Index: src/gpu/GrAAHairLinePathRenderer.cpp |
diff --git a/src/gpu/GrAAHairLinePathRenderer.cpp b/src/gpu/GrAAHairLinePathRenderer.cpp |
index 864fa6851be57ede1037612729807022f2b217fe..b2829cc973b1997d7e66c7288702e89c197976ab 100644 |
--- a/src/gpu/GrAAHairLinePathRenderer.cpp |
+++ b/src/gpu/GrAAHairLinePathRenderer.cpp |
@@ -1,1042 +1,1042 @@ |
-/* |
- * Copyright 2011 Google Inc. |
- * |
- * Use of this source code is governed by a BSD-style license that can be |
- * found in the LICENSE file. |
- */ |
- |
-#include "GrAAHairLinePathRenderer.h" |
- |
-#include "GrContext.h" |
-#include "GrDrawState.h" |
-#include "GrDrawTargetCaps.h" |
-#include "GrEffect.h" |
-#include "GrGpu.h" |
-#include "GrIndexBuffer.h" |
-#include "GrPathUtils.h" |
-#include "GrTBackendEffectFactory.h" |
-#include "SkGeometry.h" |
-#include "SkStroke.h" |
-#include "SkTemplates.h" |
- |
-#include "effects/GrBezierEffect.h" |
- |
-namespace { |
-// quadratics are rendered as 5-sided polys in order to bound the |
-// AA stroke around the center-curve. See comments in push_quad_index_buffer and |
-// bloat_quad. Quadratics and conics share an index buffer |
-static const int kVertsPerQuad = 5; |
-static const int kIdxsPerQuad = 9; |
- |
-// lines are rendered as: |
-// *______________* |
-// |\ -_______ /| |
-// | \ \ / | |
-// | *--------* | |
-// | / ______/ \ | |
-// */_-__________\* |
-// For: 6 vertices and 18 indices (for 6 triangles) |
-static const int kVertsPerLineSeg = 6; |
-static const int kIdxsPerLineSeg = 18; |
- |
-static const int kNumQuadsInIdxBuffer = 256; |
-static const size_t kQuadIdxSBufize = kIdxsPerQuad * |
- sizeof(uint16_t) * |
- kNumQuadsInIdxBuffer; |
- |
-static const int kNumLineSegsInIdxBuffer = 256; |
-static const size_t kLineSegIdxSBufize = kIdxsPerLineSeg * |
- sizeof(uint16_t) * |
- kNumLineSegsInIdxBuffer; |
- |
-static bool push_quad_index_data(GrIndexBuffer* qIdxBuffer) { |
- uint16_t* data = (uint16_t*) qIdxBuffer->lock(); |
- bool tempData = NULL == data; |
- if (tempData) { |
- data = SkNEW_ARRAY(uint16_t, kNumQuadsInIdxBuffer * kIdxsPerQuad); |
- } |
- for (int i = 0; i < kNumQuadsInIdxBuffer; ++i) { |
- |
- // Each quadratic is rendered as a five sided polygon. This poly bounds |
- // the quadratic's bounding triangle but has been expanded so that the |
- // 1-pixel wide area around the curve is inside the poly. |
- // If a,b,c are the original control points then the poly a0,b0,c0,c1,a1 |
- // that is rendered would look like this: |
- // b0 |
- // b |
- // |
- // a0 c0 |
- // a c |
- // a1 c1 |
- // Each is drawn as three triangles specified by these 9 indices: |
- int baseIdx = i * kIdxsPerQuad; |
- uint16_t baseVert = (uint16_t)(i * kVertsPerQuad); |
- data[0 + baseIdx] = baseVert + 0; // a0 |
- data[1 + baseIdx] = baseVert + 1; // a1 |
- data[2 + baseIdx] = baseVert + 2; // b0 |
- data[3 + baseIdx] = baseVert + 2; // b0 |
- data[4 + baseIdx] = baseVert + 4; // c1 |
- data[5 + baseIdx] = baseVert + 3; // c0 |
- data[6 + baseIdx] = baseVert + 1; // a1 |
- data[7 + baseIdx] = baseVert + 4; // c1 |
- data[8 + baseIdx] = baseVert + 2; // b0 |
- } |
- if (tempData) { |
- bool ret = qIdxBuffer->updateData(data, kQuadIdxSBufize); |
- delete[] data; |
- return ret; |
- } else { |
- qIdxBuffer->unlock(); |
- return true; |
- } |
-} |
- |
-static bool push_line_index_data(GrIndexBuffer* lIdxBuffer) { |
- uint16_t* data = (uint16_t*) lIdxBuffer->lock(); |
- bool tempData = NULL == data; |
- if (tempData) { |
- data = SkNEW_ARRAY(uint16_t, kNumLineSegsInIdxBuffer * kIdxsPerLineSeg); |
- } |
- for (int i = 0; i < kNumLineSegsInIdxBuffer; ++i) { |
- // Each line segment is rendered as two quads and two triangles. |
- // p0 and p1 have alpha = 1 while all other points have alpha = 0. |
- // The four external points are offset 1 pixel perpendicular to the |
- // line and half a pixel parallel to the line. |
- // |
- // p4 p5 |
- // p0 p1 |
- // p2 p3 |
- // |
- // Each is drawn as six triangles specified by these 18 indices: |
- int baseIdx = i * kIdxsPerLineSeg; |
- uint16_t baseVert = (uint16_t)(i * kVertsPerLineSeg); |
- data[0 + baseIdx] = baseVert + 0; |
- data[1 + baseIdx] = baseVert + 1; |
- data[2 + baseIdx] = baseVert + 3; |
- |
- data[3 + baseIdx] = baseVert + 0; |
- data[4 + baseIdx] = baseVert + 3; |
- data[5 + baseIdx] = baseVert + 2; |
- |
- data[6 + baseIdx] = baseVert + 0; |
- data[7 + baseIdx] = baseVert + 4; |
- data[8 + baseIdx] = baseVert + 5; |
- |
- data[9 + baseIdx] = baseVert + 0; |
- data[10+ baseIdx] = baseVert + 5; |
- data[11+ baseIdx] = baseVert + 1; |
- |
- data[12 + baseIdx] = baseVert + 0; |
- data[13 + baseIdx] = baseVert + 2; |
- data[14 + baseIdx] = baseVert + 4; |
- |
- data[15 + baseIdx] = baseVert + 1; |
- data[16 + baseIdx] = baseVert + 5; |
- data[17 + baseIdx] = baseVert + 3; |
- } |
- if (tempData) { |
- bool ret = lIdxBuffer->updateData(data, kLineSegIdxSBufize); |
- delete[] data; |
- return ret; |
- } else { |
- lIdxBuffer->unlock(); |
- return true; |
- } |
-} |
-} |
- |
-GrPathRenderer* GrAAHairLinePathRenderer::Create(GrContext* context) { |
- GrGpu* gpu = context->getGpu(); |
- GrIndexBuffer* qIdxBuf = gpu->createIndexBuffer(kQuadIdxSBufize, false); |
- SkAutoTUnref<GrIndexBuffer> qIdxBuffer(qIdxBuf); |
- if (NULL == qIdxBuf || !push_quad_index_data(qIdxBuf)) { |
- return NULL; |
- } |
- GrIndexBuffer* lIdxBuf = gpu->createIndexBuffer(kLineSegIdxSBufize, false); |
- SkAutoTUnref<GrIndexBuffer> lIdxBuffer(lIdxBuf); |
- if (NULL == lIdxBuf || !push_line_index_data(lIdxBuf)) { |
- return NULL; |
- } |
- return SkNEW_ARGS(GrAAHairLinePathRenderer, |
- (context, lIdxBuf, qIdxBuf)); |
-} |
- |
-GrAAHairLinePathRenderer::GrAAHairLinePathRenderer( |
- const GrContext* context, |
- const GrIndexBuffer* linesIndexBuffer, |
- const GrIndexBuffer* quadsIndexBuffer) { |
- fLinesIndexBuffer = linesIndexBuffer; |
- linesIndexBuffer->ref(); |
- fQuadsIndexBuffer = quadsIndexBuffer; |
- quadsIndexBuffer->ref(); |
-} |
- |
-GrAAHairLinePathRenderer::~GrAAHairLinePathRenderer() { |
- fLinesIndexBuffer->unref(); |
- fQuadsIndexBuffer->unref(); |
-} |
- |
-namespace { |
- |
-#define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true> |
- |
-// Takes 178th time of logf on Z600 / VC2010 |
-int get_float_exp(float x) { |
- GR_STATIC_ASSERT(sizeof(int) == sizeof(float)); |
-#ifdef SK_DEBUG |
- static bool tested; |
- if (!tested) { |
- tested = true; |
- SkASSERT(get_float_exp(0.25f) == -2); |
- SkASSERT(get_float_exp(0.3f) == -2); |
- SkASSERT(get_float_exp(0.5f) == -1); |
- SkASSERT(get_float_exp(1.f) == 0); |
- SkASSERT(get_float_exp(2.f) == 1); |
- SkASSERT(get_float_exp(2.5f) == 1); |
- SkASSERT(get_float_exp(8.f) == 3); |
- SkASSERT(get_float_exp(100.f) == 6); |
- SkASSERT(get_float_exp(1000.f) == 9); |
- SkASSERT(get_float_exp(1024.f) == 10); |
- SkASSERT(get_float_exp(3000000.f) == 21); |
- } |
-#endif |
- const int* iptr = (const int*)&x; |
- return (((*iptr) & 0x7f800000) >> 23) - 127; |
-} |
- |
-// Uses the max curvature function for quads to estimate |
-// where to chop the conic. If the max curvature is not |
-// found along the curve segment it will return 1 and |
-// dst[0] is the original conic. If it returns 2 the dst[0] |
-// and dst[1] are the two new conics. |
-int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) { |
- SkScalar t = SkFindQuadMaxCurvature(src); |
- if (t == 0) { |
- if (dst) { |
- dst[0].set(src, weight); |
- } |
- return 1; |
- } else { |
- if (dst) { |
- SkConic conic; |
- conic.set(src, weight); |
- conic.chopAt(t, dst); |
- } |
- return 2; |
- } |
-} |
- |
-// Calls split_conic on the entire conic and then once more on each subsection. |
-// Most cases will result in either 1 conic (chop point is not within t range) |
-// or 3 points (split once and then one subsection is split again). |
-int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) { |
- SkConic dstTemp[2]; |
- int conicCnt = split_conic(src, dstTemp, weight); |
- if (2 == conicCnt) { |
- int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW); |
- conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW); |
- } else { |
- dst[0] = dstTemp[0]; |
- } |
- return conicCnt; |
-} |
- |
-// returns 0 if quad/conic is degen or close to it |
-// in this case approx the path with lines |
-// otherwise returns 1 |
-int is_degen_quad_or_conic(const SkPoint p[3]) { |
- static const SkScalar gDegenerateToLineTol = SK_Scalar1; |
- static const SkScalar gDegenerateToLineTolSqd = |
- SkScalarMul(gDegenerateToLineTol, gDegenerateToLineTol); |
- |
- if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd || |
- p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) { |
- return 1; |
- } |
- |
- SkScalar dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]); |
- if (dsqd < gDegenerateToLineTolSqd) { |
- return 1; |
- } |
- |
- if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) { |
- return 1; |
- } |
- return 0; |
-} |
- |
-// we subdivide the quads to avoid huge overfill |
-// if it returns -1 then should be drawn as lines |
-int num_quad_subdivs(const SkPoint p[3]) { |
- static const SkScalar gDegenerateToLineTol = SK_Scalar1; |
- static const SkScalar gDegenerateToLineTolSqd = |
- SkScalarMul(gDegenerateToLineTol, gDegenerateToLineTol); |
- |
- if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd || |
- p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) { |
- return -1; |
- } |
- |
- SkScalar dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]); |
- if (dsqd < gDegenerateToLineTolSqd) { |
- return -1; |
- } |
- |
- if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) { |
- return -1; |
- } |
- |
- // tolerance of triangle height in pixels |
- // tuned on windows Quadro FX 380 / Z600 |
- // trade off of fill vs cpu time on verts |
- // maybe different when do this using gpu (geo or tess shaders) |
- static const SkScalar gSubdivTol = 175 * SK_Scalar1; |
- |
- if (dsqd <= SkScalarMul(gSubdivTol, gSubdivTol)) { |
- return 0; |
- } else { |
- static const int kMaxSub = 4; |
- // subdividing the quad reduces d by 4. so we want x = log4(d/tol) |
- // = log4(d*d/tol*tol)/2 |
- // = log2(d*d/tol*tol) |
- |
- // +1 since we're ignoring the mantissa contribution. |
- int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1; |
- log = SkTMin(SkTMax(0, log), kMaxSub); |
- return log; |
- } |
-} |
- |
-/** |
- * Generates the lines and quads to be rendered. Lines are always recorded in |
- * device space. We will do a device space bloat to account for the 1pixel |
- * thickness. |
- * Quads are recorded in device space unless m contains |
- * perspective, then in they are in src space. We do this because we will |
- * subdivide large quads to reduce over-fill. This subdivision has to be |
- * performed before applying the perspective matrix. |
- */ |
-int generate_lines_and_quads(const SkPath& path, |
- const SkMatrix& m, |
- const SkIRect& devClipBounds, |
- GrAAHairLinePathRenderer::PtArray* lines, |
- GrAAHairLinePathRenderer::PtArray* quads, |
- GrAAHairLinePathRenderer::PtArray* conics, |
- GrAAHairLinePathRenderer::IntArray* quadSubdivCnts, |
- GrAAHairLinePathRenderer::FloatArray* conicWeights) { |
- SkPath::Iter iter(path, false); |
- |
- int totalQuadCount = 0; |
- SkRect bounds; |
- SkIRect ibounds; |
- |
- bool persp = m.hasPerspective(); |
- |
- for (;;) { |
- SkPoint pathPts[4]; |
- SkPoint devPts[4]; |
- SkPath::Verb verb = iter.next(pathPts); |
- switch (verb) { |
- case SkPath::kConic_Verb: { |
- SkConic dst[4]; |
- // We chop the conics to create tighter clipping to hide error |
- // that appears near max curvature of very thin conics. Thin |
- // hyperbolas with high weight still show error. |
- int conicCnt = chop_conic(pathPts, dst, iter.conicWeight()); |
- for (int i = 0; i < conicCnt; ++i) { |
- SkPoint* chopPnts = dst[i].fPts; |
- m.mapPoints(devPts, chopPnts, 3); |
- bounds.setBounds(devPts, 3); |
- bounds.outset(SK_Scalar1, SK_Scalar1); |
- bounds.roundOut(&ibounds); |
- if (SkIRect::Intersects(devClipBounds, ibounds)) { |
- if (is_degen_quad_or_conic(devPts)) { |
- SkPoint* pts = lines->push_back_n(4); |
- pts[0] = devPts[0]; |
- pts[1] = devPts[1]; |
- pts[2] = devPts[1]; |
- pts[3] = devPts[2]; |
- } else { |
- // when in perspective keep conics in src space |
- SkPoint* cPts = persp ? chopPnts : devPts; |
- SkPoint* pts = conics->push_back_n(3); |
- pts[0] = cPts[0]; |
- pts[1] = cPts[1]; |
- pts[2] = cPts[2]; |
- conicWeights->push_back() = dst[i].fW; |
- } |
- } |
- } |
- break; |
- } |
- case SkPath::kMove_Verb: |
- break; |
- case SkPath::kLine_Verb: |
- m.mapPoints(devPts, pathPts, 2); |
- bounds.setBounds(devPts, 2); |
- bounds.outset(SK_Scalar1, SK_Scalar1); |
- bounds.roundOut(&ibounds); |
- if (SkIRect::Intersects(devClipBounds, ibounds)) { |
- SkPoint* pts = lines->push_back_n(2); |
- pts[0] = devPts[0]; |
- pts[1] = devPts[1]; |
- } |
- break; |
- case SkPath::kQuad_Verb: { |
- SkPoint choppedPts[5]; |
- // Chopping the quad helps when the quad is either degenerate or nearly degenerate. |
- // When it is degenerate it allows the approximation with lines to work since the |
- // chop point (if there is one) will be at the parabola's vertex. In the nearly |
- // degenerate the QuadUVMatrix computed for the points is almost singular which |
- // can cause rendering artifacts. |
- int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts); |
- for (int i = 0; i < n; ++i) { |
- SkPoint* quadPts = choppedPts + i * 2; |
- m.mapPoints(devPts, quadPts, 3); |
- bounds.setBounds(devPts, 3); |
- bounds.outset(SK_Scalar1, SK_Scalar1); |
- bounds.roundOut(&ibounds); |
- |
- if (SkIRect::Intersects(devClipBounds, ibounds)) { |
- int subdiv = num_quad_subdivs(devPts); |
- SkASSERT(subdiv >= -1); |
- if (-1 == subdiv) { |
- SkPoint* pts = lines->push_back_n(4); |
- pts[0] = devPts[0]; |
- pts[1] = devPts[1]; |
- pts[2] = devPts[1]; |
- pts[3] = devPts[2]; |
- } else { |
- // when in perspective keep quads in src space |
- SkPoint* qPts = persp ? quadPts : devPts; |
- SkPoint* pts = quads->push_back_n(3); |
- pts[0] = qPts[0]; |
- pts[1] = qPts[1]; |
- pts[2] = qPts[2]; |
- quadSubdivCnts->push_back() = subdiv; |
- totalQuadCount += 1 << subdiv; |
- } |
- } |
- } |
- break; |
- } |
- case SkPath::kCubic_Verb: |
- m.mapPoints(devPts, pathPts, 4); |
- bounds.setBounds(devPts, 4); |
- bounds.outset(SK_Scalar1, SK_Scalar1); |
- bounds.roundOut(&ibounds); |
- if (SkIRect::Intersects(devClipBounds, ibounds)) { |
- PREALLOC_PTARRAY(32) q; |
- // we don't need a direction if we aren't constraining the subdivision |
- static const SkPath::Direction kDummyDir = SkPath::kCCW_Direction; |
- // We convert cubics to quadratics (for now). |
- // In perspective have to do conversion in src space. |
- if (persp) { |
- SkScalar tolScale = |
- GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m, |
- path.getBounds()); |
- GrPathUtils::convertCubicToQuads(pathPts, tolScale, false, kDummyDir, &q); |
- } else { |
- GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, false, kDummyDir, &q); |
- } |
- for (int i = 0; i < q.count(); i += 3) { |
- SkPoint* qInDevSpace; |
- // bounds has to be calculated in device space, but q is |
- // in src space when there is perspective. |
- if (persp) { |
- m.mapPoints(devPts, &q[i], 3); |
- bounds.setBounds(devPts, 3); |
- qInDevSpace = devPts; |
- } else { |
- bounds.setBounds(&q[i], 3); |
- qInDevSpace = &q[i]; |
- } |
- bounds.outset(SK_Scalar1, SK_Scalar1); |
- bounds.roundOut(&ibounds); |
- if (SkIRect::Intersects(devClipBounds, ibounds)) { |
- int subdiv = num_quad_subdivs(qInDevSpace); |
- SkASSERT(subdiv >= -1); |
- if (-1 == subdiv) { |
- SkPoint* pts = lines->push_back_n(4); |
- // lines should always be in device coords |
- pts[0] = qInDevSpace[0]; |
- pts[1] = qInDevSpace[1]; |
- pts[2] = qInDevSpace[1]; |
- pts[3] = qInDevSpace[2]; |
- } else { |
- SkPoint* pts = quads->push_back_n(3); |
- // q is already in src space when there is no |
- // perspective and dev coords otherwise. |
- pts[0] = q[0 + i]; |
- pts[1] = q[1 + i]; |
- pts[2] = q[2 + i]; |
- quadSubdivCnts->push_back() = subdiv; |
- totalQuadCount += 1 << subdiv; |
- } |
- } |
- } |
- } |
- break; |
- case SkPath::kClose_Verb: |
- break; |
- case SkPath::kDone_Verb: |
- return totalQuadCount; |
- } |
- } |
-} |
- |
-struct LineVertex { |
- SkPoint fPos; |
- GrColor fCoverage; |
-}; |
- |
-struct BezierVertex { |
- SkPoint fPos; |
- union { |
- struct { |
- SkScalar fK; |
- SkScalar fL; |
- SkScalar fM; |
- } fConic; |
- SkVector fQuadCoord; |
- struct { |
- SkScalar fBogus[4]; |
- }; |
- }; |
-}; |
- |
-GR_STATIC_ASSERT(sizeof(BezierVertex) == 3 * sizeof(SkPoint)); |
- |
-void intersect_lines(const SkPoint& ptA, const SkVector& normA, |
- const SkPoint& ptB, const SkVector& normB, |
- SkPoint* result) { |
- |
- SkScalar lineAW = -normA.dot(ptA); |
- SkScalar lineBW = -normB.dot(ptB); |
- |
- SkScalar wInv = SkScalarMul(normA.fX, normB.fY) - |
- SkScalarMul(normA.fY, normB.fX); |
- wInv = SkScalarInvert(wInv); |
- |
- result->fX = SkScalarMul(normA.fY, lineBW) - SkScalarMul(lineAW, normB.fY); |
- result->fX = SkScalarMul(result->fX, wInv); |
- |
- result->fY = SkScalarMul(lineAW, normB.fX) - SkScalarMul(normA.fX, lineBW); |
- result->fY = SkScalarMul(result->fY, wInv); |
-} |
- |
-void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kVertsPerQuad]) { |
- // this should be in the src space, not dev coords, when we have perspective |
- GrPathUtils::QuadUVMatrix DevToUV(qpts); |
- DevToUV.apply<kVertsPerQuad, sizeof(BezierVertex), sizeof(SkPoint)>(verts); |
-} |
- |
-void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice, |
- const SkMatrix* toSrc, BezierVertex verts[kVertsPerQuad], |
- SkRect* devBounds) { |
- SkASSERT(!toDevice == !toSrc); |
- // original quad is specified by tri a,b,c |
- SkPoint a = qpts[0]; |
- SkPoint b = qpts[1]; |
- SkPoint c = qpts[2]; |
- |
- if (toDevice) { |
- toDevice->mapPoints(&a, 1); |
- toDevice->mapPoints(&b, 1); |
- toDevice->mapPoints(&c, 1); |
- } |
- // make a new poly where we replace a and c by a 1-pixel wide edges orthog |
- // to edges ab and bc: |
- // |
- // before | after |
- // | b0 |
- // b | |
- // | |
- // | a0 c0 |
- // a c | a1 c1 |
- // |
- // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c, |
- // respectively. |
- BezierVertex& a0 = verts[0]; |
- BezierVertex& a1 = verts[1]; |
- BezierVertex& b0 = verts[2]; |
- BezierVertex& c0 = verts[3]; |
- BezierVertex& c1 = verts[4]; |
- |
- SkVector ab = b; |
- ab -= a; |
- SkVector ac = c; |
- ac -= a; |
- SkVector cb = b; |
- cb -= c; |
- |
- // We should have already handled degenerates |
- SkASSERT(ab.length() > 0 && cb.length() > 0); |
- |
- ab.normalize(); |
- SkVector abN; |
- abN.setOrthog(ab, SkVector::kLeft_Side); |
- if (abN.dot(ac) > 0) { |
- abN.negate(); |
- } |
- |
- cb.normalize(); |
- SkVector cbN; |
- cbN.setOrthog(cb, SkVector::kLeft_Side); |
- if (cbN.dot(ac) < 0) { |
- cbN.negate(); |
- } |
- |
- a0.fPos = a; |
- a0.fPos += abN; |
- a1.fPos = a; |
- a1.fPos -= abN; |
- |
- c0.fPos = c; |
- c0.fPos += cbN; |
- c1.fPos = c; |
- c1.fPos -= cbN; |
- |
- intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos); |
- devBounds->growToInclude(&verts[0].fPos, sizeof(BezierVertex), kVertsPerQuad); |
- |
- if (toSrc) { |
- toSrc->mapPointsWithStride(&verts[0].fPos, sizeof(BezierVertex), kVertsPerQuad); |
- } |
-} |
- |
-// Equations based off of Loop-Blinn Quadratic GPU Rendering |
-// Input Parametric: |
-// P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2) |
-// Output Implicit: |
-// f(x, y, w) = f(P) = K^2 - LM |
-// K = dot(k, P), L = dot(l, P), M = dot(m, P) |
-// k, l, m are calculated in function GrPathUtils::getConicKLM |
-void set_conic_coeffs(const SkPoint p[3], BezierVertex verts[kVertsPerQuad], |
- const SkScalar weight) { |
- SkScalar klm[9]; |
- |
- GrPathUtils::getConicKLM(p, weight, klm); |
- |
- for (int i = 0; i < kVertsPerQuad; ++i) { |
- const SkPoint pnt = verts[i].fPos; |
- verts[i].fConic.fK = pnt.fX * klm[0] + pnt.fY * klm[1] + klm[2]; |
- verts[i].fConic.fL = pnt.fX * klm[3] + pnt.fY * klm[4] + klm[5]; |
- verts[i].fConic.fM = pnt.fX * klm[6] + pnt.fY * klm[7] + klm[8]; |
- } |
-} |
- |
-void add_conics(const SkPoint p[3], |
- const SkScalar weight, |
- const SkMatrix* toDevice, |
- const SkMatrix* toSrc, |
- BezierVertex** vert, |
- SkRect* devBounds) { |
- bloat_quad(p, toDevice, toSrc, *vert, devBounds); |
- set_conic_coeffs(p, *vert, weight); |
- *vert += kVertsPerQuad; |
-} |
- |
-void add_quads(const SkPoint p[3], |
- int subdiv, |
- const SkMatrix* toDevice, |
- const SkMatrix* toSrc, |
- BezierVertex** vert, |
- SkRect* devBounds) { |
- SkASSERT(subdiv >= 0); |
- if (subdiv) { |
- SkPoint newP[5]; |
- SkChopQuadAtHalf(p, newP); |
- add_quads(newP + 0, subdiv-1, toDevice, toSrc, vert, devBounds); |
- add_quads(newP + 2, subdiv-1, toDevice, toSrc, vert, devBounds); |
- } else { |
- bloat_quad(p, toDevice, toSrc, *vert, devBounds); |
- set_uv_quad(p, *vert); |
- *vert += kVertsPerQuad; |
- } |
-} |
- |
-void add_line(const SkPoint p[2], |
- const SkMatrix* toSrc, |
- GrColor coverage, |
- LineVertex** vert) { |
- const SkPoint& a = p[0]; |
- const SkPoint& b = p[1]; |
- |
- SkVector ortho, vec = b; |
- vec -= a; |
- |
- if (vec.setLength(SK_ScalarHalf)) { |
- // Create a vector orthogonal to 'vec' and of unit length |
- ortho.fX = 2.0f * vec.fY; |
- ortho.fY = -2.0f * vec.fX; |
- |
- (*vert)[0].fPos = a; |
- (*vert)[0].fCoverage = coverage; |
- (*vert)[1].fPos = b; |
- (*vert)[1].fCoverage = coverage; |
- (*vert)[2].fPos = a - vec + ortho; |
- (*vert)[2].fCoverage = 0; |
- (*vert)[3].fPos = b + vec + ortho; |
- (*vert)[3].fCoverage = 0; |
- (*vert)[4].fPos = a - vec - ortho; |
- (*vert)[4].fCoverage = 0; |
- (*vert)[5].fPos = b + vec - ortho; |
- (*vert)[5].fCoverage = 0; |
- |
- if (NULL != toSrc) { |
- toSrc->mapPointsWithStride(&(*vert)->fPos, |
- sizeof(LineVertex), |
- kVertsPerLineSeg); |
- } |
- } else { |
- // just make it degenerate and likely offscreen |
- for (int i = 0; i < kVertsPerLineSeg; ++i) { |
- (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax); |
- } |
- } |
- |
- *vert += kVertsPerLineSeg; |
-} |
- |
-} |
- |
-/////////////////////////////////////////////////////////////////////////////// |
- |
-namespace { |
- |
-// position + edge |
-extern const GrVertexAttrib gHairlineBezierAttribs[] = { |
- {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, |
- {kVec4f_GrVertexAttribType, sizeof(SkPoint), kEffect_GrVertexAttribBinding} |
-}; |
- |
-// position + coverage |
-extern const GrVertexAttrib gHairlineLineAttribs[] = { |
- {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, |
- {kVec4ub_GrVertexAttribType, sizeof(SkPoint), kCoverage_GrVertexAttribBinding}, |
-}; |
- |
-}; |
- |
-bool GrAAHairLinePathRenderer::createLineGeom(const SkPath& path, |
- GrDrawTarget* target, |
- const PtArray& lines, |
- int lineCnt, |
- GrDrawTarget::AutoReleaseGeometry* arg, |
- SkRect* devBounds) { |
- GrDrawState* drawState = target->drawState(); |
- |
- const SkMatrix& viewM = drawState->getViewMatrix(); |
- |
- int vertCnt = kVertsPerLineSeg * lineCnt; |
- |
- drawState->setVertexAttribs<gHairlineLineAttribs>(SK_ARRAY_COUNT(gHairlineLineAttribs)); |
- SkASSERT(sizeof(LineVertex) == drawState->getVertexSize()); |
- |
- if (!arg->set(target, vertCnt, 0)) { |
- return false; |
- } |
- |
- LineVertex* verts = reinterpret_cast<LineVertex*>(arg->vertices()); |
- |
- const SkMatrix* toSrc = NULL; |
- SkMatrix ivm; |
- |
- if (viewM.hasPerspective()) { |
- if (viewM.invert(&ivm)) { |
- toSrc = &ivm; |
- } |
- } |
- devBounds->set(lines.begin(), lines.count()); |
- for (int i = 0; i < lineCnt; ++i) { |
- add_line(&lines[2*i], toSrc, drawState->getCoverageColor(), &verts); |
- } |
- // All the verts computed by add_line are within sqrt(1^2 + 0.5^2) of the end points. |
- static const SkScalar kSqrtOfOneAndAQuarter = 1.118f; |
- // Add a little extra to account for vector normalization precision. |
- static const SkScalar kOutset = kSqrtOfOneAndAQuarter + SK_Scalar1 / 20; |
- devBounds->outset(kOutset, kOutset); |
- |
- return true; |
-} |
- |
-bool GrAAHairLinePathRenderer::createBezierGeom( |
- const SkPath& path, |
- GrDrawTarget* target, |
- const PtArray& quads, |
- int quadCnt, |
- const PtArray& conics, |
- int conicCnt, |
- const IntArray& qSubdivs, |
- const FloatArray& cWeights, |
- GrDrawTarget::AutoReleaseGeometry* arg, |
- SkRect* devBounds) { |
- GrDrawState* drawState = target->drawState(); |
- |
- const SkMatrix& viewM = drawState->getViewMatrix(); |
- |
- int vertCnt = kVertsPerQuad * quadCnt + kVertsPerQuad * conicCnt; |
- |
- target->drawState()->setVertexAttribs<gHairlineBezierAttribs>(SK_ARRAY_COUNT(gHairlineBezierAttribs)); |
- SkASSERT(sizeof(BezierVertex) == target->getDrawState().getVertexSize()); |
- |
- if (!arg->set(target, vertCnt, 0)) { |
- return false; |
- } |
- |
- BezierVertex* verts = reinterpret_cast<BezierVertex*>(arg->vertices()); |
- |
- const SkMatrix* toDevice = NULL; |
- const SkMatrix* toSrc = NULL; |
- SkMatrix ivm; |
- |
- if (viewM.hasPerspective()) { |
- if (viewM.invert(&ivm)) { |
- toDevice = &viewM; |
- toSrc = &ivm; |
- } |
- } |
- |
- // Seed the dev bounds with some pts known to be inside. Each quad and conic grows the bounding |
- // box to include its vertices. |
- SkPoint seedPts[2]; |
- if (quadCnt) { |
- seedPts[0] = quads[0]; |
- seedPts[1] = quads[2]; |
- } else if (conicCnt) { |
- seedPts[0] = conics[0]; |
- seedPts[1] = conics[2]; |
- } |
- if (NULL != toDevice) { |
- toDevice->mapPoints(seedPts, 2); |
- } |
- devBounds->set(seedPts[0], seedPts[1]); |
- |
- int unsubdivQuadCnt = quads.count() / 3; |
- for (int i = 0; i < unsubdivQuadCnt; ++i) { |
- SkASSERT(qSubdivs[i] >= 0); |
- add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &verts, devBounds); |
- } |
- |
- // Start Conics |
- for (int i = 0; i < conicCnt; ++i) { |
- add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &verts, devBounds); |
- } |
- return true; |
-} |
- |
-bool GrAAHairLinePathRenderer::canDrawPath(const SkPath& path, |
- const SkStrokeRec& stroke, |
- const GrDrawTarget* target, |
- bool antiAlias) const { |
- if (!antiAlias) { |
- return false; |
- } |
- |
- if (!IsStrokeHairlineOrEquivalent(stroke, |
- target->getDrawState().getViewMatrix(), |
- NULL)) { |
- return false; |
- } |
- |
- if (SkPath::kLine_SegmentMask == path.getSegmentMasks() || |
- target->caps()->shaderDerivativeSupport()) { |
- return true; |
- } |
- return false; |
-} |
- |
-template <class VertexType> |
-bool check_bounds(GrDrawState* drawState, const SkRect& devBounds, void* vertices, int vCount) |
-{ |
- SkRect tolDevBounds = devBounds; |
- // The bounds ought to be tight, but in perspective the below code runs the verts |
- // through the view matrix to get back to dev coords, which can introduce imprecision. |
- if (drawState->getViewMatrix().hasPerspective()) { |
- tolDevBounds.outset(SK_Scalar1 / 1000, SK_Scalar1 / 1000); |
- } else { |
- // Non-persp matrices cause this path renderer to draw in device space. |
- SkASSERT(drawState->getViewMatrix().isIdentity()); |
- } |
- SkRect actualBounds; |
- |
- VertexType* verts = reinterpret_cast<VertexType*>(vertices); |
- bool first = true; |
- for (int i = 0; i < vCount; ++i) { |
- SkPoint pos = verts[i].fPos; |
- // This is a hack to workaround the fact that we move some degenerate segments offscreen. |
- if (SK_ScalarMax == pos.fX) { |
- continue; |
- } |
- drawState->getViewMatrix().mapPoints(&pos, 1); |
- if (first) { |
- actualBounds.set(pos.fX, pos.fY, pos.fX, pos.fY); |
- first = false; |
- } else { |
- actualBounds.growToInclude(pos.fX, pos.fY); |
- } |
- } |
- if (!first) { |
- return tolDevBounds.contains(actualBounds); |
- } |
- |
- return true; |
-} |
- |
-bool GrAAHairLinePathRenderer::onDrawPath(const SkPath& path, |
- const SkStrokeRec& stroke, |
- GrDrawTarget* target, |
- bool antiAlias) { |
- GrDrawState* drawState = target->drawState(); |
- |
- SkScalar hairlineCoverage; |
- if (IsStrokeHairlineOrEquivalent(stroke, |
- target->getDrawState().getViewMatrix(), |
- &hairlineCoverage)) { |
- uint8_t newCoverage = SkScalarRoundToInt(hairlineCoverage * |
- target->getDrawState().getCoverage()); |
- target->drawState()->setCoverage(newCoverage); |
- } |
- |
- SkIRect devClipBounds; |
- target->getClip()->getConservativeBounds(drawState->getRenderTarget(), &devClipBounds); |
- |
- int lineCnt; |
- int quadCnt; |
- int conicCnt; |
- PREALLOC_PTARRAY(128) lines; |
- PREALLOC_PTARRAY(128) quads; |
- PREALLOC_PTARRAY(128) conics; |
- IntArray qSubdivs; |
- FloatArray cWeights; |
- quadCnt = generate_lines_and_quads(path, drawState->getViewMatrix(), devClipBounds, |
- &lines, &quads, &conics, &qSubdivs, &cWeights); |
- lineCnt = lines.count() / 2; |
- conicCnt = conics.count() / 3; |
- |
- // do lines first |
- if (lineCnt) { |
- GrDrawTarget::AutoReleaseGeometry arg; |
- SkRect devBounds; |
- |
- if (!this->createLineGeom(path, |
- target, |
- lines, |
- lineCnt, |
- &arg, |
- &devBounds)) { |
- return false; |
- } |
- |
- GrDrawTarget::AutoStateRestore asr; |
- |
- // createLineGeom transforms the geometry to device space when the matrix does not have |
- // perspective. |
- if (target->getDrawState().getViewMatrix().hasPerspective()) { |
- asr.set(target, GrDrawTarget::kPreserve_ASRInit); |
- } else if (!asr.setIdentity(target, GrDrawTarget::kPreserve_ASRInit)) { |
- return false; |
- } |
- GrDrawState* drawState = target->drawState(); |
- |
- // Check devBounds |
- SkASSERT(check_bounds<LineVertex>(drawState, devBounds, arg.vertices(), |
- kVertsPerLineSeg * lineCnt)); |
- |
- { |
- GrDrawState::AutoRestoreEffects are(drawState); |
- target->setIndexSourceToBuffer(fLinesIndexBuffer); |
- int lines = 0; |
- while (lines < lineCnt) { |
- int n = SkTMin(lineCnt - lines, kNumLineSegsInIdxBuffer); |
- target->drawIndexed(kTriangles_GrPrimitiveType, |
- kVertsPerLineSeg*lines, // startV |
- 0, // startI |
- kVertsPerLineSeg*n, // vCount |
- kIdxsPerLineSeg*n, // iCount |
- &devBounds); |
- lines += n; |
- } |
- } |
- } |
- |
- // then quadratics/conics |
- if (quadCnt || conicCnt) { |
- GrDrawTarget::AutoReleaseGeometry arg; |
- SkRect devBounds; |
- |
- if (!this->createBezierGeom(path, |
- target, |
- quads, |
- quadCnt, |
- conics, |
- conicCnt, |
- qSubdivs, |
- cWeights, |
- &arg, |
- &devBounds)) { |
- return false; |
- } |
- |
- GrDrawTarget::AutoStateRestore asr; |
- |
- // createGeom transforms the geometry to device space when the matrix does not have |
- // perspective. |
- if (target->getDrawState().getViewMatrix().hasPerspective()) { |
- asr.set(target, GrDrawTarget::kPreserve_ASRInit); |
- } else if (!asr.setIdentity(target, GrDrawTarget::kPreserve_ASRInit)) { |
- return false; |
- } |
- GrDrawState* drawState = target->drawState(); |
- |
- static const int kEdgeAttrIndex = 1; |
- |
- // Check devBounds |
- SkASSERT(check_bounds<BezierVertex>(drawState, devBounds, arg.vertices(), |
- kVertsPerQuad * quadCnt + kVertsPerQuad * conicCnt)); |
- |
- if (quadCnt > 0) { |
- GrEffectRef* hairQuadEffect = GrQuadEffect::Create(kHairlineAA_GrEffectEdgeType, |
- *target->caps()); |
- SkASSERT(NULL != hairQuadEffect); |
- GrDrawState::AutoRestoreEffects are(drawState); |
- target->setIndexSourceToBuffer(fQuadsIndexBuffer); |
- drawState->addCoverageEffect(hairQuadEffect, kEdgeAttrIndex)->unref(); |
- int quads = 0; |
- while (quads < quadCnt) { |
- int n = SkTMin(quadCnt - quads, kNumQuadsInIdxBuffer); |
- target->drawIndexed(kTriangles_GrPrimitiveType, |
- kVertsPerQuad*quads, // startV |
- 0, // startI |
- kVertsPerQuad*n, // vCount |
- kIdxsPerQuad*n, // iCount |
- &devBounds); |
- quads += n; |
- } |
- } |
- |
- if (conicCnt > 0) { |
- GrDrawState::AutoRestoreEffects are(drawState); |
- GrEffectRef* hairConicEffect = GrConicEffect::Create(kHairlineAA_GrEffectEdgeType, |
- *target->caps()); |
- SkASSERT(NULL != hairConicEffect); |
- drawState->addCoverageEffect(hairConicEffect, 1, 2)->unref(); |
- int conics = 0; |
- while (conics < conicCnt) { |
- int n = SkTMin(conicCnt - conics, kNumQuadsInIdxBuffer); |
- target->drawIndexed(kTriangles_GrPrimitiveType, |
- kVertsPerQuad*(quadCnt + conics), // startV |
- 0, // startI |
- kVertsPerQuad*n, // vCount |
- kIdxsPerQuad*n, // iCount |
- &devBounds); |
- conics += n; |
- } |
- } |
- } |
- |
- target->resetIndexSource(); |
- |
- return true; |
-} |
+/* |
+ * Copyright 2011 Google Inc. |
+ * |
+ * Use of this source code is governed by a BSD-style license that can be |
+ * found in the LICENSE file. |
+ */ |
+ |
+#include "GrAAHairLinePathRenderer.h" |
+ |
+#include "GrContext.h" |
+#include "GrDrawState.h" |
+#include "GrDrawTargetCaps.h" |
+#include "GrEffect.h" |
+#include "GrGpu.h" |
+#include "GrIndexBuffer.h" |
+#include "GrPathUtils.h" |
+#include "GrTBackendEffectFactory.h" |
+#include "SkGeometry.h" |
+#include "SkStroke.h" |
+#include "SkTemplates.h" |
+ |
+#include "effects/GrBezierEffect.h" |
+ |
+namespace { |
+// quadratics are rendered as 5-sided polys in order to bound the |
+// AA stroke around the center-curve. See comments in push_quad_index_buffer and |
+// bloat_quad. Quadratics and conics share an index buffer |
+static const int kVertsPerQuad = 5; |
+static const int kIdxsPerQuad = 9; |
+ |
+// lines are rendered as: |
+// *______________* |
+// |\ -_______ /| |
+// | \ \ / | |
+// | *--------* | |
+// | / ______/ \ | |
+// */_-__________\* |
+// For: 6 vertices and 18 indices (for 6 triangles) |
+static const int kVertsPerLineSeg = 6; |
+static const int kIdxsPerLineSeg = 18; |
+ |
+static const int kNumQuadsInIdxBuffer = 256; |
+static const size_t kQuadIdxSBufize = kIdxsPerQuad * |
+ sizeof(uint16_t) * |
+ kNumQuadsInIdxBuffer; |
+ |
+static const int kNumLineSegsInIdxBuffer = 256; |
+static const size_t kLineSegIdxSBufize = kIdxsPerLineSeg * |
+ sizeof(uint16_t) * |
+ kNumLineSegsInIdxBuffer; |
+ |
+static bool push_quad_index_data(GrIndexBuffer* qIdxBuffer) { |
+ uint16_t* data = (uint16_t*) qIdxBuffer->map(); |
+ bool tempData = NULL == data; |
+ if (tempData) { |
+ data = SkNEW_ARRAY(uint16_t, kNumQuadsInIdxBuffer * kIdxsPerQuad); |
+ } |
+ for (int i = 0; i < kNumQuadsInIdxBuffer; ++i) { |
+ |
+ // Each quadratic is rendered as a five sided polygon. This poly bounds |
+ // the quadratic's bounding triangle but has been expanded so that the |
+ // 1-pixel wide area around the curve is inside the poly. |
+ // If a,b,c are the original control points then the poly a0,b0,c0,c1,a1 |
+ // that is rendered would look like this: |
+ // b0 |
+ // b |
+ // |
+ // a0 c0 |
+ // a c |
+ // a1 c1 |
+ // Each is drawn as three triangles specified by these 9 indices: |
+ int baseIdx = i * kIdxsPerQuad; |
+ uint16_t baseVert = (uint16_t)(i * kVertsPerQuad); |
+ data[0 + baseIdx] = baseVert + 0; // a0 |
+ data[1 + baseIdx] = baseVert + 1; // a1 |
+ data[2 + baseIdx] = baseVert + 2; // b0 |
+ data[3 + baseIdx] = baseVert + 2; // b0 |
+ data[4 + baseIdx] = baseVert + 4; // c1 |
+ data[5 + baseIdx] = baseVert + 3; // c0 |
+ data[6 + baseIdx] = baseVert + 1; // a1 |
+ data[7 + baseIdx] = baseVert + 4; // c1 |
+ data[8 + baseIdx] = baseVert + 2; // b0 |
+ } |
+ if (tempData) { |
+ bool ret = qIdxBuffer->updateData(data, kQuadIdxSBufize); |
+ delete[] data; |
+ return ret; |
+ } else { |
+ qIdxBuffer->unmap(); |
+ return true; |
+ } |
+} |
+ |
+static bool push_line_index_data(GrIndexBuffer* lIdxBuffer) { |
+ uint16_t* data = (uint16_t*) lIdxBuffer->map(); |
+ bool tempData = NULL == data; |
+ if (tempData) { |
+ data = SkNEW_ARRAY(uint16_t, kNumLineSegsInIdxBuffer * kIdxsPerLineSeg); |
+ } |
+ for (int i = 0; i < kNumLineSegsInIdxBuffer; ++i) { |
+ // Each line segment is rendered as two quads and two triangles. |
+ // p0 and p1 have alpha = 1 while all other points have alpha = 0. |
+ // The four external points are offset 1 pixel perpendicular to the |
+ // line and half a pixel parallel to the line. |
+ // |
+ // p4 p5 |
+ // p0 p1 |
+ // p2 p3 |
+ // |
+ // Each is drawn as six triangles specified by these 18 indices: |
+ int baseIdx = i * kIdxsPerLineSeg; |
+ uint16_t baseVert = (uint16_t)(i * kVertsPerLineSeg); |
+ data[0 + baseIdx] = baseVert + 0; |
+ data[1 + baseIdx] = baseVert + 1; |
+ data[2 + baseIdx] = baseVert + 3; |
+ |
+ data[3 + baseIdx] = baseVert + 0; |
+ data[4 + baseIdx] = baseVert + 3; |
+ data[5 + baseIdx] = baseVert + 2; |
+ |
+ data[6 + baseIdx] = baseVert + 0; |
+ data[7 + baseIdx] = baseVert + 4; |
+ data[8 + baseIdx] = baseVert + 5; |
+ |
+ data[9 + baseIdx] = baseVert + 0; |
+ data[10+ baseIdx] = baseVert + 5; |
+ data[11+ baseIdx] = baseVert + 1; |
+ |
+ data[12 + baseIdx] = baseVert + 0; |
+ data[13 + baseIdx] = baseVert + 2; |
+ data[14 + baseIdx] = baseVert + 4; |
+ |
+ data[15 + baseIdx] = baseVert + 1; |
+ data[16 + baseIdx] = baseVert + 5; |
+ data[17 + baseIdx] = baseVert + 3; |
+ } |
+ if (tempData) { |
+ bool ret = lIdxBuffer->updateData(data, kLineSegIdxSBufize); |
+ delete[] data; |
+ return ret; |
+ } else { |
+ lIdxBuffer->unmap(); |
+ return true; |
+ } |
+} |
+} |
+ |
+GrPathRenderer* GrAAHairLinePathRenderer::Create(GrContext* context) { |
+ GrGpu* gpu = context->getGpu(); |
+ GrIndexBuffer* qIdxBuf = gpu->createIndexBuffer(kQuadIdxSBufize, false); |
+ SkAutoTUnref<GrIndexBuffer> qIdxBuffer(qIdxBuf); |
+ if (NULL == qIdxBuf || !push_quad_index_data(qIdxBuf)) { |
+ return NULL; |
+ } |
+ GrIndexBuffer* lIdxBuf = gpu->createIndexBuffer(kLineSegIdxSBufize, false); |
+ SkAutoTUnref<GrIndexBuffer> lIdxBuffer(lIdxBuf); |
+ if (NULL == lIdxBuf || !push_line_index_data(lIdxBuf)) { |
+ return NULL; |
+ } |
+ return SkNEW_ARGS(GrAAHairLinePathRenderer, |
+ (context, lIdxBuf, qIdxBuf)); |
+} |
+ |
+GrAAHairLinePathRenderer::GrAAHairLinePathRenderer( |
+ const GrContext* context, |
+ const GrIndexBuffer* linesIndexBuffer, |
+ const GrIndexBuffer* quadsIndexBuffer) { |
+ fLinesIndexBuffer = linesIndexBuffer; |
+ linesIndexBuffer->ref(); |
+ fQuadsIndexBuffer = quadsIndexBuffer; |
+ quadsIndexBuffer->ref(); |
+} |
+ |
+GrAAHairLinePathRenderer::~GrAAHairLinePathRenderer() { |
+ fLinesIndexBuffer->unref(); |
+ fQuadsIndexBuffer->unref(); |
+} |
+ |
+namespace { |
+ |
+#define PREALLOC_PTARRAY(N) SkSTArray<(N),SkPoint, true> |
+ |
+// Takes 178th time of logf on Z600 / VC2010 |
+int get_float_exp(float x) { |
+ GR_STATIC_ASSERT(sizeof(int) == sizeof(float)); |
+#ifdef SK_DEBUG |
+ static bool tested; |
+ if (!tested) { |
+ tested = true; |
+ SkASSERT(get_float_exp(0.25f) == -2); |
+ SkASSERT(get_float_exp(0.3f) == -2); |
+ SkASSERT(get_float_exp(0.5f) == -1); |
+ SkASSERT(get_float_exp(1.f) == 0); |
+ SkASSERT(get_float_exp(2.f) == 1); |
+ SkASSERT(get_float_exp(2.5f) == 1); |
+ SkASSERT(get_float_exp(8.f) == 3); |
+ SkASSERT(get_float_exp(100.f) == 6); |
+ SkASSERT(get_float_exp(1000.f) == 9); |
+ SkASSERT(get_float_exp(1024.f) == 10); |
+ SkASSERT(get_float_exp(3000000.f) == 21); |
+ } |
+#endif |
+ const int* iptr = (const int*)&x; |
+ return (((*iptr) & 0x7f800000) >> 23) - 127; |
+} |
+ |
+// Uses the max curvature function for quads to estimate |
+// where to chop the conic. If the max curvature is not |
+// found along the curve segment it will return 1 and |
+// dst[0] is the original conic. If it returns 2 the dst[0] |
+// and dst[1] are the two new conics. |
+int split_conic(const SkPoint src[3], SkConic dst[2], const SkScalar weight) { |
+ SkScalar t = SkFindQuadMaxCurvature(src); |
+ if (t == 0) { |
+ if (dst) { |
+ dst[0].set(src, weight); |
+ } |
+ return 1; |
+ } else { |
+ if (dst) { |
+ SkConic conic; |
+ conic.set(src, weight); |
+ conic.chopAt(t, dst); |
+ } |
+ return 2; |
+ } |
+} |
+ |
+// Calls split_conic on the entire conic and then once more on each subsection. |
+// Most cases will result in either 1 conic (chop point is not within t range) |
+// or 3 points (split once and then one subsection is split again). |
+int chop_conic(const SkPoint src[3], SkConic dst[4], const SkScalar weight) { |
+ SkConic dstTemp[2]; |
+ int conicCnt = split_conic(src, dstTemp, weight); |
+ if (2 == conicCnt) { |
+ int conicCnt2 = split_conic(dstTemp[0].fPts, dst, dstTemp[0].fW); |
+ conicCnt = conicCnt2 + split_conic(dstTemp[1].fPts, &dst[conicCnt2], dstTemp[1].fW); |
+ } else { |
+ dst[0] = dstTemp[0]; |
+ } |
+ return conicCnt; |
+} |
+ |
+// returns 0 if quad/conic is degen or close to it |
+// in this case approx the path with lines |
+// otherwise returns 1 |
+int is_degen_quad_or_conic(const SkPoint p[3]) { |
+ static const SkScalar gDegenerateToLineTol = SK_Scalar1; |
+ static const SkScalar gDegenerateToLineTolSqd = |
+ SkScalarMul(gDegenerateToLineTol, gDegenerateToLineTol); |
+ |
+ if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd || |
+ p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) { |
+ return 1; |
+ } |
+ |
+ SkScalar dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]); |
+ if (dsqd < gDegenerateToLineTolSqd) { |
+ return 1; |
+ } |
+ |
+ if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) { |
+ return 1; |
+ } |
+ return 0; |
+} |
+ |
+// we subdivide the quads to avoid huge overfill |
+// if it returns -1 then should be drawn as lines |
+int num_quad_subdivs(const SkPoint p[3]) { |
+ static const SkScalar gDegenerateToLineTol = SK_Scalar1; |
+ static const SkScalar gDegenerateToLineTolSqd = |
+ SkScalarMul(gDegenerateToLineTol, gDegenerateToLineTol); |
+ |
+ if (p[0].distanceToSqd(p[1]) < gDegenerateToLineTolSqd || |
+ p[1].distanceToSqd(p[2]) < gDegenerateToLineTolSqd) { |
+ return -1; |
+ } |
+ |
+ SkScalar dsqd = p[1].distanceToLineBetweenSqd(p[0], p[2]); |
+ if (dsqd < gDegenerateToLineTolSqd) { |
+ return -1; |
+ } |
+ |
+ if (p[2].distanceToLineBetweenSqd(p[1], p[0]) < gDegenerateToLineTolSqd) { |
+ return -1; |
+ } |
+ |
+ // tolerance of triangle height in pixels |
+ // tuned on windows Quadro FX 380 / Z600 |
+ // trade off of fill vs cpu time on verts |
+ // maybe different when do this using gpu (geo or tess shaders) |
+ static const SkScalar gSubdivTol = 175 * SK_Scalar1; |
+ |
+ if (dsqd <= SkScalarMul(gSubdivTol, gSubdivTol)) { |
+ return 0; |
+ } else { |
+ static const int kMaxSub = 4; |
+ // subdividing the quad reduces d by 4. so we want x = log4(d/tol) |
+ // = log4(d*d/tol*tol)/2 |
+ // = log2(d*d/tol*tol) |
+ |
+ // +1 since we're ignoring the mantissa contribution. |
+ int log = get_float_exp(dsqd/(gSubdivTol*gSubdivTol)) + 1; |
+ log = SkTMin(SkTMax(0, log), kMaxSub); |
+ return log; |
+ } |
+} |
+ |
+/** |
+ * Generates the lines and quads to be rendered. Lines are always recorded in |
+ * device space. We will do a device space bloat to account for the 1pixel |
+ * thickness. |
+ * Quads are recorded in device space unless m contains |
+ * perspective, then in they are in src space. We do this because we will |
+ * subdivide large quads to reduce over-fill. This subdivision has to be |
+ * performed before applying the perspective matrix. |
+ */ |
+int generate_lines_and_quads(const SkPath& path, |
+ const SkMatrix& m, |
+ const SkIRect& devClipBounds, |
+ GrAAHairLinePathRenderer::PtArray* lines, |
+ GrAAHairLinePathRenderer::PtArray* quads, |
+ GrAAHairLinePathRenderer::PtArray* conics, |
+ GrAAHairLinePathRenderer::IntArray* quadSubdivCnts, |
+ GrAAHairLinePathRenderer::FloatArray* conicWeights) { |
+ SkPath::Iter iter(path, false); |
+ |
+ int totalQuadCount = 0; |
+ SkRect bounds; |
+ SkIRect ibounds; |
+ |
+ bool persp = m.hasPerspective(); |
+ |
+ for (;;) { |
+ SkPoint pathPts[4]; |
+ SkPoint devPts[4]; |
+ SkPath::Verb verb = iter.next(pathPts); |
+ switch (verb) { |
+ case SkPath::kConic_Verb: { |
+ SkConic dst[4]; |
+ // We chop the conics to create tighter clipping to hide error |
+ // that appears near max curvature of very thin conics. Thin |
+ // hyperbolas with high weight still show error. |
+ int conicCnt = chop_conic(pathPts, dst, iter.conicWeight()); |
+ for (int i = 0; i < conicCnt; ++i) { |
+ SkPoint* chopPnts = dst[i].fPts; |
+ m.mapPoints(devPts, chopPnts, 3); |
+ bounds.setBounds(devPts, 3); |
+ bounds.outset(SK_Scalar1, SK_Scalar1); |
+ bounds.roundOut(&ibounds); |
+ if (SkIRect::Intersects(devClipBounds, ibounds)) { |
+ if (is_degen_quad_or_conic(devPts)) { |
+ SkPoint* pts = lines->push_back_n(4); |
+ pts[0] = devPts[0]; |
+ pts[1] = devPts[1]; |
+ pts[2] = devPts[1]; |
+ pts[3] = devPts[2]; |
+ } else { |
+ // when in perspective keep conics in src space |
+ SkPoint* cPts = persp ? chopPnts : devPts; |
+ SkPoint* pts = conics->push_back_n(3); |
+ pts[0] = cPts[0]; |
+ pts[1] = cPts[1]; |
+ pts[2] = cPts[2]; |
+ conicWeights->push_back() = dst[i].fW; |
+ } |
+ } |
+ } |
+ break; |
+ } |
+ case SkPath::kMove_Verb: |
+ break; |
+ case SkPath::kLine_Verb: |
+ m.mapPoints(devPts, pathPts, 2); |
+ bounds.setBounds(devPts, 2); |
+ bounds.outset(SK_Scalar1, SK_Scalar1); |
+ bounds.roundOut(&ibounds); |
+ if (SkIRect::Intersects(devClipBounds, ibounds)) { |
+ SkPoint* pts = lines->push_back_n(2); |
+ pts[0] = devPts[0]; |
+ pts[1] = devPts[1]; |
+ } |
+ break; |
+ case SkPath::kQuad_Verb: { |
+ SkPoint choppedPts[5]; |
+ // Chopping the quad helps when the quad is either degenerate or nearly degenerate. |
+ // When it is degenerate it allows the approximation with lines to work since the |
+ // chop point (if there is one) will be at the parabola's vertex. In the nearly |
+ // degenerate the QuadUVMatrix computed for the points is almost singular which |
+ // can cause rendering artifacts. |
+ int n = SkChopQuadAtMaxCurvature(pathPts, choppedPts); |
+ for (int i = 0; i < n; ++i) { |
+ SkPoint* quadPts = choppedPts + i * 2; |
+ m.mapPoints(devPts, quadPts, 3); |
+ bounds.setBounds(devPts, 3); |
+ bounds.outset(SK_Scalar1, SK_Scalar1); |
+ bounds.roundOut(&ibounds); |
+ |
+ if (SkIRect::Intersects(devClipBounds, ibounds)) { |
+ int subdiv = num_quad_subdivs(devPts); |
+ SkASSERT(subdiv >= -1); |
+ if (-1 == subdiv) { |
+ SkPoint* pts = lines->push_back_n(4); |
+ pts[0] = devPts[0]; |
+ pts[1] = devPts[1]; |
+ pts[2] = devPts[1]; |
+ pts[3] = devPts[2]; |
+ } else { |
+ // when in perspective keep quads in src space |
+ SkPoint* qPts = persp ? quadPts : devPts; |
+ SkPoint* pts = quads->push_back_n(3); |
+ pts[0] = qPts[0]; |
+ pts[1] = qPts[1]; |
+ pts[2] = qPts[2]; |
+ quadSubdivCnts->push_back() = subdiv; |
+ totalQuadCount += 1 << subdiv; |
+ } |
+ } |
+ } |
+ break; |
+ } |
+ case SkPath::kCubic_Verb: |
+ m.mapPoints(devPts, pathPts, 4); |
+ bounds.setBounds(devPts, 4); |
+ bounds.outset(SK_Scalar1, SK_Scalar1); |
+ bounds.roundOut(&ibounds); |
+ if (SkIRect::Intersects(devClipBounds, ibounds)) { |
+ PREALLOC_PTARRAY(32) q; |
+ // we don't need a direction if we aren't constraining the subdivision |
+ static const SkPath::Direction kDummyDir = SkPath::kCCW_Direction; |
+ // We convert cubics to quadratics (for now). |
+ // In perspective have to do conversion in src space. |
+ if (persp) { |
+ SkScalar tolScale = |
+ GrPathUtils::scaleToleranceToSrc(SK_Scalar1, m, |
+ path.getBounds()); |
+ GrPathUtils::convertCubicToQuads(pathPts, tolScale, false, kDummyDir, &q); |
+ } else { |
+ GrPathUtils::convertCubicToQuads(devPts, SK_Scalar1, false, kDummyDir, &q); |
+ } |
+ for (int i = 0; i < q.count(); i += 3) { |
+ SkPoint* qInDevSpace; |
+ // bounds has to be calculated in device space, but q is |
+ // in src space when there is perspective. |
+ if (persp) { |
+ m.mapPoints(devPts, &q[i], 3); |
+ bounds.setBounds(devPts, 3); |
+ qInDevSpace = devPts; |
+ } else { |
+ bounds.setBounds(&q[i], 3); |
+ qInDevSpace = &q[i]; |
+ } |
+ bounds.outset(SK_Scalar1, SK_Scalar1); |
+ bounds.roundOut(&ibounds); |
+ if (SkIRect::Intersects(devClipBounds, ibounds)) { |
+ int subdiv = num_quad_subdivs(qInDevSpace); |
+ SkASSERT(subdiv >= -1); |
+ if (-1 == subdiv) { |
+ SkPoint* pts = lines->push_back_n(4); |
+ // lines should always be in device coords |
+ pts[0] = qInDevSpace[0]; |
+ pts[1] = qInDevSpace[1]; |
+ pts[2] = qInDevSpace[1]; |
+ pts[3] = qInDevSpace[2]; |
+ } else { |
+ SkPoint* pts = quads->push_back_n(3); |
+ // q is already in src space when there is no |
+ // perspective and dev coords otherwise. |
+ pts[0] = q[0 + i]; |
+ pts[1] = q[1 + i]; |
+ pts[2] = q[2 + i]; |
+ quadSubdivCnts->push_back() = subdiv; |
+ totalQuadCount += 1 << subdiv; |
+ } |
+ } |
+ } |
+ } |
+ break; |
+ case SkPath::kClose_Verb: |
+ break; |
+ case SkPath::kDone_Verb: |
+ return totalQuadCount; |
+ } |
+ } |
+} |
+ |
+struct LineVertex { |
+ SkPoint fPos; |
+ GrColor fCoverage; |
+}; |
+ |
+struct BezierVertex { |
+ SkPoint fPos; |
+ union { |
+ struct { |
+ SkScalar fK; |
+ SkScalar fL; |
+ SkScalar fM; |
+ } fConic; |
+ SkVector fQuadCoord; |
+ struct { |
+ SkScalar fBogus[4]; |
+ }; |
+ }; |
+}; |
+ |
+GR_STATIC_ASSERT(sizeof(BezierVertex) == 3 * sizeof(SkPoint)); |
+ |
+void intersect_lines(const SkPoint& ptA, const SkVector& normA, |
+ const SkPoint& ptB, const SkVector& normB, |
+ SkPoint* result) { |
+ |
+ SkScalar lineAW = -normA.dot(ptA); |
+ SkScalar lineBW = -normB.dot(ptB); |
+ |
+ SkScalar wInv = SkScalarMul(normA.fX, normB.fY) - |
+ SkScalarMul(normA.fY, normB.fX); |
+ wInv = SkScalarInvert(wInv); |
+ |
+ result->fX = SkScalarMul(normA.fY, lineBW) - SkScalarMul(lineAW, normB.fY); |
+ result->fX = SkScalarMul(result->fX, wInv); |
+ |
+ result->fY = SkScalarMul(lineAW, normB.fX) - SkScalarMul(normA.fX, lineBW); |
+ result->fY = SkScalarMul(result->fY, wInv); |
+} |
+ |
+void set_uv_quad(const SkPoint qpts[3], BezierVertex verts[kVertsPerQuad]) { |
+ // this should be in the src space, not dev coords, when we have perspective |
+ GrPathUtils::QuadUVMatrix DevToUV(qpts); |
+ DevToUV.apply<kVertsPerQuad, sizeof(BezierVertex), sizeof(SkPoint)>(verts); |
+} |
+ |
+void bloat_quad(const SkPoint qpts[3], const SkMatrix* toDevice, |
+ const SkMatrix* toSrc, BezierVertex verts[kVertsPerQuad], |
+ SkRect* devBounds) { |
+ SkASSERT(!toDevice == !toSrc); |
+ // original quad is specified by tri a,b,c |
+ SkPoint a = qpts[0]; |
+ SkPoint b = qpts[1]; |
+ SkPoint c = qpts[2]; |
+ |
+ if (toDevice) { |
+ toDevice->mapPoints(&a, 1); |
+ toDevice->mapPoints(&b, 1); |
+ toDevice->mapPoints(&c, 1); |
+ } |
+ // make a new poly where we replace a and c by a 1-pixel wide edges orthog |
+ // to edges ab and bc: |
+ // |
+ // before | after |
+ // | b0 |
+ // b | |
+ // | |
+ // | a0 c0 |
+ // a c | a1 c1 |
+ // |
+ // edges a0->b0 and b0->c0 are parallel to original edges a->b and b->c, |
+ // respectively. |
+ BezierVertex& a0 = verts[0]; |
+ BezierVertex& a1 = verts[1]; |
+ BezierVertex& b0 = verts[2]; |
+ BezierVertex& c0 = verts[3]; |
+ BezierVertex& c1 = verts[4]; |
+ |
+ SkVector ab = b; |
+ ab -= a; |
+ SkVector ac = c; |
+ ac -= a; |
+ SkVector cb = b; |
+ cb -= c; |
+ |
+ // We should have already handled degenerates |
+ SkASSERT(ab.length() > 0 && cb.length() > 0); |
+ |
+ ab.normalize(); |
+ SkVector abN; |
+ abN.setOrthog(ab, SkVector::kLeft_Side); |
+ if (abN.dot(ac) > 0) { |
+ abN.negate(); |
+ } |
+ |
+ cb.normalize(); |
+ SkVector cbN; |
+ cbN.setOrthog(cb, SkVector::kLeft_Side); |
+ if (cbN.dot(ac) < 0) { |
+ cbN.negate(); |
+ } |
+ |
+ a0.fPos = a; |
+ a0.fPos += abN; |
+ a1.fPos = a; |
+ a1.fPos -= abN; |
+ |
+ c0.fPos = c; |
+ c0.fPos += cbN; |
+ c1.fPos = c; |
+ c1.fPos -= cbN; |
+ |
+ intersect_lines(a0.fPos, abN, c0.fPos, cbN, &b0.fPos); |
+ devBounds->growToInclude(&verts[0].fPos, sizeof(BezierVertex), kVertsPerQuad); |
+ |
+ if (toSrc) { |
+ toSrc->mapPointsWithStride(&verts[0].fPos, sizeof(BezierVertex), kVertsPerQuad); |
+ } |
+} |
+ |
+// Equations based off of Loop-Blinn Quadratic GPU Rendering |
+// Input Parametric: |
+// P(t) = (P0*(1-t)^2 + 2*w*P1*t*(1-t) + P2*t^2) / (1-t)^2 + 2*w*t*(1-t) + t^2) |
+// Output Implicit: |
+// f(x, y, w) = f(P) = K^2 - LM |
+// K = dot(k, P), L = dot(l, P), M = dot(m, P) |
+// k, l, m are calculated in function GrPathUtils::getConicKLM |
+void set_conic_coeffs(const SkPoint p[3], BezierVertex verts[kVertsPerQuad], |
+ const SkScalar weight) { |
+ SkScalar klm[9]; |
+ |
+ GrPathUtils::getConicKLM(p, weight, klm); |
+ |
+ for (int i = 0; i < kVertsPerQuad; ++i) { |
+ const SkPoint pnt = verts[i].fPos; |
+ verts[i].fConic.fK = pnt.fX * klm[0] + pnt.fY * klm[1] + klm[2]; |
+ verts[i].fConic.fL = pnt.fX * klm[3] + pnt.fY * klm[4] + klm[5]; |
+ verts[i].fConic.fM = pnt.fX * klm[6] + pnt.fY * klm[7] + klm[8]; |
+ } |
+} |
+ |
+void add_conics(const SkPoint p[3], |
+ const SkScalar weight, |
+ const SkMatrix* toDevice, |
+ const SkMatrix* toSrc, |
+ BezierVertex** vert, |
+ SkRect* devBounds) { |
+ bloat_quad(p, toDevice, toSrc, *vert, devBounds); |
+ set_conic_coeffs(p, *vert, weight); |
+ *vert += kVertsPerQuad; |
+} |
+ |
+void add_quads(const SkPoint p[3], |
+ int subdiv, |
+ const SkMatrix* toDevice, |
+ const SkMatrix* toSrc, |
+ BezierVertex** vert, |
+ SkRect* devBounds) { |
+ SkASSERT(subdiv >= 0); |
+ if (subdiv) { |
+ SkPoint newP[5]; |
+ SkChopQuadAtHalf(p, newP); |
+ add_quads(newP + 0, subdiv-1, toDevice, toSrc, vert, devBounds); |
+ add_quads(newP + 2, subdiv-1, toDevice, toSrc, vert, devBounds); |
+ } else { |
+ bloat_quad(p, toDevice, toSrc, *vert, devBounds); |
+ set_uv_quad(p, *vert); |
+ *vert += kVertsPerQuad; |
+ } |
+} |
+ |
+void add_line(const SkPoint p[2], |
+ const SkMatrix* toSrc, |
+ GrColor coverage, |
+ LineVertex** vert) { |
+ const SkPoint& a = p[0]; |
+ const SkPoint& b = p[1]; |
+ |
+ SkVector ortho, vec = b; |
+ vec -= a; |
+ |
+ if (vec.setLength(SK_ScalarHalf)) { |
+ // Create a vector orthogonal to 'vec' and of unit length |
+ ortho.fX = 2.0f * vec.fY; |
+ ortho.fY = -2.0f * vec.fX; |
+ |
+ (*vert)[0].fPos = a; |
+ (*vert)[0].fCoverage = coverage; |
+ (*vert)[1].fPos = b; |
+ (*vert)[1].fCoverage = coverage; |
+ (*vert)[2].fPos = a - vec + ortho; |
+ (*vert)[2].fCoverage = 0; |
+ (*vert)[3].fPos = b + vec + ortho; |
+ (*vert)[3].fCoverage = 0; |
+ (*vert)[4].fPos = a - vec - ortho; |
+ (*vert)[4].fCoverage = 0; |
+ (*vert)[5].fPos = b + vec - ortho; |
+ (*vert)[5].fCoverage = 0; |
+ |
+ if (NULL != toSrc) { |
+ toSrc->mapPointsWithStride(&(*vert)->fPos, |
+ sizeof(LineVertex), |
+ kVertsPerLineSeg); |
+ } |
+ } else { |
+ // just make it degenerate and likely offscreen |
+ for (int i = 0; i < kVertsPerLineSeg; ++i) { |
+ (*vert)[i].fPos.set(SK_ScalarMax, SK_ScalarMax); |
+ } |
+ } |
+ |
+ *vert += kVertsPerLineSeg; |
+} |
+ |
+} |
+ |
+/////////////////////////////////////////////////////////////////////////////// |
+ |
+namespace { |
+ |
+// position + edge |
+extern const GrVertexAttrib gHairlineBezierAttribs[] = { |
+ {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, |
+ {kVec4f_GrVertexAttribType, sizeof(SkPoint), kEffect_GrVertexAttribBinding} |
+}; |
+ |
+// position + coverage |
+extern const GrVertexAttrib gHairlineLineAttribs[] = { |
+ {kVec2f_GrVertexAttribType, 0, kPosition_GrVertexAttribBinding}, |
+ {kVec4ub_GrVertexAttribType, sizeof(SkPoint), kCoverage_GrVertexAttribBinding}, |
+}; |
+ |
+}; |
+ |
+bool GrAAHairLinePathRenderer::createLineGeom(const SkPath& path, |
+ GrDrawTarget* target, |
+ const PtArray& lines, |
+ int lineCnt, |
+ GrDrawTarget::AutoReleaseGeometry* arg, |
+ SkRect* devBounds) { |
+ GrDrawState* drawState = target->drawState(); |
+ |
+ const SkMatrix& viewM = drawState->getViewMatrix(); |
+ |
+ int vertCnt = kVertsPerLineSeg * lineCnt; |
+ |
+ drawState->setVertexAttribs<gHairlineLineAttribs>(SK_ARRAY_COUNT(gHairlineLineAttribs)); |
+ SkASSERT(sizeof(LineVertex) == drawState->getVertexSize()); |
+ |
+ if (!arg->set(target, vertCnt, 0)) { |
+ return false; |
+ } |
+ |
+ LineVertex* verts = reinterpret_cast<LineVertex*>(arg->vertices()); |
+ |
+ const SkMatrix* toSrc = NULL; |
+ SkMatrix ivm; |
+ |
+ if (viewM.hasPerspective()) { |
+ if (viewM.invert(&ivm)) { |
+ toSrc = &ivm; |
+ } |
+ } |
+ devBounds->set(lines.begin(), lines.count()); |
+ for (int i = 0; i < lineCnt; ++i) { |
+ add_line(&lines[2*i], toSrc, drawState->getCoverageColor(), &verts); |
+ } |
+ // All the verts computed by add_line are within sqrt(1^2 + 0.5^2) of the end points. |
+ static const SkScalar kSqrtOfOneAndAQuarter = 1.118f; |
+ // Add a little extra to account for vector normalization precision. |
+ static const SkScalar kOutset = kSqrtOfOneAndAQuarter + SK_Scalar1 / 20; |
+ devBounds->outset(kOutset, kOutset); |
+ |
+ return true; |
+} |
+ |
+bool GrAAHairLinePathRenderer::createBezierGeom( |
+ const SkPath& path, |
+ GrDrawTarget* target, |
+ const PtArray& quads, |
+ int quadCnt, |
+ const PtArray& conics, |
+ int conicCnt, |
+ const IntArray& qSubdivs, |
+ const FloatArray& cWeights, |
+ GrDrawTarget::AutoReleaseGeometry* arg, |
+ SkRect* devBounds) { |
+ GrDrawState* drawState = target->drawState(); |
+ |
+ const SkMatrix& viewM = drawState->getViewMatrix(); |
+ |
+ int vertCnt = kVertsPerQuad * quadCnt + kVertsPerQuad * conicCnt; |
+ |
+ target->drawState()->setVertexAttribs<gHairlineBezierAttribs>(SK_ARRAY_COUNT(gHairlineBezierAttribs)); |
+ SkASSERT(sizeof(BezierVertex) == target->getDrawState().getVertexSize()); |
+ |
+ if (!arg->set(target, vertCnt, 0)) { |
+ return false; |
+ } |
+ |
+ BezierVertex* verts = reinterpret_cast<BezierVertex*>(arg->vertices()); |
+ |
+ const SkMatrix* toDevice = NULL; |
+ const SkMatrix* toSrc = NULL; |
+ SkMatrix ivm; |
+ |
+ if (viewM.hasPerspective()) { |
+ if (viewM.invert(&ivm)) { |
+ toDevice = &viewM; |
+ toSrc = &ivm; |
+ } |
+ } |
+ |
+ // Seed the dev bounds with some pts known to be inside. Each quad and conic grows the bounding |
+ // box to include its vertices. |
+ SkPoint seedPts[2]; |
+ if (quadCnt) { |
+ seedPts[0] = quads[0]; |
+ seedPts[1] = quads[2]; |
+ } else if (conicCnt) { |
+ seedPts[0] = conics[0]; |
+ seedPts[1] = conics[2]; |
+ } |
+ if (NULL != toDevice) { |
+ toDevice->mapPoints(seedPts, 2); |
+ } |
+ devBounds->set(seedPts[0], seedPts[1]); |
+ |
+ int unsubdivQuadCnt = quads.count() / 3; |
+ for (int i = 0; i < unsubdivQuadCnt; ++i) { |
+ SkASSERT(qSubdivs[i] >= 0); |
+ add_quads(&quads[3*i], qSubdivs[i], toDevice, toSrc, &verts, devBounds); |
+ } |
+ |
+ // Start Conics |
+ for (int i = 0; i < conicCnt; ++i) { |
+ add_conics(&conics[3*i], cWeights[i], toDevice, toSrc, &verts, devBounds); |
+ } |
+ return true; |
+} |
+ |
+bool GrAAHairLinePathRenderer::canDrawPath(const SkPath& path, |
+ const SkStrokeRec& stroke, |
+ const GrDrawTarget* target, |
+ bool antiAlias) const { |
+ if (!antiAlias) { |
+ return false; |
+ } |
+ |
+ if (!IsStrokeHairlineOrEquivalent(stroke, |
+ target->getDrawState().getViewMatrix(), |
+ NULL)) { |
+ return false; |
+ } |
+ |
+ if (SkPath::kLine_SegmentMask == path.getSegmentMasks() || |
+ target->caps()->shaderDerivativeSupport()) { |
+ return true; |
+ } |
+ return false; |
+} |
+ |
+template <class VertexType> |
+bool check_bounds(GrDrawState* drawState, const SkRect& devBounds, void* vertices, int vCount) |
+{ |
+ SkRect tolDevBounds = devBounds; |
+ // The bounds ought to be tight, but in perspective the below code runs the verts |
+ // through the view matrix to get back to dev coords, which can introduce imprecision. |
+ if (drawState->getViewMatrix().hasPerspective()) { |
+ tolDevBounds.outset(SK_Scalar1 / 1000, SK_Scalar1 / 1000); |
+ } else { |
+ // Non-persp matrices cause this path renderer to draw in device space. |
+ SkASSERT(drawState->getViewMatrix().isIdentity()); |
+ } |
+ SkRect actualBounds; |
+ |
+ VertexType* verts = reinterpret_cast<VertexType*>(vertices); |
+ bool first = true; |
+ for (int i = 0; i < vCount; ++i) { |
+ SkPoint pos = verts[i].fPos; |
+ // This is a hack to workaround the fact that we move some degenerate segments offscreen. |
+ if (SK_ScalarMax == pos.fX) { |
+ continue; |
+ } |
+ drawState->getViewMatrix().mapPoints(&pos, 1); |
+ if (first) { |
+ actualBounds.set(pos.fX, pos.fY, pos.fX, pos.fY); |
+ first = false; |
+ } else { |
+ actualBounds.growToInclude(pos.fX, pos.fY); |
+ } |
+ } |
+ if (!first) { |
+ return tolDevBounds.contains(actualBounds); |
+ } |
+ |
+ return true; |
+} |
+ |
+bool GrAAHairLinePathRenderer::onDrawPath(const SkPath& path, |
+ const SkStrokeRec& stroke, |
+ GrDrawTarget* target, |
+ bool antiAlias) { |
+ GrDrawState* drawState = target->drawState(); |
+ |
+ SkScalar hairlineCoverage; |
+ if (IsStrokeHairlineOrEquivalent(stroke, |
+ target->getDrawState().getViewMatrix(), |
+ &hairlineCoverage)) { |
+ uint8_t newCoverage = SkScalarRoundToInt(hairlineCoverage * |
+ target->getDrawState().getCoverage()); |
+ target->drawState()->setCoverage(newCoverage); |
+ } |
+ |
+ SkIRect devClipBounds; |
+ target->getClip()->getConservativeBounds(drawState->getRenderTarget(), &devClipBounds); |
+ |
+ int lineCnt; |
+ int quadCnt; |
+ int conicCnt; |
+ PREALLOC_PTARRAY(128) lines; |
+ PREALLOC_PTARRAY(128) quads; |
+ PREALLOC_PTARRAY(128) conics; |
+ IntArray qSubdivs; |
+ FloatArray cWeights; |
+ quadCnt = generate_lines_and_quads(path, drawState->getViewMatrix(), devClipBounds, |
+ &lines, &quads, &conics, &qSubdivs, &cWeights); |
+ lineCnt = lines.count() / 2; |
+ conicCnt = conics.count() / 3; |
+ |
+ // do lines first |
+ if (lineCnt) { |
+ GrDrawTarget::AutoReleaseGeometry arg; |
+ SkRect devBounds; |
+ |
+ if (!this->createLineGeom(path, |
+ target, |
+ lines, |
+ lineCnt, |
+ &arg, |
+ &devBounds)) { |
+ return false; |
+ } |
+ |
+ GrDrawTarget::AutoStateRestore asr; |
+ |
+ // createLineGeom transforms the geometry to device space when the matrix does not have |
+ // perspective. |
+ if (target->getDrawState().getViewMatrix().hasPerspective()) { |
+ asr.set(target, GrDrawTarget::kPreserve_ASRInit); |
+ } else if (!asr.setIdentity(target, GrDrawTarget::kPreserve_ASRInit)) { |
+ return false; |
+ } |
+ GrDrawState* drawState = target->drawState(); |
+ |
+ // Check devBounds |
+ SkASSERT(check_bounds<LineVertex>(drawState, devBounds, arg.vertices(), |
+ kVertsPerLineSeg * lineCnt)); |
+ |
+ { |
+ GrDrawState::AutoRestoreEffects are(drawState); |
+ target->setIndexSourceToBuffer(fLinesIndexBuffer); |
+ int lines = 0; |
+ while (lines < lineCnt) { |
+ int n = SkTMin(lineCnt - lines, kNumLineSegsInIdxBuffer); |
+ target->drawIndexed(kTriangles_GrPrimitiveType, |
+ kVertsPerLineSeg*lines, // startV |
+ 0, // startI |
+ kVertsPerLineSeg*n, // vCount |
+ kIdxsPerLineSeg*n, // iCount |
+ &devBounds); |
+ lines += n; |
+ } |
+ } |
+ } |
+ |
+ // then quadratics/conics |
+ if (quadCnt || conicCnt) { |
+ GrDrawTarget::AutoReleaseGeometry arg; |
+ SkRect devBounds; |
+ |
+ if (!this->createBezierGeom(path, |
+ target, |
+ quads, |
+ quadCnt, |
+ conics, |
+ conicCnt, |
+ qSubdivs, |
+ cWeights, |
+ &arg, |
+ &devBounds)) { |
+ return false; |
+ } |
+ |
+ GrDrawTarget::AutoStateRestore asr; |
+ |
+ // createGeom transforms the geometry to device space when the matrix does not have |
+ // perspective. |
+ if (target->getDrawState().getViewMatrix().hasPerspective()) { |
+ asr.set(target, GrDrawTarget::kPreserve_ASRInit); |
+ } else if (!asr.setIdentity(target, GrDrawTarget::kPreserve_ASRInit)) { |
+ return false; |
+ } |
+ GrDrawState* drawState = target->drawState(); |
+ |
+ static const int kEdgeAttrIndex = 1; |
+ |
+ // Check devBounds |
+ SkASSERT(check_bounds<BezierVertex>(drawState, devBounds, arg.vertices(), |
+ kVertsPerQuad * quadCnt + kVertsPerQuad * conicCnt)); |
+ |
+ if (quadCnt > 0) { |
+ GrEffectRef* hairQuadEffect = GrQuadEffect::Create(kHairlineAA_GrEffectEdgeType, |
+ *target->caps()); |
+ SkASSERT(NULL != hairQuadEffect); |
+ GrDrawState::AutoRestoreEffects are(drawState); |
+ target->setIndexSourceToBuffer(fQuadsIndexBuffer); |
+ drawState->addCoverageEffect(hairQuadEffect, kEdgeAttrIndex)->unref(); |
+ int quads = 0; |
+ while (quads < quadCnt) { |
+ int n = SkTMin(quadCnt - quads, kNumQuadsInIdxBuffer); |
+ target->drawIndexed(kTriangles_GrPrimitiveType, |
+ kVertsPerQuad*quads, // startV |
+ 0, // startI |
+ kVertsPerQuad*n, // vCount |
+ kIdxsPerQuad*n, // iCount |
+ &devBounds); |
+ quads += n; |
+ } |
+ } |
+ |
+ if (conicCnt > 0) { |
+ GrDrawState::AutoRestoreEffects are(drawState); |
+ GrEffectRef* hairConicEffect = GrConicEffect::Create(kHairlineAA_GrEffectEdgeType, |
+ *target->caps()); |
+ SkASSERT(NULL != hairConicEffect); |
+ drawState->addCoverageEffect(hairConicEffect, 1, 2)->unref(); |
+ int conics = 0; |
+ while (conics < conicCnt) { |
+ int n = SkTMin(conicCnt - conics, kNumQuadsInIdxBuffer); |
+ target->drawIndexed(kTriangles_GrPrimitiveType, |
+ kVertsPerQuad*(quadCnt + conics), // startV |
+ 0, // startI |
+ kVertsPerQuad*n, // vCount |
+ kIdxsPerQuad*n, // iCount |
+ &devBounds); |
+ conics += n; |
+ } |
+ } |
+ } |
+ |
+ target->resetIndexSource(); |
+ |
+ return true; |
+} |