Chromium Code Reviews
chromiumcodereview-hr@appspot.gserviceaccount.com (chromiumcodereview-hr) | Please choose your nickname with Settings | Help | Chromium Project | Gerrit Changes | Sign out
(201)

Unified Diff: src/opts/SkBitmapProcState_arm_neon.cpp

Issue 27533004: ARM Skia NEON patches - 33 - Convolution filter (Closed) Base URL: https://skia.googlecode.com/svn/trunk
Patch Set: Remove the unused variable Created 7 years, 1 month ago
Use n/p to move between diff chunks; N/P to move between comments. Draft comments are only viewable by you.
Jump to:
View side-by-side diff with in-line comments
Download patch
« no previous file with comments | « no previous file | src/opts/SkBitmapProcState_opts_arm.cpp » ('j') | no next file with comments »
Expand Comments ('e') | Collapse Comments ('c') | Show Comments Hide Comments ('s')
Index: src/opts/SkBitmapProcState_arm_neon.cpp
diff --git a/src/opts/SkBitmapProcState_arm_neon.cpp b/src/opts/SkBitmapProcState_arm_neon.cpp
index d50707dce0c7e5a03618eeb697dac986c0def59f..35ba462c82a31a20c3b23c981b381c6e7332a6d4 100644
--- a/src/opts/SkBitmapProcState_arm_neon.cpp
+++ b/src/opts/SkBitmapProcState_arm_neon.cpp
@@ -90,3 +90,423 @@ const SkBitmapProcState::SampleProc16 gSkBitmapProcStateSample16_neon[] = {
// Don't support A8 -> 565
NULL, NULL, NULL, NULL
};
+
+///////////////////////////////////////////////////////////////////////////////
+
+#include <arm_neon.h>
+#include "SkConvolver.h"
+
+// Convolves horizontally along a single row. The row data is given in
+// |srcData| and continues for the numValues() of the filter.
+void convolveHorizontally_neon(const unsigned char* srcData,
+ const SkConvolutionFilter1D& filter,
+ unsigned char* outRow,
+ bool hasAlpha) {
+ // Loop over each pixel on this row in the output image.
+ int numValues = filter.numValues();
+ for (int outX = 0; outX < numValues; outX++) {
+ uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100);
+ uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302);
+ uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504);
+ uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706);
+ // Get the filter that determines the current output pixel.
+ int filterOffset, filterLength;
+ const SkConvolutionFilter1D::ConvolutionFixed* filterValues =
+ filter.FilterForValue(outX, &filterOffset, &filterLength);
+
+ // Compute the first pixel in this row that the filter affects. It will
+ // touch |filterLength| pixels (4 bytes each) after this.
+ const unsigned char* rowToFilter = &srcData[filterOffset * 4];
+
+ // Apply the filter to the row to get the destination pixel in |accum|.
+ int32x4_t accum = vdupq_n_s32(0);
+ for (int filterX = 0; filterX < filterLength >> 2; filterX++) {
+ // Load 4 coefficients
+ int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3;
+ coeffs = vld1_s16(filterValues);
+ coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0));
+ coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1));
+ coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2));
+ coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3));
+
+ // Load pixels and calc
+ uint8x16_t pixels = vld1q_u8(rowToFilter);
+ int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels)));
+ int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels)));
+
+ int16x4_t p0_src = vget_low_s16(p01_16);
+ int16x4_t p1_src = vget_high_s16(p01_16);
+ int16x4_t p2_src = vget_low_s16(p23_16);
+ int16x4_t p3_src = vget_high_s16(p23_16);
+
+ int32x4_t p0 = vmull_s16(p0_src, coeff0);
+ int32x4_t p1 = vmull_s16(p1_src, coeff1);
+ int32x4_t p2 = vmull_s16(p2_src, coeff2);
+ int32x4_t p3 = vmull_s16(p3_src, coeff3);
+
+ accum += p0;
+ accum += p1;
+ accum += p2;
+ accum += p3;
+
+ // Advance the pointers
+ rowToFilter += 16;
+ filterValues += 4;
+ }
+ int r = filterLength & 3;
+ if (r) {
+ const uint16_t mask[4][4] = {
+ {0, 0, 0, 0},
+ {0xFFFF, 0, 0, 0},
+ {0xFFFF, 0xFFFF, 0, 0},
+ {0xFFFF, 0xFFFF, 0xFFFF, 0}
+ };
+ uint16x4_t coeffs;
+ int16x4_t coeff0, coeff1, coeff2;
+ coeffs = vld1_u16(reinterpret_cast<const uint16_t*>(filterValues));
+ coeffs &= vld1_u16(&mask[r][0]);
+ coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask0));
+ coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask1));
+ coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask2));
+
+ // Load pixels and calc
+ uint8x16_t pixels = vld1q_u8(rowToFilter);
+ int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels)));
+ int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels)));
+ int32x4_t p0 = vmull_s16(vget_low_s16(p01_16), coeff0);
+ int32x4_t p1 = vmull_s16(vget_high_s16(p01_16), coeff1);
+ int32x4_t p2 = vmull_s16(vget_low_s16(p23_16), coeff2);
+
+ accum += p0;
+ accum += p1;
+ accum += p2;
+ }
+
+ // Bring this value back in range. All of the filter scaling factors
+ // are in fixed point with kShiftBits bits of fractional part.
+ accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits);
+
+ // Pack and store the new pixel.
+ int16x4_t accum16 = vqmovn_s32(accum);
+ uint8x8_t accum8 = vqmovun_s16(vcombine_s16(accum16, accum16));
+ vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow), vreinterpret_u32_u8(accum8), 0);
+ outRow += 4;
+ }
+}
+
+// Does vertical convolution to produce one output row. The filter values and
+// length are given in the first two parameters. These are applied to each
+// of the rows pointed to in the |sourceDataRows| array, with each row
+// being |pixelWidth| wide.
+//
+// The output must have room for |pixelWidth * 4| bytes.
+template<bool hasAlpha>
+void convolveVertically_neon(const SkConvolutionFilter1D::ConvolutionFixed* filterValues,
+ int filterLength,
+ unsigned char* const* sourceDataRows,
+ int pixelWidth,
+ unsigned char* outRow) {
+ int width = pixelWidth & ~3;
+
+ int32x4_t accum0, accum1, accum2, accum3;
+ int16x4_t coeff16;
+
+ // Output four pixels per iteration (16 bytes).
+ for (int outX = 0; outX < width; outX += 4) {
+
+ // Accumulated result for each pixel. 32 bits per RGBA channel.
+ accum0 = accum1 = accum2 = accum3 = vdupq_n_s32(0);
+
+ // Convolve with one filter coefficient per iteration.
+ for (int filterY = 0; filterY < filterLength; filterY++) {
+
+ // Duplicate the filter coefficient 4 times.
+ // [16] cj cj cj cj
+ coeff16 = vdup_n_s16(filterValues[filterY]);
+
+ // Load four pixels (16 bytes) together.
+ // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
+ uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][outX << 2]);
+
+ int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8)));
+ int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8)));
+ int16x4_t src16_0 = vget_low_s16(src16_01);
+ int16x4_t src16_1 = vget_high_s16(src16_01);
+ int16x4_t src16_2 = vget_low_s16(src16_23);
+ int16x4_t src16_3 = vget_high_s16(src16_23);
+
+ accum0 += vmull_s16(src16_0, coeff16);
+ accum1 += vmull_s16(src16_1, coeff16);
+ accum2 += vmull_s16(src16_2, coeff16);
+ accum3 += vmull_s16(src16_3, coeff16);
+ }
+
+ // Shift right for fixed point implementation.
+ accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits);
+ accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits);
+ accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits);
+ accum3 = vshrq_n_s32(accum3, SkConvolutionFilter1D::kShiftBits);
+
+ // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
+ // [16] a1 b1 g1 r1 a0 b0 g0 r0
+ int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1));
+ // [16] a3 b3 g3 r3 a2 b2 g2 r2
+ int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum3));
+
+ // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
+ // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
+ uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accum16_1));
+
+ if (hasAlpha) {
+ // Compute the max(ri, gi, bi) for each pixel.
+ // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
+ uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8));
+ // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
+ uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g
+ // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
+ a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16));
+ // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
+ b = vmaxq_u8(a, b); // Max of r and g and b.
+ // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
+ b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24));
+
+ // Make sure the value of alpha channel is always larger than maximum
+ // value of color channels.
+ accum8 = vmaxq_u8(b, accum8);
+ } else {
+ // Set value of alpha channels to 0xFF.
+ accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000));
+ }
+
+ // Store the convolution result (16 bytes) and advance the pixel pointers.
+ vst1q_u8(outRow, accum8);
+ outRow += 16;
+ }
+
+ // Process the leftovers when the width of the output is not divisible
+ // by 4, that is at most 3 pixels.
+ int r = pixelWidth & 3;
+ if (r) {
+
+ accum0 = accum1 = accum2 = vdupq_n_s32(0);
+
+ for (int filterY = 0; filterY < filterLength; ++filterY) {
+ coeff16 = vdup_n_s16(filterValues[filterY]);
+
+ // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
+ uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][width << 2]);
+
+ int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8)));
+ int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8)));
+ int16x4_t src16_0 = vget_low_s16(src16_01);
+ int16x4_t src16_1 = vget_high_s16(src16_01);
+ int16x4_t src16_2 = vget_low_s16(src16_23);
+
+ accum0 += vmull_s16(src16_0, coeff16);
+ accum1 += vmull_s16(src16_1, coeff16);
+ accum2 += vmull_s16(src16_2, coeff16);
+ }
+
+ accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits);
+ accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits);
+ accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits);
+
+ int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1));
+ int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum2));
+
+ uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accum16_1));
+
+ if (hasAlpha) {
+ // Compute the max(ri, gi, bi) for each pixel.
+ // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
+ uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8));
+ // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
+ uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g
+ // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
+ a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16));
+ // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
+ b = vmaxq_u8(a, b); // Max of r and g and b.
+ // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
+ b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24));
+
+ // Make sure the value of alpha channel is always larger than maximum
+ // value of color channels.
+ accum8 = vmaxq_u8(b, accum8);
+ } else {
+ // Set value of alpha channels to 0xFF.
+ accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000));
+ }
+
+ switch(r) {
+ case 1:
+ vst1q_lane_u32(reinterpret_cast<uint32_t*>(outRow), vreinterpretq_u32_u8(accum8), 0);
+ break;
+ case 2:
+ vst1_u32(reinterpret_cast<uint32_t*>(outRow),
+ vreinterpret_u32_u8(vget_low_u8(accum8)));
+ break;
+ case 3:
+ vst1_u32(reinterpret_cast<uint32_t*>(outRow),
+ vreinterpret_u32_u8(vget_low_u8(accum8)));
+ vst1q_lane_u32(reinterpret_cast<uint32_t*>(outRow+8), vreinterpretq_u32_u8(accum8), 2);
+ break;
+ }
+ }
+}
+
+void convolveVertically_neon(const SkConvolutionFilter1D::ConvolutionFixed* filterValues,
+ int filterLength,
+ unsigned char* const* sourceDataRows,
+ int pixelWidth,
+ unsigned char* outRow,
+ bool sourceHasAlpha) {
+ if (sourceHasAlpha) {
+ convolveVertically_neon<true>(filterValues, filterLength,
+ sourceDataRows, pixelWidth,
+ outRow);
+ } else {
+ convolveVertically_neon<false>(filterValues, filterLength,
+ sourceDataRows, pixelWidth,
+ outRow);
+ }
+}
+
+// Convolves horizontally along four rows. The row data is given in
+// |src_data| and continues for the num_values() of the filter.
+// The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please
+// refer to that function for detailed comments.
+void convolve4RowsHorizontally_neon(const unsigned char* srcData[4],
+ const SkConvolutionFilter1D& filter,
+ unsigned char* outRow[4]) {
+
+ uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100);
+ uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302);
+ uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504);
+ uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706);
+ int num_values = filter.numValues();
+
+ int filterOffset, filterLength;
+ // |mask| will be used to decimate all extra filter coefficients that are
+ // loaded by SIMD when |filter_length| is not divisible by 4.
+ // mask[0] is not used in following algorithm.
+ const uint16_t mask[4][4] = {
+ {0, 0, 0, 0},
+ {0xFFFF, 0, 0, 0},
+ {0xFFFF, 0xFFFF, 0, 0},
+ {0xFFFF, 0xFFFF, 0xFFFF, 0}
+ };
+
+ // Output one pixel each iteration, calculating all channels (RGBA) together.
+ for (int outX = 0; outX < num_values; outX++) {
+
+ const SkConvolutionFilter1D::ConvolutionFixed* filterValues =
+ filter.FilterForValue(outX, &filterOffset, &filterLength);
+
+ // four pixels in a column per iteration.
+ int32x4_t accum0 = vdupq_n_s32(0);
+ int32x4_t accum1 = vdupq_n_s32(0);
+ int32x4_t accum2 = vdupq_n_s32(0);
+ int32x4_t accum3 = vdupq_n_s32(0);
+
+ int start = (filterOffset<<2);
+
+ // We will load and accumulate with four coefficients per iteration.
+ for (int filter_x = 0; filter_x < (filterLength >> 2); filter_x++) {
+ int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3;
+
+ coeffs = vld1_s16(filterValues);
+ coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0));
+ coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1));
+ coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2));
+ coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3));
+
+ uint8x16_t pixels;
+ int16x8_t p01_16, p23_16;
+ int32x4_t p0, p1, p2, p3;
+
+
+#define ITERATION(src, accum) \
+ pixels = vld1q_u8(src); \
+ p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); \
+ p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); \
+ p0 = vmull_s16(vget_low_s16(p01_16), coeff0); \
+ p1 = vmull_s16(vget_high_s16(p01_16), coeff1); \
+ p2 = vmull_s16(vget_low_s16(p23_16), coeff2); \
+ p3 = vmull_s16(vget_high_s16(p23_16), coeff3); \
+ accum += p0; \
+ accum += p1; \
+ accum += p2; \
+ accum += p3
+
+ ITERATION(srcData[0] + start, accum0);
+ ITERATION(srcData[1] + start, accum1);
+ ITERATION(srcData[2] + start, accum2);
+ ITERATION(srcData[3] + start, accum3);
+
+ start += 16;
+ filterValues += 4;
+ }
+
+ int r = filterLength & 3;
+ if (r) {
+ int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3;
+ coeffs = vld1_s16(filterValues);
+ coeffs &= vreinterpret_s16_u16(vld1_u16(&mask[r][0]));
+ coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0));
+ coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1));
+ coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2));
+ coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3));
+
+ uint8x16_t pixels;
+ int16x8_t p01_16, p23_16;
+ int32x4_t p0, p1, p2, p3;
+
+ ITERATION(srcData[0] + start, accum0);
+ ITERATION(srcData[1] + start, accum1);
+ ITERATION(srcData[2] + start, accum2);
+ ITERATION(srcData[3] + start, accum3);
+ }
+
+ int16x4_t accum16;
+ uint8x8_t res0, res1, res2, res3;
+
+#define PACK_RESULT(accum, res) \
+ accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits); \
+ accum16 = vqmovn_s32(accum); \
+ res = vqmovun_s16(vcombine_s16(accum16, accum16));
+
+ PACK_RESULT(accum0, res0);
+ PACK_RESULT(accum1, res1);
+ PACK_RESULT(accum2, res2);
+ PACK_RESULT(accum3, res3);
+
+ vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[0]), vreinterpret_u32_u8(res0), 0);
+ vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[1]), vreinterpret_u32_u8(res1), 0);
+ vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[2]), vreinterpret_u32_u8(res2), 0);
+ vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[3]), vreinterpret_u32_u8(res3), 0);
+ outRow[0] += 4;
+ outRow[1] += 4;
+ outRow[2] += 4;
+ outRow[3] += 4;
+ }
+}
+
+void applySIMDPadding_neon(SkConvolutionFilter1D *filter) {
+ // Padding |paddingCount| of more dummy coefficients after the coefficients
+ // of last filter to prevent SIMD instructions which load 8 or 16 bytes
+ // together to access invalid memory areas. We are not trying to align the
+ // coefficients right now due to the opaqueness of <vector> implementation.
+ // This has to be done after all |AddFilter| calls.
+ for (int i = 0; i < 8; ++i) {
+ filter->addFilterValue(static_cast<SkConvolutionFilter1D::ConvolutionFixed>(0));
+ }
+}
+
+void platformConvolutionProcs_arm_neon(SkConvolutionProcs* procs) {
+ procs->fExtraHorizontalReads = 3;
+ procs->fConvolveVertically = &convolveVertically_neon;
+ procs->fConvolve4RowsHorizontally = &convolve4RowsHorizontally_neon;
+ procs->fConvolveHorizontally = &convolveHorizontally_neon;
+ procs->fApplySIMDPadding = &applySIMDPadding_neon;
+}
+
« no previous file with comments | « no previous file | src/opts/SkBitmapProcState_opts_arm.cpp » ('j') | no next file with comments »

Powered by Google App Engine
This is Rietveld 408576698