| Index: src/gpu/GrAAHairLinePathRenderer.cpp
|
| diff --git a/src/gpu/GrAAHairLinePathRenderer.cpp b/src/gpu/GrAAHairLinePathRenderer.cpp
|
| index 864fa6851be57ede1037612729807022f2b217fe..b2829cc973b1997d7e66c7288702e89c197976ab 100644
|
| --- a/src/gpu/GrAAHairLinePathRenderer.cpp
|
| +++ b/src/gpu/GrAAHairLinePathRenderer.cpp
|
| @@ -1,1042 +1,1042 @@
|
| -/*
|
| - * Copyright 2011 Google Inc.
|
| - *
|
| - * Use of this source code is governed by a BSD-style license that can be
|
| - * found in the LICENSE file.
|
| - */
|
| -
|
| -#include "GrAAHairLinePathRenderer.h"
|
| -
|
| -#include "GrContext.h"
|
| -#include "GrDrawState.h"
|
| -#include "GrDrawTargetCaps.h"
|
| -#include "GrEffect.h"
|
| -#include "GrGpu.h"
|
| -#include "GrIndexBuffer.h"
|
| -#include "GrPathUtils.h"
|
| -#include "GrTBackendEffectFactory.h"
|
| -#include "SkGeometry.h"
|
| -#include "SkStroke.h"
|
| -#include "SkTemplates.h"
|
| -
|
| -#include "effects/GrBezierEffect.h"
|
| -
|
| -namespace {
|
| -// quadratics are rendered as 5-sided polys in order to bound the
|
| -// AA stroke around the center-curve. See comments in push_quad_index_buffer and
|
| -// bloat_quad. Quadratics and conics share an index buffer
|
| -static const int kVertsPerQuad = 5;
|
| -static const int kIdxsPerQuad = 9;
|
| -
|
| -// lines are rendered as:
|
| -// *______________*
|
| -// |\ -_______ /|
|
| -// | \ \ / |
|
| -// | *--------* |
|
| -// | / ______/ \ |
|
| -// */_-__________\*
|
| -// For: 6 vertices and 18 indices (for 6 triangles)
|
| -static const int kVertsPerLineSeg = 6;
|
| -static const int kIdxsPerLineSeg = 18;
|
| -
|
| -static const int kNumQuadsInIdxBuffer = 256;
|
| -static const size_t kQuadIdxSBufize = kIdxsPerQuad *
|
| - sizeof(uint16_t) *
|
| - kNumQuadsInIdxBuffer;
|
| -
|
| -static const int kNumLineSegsInIdxBuffer = 256;
|
| -static const size_t kLineSegIdxSBufize = kIdxsPerLineSeg *
|
| - sizeof(uint16_t) *
|
| - kNumLineSegsInIdxBuffer;
|
| -
|
| -static bool push_quad_index_data(GrIndexBuffer* qIdxBuffer) {
|
| - uint16_t* data = (uint16_t*) qIdxBuffer->lock();
|
| - bool tempData = NULL == data;
|
| - if (tempData) {
|
| - data = SkNEW_ARRAY(uint16_t, kNumQuadsInIdxBuffer * kIdxsPerQuad);
|
| - }
|
| - for (int i = 0; i < kNumQuadsInIdxBuffer; ++i) {
|
| -
|
| - // Each quadratic is rendered as a five sided polygon. This poly bounds
|
| - // the quadratic's bounding triangle but has been expanded so that the
|
| - // 1-pixel wide area around the curve is inside the poly.
|
| - // If a,b,c are the original control points then the poly a0,b0,c0,c1,a1
|
| - // that is rendered would look like this:
|
| - // b0
|
| - // b
|
| - //
|
| - // a0 c0
|
| - // a c
|
| - // a1 c1
|
| - // Each is drawn as three triangles specified by these 9 indices:
|
| - int baseIdx = i * kIdxsPerQuad;
|
| - uint16_t baseVert = (uint16_t)(i * kVertsPerQuad);
|
| - data[0 + baseIdx] = baseVert + 0; // a0
|
| - data[1 + baseIdx] = baseVert + 1; // a1
|
| - data[2 + baseIdx] = baseVert + 2; // b0
|
| - data[3 + baseIdx] = baseVert + 2; // b0
|
| - data[4 + baseIdx] = baseVert + 4; // c1
|
| - data[5 + baseIdx] = baseVert + 3; // c0
|
| - data[6 + baseIdx] = baseVert + 1; // a1
|
| - data[7 + baseIdx] = baseVert + 4; // c1
|
| - data[8 + baseIdx] = baseVert + 2; // b0
|
| - }
|
| - if (tempData) {
|
| - bool ret = qIdxBuffer->updateData(data, kQuadIdxSBufize);
|
| - delete[] data;
|
| - return ret;
|
| - } else {
|
| - qIdxBuffer->unlock();
|
| - return true;
|
| - }
|
| -}
|
| -
|
| -static bool push_line_index_data(GrIndexBuffer* lIdxBuffer) {
|
| - uint16_t* data = (uint16_t*) lIdxBuffer->lock();
|
| - bool tempData = NULL == data;
|
| - if (tempData) {
|
| - data = SkNEW_ARRAY(uint16_t, kNumLineSegsInIdxBuffer * kIdxsPerLineSeg);
|
| - }
|
| - for (int i = 0; i < kNumLineSegsInIdxBuffer; ++i) {
|
| - // Each line segment is rendered as two quads and two triangles.
|
| - // p0 and p1 have alpha = 1 while all other points have alpha = 0.
|
| - // The four external points are offset 1 pixel perpendicular to the
|
| - // line and half a pixel parallel to the line.
|
| - //
|
| - // p4 p5
|
| - // p0 p1
|
| - // p2 p3
|
| - //
|
| - // Each is drawn as six triangles specified by these 18 indices:
|
| - int baseIdx = i * kIdxsPerLineSeg;
|
| - uint16_t baseVert = (uint16_t)(i * kVertsPerLineSeg);
|
| - data[0 + baseIdx] = baseVert + 0;
|
| - data[1 + baseIdx] = baseVert + 1;
|
| - data[2 + baseIdx] = baseVert + 3;
|
| -
|
| - data[3 + baseIdx] = baseVert + 0;
|
| - data[4 + baseIdx] = baseVert + 3;
|
| - data[5 + baseIdx] = baseVert + 2;
|
| -
|
| - data[6 + baseIdx] = baseVert + 0;
|
| - data[7 + baseIdx] = baseVert + 4;
|
| - data[8 + baseIdx] = baseVert + 5;
|
| -
|
| - data[9 + baseIdx] = baseVert + 0;
|
| - data[10+ baseIdx] = baseVert + 5;
|
| - data[11+ baseIdx] = baseVert + 1;
|
| -
|
| - data[12 + baseIdx] = baseVert + 0;
|
| - data[13 + baseIdx] = baseVert + 2;
|
| - data[14 + baseIdx] = baseVert + 4;
|
| -
|
| - data[15 + baseIdx] = baseVert + 1;
|
| - data[16 + baseIdx] = baseVert + 5;
|
| - data[17 + baseIdx] = baseVert + 3;
|
| - }
|
| - if (tempData) {
|
| - bool ret = lIdxBuffer->updateData(data, kLineSegIdxSBufize);
|
| - delete[] data;
|
| - return ret;
|
| - } else {
|
| - lIdxBuffer->unlock();
|
| - return true;
|
| - }
|
| -}
|
| -}
|
| -
|
| -GrPathRenderer* GrAAHairLinePathRenderer::Create(GrContext* context) {
|
| - GrGpu* gpu = context->getGpu();
|
| - GrIndexBuffer* qIdxBuf = gpu->createIndexBuffer(kQuadIdxSBufize, false);
|
| - SkAutoTUnref<GrIndexBuffer> qIdxBuffer(qIdxBuf);
|
| - if (NULL == qIdxBuf || !push_quad_index_data(qIdxBuf)) {
|
| - return NULL;
|
| - }
|
| - GrIndexBuffer* lIdxBuf = gpu->createIndexBuffer(kLineSegIdxSBufize, false);
|
| - SkAutoTUnref<GrIndexBuffer> lIdxBuffer(lIdxBuf);
|
| - if (NULL == lIdxBuf || !push_line_index_data(lIdxBuf)) {
|
| - return NULL;
|
| - }
|
| - return SkNEW_ARGS(GrAAHairLinePathRenderer,
|
| - (context, lIdxBuf, qIdxBuf));
|
| -}
|
| -
|
| -GrAAHairLinePathRenderer::GrAAHairLinePathRenderer(
|
| - const GrContext* context,
|
| - const GrIndexBuffer* linesIndexBuffer,
|
| - const GrIndexBuffer* quadsIndexBuffer) {
|
| - fLinesIndexBuffer = linesIndexBuffer;
|
| - linesIndexBuffer->ref();
|
| - fQuadsIndexBuffer = quadsIndexBuffer;
|
| - quadsIndexBuffer->ref();
|
| -}
|
| -
|
| -GrAAHairLinePathRenderer::~GrAAHairLinePathRenderer() {
|
| - fLinesIndexBuffer->unref();
|
| - fQuadsIndexBuffer->unref();
|
| -}
|
| -
|
| -namespace {
|
| -
|
| -#define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true>
|
| -
|
| -// Takes 178th time of logf on Z600 / VC2010
|
| -int get_float_exp(float x) {
|
| - GR_STATIC_ASSERT(sizeof(int) == sizeof(float));
|
| -#ifdef SK_DEBUG
|
| - static bool tested;
|
| - if (!tested) {
|
| - tested = true;
|
| - SkASSERT(get_float_exp(0.25f) == -2);
|
| - SkASSERT(get_float_exp(0.3f) == -2);
|
| - SkASSERT(get_float_exp(0.5f) == -1);
|
| - SkASSERT(get_float_exp(1.f) == 0);
|
| - SkASSERT(get_float_exp(2.f) == 1);
|
| - SkASSERT(get_float_exp(2.5f) == 1);
|
| - SkASSERT(get_float_exp(8.f) == 3);
|
| - SkASSERT(get_float_exp(100.f) == 6);
|
| - SkASSERT(get_float_exp(1000.f) == 9);
|
| - SkASSERT(get_float_exp(1024.f) == 10);
|
| - SkASSERT(get_float_exp(3000000.f) == 21);
|
| - }
|
| -#endif
|
| - const int* iptr = (const int*)&x;
|
| - return (((*iptr) & 0x7f800000) >> 23) - 127;
|
| -}
|
| -
|
| -// Uses the max curvature function for quads to estimate
|
| -// where to chop the conic. If the max curvature is not
|
| -// found along the curve segment it will return 1 and
|
| -// dst[0] is the original conic. If it returns 2 the dst[0]
|
| -// and dst[1] are the two new conics.
|
| -int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
|
| - SkScalar t = SkFindQuadMaxCurvature(src);
|
| - if (t == 0) {
|
| - if (dst) {
|
| - dst[0].set(src, weight);
|
| - }
|
| - return 1;
|
| - } else {
|
| - if (dst) {
|
| - SkConic conic;
|
| - conic.set(src, weight);
|
| - conic.chopAt(t, dst);
|
| - }
|
| - return 2;
|
| - }
|
| -}
|
| -
|
| -// Calls split_conic on the entire conic and then once more on each subsection.
|
| -// Most cases will result in either 1 conic (chop point is not within t range)
|
| -// or 3 points (split once and then one subsection is split again).
|
| -int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
|
| - SkConic dstTemp[2];
|
| - int conicCnt = split_conic(src, dstTemp, weight);
|
| - if (2 == conicCnt) {
|
| - int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
|
| - conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
|
| - } else {
|
| - dst[0] = dstTemp[0];
|
| - }
|
| - return conicCnt;
|
| -}
|
| -
|
| -// returns 0 if quad/conic is degen or close to it
|
| -// in this case approx the path with lines
|
| -// otherwise returns 1
|
| -int is_degen_quad_or_conic(const SkPoint p[3]) {
|
| - static const SkScalar gDegenerateToLineTol = SK_Scalar1;
|
| - static const SkScalar gDegenerateToLineTolSqd =
|
| - SkScalarMul(gDegenerateToLineTol, gDegenerateToLineTol);
|
| -
|
| - if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd ||
|
| - p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) {
|
| - return 1;
|
| - }
|
| -
|
| - SkScalar dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]);
|
| - if (dsqd < gDegenerateToLineTolSqd) {
|
| - return 1;
|
| - }
|
| -
|
| - if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) {
|
| - return 1;
|
| - }
|
| - return 0;
|
| -}
|
| -
|
| -// we subdivide the quads to avoid huge overfill
|
| -// if it returns -1 then should be drawn as lines
|
| -int num_quad_subdivs(const SkPoint p[3]) {
|
| - static const SkScalar gDegenerateToLineTol = SK_Scalar1;
|
| - static const SkScalar gDegenerateToLineTolSqd =
|
| - SkScalarMul(gDegenerateToLineTol, gDegenerateToLineTol);
|
| -
|
| - if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd ||
|
| - p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) {
|
| - return -1;
|
| - }
|
| -
|
| - SkScalar dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]);
|
| - if (dsqd < gDegenerateToLineTolSqd) {
|
| - return -1;
|
| - }
|
| -
|
| - if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) {
|
| - return -1;
|
| - }
|
| -
|
| - // tolerance of triangle height in pixels
|
| - // tuned on windows Quadro FX 380 / Z600
|
| - // trade off of fill vs cpu time on verts
|
| - // maybe different when do this using gpu (geo or tess shaders)
|
| - static const SkScalar gSubdivTol = 175 * SK_Scalar1;
|
| -
|
| - if (dsqd <= SkScalarMul(gSubdivTol, gSubdivTol)) {
|
| - return 0;
|
| - } else {
|
| - static const int kMaxSub = 4;
|
| - // subdividing the quad reduces d by 4. so we want x = log4(d/tol)
|
| - // = log4(d*d/tol*tol)/2
|
| - // = log2(d*d/tol*tol)
|
| -
|
| - // +1 since we're ignoring the mantissa contribution.
|
| - int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1;
|
| - log = SkTMin(SkTMax(0, log), kMaxSub);
|
| - return log;
|
| - }
|
| -}
|
| -
|
| -/**
|
| - * Generates the lines and quads to be rendered. Lines are always recorded in
|
| - * device space. We will do a device space bloat to account for the 1pixel
|
| - * thickness.
|
| - * Quads are recorded in device space unless m contains
|
| - * perspective, then in they are in src space. We do this because we will
|
| - * subdivide large quads to reduce over-fill. This subdivision has to be
|
| - * performed before applying the perspective matrix.
|
| - */
|
| -int generate_lines_and_quads(const SkPath& path,
|
| - const SkMatrix& m,
|
| - const SkIRect& devClipBounds,
|
| - GrAAHairLinePathRenderer::PtArray* lines,
|
| - GrAAHairLinePathRenderer::PtArray* quads,
|
| - GrAAHairLinePathRenderer::PtArray* conics,
|
| - GrAAHairLinePathRenderer::IntArray* quadSubdivCnts,
|
| - GrAAHairLinePathRenderer::FloatArray* conicWeights) {
|
| - SkPath::Iter iter(path, false);
|
| -
|
| - int totalQuadCount = 0;
|
| - SkRect bounds;
|
| - SkIRect ibounds;
|
| -
|
| - bool persp = m.hasPerspective();
|
| -
|
| - for (;;) {
|
| - SkPoint pathPts[4];
|
| - SkPoint devPts[4];
|
| - SkPath::Verb verb = iter.next(pathPts);
|
| - switch (verb) {
|
| - case SkPath::kConic_Verb: {
|
| - SkConic dst[4];
|
| - // We chop the conics to create tighter clipping to hide error
|
| - // that appears near max curvature of very thin conics. Thin
|
| - // hyperbolas with high weight still show error.
|
| - int conicCnt = chop_conic(pathPts, dst, iter.conicWeight());
|
| - for (int i = 0; i < conicCnt; ++i) {
|
| - SkPoint* chopPnts = dst[i].fPts;
|
| - m.mapPoints(devPts, chopPnts, 3);
|
| - bounds.setBounds(devPts, 3);
|
| - bounds.outset(SK_Scalar1, SK_Scalar1);
|
| - bounds.roundOut(&ibounds);
|
| - if (SkIRect::Intersects(devClipBounds, ibounds)) {
|
| - if (is_degen_quad_or_conic(devPts)) {
|
| - SkPoint* pts = lines->push_back_n(4);
|
| - pts[0] = devPts[0];
|
| - pts[1] = devPts[1];
|
| - pts[2] = devPts[1];
|
| - pts[3] = devPts[2];
|
| - } else {
|
| - // when in perspective keep conics in src space
|
| - SkPoint* cPts = persp ? chopPnts : devPts;
|
| - SkPoint* pts = conics->push_back_n(3);
|
| - pts[0] = cPts[0];
|
| - pts[1] = cPts[1];
|
| - pts[2] = cPts[2];
|
| - conicWeights->push_back() = dst[i].fW;
|
| - }
|
| - }
|
| - }
|
| - break;
|
| - }
|
| - case SkPath::kMove_Verb:
|
| - break;
|
| - case SkPath::kLine_Verb:
|
| - m.mapPoints(devPts, pathPts, 2);
|
| - bounds.setBounds(devPts, 2);
|
| - bounds.outset(SK_Scalar1, SK_Scalar1);
|
| - bounds.roundOut(&ibounds);
|
| - if (SkIRect::Intersects(devClipBounds, ibounds)) {
|
| - SkPoint* pts = lines->push_back_n(2);
|
| - pts[0] = devPts[0];
|
| - pts[1] = devPts[1];
|
| - }
|
| - break;
|
| - case SkPath::kQuad_Verb: {
|
| - SkPoint choppedPts[5];
|
| - // Chopping the quad helps when the quad is either degenerate or nearly degenerate.
|
| - // When it is degenerate it allows the approximation with lines to work since the
|
| - // chop point (if there is one) will be at the parabola's vertex. In the nearly
|
| - // degenerate the QuadUVMatrix computed for the points is almost singular which
|
| - // can cause rendering artifacts.
|
| - int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts);
|
| - for (int i = 0; i < n; ++i) {
|
| - SkPoint* quadPts = choppedPts + i * 2;
|
| - m.mapPoints(devPts, quadPts, 3);
|
| - bounds.setBounds(devPts, 3);
|
| - bounds.outset(SK_Scalar1, SK_Scalar1);
|
| - bounds.roundOut(&ibounds);
|
| -
|
| - if (SkIRect::Intersects(devClipBounds, ibounds)) {
|
| - int subdiv = num_quad_subdivs(devPts);
|
| - SkASSERT(subdiv >= -1);
|
| - if (-1 == subdiv) {
|
| - SkPoint* pts = lines->push_back_n(4);
|
| - pts[0] = devPts[0];
|
| - pts[1] = devPts[1];
|
| - pts[2] = devPts[1];
|
| - pts[3] = devPts[2];
|
| - } else {
|
| - // when in perspective keep quads in src space
|
| - SkPoint* qPts = persp ? quadPts : devPts;
|
| - SkPoint* pts = quads->push_back_n(3);
|
| - pts[0] = qPts[0];
|
| - pts[1] = qPts[1];
|
| - pts[2] = qPts[2];
|
| - quadSubdivCnts->push_back() = subdiv;
|
| - totalQuadCount += 1 << subdiv;
|
| - }
|
| - }
|
| - }
|
| - break;
|
| - }
|
| - case SkPath::kCubic_Verb:
|
| - m.mapPoints(devPts, pathPts, 4);
|
| - bounds.setBounds(devPts, 4);
|
| - bounds.outset(SK_Scalar1, SK_Scalar1);
|
| - bounds.roundOut(&ibounds);
|
| - if (SkIRect::Intersects(devClipBounds, ibounds)) {
|
| - PREALLOC_PTARRAY(32) q;
|
| - // we don't need a direction if we aren't constraining the subdivision
|
| - static const SkPath::Direction kDummyDir = SkPath::kCCW_Direction;
|
| - // We convert cubics to quadratics (for now).
|
| - // In perspective have to do conversion in src space.
|
| - if (persp) {
|
| - SkScalar tolScale =
|
| - GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m,
|
| - path.getBounds());
|
| - GrPathUtils::convertCubicToQuads(pathPts, tolScale, false, kDummyDir, &q);
|
| - } else {
|
| - GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, false, kDummyDir, &q);
|
| - }
|
| - for (int i = 0; i < q.count(); i += 3) {
|
| - SkPoint* qInDevSpace;
|
| - // bounds has to be calculated in device space, but q is
|
| - // in src space when there is perspective.
|
| - if (persp) {
|
| - m.mapPoints(devPts, &q[i], 3);
|
| - bounds.setBounds(devPts, 3);
|
| - qInDevSpace = devPts;
|
| - } else {
|
| - bounds.setBounds(&q[i], 3);
|
| - qInDevSpace = &q[i];
|
| - }
|
| - bounds.outset(SK_Scalar1, SK_Scalar1);
|
| - bounds.roundOut(&ibounds);
|
| - if (SkIRect::Intersects(devClipBounds, ibounds)) {
|
| - int subdiv = num_quad_subdivs(qInDevSpace);
|
| - SkASSERT(subdiv >= -1);
|
| - if (-1 == subdiv) {
|
| - SkPoint* pts = lines->push_back_n(4);
|
| - // lines should always be in device coords
|
| - pts[0] = qInDevSpace[0];
|
| - pts[1] = qInDevSpace[1];
|
| - pts[2] = qInDevSpace[1];
|
| - pts[3] = qInDevSpace[2];
|
| - } else {
|
| - SkPoint* pts = quads->push_back_n(3);
|
| - // q is already in src space when there is no
|
| - // perspective and dev coords otherwise.
|
| - pts[0] = q[0 + i];
|
| - pts[1] = q[1 + i];
|
| - pts[2] = q[2 + i];
|
| - quadSubdivCnts->push_back() = subdiv;
|
| - totalQuadCount += 1 << subdiv;
|
| - }
|
| - }
|
| - }
|
| - }
|
| - break;
|
| - case SkPath::kClose_Verb:
|
| - break;
|
| - case SkPath::kDone_Verb:
|
| - return totalQuadCount;
|
| - }
|
| - }
|
| -}
|
| -
|
| -struct LineVertex {
|
| - SkPoint fPos;
|
| - GrColor fCoverage;
|
| -};
|
| -
|
| -struct BezierVertex {
|
| - SkPoint fPos;
|
| - union {
|
| - struct {
|
| - SkScalar fK;
|
| - SkScalar fL;
|
| - SkScalar fM;
|
| - } fConic;
|
| - SkVector fQuadCoord;
|
| - struct {
|
| - SkScalar fBogus[4];
|
| - };
|
| - };
|
| -};
|
| -
|
| -GR_STATIC_ASSERT(sizeof(BezierVertex) == 3 * sizeof(SkPoint));
|
| -
|
| -void intersect_lines(const SkPoint& ptA, const SkVector& normA,
|
| - const SkPoint& ptB, const SkVector& normB,
|
| - SkPoint* result) {
|
| -
|
| - SkScalar lineAW = -normA.dot(ptA);
|
| - SkScalar lineBW = -normB.dot(ptB);
|
| -
|
| - SkScalar wInv = SkScalarMul(normA.fX, normB.fY) -
|
| - SkScalarMul(normA.fY, normB.fX);
|
| - wInv = SkScalarInvert(wInv);
|
| -
|
| - result->fX = SkScalarMul(normA.fY, lineBW) - SkScalarMul(lineAW, normB.fY);
|
| - result->fX = SkScalarMul(result->fX, wInv);
|
| -
|
| - result->fY = SkScalarMul(lineAW, normB.fX) - SkScalarMul(normA.fX, lineBW);
|
| - result->fY = SkScalarMul(result->fY, wInv);
|
| -}
|
| -
|
| -void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kVertsPerQuad]) {
|
| - // this should be in the src space, not dev coords, when we have perspective
|
| - GrPathUtils::QuadUVMatrix DevToUV(qpts);
|
| - DevToUV.apply<kVertsPerQuad, sizeof(BezierVertex), sizeof(SkPoint)>(verts);
|
| -}
|
| -
|
| -void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice,
|
| - const SkMatrix* toSrc, BezierVertex verts[kVertsPerQuad],
|
| - SkRect* devBounds) {
|
| - SkASSERT(!toDevice == !toSrc);
|
| - // original quad is specified by tri a,b,c
|
| - SkPoint a = qpts[0];
|
| - SkPoint b = qpts[1];
|
| - SkPoint c = qpts[2];
|
| -
|
| - if (toDevice) {
|
| - toDevice->mapPoints(&a, 1);
|
| - toDevice->mapPoints(&b, 1);
|
| - toDevice->mapPoints(&c, 1);
|
| - }
|
| - // make a new poly where we replace a and c by a 1-pixel wide edges orthog
|
| - // to edges ab and bc:
|
| - //
|
| - // before | after
|
| - // | b0
|
| - // b |
|
| - // |
|
| - // | a0 c0
|
| - // a c | a1 c1
|
| - //
|
| - // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c,
|
| - // respectively.
|
| - BezierVertex& a0 = verts[0];
|
| - BezierVertex& a1 = verts[1];
|
| - BezierVertex& b0 = verts[2];
|
| - BezierVertex& c0 = verts[3];
|
| - BezierVertex& c1 = verts[4];
|
| -
|
| - SkVector ab = b;
|
| - ab -= a;
|
| - SkVector ac = c;
|
| - ac -= a;
|
| - SkVector cb = b;
|
| - cb -= c;
|
| -
|
| - // We should have already handled degenerates
|
| - SkASSERT(ab.length() > 0 && cb.length() > 0);
|
| -
|
| - ab.normalize();
|
| - SkVector abN;
|
| - abN.setOrthog(ab, SkVector::kLeft_Side);
|
| - if (abN.dot(ac) > 0) {
|
| - abN.negate();
|
| - }
|
| -
|
| - cb.normalize();
|
| - SkVector cbN;
|
| - cbN.setOrthog(cb, SkVector::kLeft_Side);
|
| - if (cbN.dot(ac) < 0) {
|
| - cbN.negate();
|
| - }
|
| -
|
| - a0.fPos = a;
|
| - a0.fPos += abN;
|
| - a1.fPos = a;
|
| - a1.fPos -= abN;
|
| -
|
| - c0.fPos = c;
|
| - c0.fPos += cbN;
|
| - c1.fPos = c;
|
| - c1.fPos -= cbN;
|
| -
|
| - intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos);
|
| - devBounds->growToInclude(&verts[0].fPos, sizeof(BezierVertex), kVertsPerQuad);
|
| -
|
| - if (toSrc) {
|
| - toSrc->mapPointsWithStride(&verts[0].fPos, sizeof(BezierVertex), kVertsPerQuad);
|
| - }
|
| -}
|
| -
|
| -// Equations based off of Loop-Blinn Quadratic GPU Rendering
|
| -// Input Parametric:
|
| -// P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2)
|
| -// Output Implicit:
|
| -// f(x, y, w) = f(P) = K^2 - LM
|
| -// K = dot(k, P), L = dot(l, P), M = dot(m, P)
|
| -// k, l, m are calculated in function GrPathUtils::getConicKLM
|
| -void set_conic_coeffs(const SkPoint p[3], BezierVertex verts[kVertsPerQuad],
|
| - const SkScalar weight) {
|
| - SkScalar klm[9];
|
| -
|
| - GrPathUtils::getConicKLM(p, weight, klm);
|
| -
|
| - for (int i = 0; i < kVertsPerQuad; ++i) {
|
| - const SkPoint pnt = verts[i].fPos;
|
| - verts[i].fConic.fK = pnt.fX * klm[0] + pnt.fY * klm[1] + klm[2];
|
| - verts[i].fConic.fL = pnt.fX * klm[3] + pnt.fY * klm[4] + klm[5];
|
| - verts[i].fConic.fM = pnt.fX * klm[6] + pnt.fY * klm[7] + klm[8];
|
| - }
|
| -}
|
| -
|
| -void add_conics(const SkPoint p[3],
|
| - const SkScalar weight,
|
| - const SkMatrix* toDevice,
|
| - const SkMatrix* toSrc,
|
| - BezierVertex** vert,
|
| - SkRect* devBounds) {
|
| - bloat_quad(p, toDevice, toSrc, *vert, devBounds);
|
| - set_conic_coeffs(p, *vert, weight);
|
| - *vert += kVertsPerQuad;
|
| -}
|
| -
|
| -void add_quads(const SkPoint p[3],
|
| - int subdiv,
|
| - const SkMatrix* toDevice,
|
| - const SkMatrix* toSrc,
|
| - BezierVertex** vert,
|
| - SkRect* devBounds) {
|
| - SkASSERT(subdiv >= 0);
|
| - if (subdiv) {
|
| - SkPoint newP[5];
|
| - SkChopQuadAtHalf(p, newP);
|
| - add_quads(newP + 0, subdiv-1, toDevice, toSrc, vert, devBounds);
|
| - add_quads(newP + 2, subdiv-1, toDevice, toSrc, vert, devBounds);
|
| - } else {
|
| - bloat_quad(p, toDevice, toSrc, *vert, devBounds);
|
| - set_uv_quad(p, *vert);
|
| - *vert += kVertsPerQuad;
|
| - }
|
| -}
|
| -
|
| -void add_line(const SkPoint p[2],
|
| - const SkMatrix* toSrc,
|
| - GrColor coverage,
|
| - LineVertex** vert) {
|
| - const SkPoint& a = p[0];
|
| - const SkPoint& b = p[1];
|
| -
|
| - SkVector ortho, vec = b;
|
| - vec -= a;
|
| -
|
| - if (vec.setLength(SK_ScalarHalf)) {
|
| - // Create a vector orthogonal to 'vec' and of unit length
|
| - ortho.fX = 2.0f * vec.fY;
|
| - ortho.fY = -2.0f * vec.fX;
|
| -
|
| - (*vert)[0].fPos = a;
|
| - (*vert)[0].fCoverage = coverage;
|
| - (*vert)[1].fPos = b;
|
| - (*vert)[1].fCoverage = coverage;
|
| - (*vert)[2].fPos = a - vec + ortho;
|
| - (*vert)[2].fCoverage = 0;
|
| - (*vert)[3].fPos = b + vec + ortho;
|
| - (*vert)[3].fCoverage = 0;
|
| - (*vert)[4].fPos = a - vec - ortho;
|
| - (*vert)[4].fCoverage = 0;
|
| - (*vert)[5].fPos = b + vec - ortho;
|
| - (*vert)[5].fCoverage = 0;
|
| -
|
| - if (NULL != toSrc) {
|
| - toSrc->mapPointsWithStride(&(*vert)->fPos,
|
| - sizeof(LineVertex),
|
| - kVertsPerLineSeg);
|
| - }
|
| - } else {
|
| - // just make it degenerate and likely offscreen
|
| - for (int i = 0; i < kVertsPerLineSeg; ++i) {
|
| - (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax);
|
| - }
|
| - }
|
| -
|
| - *vert += kVertsPerLineSeg;
|
| -}
|
| -
|
| -}
|
| -
|
| -///////////////////////////////////////////////////////////////////////////////
|
| -
|
| -namespace {
|
| -
|
| -// position + edge
|
| -extern const GrVertexAttrib gHairlineBezierAttribs[] = {
|
| - {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding},
|
| - {kVec4f_GrVertexAttribType, sizeof(SkPoint), kEffect_GrVertexAttribBinding}
|
| -};
|
| -
|
| -// position + coverage
|
| -extern const GrVertexAttrib gHairlineLineAttribs[] = {
|
| - {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding},
|
| - {kVec4ub_GrVertexAttribType, sizeof(SkPoint), kCoverage_GrVertexAttribBinding},
|
| -};
|
| -
|
| -};
|
| -
|
| -bool GrAAHairLinePathRenderer::createLineGeom(const SkPath& path,
|
| - GrDrawTarget* target,
|
| - const PtArray& lines,
|
| - int lineCnt,
|
| - GrDrawTarget::AutoReleaseGeometry* arg,
|
| - SkRect* devBounds) {
|
| - GrDrawState* drawState = target->drawState();
|
| -
|
| - const SkMatrix& viewM = drawState->getViewMatrix();
|
| -
|
| - int vertCnt = kVertsPerLineSeg * lineCnt;
|
| -
|
| - drawState->setVertexAttribs<gHairlineLineAttribs>(SK_ARRAY_COUNT(gHairlineLineAttribs));
|
| - SkASSERT(sizeof(LineVertex) == drawState->getVertexSize());
|
| -
|
| - if (!arg->set(target, vertCnt, 0)) {
|
| - return false;
|
| - }
|
| -
|
| - LineVertex* verts = reinterpret_cast<LineVertex*>(arg->vertices());
|
| -
|
| - const SkMatrix* toSrc = NULL;
|
| - SkMatrix ivm;
|
| -
|
| - if (viewM.hasPerspective()) {
|
| - if (viewM.invert(&ivm)) {
|
| - toSrc = &ivm;
|
| - }
|
| - }
|
| - devBounds->set(lines.begin(), lines.count());
|
| - for (int i = 0; i < lineCnt; ++i) {
|
| - add_line(&lines[2*i], toSrc, drawState->getCoverageColor(), &verts);
|
| - }
|
| - // All the verts computed by add_line are within sqrt(1^2 + 0.5^2) of the end points.
|
| - static const SkScalar kSqrtOfOneAndAQuarter = 1.118f;
|
| - // Add a little extra to account for vector normalization precision.
|
| - static const SkScalar kOutset = kSqrtOfOneAndAQuarter + SK_Scalar1 / 20;
|
| - devBounds->outset(kOutset, kOutset);
|
| -
|
| - return true;
|
| -}
|
| -
|
| -bool GrAAHairLinePathRenderer::createBezierGeom(
|
| - const SkPath& path,
|
| - GrDrawTarget* target,
|
| - const PtArray& quads,
|
| - int quadCnt,
|
| - const PtArray& conics,
|
| - int conicCnt,
|
| - const IntArray& qSubdivs,
|
| - const FloatArray& cWeights,
|
| - GrDrawTarget::AutoReleaseGeometry* arg,
|
| - SkRect* devBounds) {
|
| - GrDrawState* drawState = target->drawState();
|
| -
|
| - const SkMatrix& viewM = drawState->getViewMatrix();
|
| -
|
| - int vertCnt = kVertsPerQuad * quadCnt + kVertsPerQuad * conicCnt;
|
| -
|
| - target->drawState()->setVertexAttribs<gHairlineBezierAttribs>(SK_ARRAY_COUNT(gHairlineBezierAttribs));
|
| - SkASSERT(sizeof(BezierVertex) == target->getDrawState().getVertexSize());
|
| -
|
| - if (!arg->set(target, vertCnt, 0)) {
|
| - return false;
|
| - }
|
| -
|
| - BezierVertex* verts = reinterpret_cast<BezierVertex*>(arg->vertices());
|
| -
|
| - const SkMatrix* toDevice = NULL;
|
| - const SkMatrix* toSrc = NULL;
|
| - SkMatrix ivm;
|
| -
|
| - if (viewM.hasPerspective()) {
|
| - if (viewM.invert(&ivm)) {
|
| - toDevice = &viewM;
|
| - toSrc = &ivm;
|
| - }
|
| - }
|
| -
|
| - // Seed the dev bounds with some pts known to be inside. Each quad and conic grows the bounding
|
| - // box to include its vertices.
|
| - SkPoint seedPts[2];
|
| - if (quadCnt) {
|
| - seedPts[0] = quads[0];
|
| - seedPts[1] = quads[2];
|
| - } else if (conicCnt) {
|
| - seedPts[0] = conics[0];
|
| - seedPts[1] = conics[2];
|
| - }
|
| - if (NULL != toDevice) {
|
| - toDevice->mapPoints(seedPts, 2);
|
| - }
|
| - devBounds->set(seedPts[0], seedPts[1]);
|
| -
|
| - int unsubdivQuadCnt = quads.count() / 3;
|
| - for (int i = 0; i < unsubdivQuadCnt; ++i) {
|
| - SkASSERT(qSubdivs[i] >= 0);
|
| - add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &verts, devBounds);
|
| - }
|
| -
|
| - // Start Conics
|
| - for (int i = 0; i < conicCnt; ++i) {
|
| - add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &verts, devBounds);
|
| - }
|
| - return true;
|
| -}
|
| -
|
| -bool GrAAHairLinePathRenderer::canDrawPath(const SkPath& path,
|
| - const SkStrokeRec& stroke,
|
| - const GrDrawTarget* target,
|
| - bool antiAlias) const {
|
| - if (!antiAlias) {
|
| - return false;
|
| - }
|
| -
|
| - if (!IsStrokeHairlineOrEquivalent(stroke,
|
| - target->getDrawState().getViewMatrix(),
|
| - NULL)) {
|
| - return false;
|
| - }
|
| -
|
| - if (SkPath::kLine_SegmentMask == path.getSegmentMasks() ||
|
| - target->caps()->shaderDerivativeSupport()) {
|
| - return true;
|
| - }
|
| - return false;
|
| -}
|
| -
|
| -template <class VertexType>
|
| -bool check_bounds(GrDrawState* drawState, const SkRect& devBounds, void* vertices, int vCount)
|
| -{
|
| - SkRect tolDevBounds = devBounds;
|
| - // The bounds ought to be tight, but in perspective the below code runs the verts
|
| - // through the view matrix to get back to dev coords, which can introduce imprecision.
|
| - if (drawState->getViewMatrix().hasPerspective()) {
|
| - tolDevBounds.outset(SK_Scalar1 / 1000, SK_Scalar1 / 1000);
|
| - } else {
|
| - // Non-persp matrices cause this path renderer to draw in device space.
|
| - SkASSERT(drawState->getViewMatrix().isIdentity());
|
| - }
|
| - SkRect actualBounds;
|
| -
|
| - VertexType* verts = reinterpret_cast<VertexType*>(vertices);
|
| - bool first = true;
|
| - for (int i = 0; i < vCount; ++i) {
|
| - SkPoint pos = verts[i].fPos;
|
| - // This is a hack to workaround the fact that we move some degenerate segments offscreen.
|
| - if (SK_ScalarMax == pos.fX) {
|
| - continue;
|
| - }
|
| - drawState->getViewMatrix().mapPoints(&pos, 1);
|
| - if (first) {
|
| - actualBounds.set(pos.fX, pos.fY, pos.fX, pos.fY);
|
| - first = false;
|
| - } else {
|
| - actualBounds.growToInclude(pos.fX, pos.fY);
|
| - }
|
| - }
|
| - if (!first) {
|
| - return tolDevBounds.contains(actualBounds);
|
| - }
|
| -
|
| - return true;
|
| -}
|
| -
|
| -bool GrAAHairLinePathRenderer::onDrawPath(const SkPath& path,
|
| - const SkStrokeRec& stroke,
|
| - GrDrawTarget* target,
|
| - bool antiAlias) {
|
| - GrDrawState* drawState = target->drawState();
|
| -
|
| - SkScalar hairlineCoverage;
|
| - if (IsStrokeHairlineOrEquivalent(stroke,
|
| - target->getDrawState().getViewMatrix(),
|
| - &hairlineCoverage)) {
|
| - uint8_t newCoverage = SkScalarRoundToInt(hairlineCoverage *
|
| - target->getDrawState().getCoverage());
|
| - target->drawState()->setCoverage(newCoverage);
|
| - }
|
| -
|
| - SkIRect devClipBounds;
|
| - target->getClip()->getConservativeBounds(drawState->getRenderTarget(), &devClipBounds);
|
| -
|
| - int lineCnt;
|
| - int quadCnt;
|
| - int conicCnt;
|
| - PREALLOC_PTARRAY(128) lines;
|
| - PREALLOC_PTARRAY(128) quads;
|
| - PREALLOC_PTARRAY(128) conics;
|
| - IntArray qSubdivs;
|
| - FloatArray cWeights;
|
| - quadCnt = generate_lines_and_quads(path, drawState->getViewMatrix(), devClipBounds,
|
| - &lines, &quads, &conics, &qSubdivs, &cWeights);
|
| - lineCnt = lines.count() / 2;
|
| - conicCnt = conics.count() / 3;
|
| -
|
| - // do lines first
|
| - if (lineCnt) {
|
| - GrDrawTarget::AutoReleaseGeometry arg;
|
| - SkRect devBounds;
|
| -
|
| - if (!this->createLineGeom(path,
|
| - target,
|
| - lines,
|
| - lineCnt,
|
| - &arg,
|
| - &devBounds)) {
|
| - return false;
|
| - }
|
| -
|
| - GrDrawTarget::AutoStateRestore asr;
|
| -
|
| - // createLineGeom transforms the geometry to device space when the matrix does not have
|
| - // perspective.
|
| - if (target->getDrawState().getViewMatrix().hasPerspective()) {
|
| - asr.set(target, GrDrawTarget::kPreserve_ASRInit);
|
| - } else if (!asr.setIdentity(target, GrDrawTarget::kPreserve_ASRInit)) {
|
| - return false;
|
| - }
|
| - GrDrawState* drawState = target->drawState();
|
| -
|
| - // Check devBounds
|
| - SkASSERT(check_bounds<LineVertex>(drawState, devBounds, arg.vertices(),
|
| - kVertsPerLineSeg * lineCnt));
|
| -
|
| - {
|
| - GrDrawState::AutoRestoreEffects are(drawState);
|
| - target->setIndexSourceToBuffer(fLinesIndexBuffer);
|
| - int lines = 0;
|
| - while (lines < lineCnt) {
|
| - int n = SkTMin(lineCnt - lines, kNumLineSegsInIdxBuffer);
|
| - target->drawIndexed(kTriangles_GrPrimitiveType,
|
| - kVertsPerLineSeg*lines, // startV
|
| - 0, // startI
|
| - kVertsPerLineSeg*n, // vCount
|
| - kIdxsPerLineSeg*n, // iCount
|
| - &devBounds);
|
| - lines += n;
|
| - }
|
| - }
|
| - }
|
| -
|
| - // then quadratics/conics
|
| - if (quadCnt || conicCnt) {
|
| - GrDrawTarget::AutoReleaseGeometry arg;
|
| - SkRect devBounds;
|
| -
|
| - if (!this->createBezierGeom(path,
|
| - target,
|
| - quads,
|
| - quadCnt,
|
| - conics,
|
| - conicCnt,
|
| - qSubdivs,
|
| - cWeights,
|
| - &arg,
|
| - &devBounds)) {
|
| - return false;
|
| - }
|
| -
|
| - GrDrawTarget::AutoStateRestore asr;
|
| -
|
| - // createGeom transforms the geometry to device space when the matrix does not have
|
| - // perspective.
|
| - if (target->getDrawState().getViewMatrix().hasPerspective()) {
|
| - asr.set(target, GrDrawTarget::kPreserve_ASRInit);
|
| - } else if (!asr.setIdentity(target, GrDrawTarget::kPreserve_ASRInit)) {
|
| - return false;
|
| - }
|
| - GrDrawState* drawState = target->drawState();
|
| -
|
| - static const int kEdgeAttrIndex = 1;
|
| -
|
| - // Check devBounds
|
| - SkASSERT(check_bounds<BezierVertex>(drawState, devBounds, arg.vertices(),
|
| - kVertsPerQuad * quadCnt + kVertsPerQuad * conicCnt));
|
| -
|
| - if (quadCnt > 0) {
|
| - GrEffectRef* hairQuadEffect = GrQuadEffect::Create(kHairlineAA_GrEffectEdgeType,
|
| - *target->caps());
|
| - SkASSERT(NULL != hairQuadEffect);
|
| - GrDrawState::AutoRestoreEffects are(drawState);
|
| - target->setIndexSourceToBuffer(fQuadsIndexBuffer);
|
| - drawState->addCoverageEffect(hairQuadEffect, kEdgeAttrIndex)->unref();
|
| - int quads = 0;
|
| - while (quads < quadCnt) {
|
| - int n = SkTMin(quadCnt - quads, kNumQuadsInIdxBuffer);
|
| - target->drawIndexed(kTriangles_GrPrimitiveType,
|
| - kVertsPerQuad*quads, // startV
|
| - 0, // startI
|
| - kVertsPerQuad*n, // vCount
|
| - kIdxsPerQuad*n, // iCount
|
| - &devBounds);
|
| - quads += n;
|
| - }
|
| - }
|
| -
|
| - if (conicCnt > 0) {
|
| - GrDrawState::AutoRestoreEffects are(drawState);
|
| - GrEffectRef* hairConicEffect = GrConicEffect::Create(kHairlineAA_GrEffectEdgeType,
|
| - *target->caps());
|
| - SkASSERT(NULL != hairConicEffect);
|
| - drawState->addCoverageEffect(hairConicEffect, 1, 2)->unref();
|
| - int conics = 0;
|
| - while (conics < conicCnt) {
|
| - int n = SkTMin(conicCnt - conics, kNumQuadsInIdxBuffer);
|
| - target->drawIndexed(kTriangles_GrPrimitiveType,
|
| - kVertsPerQuad*(quadCnt + conics), // startV
|
| - 0, // startI
|
| - kVertsPerQuad*n, // vCount
|
| - kIdxsPerQuad*n, // iCount
|
| - &devBounds);
|
| - conics += n;
|
| - }
|
| - }
|
| - }
|
| -
|
| - target->resetIndexSource();
|
| -
|
| - return true;
|
| -}
|
| +/*
|
| + * Copyright 2011 Google Inc.
|
| + *
|
| + * Use of this source code is governed by a BSD-style license that can be
|
| + * found in the LICENSE file.
|
| + */
|
| +
|
| +#include "GrAAHairLinePathRenderer.h"
|
| +
|
| +#include "GrContext.h"
|
| +#include "GrDrawState.h"
|
| +#include "GrDrawTargetCaps.h"
|
| +#include "GrEffect.h"
|
| +#include "GrGpu.h"
|
| +#include "GrIndexBuffer.h"
|
| +#include "GrPathUtils.h"
|
| +#include "GrTBackendEffectFactory.h"
|
| +#include "SkGeometry.h"
|
| +#include "SkStroke.h"
|
| +#include "SkTemplates.h"
|
| +
|
| +#include "effects/GrBezierEffect.h"
|
| +
|
| +namespace {
|
| +// quadratics are rendered as 5-sided polys in order to bound the
|
| +// AA stroke around the center-curve. See comments in push_quad_index_buffer and
|
| +// bloat_quad. Quadratics and conics share an index buffer
|
| +static const int kVertsPerQuad = 5;
|
| +static const int kIdxsPerQuad = 9;
|
| +
|
| +// lines are rendered as:
|
| +// *______________*
|
| +// |\ -_______ /|
|
| +// | \ \ / |
|
| +// | *--------* |
|
| +// | / ______/ \ |
|
| +// */_-__________\*
|
| +// For: 6 vertices and 18 indices (for 6 triangles)
|
| +static const int kVertsPerLineSeg = 6;
|
| +static const int kIdxsPerLineSeg = 18;
|
| +
|
| +static const int kNumQuadsInIdxBuffer = 256;
|
| +static const size_t kQuadIdxSBufize = kIdxsPerQuad *
|
| + sizeof(uint16_t) *
|
| + kNumQuadsInIdxBuffer;
|
| +
|
| +static const int kNumLineSegsInIdxBuffer = 256;
|
| +static const size_t kLineSegIdxSBufize = kIdxsPerLineSeg *
|
| + sizeof(uint16_t) *
|
| + kNumLineSegsInIdxBuffer;
|
| +
|
| +static bool push_quad_index_data(GrIndexBuffer* qIdxBuffer) {
|
| + uint16_t* data = (uint16_t*) qIdxBuffer->map();
|
| + bool tempData = NULL == data;
|
| + if (tempData) {
|
| + data = SkNEW_ARRAY(uint16_t, kNumQuadsInIdxBuffer * kIdxsPerQuad);
|
| + }
|
| + for (int i = 0; i < kNumQuadsInIdxBuffer; ++i) {
|
| +
|
| + // Each quadratic is rendered as a five sided polygon. This poly bounds
|
| + // the quadratic's bounding triangle but has been expanded so that the
|
| + // 1-pixel wide area around the curve is inside the poly.
|
| + // If a,b,c are the original control points then the poly a0,b0,c0,c1,a1
|
| + // that is rendered would look like this:
|
| + // b0
|
| + // b
|
| + //
|
| + // a0 c0
|
| + // a c
|
| + // a1 c1
|
| + // Each is drawn as three triangles specified by these 9 indices:
|
| + int baseIdx = i * kIdxsPerQuad;
|
| + uint16_t baseVert = (uint16_t)(i * kVertsPerQuad);
|
| + data[0 + baseIdx] = baseVert + 0; // a0
|
| + data[1 + baseIdx] = baseVert + 1; // a1
|
| + data[2 + baseIdx] = baseVert + 2; // b0
|
| + data[3 + baseIdx] = baseVert + 2; // b0
|
| + data[4 + baseIdx] = baseVert + 4; // c1
|
| + data[5 + baseIdx] = baseVert + 3; // c0
|
| + data[6 + baseIdx] = baseVert + 1; // a1
|
| + data[7 + baseIdx] = baseVert + 4; // c1
|
| + data[8 + baseIdx] = baseVert + 2; // b0
|
| + }
|
| + if (tempData) {
|
| + bool ret = qIdxBuffer->updateData(data, kQuadIdxSBufize);
|
| + delete[] data;
|
| + return ret;
|
| + } else {
|
| + qIdxBuffer->unmap();
|
| + return true;
|
| + }
|
| +}
|
| +
|
| +static bool push_line_index_data(GrIndexBuffer* lIdxBuffer) {
|
| + uint16_t* data = (uint16_t*) lIdxBuffer->map();
|
| + bool tempData = NULL == data;
|
| + if (tempData) {
|
| + data = SkNEW_ARRAY(uint16_t, kNumLineSegsInIdxBuffer * kIdxsPerLineSeg);
|
| + }
|
| + for (int i = 0; i < kNumLineSegsInIdxBuffer; ++i) {
|
| + // Each line segment is rendered as two quads and two triangles.
|
| + // p0 and p1 have alpha = 1 while all other points have alpha = 0.
|
| + // The four external points are offset 1 pixel perpendicular to the
|
| + // line and half a pixel parallel to the line.
|
| + //
|
| + // p4 p5
|
| + // p0 p1
|
| + // p2 p3
|
| + //
|
| + // Each is drawn as six triangles specified by these 18 indices:
|
| + int baseIdx = i * kIdxsPerLineSeg;
|
| + uint16_t baseVert = (uint16_t)(i * kVertsPerLineSeg);
|
| + data[0 + baseIdx] = baseVert + 0;
|
| + data[1 + baseIdx] = baseVert + 1;
|
| + data[2 + baseIdx] = baseVert + 3;
|
| +
|
| + data[3 + baseIdx] = baseVert + 0;
|
| + data[4 + baseIdx] = baseVert + 3;
|
| + data[5 + baseIdx] = baseVert + 2;
|
| +
|
| + data[6 + baseIdx] = baseVert + 0;
|
| + data[7 + baseIdx] = baseVert + 4;
|
| + data[8 + baseIdx] = baseVert + 5;
|
| +
|
| + data[9 + baseIdx] = baseVert + 0;
|
| + data[10+ baseIdx] = baseVert + 5;
|
| + data[11+ baseIdx] = baseVert + 1;
|
| +
|
| + data[12 + baseIdx] = baseVert + 0;
|
| + data[13 + baseIdx] = baseVert + 2;
|
| + data[14 + baseIdx] = baseVert + 4;
|
| +
|
| + data[15 + baseIdx] = baseVert + 1;
|
| + data[16 + baseIdx] = baseVert + 5;
|
| + data[17 + baseIdx] = baseVert + 3;
|
| + }
|
| + if (tempData) {
|
| + bool ret = lIdxBuffer->updateData(data, kLineSegIdxSBufize);
|
| + delete[] data;
|
| + return ret;
|
| + } else {
|
| + lIdxBuffer->unmap();
|
| + return true;
|
| + }
|
| +}
|
| +}
|
| +
|
| +GrPathRenderer* GrAAHairLinePathRenderer::Create(GrContext* context) {
|
| + GrGpu* gpu = context->getGpu();
|
| + GrIndexBuffer* qIdxBuf = gpu->createIndexBuffer(kQuadIdxSBufize, false);
|
| + SkAutoTUnref<GrIndexBuffer> qIdxBuffer(qIdxBuf);
|
| + if (NULL == qIdxBuf || !push_quad_index_data(qIdxBuf)) {
|
| + return NULL;
|
| + }
|
| + GrIndexBuffer* lIdxBuf = gpu->createIndexBuffer(kLineSegIdxSBufize, false);
|
| + SkAutoTUnref<GrIndexBuffer> lIdxBuffer(lIdxBuf);
|
| + if (NULL == lIdxBuf || !push_line_index_data(lIdxBuf)) {
|
| + return NULL;
|
| + }
|
| + return SkNEW_ARGS(GrAAHairLinePathRenderer,
|
| + (context, lIdxBuf, qIdxBuf));
|
| +}
|
| +
|
| +GrAAHairLinePathRenderer::GrAAHairLinePathRenderer(
|
| + const GrContext* context,
|
| + const GrIndexBuffer* linesIndexBuffer,
|
| + const GrIndexBuffer* quadsIndexBuffer) {
|
| + fLinesIndexBuffer = linesIndexBuffer;
|
| + linesIndexBuffer->ref();
|
| + fQuadsIndexBuffer = quadsIndexBuffer;
|
| + quadsIndexBuffer->ref();
|
| +}
|
| +
|
| +GrAAHairLinePathRenderer::~GrAAHairLinePathRenderer() {
|
| + fLinesIndexBuffer->unref();
|
| + fQuadsIndexBuffer->unref();
|
| +}
|
| +
|
| +namespace {
|
| +
|
| +#define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true>
|
| +
|
| +// Takes 178th time of logf on Z600 / VC2010
|
| +int get_float_exp(float x) {
|
| + GR_STATIC_ASSERT(sizeof(int) == sizeof(float));
|
| +#ifdef SK_DEBUG
|
| + static bool tested;
|
| + if (!tested) {
|
| + tested = true;
|
| + SkASSERT(get_float_exp(0.25f) == -2);
|
| + SkASSERT(get_float_exp(0.3f) == -2);
|
| + SkASSERT(get_float_exp(0.5f) == -1);
|
| + SkASSERT(get_float_exp(1.f) == 0);
|
| + SkASSERT(get_float_exp(2.f) == 1);
|
| + SkASSERT(get_float_exp(2.5f) == 1);
|
| + SkASSERT(get_float_exp(8.f) == 3);
|
| + SkASSERT(get_float_exp(100.f) == 6);
|
| + SkASSERT(get_float_exp(1000.f) == 9);
|
| + SkASSERT(get_float_exp(1024.f) == 10);
|
| + SkASSERT(get_float_exp(3000000.f) == 21);
|
| + }
|
| +#endif
|
| + const int* iptr = (const int*)&x;
|
| + return (((*iptr) & 0x7f800000) >> 23) - 127;
|
| +}
|
| +
|
| +// Uses the max curvature function for quads to estimate
|
| +// where to chop the conic. If the max curvature is not
|
| +// found along the curve segment it will return 1 and
|
| +// dst[0] is the original conic. If it returns 2 the dst[0]
|
| +// and dst[1] are the two new conics.
|
| +int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) {
|
| + SkScalar t = SkFindQuadMaxCurvature(src);
|
| + if (t == 0) {
|
| + if (dst) {
|
| + dst[0].set(src, weight);
|
| + }
|
| + return 1;
|
| + } else {
|
| + if (dst) {
|
| + SkConic conic;
|
| + conic.set(src, weight);
|
| + conic.chopAt(t, dst);
|
| + }
|
| + return 2;
|
| + }
|
| +}
|
| +
|
| +// Calls split_conic on the entire conic and then once more on each subsection.
|
| +// Most cases will result in either 1 conic (chop point is not within t range)
|
| +// or 3 points (split once and then one subsection is split again).
|
| +int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) {
|
| + SkConic dstTemp[2];
|
| + int conicCnt = split_conic(src, dstTemp, weight);
|
| + if (2 == conicCnt) {
|
| + int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW);
|
| + conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW);
|
| + } else {
|
| + dst[0] = dstTemp[0];
|
| + }
|
| + return conicCnt;
|
| +}
|
| +
|
| +// returns 0 if quad/conic is degen or close to it
|
| +// in this case approx the path with lines
|
| +// otherwise returns 1
|
| +int is_degen_quad_or_conic(const SkPoint p[3]) {
|
| + static const SkScalar gDegenerateToLineTol = SK_Scalar1;
|
| + static const SkScalar gDegenerateToLineTolSqd =
|
| + SkScalarMul(gDegenerateToLineTol, gDegenerateToLineTol);
|
| +
|
| + if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd ||
|
| + p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) {
|
| + return 1;
|
| + }
|
| +
|
| + SkScalar dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]);
|
| + if (dsqd < gDegenerateToLineTolSqd) {
|
| + return 1;
|
| + }
|
| +
|
| + if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) {
|
| + return 1;
|
| + }
|
| + return 0;
|
| +}
|
| +
|
| +// we subdivide the quads to avoid huge overfill
|
| +// if it returns -1 then should be drawn as lines
|
| +int num_quad_subdivs(const SkPoint p[3]) {
|
| + static const SkScalar gDegenerateToLineTol = SK_Scalar1;
|
| + static const SkScalar gDegenerateToLineTolSqd =
|
| + SkScalarMul(gDegenerateToLineTol, gDegenerateToLineTol);
|
| +
|
| + if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd ||
|
| + p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) {
|
| + return -1;
|
| + }
|
| +
|
| + SkScalar dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]);
|
| + if (dsqd < gDegenerateToLineTolSqd) {
|
| + return -1;
|
| + }
|
| +
|
| + if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) {
|
| + return -1;
|
| + }
|
| +
|
| + // tolerance of triangle height in pixels
|
| + // tuned on windows Quadro FX 380 / Z600
|
| + // trade off of fill vs cpu time on verts
|
| + // maybe different when do this using gpu (geo or tess shaders)
|
| + static const SkScalar gSubdivTol = 175 * SK_Scalar1;
|
| +
|
| + if (dsqd <= SkScalarMul(gSubdivTol, gSubdivTol)) {
|
| + return 0;
|
| + } else {
|
| + static const int kMaxSub = 4;
|
| + // subdividing the quad reduces d by 4. so we want x = log4(d/tol)
|
| + // = log4(d*d/tol*tol)/2
|
| + // = log2(d*d/tol*tol)
|
| +
|
| + // +1 since we're ignoring the mantissa contribution.
|
| + int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1;
|
| + log = SkTMin(SkTMax(0, log), kMaxSub);
|
| + return log;
|
| + }
|
| +}
|
| +
|
| +/**
|
| + * Generates the lines and quads to be rendered. Lines are always recorded in
|
| + * device space. We will do a device space bloat to account for the 1pixel
|
| + * thickness.
|
| + * Quads are recorded in device space unless m contains
|
| + * perspective, then in they are in src space. We do this because we will
|
| + * subdivide large quads to reduce over-fill. This subdivision has to be
|
| + * performed before applying the perspective matrix.
|
| + */
|
| +int generate_lines_and_quads(const SkPath& path,
|
| + const SkMatrix& m,
|
| + const SkIRect& devClipBounds,
|
| + GrAAHairLinePathRenderer::PtArray* lines,
|
| + GrAAHairLinePathRenderer::PtArray* quads,
|
| + GrAAHairLinePathRenderer::PtArray* conics,
|
| + GrAAHairLinePathRenderer::IntArray* quadSubdivCnts,
|
| + GrAAHairLinePathRenderer::FloatArray* conicWeights) {
|
| + SkPath::Iter iter(path, false);
|
| +
|
| + int totalQuadCount = 0;
|
| + SkRect bounds;
|
| + SkIRect ibounds;
|
| +
|
| + bool persp = m.hasPerspective();
|
| +
|
| + for (;;) {
|
| + SkPoint pathPts[4];
|
| + SkPoint devPts[4];
|
| + SkPath::Verb verb = iter.next(pathPts);
|
| + switch (verb) {
|
| + case SkPath::kConic_Verb: {
|
| + SkConic dst[4];
|
| + // We chop the conics to create tighter clipping to hide error
|
| + // that appears near max curvature of very thin conics. Thin
|
| + // hyperbolas with high weight still show error.
|
| + int conicCnt = chop_conic(pathPts, dst, iter.conicWeight());
|
| + for (int i = 0; i < conicCnt; ++i) {
|
| + SkPoint* chopPnts = dst[i].fPts;
|
| + m.mapPoints(devPts, chopPnts, 3);
|
| + bounds.setBounds(devPts, 3);
|
| + bounds.outset(SK_Scalar1, SK_Scalar1);
|
| + bounds.roundOut(&ibounds);
|
| + if (SkIRect::Intersects(devClipBounds, ibounds)) {
|
| + if (is_degen_quad_or_conic(devPts)) {
|
| + SkPoint* pts = lines->push_back_n(4);
|
| + pts[0] = devPts[0];
|
| + pts[1] = devPts[1];
|
| + pts[2] = devPts[1];
|
| + pts[3] = devPts[2];
|
| + } else {
|
| + // when in perspective keep conics in src space
|
| + SkPoint* cPts = persp ? chopPnts : devPts;
|
| + SkPoint* pts = conics->push_back_n(3);
|
| + pts[0] = cPts[0];
|
| + pts[1] = cPts[1];
|
| + pts[2] = cPts[2];
|
| + conicWeights->push_back() = dst[i].fW;
|
| + }
|
| + }
|
| + }
|
| + break;
|
| + }
|
| + case SkPath::kMove_Verb:
|
| + break;
|
| + case SkPath::kLine_Verb:
|
| + m.mapPoints(devPts, pathPts, 2);
|
| + bounds.setBounds(devPts, 2);
|
| + bounds.outset(SK_Scalar1, SK_Scalar1);
|
| + bounds.roundOut(&ibounds);
|
| + if (SkIRect::Intersects(devClipBounds, ibounds)) {
|
| + SkPoint* pts = lines->push_back_n(2);
|
| + pts[0] = devPts[0];
|
| + pts[1] = devPts[1];
|
| + }
|
| + break;
|
| + case SkPath::kQuad_Verb: {
|
| + SkPoint choppedPts[5];
|
| + // Chopping the quad helps when the quad is either degenerate or nearly degenerate.
|
| + // When it is degenerate it allows the approximation with lines to work since the
|
| + // chop point (if there is one) will be at the parabola's vertex. In the nearly
|
| + // degenerate the QuadUVMatrix computed for the points is almost singular which
|
| + // can cause rendering artifacts.
|
| + int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts);
|
| + for (int i = 0; i < n; ++i) {
|
| + SkPoint* quadPts = choppedPts + i * 2;
|
| + m.mapPoints(devPts, quadPts, 3);
|
| + bounds.setBounds(devPts, 3);
|
| + bounds.outset(SK_Scalar1, SK_Scalar1);
|
| + bounds.roundOut(&ibounds);
|
| +
|
| + if (SkIRect::Intersects(devClipBounds, ibounds)) {
|
| + int subdiv = num_quad_subdivs(devPts);
|
| + SkASSERT(subdiv >= -1);
|
| + if (-1 == subdiv) {
|
| + SkPoint* pts = lines->push_back_n(4);
|
| + pts[0] = devPts[0];
|
| + pts[1] = devPts[1];
|
| + pts[2] = devPts[1];
|
| + pts[3] = devPts[2];
|
| + } else {
|
| + // when in perspective keep quads in src space
|
| + SkPoint* qPts = persp ? quadPts : devPts;
|
| + SkPoint* pts = quads->push_back_n(3);
|
| + pts[0] = qPts[0];
|
| + pts[1] = qPts[1];
|
| + pts[2] = qPts[2];
|
| + quadSubdivCnts->push_back() = subdiv;
|
| + totalQuadCount += 1 << subdiv;
|
| + }
|
| + }
|
| + }
|
| + break;
|
| + }
|
| + case SkPath::kCubic_Verb:
|
| + m.mapPoints(devPts, pathPts, 4);
|
| + bounds.setBounds(devPts, 4);
|
| + bounds.outset(SK_Scalar1, SK_Scalar1);
|
| + bounds.roundOut(&ibounds);
|
| + if (SkIRect::Intersects(devClipBounds, ibounds)) {
|
| + PREALLOC_PTARRAY(32) q;
|
| + // we don't need a direction if we aren't constraining the subdivision
|
| + static const SkPath::Direction kDummyDir = SkPath::kCCW_Direction;
|
| + // We convert cubics to quadratics (for now).
|
| + // In perspective have to do conversion in src space.
|
| + if (persp) {
|
| + SkScalar tolScale =
|
| + GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m,
|
| + path.getBounds());
|
| + GrPathUtils::convertCubicToQuads(pathPts, tolScale, false, kDummyDir, &q);
|
| + } else {
|
| + GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, false, kDummyDir, &q);
|
| + }
|
| + for (int i = 0; i < q.count(); i += 3) {
|
| + SkPoint* qInDevSpace;
|
| + // bounds has to be calculated in device space, but q is
|
| + // in src space when there is perspective.
|
| + if (persp) {
|
| + m.mapPoints(devPts, &q[i], 3);
|
| + bounds.setBounds(devPts, 3);
|
| + qInDevSpace = devPts;
|
| + } else {
|
| + bounds.setBounds(&q[i], 3);
|
| + qInDevSpace = &q[i];
|
| + }
|
| + bounds.outset(SK_Scalar1, SK_Scalar1);
|
| + bounds.roundOut(&ibounds);
|
| + if (SkIRect::Intersects(devClipBounds, ibounds)) {
|
| + int subdiv = num_quad_subdivs(qInDevSpace);
|
| + SkASSERT(subdiv >= -1);
|
| + if (-1 == subdiv) {
|
| + SkPoint* pts = lines->push_back_n(4);
|
| + // lines should always be in device coords
|
| + pts[0] = qInDevSpace[0];
|
| + pts[1] = qInDevSpace[1];
|
| + pts[2] = qInDevSpace[1];
|
| + pts[3] = qInDevSpace[2];
|
| + } else {
|
| + SkPoint* pts = quads->push_back_n(3);
|
| + // q is already in src space when there is no
|
| + // perspective and dev coords otherwise.
|
| + pts[0] = q[0 + i];
|
| + pts[1] = q[1 + i];
|
| + pts[2] = q[2 + i];
|
| + quadSubdivCnts->push_back() = subdiv;
|
| + totalQuadCount += 1 << subdiv;
|
| + }
|
| + }
|
| + }
|
| + }
|
| + break;
|
| + case SkPath::kClose_Verb:
|
| + break;
|
| + case SkPath::kDone_Verb:
|
| + return totalQuadCount;
|
| + }
|
| + }
|
| +}
|
| +
|
| +struct LineVertex {
|
| + SkPoint fPos;
|
| + GrColor fCoverage;
|
| +};
|
| +
|
| +struct BezierVertex {
|
| + SkPoint fPos;
|
| + union {
|
| + struct {
|
| + SkScalar fK;
|
| + SkScalar fL;
|
| + SkScalar fM;
|
| + } fConic;
|
| + SkVector fQuadCoord;
|
| + struct {
|
| + SkScalar fBogus[4];
|
| + };
|
| + };
|
| +};
|
| +
|
| +GR_STATIC_ASSERT(sizeof(BezierVertex) == 3 * sizeof(SkPoint));
|
| +
|
| +void intersect_lines(const SkPoint& ptA, const SkVector& normA,
|
| + const SkPoint& ptB, const SkVector& normB,
|
| + SkPoint* result) {
|
| +
|
| + SkScalar lineAW = -normA.dot(ptA);
|
| + SkScalar lineBW = -normB.dot(ptB);
|
| +
|
| + SkScalar wInv = SkScalarMul(normA.fX, normB.fY) -
|
| + SkScalarMul(normA.fY, normB.fX);
|
| + wInv = SkScalarInvert(wInv);
|
| +
|
| + result->fX = SkScalarMul(normA.fY, lineBW) - SkScalarMul(lineAW, normB.fY);
|
| + result->fX = SkScalarMul(result->fX, wInv);
|
| +
|
| + result->fY = SkScalarMul(lineAW, normB.fX) - SkScalarMul(normA.fX, lineBW);
|
| + result->fY = SkScalarMul(result->fY, wInv);
|
| +}
|
| +
|
| +void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kVertsPerQuad]) {
|
| + // this should be in the src space, not dev coords, when we have perspective
|
| + GrPathUtils::QuadUVMatrix DevToUV(qpts);
|
| + DevToUV.apply<kVertsPerQuad, sizeof(BezierVertex), sizeof(SkPoint)>(verts);
|
| +}
|
| +
|
| +void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice,
|
| + const SkMatrix* toSrc, BezierVertex verts[kVertsPerQuad],
|
| + SkRect* devBounds) {
|
| + SkASSERT(!toDevice == !toSrc);
|
| + // original quad is specified by tri a,b,c
|
| + SkPoint a = qpts[0];
|
| + SkPoint b = qpts[1];
|
| + SkPoint c = qpts[2];
|
| +
|
| + if (toDevice) {
|
| + toDevice->mapPoints(&a, 1);
|
| + toDevice->mapPoints(&b, 1);
|
| + toDevice->mapPoints(&c, 1);
|
| + }
|
| + // make a new poly where we replace a and c by a 1-pixel wide edges orthog
|
| + // to edges ab and bc:
|
| + //
|
| + // before | after
|
| + // | b0
|
| + // b |
|
| + // |
|
| + // | a0 c0
|
| + // a c | a1 c1
|
| + //
|
| + // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c,
|
| + // respectively.
|
| + BezierVertex& a0 = verts[0];
|
| + BezierVertex& a1 = verts[1];
|
| + BezierVertex& b0 = verts[2];
|
| + BezierVertex& c0 = verts[3];
|
| + BezierVertex& c1 = verts[4];
|
| +
|
| + SkVector ab = b;
|
| + ab -= a;
|
| + SkVector ac = c;
|
| + ac -= a;
|
| + SkVector cb = b;
|
| + cb -= c;
|
| +
|
| + // We should have already handled degenerates
|
| + SkASSERT(ab.length() > 0 && cb.length() > 0);
|
| +
|
| + ab.normalize();
|
| + SkVector abN;
|
| + abN.setOrthog(ab, SkVector::kLeft_Side);
|
| + if (abN.dot(ac) > 0) {
|
| + abN.negate();
|
| + }
|
| +
|
| + cb.normalize();
|
| + SkVector cbN;
|
| + cbN.setOrthog(cb, SkVector::kLeft_Side);
|
| + if (cbN.dot(ac) < 0) {
|
| + cbN.negate();
|
| + }
|
| +
|
| + a0.fPos = a;
|
| + a0.fPos += abN;
|
| + a1.fPos = a;
|
| + a1.fPos -= abN;
|
| +
|
| + c0.fPos = c;
|
| + c0.fPos += cbN;
|
| + c1.fPos = c;
|
| + c1.fPos -= cbN;
|
| +
|
| + intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos);
|
| + devBounds->growToInclude(&verts[0].fPos, sizeof(BezierVertex), kVertsPerQuad);
|
| +
|
| + if (toSrc) {
|
| + toSrc->mapPointsWithStride(&verts[0].fPos, sizeof(BezierVertex), kVertsPerQuad);
|
| + }
|
| +}
|
| +
|
| +// Equations based off of Loop-Blinn Quadratic GPU Rendering
|
| +// Input Parametric:
|
| +// P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2)
|
| +// Output Implicit:
|
| +// f(x, y, w) = f(P) = K^2 - LM
|
| +// K = dot(k, P), L = dot(l, P), M = dot(m, P)
|
| +// k, l, m are calculated in function GrPathUtils::getConicKLM
|
| +void set_conic_coeffs(const SkPoint p[3], BezierVertex verts[kVertsPerQuad],
|
| + const SkScalar weight) {
|
| + SkScalar klm[9];
|
| +
|
| + GrPathUtils::getConicKLM(p, weight, klm);
|
| +
|
| + for (int i = 0; i < kVertsPerQuad; ++i) {
|
| + const SkPoint pnt = verts[i].fPos;
|
| + verts[i].fConic.fK = pnt.fX * klm[0] + pnt.fY * klm[1] + klm[2];
|
| + verts[i].fConic.fL = pnt.fX * klm[3] + pnt.fY * klm[4] + klm[5];
|
| + verts[i].fConic.fM = pnt.fX * klm[6] + pnt.fY * klm[7] + klm[8];
|
| + }
|
| +}
|
| +
|
| +void add_conics(const SkPoint p[3],
|
| + const SkScalar weight,
|
| + const SkMatrix* toDevice,
|
| + const SkMatrix* toSrc,
|
| + BezierVertex** vert,
|
| + SkRect* devBounds) {
|
| + bloat_quad(p, toDevice, toSrc, *vert, devBounds);
|
| + set_conic_coeffs(p, *vert, weight);
|
| + *vert += kVertsPerQuad;
|
| +}
|
| +
|
| +void add_quads(const SkPoint p[3],
|
| + int subdiv,
|
| + const SkMatrix* toDevice,
|
| + const SkMatrix* toSrc,
|
| + BezierVertex** vert,
|
| + SkRect* devBounds) {
|
| + SkASSERT(subdiv >= 0);
|
| + if (subdiv) {
|
| + SkPoint newP[5];
|
| + SkChopQuadAtHalf(p, newP);
|
| + add_quads(newP + 0, subdiv-1, toDevice, toSrc, vert, devBounds);
|
| + add_quads(newP + 2, subdiv-1, toDevice, toSrc, vert, devBounds);
|
| + } else {
|
| + bloat_quad(p, toDevice, toSrc, *vert, devBounds);
|
| + set_uv_quad(p, *vert);
|
| + *vert += kVertsPerQuad;
|
| + }
|
| +}
|
| +
|
| +void add_line(const SkPoint p[2],
|
| + const SkMatrix* toSrc,
|
| + GrColor coverage,
|
| + LineVertex** vert) {
|
| + const SkPoint& a = p[0];
|
| + const SkPoint& b = p[1];
|
| +
|
| + SkVector ortho, vec = b;
|
| + vec -= a;
|
| +
|
| + if (vec.setLength(SK_ScalarHalf)) {
|
| + // Create a vector orthogonal to 'vec' and of unit length
|
| + ortho.fX = 2.0f * vec.fY;
|
| + ortho.fY = -2.0f * vec.fX;
|
| +
|
| + (*vert)[0].fPos = a;
|
| + (*vert)[0].fCoverage = coverage;
|
| + (*vert)[1].fPos = b;
|
| + (*vert)[1].fCoverage = coverage;
|
| + (*vert)[2].fPos = a - vec + ortho;
|
| + (*vert)[2].fCoverage = 0;
|
| + (*vert)[3].fPos = b + vec + ortho;
|
| + (*vert)[3].fCoverage = 0;
|
| + (*vert)[4].fPos = a - vec - ortho;
|
| + (*vert)[4].fCoverage = 0;
|
| + (*vert)[5].fPos = b + vec - ortho;
|
| + (*vert)[5].fCoverage = 0;
|
| +
|
| + if (NULL != toSrc) {
|
| + toSrc->mapPointsWithStride(&(*vert)->fPos,
|
| + sizeof(LineVertex),
|
| + kVertsPerLineSeg);
|
| + }
|
| + } else {
|
| + // just make it degenerate and likely offscreen
|
| + for (int i = 0; i < kVertsPerLineSeg; ++i) {
|
| + (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax);
|
| + }
|
| + }
|
| +
|
| + *vert += kVertsPerLineSeg;
|
| +}
|
| +
|
| +}
|
| +
|
| +///////////////////////////////////////////////////////////////////////////////
|
| +
|
| +namespace {
|
| +
|
| +// position + edge
|
| +extern const GrVertexAttrib gHairlineBezierAttribs[] = {
|
| + {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding},
|
| + {kVec4f_GrVertexAttribType, sizeof(SkPoint), kEffect_GrVertexAttribBinding}
|
| +};
|
| +
|
| +// position + coverage
|
| +extern const GrVertexAttrib gHairlineLineAttribs[] = {
|
| + {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding},
|
| + {kVec4ub_GrVertexAttribType, sizeof(SkPoint), kCoverage_GrVertexAttribBinding},
|
| +};
|
| +
|
| +};
|
| +
|
| +bool GrAAHairLinePathRenderer::createLineGeom(const SkPath& path,
|
| + GrDrawTarget* target,
|
| + const PtArray& lines,
|
| + int lineCnt,
|
| + GrDrawTarget::AutoReleaseGeometry* arg,
|
| + SkRect* devBounds) {
|
| + GrDrawState* drawState = target->drawState();
|
| +
|
| + const SkMatrix& viewM = drawState->getViewMatrix();
|
| +
|
| + int vertCnt = kVertsPerLineSeg * lineCnt;
|
| +
|
| + drawState->setVertexAttribs<gHairlineLineAttribs>(SK_ARRAY_COUNT(gHairlineLineAttribs));
|
| + SkASSERT(sizeof(LineVertex) == drawState->getVertexSize());
|
| +
|
| + if (!arg->set(target, vertCnt, 0)) {
|
| + return false;
|
| + }
|
| +
|
| + LineVertex* verts = reinterpret_cast<LineVertex*>(arg->vertices());
|
| +
|
| + const SkMatrix* toSrc = NULL;
|
| + SkMatrix ivm;
|
| +
|
| + if (viewM.hasPerspective()) {
|
| + if (viewM.invert(&ivm)) {
|
| + toSrc = &ivm;
|
| + }
|
| + }
|
| + devBounds->set(lines.begin(), lines.count());
|
| + for (int i = 0; i < lineCnt; ++i) {
|
| + add_line(&lines[2*i], toSrc, drawState->getCoverageColor(), &verts);
|
| + }
|
| + // All the verts computed by add_line are within sqrt(1^2 + 0.5^2) of the end points.
|
| + static const SkScalar kSqrtOfOneAndAQuarter = 1.118f;
|
| + // Add a little extra to account for vector normalization precision.
|
| + static const SkScalar kOutset = kSqrtOfOneAndAQuarter + SK_Scalar1 / 20;
|
| + devBounds->outset(kOutset, kOutset);
|
| +
|
| + return true;
|
| +}
|
| +
|
| +bool GrAAHairLinePathRenderer::createBezierGeom(
|
| + const SkPath& path,
|
| + GrDrawTarget* target,
|
| + const PtArray& quads,
|
| + int quadCnt,
|
| + const PtArray& conics,
|
| + int conicCnt,
|
| + const IntArray& qSubdivs,
|
| + const FloatArray& cWeights,
|
| + GrDrawTarget::AutoReleaseGeometry* arg,
|
| + SkRect* devBounds) {
|
| + GrDrawState* drawState = target->drawState();
|
| +
|
| + const SkMatrix& viewM = drawState->getViewMatrix();
|
| +
|
| + int vertCnt = kVertsPerQuad * quadCnt + kVertsPerQuad * conicCnt;
|
| +
|
| + target->drawState()->setVertexAttribs<gHairlineBezierAttribs>(SK_ARRAY_COUNT(gHairlineBezierAttribs));
|
| + SkASSERT(sizeof(BezierVertex) == target->getDrawState().getVertexSize());
|
| +
|
| + if (!arg->set(target, vertCnt, 0)) {
|
| + return false;
|
| + }
|
| +
|
| + BezierVertex* verts = reinterpret_cast<BezierVertex*>(arg->vertices());
|
| +
|
| + const SkMatrix* toDevice = NULL;
|
| + const SkMatrix* toSrc = NULL;
|
| + SkMatrix ivm;
|
| +
|
| + if (viewM.hasPerspective()) {
|
| + if (viewM.invert(&ivm)) {
|
| + toDevice = &viewM;
|
| + toSrc = &ivm;
|
| + }
|
| + }
|
| +
|
| + // Seed the dev bounds with some pts known to be inside. Each quad and conic grows the bounding
|
| + // box to include its vertices.
|
| + SkPoint seedPts[2];
|
| + if (quadCnt) {
|
| + seedPts[0] = quads[0];
|
| + seedPts[1] = quads[2];
|
| + } else if (conicCnt) {
|
| + seedPts[0] = conics[0];
|
| + seedPts[1] = conics[2];
|
| + }
|
| + if (NULL != toDevice) {
|
| + toDevice->mapPoints(seedPts, 2);
|
| + }
|
| + devBounds->set(seedPts[0], seedPts[1]);
|
| +
|
| + int unsubdivQuadCnt = quads.count() / 3;
|
| + for (int i = 0; i < unsubdivQuadCnt; ++i) {
|
| + SkASSERT(qSubdivs[i] >= 0);
|
| + add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &verts, devBounds);
|
| + }
|
| +
|
| + // Start Conics
|
| + for (int i = 0; i < conicCnt; ++i) {
|
| + add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &verts, devBounds);
|
| + }
|
| + return true;
|
| +}
|
| +
|
| +bool GrAAHairLinePathRenderer::canDrawPath(const SkPath& path,
|
| + const SkStrokeRec& stroke,
|
| + const GrDrawTarget* target,
|
| + bool antiAlias) const {
|
| + if (!antiAlias) {
|
| + return false;
|
| + }
|
| +
|
| + if (!IsStrokeHairlineOrEquivalent(stroke,
|
| + target->getDrawState().getViewMatrix(),
|
| + NULL)) {
|
| + return false;
|
| + }
|
| +
|
| + if (SkPath::kLine_SegmentMask == path.getSegmentMasks() ||
|
| + target->caps()->shaderDerivativeSupport()) {
|
| + return true;
|
| + }
|
| + return false;
|
| +}
|
| +
|
| +template <class VertexType>
|
| +bool check_bounds(GrDrawState* drawState, const SkRect& devBounds, void* vertices, int vCount)
|
| +{
|
| + SkRect tolDevBounds = devBounds;
|
| + // The bounds ought to be tight, but in perspective the below code runs the verts
|
| + // through the view matrix to get back to dev coords, which can introduce imprecision.
|
| + if (drawState->getViewMatrix().hasPerspective()) {
|
| + tolDevBounds.outset(SK_Scalar1 / 1000, SK_Scalar1 / 1000);
|
| + } else {
|
| + // Non-persp matrices cause this path renderer to draw in device space.
|
| + SkASSERT(drawState->getViewMatrix().isIdentity());
|
| + }
|
| + SkRect actualBounds;
|
| +
|
| + VertexType* verts = reinterpret_cast<VertexType*>(vertices);
|
| + bool first = true;
|
| + for (int i = 0; i < vCount; ++i) {
|
| + SkPoint pos = verts[i].fPos;
|
| + // This is a hack to workaround the fact that we move some degenerate segments offscreen.
|
| + if (SK_ScalarMax == pos.fX) {
|
| + continue;
|
| + }
|
| + drawState->getViewMatrix().mapPoints(&pos, 1);
|
| + if (first) {
|
| + actualBounds.set(pos.fX, pos.fY, pos.fX, pos.fY);
|
| + first = false;
|
| + } else {
|
| + actualBounds.growToInclude(pos.fX, pos.fY);
|
| + }
|
| + }
|
| + if (!first) {
|
| + return tolDevBounds.contains(actualBounds);
|
| + }
|
| +
|
| + return true;
|
| +}
|
| +
|
| +bool GrAAHairLinePathRenderer::onDrawPath(const SkPath& path,
|
| + const SkStrokeRec& stroke,
|
| + GrDrawTarget* target,
|
| + bool antiAlias) {
|
| + GrDrawState* drawState = target->drawState();
|
| +
|
| + SkScalar hairlineCoverage;
|
| + if (IsStrokeHairlineOrEquivalent(stroke,
|
| + target->getDrawState().getViewMatrix(),
|
| + &hairlineCoverage)) {
|
| + uint8_t newCoverage = SkScalarRoundToInt(hairlineCoverage *
|
| + target->getDrawState().getCoverage());
|
| + target->drawState()->setCoverage(newCoverage);
|
| + }
|
| +
|
| + SkIRect devClipBounds;
|
| + target->getClip()->getConservativeBounds(drawState->getRenderTarget(), &devClipBounds);
|
| +
|
| + int lineCnt;
|
| + int quadCnt;
|
| + int conicCnt;
|
| + PREALLOC_PTARRAY(128) lines;
|
| + PREALLOC_PTARRAY(128) quads;
|
| + PREALLOC_PTARRAY(128) conics;
|
| + IntArray qSubdivs;
|
| + FloatArray cWeights;
|
| + quadCnt = generate_lines_and_quads(path, drawState->getViewMatrix(), devClipBounds,
|
| + &lines, &quads, &conics, &qSubdivs, &cWeights);
|
| + lineCnt = lines.count() / 2;
|
| + conicCnt = conics.count() / 3;
|
| +
|
| + // do lines first
|
| + if (lineCnt) {
|
| + GrDrawTarget::AutoReleaseGeometry arg;
|
| + SkRect devBounds;
|
| +
|
| + if (!this->createLineGeom(path,
|
| + target,
|
| + lines,
|
| + lineCnt,
|
| + &arg,
|
| + &devBounds)) {
|
| + return false;
|
| + }
|
| +
|
| + GrDrawTarget::AutoStateRestore asr;
|
| +
|
| + // createLineGeom transforms the geometry to device space when the matrix does not have
|
| + // perspective.
|
| + if (target->getDrawState().getViewMatrix().hasPerspective()) {
|
| + asr.set(target, GrDrawTarget::kPreserve_ASRInit);
|
| + } else if (!asr.setIdentity(target, GrDrawTarget::kPreserve_ASRInit)) {
|
| + return false;
|
| + }
|
| + GrDrawState* drawState = target->drawState();
|
| +
|
| + // Check devBounds
|
| + SkASSERT(check_bounds<LineVertex>(drawState, devBounds, arg.vertices(),
|
| + kVertsPerLineSeg * lineCnt));
|
| +
|
| + {
|
| + GrDrawState::AutoRestoreEffects are(drawState);
|
| + target->setIndexSourceToBuffer(fLinesIndexBuffer);
|
| + int lines = 0;
|
| + while (lines < lineCnt) {
|
| + int n = SkTMin(lineCnt - lines, kNumLineSegsInIdxBuffer);
|
| + target->drawIndexed(kTriangles_GrPrimitiveType,
|
| + kVertsPerLineSeg*lines, // startV
|
| + 0, // startI
|
| + kVertsPerLineSeg*n, // vCount
|
| + kIdxsPerLineSeg*n, // iCount
|
| + &devBounds);
|
| + lines += n;
|
| + }
|
| + }
|
| + }
|
| +
|
| + // then quadratics/conics
|
| + if (quadCnt || conicCnt) {
|
| + GrDrawTarget::AutoReleaseGeometry arg;
|
| + SkRect devBounds;
|
| +
|
| + if (!this->createBezierGeom(path,
|
| + target,
|
| + quads,
|
| + quadCnt,
|
| + conics,
|
| + conicCnt,
|
| + qSubdivs,
|
| + cWeights,
|
| + &arg,
|
| + &devBounds)) {
|
| + return false;
|
| + }
|
| +
|
| + GrDrawTarget::AutoStateRestore asr;
|
| +
|
| + // createGeom transforms the geometry to device space when the matrix does not have
|
| + // perspective.
|
| + if (target->getDrawState().getViewMatrix().hasPerspective()) {
|
| + asr.set(target, GrDrawTarget::kPreserve_ASRInit);
|
| + } else if (!asr.setIdentity(target, GrDrawTarget::kPreserve_ASRInit)) {
|
| + return false;
|
| + }
|
| + GrDrawState* drawState = target->drawState();
|
| +
|
| + static const int kEdgeAttrIndex = 1;
|
| +
|
| + // Check devBounds
|
| + SkASSERT(check_bounds<BezierVertex>(drawState, devBounds, arg.vertices(),
|
| + kVertsPerQuad * quadCnt + kVertsPerQuad * conicCnt));
|
| +
|
| + if (quadCnt > 0) {
|
| + GrEffectRef* hairQuadEffect = GrQuadEffect::Create(kHairlineAA_GrEffectEdgeType,
|
| + *target->caps());
|
| + SkASSERT(NULL != hairQuadEffect);
|
| + GrDrawState::AutoRestoreEffects are(drawState);
|
| + target->setIndexSourceToBuffer(fQuadsIndexBuffer);
|
| + drawState->addCoverageEffect(hairQuadEffect, kEdgeAttrIndex)->unref();
|
| + int quads = 0;
|
| + while (quads < quadCnt) {
|
| + int n = SkTMin(quadCnt - quads, kNumQuadsInIdxBuffer);
|
| + target->drawIndexed(kTriangles_GrPrimitiveType,
|
| + kVertsPerQuad*quads, // startV
|
| + 0, // startI
|
| + kVertsPerQuad*n, // vCount
|
| + kIdxsPerQuad*n, // iCount
|
| + &devBounds);
|
| + quads += n;
|
| + }
|
| + }
|
| +
|
| + if (conicCnt > 0) {
|
| + GrDrawState::AutoRestoreEffects are(drawState);
|
| + GrEffectRef* hairConicEffect = GrConicEffect::Create(kHairlineAA_GrEffectEdgeType,
|
| + *target->caps());
|
| + SkASSERT(NULL != hairConicEffect);
|
| + drawState->addCoverageEffect(hairConicEffect, 1, 2)->unref();
|
| + int conics = 0;
|
| + while (conics < conicCnt) {
|
| + int n = SkTMin(conicCnt - conics, kNumQuadsInIdxBuffer);
|
| + target->drawIndexed(kTriangles_GrPrimitiveType,
|
| + kVertsPerQuad*(quadCnt + conics), // startV
|
| + 0, // startI
|
| + kVertsPerQuad*n, // vCount
|
| + kIdxsPerQuad*n, // iCount
|
| + &devBounds);
|
| + conics += n;
|
| + }
|
| + }
|
| + }
|
| +
|
| + target->resetIndexSource();
|
| +
|
| + return true;
|
| +}
|
|
|