ assert( pPager!=0 );
+ assert( pgno!=0 );
+ assert( pPager->pPCache!=0 );
+ pPage = sqlite3PcacheFetch(pPager->pPCache, pgno, 0);
+ assert( pPage==0 || pPager->hasHeldSharedLock );
+ if( pPage==0 ) return 0;
+ return sqlite3PcacheFetchFinish(pPager->pPCache, pgno, pPage);
+}
+
+/*
+** Release a page reference.
+**
+** If the number of references to the page drop to zero, then the
+** page is added to the LRU list. When all references to all pages
+** are released, a rollback occurs and the lock on the database is
+** removed.
+*/
+SQLITE_PRIVATE void sqlite3PagerUnrefNotNull(DbPage *pPg){
+ Pager *pPager;
+ assert( pPg!=0 );
+ pPager = pPg->pPager;
+ if( pPg->flags & PGHDR_MMAP ){
+ pagerReleaseMapPage(pPg);
+ }else{
+ sqlite3PcacheRelease(pPg);
+ }
+ pagerUnlockIfUnused(pPager);
+}
+SQLITE_PRIVATE void sqlite3PagerUnref(DbPage *pPg){
+ if( pPg ) sqlite3PagerUnrefNotNull(pPg);
+}
+
+/*
+** This function is called at the start of every write transaction.
+** There must already be a RESERVED or EXCLUSIVE lock on the database
+** file when this routine is called.
+**
+** Open the journal file for pager pPager and write a journal header
+** to the start of it. If there are active savepoints, open the sub-journal
+** as well. This function is only used when the journal file is being
+** opened to write a rollback log for a transaction. It is not used
+** when opening a hot journal file to roll it back.
+**
+** If the journal file is already open (as it may be in exclusive mode),
+** then this function just writes a journal header to the start of the
+** already open file.
+**
+** Whether or not the journal file is opened by this function, the
+** Pager.pInJournal bitvec structure is allocated.
+**
+** Return SQLITE_OK if everything is successful. Otherwise, return
+** SQLITE_NOMEM if the attempt to allocate Pager.pInJournal fails, or
+** an IO error code if opening or writing the journal file fails.
+*/
+static int pager_open_journal(Pager *pPager){
+ int rc = SQLITE_OK; /* Return code */
+ sqlite3_vfs * const pVfs = pPager->pVfs; /* Local cache of vfs pointer */
+
+ assert( pPager->eState==PAGER_WRITER_LOCKED );
+ assert( assert_pager_state(pPager) );
+ assert( pPager->pInJournal==0 );
+
+ /* If already in the error state, this function is a no-op. But on
+ ** the other hand, this routine is never called if we are already in
+ ** an error state. */
+ if( NEVER(pPager->errCode) ) return pPager->errCode;
+
+ if( !pagerUseWal(pPager) && pPager->journalMode!=PAGER_JOURNALMODE_OFF ){
+ pPager->pInJournal = sqlite3BitvecCreate(pPager->dbSize);
+ if( pPager->pInJournal==0 ){
+ return SQLITE_NOMEM_BKPT;
+ }
+
+ /* Open the journal file if it is not already open. */
+ if( !isOpen(pPager->jfd) ){
+ if( pPager->journalMode==PAGER_JOURNALMODE_MEMORY ){
+ sqlite3MemJournalOpen(pPager->jfd);
+ }else{
+ int flags = SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE;
+ int nSpill;
+
+ if( pPager->tempFile ){
+ flags |= (SQLITE_OPEN_DELETEONCLOSE|SQLITE_OPEN_TEMP_JOURNAL);
+ nSpill = sqlite3Config.nStmtSpill;
+ }else{
+ flags |= SQLITE_OPEN_MAIN_JOURNAL;
+ nSpill = jrnlBufferSize(pPager);
+ }
+
+ /* Verify that the database still has the same name as it did when
+ ** it was originally opened. */
+ rc = databaseIsUnmoved(pPager);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3JournalOpen (
+ pVfs, pPager->zJournal, pPager->jfd, flags, nSpill
+ );
+ }
+ }
+ assert( rc!=SQLITE_OK || isOpen(pPager->jfd) );
+ }
+
+
+ /* Write the first journal header to the journal file and open
+ ** the sub-journal if necessary.
+ */
+ if( rc==SQLITE_OK ){
+ /* TODO: Check if all of these are really required. */
+ pPager->nRec = 0;
+ pPager->journalOff = 0;
+ pPager->setMaster = 0;
+ pPager->journalHdr = 0;
+ rc = writeJournalHdr(pPager);
+ }
+ }
+
+ if( rc!=SQLITE_OK ){
+ sqlite3BitvecDestroy(pPager->pInJournal);
+ pPager->pInJournal = 0;
+ }else{
+ assert( pPager->eState==PAGER_WRITER_LOCKED );
+ pPager->eState = PAGER_WRITER_CACHEMOD;
+ }
+
+ return rc;
+}
+
+/*
+** Begin a write-transaction on the specified pager object. If a
+** write-transaction has already been opened, this function is a no-op.
+**
+** If the exFlag argument is false, then acquire at least a RESERVED
+** lock on the database file. If exFlag is true, then acquire at least
+** an EXCLUSIVE lock. If such a lock is already held, no locking
+** functions need be called.
+**
+** If the subjInMemory argument is non-zero, then any sub-journal opened
+** within this transaction will be opened as an in-memory file. This
+** has no effect if the sub-journal is already opened (as it may be when
+** running in exclusive mode) or if the transaction does not require a
+** sub-journal. If the subjInMemory argument is zero, then any required
+** sub-journal is implemented in-memory if pPager is an in-memory database,
+** or using a temporary file otherwise.
+*/
+SQLITE_PRIVATE int sqlite3PagerBegin(Pager *pPager, int exFlag, int subjInMemory){
+ int rc = SQLITE_OK;
+
+ if( pPager->errCode ) return pPager->errCode;
+ assert( pPager->eState>=PAGER_READER && pPager->eState<PAGER_ERROR );
+ pPager->subjInMemory = (u8)subjInMemory;
+
+ if( ALWAYS(pPager->eState==PAGER_READER) ){
+ assert( pPager->pInJournal==0 );
+
+ if( pagerUseWal(pPager) ){
+ /* If the pager is configured to use locking_mode=exclusive, and an
+ ** exclusive lock on the database is not already held, obtain it now.
+ */
+ if( pPager->exclusiveMode && sqlite3WalExclusiveMode(pPager->pWal, -1) ){
+ rc = pagerLockDb(pPager, EXCLUSIVE_LOCK);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ (void)sqlite3WalExclusiveMode(pPager->pWal, 1);
+ }
+
+ /* Grab the write lock on the log file. If successful, upgrade to
+ ** PAGER_RESERVED state. Otherwise, return an error code to the caller.
+ ** The busy-handler is not invoked if another connection already
+ ** holds the write-lock. If possible, the upper layer will call it.
+ */
+ rc = sqlite3WalBeginWriteTransaction(pPager->pWal);
+ }else{
+ /* Obtain a RESERVED lock on the database file. If the exFlag parameter
+ ** is true, then immediately upgrade this to an EXCLUSIVE lock. The
+ ** busy-handler callback can be used when upgrading to the EXCLUSIVE
+ ** lock, but not when obtaining the RESERVED lock.
+ */
+ rc = pagerLockDb(pPager, RESERVED_LOCK);
+ if( rc==SQLITE_OK && exFlag ){
+ rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
+ }
+ }
+
+ if( rc==SQLITE_OK ){
+ /* Change to WRITER_LOCKED state.
+ **
+ ** WAL mode sets Pager.eState to PAGER_WRITER_LOCKED or CACHEMOD
+ ** when it has an open transaction, but never to DBMOD or FINISHED.
+ ** This is because in those states the code to roll back savepoint
+ ** transactions may copy data from the sub-journal into the database
+ ** file as well as into the page cache. Which would be incorrect in
+ ** WAL mode.
+ */
+ pPager->eState = PAGER_WRITER_LOCKED;
+ pPager->dbHintSize = pPager->dbSize;
+ pPager->dbFileSize = pPager->dbSize;
+ pPager->dbOrigSize = pPager->dbSize;
+ pPager->journalOff = 0;
+ }
+
+ assert( rc==SQLITE_OK || pPager->eState==PAGER_READER );
+ assert( rc!=SQLITE_OK || pPager->eState==PAGER_WRITER_LOCKED );
+ assert( assert_pager_state(pPager) );
+ }
+
+ PAGERTRACE(("TRANSACTION %d\n", PAGERID(pPager)));
+ return rc;
+}
+
+/*
+** Write page pPg onto the end of the rollback journal.
+*/
+static SQLITE_NOINLINE int pagerAddPageToRollbackJournal(PgHdr *pPg){
+ Pager *pPager = pPg->pPager;
+ int rc;
+ u32 cksum;
+ char *pData2;
+ i64 iOff = pPager->journalOff;
+
+ /* We should never write to the journal file the page that
+ ** contains the database locks. The following assert verifies
+ ** that we do not. */
+ assert( pPg->pgno!=PAGER_MJ_PGNO(pPager) );
+
+ assert( pPager->journalHdr<=pPager->journalOff );
+ CODEC2(pPager, pPg->pData, pPg->pgno, 7, return SQLITE_NOMEM_BKPT, pData2);
+ cksum = pager_cksum(pPager, (u8*)pData2);
+
+ /* Even if an IO or diskfull error occurs while journalling the
+ ** page in the block above, set the need-sync flag for the page.
+ ** Otherwise, when the transaction is rolled back, the logic in
+ ** playback_one_page() will think that the page needs to be restored
+ ** in the database file. And if an IO error occurs while doing so,
+ ** then corruption may follow.
+ */
+ pPg->flags |= PGHDR_NEED_SYNC;
+
+ rc = write32bits(pPager->jfd, iOff, pPg->pgno);
+ if( rc!=SQLITE_OK ) return rc;
+ rc = sqlite3OsWrite(pPager->jfd, pData2, pPager->pageSize, iOff+4);
+ if( rc!=SQLITE_OK ) return rc;
+ rc = write32bits(pPager->jfd, iOff+pPager->pageSize+4, cksum);
+ if( rc!=SQLITE_OK ) return rc;
+
+ IOTRACE(("JOUT %p %d %lld %d\n", pPager, pPg->pgno,
+ pPager->journalOff, pPager->pageSize));
+ PAGER_INCR(sqlite3_pager_writej_count);
+ PAGERTRACE(("JOURNAL %d page %d needSync=%d hash(%08x)\n",
+ PAGERID(pPager), pPg->pgno,
+ ((pPg->flags&PGHDR_NEED_SYNC)?1:0), pager_pagehash(pPg)));
+
+ pPager->journalOff += 8 + pPager->pageSize;
+ pPager->nRec++;
+ assert( pPager->pInJournal!=0 );
+ rc = sqlite3BitvecSet(pPager->pInJournal, pPg->pgno);
+ testcase( rc==SQLITE_NOMEM );
+ assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
+ rc |= addToSavepointBitvecs(pPager, pPg->pgno);
+ assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
+ return rc;
+}
+
+/*
+** Mark a single data page as writeable. The page is written into the
+** main journal or sub-journal as required. If the page is written into
+** one of the journals, the corresponding bit is set in the
+** Pager.pInJournal bitvec and the PagerSavepoint.pInSavepoint bitvecs
+** of any open savepoints as appropriate.
+*/
+static int pager_write(PgHdr *pPg){
+ Pager *pPager = pPg->pPager;
+ int rc = SQLITE_OK;
+
+ /* This routine is not called unless a write-transaction has already
+ ** been started. The journal file may or may not be open at this point.
+ ** It is never called in the ERROR state.
+ */
+ assert( pPager->eState==PAGER_WRITER_LOCKED
+ || pPager->eState==PAGER_WRITER_CACHEMOD
+ || pPager->eState==PAGER_WRITER_DBMOD
+ );
+ assert( assert_pager_state(pPager) );
+ assert( pPager->errCode==0 );
+ assert( pPager->readOnly==0 );
+ CHECK_PAGE(pPg);
+
+ /* The journal file needs to be opened. Higher level routines have already
+ ** obtained the necessary locks to begin the write-transaction, but the
+ ** rollback journal might not yet be open. Open it now if this is the case.
+ **
+ ** This is done before calling sqlite3PcacheMakeDirty() on the page.
+ ** Otherwise, if it were done after calling sqlite3PcacheMakeDirty(), then
+ ** an error might occur and the pager would end up in WRITER_LOCKED state
+ ** with pages marked as dirty in the cache.
+ */
+ if( pPager->eState==PAGER_WRITER_LOCKED ){
+ rc = pager_open_journal(pPager);
+ if( rc!=SQLITE_OK ) return rc;
+ }
+ assert( pPager->eState>=PAGER_WRITER_CACHEMOD );
+ assert( assert_pager_state(pPager) );
+
+ /* Mark the page that is about to be modified as dirty. */
+ sqlite3PcacheMakeDirty(pPg);
+
+ /* If a rollback journal is in use, them make sure the page that is about
+ ** to change is in the rollback journal, or if the page is a new page off
+ ** then end of the file, make sure it is marked as PGHDR_NEED_SYNC.
+ */
+ assert( (pPager->pInJournal!=0) == isOpen(pPager->jfd) );
+ if( pPager->pInJournal!=0
+ && sqlite3BitvecTestNotNull(pPager->pInJournal, pPg->pgno)==0
+ ){
+ assert( pagerUseWal(pPager)==0 );
+ if( pPg->pgno<=pPager->dbOrigSize ){
+ rc = pagerAddPageToRollbackJournal(pPg);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ }else{
+ if( pPager->eState!=PAGER_WRITER_DBMOD ){
+ pPg->flags |= PGHDR_NEED_SYNC;
+ }
+ PAGERTRACE(("APPEND %d page %d needSync=%d\n",
+ PAGERID(pPager), pPg->pgno,
+ ((pPg->flags&PGHDR_NEED_SYNC)?1:0)));
+ }
+ }
+
+ /* The PGHDR_DIRTY bit is set above when the page was added to the dirty-list
+ ** and before writing the page into the rollback journal. Wait until now,
+ ** after the page has been successfully journalled, before setting the
+ ** PGHDR_WRITEABLE bit that indicates that the page can be safely modified.
+ */
+ pPg->flags |= PGHDR_WRITEABLE;
+
+ /* If the statement journal is open and the page is not in it,
+ ** then write the page into the statement journal.
+ */
+ if( pPager->nSavepoint>0 ){
+ rc = subjournalPageIfRequired(pPg);
+ }
+
+ /* Update the database size and return. */
+ if( pPager->dbSize<pPg->pgno ){
+ pPager->dbSize = pPg->pgno;
+ }
+ return rc;
+}
+
+/*
+** This is a variant of sqlite3PagerWrite() that runs when the sector size
+** is larger than the page size. SQLite makes the (reasonable) assumption that
+** all bytes of a sector are written together by hardware. Hence, all bytes of
+** a sector need to be journalled in case of a power loss in the middle of
+** a write.
+**
+** Usually, the sector size is less than or equal to the page size, in which
+** case pages can be individually written. This routine only runs in the
+** exceptional case where the page size is smaller than the sector size.
+*/
+static SQLITE_NOINLINE int pagerWriteLargeSector(PgHdr *pPg){
+ int rc = SQLITE_OK; /* Return code */
+ Pgno nPageCount; /* Total number of pages in database file */
+ Pgno pg1; /* First page of the sector pPg is located on. */
+ int nPage = 0; /* Number of pages starting at pg1 to journal */
+ int ii; /* Loop counter */
+ int needSync = 0; /* True if any page has PGHDR_NEED_SYNC */
+ Pager *pPager = pPg->pPager; /* The pager that owns pPg */
+ Pgno nPagePerSector = (pPager->sectorSize/pPager->pageSize);
+
+ /* Set the doNotSpill NOSYNC bit to 1. This is because we cannot allow
+ ** a journal header to be written between the pages journaled by
+ ** this function.
+ */
+ assert( !MEMDB );
+ assert( (pPager->doNotSpill & SPILLFLAG_NOSYNC)==0 );
+ pPager->doNotSpill |= SPILLFLAG_NOSYNC;
+
+ /* This trick assumes that both the page-size and sector-size are
+ ** an integer power of 2. It sets variable pg1 to the identifier
+ ** of the first page of the sector pPg is located on.
+ */
+ pg1 = ((pPg->pgno-1) & ~(nPagePerSector-1)) + 1;
+
+ nPageCount = pPager->dbSize;
+ if( pPg->pgno>nPageCount ){
+ nPage = (pPg->pgno - pg1)+1;
+ }else if( (pg1+nPagePerSector-1)>nPageCount ){
+ nPage = nPageCount+1-pg1;
+ }else{
+ nPage = nPagePerSector;
+ }
+ assert(nPage>0);
+ assert(pg1<=pPg->pgno);
+ assert((pg1+nPage)>pPg->pgno);
+
+ for(ii=0; ii<nPage && rc==SQLITE_OK; ii++){
+ Pgno pg = pg1+ii;
+ PgHdr *pPage;
+ if( pg==pPg->pgno || !sqlite3BitvecTest(pPager->pInJournal, pg) ){
+ if( pg!=PAGER_MJ_PGNO(pPager) ){
+ rc = sqlite3PagerGet(pPager, pg, &pPage, 0);
+ if( rc==SQLITE_OK ){
+ rc = pager_write(pPage);
+ if( pPage->flags&PGHDR_NEED_SYNC ){
+ needSync = 1;
+ }
+ sqlite3PagerUnrefNotNull(pPage);
+ }
+ }
+ }else if( (pPage = sqlite3PagerLookup(pPager, pg))!=0 ){
+ if( pPage->flags&PGHDR_NEED_SYNC ){
+ needSync = 1;
+ }
+ sqlite3PagerUnrefNotNull(pPage);
+ }
+ }
+
+ /* If the PGHDR_NEED_SYNC flag is set for any of the nPage pages
+ ** starting at pg1, then it needs to be set for all of them. Because
+ ** writing to any of these nPage pages may damage the others, the
+ ** journal file must contain sync()ed copies of all of them
+ ** before any of them can be written out to the database file.
+ */
+ if( rc==SQLITE_OK && needSync ){
+ assert( !MEMDB );
+ for(ii=0; ii<nPage; ii++){
+ PgHdr *pPage = sqlite3PagerLookup(pPager, pg1+ii);
+ if( pPage ){
+ pPage->flags |= PGHDR_NEED_SYNC;
+ sqlite3PagerUnrefNotNull(pPage);
+ }
+ }
+ }
+
+ assert( (pPager->doNotSpill & SPILLFLAG_NOSYNC)!=0 );
+ pPager->doNotSpill &= ~SPILLFLAG_NOSYNC;
+ return rc;
+}
+
+/*
+** Mark a data page as writeable. This routine must be called before
+** making changes to a page. The caller must check the return value
+** of this function and be careful not to change any page data unless
+** this routine returns SQLITE_OK.
+**
+** The difference between this function and pager_write() is that this
+** function also deals with the special case where 2 or more pages
+** fit on a single disk sector. In this case all co-resident pages
+** must have been written to the journal file before returning.
+**
+** If an error occurs, SQLITE_NOMEM or an IO error code is returned
+** as appropriate. Otherwise, SQLITE_OK.
+*/
+SQLITE_PRIVATE int sqlite3PagerWrite(PgHdr *pPg){
+ Pager *pPager = pPg->pPager;
+ assert( (pPg->flags & PGHDR_MMAP)==0 );
+ assert( pPager->eState>=PAGER_WRITER_LOCKED );
+ assert( assert_pager_state(pPager) );
+ if( (pPg->flags & PGHDR_WRITEABLE)!=0 && pPager->dbSize>=pPg->pgno ){
+ if( pPager->nSavepoint ) return subjournalPageIfRequired(pPg);
+ return SQLITE_OK;
+ }else if( pPager->errCode ){
+ return pPager->errCode;
+ }else if( pPager->sectorSize > (u32)pPager->pageSize ){
+ assert( pPager->tempFile==0 );
+ return pagerWriteLargeSector(pPg);
+ }else{
+ return pager_write(pPg);
+ }
+}
+
+/*
+** Return TRUE if the page given in the argument was previously passed
+** to sqlite3PagerWrite(). In other words, return TRUE if it is ok
+** to change the content of the page.
+*/
+#ifndef NDEBUG
+SQLITE_PRIVATE int sqlite3PagerIswriteable(DbPage *pPg){
+ return pPg->flags & PGHDR_WRITEABLE;
+}
+#endif
+
+/*
+** A call to this routine tells the pager that it is not necessary to
+** write the information on page pPg back to the disk, even though
+** that page might be marked as dirty. This happens, for example, when
+** the page has been added as a leaf of the freelist and so its
+** content no longer matters.
+**
+** The overlying software layer calls this routine when all of the data
+** on the given page is unused. The pager marks the page as clean so
+** that it does not get written to disk.
+**
+** Tests show that this optimization can quadruple the speed of large
+** DELETE operations.
+**
+** This optimization cannot be used with a temp-file, as the page may
+** have been dirty at the start of the transaction. In that case, if
+** memory pressure forces page pPg out of the cache, the data does need
+** to be written out to disk so that it may be read back in if the
+** current transaction is rolled back.
+*/
+SQLITE_PRIVATE void sqlite3PagerDontWrite(PgHdr *pPg){
+ Pager *pPager = pPg->pPager;
+ if( !pPager->tempFile && (pPg->flags&PGHDR_DIRTY) && pPager->nSavepoint==0 ){
+ PAGERTRACE(("DONT_WRITE page %d of %d\n", pPg->pgno, PAGERID(pPager)));
+ IOTRACE(("CLEAN %p %d\n", pPager, pPg->pgno))
+ pPg->flags |= PGHDR_DONT_WRITE;
+ pPg->flags &= ~PGHDR_WRITEABLE;
+ testcase( pPg->flags & PGHDR_NEED_SYNC );
+ pager_set_pagehash(pPg);
+ }
+}
+
+/*
+** This routine is called to increment the value of the database file
+** change-counter, stored as a 4-byte big-endian integer starting at
+** byte offset 24 of the pager file. The secondary change counter at
+** 92 is also updated, as is the SQLite version number at offset 96.
+**
+** But this only happens if the pPager->changeCountDone flag is false.
+** To avoid excess churning of page 1, the update only happens once.
+** See also the pager_write_changecounter() routine that does an
+** unconditional update of the change counters.
+**
+** If the isDirectMode flag is zero, then this is done by calling
+** sqlite3PagerWrite() on page 1, then modifying the contents of the
+** page data. In this case the file will be updated when the current
+** transaction is committed.
+**
+** The isDirectMode flag may only be non-zero if the library was compiled
+** with the SQLITE_ENABLE_ATOMIC_WRITE macro defined. In this case,
+** if isDirect is non-zero, then the database file is updated directly
+** by writing an updated version of page 1 using a call to the
+** sqlite3OsWrite() function.
+*/
+static int pager_incr_changecounter(Pager *pPager, int isDirectMode){
+ int rc = SQLITE_OK;
+
+ assert( pPager->eState==PAGER_WRITER_CACHEMOD
+ || pPager->eState==PAGER_WRITER_DBMOD
+ );
+ assert( assert_pager_state(pPager) );
+
+ /* Declare and initialize constant integer 'isDirect'. If the
+ ** atomic-write optimization is enabled in this build, then isDirect
+ ** is initialized to the value passed as the isDirectMode parameter
+ ** to this function. Otherwise, it is always set to zero.
+ **
+ ** The idea is that if the atomic-write optimization is not
+ ** enabled at compile time, the compiler can omit the tests of
+ ** 'isDirect' below, as well as the block enclosed in the
+ ** "if( isDirect )" condition.
+ */
+#ifndef SQLITE_ENABLE_ATOMIC_WRITE
+# define DIRECT_MODE 0
+ assert( isDirectMode==0 );
+ UNUSED_PARAMETER(isDirectMode);
+#else
+# define DIRECT_MODE isDirectMode
+#endif
+
+ if( !pPager->changeCountDone && ALWAYS(pPager->dbSize>0) ){
+ PgHdr *pPgHdr; /* Reference to page 1 */
+
+ assert( !pPager->tempFile && isOpen(pPager->fd) );
+
+ /* Open page 1 of the file for writing. */
+ rc = sqlite3PagerGet(pPager, 1, &pPgHdr, 0);
+ assert( pPgHdr==0 || rc==SQLITE_OK );
+
+ /* If page one was fetched successfully, and this function is not
+ ** operating in direct-mode, make page 1 writable. When not in
+ ** direct mode, page 1 is always held in cache and hence the PagerGet()
+ ** above is always successful - hence the ALWAYS on rc==SQLITE_OK.
+ */
+ if( !DIRECT_MODE && ALWAYS(rc==SQLITE_OK) ){
+ rc = sqlite3PagerWrite(pPgHdr);
+ }
+
+ if( rc==SQLITE_OK ){
+ /* Actually do the update of the change counter */
+ pager_write_changecounter(pPgHdr);
+
+ /* If running in direct mode, write the contents of page 1 to the file. */
+ if( DIRECT_MODE ){
+ const void *zBuf;
+ assert( pPager->dbFileSize>0 );
+ CODEC2(pPager, pPgHdr->pData, 1, 6, rc=SQLITE_NOMEM_BKPT, zBuf);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3OsWrite(pPager->fd, zBuf, pPager->pageSize, 0);
+ pPager->aStat[PAGER_STAT_WRITE]++;
+ }
+ if( rc==SQLITE_OK ){
+ /* Update the pager's copy of the change-counter. Otherwise, the
+ ** next time a read transaction is opened the cache will be
+ ** flushed (as the change-counter values will not match). */
+ const void *pCopy = (const void *)&((const char *)zBuf)[24];
+ memcpy(&pPager->dbFileVers, pCopy, sizeof(pPager->dbFileVers));
+ pPager->changeCountDone = 1;
+ }
+ }else{
+ pPager->changeCountDone = 1;
+ }
+ }
+
+ /* Release the page reference. */
+ sqlite3PagerUnref(pPgHdr);
+ }
+ return rc;
+}
+
+/*
+** Sync the database file to disk. This is a no-op for in-memory databases
+** or pages with the Pager.noSync flag set.
+**
+** If successful, or if called on a pager for which it is a no-op, this
+** function returns SQLITE_OK. Otherwise, an IO error code is returned.
+*/
+SQLITE_PRIVATE int sqlite3PagerSync(Pager *pPager, const char *zMaster){
+ int rc = SQLITE_OK;
+
+ if( isOpen(pPager->fd) ){
+ void *pArg = (void*)zMaster;
+ rc = sqlite3OsFileControl(pPager->fd, SQLITE_FCNTL_SYNC, pArg);
+ if( rc==SQLITE_NOTFOUND ) rc = SQLITE_OK;
+ }
+ if( rc==SQLITE_OK && !pPager->noSync ){
+ assert( !MEMDB );
+ rc = sqlite3OsSync(pPager->fd, pPager->syncFlags);
+ }
+ return rc;
+}
+
+/*
+** This function may only be called while a write-transaction is active in
+** rollback. If the connection is in WAL mode, this call is a no-op.
+** Otherwise, if the connection does not already have an EXCLUSIVE lock on
+** the database file, an attempt is made to obtain one.
+**
+** If the EXCLUSIVE lock is already held or the attempt to obtain it is
+** successful, or the connection is in WAL mode, SQLITE_OK is returned.
+** Otherwise, either SQLITE_BUSY or an SQLITE_IOERR_XXX error code is
+** returned.
+*/
+SQLITE_PRIVATE int sqlite3PagerExclusiveLock(Pager *pPager){
+ int rc = pPager->errCode;
+ assert( assert_pager_state(pPager) );
+ if( rc==SQLITE_OK ){
+ assert( pPager->eState==PAGER_WRITER_CACHEMOD
+ || pPager->eState==PAGER_WRITER_DBMOD
+ || pPager->eState==PAGER_WRITER_LOCKED
+ );
+ assert( assert_pager_state(pPager) );
+ if( 0==pagerUseWal(pPager) ){
+ rc = pager_wait_on_lock(pPager, EXCLUSIVE_LOCK);
+ }
+ }
+ return rc;
+}
+
+/*
+** Sync the database file for the pager pPager. zMaster points to the name
+** of a master journal file that should be written into the individual
+** journal file. zMaster may be NULL, which is interpreted as no master
+** journal (a single database transaction).
+**
+** This routine ensures that:
+**
+** * The database file change-counter is updated,
+** * the journal is synced (unless the atomic-write optimization is used),
+** * all dirty pages are written to the database file,
+** * the database file is truncated (if required), and
+** * the database file synced.
+**
+** The only thing that remains to commit the transaction is to finalize
+** (delete, truncate or zero the first part of) the journal file (or
+** delete the master journal file if specified).
+**
+** Note that if zMaster==NULL, this does not overwrite a previous value
+** passed to an sqlite3PagerCommitPhaseOne() call.
+**
+** If the final parameter - noSync - is true, then the database file itself
+** is not synced. The caller must call sqlite3PagerSync() directly to
+** sync the database file before calling CommitPhaseTwo() to delete the
+** journal file in this case.
+*/
+SQLITE_PRIVATE int sqlite3PagerCommitPhaseOne(
+ Pager *pPager, /* Pager object */
+ const char *zMaster, /* If not NULL, the master journal name */
+ int noSync /* True to omit the xSync on the db file */
+){
+ int rc = SQLITE_OK; /* Return code */
+
+ assert( pPager->eState==PAGER_WRITER_LOCKED
+ || pPager->eState==PAGER_WRITER_CACHEMOD
+ || pPager->eState==PAGER_WRITER_DBMOD
+ || pPager->eState==PAGER_ERROR
+ );
+ assert( assert_pager_state(pPager) );
+
+ /* If a prior error occurred, report that error again. */
+ if( NEVER(pPager->errCode) ) return pPager->errCode;
+
+ /* Provide the ability to easily simulate an I/O error during testing */
+ if( sqlite3FaultSim(400) ) return SQLITE_IOERR;
+
+ PAGERTRACE(("DATABASE SYNC: File=%s zMaster=%s nSize=%d\n",
+ pPager->zFilename, zMaster, pPager->dbSize));
+
+ /* If no database changes have been made, return early. */
+ if( pPager->eState<PAGER_WRITER_CACHEMOD ) return SQLITE_OK;
+
+ assert( MEMDB==0 || pPager->tempFile );
+ assert( isOpen(pPager->fd) || pPager->tempFile );
+ if( 0==pagerFlushOnCommit(pPager, 1) ){
+ /* If this is an in-memory db, or no pages have been written to, or this
+ ** function has already been called, it is mostly a no-op. However, any
+ ** backup in progress needs to be restarted. */
+ sqlite3BackupRestart(pPager->pBackup);
+ }else{
+ if( pagerUseWal(pPager) ){
+ PgHdr *pList = sqlite3PcacheDirtyList(pPager->pPCache);
+ PgHdr *pPageOne = 0;
+ if( pList==0 ){
+ /* Must have at least one page for the WAL commit flag.
+ ** Ticket [2d1a5c67dfc2363e44f29d9bbd57f] 2011-05-18 */
+ rc = sqlite3PagerGet(pPager, 1, &pPageOne, 0);
+ pList = pPageOne;
+ pList->pDirty = 0;
+ }
+ assert( rc==SQLITE_OK );
+ if( ALWAYS(pList) ){
+ rc = pagerWalFrames(pPager, pList, pPager->dbSize, 1);
+ }
+ sqlite3PagerUnref(pPageOne);
+ if( rc==SQLITE_OK ){
+ sqlite3PcacheCleanAll(pPager->pPCache);
+ }
+ }else{
+ /* The following block updates the change-counter. Exactly how it
+ ** does this depends on whether or not the atomic-update optimization
+ ** was enabled at compile time, and if this transaction meets the
+ ** runtime criteria to use the operation:
+ **
+ ** * The file-system supports the atomic-write property for
+ ** blocks of size page-size, and
+ ** * This commit is not part of a multi-file transaction, and
+ ** * Exactly one page has been modified and store in the journal file.
+ **
+ ** If the optimization was not enabled at compile time, then the
+ ** pager_incr_changecounter() function is called to update the change
+ ** counter in 'indirect-mode'. If the optimization is compiled in but
+ ** is not applicable to this transaction, call sqlite3JournalCreate()
+ ** to make sure the journal file has actually been created, then call
+ ** pager_incr_changecounter() to update the change-counter in indirect
+ ** mode.
+ **
+ ** Otherwise, if the optimization is both enabled and applicable,
+ ** then call pager_incr_changecounter() to update the change-counter
+ ** in 'direct' mode. In this case the journal file will never be
+ ** created for this transaction.
+ */
+ #ifdef SQLITE_ENABLE_ATOMIC_WRITE
+ PgHdr *pPg;
+ assert( isOpen(pPager->jfd)
+ || pPager->journalMode==PAGER_JOURNALMODE_OFF
+ || pPager->journalMode==PAGER_JOURNALMODE_WAL
+ );
+ if( !zMaster && isOpen(pPager->jfd)
+ && pPager->journalOff==jrnlBufferSize(pPager)
+ && pPager->dbSize>=pPager->dbOrigSize
+ && (0==(pPg = sqlite3PcacheDirtyList(pPager->pPCache)) || 0==pPg->pDirty)
+ ){
+ /* Update the db file change counter via the direct-write method. The
+ ** following call will modify the in-memory representation of page 1
+ ** to include the updated change counter and then write page 1
+ ** directly to the database file. Because of the atomic-write
+ ** property of the host file-system, this is safe.
+ */
+ rc = pager_incr_changecounter(pPager, 1);
+ }else{
+ rc = sqlite3JournalCreate(pPager->jfd);
+ if( rc==SQLITE_OK ){
+ rc = pager_incr_changecounter(pPager, 0);
+ }
+ }
+ #else
+ rc = pager_incr_changecounter(pPager, 0);
+ #endif
+ if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
+
+ /* Write the master journal name into the journal file. If a master
+ ** journal file name has already been written to the journal file,
+ ** or if zMaster is NULL (no master journal), then this call is a no-op.
+ */
+ rc = writeMasterJournal(pPager, zMaster);
+ if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
+
+ /* Sync the journal file and write all dirty pages to the database.
+ ** If the atomic-update optimization is being used, this sync will not
+ ** create the journal file or perform any real IO.
+ **
+ ** Because the change-counter page was just modified, unless the
+ ** atomic-update optimization is used it is almost certain that the
+ ** journal requires a sync here. However, in locking_mode=exclusive
+ ** on a system under memory pressure it is just possible that this is
+ ** not the case. In this case it is likely enough that the redundant
+ ** xSync() call will be changed to a no-op by the OS anyhow.
+ */
+ rc = syncJournal(pPager, 0);
+ if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
+
+ rc = pager_write_pagelist(pPager,sqlite3PcacheDirtyList(pPager->pPCache));
+ if( rc!=SQLITE_OK ){
+ assert( rc!=SQLITE_IOERR_BLOCKED );
+ goto commit_phase_one_exit;
+ }
+ sqlite3PcacheCleanAll(pPager->pPCache);
+
+ /* If the file on disk is smaller than the database image, use
+ ** pager_truncate to grow the file here. This can happen if the database
+ ** image was extended as part of the current transaction and then the
+ ** last page in the db image moved to the free-list. In this case the
+ ** last page is never written out to disk, leaving the database file
+ ** undersized. Fix this now if it is the case. */
+ if( pPager->dbSize>pPager->dbFileSize ){
+ Pgno nNew = pPager->dbSize - (pPager->dbSize==PAGER_MJ_PGNO(pPager));
+ assert( pPager->eState==PAGER_WRITER_DBMOD );
+ rc = pager_truncate(pPager, nNew);
+ if( rc!=SQLITE_OK ) goto commit_phase_one_exit;
+ }
+
+ /* Finally, sync the database file. */
+ if( !noSync ){
+ rc = sqlite3PagerSync(pPager, zMaster);
+ }
+ IOTRACE(("DBSYNC %p\n", pPager))
+ }
+ }
+
+commit_phase_one_exit:
+ if( rc==SQLITE_OK && !pagerUseWal(pPager) ){
+ pPager->eState = PAGER_WRITER_FINISHED;
+ }
+ return rc;
+}
+
+
+/*
+** When this function is called, the database file has been completely
+** updated to reflect the changes made by the current transaction and
+** synced to disk. The journal file still exists in the file-system
+** though, and if a failure occurs at this point it will eventually
+** be used as a hot-journal and the current transaction rolled back.
+**
+** This function finalizes the journal file, either by deleting,
+** truncating or partially zeroing it, so that it cannot be used
+** for hot-journal rollback. Once this is done the transaction is
+** irrevocably committed.
+**
+** If an error occurs, an IO error code is returned and the pager
+** moves into the error state. Otherwise, SQLITE_OK is returned.
+*/
+SQLITE_PRIVATE int sqlite3PagerCommitPhaseTwo(Pager *pPager){
+ int rc = SQLITE_OK; /* Return code */
+
+ /* This routine should not be called if a prior error has occurred.
+ ** But if (due to a coding error elsewhere in the system) it does get
+ ** called, just return the same error code without doing anything. */
+ if( NEVER(pPager->errCode) ) return pPager->errCode;
+
+ assert( pPager->eState==PAGER_WRITER_LOCKED
+ || pPager->eState==PAGER_WRITER_FINISHED
+ || (pagerUseWal(pPager) && pPager->eState==PAGER_WRITER_CACHEMOD)
+ );
+ assert( assert_pager_state(pPager) );
+
+ /* An optimization. If the database was not actually modified during
+ ** this transaction, the pager is running in exclusive-mode and is
+ ** using persistent journals, then this function is a no-op.
+ **
+ ** The start of the journal file currently contains a single journal
+ ** header with the nRec field set to 0. If such a journal is used as
+ ** a hot-journal during hot-journal rollback, 0 changes will be made
+ ** to the database file. So there is no need to zero the journal
+ ** header. Since the pager is in exclusive mode, there is no need
+ ** to drop any locks either.
+ */
+ if( pPager->eState==PAGER_WRITER_LOCKED
+ && pPager->exclusiveMode
+ && pPager->journalMode==PAGER_JOURNALMODE_PERSIST
+ ){
+ assert( pPager->journalOff==JOURNAL_HDR_SZ(pPager) || !pPager->journalOff );
+ pPager->eState = PAGER_READER;
+ return SQLITE_OK;
+ }
+
+ PAGERTRACE(("COMMIT %d\n", PAGERID(pPager)));
+ pPager->iDataVersion++;
+ rc = pager_end_transaction(pPager, pPager->setMaster, 1);
+ return pager_error(pPager, rc);
+}
+
+/*
+** If a write transaction is open, then all changes made within the
+** transaction are reverted and the current write-transaction is closed.
+** The pager falls back to PAGER_READER state if successful, or PAGER_ERROR
+** state if an error occurs.
+**
+** If the pager is already in PAGER_ERROR state when this function is called,
+** it returns Pager.errCode immediately. No work is performed in this case.
+**
+** Otherwise, in rollback mode, this function performs two functions:
+**
+** 1) It rolls back the journal file, restoring all database file and
+** in-memory cache pages to the state they were in when the transaction
+** was opened, and
+**
+** 2) It finalizes the journal file, so that it is not used for hot
+** rollback at any point in the future.
+**
+** Finalization of the journal file (task 2) is only performed if the
+** rollback is successful.
+**
+** In WAL mode, all cache-entries containing data modified within the
+** current transaction are either expelled from the cache or reverted to
+** their pre-transaction state by re-reading data from the database or
+** WAL files. The WAL transaction is then closed.
+*/
+SQLITE_PRIVATE int sqlite3PagerRollback(Pager *pPager){
+ int rc = SQLITE_OK; /* Return code */
+ PAGERTRACE(("ROLLBACK %d\n", PAGERID(pPager)));
+
+ /* PagerRollback() is a no-op if called in READER or OPEN state. If
+ ** the pager is already in the ERROR state, the rollback is not
+ ** attempted here. Instead, the error code is returned to the caller.
+ */
+ assert( assert_pager_state(pPager) );
+ if( pPager->eState==PAGER_ERROR ) return pPager->errCode;
+ if( pPager->eState<=PAGER_READER ) return SQLITE_OK;
+
+ if( pagerUseWal(pPager) ){
+ int rc2;
+ rc = sqlite3PagerSavepoint(pPager, SAVEPOINT_ROLLBACK, -1);
+ rc2 = pager_end_transaction(pPager, pPager->setMaster, 0);
+ if( rc==SQLITE_OK ) rc = rc2;
+ }else if( !isOpen(pPager->jfd) || pPager->eState==PAGER_WRITER_LOCKED ){
+ int eState = pPager->eState;
+ rc = pager_end_transaction(pPager, 0, 0);
+ if( !MEMDB && eState>PAGER_WRITER_LOCKED ){
+ /* This can happen using journal_mode=off. Move the pager to the error
+ ** state to indicate that the contents of the cache may not be trusted.
+ ** Any active readers will get SQLITE_ABORT.
+ */
+ pPager->errCode = SQLITE_ABORT;
+ pPager->eState = PAGER_ERROR;
+ setGetterMethod(pPager);
+ return rc;
+ }
+ }else{
+ rc = pager_playback(pPager, 0);
+ }
+
+ assert( pPager->eState==PAGER_READER || rc!=SQLITE_OK );
+ assert( rc==SQLITE_OK || rc==SQLITE_FULL || rc==SQLITE_CORRUPT
+ || rc==SQLITE_NOMEM || (rc&0xFF)==SQLITE_IOERR
+ || rc==SQLITE_CANTOPEN
+ );
+
+ /* If an error occurs during a ROLLBACK, we can no longer trust the pager
+ ** cache. So call pager_error() on the way out to make any error persistent.
+ */
+ return pager_error(pPager, rc);
+}
+
+/*
+** Return TRUE if the database file is opened read-only. Return FALSE
+** if the database is (in theory) writable.
+*/
+SQLITE_PRIVATE u8 sqlite3PagerIsreadonly(Pager *pPager){
+ return pPager->readOnly;
+}
+
+#ifdef SQLITE_DEBUG
+/*
+** Return the sum of the reference counts for all pages held by pPager.
+*/
+SQLITE_PRIVATE int sqlite3PagerRefcount(Pager *pPager){
+ return sqlite3PcacheRefCount(pPager->pPCache);
+}
+#endif
+
+/*
+** Return the approximate number of bytes of memory currently
+** used by the pager and its associated cache.
+*/
+SQLITE_PRIVATE int sqlite3PagerMemUsed(Pager *pPager){
+ int perPageSize = pPager->pageSize + pPager->nExtra + sizeof(PgHdr)
+ + 5*sizeof(void*);
+ return perPageSize*sqlite3PcachePagecount(pPager->pPCache)
+ + sqlite3MallocSize(pPager)
+ + pPager->pageSize;
+}
+
+/*
+** Return the number of references to the specified page.
+*/
+SQLITE_PRIVATE int sqlite3PagerPageRefcount(DbPage *pPage){
+ return sqlite3PcachePageRefcount(pPage);
+}
+
+#ifdef SQLITE_TEST
+/*
+** This routine is used for testing and analysis only.
+*/
+SQLITE_PRIVATE int *sqlite3PagerStats(Pager *pPager){
+ static int a[11];
+ a[0] = sqlite3PcacheRefCount(pPager->pPCache);
+ a[1] = sqlite3PcachePagecount(pPager->pPCache);
+ a[2] = sqlite3PcacheGetCachesize(pPager->pPCache);
+ a[3] = pPager->eState==PAGER_OPEN ? -1 : (int) pPager->dbSize;
+ a[4] = pPager->eState;
+ a[5] = pPager->errCode;
+ a[6] = pPager->aStat[PAGER_STAT_HIT];
+ a[7] = pPager->aStat[PAGER_STAT_MISS];
+ a[8] = 0; /* Used to be pPager->nOvfl */
+ a[9] = pPager->nRead;
+ a[10] = pPager->aStat[PAGER_STAT_WRITE];
+ return a;
+}
+#endif
+
+/*
+** Parameter eStat must be either SQLITE_DBSTATUS_CACHE_HIT or
+** SQLITE_DBSTATUS_CACHE_MISS. Before returning, *pnVal is incremented by the
+** current cache hit or miss count, according to the value of eStat. If the
+** reset parameter is non-zero, the cache hit or miss count is zeroed before
+** returning.
+*/
+SQLITE_PRIVATE void sqlite3PagerCacheStat(Pager *pPager, int eStat, int reset, int *pnVal){
+
+ assert( eStat==SQLITE_DBSTATUS_CACHE_HIT
+ || eStat==SQLITE_DBSTATUS_CACHE_MISS
+ || eStat==SQLITE_DBSTATUS_CACHE_WRITE
+ );
+
+ assert( SQLITE_DBSTATUS_CACHE_HIT+1==SQLITE_DBSTATUS_CACHE_MISS );
+ assert( SQLITE_DBSTATUS_CACHE_HIT+2==SQLITE_DBSTATUS_CACHE_WRITE );
+ assert( PAGER_STAT_HIT==0 && PAGER_STAT_MISS==1 && PAGER_STAT_WRITE==2 );
+
+ *pnVal += pPager->aStat[eStat - SQLITE_DBSTATUS_CACHE_HIT];
+ if( reset ){
+ pPager->aStat[eStat - SQLITE_DBSTATUS_CACHE_HIT] = 0;
+ }
+}
+
+/*
+** Return true if this is an in-memory or temp-file backed pager.
+*/
+SQLITE_PRIVATE int sqlite3PagerIsMemdb(Pager *pPager){
+ return pPager->tempFile;
+}
+
+/*
+** Check that there are at least nSavepoint savepoints open. If there are
+** currently less than nSavepoints open, then open one or more savepoints
+** to make up the difference. If the number of savepoints is already
+** equal to nSavepoint, then this function is a no-op.
+**
+** If a memory allocation fails, SQLITE_NOMEM is returned. If an error
+** occurs while opening the sub-journal file, then an IO error code is
+** returned. Otherwise, SQLITE_OK.
+*/
+static SQLITE_NOINLINE int pagerOpenSavepoint(Pager *pPager, int nSavepoint){
+ int rc = SQLITE_OK; /* Return code */
+ int nCurrent = pPager->nSavepoint; /* Current number of savepoints */
+ int ii; /* Iterator variable */
+ PagerSavepoint *aNew; /* New Pager.aSavepoint array */
+
+ assert( pPager->eState>=PAGER_WRITER_LOCKED );
+ assert( assert_pager_state(pPager) );
+ assert( nSavepoint>nCurrent && pPager->useJournal );
+
+ /* Grow the Pager.aSavepoint array using realloc(). Return SQLITE_NOMEM
+ ** if the allocation fails. Otherwise, zero the new portion in case a
+ ** malloc failure occurs while populating it in the for(...) loop below.
+ */
+ aNew = (PagerSavepoint *)sqlite3Realloc(
+ pPager->aSavepoint, sizeof(PagerSavepoint)*nSavepoint
+ );
+ if( !aNew ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ memset(&aNew[nCurrent], 0, (nSavepoint-nCurrent) * sizeof(PagerSavepoint));
+ pPager->aSavepoint = aNew;
+
+ /* Populate the PagerSavepoint structures just allocated. */
+ for(ii=nCurrent; ii<nSavepoint; ii++){
+ aNew[ii].nOrig = pPager->dbSize;
+ if( isOpen(pPager->jfd) && pPager->journalOff>0 ){
+ aNew[ii].iOffset = pPager->journalOff;
+ }else{
+ aNew[ii].iOffset = JOURNAL_HDR_SZ(pPager);
+ }
+ aNew[ii].iSubRec = pPager->nSubRec;
+ aNew[ii].pInSavepoint = sqlite3BitvecCreate(pPager->dbSize);
+ if( !aNew[ii].pInSavepoint ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ if( pagerUseWal(pPager) ){
+ sqlite3WalSavepoint(pPager->pWal, aNew[ii].aWalData);
+ }
+ pPager->nSavepoint = ii+1;
+ }
+ assert( pPager->nSavepoint==nSavepoint );
+ assertTruncateConstraint(pPager);
+ return rc;
+}
+SQLITE_PRIVATE int sqlite3PagerOpenSavepoint(Pager *pPager, int nSavepoint){
+ assert( pPager->eState>=PAGER_WRITER_LOCKED );
+ assert( assert_pager_state(pPager) );
+
+ if( nSavepoint>pPager->nSavepoint && pPager->useJournal ){
+ return pagerOpenSavepoint(pPager, nSavepoint);
+ }else{
+ return SQLITE_OK;
+ }
+}
+
+
+/*
+** This function is called to rollback or release (commit) a savepoint.
+** The savepoint to release or rollback need not be the most recently
+** created savepoint.
+**
+** Parameter op is always either SAVEPOINT_ROLLBACK or SAVEPOINT_RELEASE.
+** If it is SAVEPOINT_RELEASE, then release and destroy the savepoint with
+** index iSavepoint. If it is SAVEPOINT_ROLLBACK, then rollback all changes
+** that have occurred since the specified savepoint was created.
+**
+** The savepoint to rollback or release is identified by parameter
+** iSavepoint. A value of 0 means to operate on the outermost savepoint
+** (the first created). A value of (Pager.nSavepoint-1) means operate
+** on the most recently created savepoint. If iSavepoint is greater than
+** (Pager.nSavepoint-1), then this function is a no-op.
+**
+** If a negative value is passed to this function, then the current
+** transaction is rolled back. This is different to calling
+** sqlite3PagerRollback() because this function does not terminate
+** the transaction or unlock the database, it just restores the
+** contents of the database to its original state.
+**
+** In any case, all savepoints with an index greater than iSavepoint
+** are destroyed. If this is a release operation (op==SAVEPOINT_RELEASE),
+** then savepoint iSavepoint is also destroyed.
+**
+** This function may return SQLITE_NOMEM if a memory allocation fails,
+** or an IO error code if an IO error occurs while rolling back a
+** savepoint. If no errors occur, SQLITE_OK is returned.
+*/
+SQLITE_PRIVATE int sqlite3PagerSavepoint(Pager *pPager, int op, int iSavepoint){
+ int rc = pPager->errCode;
+
+#ifdef SQLITE_ENABLE_ZIPVFS
+ if( op==SAVEPOINT_RELEASE ) rc = SQLITE_OK;
+#endif
+
+ assert( op==SAVEPOINT_RELEASE || op==SAVEPOINT_ROLLBACK );
+ assert( iSavepoint>=0 || op==SAVEPOINT_ROLLBACK );
+
+ if( rc==SQLITE_OK && iSavepoint<pPager->nSavepoint ){
+ int ii; /* Iterator variable */
+ int nNew; /* Number of remaining savepoints after this op. */
+
+ /* Figure out how many savepoints will still be active after this
+ ** operation. Store this value in nNew. Then free resources associated
+ ** with any savepoints that are destroyed by this operation.
+ */
+ nNew = iSavepoint + (( op==SAVEPOINT_RELEASE ) ? 0 : 1);
+ for(ii=nNew; ii<pPager->nSavepoint; ii++){
+ sqlite3BitvecDestroy(pPager->aSavepoint[ii].pInSavepoint);
+ }
+ pPager->nSavepoint = nNew;
+
+ /* If this is a release of the outermost savepoint, truncate
+ ** the sub-journal to zero bytes in size. */
+ if( op==SAVEPOINT_RELEASE ){
+ if( nNew==0 && isOpen(pPager->sjfd) ){
+ /* Only truncate if it is an in-memory sub-journal. */
+ if( sqlite3JournalIsInMemory(pPager->sjfd) ){
+ rc = sqlite3OsTruncate(pPager->sjfd, 0);
+ assert( rc==SQLITE_OK );
+ }
+ pPager->nSubRec = 0;
+ }
+ }
+ /* Else this is a rollback operation, playback the specified savepoint.
+ ** If this is a temp-file, it is possible that the journal file has
+ ** not yet been opened. In this case there have been no changes to
+ ** the database file, so the playback operation can be skipped.
+ */
+ else if( pagerUseWal(pPager) || isOpen(pPager->jfd) ){
+ PagerSavepoint *pSavepoint = (nNew==0)?0:&pPager->aSavepoint[nNew-1];
+ rc = pagerPlaybackSavepoint(pPager, pSavepoint);
+ assert(rc!=SQLITE_DONE);
+ }
+
+#ifdef SQLITE_ENABLE_ZIPVFS
+ /* If the cache has been modified but the savepoint cannot be rolled
+ ** back journal_mode=off, put the pager in the error state. This way,
+ ** if the VFS used by this pager includes ZipVFS, the entire transaction
+ ** can be rolled back at the ZipVFS level. */
+ else if(
+ pPager->journalMode==PAGER_JOURNALMODE_OFF
+ && pPager->eState>=PAGER_WRITER_CACHEMOD
+ ){
+ pPager->errCode = SQLITE_ABORT;
+ pPager->eState = PAGER_ERROR;
+ setGetterMethod(pPager);
+ }
+#endif
+ }
+
+ return rc;
+}
+
+/*
+** Return the full pathname of the database file.
+**
+** Except, if the pager is in-memory only, then return an empty string if
+** nullIfMemDb is true. This routine is called with nullIfMemDb==1 when
+** used to report the filename to the user, for compatibility with legacy
+** behavior. But when the Btree needs to know the filename for matching to
+** shared cache, it uses nullIfMemDb==0 so that in-memory databases can
+** participate in shared-cache.
+*/
+SQLITE_PRIVATE const char *sqlite3PagerFilename(Pager *pPager, int nullIfMemDb){
+ return (nullIfMemDb && pPager->memDb) ? "" : pPager->zFilename;
+}
+
+/*
+** Return the VFS structure for the pager.
+*/
+SQLITE_PRIVATE sqlite3_vfs *sqlite3PagerVfs(Pager *pPager){
+ return pPager->pVfs;
+}
+
+/*
+** Return the file handle for the database file associated
+** with the pager. This might return NULL if the file has
+** not yet been opened.
+*/
+SQLITE_PRIVATE sqlite3_file *sqlite3PagerFile(Pager *pPager){
+ return pPager->fd;
+}
+
+/*
+** Return the file handle for the journal file (if it exists).
+** This will be either the rollback journal or the WAL file.
+*/
+SQLITE_PRIVATE sqlite3_file *sqlite3PagerJrnlFile(Pager *pPager){
+#if SQLITE_OMIT_WAL
+ return pPager->jfd;
+#else
+ return pPager->pWal ? sqlite3WalFile(pPager->pWal) : pPager->jfd;
+#endif
+}
+
+/*
+** Return the full pathname of the journal file.
+*/
+SQLITE_PRIVATE const char *sqlite3PagerJournalname(Pager *pPager){
+ return pPager->zJournal;
+}
+
+#ifdef SQLITE_HAS_CODEC
+/*
+** Set or retrieve the codec for this pager
+*/
+SQLITE_PRIVATE void sqlite3PagerSetCodec(
+ Pager *pPager,
+ void *(*xCodec)(void*,void*,Pgno,int),
+ void (*xCodecSizeChng)(void*,int,int),
+ void (*xCodecFree)(void*),
+ void *pCodec
+){
+ if( pPager->xCodecFree ) pPager->xCodecFree(pPager->pCodec);
+ pPager->xCodec = pPager->memDb ? 0 : xCodec;
+ pPager->xCodecSizeChng = xCodecSizeChng;
+ pPager->xCodecFree = xCodecFree;
+ pPager->pCodec = pCodec;
+ setGetterMethod(pPager);
+ pagerReportSize(pPager);
+}
+SQLITE_PRIVATE void *sqlite3PagerGetCodec(Pager *pPager){
+ return pPager->pCodec;
+}
+
+/*
+** This function is called by the wal module when writing page content
+** into the log file.
+**
+** This function returns a pointer to a buffer containing the encrypted
+** page content. If a malloc fails, this function may return NULL.
+*/
+SQLITE_PRIVATE void *sqlite3PagerCodec(PgHdr *pPg){
+ void *aData = 0;
+ CODEC2(pPg->pPager, pPg->pData, pPg->pgno, 6, return 0, aData);
+ return aData;
+}
+
+/*
+** Return the current pager state
+*/
+SQLITE_PRIVATE int sqlite3PagerState(Pager *pPager){
+ return pPager->eState;
+}
+#endif /* SQLITE_HAS_CODEC */
+
+#ifndef SQLITE_OMIT_AUTOVACUUM
+/*
+** Move the page pPg to location pgno in the file.
+**
+** There must be no references to the page previously located at
+** pgno (which we call pPgOld) though that page is allowed to be
+** in cache. If the page previously located at pgno is not already
+** in the rollback journal, it is not put there by by this routine.
+**
+** References to the page pPg remain valid. Updating any
+** meta-data associated with pPg (i.e. data stored in the nExtra bytes
+** allocated along with the page) is the responsibility of the caller.
+**
+** A transaction must be active when this routine is called. It used to be
+** required that a statement transaction was not active, but this restriction
+** has been removed (CREATE INDEX needs to move a page when a statement
+** transaction is active).
+**
+** If the fourth argument, isCommit, is non-zero, then this page is being
+** moved as part of a database reorganization just before the transaction
+** is being committed. In this case, it is guaranteed that the database page
+** pPg refers to will not be written to again within this transaction.
+**
+** This function may return SQLITE_NOMEM or an IO error code if an error
+** occurs. Otherwise, it returns SQLITE_OK.
+*/
+SQLITE_PRIVATE int sqlite3PagerMovepage(Pager *pPager, DbPage *pPg, Pgno pgno, int isCommit){
+ PgHdr *pPgOld; /* The page being overwritten. */
+ Pgno needSyncPgno = 0; /* Old value of pPg->pgno, if sync is required */
+ int rc; /* Return code */
+ Pgno origPgno; /* The original page number */
+
+ assert( pPg->nRef>0 );
+ assert( pPager->eState==PAGER_WRITER_CACHEMOD
+ || pPager->eState==PAGER_WRITER_DBMOD
+ );
+ assert( assert_pager_state(pPager) );
+
+ /* In order to be able to rollback, an in-memory database must journal
+ ** the page we are moving from.
+ */
+ assert( pPager->tempFile || !MEMDB );
+ if( pPager->tempFile ){
+ rc = sqlite3PagerWrite(pPg);
+ if( rc ) return rc;
+ }
+
+ /* If the page being moved is dirty and has not been saved by the latest
+ ** savepoint, then save the current contents of the page into the
+ ** sub-journal now. This is required to handle the following scenario:
+ **
+ ** BEGIN;
+ ** <journal page X, then modify it in memory>
+ ** SAVEPOINT one;
+ ** <Move page X to location Y>
+ ** ROLLBACK TO one;
+ **
+ ** If page X were not written to the sub-journal here, it would not
+ ** be possible to restore its contents when the "ROLLBACK TO one"
+ ** statement were is processed.
+ **
+ ** subjournalPage() may need to allocate space to store pPg->pgno into
+ ** one or more savepoint bitvecs. This is the reason this function
+ ** may return SQLITE_NOMEM.
+ */
+ if( (pPg->flags & PGHDR_DIRTY)!=0
+ && SQLITE_OK!=(rc = subjournalPageIfRequired(pPg))
+ ){
+ return rc;
+ }
+
+ PAGERTRACE(("MOVE %d page %d (needSync=%d) moves to %d\n",
+ PAGERID(pPager), pPg->pgno, (pPg->flags&PGHDR_NEED_SYNC)?1:0, pgno));
+ IOTRACE(("MOVE %p %d %d\n", pPager, pPg->pgno, pgno))
+
+ /* If the journal needs to be sync()ed before page pPg->pgno can
+ ** be written to, store pPg->pgno in local variable needSyncPgno.
+ **
+ ** If the isCommit flag is set, there is no need to remember that
+ ** the journal needs to be sync()ed before database page pPg->pgno
+ ** can be written to. The caller has already promised not to write to it.
+ */
+ if( (pPg->flags&PGHDR_NEED_SYNC) && !isCommit ){
+ needSyncPgno = pPg->pgno;
+ assert( pPager->journalMode==PAGER_JOURNALMODE_OFF ||
+ pageInJournal(pPager, pPg) || pPg->pgno>pPager->dbOrigSize );
+ assert( pPg->flags&PGHDR_DIRTY );
+ }
+
+ /* If the cache contains a page with page-number pgno, remove it
+ ** from its hash chain. Also, if the PGHDR_NEED_SYNC flag was set for
+ ** page pgno before the 'move' operation, it needs to be retained
+ ** for the page moved there.
+ */
+ pPg->flags &= ~PGHDR_NEED_SYNC;
+ pPgOld = sqlite3PagerLookup(pPager, pgno);
+ assert( !pPgOld || pPgOld->nRef==1 );
+ if( pPgOld ){
+ pPg->flags |= (pPgOld->flags&PGHDR_NEED_SYNC);
+ if( pPager->tempFile ){
+ /* Do not discard pages from an in-memory database since we might
+ ** need to rollback later. Just move the page out of the way. */
+ sqlite3PcacheMove(pPgOld, pPager->dbSize+1);
+ }else{
+ sqlite3PcacheDrop(pPgOld);
+ }
+ }
+
+ origPgno = pPg->pgno;
+ sqlite3PcacheMove(pPg, pgno);
+ sqlite3PcacheMakeDirty(pPg);
+
+ /* For an in-memory database, make sure the original page continues
+ ** to exist, in case the transaction needs to roll back. Use pPgOld
+ ** as the original page since it has already been allocated.
+ */
+ if( pPager->tempFile && pPgOld ){
+ sqlite3PcacheMove(pPgOld, origPgno);
+ sqlite3PagerUnrefNotNull(pPgOld);
+ }
+
+ if( needSyncPgno ){
+ /* If needSyncPgno is non-zero, then the journal file needs to be
+ ** sync()ed before any data is written to database file page needSyncPgno.
+ ** Currently, no such page exists in the page-cache and the
+ ** "is journaled" bitvec flag has been set. This needs to be remedied by
+ ** loading the page into the pager-cache and setting the PGHDR_NEED_SYNC
+ ** flag.
+ **
+ ** If the attempt to load the page into the page-cache fails, (due
+ ** to a malloc() or IO failure), clear the bit in the pInJournal[]
+ ** array. Otherwise, if the page is loaded and written again in
+ ** this transaction, it may be written to the database file before
+ ** it is synced into the journal file. This way, it may end up in
+ ** the journal file twice, but that is not a problem.
+ */
+ PgHdr *pPgHdr;
+ rc = sqlite3PagerGet(pPager, needSyncPgno, &pPgHdr, 0);
+ if( rc!=SQLITE_OK ){
+ if( needSyncPgno<=pPager->dbOrigSize ){
+ assert( pPager->pTmpSpace!=0 );
+ sqlite3BitvecClear(pPager->pInJournal, needSyncPgno, pPager->pTmpSpace);
+ }
+ return rc;
+ }
+ pPgHdr->flags |= PGHDR_NEED_SYNC;
+ sqlite3PcacheMakeDirty(pPgHdr);
+ sqlite3PagerUnrefNotNull(pPgHdr);
+ }
+
+ return SQLITE_OK;
+}
+#endif
+
+/*
+** The page handle passed as the first argument refers to a dirty page
+** with a page number other than iNew. This function changes the page's
+** page number to iNew and sets the value of the PgHdr.flags field to
+** the value passed as the third parameter.
+*/
+SQLITE_PRIVATE void sqlite3PagerRekey(DbPage *pPg, Pgno iNew, u16 flags){
+ assert( pPg->pgno!=iNew );
+ pPg->flags = flags;
+ sqlite3PcacheMove(pPg, iNew);
+}
+
+/*
+** Return a pointer to the data for the specified page.
+*/
+SQLITE_PRIVATE void *sqlite3PagerGetData(DbPage *pPg){
+ assert( pPg->nRef>0 || pPg->pPager->memDb );
+ return pPg->pData;
+}
+
+/*
+** Return a pointer to the Pager.nExtra bytes of "extra" space
+** allocated along with the specified page.
+*/
+SQLITE_PRIVATE void *sqlite3PagerGetExtra(DbPage *pPg){
+ return pPg->pExtra;
+}
+
+/*
+** Get/set the locking-mode for this pager. Parameter eMode must be one
+** of PAGER_LOCKINGMODE_QUERY, PAGER_LOCKINGMODE_NORMAL or
+** PAGER_LOCKINGMODE_EXCLUSIVE. If the parameter is not _QUERY, then
+** the locking-mode is set to the value specified.
+**
+** The returned value is either PAGER_LOCKINGMODE_NORMAL or
+** PAGER_LOCKINGMODE_EXCLUSIVE, indicating the current (possibly updated)
+** locking-mode.
+*/
+SQLITE_PRIVATE int sqlite3PagerLockingMode(Pager *pPager, int eMode){
+ assert( eMode==PAGER_LOCKINGMODE_QUERY
+ || eMode==PAGER_LOCKINGMODE_NORMAL
+ || eMode==PAGER_LOCKINGMODE_EXCLUSIVE );
+ assert( PAGER_LOCKINGMODE_QUERY<0 );
+ assert( PAGER_LOCKINGMODE_NORMAL>=0 && PAGER_LOCKINGMODE_EXCLUSIVE>=0 );
+ assert( pPager->exclusiveMode || 0==sqlite3WalHeapMemory(pPager->pWal) );
+ if( eMode>=0 && !pPager->tempFile && !sqlite3WalHeapMemory(pPager->pWal) ){
+ pPager->exclusiveMode = (u8)eMode;
+ }
+ return (int)pPager->exclusiveMode;
+}
+
+/*
+** Set the journal-mode for this pager. Parameter eMode must be one of:
+**
+** PAGER_JOURNALMODE_DELETE
+** PAGER_JOURNALMODE_TRUNCATE
+** PAGER_JOURNALMODE_PERSIST
+** PAGER_JOURNALMODE_OFF
+** PAGER_JOURNALMODE_MEMORY
+** PAGER_JOURNALMODE_WAL
+**
+** The journalmode is set to the value specified if the change is allowed.
+** The change may be disallowed for the following reasons:
+**
+** * An in-memory database can only have its journal_mode set to _OFF
+** or _MEMORY.
+**
+** * Temporary databases cannot have _WAL journalmode.
+**
+** The returned indicate the current (possibly updated) journal-mode.
+*/
+SQLITE_PRIVATE int sqlite3PagerSetJournalMode(Pager *pPager, int eMode){
+ u8 eOld = pPager->journalMode; /* Prior journalmode */
+
+#ifdef SQLITE_DEBUG
+ /* The print_pager_state() routine is intended to be used by the debugger
+ ** only. We invoke it once here to suppress a compiler warning. */
+ print_pager_state(pPager);
+#endif
+
+
+ /* The eMode parameter is always valid */
+ assert( eMode==PAGER_JOURNALMODE_DELETE
+ || eMode==PAGER_JOURNALMODE_TRUNCATE
+ || eMode==PAGER_JOURNALMODE_PERSIST
+ || eMode==PAGER_JOURNALMODE_OFF
+ || eMode==PAGER_JOURNALMODE_WAL
+ || eMode==PAGER_JOURNALMODE_MEMORY );
+
+ /* This routine is only called from the OP_JournalMode opcode, and
+ ** the logic there will never allow a temporary file to be changed
+ ** to WAL mode.
+ */
+ assert( pPager->tempFile==0 || eMode!=PAGER_JOURNALMODE_WAL );
+
+ /* Do allow the journalmode of an in-memory database to be set to
+ ** anything other than MEMORY or OFF
+ */
+ if( MEMDB ){
+ assert( eOld==PAGER_JOURNALMODE_MEMORY || eOld==PAGER_JOURNALMODE_OFF );
+ if( eMode!=PAGER_JOURNALMODE_MEMORY && eMode!=PAGER_JOURNALMODE_OFF ){
+ eMode = eOld;
+ }
+ }
+
+ if( eMode!=eOld ){
+
+ /* Change the journal mode. */
+ assert( pPager->eState!=PAGER_ERROR );
+ pPager->journalMode = (u8)eMode;
+
+ /* When transistioning from TRUNCATE or PERSIST to any other journal
+ ** mode except WAL, unless the pager is in locking_mode=exclusive mode,
+ ** delete the journal file.
+ */
+ assert( (PAGER_JOURNALMODE_TRUNCATE & 5)==1 );
+ assert( (PAGER_JOURNALMODE_PERSIST & 5)==1 );
+ assert( (PAGER_JOURNALMODE_DELETE & 5)==0 );
+ assert( (PAGER_JOURNALMODE_MEMORY & 5)==4 );
+ assert( (PAGER_JOURNALMODE_OFF & 5)==0 );
+ assert( (PAGER_JOURNALMODE_WAL & 5)==5 );
+
+ assert( isOpen(pPager->fd) || pPager->exclusiveMode );
+ if( !pPager->exclusiveMode && (eOld & 5)==1 && (eMode & 1)==0 ){
+
+ /* In this case we would like to delete the journal file. If it is
+ ** not possible, then that is not a problem. Deleting the journal file
+ ** here is an optimization only.
+ **
+ ** Before deleting the journal file, obtain a RESERVED lock on the
+ ** database file. This ensures that the journal file is not deleted
+ ** while it is in use by some other client.
+ */
+ sqlite3OsClose(pPager->jfd);
+ if( pPager->eLock>=RESERVED_LOCK ){
+ sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0);
+ }else{
+ int rc = SQLITE_OK;
+ int state = pPager->eState;
+ assert( state==PAGER_OPEN || state==PAGER_READER );
+ if( state==PAGER_OPEN ){
+ rc = sqlite3PagerSharedLock(pPager);
+ }
+ if( pPager->eState==PAGER_READER ){
+ assert( rc==SQLITE_OK );
+ rc = pagerLockDb(pPager, RESERVED_LOCK);
+ }
+ if( rc==SQLITE_OK ){
+ sqlite3OsDelete(pPager->pVfs, pPager->zJournal, 0);
+ }
+ if( rc==SQLITE_OK && state==PAGER_READER ){
+ pagerUnlockDb(pPager, SHARED_LOCK);
+ }else if( state==PAGER_OPEN ){
+ pager_unlock(pPager);
+ }
+ assert( state==pPager->eState );
+ }
+ }else if( eMode==PAGER_JOURNALMODE_OFF ){
+ sqlite3OsClose(pPager->jfd);
+ }
+ }
+
+ /* Return the new journal mode */
+ return (int)pPager->journalMode;
+}
+
+/*
+** Return the current journal mode.
+*/
+SQLITE_PRIVATE int sqlite3PagerGetJournalMode(Pager *pPager){
+ return (int)pPager->journalMode;
+}
+
+/*
+** Return TRUE if the pager is in a state where it is OK to change the
+** journalmode. Journalmode changes can only happen when the database
+** is unmodified.
+*/
+SQLITE_PRIVATE int sqlite3PagerOkToChangeJournalMode(Pager *pPager){
+ assert( assert_pager_state(pPager) );
+ if( pPager->eState>=PAGER_WRITER_CACHEMOD ) return 0;
+ if( NEVER(isOpen(pPager->jfd) && pPager->journalOff>0) ) return 0;
+ return 1;
+}
+
+/*
+** Get/set the size-limit used for persistent journal files.
+**
+** Setting the size limit to -1 means no limit is enforced.
+** An attempt to set a limit smaller than -1 is a no-op.
+*/
+SQLITE_PRIVATE i64 sqlite3PagerJournalSizeLimit(Pager *pPager, i64 iLimit){
+ if( iLimit>=-1 ){
+ pPager->journalSizeLimit = iLimit;
+ sqlite3WalLimit(pPager->pWal, iLimit);
+ }
+ return pPager->journalSizeLimit;
+}
+
+/*
+** Return a pointer to the pPager->pBackup variable. The backup module
+** in backup.c maintains the content of this variable. This module
+** uses it opaquely as an argument to sqlite3BackupRestart() and
+** sqlite3BackupUpdate() only.
+*/
+SQLITE_PRIVATE sqlite3_backup **sqlite3PagerBackupPtr(Pager *pPager){
+ return &pPager->pBackup;
+}
+
+#ifndef SQLITE_OMIT_VACUUM
+/*
+** Unless this is an in-memory or temporary database, clear the pager cache.
+*/
+SQLITE_PRIVATE void sqlite3PagerClearCache(Pager *pPager){
+ assert( MEMDB==0 || pPager->tempFile );
+ if( pPager->tempFile==0 ) pager_reset(pPager);
+}
+#endif
+
+
+#ifndef SQLITE_OMIT_WAL
+/*
+** This function is called when the user invokes "PRAGMA wal_checkpoint",
+** "PRAGMA wal_blocking_checkpoint" or calls the sqlite3_wal_checkpoint()
+** or wal_blocking_checkpoint() API functions.
+**
+** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
+*/
+SQLITE_PRIVATE int sqlite3PagerCheckpoint(
+ Pager *pPager, /* Checkpoint on this pager */
+ sqlite3 *db, /* Db handle used to check for interrupts */
+ int eMode, /* Type of checkpoint */
+ int *pnLog, /* OUT: Final number of frames in log */
+ int *pnCkpt /* OUT: Final number of checkpointed frames */
+){
+ int rc = SQLITE_OK;
+ if( pPager->pWal ){
+ rc = sqlite3WalCheckpoint(pPager->pWal, db, eMode,
+ (eMode==SQLITE_CHECKPOINT_PASSIVE ? 0 : pPager->xBusyHandler),
+ pPager->pBusyHandlerArg,
+ pPager->ckptSyncFlags, pPager->pageSize, (u8 *)pPager->pTmpSpace,
+ pnLog, pnCkpt
+ );
+ }
+ return rc;
+}
+
+SQLITE_PRIVATE int sqlite3PagerWalCallback(Pager *pPager){
+ return sqlite3WalCallback(pPager->pWal);
+}
+
+/*
+** Return true if the underlying VFS for the given pager supports the
+** primitives necessary for write-ahead logging.
+*/
+SQLITE_PRIVATE int sqlite3PagerWalSupported(Pager *pPager){
+ const sqlite3_io_methods *pMethods = pPager->fd->pMethods;
+ if( pPager->noLock ) return 0;
+ return pPager->exclusiveMode || (pMethods->iVersion>=2 && pMethods->xShmMap);
+}
+
+/*
+** Attempt to take an exclusive lock on the database file. If a PENDING lock
+** is obtained instead, immediately release it.
+*/
+static int pagerExclusiveLock(Pager *pPager){
+ int rc; /* Return code */
+
+ assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK );
+ rc = pagerLockDb(pPager, EXCLUSIVE_LOCK);
+ if( rc!=SQLITE_OK ){
+ /* If the attempt to grab the exclusive lock failed, release the
+ ** pending lock that may have been obtained instead. */
+ pagerUnlockDb(pPager, SHARED_LOCK);
+ }
+
+ return rc;
+}
+
+/*
+** Call sqlite3WalOpen() to open the WAL handle. If the pager is in
+** exclusive-locking mode when this function is called, take an EXCLUSIVE
+** lock on the database file and use heap-memory to store the wal-index
+** in. Otherwise, use the normal shared-memory.
+*/
+static int pagerOpenWal(Pager *pPager){
+ int rc = SQLITE_OK;
+
+ assert( pPager->pWal==0 && pPager->tempFile==0 );
+ assert( pPager->eLock==SHARED_LOCK || pPager->eLock==EXCLUSIVE_LOCK );
+
+ /* If the pager is already in exclusive-mode, the WAL module will use
+ ** heap-memory for the wal-index instead of the VFS shared-memory
+ ** implementation. Take the exclusive lock now, before opening the WAL
+ ** file, to make sure this is safe.
+ */
+ if( pPager->exclusiveMode ){
+ rc = pagerExclusiveLock(pPager);
+ }
+
+ /* Open the connection to the log file. If this operation fails,
+ ** (e.g. due to malloc() failure), return an error code.
+ */
+ if( rc==SQLITE_OK ){
+ rc = sqlite3WalOpen(pPager->pVfs,
+ pPager->fd, pPager->zWal, pPager->exclusiveMode,
+ pPager->journalSizeLimit, &pPager->pWal
+ );
+ }
+ pagerFixMaplimit(pPager);
+
+ return rc;
+}
+
+
+/*
+** The caller must be holding a SHARED lock on the database file to call
+** this function.
+**
+** If the pager passed as the first argument is open on a real database
+** file (not a temp file or an in-memory database), and the WAL file
+** is not already open, make an attempt to open it now. If successful,
+** return SQLITE_OK. If an error occurs or the VFS used by the pager does
+** not support the xShmXXX() methods, return an error code. *pbOpen is
+** not modified in either case.
+**
+** If the pager is open on a temp-file (or in-memory database), or if
+** the WAL file is already open, set *pbOpen to 1 and return SQLITE_OK
+** without doing anything.
+*/
+SQLITE_PRIVATE int sqlite3PagerOpenWal(
+ Pager *pPager, /* Pager object */
+ int *pbOpen /* OUT: Set to true if call is a no-op */
+){
+ int rc = SQLITE_OK; /* Return code */
+
+ assert( assert_pager_state(pPager) );
+ assert( pPager->eState==PAGER_OPEN || pbOpen );
+ assert( pPager->eState==PAGER_READER || !pbOpen );
+ assert( pbOpen==0 || *pbOpen==0 );
+ assert( pbOpen!=0 || (!pPager->tempFile && !pPager->pWal) );
+
+ if( !pPager->tempFile && !pPager->pWal ){
+ if( !sqlite3PagerWalSupported(pPager) ) return SQLITE_CANTOPEN;
+
+ /* Close any rollback journal previously open */
+ sqlite3OsClose(pPager->jfd);
+
+ rc = pagerOpenWal(pPager);
+ if( rc==SQLITE_OK ){
+ pPager->journalMode = PAGER_JOURNALMODE_WAL;
+ pPager->eState = PAGER_OPEN;
+ }
+ }else{
+ *pbOpen = 1;
+ }
+
+ return rc;
+}
+
+/*
+** This function is called to close the connection to the log file prior
+** to switching from WAL to rollback mode.
+**
+** Before closing the log file, this function attempts to take an
+** EXCLUSIVE lock on the database file. If this cannot be obtained, an
+** error (SQLITE_BUSY) is returned and the log connection is not closed.
+** If successful, the EXCLUSIVE lock is not released before returning.
+*/
+SQLITE_PRIVATE int sqlite3PagerCloseWal(Pager *pPager, sqlite3 *db){
+ int rc = SQLITE_OK;
+
+ assert( pPager->journalMode==PAGER_JOURNALMODE_WAL );
+
+ /* If the log file is not already open, but does exist in the file-system,
+ ** it may need to be checkpointed before the connection can switch to
+ ** rollback mode. Open it now so this can happen.
+ */
+ if( !pPager->pWal ){
+ int logexists = 0;
+ rc = pagerLockDb(pPager, SHARED_LOCK);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3OsAccess(
+ pPager->pVfs, pPager->zWal, SQLITE_ACCESS_EXISTS, &logexists
+ );
+ }
+ if( rc==SQLITE_OK && logexists ){
+ rc = pagerOpenWal(pPager);
+ }
+ }
+
+ /* Checkpoint and close the log. Because an EXCLUSIVE lock is held on
+ ** the database file, the log and log-summary files will be deleted.
+ */
+ if( rc==SQLITE_OK && pPager->pWal ){
+ rc = pagerExclusiveLock(pPager);
+ if( rc==SQLITE_OK ){
+ rc = sqlite3WalClose(pPager->pWal, db, pPager->ckptSyncFlags,
+ pPager->pageSize, (u8*)pPager->pTmpSpace);
+ pPager->pWal = 0;
+ pagerFixMaplimit(pPager);
+ if( rc && !pPager->exclusiveMode ) pagerUnlockDb(pPager, SHARED_LOCK);
+ }
+ }
+ return rc;
+}
+
+#ifdef SQLITE_ENABLE_SNAPSHOT
+/*
+** If this is a WAL database, obtain a snapshot handle for the snapshot
+** currently open. Otherwise, return an error.
+*/
+SQLITE_PRIVATE int sqlite3PagerSnapshotGet(Pager *pPager, sqlite3_snapshot **ppSnapshot){
+ int rc = SQLITE_ERROR;
+ if( pPager->pWal ){
+ rc = sqlite3WalSnapshotGet(pPager->pWal, ppSnapshot);
+ }
+ return rc;
+}
+
+/*
+** If this is a WAL database, store a pointer to pSnapshot. Next time a
+** read transaction is opened, attempt to read from the snapshot it
+** identifies. If this is not a WAL database, return an error.
+*/
+SQLITE_PRIVATE int sqlite3PagerSnapshotOpen(Pager *pPager, sqlite3_snapshot *pSnapshot){
+ int rc = SQLITE_OK;
+ if( pPager->pWal ){
+ sqlite3WalSnapshotOpen(pPager->pWal, pSnapshot);
+ }else{
+ rc = SQLITE_ERROR;
+ }
+ return rc;
+}
+
+/*
+** If this is a WAL database, call sqlite3WalSnapshotRecover(). If this
+** is not a WAL database, return an error.
+*/
+SQLITE_PRIVATE int sqlite3PagerSnapshotRecover(Pager *pPager){
+ int rc;
+ if( pPager->pWal ){
+ rc = sqlite3WalSnapshotRecover(pPager->pWal);
+ }else{
+ rc = SQLITE_ERROR;
+ }
+ return rc;
+}
+#endif /* SQLITE_ENABLE_SNAPSHOT */
+#endif /* !SQLITE_OMIT_WAL */
+
+#ifdef SQLITE_ENABLE_ZIPVFS
+/*
+** A read-lock must be held on the pager when this function is called. If
+** the pager is in WAL mode and the WAL file currently contains one or more
+** frames, return the size in bytes of the page images stored within the
+** WAL frames. Otherwise, if this is not a WAL database or the WAL file
+** is empty, return 0.
+*/
+SQLITE_PRIVATE int sqlite3PagerWalFramesize(Pager *pPager){
+ assert( pPager->eState>=PAGER_READER );
+ return sqlite3WalFramesize(pPager->pWal);
+}
+#endif
+
+#endif /* SQLITE_OMIT_DISKIO */
+
+/************** End of pager.c ***********************************************/
+/************** Begin file wal.c *********************************************/
+/*
+** 2010 February 1
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains the implementation of a write-ahead log (WAL) used in
+** "journal_mode=WAL" mode.
+**
+** WRITE-AHEAD LOG (WAL) FILE FORMAT
+**
+** A WAL file consists of a header followed by zero or more "frames".
+** Each frame records the revised content of a single page from the
+** database file. All changes to the database are recorded by writing
+** frames into the WAL. Transactions commit when a frame is written that
+** contains a commit marker. A single WAL can and usually does record
+** multiple transactions. Periodically, the content of the WAL is
+** transferred back into the database file in an operation called a
+** "checkpoint".
+**
+** A single WAL file can be used multiple times. In other words, the
+** WAL can fill up with frames and then be checkpointed and then new
+** frames can overwrite the old ones. A WAL always grows from beginning
+** toward the end. Checksums and counters attached to each frame are
+** used to determine which frames within the WAL are valid and which
+** are leftovers from prior checkpoints.
+**
+** The WAL header is 32 bytes in size and consists of the following eight
+** big-endian 32-bit unsigned integer values:
+**
+** 0: Magic number. 0x377f0682 or 0x377f0683
+** 4: File format version. Currently 3007000
+** 8: Database page size. Example: 1024
+** 12: Checkpoint sequence number
+** 16: Salt-1, random integer incremented with each checkpoint
+** 20: Salt-2, a different random integer changing with each ckpt
+** 24: Checksum-1 (first part of checksum for first 24 bytes of header).
+** 28: Checksum-2 (second part of checksum for first 24 bytes of header).
+**
+** Immediately following the wal-header are zero or more frames. Each
+** frame consists of a 24-byte frame-header followed by a <page-size> bytes
+** of page data. The frame-header is six big-endian 32-bit unsigned
+** integer values, as follows:
+**
+** 0: Page number.
+** 4: For commit records, the size of the database image in pages
+** after the commit. For all other records, zero.
+** 8: Salt-1 (copied from the header)
+** 12: Salt-2 (copied from the header)
+** 16: Checksum-1.
+** 20: Checksum-2.
+**
+** A frame is considered valid if and only if the following conditions are
+** true:
+**
+** (1) The salt-1 and salt-2 values in the frame-header match
+** salt values in the wal-header
+**
+** (2) The checksum values in the final 8 bytes of the frame-header
+** exactly match the checksum computed consecutively on the
+** WAL header and the first 8 bytes and the content of all frames
+** up to and including the current frame.
+**
+** The checksum is computed using 32-bit big-endian integers if the
+** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
+** is computed using little-endian if the magic number is 0x377f0682.
+** The checksum values are always stored in the frame header in a
+** big-endian format regardless of which byte order is used to compute
+** the checksum. The checksum is computed by interpreting the input as
+** an even number of unsigned 32-bit integers: x[0] through x[N]. The
+** algorithm used for the checksum is as follows:
+**
+** for i from 0 to n-1 step 2:
+** s0 += x[i] + s1;
+** s1 += x[i+1] + s0;
+** endfor
+**
+** Note that s0 and s1 are both weighted checksums using fibonacci weights
+** in reverse order (the largest fibonacci weight occurs on the first element
+** of the sequence being summed.) The s1 value spans all 32-bit
+** terms of the sequence whereas s0 omits the final term.
+**
+** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
+** WAL is transferred into the database, then the database is VFS.xSync-ed.
+** The VFS.xSync operations serve as write barriers - all writes launched
+** before the xSync must complete before any write that launches after the
+** xSync begins.
+**
+** After each checkpoint, the salt-1 value is incremented and the salt-2
+** value is randomized. This prevents old and new frames in the WAL from
+** being considered valid at the same time and being checkpointing together
+** following a crash.
+**
+** READER ALGORITHM
+**
+** To read a page from the database (call it page number P), a reader
+** first checks the WAL to see if it contains page P. If so, then the
+** last valid instance of page P that is a followed by a commit frame
+** or is a commit frame itself becomes the value read. If the WAL
+** contains no copies of page P that are valid and which are a commit
+** frame or are followed by a commit frame, then page P is read from
+** the database file.
+**
+** To start a read transaction, the reader records the index of the last
+** valid frame in the WAL. The reader uses this recorded "mxFrame" value
+** for all subsequent read operations. New transactions can be appended
+** to the WAL, but as long as the reader uses its original mxFrame value
+** and ignores the newly appended content, it will see a consistent snapshot
+** of the database from a single point in time. This technique allows
+** multiple concurrent readers to view different versions of the database
+** content simultaneously.
+**
+** The reader algorithm in the previous paragraphs works correctly, but
+** because frames for page P can appear anywhere within the WAL, the
+** reader has to scan the entire WAL looking for page P frames. If the
+** WAL is large (multiple megabytes is typical) that scan can be slow,
+** and read performance suffers. To overcome this problem, a separate
+** data structure called the wal-index is maintained to expedite the
+** search for frames of a particular page.
+**
+** WAL-INDEX FORMAT
+**
+** Conceptually, the wal-index is shared memory, though VFS implementations
+** might choose to implement the wal-index using a mmapped file. Because
+** the wal-index is shared memory, SQLite does not support journal_mode=WAL
+** on a network filesystem. All users of the database must be able to
+** share memory.
+**
+** The wal-index is transient. After a crash, the wal-index can (and should
+** be) reconstructed from the original WAL file. In fact, the VFS is required
+** to either truncate or zero the header of the wal-index when the last
+** connection to it closes. Because the wal-index is transient, it can
+** use an architecture-specific format; it does not have to be cross-platform.
+** Hence, unlike the database and WAL file formats which store all values
+** as big endian, the wal-index can store multi-byte values in the native
+** byte order of the host computer.
+**
+** The purpose of the wal-index is to answer this question quickly: Given
+** a page number P and a maximum frame index M, return the index of the
+** last frame in the wal before frame M for page P in the WAL, or return
+** NULL if there are no frames for page P in the WAL prior to M.
+**
+** The wal-index consists of a header region, followed by an one or
+** more index blocks.
+**
+** The wal-index header contains the total number of frames within the WAL
+** in the mxFrame field.
+**
+** Each index block except for the first contains information on
+** HASHTABLE_NPAGE frames. The first index block contains information on
+** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
+** HASHTABLE_NPAGE are selected so that together the wal-index header and
+** first index block are the same size as all other index blocks in the
+** wal-index.
+**
+** Each index block contains two sections, a page-mapping that contains the
+** database page number associated with each wal frame, and a hash-table
+** that allows readers to query an index block for a specific page number.
+** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
+** for the first index block) 32-bit page numbers. The first entry in the
+** first index-block contains the database page number corresponding to the
+** first frame in the WAL file. The first entry in the second index block
+** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
+** the log, and so on.
+**
+** The last index block in a wal-index usually contains less than the full
+** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
+** depending on the contents of the WAL file. This does not change the
+** allocated size of the page-mapping array - the page-mapping array merely
+** contains unused entries.
+**
+** Even without using the hash table, the last frame for page P
+** can be found by scanning the page-mapping sections of each index block
+** starting with the last index block and moving toward the first, and
+** within each index block, starting at the end and moving toward the
+** beginning. The first entry that equals P corresponds to the frame
+** holding the content for that page.
+**
+** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
+** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
+** hash table for each page number in the mapping section, so the hash
+** table is never more than half full. The expected number of collisions
+** prior to finding a match is 1. Each entry of the hash table is an
+** 1-based index of an entry in the mapping section of the same
+** index block. Let K be the 1-based index of the largest entry in
+** the mapping section. (For index blocks other than the last, K will
+** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
+** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
+** contain a value of 0.
+**
+** To look for page P in the hash table, first compute a hash iKey on
+** P as follows:
+**
+** iKey = (P * 383) % HASHTABLE_NSLOT
+**
+** Then start scanning entries of the hash table, starting with iKey
+** (wrapping around to the beginning when the end of the hash table is
+** reached) until an unused hash slot is found. Let the first unused slot
+** be at index iUnused. (iUnused might be less than iKey if there was
+** wrap-around.) Because the hash table is never more than half full,
+** the search is guaranteed to eventually hit an unused entry. Let
+** iMax be the value between iKey and iUnused, closest to iUnused,
+** where aHash[iMax]==P. If there is no iMax entry (if there exists
+** no hash slot such that aHash[i]==p) then page P is not in the
+** current index block. Otherwise the iMax-th mapping entry of the
+** current index block corresponds to the last entry that references
+** page P.
+**
+** A hash search begins with the last index block and moves toward the
+** first index block, looking for entries corresponding to page P. On
+** average, only two or three slots in each index block need to be
+** examined in order to either find the last entry for page P, or to
+** establish that no such entry exists in the block. Each index block
+** holds over 4000 entries. So two or three index blocks are sufficient
+** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
+** comparisons (on average) suffice to either locate a frame in the
+** WAL or to establish that the frame does not exist in the WAL. This
+** is much faster than scanning the entire 10MB WAL.
+**
+** Note that entries are added in order of increasing K. Hence, one
+** reader might be using some value K0 and a second reader that started
+** at a later time (after additional transactions were added to the WAL
+** and to the wal-index) might be using a different value K1, where K1>K0.
+** Both readers can use the same hash table and mapping section to get
+** the correct result. There may be entries in the hash table with
+** K>K0 but to the first reader, those entries will appear to be unused
+** slots in the hash table and so the first reader will get an answer as
+** if no values greater than K0 had ever been inserted into the hash table
+** in the first place - which is what reader one wants. Meanwhile, the
+** second reader using K1 will see additional values that were inserted
+** later, which is exactly what reader two wants.
+**
+** When a rollback occurs, the value of K is decreased. Hash table entries
+** that correspond to frames greater than the new K value are removed
+** from the hash table at this point.
+*/
+#ifndef SQLITE_OMIT_WAL
+
+/* #include "wal.h" */
+
+/*
+** Trace output macros
+*/
+#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
+SQLITE_PRIVATE int sqlite3WalTrace = 0;
+# define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
+#else
+# define WALTRACE(X)
+#endif
+
+/*
+** The maximum (and only) versions of the wal and wal-index formats
+** that may be interpreted by this version of SQLite.
+**
+** If a client begins recovering a WAL file and finds that (a) the checksum
+** values in the wal-header are correct and (b) the version field is not
+** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
+**
+** Similarly, if a client successfully reads a wal-index header (i.e. the
+** checksum test is successful) and finds that the version field is not
+** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
+** returns SQLITE_CANTOPEN.
+*/
+#define WAL_MAX_VERSION 3007000
+#define WALINDEX_MAX_VERSION 3007000
+
+/*
+** Indices of various locking bytes. WAL_NREADER is the number
+** of available reader locks and should be at least 3. The default
+** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5.
+*/
+#define WAL_WRITE_LOCK 0
+#define WAL_ALL_BUT_WRITE 1
+#define WAL_CKPT_LOCK 1
+#define WAL_RECOVER_LOCK 2
+#define WAL_READ_LOCK(I) (3+(I))
+#define WAL_NREADER (SQLITE_SHM_NLOCK-3)
+
+
+/* Object declarations */
+typedef struct WalIndexHdr WalIndexHdr;
+typedef struct WalIterator WalIterator;
+typedef struct WalCkptInfo WalCkptInfo;
+
+
+/*
+** The following object holds a copy of the wal-index header content.
+**
+** The actual header in the wal-index consists of two copies of this
+** object followed by one instance of the WalCkptInfo object.
+** For all versions of SQLite through 3.10.0 and probably beyond,
+** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
+** the total header size is 136 bytes.
+**
+** The szPage value can be any power of 2 between 512 and 32768, inclusive.
+** Or it can be 1 to represent a 65536-byte page. The latter case was
+** added in 3.7.1 when support for 64K pages was added.
+*/
+struct WalIndexHdr {
+ u32 iVersion; /* Wal-index version */
+ u32 unused; /* Unused (padding) field */
+ u32 iChange; /* Counter incremented each transaction */
+ u8 isInit; /* 1 when initialized */
+ u8 bigEndCksum; /* True if checksums in WAL are big-endian */
+ u16 szPage; /* Database page size in bytes. 1==64K */
+ u32 mxFrame; /* Index of last valid frame in the WAL */
+ u32 nPage; /* Size of database in pages */
+ u32 aFrameCksum[2]; /* Checksum of last frame in log */
+ u32 aSalt[2]; /* Two salt values copied from WAL header */
+ u32 aCksum[2]; /* Checksum over all prior fields */
+};
+
+/*
+** A copy of the following object occurs in the wal-index immediately
+** following the second copy of the WalIndexHdr. This object stores
+** information used by checkpoint.
+**
+** nBackfill is the number of frames in the WAL that have been written
+** back into the database. (We call the act of moving content from WAL to
+** database "backfilling".) The nBackfill number is never greater than
+** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
+** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
+** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
+** mxFrame back to zero when the WAL is reset.
+**
+** nBackfillAttempted is the largest value of nBackfill that a checkpoint
+** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however
+** the nBackfillAttempted is set before any backfilling is done and the
+** nBackfill is only set after all backfilling completes. So if a checkpoint
+** crashes, nBackfillAttempted might be larger than nBackfill. The
+** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
+**
+** The aLock[] field is a set of bytes used for locking. These bytes should
+** never be read or written.
+**
+** There is one entry in aReadMark[] for each reader lock. If a reader
+** holds read-lock K, then the value in aReadMark[K] is no greater than
+** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
+** for any aReadMark[] means that entry is unused. aReadMark[0] is
+** a special case; its value is never used and it exists as a place-holder
+** to avoid having to offset aReadMark[] indexs by one. Readers holding
+** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
+** directly from the database.
+**
+** The value of aReadMark[K] may only be changed by a thread that
+** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
+** aReadMark[K] cannot changed while there is a reader is using that mark
+** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
+**
+** The checkpointer may only transfer frames from WAL to database where
+** the frame numbers are less than or equal to every aReadMark[] that is
+** in use (that is, every aReadMark[j] for which there is a corresponding
+** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
+** largest value and will increase an unused aReadMark[] to mxFrame if there
+** is not already an aReadMark[] equal to mxFrame. The exception to the
+** previous sentence is when nBackfill equals mxFrame (meaning that everything
+** in the WAL has been backfilled into the database) then new readers
+** will choose aReadMark[0] which has value 0 and hence such reader will
+** get all their all content directly from the database file and ignore
+** the WAL.
+**
+** Writers normally append new frames to the end of the WAL. However,
+** if nBackfill equals mxFrame (meaning that all WAL content has been
+** written back into the database) and if no readers are using the WAL
+** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
+** the writer will first "reset" the WAL back to the beginning and start
+** writing new content beginning at frame 1.
+**
+** We assume that 32-bit loads are atomic and so no locks are needed in
+** order to read from any aReadMark[] entries.
+*/
+struct WalCkptInfo {
+ u32 nBackfill; /* Number of WAL frames backfilled into DB */
+ u32 aReadMark[WAL_NREADER]; /* Reader marks */
+ u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */
+ u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */
+ u32 notUsed0; /* Available for future enhancements */
+};
+#define READMARK_NOT_USED 0xffffffff
+
+
+/* A block of WALINDEX_LOCK_RESERVED bytes beginning at
+** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
+** only support mandatory file-locks, we do not read or write data
+** from the region of the file on which locks are applied.
+*/
+#define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
+#define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
+
+/* Size of header before each frame in wal */
+#define WAL_FRAME_HDRSIZE 24
+
+/* Size of write ahead log header, including checksum. */
+/* #define WAL_HDRSIZE 24 */
+#define WAL_HDRSIZE 32
+
+/* WAL magic value. Either this value, or the same value with the least
+** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
+** big-endian format in the first 4 bytes of a WAL file.
+**
+** If the LSB is set, then the checksums for each frame within the WAL
+** file are calculated by treating all data as an array of 32-bit
+** big-endian words. Otherwise, they are calculated by interpreting
+** all data as 32-bit little-endian words.
+*/
+#define WAL_MAGIC 0x377f0682
+
+/*
+** Return the offset of frame iFrame in the write-ahead log file,
+** assuming a database page size of szPage bytes. The offset returned
+** is to the start of the write-ahead log frame-header.
+*/
+#define walFrameOffset(iFrame, szPage) ( \
+ WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \
+)
+
+/*
+** An open write-ahead log file is represented by an instance of the
+** following object.
+*/
+struct Wal {
+ sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
+ sqlite3_file *pDbFd; /* File handle for the database file */
+ sqlite3_file *pWalFd; /* File handle for WAL file */
+ u32 iCallback; /* Value to pass to log callback (or 0) */
+ i64 mxWalSize; /* Truncate WAL to this size upon reset */
+ int nWiData; /* Size of array apWiData */
+ int szFirstBlock; /* Size of first block written to WAL file */
+ volatile u32 **apWiData; /* Pointer to wal-index content in memory */
+ u32 szPage; /* Database page size */
+ i16 readLock; /* Which read lock is being held. -1 for none */
+ u8 syncFlags; /* Flags to use to sync header writes */
+ u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
+ u8 writeLock; /* True if in a write transaction */
+ u8 ckptLock; /* True if holding a checkpoint lock */
+ u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
+ u8 truncateOnCommit; /* True to truncate WAL file on commit */
+ u8 syncHeader; /* Fsync the WAL header if true */
+ u8 padToSectorBoundary; /* Pad transactions out to the next sector */
+ WalIndexHdr hdr; /* Wal-index header for current transaction */
+ u32 minFrame; /* Ignore wal frames before this one */
+ u32 iReCksum; /* On commit, recalculate checksums from here */
+ const char *zWalName; /* Name of WAL file */
+ u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
+#ifdef SQLITE_DEBUG
+ u8 lockError; /* True if a locking error has occurred */
+#endif
+#ifdef SQLITE_ENABLE_SNAPSHOT
+ WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */
+#endif
+};
+
+/*
+** Candidate values for Wal.exclusiveMode.
+*/
+#define WAL_NORMAL_MODE 0
+#define WAL_EXCLUSIVE_MODE 1
+#define WAL_HEAPMEMORY_MODE 2
+
+/*
+** Possible values for WAL.readOnly
+*/
+#define WAL_RDWR 0 /* Normal read/write connection */
+#define WAL_RDONLY 1 /* The WAL file is readonly */
+#define WAL_SHM_RDONLY 2 /* The SHM file is readonly */
+
+/*
+** Each page of the wal-index mapping contains a hash-table made up of
+** an array of HASHTABLE_NSLOT elements of the following type.
+*/
+typedef u16 ht_slot;
+
+/*
+** This structure is used to implement an iterator that loops through
+** all frames in the WAL in database page order. Where two or more frames
+** correspond to the same database page, the iterator visits only the
+** frame most recently written to the WAL (in other words, the frame with
+** the largest index).
+**
+** The internals of this structure are only accessed by:
+**
+** walIteratorInit() - Create a new iterator,
+** walIteratorNext() - Step an iterator,
+** walIteratorFree() - Free an iterator.
+**
+** This functionality is used by the checkpoint code (see walCheckpoint()).
+*/
+struct WalIterator {
+ int iPrior; /* Last result returned from the iterator */
+ int nSegment; /* Number of entries in aSegment[] */
+ struct WalSegment {
+ int iNext; /* Next slot in aIndex[] not yet returned */
+ ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
+ u32 *aPgno; /* Array of page numbers. */
+ int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */
+ int iZero; /* Frame number associated with aPgno[0] */
+ } aSegment[1]; /* One for every 32KB page in the wal-index */
+};
+
+/*
+** Define the parameters of the hash tables in the wal-index file. There
+** is a hash-table following every HASHTABLE_NPAGE page numbers in the
+** wal-index.
+**
+** Changing any of these constants will alter the wal-index format and
+** create incompatibilities.
+*/
+#define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
+#define HASHTABLE_HASH_1 383 /* Should be prime */
+#define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
+
+/*
+** The block of page numbers associated with the first hash-table in a
+** wal-index is smaller than usual. This is so that there is a complete
+** hash-table on each aligned 32KB page of the wal-index.
+*/
+#define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
+
+/* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
+#define WALINDEX_PGSZ ( \
+ sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
+)
+
+/*
+** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
+** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
+** numbered from zero.
+**
+** If this call is successful, *ppPage is set to point to the wal-index
+** page and SQLITE_OK is returned. If an error (an OOM or VFS error) occurs,
+** then an SQLite error code is returned and *ppPage is set to 0.
+*/
+static int walIndexPage(Wal *pWal, int iPage, volatile u32 **ppPage){
+ int rc = SQLITE_OK;
+
+ /* Enlarge the pWal->apWiData[] array if required */
+ if( pWal->nWiData<=iPage ){
+ int nByte = sizeof(u32*)*(iPage+1);
+ volatile u32 **apNew;
+ apNew = (volatile u32 **)sqlite3_realloc64((void *)pWal->apWiData, nByte);
+ if( !apNew ){
+ *ppPage = 0;
+ return SQLITE_NOMEM_BKPT;
+ }
+ memset((void*)&apNew[pWal->nWiData], 0,
+ sizeof(u32*)*(iPage+1-pWal->nWiData));
+ pWal->apWiData = apNew;
+ pWal->nWiData = iPage+1;
+ }
+
+ /* Request a pointer to the required page from the VFS */
+ if( pWal->apWiData[iPage]==0 ){
+ if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
+ pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
+ if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
+ }else{
+ rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
+ pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
+ );
+ if( rc==SQLITE_READONLY ){
+ pWal->readOnly |= WAL_SHM_RDONLY;
+ rc = SQLITE_OK;
+ }
+ }
+ }
+
+ *ppPage = pWal->apWiData[iPage];
+ assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
+ return rc;
+}
+
+/*
+** Return a pointer to the WalCkptInfo structure in the wal-index.
+*/
+static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
+ assert( pWal->nWiData>0 && pWal->apWiData[0] );
+ return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
+}
+
+/*
+** Return a pointer to the WalIndexHdr structure in the wal-index.
+*/
+static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
+ assert( pWal->nWiData>0 && pWal->apWiData[0] );
+ return (volatile WalIndexHdr*)pWal->apWiData[0];
+}
+
+/*
+** The argument to this macro must be of type u32. On a little-endian
+** architecture, it returns the u32 value that results from interpreting
+** the 4 bytes as a big-endian value. On a big-endian architecture, it
+** returns the value that would be produced by interpreting the 4 bytes
+** of the input value as a little-endian integer.
+*/
+#define BYTESWAP32(x) ( \
+ (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
+ + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
+)
+
+/*
+** Generate or extend an 8 byte checksum based on the data in
+** array aByte[] and the initial values of aIn[0] and aIn[1] (or
+** initial values of 0 and 0 if aIn==NULL).
+**
+** The checksum is written back into aOut[] before returning.
+**
+** nByte must be a positive multiple of 8.
+*/
+static void walChecksumBytes(
+ int nativeCksum, /* True for native byte-order, false for non-native */
+ u8 *a, /* Content to be checksummed */
+ int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
+ const u32 *aIn, /* Initial checksum value input */
+ u32 *aOut /* OUT: Final checksum value output */
+){
+ u32 s1, s2;
+ u32 *aData = (u32 *)a;
+ u32 *aEnd = (u32 *)&a[nByte];
+
+ if( aIn ){
+ s1 = aIn[0];
+ s2 = aIn[1];
+ }else{
+ s1 = s2 = 0;
+ }
+
+ assert( nByte>=8 );
+ assert( (nByte&0x00000007)==0 );
+
+ if( nativeCksum ){
+ do {
+ s1 += *aData++ + s2;
+ s2 += *aData++ + s1;
+ }while( aData<aEnd );
+ }else{
+ do {
+ s1 += BYTESWAP32(aData[0]) + s2;
+ s2 += BYTESWAP32(aData[1]) + s1;
+ aData += 2;
+ }while( aData<aEnd );
+ }
+
+ aOut[0] = s1;
+ aOut[1] = s2;
+}
+
+static void walShmBarrier(Wal *pWal){
+ if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
+ sqlite3OsShmBarrier(pWal->pDbFd);
+ }
+}
+
+/*
+** Write the header information in pWal->hdr into the wal-index.
+**
+** The checksum on pWal->hdr is updated before it is written.
+*/
+static void walIndexWriteHdr(Wal *pWal){
+ volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
+ const int nCksum = offsetof(WalIndexHdr, aCksum);
+
+ assert( pWal->writeLock );
+ pWal->hdr.isInit = 1;
+ pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
+ walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
+ memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
+ walShmBarrier(pWal);
+ memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
+}
+
+/*
+** This function encodes a single frame header and writes it to a buffer
+** supplied by the caller. A frame-header is made up of a series of
+** 4-byte big-endian integers, as follows:
+**
+** 0: Page number.
+** 4: For commit records, the size of the database image in pages
+** after the commit. For all other records, zero.
+** 8: Salt-1 (copied from the wal-header)
+** 12: Salt-2 (copied from the wal-header)
+** 16: Checksum-1.
+** 20: Checksum-2.
+*/
+static void walEncodeFrame(
+ Wal *pWal, /* The write-ahead log */
+ u32 iPage, /* Database page number for frame */
+ u32 nTruncate, /* New db size (or 0 for non-commit frames) */
+ u8 *aData, /* Pointer to page data */
+ u8 *aFrame /* OUT: Write encoded frame here */
+){
+ int nativeCksum; /* True for native byte-order checksums */
+ u32 *aCksum = pWal->hdr.aFrameCksum;
+ assert( WAL_FRAME_HDRSIZE==24 );
+ sqlite3Put4byte(&aFrame[0], iPage);
+ sqlite3Put4byte(&aFrame[4], nTruncate);
+ if( pWal->iReCksum==0 ){
+ memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
+
+ nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
+ walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
+ walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
+
+ sqlite3Put4byte(&aFrame[16], aCksum[0]);
+ sqlite3Put4byte(&aFrame[20], aCksum[1]);
+ }else{
+ memset(&aFrame[8], 0, 16);
+ }
+}
+
+/*
+** Check to see if the frame with header in aFrame[] and content
+** in aData[] is valid. If it is a valid frame, fill *piPage and
+** *pnTruncate and return true. Return if the frame is not valid.
+*/
+static int walDecodeFrame(
+ Wal *pWal, /* The write-ahead log */
+ u32 *piPage, /* OUT: Database page number for frame */
+ u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
+ u8 *aData, /* Pointer to page data (for checksum) */
+ u8 *aFrame /* Frame data */
+){
+ int nativeCksum; /* True for native byte-order checksums */
+ u32 *aCksum = pWal->hdr.aFrameCksum;
+ u32 pgno; /* Page number of the frame */
+ assert( WAL_FRAME_HDRSIZE==24 );
+
+ /* A frame is only valid if the salt values in the frame-header
+ ** match the salt values in the wal-header.
+ */
+ if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
+ return 0;
+ }
+
+ /* A frame is only valid if the page number is creater than zero.
+ */
+ pgno = sqlite3Get4byte(&aFrame[0]);
+ if( pgno==0 ){
+ return 0;
+ }
+
+ /* A frame is only valid if a checksum of the WAL header,
+ ** all prior frams, the first 16 bytes of this frame-header,
+ ** and the frame-data matches the checksum in the last 8
+ ** bytes of this frame-header.
+ */
+ nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
+ walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
+ walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
+ if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
+ || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
+ ){
+ /* Checksum failed. */
+ return 0;
+ }
+
+ /* If we reach this point, the frame is valid. Return the page number
+ ** and the new database size.
+ */
+ *piPage = pgno;
+ *pnTruncate = sqlite3Get4byte(&aFrame[4]);
+ return 1;
+}
+
+
+#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
+/*
+** Names of locks. This routine is used to provide debugging output and is not
+** a part of an ordinary build.
+*/
+static const char *walLockName(int lockIdx){
+ if( lockIdx==WAL_WRITE_LOCK ){
+ return "WRITE-LOCK";
+ }else if( lockIdx==WAL_CKPT_LOCK ){
+ return "CKPT-LOCK";
+ }else if( lockIdx==WAL_RECOVER_LOCK ){
+ return "RECOVER-LOCK";
+ }else{
+ static char zName[15];
+ sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
+ lockIdx-WAL_READ_LOCK(0));
+ return zName;
+ }
+}
+#endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
+
+
+/*
+** Set or release locks on the WAL. Locks are either shared or exclusive.
+** A lock cannot be moved directly between shared and exclusive - it must go
+** through the unlocked state first.
+**
+** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
+*/
+static int walLockShared(Wal *pWal, int lockIdx){
+ int rc;
+ if( pWal->exclusiveMode ) return SQLITE_OK;
+ rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
+ SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
+ WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
+ walLockName(lockIdx), rc ? "failed" : "ok"));
+ VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
+ return rc;
+}
+static void walUnlockShared(Wal *pWal, int lockIdx){
+ if( pWal->exclusiveMode ) return;
+ (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
+ SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
+ WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
+}
+static int walLockExclusive(Wal *pWal, int lockIdx, int n){
+ int rc;
+ if( pWal->exclusiveMode ) return SQLITE_OK;
+ rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
+ SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
+ WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
+ walLockName(lockIdx), n, rc ? "failed" : "ok"));
+ VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && rc!=SQLITE_BUSY); )
+ return rc;
+}
+static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
+ if( pWal->exclusiveMode ) return;
+ (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
+ SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
+ WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
+ walLockName(lockIdx), n));
+}
+
+/*
+** Compute a hash on a page number. The resulting hash value must land
+** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
+** the hash to the next value in the event of a collision.
+*/
+static int walHash(u32 iPage){
+ assert( iPage>0 );
+ assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
+ return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
+}
+static int walNextHash(int iPriorHash){
+ return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
+}
+
+/*
+** Return pointers to the hash table and page number array stored on
+** page iHash of the wal-index. The wal-index is broken into 32KB pages
+** numbered starting from 0.
+**
+** Set output variable *paHash to point to the start of the hash table
+** in the wal-index file. Set *piZero to one less than the frame
+** number of the first frame indexed by this hash table. If a
+** slot in the hash table is set to N, it refers to frame number
+** (*piZero+N) in the log.
+**
+** Finally, set *paPgno so that *paPgno[1] is the page number of the
+** first frame indexed by the hash table, frame (*piZero+1).
+*/
+static int walHashGet(
+ Wal *pWal, /* WAL handle */
+ int iHash, /* Find the iHash'th table */
+ volatile ht_slot **paHash, /* OUT: Pointer to hash index */
+ volatile u32 **paPgno, /* OUT: Pointer to page number array */
+ u32 *piZero /* OUT: Frame associated with *paPgno[0] */
+){
+ int rc; /* Return code */
+ volatile u32 *aPgno;
+
+ rc = walIndexPage(pWal, iHash, &aPgno);
+ assert( rc==SQLITE_OK || iHash>0 );
+
+ if( rc==SQLITE_OK ){
+ u32 iZero;
+ volatile ht_slot *aHash;
+
+ aHash = (volatile ht_slot *)&aPgno[HASHTABLE_NPAGE];
+ if( iHash==0 ){
+ aPgno = &aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
+ iZero = 0;
+ }else{
+ iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
+ }
+
+ *paPgno = &aPgno[-1];
+ *paHash = aHash;
+ *piZero = iZero;
+ }
+ return rc;
+}
+
+/*
+** Return the number of the wal-index page that contains the hash-table
+** and page-number array that contain entries corresponding to WAL frame
+** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
+** are numbered starting from 0.
+*/
+static int walFramePage(u32 iFrame){
+ int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
+ assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
+ && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
+ && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
+ && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
+ && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
+ );
+ return iHash;
+}
+
+/*
+** Return the page number associated with frame iFrame in this WAL.
+*/
+static u32 walFramePgno(Wal *pWal, u32 iFrame){
+ int iHash = walFramePage(iFrame);
+ if( iHash==0 ){
+ return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
+ }
+ return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
+}
+
+/*
+** Remove entries from the hash table that point to WAL slots greater
+** than pWal->hdr.mxFrame.
+**
+** This function is called whenever pWal->hdr.mxFrame is decreased due
+** to a rollback or savepoint.
+**
+** At most only the hash table containing pWal->hdr.mxFrame needs to be
+** updated. Any later hash tables will be automatically cleared when
+** pWal->hdr.mxFrame advances to the point where those hash tables are
+** actually needed.
+*/
+static void walCleanupHash(Wal *pWal){
+ volatile ht_slot *aHash = 0; /* Pointer to hash table to clear */
+ volatile u32 *aPgno = 0; /* Page number array for hash table */
+ u32 iZero = 0; /* frame == (aHash[x]+iZero) */
+ int iLimit = 0; /* Zero values greater than this */
+ int nByte; /* Number of bytes to zero in aPgno[] */
+ int i; /* Used to iterate through aHash[] */
+
+ assert( pWal->writeLock );
+ testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
+ testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
+ testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
+
+ if( pWal->hdr.mxFrame==0 ) return;
+
+ /* Obtain pointers to the hash-table and page-number array containing
+ ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
+ ** that the page said hash-table and array reside on is already mapped.
+ */
+ assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
+ assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
+ walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &aHash, &aPgno, &iZero);
+
+ /* Zero all hash-table entries that correspond to frame numbers greater
+ ** than pWal->hdr.mxFrame.
+ */
+ iLimit = pWal->hdr.mxFrame - iZero;
+ assert( iLimit>0 );
+ for(i=0; i<HASHTABLE_NSLOT; i++){
+ if( aHash[i]>iLimit ){
+ aHash[i] = 0;
+ }
+ }
+
+ /* Zero the entries in the aPgno array that correspond to frames with
+ ** frame numbers greater than pWal->hdr.mxFrame.
+ */
+ nByte = (int)((char *)aHash - (char *)&aPgno[iLimit+1]);
+ memset((void *)&aPgno[iLimit+1], 0, nByte);
+
+#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
+ /* Verify that the every entry in the mapping region is still reachable
+ ** via the hash table even after the cleanup.
+ */
+ if( iLimit ){
+ int j; /* Loop counter */
+ int iKey; /* Hash key */
+ for(j=1; j<=iLimit; j++){
+ for(iKey=walHash(aPgno[j]); aHash[iKey]; iKey=walNextHash(iKey)){
+ if( aHash[iKey]==j ) break;
+ }
+ assert( aHash[iKey]==j );
+ }
+ }
+#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
+}
+
+
+/*
+** Set an entry in the wal-index that will map database page number
+** pPage into WAL frame iFrame.
+*/
+static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
+ int rc; /* Return code */
+ u32 iZero = 0; /* One less than frame number of aPgno[1] */
+ volatile u32 *aPgno = 0; /* Page number array */
+ volatile ht_slot *aHash = 0; /* Hash table */
+
+ rc = walHashGet(pWal, walFramePage(iFrame), &aHash, &aPgno, &iZero);
+
+ /* Assuming the wal-index file was successfully mapped, populate the
+ ** page number array and hash table entry.
+ */
+ if( rc==SQLITE_OK ){
+ int iKey; /* Hash table key */
+ int idx; /* Value to write to hash-table slot */
+ int nCollide; /* Number of hash collisions */
+
+ idx = iFrame - iZero;
+ assert( idx <= HASHTABLE_NSLOT/2 + 1 );
+
+ /* If this is the first entry to be added to this hash-table, zero the
+ ** entire hash table and aPgno[] array before proceeding.
+ */
+ if( idx==1 ){
+ int nByte = (int)((u8 *)&aHash[HASHTABLE_NSLOT] - (u8 *)&aPgno[1]);
+ memset((void*)&aPgno[1], 0, nByte);
+ }
+
+ /* If the entry in aPgno[] is already set, then the previous writer
+ ** must have exited unexpectedly in the middle of a transaction (after
+ ** writing one or more dirty pages to the WAL to free up memory).
+ ** Remove the remnants of that writers uncommitted transaction from
+ ** the hash-table before writing any new entries.
+ */
+ if( aPgno[idx] ){
+ walCleanupHash(pWal);
+ assert( !aPgno[idx] );
+ }
+
+ /* Write the aPgno[] array entry and the hash-table slot. */
+ nCollide = idx;
+ for(iKey=walHash(iPage); aHash[iKey]; iKey=walNextHash(iKey)){
+ if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
+ }
+ aPgno[idx] = iPage;
+ aHash[iKey] = (ht_slot)idx;
+
+#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
+ /* Verify that the number of entries in the hash table exactly equals
+ ** the number of entries in the mapping region.
+ */
+ {
+ int i; /* Loop counter */
+ int nEntry = 0; /* Number of entries in the hash table */
+ for(i=0; i<HASHTABLE_NSLOT; i++){ if( aHash[i] ) nEntry++; }
+ assert( nEntry==idx );
+ }
+
+ /* Verify that the every entry in the mapping region is reachable
+ ** via the hash table. This turns out to be a really, really expensive
+ ** thing to check, so only do this occasionally - not on every
+ ** iteration.
+ */
+ if( (idx&0x3ff)==0 ){
+ int i; /* Loop counter */
+ for(i=1; i<=idx; i++){
+ for(iKey=walHash(aPgno[i]); aHash[iKey]; iKey=walNextHash(iKey)){
+ if( aHash[iKey]==i ) break;
+ }
+ assert( aHash[iKey]==i );
+ }
+ }
+#endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
+ }
+
+
+ return rc;
+}
+
+
+/*
+** Recover the wal-index by reading the write-ahead log file.
+**
+** This routine first tries to establish an exclusive lock on the
+** wal-index to prevent other threads/processes from doing anything
+** with the WAL or wal-index while recovery is running. The
+** WAL_RECOVER_LOCK is also held so that other threads will know
+** that this thread is running recovery. If unable to establish
+** the necessary locks, this routine returns SQLITE_BUSY.
+*/
+static int walIndexRecover(Wal *pWal){
+ int rc; /* Return Code */
+ i64 nSize; /* Size of log file */
+ u32 aFrameCksum[2] = {0, 0};
+ int iLock; /* Lock offset to lock for checkpoint */
+ int nLock; /* Number of locks to hold */
+
+ /* Obtain an exclusive lock on all byte in the locking range not already
+ ** locked by the caller. The caller is guaranteed to have locked the
+ ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
+ ** If successful, the same bytes that are locked here are unlocked before
+ ** this function returns.
+ */
+ assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
+ assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
+ assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
+ assert( pWal->writeLock );
+ iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
+ nLock = SQLITE_SHM_NLOCK - iLock;
+ rc = walLockExclusive(pWal, iLock, nLock);
+ if( rc ){
+ return rc;
+ }
+ WALTRACE(("WAL%p: recovery begin...\n", pWal));
+
+ memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
+
+ rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
+ if( rc!=SQLITE_OK ){
+ goto recovery_error;
+ }
+
+ if( nSize>WAL_HDRSIZE ){
+ u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
+ u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
+ int szFrame; /* Number of bytes in buffer aFrame[] */
+ u8 *aData; /* Pointer to data part of aFrame buffer */
+ int iFrame; /* Index of last frame read */
+ i64 iOffset; /* Next offset to read from log file */
+ int szPage; /* Page size according to the log */
+ u32 magic; /* Magic value read from WAL header */
+ u32 version; /* Magic value read from WAL header */
+ int isValid; /* True if this frame is valid */
+
+ /* Read in the WAL header. */
+ rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
+ if( rc!=SQLITE_OK ){
+ goto recovery_error;
+ }
+
+ /* If the database page size is not a power of two, or is greater than
+ ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
+ ** data. Similarly, if the 'magic' value is invalid, ignore the whole
+ ** WAL file.
+ */
+ magic = sqlite3Get4byte(&aBuf[0]);
+ szPage = sqlite3Get4byte(&aBuf[8]);
+ if( (magic&0xFFFFFFFE)!=WAL_MAGIC
+ || szPage&(szPage-1)
+ || szPage>SQLITE_MAX_PAGE_SIZE
+ || szPage<512
+ ){
+ goto finished;
+ }
+ pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
+ pWal->szPage = szPage;
+ pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
+ memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
+
+ /* Verify that the WAL header checksum is correct */
+ walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
+ aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
+ );
+ if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
+ || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
+ ){
+ goto finished;
+ }
+
+ /* Verify that the version number on the WAL format is one that
+ ** are able to understand */
+ version = sqlite3Get4byte(&aBuf[4]);
+ if( version!=WAL_MAX_VERSION ){
+ rc = SQLITE_CANTOPEN_BKPT;
+ goto finished;
+ }
+
+ /* Malloc a buffer to read frames into. */
+ szFrame = szPage + WAL_FRAME_HDRSIZE;
+ aFrame = (u8 *)sqlite3_malloc64(szFrame);
+ if( !aFrame ){
+ rc = SQLITE_NOMEM_BKPT;
+ goto recovery_error;
+ }
+ aData = &aFrame[WAL_FRAME_HDRSIZE];
+
+ /* Read all frames from the log file. */
+ iFrame = 0;
+ for(iOffset=WAL_HDRSIZE; (iOffset+szFrame)<=nSize; iOffset+=szFrame){
+ u32 pgno; /* Database page number for frame */
+ u32 nTruncate; /* dbsize field from frame header */
+
+ /* Read and decode the next log frame. */
+ iFrame++;
+ rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
+ if( rc!=SQLITE_OK ) break;
+ isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
+ if( !isValid ) break;
+ rc = walIndexAppend(pWal, iFrame, pgno);
+ if( rc!=SQLITE_OK ) break;
+
+ /* If nTruncate is non-zero, this is a commit record. */
+ if( nTruncate ){
+ pWal->hdr.mxFrame = iFrame;
+ pWal->hdr.nPage = nTruncate;
+ pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
+ testcase( szPage<=32768 );
+ testcase( szPage>=65536 );
+ aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
+ aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
+ }
+ }
+
+ sqlite3_free(aFrame);
+ }
+
+finished:
+ if( rc==SQLITE_OK ){
+ volatile WalCkptInfo *pInfo;
+ int i;
+ pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
+ pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
+ walIndexWriteHdr(pWal);
+
+ /* Reset the checkpoint-header. This is safe because this thread is
+ ** currently holding locks that exclude all other readers, writers and
+ ** checkpointers.
+ */
+ pInfo = walCkptInfo(pWal);
+ pInfo->nBackfill = 0;
+ pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
+ pInfo->aReadMark[0] = 0;
+ for(i=1; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
+ if( pWal->hdr.mxFrame ) pInfo->aReadMark[1] = pWal->hdr.mxFrame;
+
+ /* If more than one frame was recovered from the log file, report an
+ ** event via sqlite3_log(). This is to help with identifying performance
+ ** problems caused by applications routinely shutting down without
+ ** checkpointing the log file.
+ */
+ if( pWal->hdr.nPage ){
+ sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
+ "recovered %d frames from WAL file %s",
+ pWal->hdr.mxFrame, pWal->zWalName
+ );
+ }
+ }
+
+recovery_error:
+ WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
+ walUnlockExclusive(pWal, iLock, nLock);
+ return rc;
+}
+
+/*
+** Close an open wal-index.
+*/
+static void walIndexClose(Wal *pWal, int isDelete){
+ if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
+ int i;
+ for(i=0; i<pWal->nWiData; i++){
+ sqlite3_free((void *)pWal->apWiData[i]);
+ pWal->apWiData[i] = 0;
+ }
+ }else{
+ sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
+ }
+}
+
+/*
+** Open a connection to the WAL file zWalName. The database file must
+** already be opened on connection pDbFd. The buffer that zWalName points
+** to must remain valid for the lifetime of the returned Wal* handle.
+**
+** A SHARED lock should be held on the database file when this function
+** is called. The purpose of this SHARED lock is to prevent any other
+** client from unlinking the WAL or wal-index file. If another process
+** were to do this just after this client opened one of these files, the
+** system would be badly broken.
+**
+** If the log file is successfully opened, SQLITE_OK is returned and
+** *ppWal is set to point to a new WAL handle. If an error occurs,
+** an SQLite error code is returned and *ppWal is left unmodified.
+*/
+SQLITE_PRIVATE int sqlite3WalOpen(
+ sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
+ sqlite3_file *pDbFd, /* The open database file */
+ const char *zWalName, /* Name of the WAL file */
+ int bNoShm, /* True to run in heap-memory mode */
+ i64 mxWalSize, /* Truncate WAL to this size on reset */
+ Wal **ppWal /* OUT: Allocated Wal handle */
+){
+ int rc; /* Return Code */
+ Wal *pRet; /* Object to allocate and return */
+ int flags; /* Flags passed to OsOpen() */
+
+ assert( zWalName && zWalName[0] );
+ assert( pDbFd );
+
+ /* In the amalgamation, the os_unix.c and os_win.c source files come before
+ ** this source file. Verify that the #defines of the locking byte offsets
+ ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
+ ** For that matter, if the lock offset ever changes from its initial design
+ ** value of 120, we need to know that so there is an assert() to check it.
+ */
+ assert( 120==WALINDEX_LOCK_OFFSET );
+ assert( 136==WALINDEX_HDR_SIZE );
+#ifdef WIN_SHM_BASE
+ assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
+#endif
+#ifdef UNIX_SHM_BASE
+ assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
+#endif
+
+
+ /* Allocate an instance of struct Wal to return. */
+ *ppWal = 0;
+ pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
+ if( !pRet ){
+ return SQLITE_NOMEM_BKPT;
+ }
+
+ pRet->pVfs = pVfs;
+ pRet->pWalFd = (sqlite3_file *)&pRet[1];
+ pRet->pDbFd = pDbFd;
+ pRet->readLock = -1;
+ pRet->mxWalSize = mxWalSize;
+ pRet->zWalName = zWalName;
+ pRet->syncHeader = 1;
+ pRet->padToSectorBoundary = 1;
+ pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
+
+ /* Open file handle on the write-ahead log file. */
+ flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
+ rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
+ if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
+ pRet->readOnly = WAL_RDONLY;
+ }
+
+ if( rc!=SQLITE_OK ){
+ walIndexClose(pRet, 0);
+ sqlite3OsClose(pRet->pWalFd);
+ sqlite3_free(pRet);
+ }else{
+ int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
+ if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
+ if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
+ pRet->padToSectorBoundary = 0;
+ }
+ *ppWal = pRet;
+ WALTRACE(("WAL%d: opened\n", pRet));
+ }
+ return rc;
+}
+
+/*
+** Change the size to which the WAL file is trucated on each reset.
+*/
+SQLITE_PRIVATE void sqlite3WalLimit(Wal *pWal, i64 iLimit){
+ if( pWal ) pWal->mxWalSize = iLimit;
+}
+
+/*
+** Find the smallest page number out of all pages held in the WAL that
+** has not been returned by any prior invocation of this method on the
+** same WalIterator object. Write into *piFrame the frame index where
+** that page was last written into the WAL. Write into *piPage the page
+** number.
+**
+** Return 0 on success. If there are no pages in the WAL with a page
+** number larger than *piPage, then return 1.
+*/
+static int walIteratorNext(
+ WalIterator *p, /* Iterator */
+ u32 *piPage, /* OUT: The page number of the next page */
+ u32 *piFrame /* OUT: Wal frame index of next page */
+){
+ u32 iMin; /* Result pgno must be greater than iMin */
+ u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
+ int i; /* For looping through segments */
+
+ iMin = p->iPrior;
+ assert( iMin<0xffffffff );
+ for(i=p->nSegment-1; i>=0; i--){
+ struct WalSegment *pSegment = &p->aSegment[i];
+ while( pSegment->iNext<pSegment->nEntry ){
+ u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
+ if( iPg>iMin ){
+ if( iPg<iRet ){
+ iRet = iPg;
+ *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
+ }
+ break;
+ }
+ pSegment->iNext++;
+ }
+ }
+
+ *piPage = p->iPrior = iRet;
+ return (iRet==0xFFFFFFFF);
+}
+
+/*
+** This function merges two sorted lists into a single sorted list.
+**
+** aLeft[] and aRight[] are arrays of indices. The sort key is
+** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following
+** is guaranteed for all J<K:
+**
+** aContent[aLeft[J]] < aContent[aLeft[K]]
+** aContent[aRight[J]] < aContent[aRight[K]]
+**
+** This routine overwrites aRight[] with a new (probably longer) sequence
+** of indices such that the aRight[] contains every index that appears in
+** either aLeft[] or the old aRight[] and such that the second condition
+** above is still met.
+**
+** The aContent[aLeft[X]] values will be unique for all X. And the
+** aContent[aRight[X]] values will be unique too. But there might be
+** one or more combinations of X and Y such that
+**
+** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]]
+**
+** When that happens, omit the aLeft[X] and use the aRight[Y] index.
+*/
+static void walMerge(
+ const u32 *aContent, /* Pages in wal - keys for the sort */
+ ht_slot *aLeft, /* IN: Left hand input list */
+ int nLeft, /* IN: Elements in array *paLeft */
+ ht_slot **paRight, /* IN/OUT: Right hand input list */
+ int *pnRight, /* IN/OUT: Elements in *paRight */
+ ht_slot *aTmp /* Temporary buffer */
+){
+ int iLeft = 0; /* Current index in aLeft */
+ int iRight = 0; /* Current index in aRight */
+ int iOut = 0; /* Current index in output buffer */
+ int nRight = *pnRight;
+ ht_slot *aRight = *paRight;
+
+ assert( nLeft>0 && nRight>0 );
+ while( iRight<nRight || iLeft<nLeft ){
+ ht_slot logpage;
+ Pgno dbpage;
+
+ if( (iLeft<nLeft)
+ && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
+ ){
+ logpage = aLeft[iLeft++];
+ }else{
+ logpage = aRight[iRight++];
+ }
+ dbpage = aContent[logpage];
+
+ aTmp[iOut++] = logpage;
+ if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
+
+ assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
+ assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
+ }
+
+ *paRight = aLeft;
+ *pnRight = iOut;
+ memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
+}
+
+/*
+** Sort the elements in list aList using aContent[] as the sort key.
+** Remove elements with duplicate keys, preferring to keep the
+** larger aList[] values.
+**
+** The aList[] entries are indices into aContent[]. The values in
+** aList[] are to be sorted so that for all J<K:
+**
+** aContent[aList[J]] < aContent[aList[K]]
+**
+** For any X and Y such that
+**
+** aContent[aList[X]] == aContent[aList[Y]]
+**
+** Keep the larger of the two values aList[X] and aList[Y] and discard
+** the smaller.
+*/
+static void walMergesort(
+ const u32 *aContent, /* Pages in wal */
+ ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
+ ht_slot *aList, /* IN/OUT: List to sort */
+ int *pnList /* IN/OUT: Number of elements in aList[] */
+){
+ struct Sublist {
+ int nList; /* Number of elements in aList */
+ ht_slot *aList; /* Pointer to sub-list content */
+ };
+
+ const int nList = *pnList; /* Size of input list */
+ int nMerge = 0; /* Number of elements in list aMerge */
+ ht_slot *aMerge = 0; /* List to be merged */
+ int iList; /* Index into input list */
+ u32 iSub = 0; /* Index into aSub array */
+ struct Sublist aSub[13]; /* Array of sub-lists */
+
+ memset(aSub, 0, sizeof(aSub));
+ assert( nList<=HASHTABLE_NPAGE && nList>0 );
+ assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
+
+ for(iList=0; iList<nList; iList++){
+ nMerge = 1;
+ aMerge = &aList[iList];
+ for(iSub=0; iList & (1<<iSub); iSub++){
+ struct Sublist *p;
+ assert( iSub<ArraySize(aSub) );
+ p = &aSub[iSub];
+ assert( p->aList && p->nList<=(1<<iSub) );
+ assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
+ walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
+ }
+ aSub[iSub].aList = aMerge;
+ aSub[iSub].nList = nMerge;
+ }
+
+ for(iSub++; iSub<ArraySize(aSub); iSub++){
+ if( nList & (1<<iSub) ){
+ struct Sublist *p;
+ assert( iSub<ArraySize(aSub) );
+ p = &aSub[iSub];
+ assert( p->nList<=(1<<iSub) );
+ assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
+ walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
+ }
+ }
+ assert( aMerge==aList );
+ *pnList = nMerge;
+
+#ifdef SQLITE_DEBUG
+ {
+ int i;
+ for(i=1; i<*pnList; i++){
+ assert( aContent[aList[i]] > aContent[aList[i-1]] );
+ }
+ }
+#endif
+}
+
+/*
+** Free an iterator allocated by walIteratorInit().
+*/
+static void walIteratorFree(WalIterator *p){
+ sqlite3_free(p);
+}
+
+/*
+** Construct a WalInterator object that can be used to loop over all
+** pages in the WAL in ascending order. The caller must hold the checkpoint
+** lock.
+**
+** On success, make *pp point to the newly allocated WalInterator object
+** return SQLITE_OK. Otherwise, return an error code. If this routine
+** returns an error, the value of *pp is undefined.
+**
+** The calling routine should invoke walIteratorFree() to destroy the
+** WalIterator object when it has finished with it.
+*/
+static int walIteratorInit(Wal *pWal, WalIterator **pp){
+ WalIterator *p; /* Return value */
+ int nSegment; /* Number of segments to merge */
+ u32 iLast; /* Last frame in log */
+ int nByte; /* Number of bytes to allocate */
+ int i; /* Iterator variable */
+ ht_slot *aTmp; /* Temp space used by merge-sort */
+ int rc = SQLITE_OK; /* Return Code */
+
+ /* This routine only runs while holding the checkpoint lock. And
+ ** it only runs if there is actually content in the log (mxFrame>0).
+ */
+ assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
+ iLast = pWal->hdr.mxFrame;
+
+ /* Allocate space for the WalIterator object. */
+ nSegment = walFramePage(iLast) + 1;
+ nByte = sizeof(WalIterator)
+ + (nSegment-1)*sizeof(struct WalSegment)
+ + iLast*sizeof(ht_slot);
+ p = (WalIterator *)sqlite3_malloc64(nByte);
+ if( !p ){
+ return SQLITE_NOMEM_BKPT;
+ }
+ memset(p, 0, nByte);
+ p->nSegment = nSegment;
+
+ /* Allocate temporary space used by the merge-sort routine. This block
+ ** of memory will be freed before this function returns.
+ */
+ aTmp = (ht_slot *)sqlite3_malloc64(
+ sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
+ );
+ if( !aTmp ){
+ rc = SQLITE_NOMEM_BKPT;
+ }
+
+ for(i=0; rc==SQLITE_OK && i<nSegment; i++){
+ volatile ht_slot *aHash;
+ u32 iZero;
+ volatile u32 *aPgno;
+
+ rc = walHashGet(pWal, i, &aHash, &aPgno, &iZero);
+ if( rc==SQLITE_OK ){
+ int j; /* Counter variable */
+ int nEntry; /* Number of entries in this segment */
+ ht_slot *aIndex; /* Sorted index for this segment */
+
+ aPgno++;
+ if( (i+1)==nSegment ){
+ nEntry = (int)(iLast - iZero);
+ }else{
+ nEntry = (int)((u32*)aHash - (u32*)aPgno);
+ }
+ aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[iZero];
+ iZero++;
+
+ for(j=0; j<nEntry; j++){
+ aIndex[j] = (ht_slot)j;
+ }
+ walMergesort((u32 *)aPgno, aTmp, aIndex, &nEntry);
+ p->aSegment[i].iZero = iZero;
+ p->aSegment[i].nEntry = nEntry;
+ p->aSegment[i].aIndex = aIndex;
+ p->aSegment[i].aPgno = (u32 *)aPgno;
+ }
+ }
+ sqlite3_free(aTmp);
+
+ if( rc!=SQLITE_OK ){
+ walIteratorFree(p);
+ }
+ *pp = p;
+ return rc;
+}
+
+/*
+** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
+** n. If the attempt fails and parameter xBusy is not NULL, then it is a
+** busy-handler function. Invoke it and retry the lock until either the
+** lock is successfully obtained or the busy-handler returns 0.
+*/
+static int walBusyLock(
+ Wal *pWal, /* WAL connection */
+ int (*xBusy)(void*), /* Function to call when busy */
+ void *pBusyArg, /* Context argument for xBusyHandler */
+ int lockIdx, /* Offset of first byte to lock */
+ int n /* Number of bytes to lock */
+){
+ int rc;
+ do {
+ rc = walLockExclusive(pWal, lockIdx, n);
+ }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
+ return rc;
+}
+
+/*
+** The cache of the wal-index header must be valid to call this function.
+** Return the page-size in bytes used by the database.
+*/
+static int walPagesize(Wal *pWal){
+ return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
+}
+
+/*
+** The following is guaranteed when this function is called:
+**
+** a) the WRITER lock is held,
+** b) the entire log file has been checkpointed, and
+** c) any existing readers are reading exclusively from the database
+** file - there are no readers that may attempt to read a frame from
+** the log file.
+**
+** This function updates the shared-memory structures so that the next
+** client to write to the database (which may be this one) does so by
+** writing frames into the start of the log file.
+**
+** The value of parameter salt1 is used as the aSalt[1] value in the
+** new wal-index header. It should be passed a pseudo-random value (i.e.
+** one obtained from sqlite3_randomness()).
+*/
+static void walRestartHdr(Wal *pWal, u32 salt1){
+ volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
+ int i; /* Loop counter */
+ u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
+ pWal->nCkpt++;
+ pWal->hdr.mxFrame = 0;
+ sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
+ memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
+ walIndexWriteHdr(pWal);
+ pInfo->nBackfill = 0;
+ pInfo->nBackfillAttempted = 0;
+ pInfo->aReadMark[1] = 0;
+ for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
+ assert( pInfo->aReadMark[0]==0 );
+}
+
+/*
+** Copy as much content as we can from the WAL back into the database file
+** in response to an sqlite3_wal_checkpoint() request or the equivalent.
+**
+** The amount of information copies from WAL to database might be limited
+** by active readers. This routine will never overwrite a database page
+** that a concurrent reader might be using.
+**
+** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
+** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
+** checkpoints are always run by a background thread or background
+** process, foreground threads will never block on a lengthy fsync call.
+**
+** Fsync is called on the WAL before writing content out of the WAL and
+** into the database. This ensures that if the new content is persistent
+** in the WAL and can be recovered following a power-loss or hard reset.
+**
+** Fsync is also called on the database file if (and only if) the entire
+** WAL content is copied into the database file. This second fsync makes
+** it safe to delete the WAL since the new content will persist in the
+** database file.
+**
+** This routine uses and updates the nBackfill field of the wal-index header.
+** This is the only routine that will increase the value of nBackfill.
+** (A WAL reset or recovery will revert nBackfill to zero, but not increase
+** its value.)
+**
+** The caller must be holding sufficient locks to ensure that no other
+** checkpoint is running (in any other thread or process) at the same
+** time.
+*/
+static int walCheckpoint(
+ Wal *pWal, /* Wal connection */
+ sqlite3 *db, /* Check for interrupts on this handle */
+ int eMode, /* One of PASSIVE, FULL or RESTART */
+ int (*xBusy)(void*), /* Function to call when busy */
+ void *pBusyArg, /* Context argument for xBusyHandler */
+ int sync_flags, /* Flags for OsSync() (or 0) */
+ u8 *zBuf /* Temporary buffer to use */
+){
+ int rc = SQLITE_OK; /* Return code */
+ int szPage; /* Database page-size */
+ WalIterator *pIter = 0; /* Wal iterator context */
+ u32 iDbpage = 0; /* Next database page to write */
+ u32 iFrame = 0; /* Wal frame containing data for iDbpage */
+ u32 mxSafeFrame; /* Max frame that can be backfilled */
+ u32 mxPage; /* Max database page to write */
+ int i; /* Loop counter */
+ volatile WalCkptInfo *pInfo; /* The checkpoint status information */
+
+ szPage = walPagesize(pWal);
+ testcase( szPage<=32768 );
+ testcase( szPage>=65536 );
+ pInfo = walCkptInfo(pWal);
+ if( pInfo->nBackfill<pWal->hdr.mxFrame ){
+
+ /* Allocate the iterator */
+ rc = walIteratorInit(pWal, &pIter);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ assert( pIter );
+
+ /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
+ ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
+ assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
+
+ /* Compute in mxSafeFrame the index of the last frame of the WAL that is
+ ** safe to write into the database. Frames beyond mxSafeFrame might
+ ** overwrite database pages that are in use by active readers and thus
+ ** cannot be backfilled from the WAL.
+ */
+ mxSafeFrame = pWal->hdr.mxFrame;
+ mxPage = pWal->hdr.nPage;
+ for(i=1; i<WAL_NREADER; i++){
+ /* Thread-sanitizer reports that the following is an unsafe read,
+ ** as some other thread may be in the process of updating the value
+ ** of the aReadMark[] slot. The assumption here is that if that is
+ ** happening, the other client may only be increasing the value,
+ ** not decreasing it. So assuming either that either the "old" or
+ ** "new" version of the value is read, and not some arbitrary value
+ ** that would never be written by a real client, things are still
+ ** safe. */
+ u32 y = pInfo->aReadMark[i];
+ if( mxSafeFrame>y ){
+ assert( y<=pWal->hdr.mxFrame );
+ rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
+ if( rc==SQLITE_OK ){
+ pInfo->aReadMark[i] = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
+ walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
+ }else if( rc==SQLITE_BUSY ){
+ mxSafeFrame = y;
+ xBusy = 0;
+ }else{
+ goto walcheckpoint_out;
+ }
+ }
+ }
+
+ if( pInfo->nBackfill<mxSafeFrame
+ && (rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(0),1))==SQLITE_OK
+ ){
+ i64 nSize; /* Current size of database file */
+ u32 nBackfill = pInfo->nBackfill;
+
+ pInfo->nBackfillAttempted = mxSafeFrame;
+
+ /* Sync the WAL to disk */
+ if( sync_flags ){
+ rc = sqlite3OsSync(pWal->pWalFd, sync_flags);
+ }
+
+ /* If the database may grow as a result of this checkpoint, hint
+ ** about the eventual size of the db file to the VFS layer.
+ */
+ if( rc==SQLITE_OK ){
+ i64 nReq = ((i64)mxPage * szPage);
+ rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
+ if( rc==SQLITE_OK && nSize<nReq ){
+ sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT, &nReq);
+ }
+ }
+
+
+ /* Iterate through the contents of the WAL, copying data to the db file */
+ while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
+ i64 iOffset;
+ assert( walFramePgno(pWal, iFrame)==iDbpage );
+ if( db->u1.isInterrupted ){
+ rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
+ break;
+ }
+ if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
+ continue;
+ }
+ iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
+ /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
+ rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
+ if( rc!=SQLITE_OK ) break;
+ iOffset = (iDbpage-1)*(i64)szPage;
+ testcase( IS_BIG_INT(iOffset) );
+ rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
+ if( rc!=SQLITE_OK ) break;
+ }
+
+ /* If work was actually accomplished... */
+ if( rc==SQLITE_OK ){
+ if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
+ i64 szDb = pWal->hdr.nPage*(i64)szPage;
+ testcase( IS_BIG_INT(szDb) );
+ rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
+ if( rc==SQLITE_OK && sync_flags ){
+ rc = sqlite3OsSync(pWal->pDbFd, sync_flags);
+ }
+ }
+ if( rc==SQLITE_OK ){
+ pInfo->nBackfill = mxSafeFrame;
+ }
+ }
+
+ /* Release the reader lock held while backfilling */
+ walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
+ }
+
+ if( rc==SQLITE_BUSY ){
+ /* Reset the return code so as not to report a checkpoint failure
+ ** just because there are active readers. */
+ rc = SQLITE_OK;
+ }
+ }
+
+ /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
+ ** entire wal file has been copied into the database file, then block
+ ** until all readers have finished using the wal file. This ensures that
+ ** the next process to write to the database restarts the wal file.
+ */
+ if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
+ assert( pWal->writeLock );
+ if( pInfo->nBackfill<pWal->hdr.mxFrame ){
+ rc = SQLITE_BUSY;
+ }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
+ u32 salt1;
+ sqlite3_randomness(4, &salt1);
+ assert( pInfo->nBackfill==pWal->hdr.mxFrame );
+ rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
+ if( rc==SQLITE_OK ){
+ if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
+ /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
+ ** SQLITE_CHECKPOINT_RESTART with the addition that it also
+ ** truncates the log file to zero bytes just prior to a
+ ** successful return.
+ **
+ ** In theory, it might be safe to do this without updating the
+ ** wal-index header in shared memory, as all subsequent reader or
+ ** writer clients should see that the entire log file has been
+ ** checkpointed and behave accordingly. This seems unsafe though,
+ ** as it would leave the system in a state where the contents of
+ ** the wal-index header do not match the contents of the
+ ** file-system. To avoid this, update the wal-index header to
+ ** indicate that the log file contains zero valid frames. */
+ walRestartHdr(pWal, salt1);
+ rc = sqlite3OsTruncate(pWal->pWalFd, 0);
+ }
+ walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
+ }
+ }
+ }
+
+ walcheckpoint_out:
+ walIteratorFree(pIter);
+ return rc;
+}
+
+/*
+** If the WAL file is currently larger than nMax bytes in size, truncate
+** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
+*/
+static void walLimitSize(Wal *pWal, i64 nMax){
+ i64 sz;
+ int rx;
+ sqlite3BeginBenignMalloc();
+ rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
+ if( rx==SQLITE_OK && (sz > nMax ) ){
+ rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
+ }
+ sqlite3EndBenignMalloc();
+ if( rx ){
+ sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
+ }
+}
+
+/*
+** Close a connection to a log file.
+*/
+SQLITE_PRIVATE int sqlite3WalClose(
+ Wal *pWal, /* Wal to close */
+ sqlite3 *db, /* For interrupt flag */
+ int sync_flags, /* Flags to pass to OsSync() (or 0) */
+ int nBuf,
+ u8 *zBuf /* Buffer of at least nBuf bytes */
+){
+ int rc = SQLITE_OK;
+ if( pWal ){
+ int isDelete = 0; /* True to unlink wal and wal-index files */
+
+ /* If an EXCLUSIVE lock can be obtained on the database file (using the
+ ** ordinary, rollback-mode locking methods, this guarantees that the
+ ** connection associated with this log file is the only connection to
+ ** the database. In this case checkpoint the database and unlink both
+ ** the wal and wal-index files.
+ **
+ ** The EXCLUSIVE lock is not released before returning.
+ */
+ if( zBuf!=0
+ && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE))
+ ){
+ if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
+ pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
+ }
+ rc = sqlite3WalCheckpoint(pWal, db,
+ SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
+ );
+ if( rc==SQLITE_OK ){
+ int bPersist = -1;
+ sqlite3OsFileControlHint(
+ pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
+ );
+ if( bPersist!=1 ){
+ /* Try to delete the WAL file if the checkpoint completed and
+ ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
+ ** mode (!bPersist) */
+ isDelete = 1;
+ }else if( pWal->mxWalSize>=0 ){
+ /* Try to truncate the WAL file to zero bytes if the checkpoint
+ ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
+ ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
+ ** non-negative value (pWal->mxWalSize>=0). Note that we truncate
+ ** to zero bytes as truncating to the journal_size_limit might
+ ** leave a corrupt WAL file on disk. */
+ walLimitSize(pWal, 0);
+ }
+ }
+ }
+
+ walIndexClose(pWal, isDelete);
+ sqlite3OsClose(pWal->pWalFd);
+ if( isDelete ){
+ sqlite3BeginBenignMalloc();
+ sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
+ sqlite3EndBenignMalloc();
+ }
+ WALTRACE(("WAL%p: closed\n", pWal));
+ sqlite3_free((void *)pWal->apWiData);
+ sqlite3_free(pWal);
+ }
+ return rc;
+}
+
+/*
+** Try to read the wal-index header. Return 0 on success and 1 if
+** there is a problem.
+**
+** The wal-index is in shared memory. Another thread or process might
+** be writing the header at the same time this procedure is trying to
+** read it, which might result in inconsistency. A dirty read is detected
+** by verifying that both copies of the header are the same and also by
+** a checksum on the header.
+**
+** If and only if the read is consistent and the header is different from
+** pWal->hdr, then pWal->hdr is updated to the content of the new header
+** and *pChanged is set to 1.
+**
+** If the checksum cannot be verified return non-zero. If the header
+** is read successfully and the checksum verified, return zero.
+*/
+static int walIndexTryHdr(Wal *pWal, int *pChanged){
+ u32 aCksum[2]; /* Checksum on the header content */
+ WalIndexHdr h1, h2; /* Two copies of the header content */
+ WalIndexHdr volatile *aHdr; /* Header in shared memory */
+
+ /* The first page of the wal-index must be mapped at this point. */
+ assert( pWal->nWiData>0 && pWal->apWiData[0] );
+
+ /* Read the header. This might happen concurrently with a write to the
+ ** same area of shared memory on a different CPU in a SMP,
+ ** meaning it is possible that an inconsistent snapshot is read
+ ** from the file. If this happens, return non-zero.
+ **
+ ** There are two copies of the header at the beginning of the wal-index.
+ ** When reading, read [0] first then [1]. Writes are in the reverse order.
+ ** Memory barriers are used to prevent the compiler or the hardware from
+ ** reordering the reads and writes.
+ */
+ aHdr = walIndexHdr(pWal);
+ memcpy(&h1, (void *)&aHdr[0], sizeof(h1));
+ walShmBarrier(pWal);
+ memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
+
+ if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
+ return 1; /* Dirty read */
+ }
+ if( h1.isInit==0 ){
+ return 1; /* Malformed header - probably all zeros */
+ }
+ walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
+ if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
+ return 1; /* Checksum does not match */
+ }
+
+ if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
+ *pChanged = 1;
+ memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
+ pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
+ testcase( pWal->szPage<=32768 );
+ testcase( pWal->szPage>=65536 );
+ }
+
+ /* The header was successfully read. Return zero. */
+ return 0;
+}
+
+/*
+** Read the wal-index header from the wal-index and into pWal->hdr.
+** If the wal-header appears to be corrupt, try to reconstruct the
+** wal-index from the WAL before returning.
+**
+** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
+** changed by this operation. If pWal->hdr is unchanged, set *pChanged
+** to 0.
+**
+** If the wal-index header is successfully read, return SQLITE_OK.
+** Otherwise an SQLite error code.
+*/
+static int walIndexReadHdr(Wal *pWal, int *pChanged){
+ int rc; /* Return code */
+ int badHdr; /* True if a header read failed */
+ volatile u32 *page0; /* Chunk of wal-index containing header */
+
+ /* Ensure that page 0 of the wal-index (the page that contains the
+ ** wal-index header) is mapped. Return early if an error occurs here.
+ */
+ assert( pChanged );
+ rc = walIndexPage(pWal, 0, &page0);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ };
+ assert( page0 || pWal->writeLock==0 );
+
+ /* If the first page of the wal-index has been mapped, try to read the
+ ** wal-index header immediately, without holding any lock. This usually
+ ** works, but may fail if the wal-index header is corrupt or currently
+ ** being modified by another thread or process.
+ */
+ badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
+
+ /* If the first attempt failed, it might have been due to a race
+ ** with a writer. So get a WRITE lock and try again.
+ */
+ assert( badHdr==0 || pWal->writeLock==0 );
+ if( badHdr ){
+ if( pWal->readOnly & WAL_SHM_RDONLY ){
+ if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
+ walUnlockShared(pWal, WAL_WRITE_LOCK);
+ rc = SQLITE_READONLY_RECOVERY;
+ }
+ }else if( SQLITE_OK==(rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1)) ){
+ pWal->writeLock = 1;
+ if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
+ badHdr = walIndexTryHdr(pWal, pChanged);
+ if( badHdr ){
+ /* If the wal-index header is still malformed even while holding
+ ** a WRITE lock, it can only mean that the header is corrupted and
+ ** needs to be reconstructed. So run recovery to do exactly that.
+ */
+ rc = walIndexRecover(pWal);
+ *pChanged = 1;
+ }
+ }
+ pWal->writeLock = 0;
+ walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
+ }
+ }
+
+ /* If the header is read successfully, check the version number to make
+ ** sure the wal-index was not constructed with some future format that
+ ** this version of SQLite cannot understand.
+ */
+ if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
+ rc = SQLITE_CANTOPEN_BKPT;
+ }
+
+ return rc;
+}
+
+/*
+** This is the value that walTryBeginRead returns when it needs to
+** be retried.
+*/
+#define WAL_RETRY (-1)
+
+/*
+** Attempt to start a read transaction. This might fail due to a race or
+** other transient condition. When that happens, it returns WAL_RETRY to
+** indicate to the caller that it is safe to retry immediately.
+**
+** On success return SQLITE_OK. On a permanent failure (such an
+** I/O error or an SQLITE_BUSY because another process is running
+** recovery) return a positive error code.
+**
+** The useWal parameter is true to force the use of the WAL and disable
+** the case where the WAL is bypassed because it has been completely
+** checkpointed. If useWal==0 then this routine calls walIndexReadHdr()
+** to make a copy of the wal-index header into pWal->hdr. If the
+** wal-index header has changed, *pChanged is set to 1 (as an indication
+** to the caller that the local paget cache is obsolete and needs to be
+** flushed.) When useWal==1, the wal-index header is assumed to already
+** be loaded and the pChanged parameter is unused.
+**
+** The caller must set the cnt parameter to the number of prior calls to
+** this routine during the current read attempt that returned WAL_RETRY.
+** This routine will start taking more aggressive measures to clear the
+** race conditions after multiple WAL_RETRY returns, and after an excessive
+** number of errors will ultimately return SQLITE_PROTOCOL. The
+** SQLITE_PROTOCOL return indicates that some other process has gone rogue
+** and is not honoring the locking protocol. There is a vanishingly small
+** chance that SQLITE_PROTOCOL could be returned because of a run of really
+** bad luck when there is lots of contention for the wal-index, but that
+** possibility is so small that it can be safely neglected, we believe.
+**
+** On success, this routine obtains a read lock on
+** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
+** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
+** that means the Wal does not hold any read lock. The reader must not
+** access any database page that is modified by a WAL frame up to and
+** including frame number aReadMark[pWal->readLock]. The reader will
+** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
+** Or if pWal->readLock==0, then the reader will ignore the WAL
+** completely and get all content directly from the database file.
+** If the useWal parameter is 1 then the WAL will never be ignored and
+** this routine will always set pWal->readLock>0 on success.
+** When the read transaction is completed, the caller must release the
+** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
+**
+** This routine uses the nBackfill and aReadMark[] fields of the header
+** to select a particular WAL_READ_LOCK() that strives to let the
+** checkpoint process do as much work as possible. This routine might
+** update values of the aReadMark[] array in the header, but if it does
+** so it takes care to hold an exclusive lock on the corresponding
+** WAL_READ_LOCK() while changing values.
+*/
+static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
+ volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
+ u32 mxReadMark; /* Largest aReadMark[] value */
+ int mxI; /* Index of largest aReadMark[] value */
+ int i; /* Loop counter */
+ int rc = SQLITE_OK; /* Return code */
+ u32 mxFrame; /* Wal frame to lock to */
+
+ assert( pWal->readLock<0 ); /* Not currently locked */
+
+ /* Take steps to avoid spinning forever if there is a protocol error.
+ **
+ ** Circumstances that cause a RETRY should only last for the briefest
+ ** instances of time. No I/O or other system calls are done while the
+ ** locks are held, so the locks should not be held for very long. But
+ ** if we are unlucky, another process that is holding a lock might get
+ ** paged out or take a page-fault that is time-consuming to resolve,
+ ** during the few nanoseconds that it is holding the lock. In that case,
+ ** it might take longer than normal for the lock to free.
+ **
+ ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few
+ ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this
+ ** is more of a scheduler yield than an actual delay. But on the 10th
+ ** an subsequent retries, the delays start becoming longer and longer,
+ ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
+ ** The total delay time before giving up is less than 10 seconds.
+ */
+ if( cnt>5 ){
+ int nDelay = 1; /* Pause time in microseconds */
+ if( cnt>100 ){
+ VVA_ONLY( pWal->lockError = 1; )
+ return SQLITE_PROTOCOL;
+ }
+ if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
+ sqlite3OsSleep(pWal->pVfs, nDelay);
+ }
+
+ if( !useWal ){
+ rc = walIndexReadHdr(pWal, pChanged);
+ if( rc==SQLITE_BUSY ){
+ /* If there is not a recovery running in another thread or process
+ ** then convert BUSY errors to WAL_RETRY. If recovery is known to
+ ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
+ ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
+ ** would be technically correct. But the race is benign since with
+ ** WAL_RETRY this routine will be called again and will probably be
+ ** right on the second iteration.
+ */
+ if( pWal->apWiData[0]==0 ){
+ /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
+ ** We assume this is a transient condition, so return WAL_RETRY. The
+ ** xShmMap() implementation used by the default unix and win32 VFS
+ ** modules may return SQLITE_BUSY due to a race condition in the
+ ** code that determines whether or not the shared-memory region
+ ** must be zeroed before the requested page is returned.
+ */
+ rc = WAL_RETRY;
+ }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
+ walUnlockShared(pWal, WAL_RECOVER_LOCK);
+ rc = WAL_RETRY;
+ }else if( rc==SQLITE_BUSY ){
+ rc = SQLITE_BUSY_RECOVERY;
+ }
+ }
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ }
+
+ pInfo = walCkptInfo(pWal);
+ if( !useWal && pInfo->nBackfill==pWal->hdr.mxFrame
+#ifdef SQLITE_ENABLE_SNAPSHOT
+ && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0
+ || 0==memcmp(&pWal->hdr, pWal->pSnapshot, sizeof(WalIndexHdr)))
+#endif
+ ){
+ /* The WAL has been completely backfilled (or it is empty).
+ ** and can be safely ignored.
+ */
+ rc = walLockShared(pWal, WAL_READ_LOCK(0));
+ walShmBarrier(pWal);
+ if( rc==SQLITE_OK ){
+ if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
+ /* It is not safe to allow the reader to continue here if frames
+ ** may have been appended to the log before READ_LOCK(0) was obtained.
+ ** When holding READ_LOCK(0), the reader ignores the entire log file,
+ ** which implies that the database file contains a trustworthy
+ ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
+ ** happening, this is usually correct.
+ **
+ ** However, if frames have been appended to the log (or if the log
+ ** is wrapped and written for that matter) before the READ_LOCK(0)
+ ** is obtained, that is not necessarily true. A checkpointer may
+ ** have started to backfill the appended frames but crashed before
+ ** it finished. Leaving a corrupt image in the database file.
+ */
+ walUnlockShared(pWal, WAL_READ_LOCK(0));
+ return WAL_RETRY;
+ }
+ pWal->readLock = 0;
+ return SQLITE_OK;
+ }else if( rc!=SQLITE_BUSY ){
+ return rc;
+ }
+ }
+
+ /* If we get this far, it means that the reader will want to use
+ ** the WAL to get at content from recent commits. The job now is
+ ** to select one of the aReadMark[] entries that is closest to
+ ** but not exceeding pWal->hdr.mxFrame and lock that entry.
+ */
+ mxReadMark = 0;
+ mxI = 0;
+ mxFrame = pWal->hdr.mxFrame;
+#ifdef SQLITE_ENABLE_SNAPSHOT
+ if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
+ mxFrame = pWal->pSnapshot->mxFrame;
+ }
+#endif
+ for(i=1; i<WAL_NREADER; i++){
+ u32 thisMark = pInfo->aReadMark[i];
+ if( mxReadMark<=thisMark && thisMark<=mxFrame ){
+ assert( thisMark!=READMARK_NOT_USED );
+ mxReadMark = thisMark;
+ mxI = i;
+ }
+ }
+ if( (pWal->readOnly & WAL_SHM_RDONLY)==0
+ && (mxReadMark<mxFrame || mxI==0)
+ ){
+ for(i=1; i<WAL_NREADER; i++){
+ rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
+ if( rc==SQLITE_OK ){
+ mxReadMark = pInfo->aReadMark[i] = mxFrame;
+ mxI = i;
+ walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
+ break;
+ }else if( rc!=SQLITE_BUSY ){
+ return rc;
+ }
+ }
+ }
+ if( mxI==0 ){
+ assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
+ return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTLOCK;
+ }
+
+ rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
+ if( rc ){
+ return rc==SQLITE_BUSY ? WAL_RETRY : rc;
+ }
+ /* Now that the read-lock has been obtained, check that neither the
+ ** value in the aReadMark[] array or the contents of the wal-index
+ ** header have changed.
+ **
+ ** It is necessary to check that the wal-index header did not change
+ ** between the time it was read and when the shared-lock was obtained
+ ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
+ ** that the log file may have been wrapped by a writer, or that frames
+ ** that occur later in the log than pWal->hdr.mxFrame may have been
+ ** copied into the database by a checkpointer. If either of these things
+ ** happened, then reading the database with the current value of
+ ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
+ ** instead.
+ **
+ ** Before checking that the live wal-index header has not changed
+ ** since it was read, set Wal.minFrame to the first frame in the wal
+ ** file that has not yet been checkpointed. This client will not need
+ ** to read any frames earlier than minFrame from the wal file - they
+ ** can be safely read directly from the database file.
+ **
+ ** Because a ShmBarrier() call is made between taking the copy of
+ ** nBackfill and checking that the wal-header in shared-memory still
+ ** matches the one cached in pWal->hdr, it is guaranteed that the
+ ** checkpointer that set nBackfill was not working with a wal-index
+ ** header newer than that cached in pWal->hdr. If it were, that could
+ ** cause a problem. The checkpointer could omit to checkpoint
+ ** a version of page X that lies before pWal->minFrame (call that version
+ ** A) on the basis that there is a newer version (version B) of the same
+ ** page later in the wal file. But if version B happens to like past
+ ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
+ ** that it can read version A from the database file. However, since
+ ** we can guarantee that the checkpointer that set nBackfill could not
+ ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
+ */
+ pWal->minFrame = pInfo->nBackfill+1;
+ walShmBarrier(pWal);
+ if( pInfo->aReadMark[mxI]!=mxReadMark
+ || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
+ ){
+ walUnlockShared(pWal, WAL_READ_LOCK(mxI));
+ return WAL_RETRY;
+ }else{
+ assert( mxReadMark<=pWal->hdr.mxFrame );
+ pWal->readLock = (i16)mxI;
+ }
+ return rc;
+}
+
+#ifdef SQLITE_ENABLE_SNAPSHOT
+/*
+** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted
+** variable so that older snapshots can be accessed. To do this, loop
+** through all wal frames from nBackfillAttempted to (nBackfill+1),
+** comparing their content to the corresponding page with the database
+** file, if any. Set nBackfillAttempted to the frame number of the
+** first frame for which the wal file content matches the db file.
+**
+** This is only really safe if the file-system is such that any page
+** writes made by earlier checkpointers were atomic operations, which
+** is not always true. It is also possible that nBackfillAttempted
+** may be left set to a value larger than expected, if a wal frame
+** contains content that duplicate of an earlier version of the same
+** page.
+**
+** SQLITE_OK is returned if successful, or an SQLite error code if an
+** error occurs. It is not an error if nBackfillAttempted cannot be
+** decreased at all.
+*/
+SQLITE_PRIVATE int sqlite3WalSnapshotRecover(Wal *pWal){
+ int rc;
+
+ assert( pWal->readLock>=0 );
+ rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
+ if( rc==SQLITE_OK ){
+ volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
+ int szPage = (int)pWal->szPage;
+ i64 szDb; /* Size of db file in bytes */
+
+ rc = sqlite3OsFileSize(pWal->pDbFd, &szDb);
+ if( rc==SQLITE_OK ){
+ void *pBuf1 = sqlite3_malloc(szPage);
+ void *pBuf2 = sqlite3_malloc(szPage);
+ if( pBuf1==0 || pBuf2==0 ){
+ rc = SQLITE_NOMEM;
+ }else{
+ u32 i = pInfo->nBackfillAttempted;
+ for(i=pInfo->nBackfillAttempted; i>pInfo->nBackfill; i--){
+ volatile ht_slot *dummy;
+ volatile u32 *aPgno; /* Array of page numbers */
+ u32 iZero; /* Frame corresponding to aPgno[0] */
+ u32 pgno; /* Page number in db file */
+ i64 iDbOff; /* Offset of db file entry */
+ i64 iWalOff; /* Offset of wal file entry */
+
+ rc = walHashGet(pWal, walFramePage(i), &dummy, &aPgno, &iZero);
+ if( rc!=SQLITE_OK ) break;
+ pgno = aPgno[i-iZero];
+ iDbOff = (i64)(pgno-1) * szPage;
+
+ if( iDbOff+szPage<=szDb ){
+ iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE;
+ rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff);
+
+ if( rc==SQLITE_OK ){
+ rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff);
+ }
+
+ if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){
+ break;
+ }
+ }
+
+ pInfo->nBackfillAttempted = i-1;
+ }
+ }
+
+ sqlite3_free(pBuf1);
+ sqlite3_free(pBuf2);
+ }
+ walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
+ }
+
+ return rc;
+}
+#endif /* SQLITE_ENABLE_SNAPSHOT */
+
+/*
+** Begin a read transaction on the database.
+**
+** This routine used to be called sqlite3OpenSnapshot() and with good reason:
+** it takes a snapshot of the state of the WAL and wal-index for the current
+** instant in time. The current thread will continue to use this snapshot.
+** Other threads might append new content to the WAL and wal-index but
+** that extra content is ignored by the current thread.
+**
+** If the database contents have changes since the previous read
+** transaction, then *pChanged is set to 1 before returning. The
+** Pager layer will use this to know that is cache is stale and
+** needs to be flushed.
+*/
+SQLITE_PRIVATE int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
+ int rc; /* Return code */
+ int cnt = 0; /* Number of TryBeginRead attempts */
+
+#ifdef SQLITE_ENABLE_SNAPSHOT
+ int bChanged = 0;
+ WalIndexHdr *pSnapshot = pWal->pSnapshot;
+ if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
+ bChanged = 1;
+ }
+#endif
+
+ do{
+ rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
+ }while( rc==WAL_RETRY );
+ testcase( (rc&0xff)==SQLITE_BUSY );
+ testcase( (rc&0xff)==SQLITE_IOERR );
+ testcase( rc==SQLITE_PROTOCOL );
+ testcase( rc==SQLITE_OK );
+
+#ifdef SQLITE_ENABLE_SNAPSHOT
+ if( rc==SQLITE_OK ){
+ if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
+ /* At this point the client has a lock on an aReadMark[] slot holding
+ ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
+ ** is populated with the wal-index header corresponding to the head
+ ** of the wal file. Verify that pSnapshot is still valid before
+ ** continuing. Reasons why pSnapshot might no longer be valid:
+ **
+ ** (1) The WAL file has been reset since the snapshot was taken.
+ ** In this case, the salt will have changed.
+ **
+ ** (2) A checkpoint as been attempted that wrote frames past
+ ** pSnapshot->mxFrame into the database file. Note that the
+ ** checkpoint need not have completed for this to cause problems.
+ */
+ volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
+
+ assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
+ assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
+
+ /* It is possible that there is a checkpointer thread running
+ ** concurrent with this code. If this is the case, it may be that the
+ ** checkpointer has already determined that it will checkpoint
+ ** snapshot X, where X is later in the wal file than pSnapshot, but
+ ** has not yet set the pInfo->nBackfillAttempted variable to indicate
+ ** its intent. To avoid the race condition this leads to, ensure that
+ ** there is no checkpointer process by taking a shared CKPT lock
+ ** before checking pInfo->nBackfillAttempted.
+ **
+ ** TODO: Does the aReadMark[] lock prevent a checkpointer from doing
+ ** this already?
+ */
+ rc = walLockShared(pWal, WAL_CKPT_LOCK);
+
+ if( rc==SQLITE_OK ){
+ /* Check that the wal file has not been wrapped. Assuming that it has
+ ** not, also check that no checkpointer has attempted to checkpoint any
+ ** frames beyond pSnapshot->mxFrame. If either of these conditions are
+ ** true, return SQLITE_BUSY_SNAPSHOT. Otherwise, overwrite pWal->hdr
+ ** with *pSnapshot and set *pChanged as appropriate for opening the
+ ** snapshot. */
+ if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
+ && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
+ ){
+ assert( pWal->readLock>0 );
+ memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
+ *pChanged = bChanged;
+ }else{
+ rc = SQLITE_BUSY_SNAPSHOT;
+ }
+
+ /* Release the shared CKPT lock obtained above. */
+ walUnlockShared(pWal, WAL_CKPT_LOCK);
+ }
+
+
+ if( rc!=SQLITE_OK ){
+ sqlite3WalEndReadTransaction(pWal);
+ }
+ }
+ }
+#endif
+ return rc;
+}
+
+/*
+** Finish with a read transaction. All this does is release the
+** read-lock.
+*/
+SQLITE_PRIVATE void sqlite3WalEndReadTransaction(Wal *pWal){
+ sqlite3WalEndWriteTransaction(pWal);
+ if( pWal->readLock>=0 ){
+ walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
+ pWal->readLock = -1;
+ }
+}
+
+/*
+** Search the wal file for page pgno. If found, set *piRead to the frame that
+** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
+** to zero.
+**
+** Return SQLITE_OK if successful, or an error code if an error occurs. If an
+** error does occur, the final value of *piRead is undefined.
+*/
+SQLITE_PRIVATE int sqlite3WalFindFrame(
+ Wal *pWal, /* WAL handle */
+ Pgno pgno, /* Database page number to read data for */
+ u32 *piRead /* OUT: Frame number (or zero) */
+){
+ u32 iRead = 0; /* If !=0, WAL frame to return data from */
+ u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
+ int iHash; /* Used to loop through N hash tables */
+ int iMinHash;
+
+ /* This routine is only be called from within a read transaction. */
+ assert( pWal->readLock>=0 || pWal->lockError );
+
+ /* If the "last page" field of the wal-index header snapshot is 0, then
+ ** no data will be read from the wal under any circumstances. Return early
+ ** in this case as an optimization. Likewise, if pWal->readLock==0,
+ ** then the WAL is ignored by the reader so return early, as if the
+ ** WAL were empty.
+ */
+ if( iLast==0 || pWal->readLock==0 ){
+ *piRead = 0;
+ return SQLITE_OK;
+ }
+
+ /* Search the hash table or tables for an entry matching page number
+ ** pgno. Each iteration of the following for() loop searches one
+ ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
+ **
+ ** This code might run concurrently to the code in walIndexAppend()
+ ** that adds entries to the wal-index (and possibly to this hash
+ ** table). This means the value just read from the hash
+ ** slot (aHash[iKey]) may have been added before or after the
+ ** current read transaction was opened. Values added after the
+ ** read transaction was opened may have been written incorrectly -
+ ** i.e. these slots may contain garbage data. However, we assume
+ ** that any slots written before the current read transaction was
+ ** opened remain unmodified.
+ **
+ ** For the reasons above, the if(...) condition featured in the inner
+ ** loop of the following block is more stringent that would be required
+ ** if we had exclusive access to the hash-table:
+ **
+ ** (aPgno[iFrame]==pgno):
+ ** This condition filters out normal hash-table collisions.
+ **
+ ** (iFrame<=iLast):
+ ** This condition filters out entries that were added to the hash
+ ** table after the current read-transaction had started.
+ */
+ iMinHash = walFramePage(pWal->minFrame);
+ for(iHash=walFramePage(iLast); iHash>=iMinHash && iRead==0; iHash--){
+ volatile ht_slot *aHash; /* Pointer to hash table */
+ volatile u32 *aPgno; /* Pointer to array of page numbers */
+ u32 iZero; /* Frame number corresponding to aPgno[0] */
+ int iKey; /* Hash slot index */
+ int nCollide; /* Number of hash collisions remaining */
+ int rc; /* Error code */
+
+ rc = walHashGet(pWal, iHash, &aHash, &aPgno, &iZero);
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+ nCollide = HASHTABLE_NSLOT;
+ for(iKey=walHash(pgno); aHash[iKey]; iKey=walNextHash(iKey)){
+ u32 iFrame = aHash[iKey] + iZero;
+ if( iFrame<=iLast && iFrame>=pWal->minFrame && aPgno[aHash[iKey]]==pgno ){
+ assert( iFrame>iRead || CORRUPT_DB );
+ iRead = iFrame;
+ }
+ if( (nCollide--)==0 ){
+ return SQLITE_CORRUPT_BKPT;
+ }
+ }
+ }
+
+#ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
+ /* If expensive assert() statements are available, do a linear search
+ ** of the wal-index file content. Make sure the results agree with the
+ ** result obtained using the hash indexes above. */
+ {
+ u32 iRead2 = 0;
+ u32 iTest;
+ assert( pWal->minFrame>0 );
+ for(iTest=iLast; iTest>=pWal->minFrame; iTest--){
+ if( walFramePgno(pWal, iTest)==pgno ){
+ iRead2 = iTest;
+ break;
+ }
+ }
+ assert( iRead==iRead2 );
+ }
+#endif
+
+ *piRead = iRead;
+ return SQLITE_OK;
+}
+
+/*
+** Read the contents of frame iRead from the wal file into buffer pOut
+** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
+** error code otherwise.
+*/
+SQLITE_PRIVATE int sqlite3WalReadFrame(
+ Wal *pWal, /* WAL handle */
+ u32 iRead, /* Frame to read */
+ int nOut, /* Size of buffer pOut in bytes */
+ u8 *pOut /* Buffer to write page data to */
+){
+ int sz;
+ i64 iOffset;
+ sz = pWal->hdr.szPage;
+ sz = (sz&0xfe00) + ((sz&0x0001)<<16);
+ testcase( sz<=32768 );
+ testcase( sz>=65536 );
+ iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
+ /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
+ return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
+}
+
+/*
+** Return the size of the database in pages (or zero, if unknown).
+*/
+SQLITE_PRIVATE Pgno sqlite3WalDbsize(Wal *pWal){
+ if( pWal && ALWAYS(pWal->readLock>=0) ){
+ return pWal->hdr.nPage;
+ }
+ return 0;
+}
+
+
+/*
+** This function starts a write transaction on the WAL.
+**
+** A read transaction must have already been started by a prior call
+** to sqlite3WalBeginReadTransaction().
+**
+** If another thread or process has written into the database since
+** the read transaction was started, then it is not possible for this
+** thread to write as doing so would cause a fork. So this routine
+** returns SQLITE_BUSY in that case and no write transaction is started.
+**
+** There can only be a single writer active at a time.
+*/
+SQLITE_PRIVATE int sqlite3WalBeginWriteTransaction(Wal *pWal){
+ int rc;
+
+ /* Cannot start a write transaction without first holding a read
+ ** transaction. */
+ assert( pWal->readLock>=0 );
+ assert( pWal->writeLock==0 && pWal->iReCksum==0 );
+
+ if( pWal->readOnly ){
+ return SQLITE_READONLY;
+ }
+
+ /* Only one writer allowed at a time. Get the write lock. Return
+ ** SQLITE_BUSY if unable.
+ */
+ rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
+ if( rc ){
+ return rc;
+ }
+ pWal->writeLock = 1;
+
+ /* If another connection has written to the database file since the
+ ** time the read transaction on this connection was started, then
+ ** the write is disallowed.
+ */
+ if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
+ walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
+ pWal->writeLock = 0;
+ rc = SQLITE_BUSY_SNAPSHOT;
+ }
+
+ return rc;
+}
+
+/*
+** End a write transaction. The commit has already been done. This
+** routine merely releases the lock.
+*/
+SQLITE_PRIVATE int sqlite3WalEndWriteTransaction(Wal *pWal){
+ if( pWal->writeLock ){
+ walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
+ pWal->writeLock = 0;
+ pWal->iReCksum = 0;
+ pWal->truncateOnCommit = 0;
+ }
+ return SQLITE_OK;
+}
+
+/*
+** If any data has been written (but not committed) to the log file, this
+** function moves the write-pointer back to the start of the transaction.
+**
+** Additionally, the callback function is invoked for each frame written
+** to the WAL since the start of the transaction. If the callback returns
+** other than SQLITE_OK, it is not invoked again and the error code is
+** returned to the caller.
+**
+** Otherwise, if the callback function does not return an error, this
+** function returns SQLITE_OK.
+*/
+SQLITE_PRIVATE int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
+ int rc = SQLITE_OK;
+ if( ALWAYS(pWal->writeLock) ){
+ Pgno iMax = pWal->hdr.mxFrame;
+ Pgno iFrame;
+
+ /* Restore the clients cache of the wal-index header to the state it
+ ** was in before the client began writing to the database.
+ */
+ memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
+
+ for(iFrame=pWal->hdr.mxFrame+1;
+ ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
+ iFrame++
+ ){
+ /* This call cannot fail. Unless the page for which the page number
+ ** is passed as the second argument is (a) in the cache and
+ ** (b) has an outstanding reference, then xUndo is either a no-op
+ ** (if (a) is false) or simply expels the page from the cache (if (b)
+ ** is false).
+ **
+ ** If the upper layer is doing a rollback, it is guaranteed that there
+ ** are no outstanding references to any page other than page 1. And
+ ** page 1 is never written to the log until the transaction is
+ ** committed. As a result, the call to xUndo may not fail.
+ */
+ assert( walFramePgno(pWal, iFrame)!=1 );
+ rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
+ }
+ if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
+ }
+ return rc;
+}
+
+/*
+** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
+** values. This function populates the array with values required to
+** "rollback" the write position of the WAL handle back to the current
+** point in the event of a savepoint rollback (via WalSavepointUndo()).
+*/
+SQLITE_PRIVATE void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
+ assert( pWal->writeLock );
+ aWalData[0] = pWal->hdr.mxFrame;
+ aWalData[1] = pWal->hdr.aFrameCksum[0];
+ aWalData[2] = pWal->hdr.aFrameCksum[1];
+ aWalData[3] = pWal->nCkpt;
+}
+
+/*
+** Move the write position of the WAL back to the point identified by
+** the values in the aWalData[] array. aWalData must point to an array
+** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
+** by a call to WalSavepoint().
+*/
+SQLITE_PRIVATE int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
+ int rc = SQLITE_OK;
+
+ assert( pWal->writeLock );
+ assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
+
+ if( aWalData[3]!=pWal->nCkpt ){
+ /* This savepoint was opened immediately after the write-transaction
+ ** was started. Right after that, the writer decided to wrap around
+ ** to the start of the log. Update the savepoint values to match.
+ */
+ aWalData[0] = 0;
+ aWalData[3] = pWal->nCkpt;
+ }
+
+ if( aWalData[0]<pWal->hdr.mxFrame ){
+ pWal->hdr.mxFrame = aWalData[0];
+ pWal->hdr.aFrameCksum[0] = aWalData[1];
+ pWal->hdr.aFrameCksum[1] = aWalData[2];
+ walCleanupHash(pWal);
+ }
+
+ return rc;
+}
+
+/*
+** This function is called just before writing a set of frames to the log
+** file (see sqlite3WalFrames()). It checks to see if, instead of appending
+** to the current log file, it is possible to overwrite the start of the
+** existing log file with the new frames (i.e. "reset" the log). If so,
+** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
+** unchanged.
+**
+** SQLITE_OK is returned if no error is encountered (regardless of whether
+** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
+** if an error occurs.
+*/
+static int walRestartLog(Wal *pWal){
+ int rc = SQLITE_OK;
+ int cnt;
+
+ if( pWal->readLock==0 ){
+ volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
+ assert( pInfo->nBackfill==pWal->hdr.mxFrame );
+ if( pInfo->nBackfill>0 ){
+ u32 salt1;
+ sqlite3_randomness(4, &salt1);
+ rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
+ if( rc==SQLITE_OK ){
+ /* If all readers are using WAL_READ_LOCK(0) (in other words if no
+ ** readers are currently using the WAL), then the transactions
+ ** frames will overwrite the start of the existing log. Update the
+ ** wal-index header to reflect this.
+ **
+ ** In theory it would be Ok to update the cache of the header only
+ ** at this point. But updating the actual wal-index header is also
+ ** safe and means there is no special case for sqlite3WalUndo()
+ ** to handle if this transaction is rolled back. */
+ walRestartHdr(pWal, salt1);
+ walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
+ }else if( rc!=SQLITE_BUSY ){
+ return rc;
+ }
+ }
+ walUnlockShared(pWal, WAL_READ_LOCK(0));
+ pWal->readLock = -1;
+ cnt = 0;
+ do{
+ int notUsed;
+ rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
+ }while( rc==WAL_RETRY );
+ assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
+ testcase( (rc&0xff)==SQLITE_IOERR );
+ testcase( rc==SQLITE_PROTOCOL );
+ testcase( rc==SQLITE_OK );
+ }
+ return rc;
+}
+
+/*
+** Information about the current state of the WAL file and where
+** the next fsync should occur - passed from sqlite3WalFrames() into
+** walWriteToLog().
+*/
+typedef struct WalWriter {
+ Wal *pWal; /* The complete WAL information */
+ sqlite3_file *pFd; /* The WAL file to which we write */
+ sqlite3_int64 iSyncPoint; /* Fsync at this offset */
+ int syncFlags; /* Flags for the fsync */
+ int szPage; /* Size of one page */
+} WalWriter;
+
+/*
+** Write iAmt bytes of content into the WAL file beginning at iOffset.
+** Do a sync when crossing the p->iSyncPoint boundary.
+**
+** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
+** first write the part before iSyncPoint, then sync, then write the
+** rest.
+*/
+static int walWriteToLog(
+ WalWriter *p, /* WAL to write to */
+ void *pContent, /* Content to be written */
+ int iAmt, /* Number of bytes to write */
+ sqlite3_int64 iOffset /* Start writing at this offset */
+){
+ int rc;
+ if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
+ int iFirstAmt = (int)(p->iSyncPoint - iOffset);
+ rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
+ if( rc ) return rc;
+ iOffset += iFirstAmt;
+ iAmt -= iFirstAmt;
+ pContent = (void*)(iFirstAmt + (char*)pContent);
+ assert( p->syncFlags & (SQLITE_SYNC_NORMAL|SQLITE_SYNC_FULL) );
+ rc = sqlite3OsSync(p->pFd, p->syncFlags & SQLITE_SYNC_MASK);
+ if( iAmt==0 || rc ) return rc;
+ }
+ rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
+ return rc;
+}
+
+/*
+** Write out a single frame of the WAL
+*/
+static int walWriteOneFrame(
+ WalWriter *p, /* Where to write the frame */
+ PgHdr *pPage, /* The page of the frame to be written */
+ int nTruncate, /* The commit flag. Usually 0. >0 for commit */
+ sqlite3_int64 iOffset /* Byte offset at which to write */
+){
+ int rc; /* Result code from subfunctions */
+ void *pData; /* Data actually written */
+ u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
+#if defined(SQLITE_HAS_CODEC)
+ if( (pData = sqlite3PagerCodec(pPage))==0 ) return SQLITE_NOMEM_BKPT;
+#else
+ pData = pPage->pData;
+#endif
+ walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
+ rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
+ if( rc ) return rc;
+ /* Write the page data */
+ rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
+ return rc;
+}
+
+/*
+** This function is called as part of committing a transaction within which
+** one or more frames have been overwritten. It updates the checksums for
+** all frames written to the wal file by the current transaction starting
+** with the earliest to have been overwritten.
+**
+** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
+*/
+static int walRewriteChecksums(Wal *pWal, u32 iLast){
+ const int szPage = pWal->szPage;/* Database page size */
+ int rc = SQLITE_OK; /* Return code */
+ u8 *aBuf; /* Buffer to load data from wal file into */
+ u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */
+ u32 iRead; /* Next frame to read from wal file */
+ i64 iCksumOff;
+
+ aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
+ if( aBuf==0 ) return SQLITE_NOMEM_BKPT;
+
+ /* Find the checksum values to use as input for the recalculating the
+ ** first checksum. If the first frame is frame 1 (implying that the current
+ ** transaction restarted the wal file), these values must be read from the
+ ** wal-file header. Otherwise, read them from the frame header of the
+ ** previous frame. */
+ assert( pWal->iReCksum>0 );
+ if( pWal->iReCksum==1 ){
+ iCksumOff = 24;
+ }else{
+ iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
+ }
+ rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
+ pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
+ pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);
+
+ iRead = pWal->iReCksum;
+ pWal->iReCksum = 0;
+ for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
+ i64 iOff = walFrameOffset(iRead, szPage);
+ rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
+ if( rc==SQLITE_OK ){
+ u32 iPgno, nDbSize;
+ iPgno = sqlite3Get4byte(aBuf);
+ nDbSize = sqlite3Get4byte(&aBuf[4]);
+
+ walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
+ rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
+ }
+ }
+
+ sqlite3_free(aBuf);
+ return rc;
+}
+
+/*
+** Write a set of frames to the log. The caller must hold the write-lock
+** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
+*/
+SQLITE_PRIVATE int sqlite3WalFrames(
+ Wal *pWal, /* Wal handle to write to */
+ int szPage, /* Database page-size in bytes */
+ PgHdr *pList, /* List of dirty pages to write */
+ Pgno nTruncate, /* Database size after this commit */
+ int isCommit, /* True if this is a commit */
+ int sync_flags /* Flags to pass to OsSync() (or 0) */
+){
+ int rc; /* Used to catch return codes */
+ u32 iFrame; /* Next frame address */
+ PgHdr *p; /* Iterator to run through pList with. */
+ PgHdr *pLast = 0; /* Last frame in list */
+ int nExtra = 0; /* Number of extra copies of last page */
+ int szFrame; /* The size of a single frame */
+ i64 iOffset; /* Next byte to write in WAL file */
+ WalWriter w; /* The writer */
+ u32 iFirst = 0; /* First frame that may be overwritten */
+ WalIndexHdr *pLive; /* Pointer to shared header */
+
+ assert( pList );
+ assert( pWal->writeLock );
+
+ /* If this frame set completes a transaction, then nTruncate>0. If
+ ** nTruncate==0 then this frame set does not complete the transaction. */
+ assert( (isCommit!=0)==(nTruncate!=0) );
+
+#if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
+ { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
+ WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
+ pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
+ }
+#endif
+
+ pLive = (WalIndexHdr*)walIndexHdr(pWal);
+ if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
+ iFirst = pLive->mxFrame+1;
+ }
+
+ /* See if it is possible to write these frames into the start of the
+ ** log file, instead of appending to it at pWal->hdr.mxFrame.
+ */
+ if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
+ return rc;
+ }
+
+ /* If this is the first frame written into the log, write the WAL
+ ** header to the start of the WAL file. See comments at the top of
+ ** this source file for a description of the WAL header format.
+ */
+ iFrame = pWal->hdr.mxFrame;
+ if( iFrame==0 ){
+ u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */
+ u32 aCksum[2]; /* Checksum for wal-header */
+
+ sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
+ sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
+ sqlite3Put4byte(&aWalHdr[8], szPage);
+ sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
+ if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
+ memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
+ walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
+ sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
+ sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
+
+ pWal->szPage = szPage;
+ pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
+ pWal->hdr.aFrameCksum[0] = aCksum[0];
+ pWal->hdr.aFrameCksum[1] = aCksum[1];
+ pWal->truncateOnCommit = 1;
+
+ rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
+ WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
+ if( rc!=SQLITE_OK ){
+ return rc;
+ }
+
+ /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
+ ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise
+ ** an out-of-order write following a WAL restart could result in
+ ** database corruption. See the ticket:
+ **
+ ** http://localhost:591/sqlite/info/ff5be73dee
+ */
+ if( pWal->syncHeader && sync_flags ){
+ rc = sqlite3OsSync(pWal->pWalFd, sync_flags & SQLITE_SYNC_MASK);
+ if( rc ) return rc;
+ }
+ }
+ assert( (int)pWal->szPage==szPage );
+
+ /* Setup information needed to write frames into the WAL */
+ w.pWal = pWal;
+ w.pFd = pWal->pWalFd;
+ w.iSyncPoint = 0;
+ w.syncFlags = sync_flags;
+ w.szPage = szPage;
+ iOffset = walFrameOffset(iFrame+1, szPage);
+ szFrame = szPage + WAL_FRAME_HDRSIZE;
+
+ /* Write all frames into the log file exactly once */
+ for(p=pList; p; p=p->pDirty){
+ int nDbSize; /* 0 normally. Positive == commit flag */
+
+ /* Check if this page has already been written into the wal file by
+ ** the current transaction. If so, overwrite the existing frame and
+ ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that
+ ** checksums must be recomputed when the transaction is committed. */
+ if( iFirst && (p->pDirty || isCommit==0) ){
+ u32 iWrite = 0;
+ VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite);
+ assert( rc==SQLITE_OK || iWrite==0 );
+ if( iWrite>=iFirst ){
+ i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
+ void *pData;
+ if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
+ pWal->iReCksum = iWrite;
+ }
+#if defined(SQLITE_HAS_CODEC)
+ if( (pData = sqlite3PagerCodec(p))==0 ) return SQLITE_NOMEM;
+#else
+ pData = p->pData;
+#endif
+ rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff);
+ if( rc ) return rc;
+ p->flags &= ~PGHDR_WAL_APPEND;
+ continue;
+ }
+ }
+
+ iFrame++;
+ assert( iOffset==walFrameOffset(iFrame, szPage) );
+ nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
+ rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
+ if( rc ) return rc;
+ pLast = p;
+ iOffset += szFrame;
+ p->flags |= PGHDR_WAL_APPEND;
+ }
+
+ /* Recalculate checksums within the wal file if required. */
+ if( isCommit && pWal->iReCksum ){
+ rc = walRewriteChecksums(pWal, iFrame);
+ if( rc ) return rc;
+ }
+
+ /* If this is the end of a transaction, then we might need to pad
+ ** the transaction and/or sync the WAL file.
+ **
+ ** Padding and syncing only occur if this set of frames complete a
+ ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL
+ ** or synchronous==OFF, then no padding or syncing are needed.
+ **
+ ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
+ ** needed and only the sync is done. If padding is needed, then the
+ ** final frame is repeated (with its commit mark) until the next sector
+ ** boundary is crossed. Only the part of the WAL prior to the last
+ ** sector boundary is synced; the part of the last frame that extends
+ ** past the sector boundary is written after the sync.
+ */
+ if( isCommit && (sync_flags & WAL_SYNC_TRANSACTIONS)!=0 ){
+ int bSync = 1;
+ if( pWal->padToSectorBoundary ){
+ int sectorSize = sqlite3SectorSize(pWal->pWalFd);
+ w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
+ bSync = (w.iSyncPoint==iOffset);
+ testcase( bSync );
+ while( iOffset<w.iSyncPoint ){
+ rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
+ if( rc ) return rc;
+ iOffset += szFrame;
+ nExtra++;
+ }
+ }
+ if( bSync ){
+ assert( rc==SQLITE_OK );
+ rc = sqlite3OsSync(w.pFd, sync_flags & SQLITE_SYNC_MASK);
+ }
+ }
+
+ /* If this frame set completes the first transaction in the WAL and
+ ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
+ ** journal size limit, if possible.
+ */
+ if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
+ i64 sz = pWal->mxWalSize;
+ if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
+ sz = walFrameOffset(iFrame+nExtra+1, szPage);
+ }
+ walLimitSize(pWal, sz);
+ pWal->truncateOnCommit = 0;
+ }
+
+ /* Append data to the wal-index. It is not necessary to lock the
+ ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
+ ** guarantees that there are no other writers, and no data that may
+ ** be in use by existing readers is being overwritten.
+ */
+ iFrame = pWal->hdr.mxFrame;
+ for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
+ if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
+ iFrame++;
+ rc = walIndexAppend(pWal, iFrame, p->pgno);
+ }
+ while( rc==SQLITE_OK && nExtra>0 ){
+ iFrame++;
+ nExtra--;
+ rc = walIndexAppend(pWal, iFrame, pLast->pgno);
+ }
+
+ if( rc==SQLITE_OK ){
+ /* Update the private copy of the header. */
+ pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
+ testcase( szPage<=32768 );
+ testcase( szPage>=65536 );
+ pWal->hdr.mxFrame = iFrame;
+ if( isCommit ){
+ pWal->hdr.iChange++;
+ pWal->hdr.nPage = nTruncate;
+ }
+ /* If this is a commit, update the wal-index header too. */
+ if( isCommit ){
+ walIndexWriteHdr(pWal);
+ pWal->iCallback = iFrame;
+ }
+ }
+
+ WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
+ return rc;
+}
+
+/*
+** This routine is called to implement sqlite3_wal_checkpoint() and
+** related interfaces.
+**
+** Obtain a CHECKPOINT lock and then backfill as much information as
+** we can from WAL into the database.
+**
+** If parameter xBusy is not NULL, it is a pointer to a busy-handler
+** callback. In this case this function runs a blocking checkpoint.
+*/
+SQLITE_PRIVATE int sqlite3WalCheckpoint(
+ Wal *pWal, /* Wal connection */
+ sqlite3 *db, /* Check this handle's interrupt flag */
+ int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */
+ int (*xBusy)(void*), /* Function to call when busy */
+ void *pBusyArg, /* Context argument for xBusyHandler */
+ int sync_flags, /* Flags to sync db file with (or 0) */
+ int nBuf, /* Size of temporary buffer */
+ u8 *zBuf, /* Temporary buffer to use */
+ int *pnLog, /* OUT: Number of frames in WAL */
+ int *pnCkpt /* OUT: Number of backfilled frames in WAL */
+){
+ int rc; /* Return code */
+ int isChanged = 0; /* True if a new wal-index header is loaded */
+ int eMode2 = eMode; /* Mode to pass to walCheckpoint() */
+ int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */
+
+ assert( pWal->ckptLock==0 );
+ assert( pWal->writeLock==0 );
+
+ /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
+ ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
+ assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
+
+ if( pWal->readOnly ) return SQLITE_READONLY;
+ WALTRACE(("WAL%p: checkpoint begins\n", pWal));
+
+ /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
+ ** "checkpoint" lock on the database file. */
+ rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
+ if( rc ){
+ /* EVIDENCE-OF: R-10421-19736 If any other process is running a
+ ** checkpoint operation at the same time, the lock cannot be obtained and
+ ** SQLITE_BUSY is returned.
+ ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
+ ** it will not be invoked in this case.
+ */
+ testcase( rc==SQLITE_BUSY );
+ testcase( xBusy!=0 );
+ return rc;
+ }
+ pWal->ckptLock = 1;
+
+ /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
+ ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
+ ** file.
+ **
+ ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
+ ** immediately, and a busy-handler is configured, it is invoked and the
+ ** writer lock retried until either the busy-handler returns 0 or the
+ ** lock is successfully obtained.
+ */
+ if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
+ rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_WRITE_LOCK, 1);
+ if( rc==SQLITE_OK ){
+ pWal->writeLock = 1;
+ }else if( rc==SQLITE_BUSY ){
+ eMode2 = SQLITE_CHECKPOINT_PASSIVE;
+ xBusy2 = 0;
+ rc = SQLITE_OK;
+ }
+ }
+
+ /* Read the wal-index header. */
+ if( rc==SQLITE_OK ){
+ rc = walIndexReadHdr(pWal, &isChanged);
+ if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
+ sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
+ }
+ }
+
+ /* Copy data from the log to the database file. */
+ if( rc==SQLITE_OK ){
+
+ if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
+ rc = SQLITE_CORRUPT_BKPT;
+ }else{
+ rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
+ }
+
+ /* If no error occurred, set the output variables. */
+ if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
+ if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
+ if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
+ }
+ }
+
+ if( isChanged ){
+ /* If a new wal-index header was loaded before the checkpoint was
+ ** performed, then the pager-cache associated with pWal is now
+ ** out of date. So zero the cached wal-index header to ensure that
+ ** next time the pager opens a snapshot on this database it knows that
+ ** the cache needs to be reset.
+ */
+ memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
+ }
+
+ /* Release the locks. */
+ sqlite3WalEndWriteTransaction(pWal);
+ walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
+ pWal->ckptLock = 0;
+ WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
+ return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
+}
+
+/* Return the value to pass to a sqlite3_wal_hook callback, the
+** number of frames in the WAL at the point of the last commit since
+** sqlite3WalCallback() was called. If no commits have occurred since
+** the last call, then return 0.
+*/
+SQLITE_PRIVATE int sqlite3WalCallback(Wal *pWal){
+ u32 ret = 0;
+ if( pWal ){
+ ret = pWal->iCallback;
+ pWal->iCallback = 0;
+ }
+ return (int)ret;
+}
+
+/*
+** This function is called to change the WAL subsystem into or out
+** of locking_mode=EXCLUSIVE.
+**
+** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
+** into locking_mode=NORMAL. This means that we must acquire a lock
+** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
+** or if the acquisition of the lock fails, then return 0. If the
+** transition out of exclusive-mode is successful, return 1. This
+** operation must occur while the pager is still holding the exclusive
+** lock on the main database file.
+**
+** If op is one, then change from locking_mode=NORMAL into
+** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
+** be released. Return 1 if the transition is made and 0 if the
+** WAL is already in exclusive-locking mode - meaning that this
+** routine is a no-op. The pager must already hold the exclusive lock
+** on the main database file before invoking this operation.
+**
+** If op is negative, then do a dry-run of the op==1 case but do
+** not actually change anything. The pager uses this to see if it
+** should acquire the database exclusive lock prior to invoking
+** the op==1 case.
+*/
+SQLITE_PRIVATE int sqlite3WalExclusiveMode(Wal *pWal, int op){
+ int rc;
+ assert( pWal->writeLock==0 );
+ assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
+
+ /* pWal->readLock is usually set, but might be -1 if there was a
+ ** prior error while attempting to acquire are read-lock. This cannot
+ ** happen if the connection is actually in exclusive mode (as no xShmLock
+ ** locks are taken in this case). Nor should the pager attempt to
+ ** upgrade to exclusive-mode following such an error.
+ */
+ assert( pWal->readLock>=0 || pWal->lockError );
+ assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
+
+ if( op==0 ){
+ if( pWal->exclusiveMode ){
+ pWal->exclusiveMode = 0;
+ if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
+ pWal->exclusiveMode = 1;
+ }
+ rc = pWal->exclusiveMode==0;
+ }else{
+ /* Already in locking_mode=NORMAL */
+ rc = 0;
+ }
+ }else if( op>0 ){
+ assert( pWal->exclusiveMode==0 );
+ assert( pWal->readLock>=0 );
+ walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
+ pWal->exclusiveMode = 1;
+ rc = 1;
+ }else{
+ rc = pWal->exclusiveMode==0;
+ }
+ return rc;
+}
+
+/*
+** Return true if the argument is non-NULL and the WAL module is using
+** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
+** WAL module is using shared-memory, return false.
+*/
+SQLITE_PRIVATE int sqlite3WalHeapMemory(Wal *pWal){
+ return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
+}
+
+#ifdef SQLITE_ENABLE_SNAPSHOT
+/* Create a snapshot object. The content of a snapshot is opaque to
+** every other subsystem, so the WAL module can put whatever it needs
+** in the object.
+*/
+SQLITE_PRIVATE int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
+ int rc = SQLITE_OK;
+ WalIndexHdr *pRet;
+ static const u32 aZero[4] = { 0, 0, 0, 0 };
+
+ assert( pWal->readLock>=0 && pWal->writeLock==0 );
+
+ if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){
+ *ppSnapshot = 0;
+ return SQLITE_ERROR;
+ }
+ pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
+ if( pRet==0 ){
+ rc = SQLITE_NOMEM_BKPT;
+ }else{
+ memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
+ *ppSnapshot = (sqlite3_snapshot*)pRet;
+ }
+
+ return rc;
+}
+
+/* Try to open on pSnapshot when the next read-transaction starts
+*/
+SQLITE_PRIVATE void sqlite3WalSnapshotOpen(Wal *pWal, sqlite3_snapshot *pSnapshot){
+ pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
+}
+
+/*
+** Return a +ve value if snapshot p1 is newer than p2. A -ve value if
+** p1 is older than p2 and zero if p1 and p2 are the same snapshot.
+*/
+SQLITE_API int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){
+ WalIndexHdr *pHdr1 = (WalIndexHdr*)p1;
+ WalIndexHdr *pHdr2 = (WalIndexHdr*)p2;
+
+ /* aSalt[0] is a copy of the value stored in the wal file header. It
+ ** is incremented each time the wal file is restarted. */
+ if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1;
+ if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1;
+ if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1;
+ if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1;
+ return 0;
+}
+#endif /* SQLITE_ENABLE_SNAPSHOT */
+
+#ifdef SQLITE_ENABLE_ZIPVFS
+/*
+** If the argument is not NULL, it points to a Wal object that holds a
+** read-lock. This function returns the database page-size if it is known,
+** or zero if it is not (or if pWal is NULL).
+*/
+SQLITE_PRIVATE int sqlite3WalFramesize(Wal *pWal){
+ assert( pWal==0 || pWal->readLock>=0 );
+ return (pWal ? pWal->szPage : 0);
+}
+#endif
+
+/* Return the sqlite3_file object for the WAL file
+*/
+SQLITE_PRIVATE sqlite3_file *sqlite3WalFile(Wal *pWal){
+ return pWal->pWalFd;
+}
+
+#endif /* #ifndef SQLITE_OMIT_WAL */
+
+/************** End of wal.c *************************************************/
+/************** Begin file btmutex.c *****************************************/
+/*
+** 2007 August 27
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+**
+** This file contains code used to implement mutexes on Btree objects.
+** This code really belongs in btree.c. But btree.c is getting too
+** big and we want to break it down some. This packaged seemed like
+** a good breakout.
+*/
+/************** Include btreeInt.h in the middle of btmutex.c ****************/
+/************** Begin file btreeInt.h ****************************************/
+/*
+** 2004 April 6
+**
+** The author disclaims copyright to this source code. In place of
+** a legal notice, here is a blessing:
+**
+** May you do good and not evil.
+** May you find forgiveness for yourself and forgive others.
+** May you share freely, never taking more than you give.
+**
+*************************************************************************
+** This file implements an external (disk-based) database using BTrees.
+** For a detailed discussion of BTrees, refer to
+**
+** Donald E. Knuth, THE ART OF COMPUTER PROGRAMMING, Volume 3:
+** "Sorting And Searching", pages 473-480. Addison-Wesley
+** Publishing Company, Reading, Massachusetts.
+**
+** The basic idea is that each page of the file contains N database
+** entries and N+1 pointers to subpages.
+**
+** ----------------------------------------------------------------
+** | Ptr(0) | Key(0) | Ptr(1) | Key(1) | ... | Key(N-1) | Ptr(N) |
+** ----------------------------------------------------------------
+**
+** All of the keys on the page that Ptr(0) points to have values less
+** than Key(0). All of the keys on page Ptr(1) and its subpages have
+** values greater than Key(0) and less than Key(1). All of the keys
+** on Ptr(N) and its subpages have values greater than Key(N-1). And
+** so forth.
+**
+** Finding a particular key requires reading O(log(M)) pages from the
+** disk where M is the number of entries in the tree.
+**
+** In this implementation, a single file can hold one or more separate
+** BTrees. Each BTree is identified by the index of its root page. The
+** key and data for any entry are combined to form the "payload". A
+** fixed amount of payload can be carried directly on the database
+** page. If the payload is larger than the preset amount then surplus
+** bytes are stored on overflow pages. The payload for an entry
+** and the preceding pointer are combined to form a "Cell". Each
+** page has a small header which contains the Ptr(N) pointer and other
+** information such as the size of key and data.
+**
+** FORMAT DETAILS
+**
+** The file is divided into pages. The first page is called page 1,
+** the second is page 2, and so forth. A page number of zero indicates
+** "no such page". The page size can be any power of 2 between 512 and 65536.
+** Each page can be either a btree page, a freelist page, an overflow
+** page, or a pointer-map page.
+**
+** The first page is always a btree page. The first 100 bytes of the first
+** page contain a special header (the "file header") that describes the file.
+** The format of the file header is as follows:
+**
+** OFFSET SIZE DESCRIPTION
+** 0 16 Header string: "SQLite format 3\000"
+** 16 2 Page size in bytes. (1 means 65536)
+** 18 1 File format write version
+** 19 1 File format read version
+** 20 1 Bytes of unused space at the end of each page
+** 21 1 Max embedded payload fraction (must be 64)
+** 22 1 Min embedded payload fraction (must be 32)
+** 23 1 Min leaf payload fraction (must be 32)
+** 24 4 File change counter
+** 28 4 Reserved for future use
+** 32 4 First freelist page
+** 36 4 Number of freelist pages in the file
+** 40 60 15 4-byte meta values passed to higher layers
+**
+** 40 4 Schema cookie
+** 44 4 File format of schema layer
+** 48 4 Size of page cache
+** 52 4 Largest root-page (auto/incr_vacuum)
+** 56 4 1=UTF-8 2=UTF16le 3=UTF16be
+** 60 4 User version
+** 64 4 Incremental vacuum mode
+** 68 4 Application-ID
+** 72 20 unused
+** 92 4 The version-valid-for number
+** 96 4 SQLITE_VERSION_NUMBER
+**
+** All of the integer values are big-endian (most significant byte first).
+**
+** The file change counter is incremented when the database is changed
+** This counter allows other processes to know when the file has changed
+** and thus when they need to flush their cache.
+**
+** The max embedded payload fraction is the amount of the total usable
+** space in a page that can be consumed by a single cell for standard
+** B-tree (non-LEAFDATA) tables. A value of 255 means 100%. The default
+** is to limit the maximum cell size so that at least 4 cells will fit
+** on one page. Thus the default max embedded payload fraction is 64.
+**
+** If the payload for a cell is larger than the max payload, then extra
+** payload is spilled to overflow pages. Once an overflow page is allocated,
+** as many bytes as possible are moved into the overflow pages without letting
+** the cell size drop below the min embedded payload fraction.
+**
+** The min leaf payload fraction is like the min embedded payload fraction
+** except that it applies to leaf nodes in a LEAFDATA tree. The maximum
+** payload fraction for a LEAFDATA tree is always 100% (or 255) and it
+** not specified in the header.
+**
+** Each btree pages is divided into three sections: The header, the
+** cell pointer array, and the cell content area. Page 1 also has a 100-byte
+** file header that occurs before the page header.
+**
+** |----------------|
+** | file header | 100 bytes. Page 1 only.
+** |----------------|
+** | page header | 8 bytes for leaves. 12 bytes for interior nodes
+** |----------------|
+** | cell pointer | | 2 bytes per cell. Sorted order.
+** | array | | Grows downward
+** | | v
+** |----------------|
+** | unallocated |
+** | space |
+** |----------------| ^ Grows upwards
+** | cell content | | Arbitrary order interspersed with freeblocks.
+** | area | | and free space fragments.
+** |----------------|
+**
+** The page headers looks like this:
+**
+** OFFSET SIZE DESCRIPTION
+** 0 1 Flags. 1: intkey, 2: zerodata, 4: leafdata, 8: leaf
+** 1 2 byte offset to the first freeblock
+** 3 2 number of cells on this page
+** 5 2 first byte of the cell content area
+** 7 1 number of fragmented free bytes
+** 8 4 Right child (the Ptr(N) value). Omitted on leaves.
+**
+** The flags define the format of this btree page. The leaf flag means that
+** this page has no children. The zerodata flag means that this page carries
+** only keys and no data. The intkey flag means that the key is an integer
+** which is stored in the key size entry of the cell header rather than in
+** the payload area.
+**
+** The cell pointer array begins on the first byte after the page header.
+** The cell pointer array contains zero or more 2-byte numbers which are
+** offsets from the beginning of the page to the cell content in the cell
+** content area. The cell pointers occur in sorted order. The system strives
+** to keep free space after the last cell pointer so that new cells can
+** be easily added without having to defragment the page.
+**
+** Cell content is stored at the very end of the page and grows toward the
+** beginning of the page.
+**
+** Unused space within the cell content area is collected into a linked list of
+** freeblocks. Each freeblock is at least 4 bytes in size. The byte offset
+** to the first freeblock is given in the header. Freeblocks occur in
+** increasing order. Because a freeblock must be at least 4 bytes in size,
+** any group of 3 or fewer unused bytes in the cell content area cannot
+** exist on the freeblock chain. A group of 3 or fewer free bytes is called
+** a fragment. The total number of bytes in all fragments is recorded.
+** in the page header at offset 7.
+**
+** SIZE DESCRIPTION
+** 2 Byte offset of the next freeblock
+** 2 Bytes in this freeblock
+**
+** Cells are of variable length. Cells are stored in the cell content area at
+** the end of the page. Pointers to the cells are in the cell pointer array
+** that immediately follows the page header. Cells is not necessarily
+** contiguous or in order, but cell pointers are contiguous and in order.
+**
+** Cell content makes use of variable length integers. A variable
+** length integer is 1 to 9 bytes where the lower 7 bits of each
+** byte are used. The integer consists of all bytes that have bit 8 set and
+** the first byte with bit 8 clear. The most significant byte of the integer
+** appears first. A variable-length integer may not be more than 9 bytes long.
+** As a special case, all 8 bytes of the 9th byte are used as data. This
+** allows a 64-bit integer to be encoded in 9 bytes.
+**
+** 0x00 becomes 0x00000000
+** 0x7f becomes 0x0000007f
+** 0x81 0x00 becomes 0x00000080
+** 0x82 0x00 becomes 0x00000100
+** 0x80 0x7f becomes 0x0000007f
+** 0x8a 0x91 0xd1 0xac 0x78 becomes 0x12345678
+** 0x81 0x81 0x81 0x81 0x01 becomes 0x10204081
+**
+** Variable length integers are used for rowids and to hold the number of
+** bytes of key and data in a btree cell.
+**
+** The content of a cell looks like this:
+**
+** SIZE DESCRIPTION
+** 4 Page number of the left child. Omitted if leaf flag is set.
+** var Number of bytes of data. Omitted if the zerodata flag is set.
+** var Number of bytes of key. Or the key itself if intkey flag is set.
+** * Payload
+** 4 First page of the overflow chain. Omitted if no overflow
+**
+** Overflow pages form a linked list. Each page except the last is completely
+** filled with data (pagesize - 4 bytes). The last page can have as little
+** as 1 byte of data.
+**
+** SIZE DESCRIPTION
+** 4 Page number of next overflow page
+** * Data
+**
+** Freelist pages come in two subtypes: trunk pages and leaf pages. The
+** file header points to the first in a linked list of trunk page. Each trunk
+** page points to multiple leaf pages. The content of a leaf page is
+** unspecified. A trunk page looks like this:
+**
+** SIZE DESCRIPTION
+** 4 Page number of next trunk page
+** 4 Number of leaf pointers on this page
+** * zero or more pages numbers of leaves
+*/
+/* #include "sqliteInt.h" */
+
+
+/* The following value is the maximum cell size assuming a maximum page
+** size give above.
+*/
+#define MX_CELL_SIZE(pBt) ((int)(pBt->pageSize-8))
+
+/* The maximum number of cells on a single page of the database. This
+** assumes a minimum cell size of 6 bytes (4 bytes for the cell itself
+** plus 2 bytes for the index to the cell in the page header). Such
+** small cells will be rare, but they are possible.
+*/
+#define MX_CELL(pBt) ((pBt->pageSize-8)/6)
+
+/* Forward declarations */
+typedef struct MemPage MemPage;
+typedef struct BtLock BtLock;
+typedef struct CellInfo CellInfo;
+
+/*
+** This is a magic string that appears at the beginning of every
+** SQLite database in order to identify the file as a real database.
+**
+** You can change this value at compile-time by specifying a
+** -DSQLITE_FILE_HEADER="..." on the compiler command-line. The
+** header must be exactly 16 bytes including the zero-terminator so
+** the string itself should be 15 characters long. If you change
+** the header, then your custom library will not be able to read
+** databases generated by the standard tools and the standard tools
+** will not be able to read databases created by your custom library.
+*/
+#ifndef SQLITE_FILE_HEADER /* 123456789 123456 */
+# define SQLITE_FILE_HEADER "SQLite format 3"
+#endif
+
+/*
+** Page type flags. An ORed combination of these flags appear as the
+** first byte of on-disk image of every BTree page.
+*/
+#define PTF_INTKEY 0x01
+#define PTF_ZERODATA 0x02
+#define PTF_LEAFDATA 0x04
+#define PTF_LEAF 0x08
+
+/*
+** An instance of this object stores information about each a single database
+** page that has been loaded into memory. The information in this object
+** is derived from the raw on-disk page content.
+**
+** As each database page is loaded into memory, the pager allocats an
+** instance of this object and zeros the first 8 bytes. (This is the
+** "extra" information associated with each page of the pager.)
+**
+** Access to all fields of this structure is controlled by the mutex
+** stored in MemPage.pBt->mutex.
+*/
+struct MemPage {
+ u8 isInit; /* True if previously initialized. MUST BE FIRST! */
+ u8 bBusy; /* Prevent endless loops on corrupt database files */
+ u8 intKey; /* True if table b-trees. False for index b-trees */
+ u8 intKeyLeaf; /* True if the leaf of an intKey table */
+ Pgno pgno; /* Page number for this page */
+ /* Only the first 8 bytes (above) are zeroed by pager.c when a new page
+ ** is allocated. All fields that follow must be initialized before use */
+ u8 leaf; /* True if a leaf page */
+ u8 hdrOffset; /* 100 for page 1. 0 otherwise */
+ u8 childPtrSize; /* 0 if leaf==1. 4 if leaf==0 */
+ u8 max1bytePayload; /* min(maxLocal,127) */
+ u8 nOverflow; /* Number of overflow cell bodies in aCell[] */
+ u16 maxLocal; /* Copy of BtShared.maxLocal or BtShared.maxLeaf */
+ u16 minLocal; /* Copy of BtShared.minLocal or BtShared.minLeaf */
+ u16 cellOffset; /* Index in aData of first cell pointer */
+ u16 nFree; /* Number of free bytes on the page */
+ u16 nCell; /* Number of cells on this page, local and ovfl */
+ u16 maskPage; /* Mask for page offset */
+ u16 aiOvfl[4]; /* Insert the i-th overflow cell before the aiOvfl-th
+ ** non-overflow cell */
+ u8 *apOvfl[4]; /* Pointers to the body of overflow cells */
+ BtShared *pBt; /* Pointer to BtShared that this page is part of */
+ u8 *aData; /* Pointer to disk image of the page data */
+ u8 *aDataEnd; /* One byte past the end of usable data */
+ u8 *aCellIdx; /* The cell index area */
+ u8 *aDataOfst; /* Same as aData for leaves. aData+4 for interior */
+ DbPage *pDbPage; /* Pager page handle */
+ u16 (*xCellSize)(MemPage*,u8*); /* cellSizePtr method */
+ void (*xParseCell)(MemPage*,u8*,CellInfo*); /* btreeParseCell method */
+};
+
+/*
+** A linked list of the following structures is stored at BtShared.pLock.
+** Locks are added (or upgraded from READ_LOCK to WRITE_LOCK) when a cursor
+** is opened on the table with root page BtShared.iTable. Locks are removed
+** from this list when a transaction is committed or rolled back, or when
+** a btree handle is closed.
+*/
+struct BtLock {
+ Btree *pBtree; /* Btree handle holding this lock */
+ Pgno iTable; /* Root page of table */
+ u8 eLock; /* READ_LOCK or WRITE_LOCK */
+ BtLock *pNext; /* Next in BtShared.pLock list */
+};
+
+/* Candidate values for BtLock.eLock */
+#define READ_LOCK 1
+#define WRITE_LOCK 2
+
+/* A Btree handle
+**
+** A database connection contains a pointer to an instance of
+** this object for every database file that it has open. This structure
+** is opaque to the database connection. The database connection cannot
+** see the internals of this structure and only deals with pointers to
+** this structure.
+**
+** For some database files, the same underlying database cache might be
+** shared between multiple connections. In that case, each connection
+** has it own instance of this object. But each instance of this object
+** points to the same BtShared object. The database cache and the
+** schema associated with the database file are all contained within
+** the BtShared object.
+**
+** All fields in this structure are accessed under sqlite3.mutex.
+** The pBt pointer itself may not be changed while there exists cursors
+** in the referenced BtShared that point back to this Btree since those
+** cursors have to go through this Btree to find their BtShared and
+** they often do so without holding sqlite3.mutex.
+*/
+struct Btree {
+ sqlite3 *db; /* The database connection holding this btree */
+ BtShared *pBt; /* Sharable content of this btree */
+ u8 inTrans; /* TRANS_NONE, TRANS_READ or TRANS_WRITE */
+ u8 sharable; /* True if we can share pBt with another db */
+ u8 locked; /* True if db currently has pBt locked */
+ u8 hasIncrblobCur; /* True if there are one or more Incrblob cursors */
+ int wantToLock; /* Number of nested calls to sqlite3BtreeEnter() */
+ int nBackup; /* Number of backup operations reading this btree */
+ u32 iDataVersion; /* Combines with pBt->pPager->iDataVersion */
+ Btree *pNext; /* List of other sharable Btrees from the same db */
+ Btree *pPrev; /* Back pointer of the same list */
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ BtLock lock; /* Object used to lock page 1 */
+#endif
+};
+
+/*
+** Btree.inTrans may take one of the following values.
+**
+** If the shared-data extension is enabled, there may be multiple users
+** of the Btree structure. At most one of these may open a write transaction,
+** but any number may have active read transactions.
+*/
+#define TRANS_NONE 0
+#define TRANS_READ 1
+#define TRANS_WRITE 2
+
+/*
+** An instance of this object represents a single database file.
+**
+** A single database file can be in use at the same time by two
+** or more database connections. When two or more connections are
+** sharing the same database file, each connection has it own
+** private Btree object for the file and each of those Btrees points
+** to this one BtShared object. BtShared.nRef is the number of
+** connections currently sharing this database file.
+**
+** Fields in this structure are accessed under the BtShared.mutex
+** mutex, except for nRef and pNext which are accessed under the
+** global SQLITE_MUTEX_STATIC_MASTER mutex. The pPager field
+** may not be modified once it is initially set as long as nRef>0.
+** The pSchema field may be set once under BtShared.mutex and
+** thereafter is unchanged as long as nRef>0.
+**
+** isPending:
+**
+** If a BtShared client fails to obtain a write-lock on a database
+** table (because there exists one or more read-locks on the table),
+** the shared-cache enters 'pending-lock' state and isPending is
+** set to true.
+**
+** The shared-cache leaves the 'pending lock' state when either of
+** the following occur:
+**
+** 1) The current writer (BtShared.pWriter) concludes its transaction, OR
+** 2) The number of locks held by other connections drops to zero.
+**
+** while in the 'pending-lock' state, no connection may start a new
+** transaction.
+**
+** This feature is included to help prevent writer-starvation.
+*/
+struct BtShared {
+ Pager *pPager; /* The page cache */
+ sqlite3 *db; /* Database connection currently using this Btree */
+ BtCursor *pCursor; /* A list of all open cursors */
+ MemPage *pPage1; /* First page of the database */
+ u8 openFlags; /* Flags to sqlite3BtreeOpen() */
+#ifndef SQLITE_OMIT_AUTOVACUUM
+ u8 autoVacuum; /* True if auto-vacuum is enabled */
+ u8 incrVacuum; /* True if incr-vacuum is enabled */
+ u8 bDoTruncate; /* True to truncate db on commit */
+#endif
+ u8 inTransaction; /* Transaction state */
+ u8 max1bytePayload; /* Maximum first byte of cell for a 1-byte payload */
+#ifdef SQLITE_HAS_CODEC
+ u8 optimalReserve; /* Desired amount of reserved space per page */
+#endif
+ u16 btsFlags; /* Boolean parameters. See BTS_* macros below */
+ u16 maxLocal; /* Maximum local payload in non-LEAFDATA tables */
+ u16 minLocal; /* Minimum local payload in non-LEAFDATA tables */
+ u16 maxLeaf; /* Maximum local payload in a LEAFDATA table */
+ u16 minLeaf; /* Minimum local payload in a LEAFDATA table */
+ u32 pageSize; /* Total number of bytes on a page */
+ u32 usableSize; /* Number of usable bytes on each page */
+ int nTransaction; /* Number of open transactions (read + write) */
+ u32 nPage; /* Number of pages in the database */
+ void *pSchema; /* Pointer to space allocated by sqlite3BtreeSchema() */
+ void (*xFreeSchema)(void*); /* Destructor for BtShared.pSchema */
+ sqlite3_mutex *mutex; /* Non-recursive mutex required to access this object */
+ Bitvec *pHasContent; /* Set of pages moved to free-list this transaction */
+#ifndef SQLITE_OMIT_SHARED_CACHE
+ int nRef; /* Number of references to this structure */
+ BtShared *pNext; /* Next on a list of sharable BtShared structs */
+ BtLock *pLock; /* List of locks held on this shared-btree struct */
+ Btree *pWriter; /* Btree with currently open write transaction */
+#endif
+ u8 *pTmpSpace; /* Temp space sufficient to hold a single cell */
+};
+
+/*
+** Allowed values for BtShared.btsFlags
+*/
+#define BTS_READ_ONLY 0x0001 /* Underlying file is readonly */
+#define BTS_PAGESIZE_FIXED 0x0002 /* Page size can no longer be changed */
+#define BTS_SECURE_DELETE 0x0004 /* PRAGMA secure_delete is enabled */
+#define BTS_INITIALLY_EMPTY 0x0008 /* Database was empty at trans start */
+#define BTS_NO_WAL 0x0010 /* Do not open write-ahead-log files */
+#define BTS_EXCLUSIVE 0x0020 /* pWriter has an exclusive lock */
+#define BTS_PENDING 0x0040 /* Waiting for read-locks to clear */
+
+/*
+** An instance of the following structure is used to hold information
+** about a cell. The parseCellPtr() function fills in this structure
+** based on information extract from the raw disk page.
+*/
+struct CellInfo {
+ i64 nKey; /* The key for INTKEY tables, or nPayload otherwise */
+ u8 *pPayload; /* Pointer to the start of payload */
+ u32 nPayload; /* Bytes of payload */
+ u16 nLocal; /* Amount of payload held locally, not on overflow */
+ u16 nSize; /* Size of the cell content on the main b-tree page */
+};
+
+/*
+** Maximum depth of an SQLite B-Tree structure. Any B-Tree deeper than
+** this will be declared corrupt. This value is calculated based on a
+** maximum database size of 2^31 pages a minimum fanout of 2 for a
+** root-node and 3 for all other internal nodes.
+**
+** If a tree that appears to be taller than this is encountered, it is
+** assumed that the database is corrupt.
+*/
+#define BTCURSOR_MAX_DEPTH 20
+
+/*
+** A cursor is a pointer to a particular entry within a particular
+** b-tree within a database file.
+**
+** The entry is identified by its MemPage and the index in
+** MemPage.aCell[] of the entry.
+**
+** A single database file can be shared by two more database connections,
+** but cursors cannot be shared. Each cursor is associated with a
+** particular database connection identified BtCursor.pBtree.db.
+**
+** Fields in this structure are accessed under the BtShared.mutex
+** found at self->pBt->mutex.
+**
+** skipNext meaning:
+** eState==SKIPNEXT && skipNext>0: Next sqlite3BtreeNext() is no-op.
+** eState==SKIPNEXT && skipNext<0: Next sqlite3BtreePrevious() is no-op.
+** eState==FAULT: Cursor fault with skipNext as error code.
+*/
+struct BtCursor {
+ Btree *pBtree; /* The Btree to which this cursor belongs */
+ BtShared *pBt; /* The BtShared this cursor points to */
+ BtCursor *pNext; /* Forms a linked list of all cursors */
+ Pgno *aOverflow; /* Cache of overflow page locations */
+ CellInfo info; /* A parse of the cell we are pointing at */
+ i64 nKey; /* Size of pKey, or last integer key */
+ void *pKey; /* Saved key that was cursor last known position */
+ Pgno pgnoRoot; /* The root page of this tree */
+ int nOvflAlloc; /* Allocated size of aOverflow[] array */
+ int skipNext; /* Prev() is noop if negative. Next() is noop if positive.
+ ** Error code if eState==CURSOR_FAULT */
+ u8 curFlags; /* zero or more BTCF_* flags defined below */
+ u8 curPagerFlags; /* Flags to send to sqlite3PagerGet() */
+ u8 eState; /* One of the CURSOR_XXX constants (see below) */
+ u8 hints; /* As configured by CursorSetHints() */
+ /* All fields above are zeroed when the cursor is allocated. See
+ ** sqlite3BtreeCursorZero(). Fields that follow must be manually
+ ** initialized. */
+ i8 iPage; /* Index of current page in apPage */
+ u8 curIntKey; /* Value of apPage[0]->intKey */
+ struct KeyInfo *pKeyInfo; /* Argument passed to comparison function */
+ void *padding1; /* Make object size a multiple of 16 */
+ u16 aiIdx[BTCURSOR_MAX_DEPTH]; /* Current index in apPage[i] */
+ MemPage *apPage[BTCURSOR_MAX_DEPTH]; /* Pages from root to current page */
+};
+
+/*
+** Legal values for BtCursor.curFlags
+*/
+#define BTCF_WriteFlag 0x01 /* True if a write cursor */
+#define BTCF_ValidNKey 0x02 /* True if info.nKey is valid */
+#define BTCF_ValidOvfl 0x04 /* True if aOverflow is valid */
+#define BTCF_AtLast 0x08 /* Cursor is pointing ot the last entry */
+#define BTCF_Incrblob 0x10 /* True if an incremental I/O handle */
+#define BTCF_Multiple 0x20 /* Maybe another cursor on the same btree */
+
+/*
+** Potential values for BtCursor.eState.
+**
+** CURSOR_INVALID:
+** Cursor does not point to a valid entry. This can happen (for example)
+** because the table is empty or because BtreeCursorFirst() has not been
+** called.
+**
+** CURSOR_VALID:
+** Cursor points to a valid entry. getPayload() etc. may be called.
+**
+** CURSOR_SKIPNEXT:
+** Cursor is valid except that the Cursor.skipNext field is non-zero
+** indicating that the next sqlite3BtreeNext() or sqlite3BtreePrevious()
+** operation should be a no-op.
+**
+** CURSOR_REQUIRESEEK:
+** The table that this cursor was opened on still exists, but has been
+** modified since the cursor was last used. The cursor position is saved
+** in variables BtCursor.pKey and BtCursor.nKey. When a cursor is in
+** this state, restoreCursorPosition() can be called to attempt to
+** seek the cursor to the saved position.
+**
+** CURSOR_FAULT:
+** An unrecoverable error (an I/O error or a malloc failure) has occurred
+** on a different connection that shares the BtShared cache with this
+** cursor. The error has left the cache in an inconsistent state.
+** Do nothing else with this cursor. Any attempt to use the cursor
+** should return the error code stored in BtCursor.skipNext
+*/
+#define CURSOR_INVALID 0
+#define CURSOR_VALID 1
+#define CURSOR_SKIPNEXT 2
+#define CURSOR_REQUIRESEEK 3
+#define CURSOR_FAULT 4
+
+/*
+** The database page the PENDING_BYTE occupies. This page is never used.
+*/
+# define PENDING_BYTE_PAGE(pBt) PAGER_MJ_PGNO(pBt)
+
+/*
+** These macros define the location of the pointer-map entry for a
+** database page. The first argument to each is the number of usable
+** bytes on each page of the database (often 1024). The second is the
+** page number to look up in the pointer map.
+**
+** PTRMAP_PAGENO returns the database page number of the pointer-map
+** page that stores the required pointer. PTRMAP_PTROFFSET returns
+** the offset of the requested map entry.
+**
+** If the pgno argument passed to PTRMAP_PAGENO is a pointer-map page,
+** then pgno is returned. So (pgno==PTRMAP_PAGENO(pgsz, pgno)) can be
+** used to test if pgno is a pointer-map page. PTRMAP_ISPAGE implements
+** this test.
+*/
+#define PTRMAP_PAGENO(pBt, pgno) ptrmapPageno(pBt, pgno)
+#define PTRMAP_PTROFFSET(pgptrmap, pgno) (5*(pgno-pgptrmap-1))
+#define PTRMAP_ISPAGE(pBt, pgno) (PTRMAP_PAGENO((pBt),(pgno))==(pgno))
+
+/*
+** The pointer map is a lookup table that identifies the parent page for
+** each child page in the database file. The parent page is the page that
+** contains a pointer to the child. Every page in the database contains
+** 0 or 1 parent pages. (In this context 'database page' refers
+** to any page that is not part of the pointer map itself.) Each pointer map
+** entry consists of a single byte 'type' and a 4 byte parent page number.
+** The PTRMAP_XXX identifiers below are the valid types.
+**
+** The purpose of the pointer map is to facility moving pages from one
+** position in the file to another as part of autovacuum. When a page
+** is moved, the pointer in its parent must be updated to point to the
+** new location. The pointer map is used to locate the parent page quickly.
+**
+** PTRMAP_ROOTPAGE: The database page is a root-page. The page-number is not
+** used in this case.
+**
+** PTRMAP_FREEPAGE: The database page is an unused (free) page. The page-number
+** is not used in this case.
+**
+** PTRMAP_OVERFLOW1: The database page is the first page in a list of
+** overflow pages. The page number identifies the page that
+** contains the cell with a pointer to this overflow page.
+**
+** PTRMAP_OVERFLOW2: The database page is the second or later page in a list of
+** overflow pages. The page-number identifies the previous
+** page in the overflow page list.
+**
+** PTRMAP_BTREE: The database page is a non-root btree page. The page number
+** identifies the parent page in the btree.
+*/
+#define PTRMAP_ROOTPAGE 1
+#define PTRMAP_FREEPAGE 2
+#define PTRMAP_OVERFLOW1 3
+#define PTRMAP_OVERFLOW2 4
+#define PTRMAP_BTREE 5
+
+/* A bunch of assert() statements to check the transaction state variables
+** of handle p (type Btree*) are internally consistent.
+*/
+#define btreeIntegrity(p) \
+ assert( p->pBt->inTransaction!=TRANS_NONE || p->pBt->nTransaction==0 ); \
+ assert( p->pBt->inTransaction>=p->inTrans );
+
+
+/*
+** The ISAUTOVACUUM macro is used within balance_nonroot() to determine
+** if the database supports auto-vacuum or not. Because it is used
+** within an expression that is an argument to another macro
+** (sqliteMallocRaw), it is not possible to use conditional compilation.
+** So, this macro is defined instead.
+*/
+#ifndef SQLITE_OMIT_AUTOVACUUM
+#define ISAUTOVACUUM (pBt->autoVacuum)
+#else
+#define ISAUTOVACUUM 0
+#endif
+
+
+/*
+** This structure is passed around through all the sanity checking routines
+** in order to keep track of some global state information.
+**
+** The aRef[] array is allocated so that there is 1 bit for each page in
+** the database. As the integrity-check proceeds, for each page used in
+** the database the corresponding bit is set. This allows integrity-check to
+** detect pages that are used twice and orphaned pages (both of which
+** indicate corruption).
+*/
+typedef struct IntegrityCk IntegrityCk;
+struct IntegrityCk {
+ BtShared *pBt; /* The tree being checked out */
+ Pager *pPager; /* The associated pager. Also accessible by pBt->pPager */
+ u8 *aPgRef; /* 1 bit per page in the db (see above) */
+ Pgno nPage; /* Number of pages in the database */
+ int mxErr; /* Stop accumulating errors when this reaches zero */
+ int nErr; /* Number of messages written to zErrMsg so far */
+ int mallocFailed; /* A memory allocation error has occurred */
+ const char *zPfx; /* Error message prefix */
+ int v1, v2; /* Values for up to two %d fields in zPfx */
+ StrAccum errMsg; /* Accumulate the error message text here */
+ u32 *heap; /* Min-heap used for analyzing cell coverage */
+};
+
+/*
+** Routines to read or write a two- and four-byte big-endian integer values.
+*/
+#define get2byte(x) ((x)[0]<<8 | (x)[1])
+#define put2byte(p,v) ((p)[0] = (u8)((v)>>8), (p)[1] = (u8)(v))
+#define get4byte sqlite3Get4byte
+#define put4byte sqlite3Put4byte
+
+/*
+** get2byteAligned(), unlike get2byte(), requires that its argument point to a
+** two-byte aligned address. get2bytea() is only used for accessing the
+** cell addresses in a btree header.
+*/
+#if SQLITE_BYTEORDER==4321
+# define get2byteAligned(x) (*(u16*)(x))
+#elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4008000
+# define get2byteAligned(x) __builtin_bswap16(*(u16*)(x))
+#elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
+# define get2byteAligned(x) _byteswap_ushort(*(u16*)(x))
+#else
+# define get2byteAligned(x) ((x)[0]<<8 | (x)[1])
+#endif
+
+/************** End of btreeInt.h ********************************************/
+/************** Continuing where we left off in btmutex.c ********************/
+#ifndef SQLITE_OMIT_SHARED_CACHE
+#if SQLITE_THREADSAFE
+
+/*
+** Obtain the BtShared mutex associated with B-Tree handle p. Also,
+** set BtShared.db to the database handle associated with p and the
+** p->locked boolean to true.
+*/
+static void lockBtreeMutex(Btree *p){
+ assert( p->locked==0 );
+ assert( sqlite3_mutex_notheld(p->pBt->mutex) );
+ assert( sqlite3_mutex_held(p->db->mutex) );
+
+ sqlite3_mutex_enter(p->pBt->mutex);
+ p->pBt->db = p->db;
+ p->locked = 1;
+}
+
+/*
+** Release the BtShared mutex associated with B-Tree handle p and
+** clear the p->locked boolean.
+*/
+static void SQLITE_NOINLINE unlockBtreeMutex(Btree *p){
+ BtShared *pBt = p->pBt;
+ assert( p->locked==1 );
+ assert( sqlite3_mutex_held(pBt->mutex) );
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ assert( p->db==pBt->db );
+
+ sqlite3_mutex_leave(pBt->mutex);
+ p->locked = 0;
+}
+
+/* Forward reference */
+static void SQLITE_NOINLINE btreeLockCarefully(Btree *p);
+
+/*
+** Enter a mutex on the given BTree object.
+**
+** If the object is not sharable, then no mutex is ever required
+** and this routine is a no-op. The underlying mutex is non-recursive.
+** But we keep a reference count in Btree.wantToLock so the behavior
+** of this interface is recursive.
+**
+** To avoid deadlocks, multiple Btrees are locked in the same order
+** by all database connections. The p->pNext is a list of other
+** Btrees belonging to the same database connection as the p Btree
+** which need to be locked after p. If we cannot get a lock on
+** p, then first unlock all of the others on p->pNext, then wait
+** for the lock to become available on p, then relock all of the
+** subsequent Btrees that desire a lock.
+*/
+SQLITE_PRIVATE void sqlite3BtreeEnter(Btree *p){
+ /* Some basic sanity checking on the Btree. The list of Btrees
+ ** connected by pNext and pPrev should be in sorted order by
+ ** Btree.pBt value. All elements of the list should belong to
+ ** the same connection. Only shared Btrees are on the list. */
+ assert( p->pNext==0 || p->pNext->pBt>p->pBt );
+ assert( p->pPrev==0 || p->pPrev->pBt<p->pBt );
+ assert( p->pNext==0 || p->pNext->db==p->db );
+ assert( p->pPrev==0 || p->pPrev->db==p->db );
+ assert( p->sharable || (p->pNext==0 && p->pPrev==0) );
+
+ /* Check for locking consistency */
+ assert( !p->locked || p->wantToLock>0 );
+ assert( p->sharable || p->wantToLock==0 );
+
+ /* We should already hold a lock on the database connection */
+ assert( sqlite3_mutex_held(p->db->mutex) );
+
+ /* Unless the database is sharable and unlocked, then BtShared.db
+ ** should already be set correctly. */
+ assert( (p->locked==0 && p->sharable) || p->pBt->db==p->db );
+
+ if( !p->sharable ) return;
+ p->wantToLock++;
+ if( p->locked ) return;
+ btreeLockCarefully(p);
+}
+
+/* This is a helper function for sqlite3BtreeLock(). By moving
+** complex, but seldom used logic, out of sqlite3BtreeLock() and
+** into this routine, we avoid unnecessary stack pointer changes
+** and thus help the sqlite3BtreeLock() routine to run much faster
+** in the common case.
+*/
+static void SQLITE_NOINLINE btreeLockCarefully(Btree *p){
+ Btree *pLater;
+
+ /* In most cases, we should be able to acquire the lock we
+ ** want without having to go through the ascending lock
+ ** procedure that follows. Just be sure not to block.
+ */
+ if( sqlite3_mutex_try(p->pBt->mutex)==SQLITE_OK ){
+ p->pBt->db = p->db;
+ p->locked = 1;
+ return;
+ }
+
+ /* To avoid deadlock, first release all locks with a larger
+ ** BtShared address. Then acquire our lock. Then reacquire
+ ** the other BtShared locks that we used to hold in ascending
+ ** order.
+ */
+ for(pLater=p->pNext; pLater; pLater=pLater->pNext){
+ assert( pLater->sharable );
+ assert( pLater->pNext==0 || pLater->pNext->pBt>pLater->pBt );
+ assert( !pLater->locked || pLater->wantToLock>0 );
+ if( pLater->locked ){
+ unlockBtreeMutex(pLater);
+ }
+ }
+ lockBtreeMutex(p);
+ for(pLater=p->pNext; pLater; pLater=pLater->pNext){
+ if( pLater->wantToLock ){
+ lockBtreeMutex(pLater);
+ }
+ }
+}
+
+
+/*
+** Exit the recursive mutex on a Btree.
+*/
+SQLITE_PRIVATE void sqlite3BtreeLeave(Btree *p){
+ assert( sqlite3_mutex_held(p->db->mutex) );
+ if( p->sharable ){
+ assert( p->wantToLock>0 );
+ p->wantToLock--;
+ if( p->wantToLock==0 ){
+ unlockBtreeMutex(p);
+ }
+ }
+}
+
+#ifndef NDEBUG
+/*
+** Return true if the BtShared mutex is held on the btree, or if the
+** B-Tree is not marked as sharable.
+**
+** This routine is used only from within assert() statements.
+*/
+SQLITE_PRIVATE int sqlite3BtreeHoldsMutex(Btree *p){
+ assert( p->sharable==0 || p->locked==0 || p->wantToLock>0 );
+ assert( p->sharable==0 || p->locked==0 || p->db==p->pBt->db );
+ assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->pBt->mutex) );
+ assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->db->mutex) );
+
+ return (p->sharable==0 || p->locked);
+}
+#endif
+
+
+/*
+** Enter the mutex on every Btree associated with a database
+** connection. This is needed (for example) prior to parsing
+** a statement since we will be comparing table and column names
+** against all schemas and we do not want those schemas being
+** reset out from under us.
+**
+** There is a corresponding leave-all procedures.
+**
+** Enter the mutexes in accending order by BtShared pointer address
+** to avoid the possibility of deadlock when two threads with
+** two or more btrees in common both try to lock all their btrees
+** at the same instant.
+*/
+static void SQLITE_NOINLINE btreeEnterAll(sqlite3 *db){
+ int i;
+ int skipOk = 1;
+ Btree *p;
+ assert( sqlite3_mutex_held(db->mutex) );
+ for(i=0; i<db->nDb; i++){
+ p = db->aDb[i].pBt;
+ if( p && p->sharable ){
+ sqlite3BtreeEnter(p);
+ skipOk = 0;
+ }
+ }
+ db->skipBtreeMutex = skipOk;
+}
+SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3 *db){
+ if( db->skipBtreeMutex==0 ) btreeEnterAll(db);
+}
+static void SQLITE_NOINLINE btreeLeaveAll(sqlite3 *db){
+ int i;
+ Btree *p;
+ assert( sqlite3_mutex_held(db->mutex) );
+ for(i=0; i<db->nDb; i++){
+ p = db->aDb[i].pBt;
+ if( p ) sqlite3BtreeLeave(p);
+ }
+}
+SQLITE_PRIVATE void sqlite3BtreeLeaveAll(sqlite3 *db){
+ if( db->skipBtreeMutex==0 ) btreeLeaveAll(db);
+}
+
+#ifndef NDEBUG
+/*
+** Return true if the current thread holds the database connection
+** mutex and all required BtShared mutexes.
+**
+** This routine is used inside assert() statements only.
+*/
+SQLITE_PRIVATE int sqlite3BtreeHoldsAllMutexes(sqlite3 *db){
+ int i;
+ if( !sqlite3_mutex_held(db->mutex) ){
+ return 0;
+ }
+ for(i=0; i<db->nDb; i++){
+ Btree *p;
+ p = db->aDb[i].pBt;
+ if( p && p->sharable &&
+ (p->wantToLock==0 || !sqlite3_mutex_held(p->pBt->mutex)) ){
+ return 0;
+ }
+ }
+ return 1;
+}
+#endif /* NDEBUG */
+
+#ifndef NDEBUG
+/*
+** Return true if the correct mutexes are held for accessing the
+** db->aDb[iDb].pSchema structure. The mutexes required for schema
+** access are:
+**
+** (1) The mutex on db
+** (2) if iDb!=1, then the mutex on db->aDb[iDb].pBt.
+**
+** If pSchema is not NULL, then iDb is computed from pSchema and
+** db using sqlite3SchemaToIndex().
+*/
+SQLITE_PRIVATE int sqlite3SchemaMutexHeld(sqlite3 *db, int iDb, Schema *pSchema){
+ Btree *p;
+ assert( db!=0 );
+ if( pSchema ) iDb = sqlite3SchemaToIndex(db, pSchema);
+ assert( iDb>=0 && iDb<db->nDb );
+ if( !sqlite3_mutex_held(db->mutex) ) return 0;
+ if( iDb==1 ) return 1;
+ p = db->aDb[iDb].pBt;
+ assert( p!=0 );
+ return p->sharable==0 || p->locked==1;
+}
+#endif /* NDEBUG */
+
+#else /* SQLITE_THREADSAFE>0 above. SQLITE_THREADSAFE==0 below */
+/*
+** The following are special cases for mutex enter routines for use
+** in single threaded applications that use shared cache. Except for
+** these two routines, all mutex operations are no-ops in that case and
+** are null #defines in btree.h.
+**
+** If shared cache is disabled, then all btree mutex routines, including
+** the ones below, are no-ops and are null #defines in btree.h.
+*/
+
+SQLITE_PRIVATE void sqlite3BtreeEnter(Btree *p){
+ p->pBt->db = p->db;
+}
+SQLITE_PRIVATE void sqlite3BtreeEnterAll(sqlite3 *db){
+ int i;
+ for(i=0; i<db->nDb; i++){
+ Btree *p = db->aDb[i].pBt;
+ if( p ){
+ p->pBt->db = p->db;
+ }
+ }
+}
+#endif /* if SQLITE_THREADSAFE */
+
+#ifndef SQLITE_OMIT_INCRBLOB
+/*
+** Enter a mutex on a Btree given a cursor owned by that Btree.
+**
+** These entry points are used by incremental I/O only. Enter() is required
+** any time OMIT_SHARED_CACHE is not defined, regardless of whether or not
+** the build is threadsafe. Leave() is only required by threadsafe builds.
+*/
+SQLITE_PRIVATE void sqlite3BtreeEnterCursor(BtCursor *pCur){
+ sqlite3BtreeEnter(pCur->pBtree);
+}
+# if SQLITE_THREADSAFE
+SQLITE_PRIVATE void sqlite3BtreeLeaveCursor(BtCursor *pCur){
+ sqlite3BtreeLeave(pCur->pBtree);
+}
+# endif
+#endif /* ifndef SQLITE_OMIT_INCRBLOB */
+
+#endif /* ifndef SQLITE_OMIT_SHARED_CACHE */
+
+/************** End of btmutex.c *********************************************/
+
+/* Chain include. */
+#include "sqlite3.03.c"
« no previous file with comments | « third_party/sqlite/amalgamation/sqlite3.01.c ('k') | third_party/sqlite/amalgamation/sqlite3.03.c » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698