Index: src/opts/SkBitmapProcState_arm_neon.cpp |
diff --git a/src/opts/SkBitmapProcState_arm_neon.cpp b/src/opts/SkBitmapProcState_arm_neon.cpp |
index d50707dce0c7e5a03618eeb697dac986c0def59f..35ba462c82a31a20c3b23c981b381c6e7332a6d4 100644 |
--- a/src/opts/SkBitmapProcState_arm_neon.cpp |
+++ b/src/opts/SkBitmapProcState_arm_neon.cpp |
@@ -90,3 +90,423 @@ const SkBitmapProcState::SampleProc16 gSkBitmapProcStateSample16_neon[] = { |
// Don't support A8 -> 565 |
NULL, NULL, NULL, NULL |
}; |
+ |
+/////////////////////////////////////////////////////////////////////////////// |
+ |
+#include <arm_neon.h> |
+#include "SkConvolver.h" |
+ |
+// Convolves horizontally along a single row. The row data is given in |
+// |srcData| and continues for the numValues() of the filter. |
+void convolveHorizontally_neon(const unsigned char* srcData, |
+ const SkConvolutionFilter1D& filter, |
+ unsigned char* outRow, |
+ bool hasAlpha) { |
+ // Loop over each pixel on this row in the output image. |
+ int numValues = filter.numValues(); |
+ for (int outX = 0; outX < numValues; outX++) { |
+ uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100); |
+ uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302); |
+ uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504); |
+ uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706); |
+ // Get the filter that determines the current output pixel. |
+ int filterOffset, filterLength; |
+ const SkConvolutionFilter1D::ConvolutionFixed* filterValues = |
+ filter.FilterForValue(outX, &filterOffset, &filterLength); |
+ |
+ // Compute the first pixel in this row that the filter affects. It will |
+ // touch |filterLength| pixels (4 bytes each) after this. |
+ const unsigned char* rowToFilter = &srcData[filterOffset * 4]; |
+ |
+ // Apply the filter to the row to get the destination pixel in |accum|. |
+ int32x4_t accum = vdupq_n_s32(0); |
+ for (int filterX = 0; filterX < filterLength >> 2; filterX++) { |
+ // Load 4 coefficients |
+ int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3; |
+ coeffs = vld1_s16(filterValues); |
+ coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0)); |
+ coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1)); |
+ coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2)); |
+ coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3)); |
+ |
+ // Load pixels and calc |
+ uint8x16_t pixels = vld1q_u8(rowToFilter); |
+ int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); |
+ int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); |
+ |
+ int16x4_t p0_src = vget_low_s16(p01_16); |
+ int16x4_t p1_src = vget_high_s16(p01_16); |
+ int16x4_t p2_src = vget_low_s16(p23_16); |
+ int16x4_t p3_src = vget_high_s16(p23_16); |
+ |
+ int32x4_t p0 = vmull_s16(p0_src, coeff0); |
+ int32x4_t p1 = vmull_s16(p1_src, coeff1); |
+ int32x4_t p2 = vmull_s16(p2_src, coeff2); |
+ int32x4_t p3 = vmull_s16(p3_src, coeff3); |
+ |
+ accum += p0; |
+ accum += p1; |
+ accum += p2; |
+ accum += p3; |
+ |
+ // Advance the pointers |
+ rowToFilter += 16; |
+ filterValues += 4; |
+ } |
+ int r = filterLength & 3; |
+ if (r) { |
+ const uint16_t mask[4][4] = { |
+ {0, 0, 0, 0}, |
+ {0xFFFF, 0, 0, 0}, |
+ {0xFFFF, 0xFFFF, 0, 0}, |
+ {0xFFFF, 0xFFFF, 0xFFFF, 0} |
+ }; |
+ uint16x4_t coeffs; |
+ int16x4_t coeff0, coeff1, coeff2; |
+ coeffs = vld1_u16(reinterpret_cast<const uint16_t*>(filterValues)); |
+ coeffs &= vld1_u16(&mask[r][0]); |
+ coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask0)); |
+ coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask1)); |
+ coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask2)); |
+ |
+ // Load pixels and calc |
+ uint8x16_t pixels = vld1q_u8(rowToFilter); |
+ int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); |
+ int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); |
+ int32x4_t p0 = vmull_s16(vget_low_s16(p01_16), coeff0); |
+ int32x4_t p1 = vmull_s16(vget_high_s16(p01_16), coeff1); |
+ int32x4_t p2 = vmull_s16(vget_low_s16(p23_16), coeff2); |
+ |
+ accum += p0; |
+ accum += p1; |
+ accum += p2; |
+ } |
+ |
+ // Bring this value back in range. All of the filter scaling factors |
+ // are in fixed point with kShiftBits bits of fractional part. |
+ accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits); |
+ |
+ // Pack and store the new pixel. |
+ int16x4_t accum16 = vqmovn_s32(accum); |
+ uint8x8_t accum8 = vqmovun_s16(vcombine_s16(accum16, accum16)); |
+ vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow), vreinterpret_u32_u8(accum8), 0); |
+ outRow += 4; |
+ } |
+} |
+ |
+// Does vertical convolution to produce one output row. The filter values and |
+// length are given in the first two parameters. These are applied to each |
+// of the rows pointed to in the |sourceDataRows| array, with each row |
+// being |pixelWidth| wide. |
+// |
+// The output must have room for |pixelWidth * 4| bytes. |
+template<bool hasAlpha> |
+void convolveVertically_neon(const SkConvolutionFilter1D::ConvolutionFixed* filterValues, |
+ int filterLength, |
+ unsigned char* const* sourceDataRows, |
+ int pixelWidth, |
+ unsigned char* outRow) { |
+ int width = pixelWidth & ~3; |
+ |
+ int32x4_t accum0, accum1, accum2, accum3; |
+ int16x4_t coeff16; |
+ |
+ // Output four pixels per iteration (16 bytes). |
+ for (int outX = 0; outX < width; outX += 4) { |
+ |
+ // Accumulated result for each pixel. 32 bits per RGBA channel. |
+ accum0 = accum1 = accum2 = accum3 = vdupq_n_s32(0); |
+ |
+ // Convolve with one filter coefficient per iteration. |
+ for (int filterY = 0; filterY < filterLength; filterY++) { |
+ |
+ // Duplicate the filter coefficient 4 times. |
+ // [16] cj cj cj cj |
+ coeff16 = vdup_n_s16(filterValues[filterY]); |
+ |
+ // Load four pixels (16 bytes) together. |
+ // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
+ uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][outX << 2]); |
+ |
+ int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8))); |
+ int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8))); |
+ int16x4_t src16_0 = vget_low_s16(src16_01); |
+ int16x4_t src16_1 = vget_high_s16(src16_01); |
+ int16x4_t src16_2 = vget_low_s16(src16_23); |
+ int16x4_t src16_3 = vget_high_s16(src16_23); |
+ |
+ accum0 += vmull_s16(src16_0, coeff16); |
+ accum1 += vmull_s16(src16_1, coeff16); |
+ accum2 += vmull_s16(src16_2, coeff16); |
+ accum3 += vmull_s16(src16_3, coeff16); |
+ } |
+ |
+ // Shift right for fixed point implementation. |
+ accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits); |
+ accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits); |
+ accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits); |
+ accum3 = vshrq_n_s32(accum3, SkConvolutionFilter1D::kShiftBits); |
+ |
+ // Packing 32 bits |accum| to 16 bits per channel (signed saturation). |
+ // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
+ int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1)); |
+ // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
+ int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum3)); |
+ |
+ // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). |
+ // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
+ uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accum16_1)); |
+ |
+ if (hasAlpha) { |
+ // Compute the max(ri, gi, bi) for each pixel. |
+ // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 |
+ uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8)); |
+ // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
+ uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g |
+ // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 |
+ a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16)); |
+ // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
+ b = vmaxq_u8(a, b); // Max of r and g and b. |
+ // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 |
+ b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24)); |
+ |
+ // Make sure the value of alpha channel is always larger than maximum |
+ // value of color channels. |
+ accum8 = vmaxq_u8(b, accum8); |
+ } else { |
+ // Set value of alpha channels to 0xFF. |
+ accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000)); |
+ } |
+ |
+ // Store the convolution result (16 bytes) and advance the pixel pointers. |
+ vst1q_u8(outRow, accum8); |
+ outRow += 16; |
+ } |
+ |
+ // Process the leftovers when the width of the output is not divisible |
+ // by 4, that is at most 3 pixels. |
+ int r = pixelWidth & 3; |
+ if (r) { |
+ |
+ accum0 = accum1 = accum2 = vdupq_n_s32(0); |
+ |
+ for (int filterY = 0; filterY < filterLength; ++filterY) { |
+ coeff16 = vdup_n_s16(filterValues[filterY]); |
+ |
+ // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
+ uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][width << 2]); |
+ |
+ int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8))); |
+ int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8))); |
+ int16x4_t src16_0 = vget_low_s16(src16_01); |
+ int16x4_t src16_1 = vget_high_s16(src16_01); |
+ int16x4_t src16_2 = vget_low_s16(src16_23); |
+ |
+ accum0 += vmull_s16(src16_0, coeff16); |
+ accum1 += vmull_s16(src16_1, coeff16); |
+ accum2 += vmull_s16(src16_2, coeff16); |
+ } |
+ |
+ accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits); |
+ accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits); |
+ accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits); |
+ |
+ int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1)); |
+ int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum2)); |
+ |
+ uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accum16_1)); |
+ |
+ if (hasAlpha) { |
+ // Compute the max(ri, gi, bi) for each pixel. |
+ // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 |
+ uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8)); |
+ // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
+ uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g |
+ // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 |
+ a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16)); |
+ // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
+ b = vmaxq_u8(a, b); // Max of r and g and b. |
+ // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 |
+ b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24)); |
+ |
+ // Make sure the value of alpha channel is always larger than maximum |
+ // value of color channels. |
+ accum8 = vmaxq_u8(b, accum8); |
+ } else { |
+ // Set value of alpha channels to 0xFF. |
+ accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000)); |
+ } |
+ |
+ switch(r) { |
+ case 1: |
+ vst1q_lane_u32(reinterpret_cast<uint32_t*>(outRow), vreinterpretq_u32_u8(accum8), 0); |
+ break; |
+ case 2: |
+ vst1_u32(reinterpret_cast<uint32_t*>(outRow), |
+ vreinterpret_u32_u8(vget_low_u8(accum8))); |
+ break; |
+ case 3: |
+ vst1_u32(reinterpret_cast<uint32_t*>(outRow), |
+ vreinterpret_u32_u8(vget_low_u8(accum8))); |
+ vst1q_lane_u32(reinterpret_cast<uint32_t*>(outRow+8), vreinterpretq_u32_u8(accum8), 2); |
+ break; |
+ } |
+ } |
+} |
+ |
+void convolveVertically_neon(const SkConvolutionFilter1D::ConvolutionFixed* filterValues, |
+ int filterLength, |
+ unsigned char* const* sourceDataRows, |
+ int pixelWidth, |
+ unsigned char* outRow, |
+ bool sourceHasAlpha) { |
+ if (sourceHasAlpha) { |
+ convolveVertically_neon<true>(filterValues, filterLength, |
+ sourceDataRows, pixelWidth, |
+ outRow); |
+ } else { |
+ convolveVertically_neon<false>(filterValues, filterLength, |
+ sourceDataRows, pixelWidth, |
+ outRow); |
+ } |
+} |
+ |
+// Convolves horizontally along four rows. The row data is given in |
+// |src_data| and continues for the num_values() of the filter. |
+// The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please |
+// refer to that function for detailed comments. |
+void convolve4RowsHorizontally_neon(const unsigned char* srcData[4], |
+ const SkConvolutionFilter1D& filter, |
+ unsigned char* outRow[4]) { |
+ |
+ uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100); |
+ uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302); |
+ uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504); |
+ uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706); |
+ int num_values = filter.numValues(); |
+ |
+ int filterOffset, filterLength; |
+ // |mask| will be used to decimate all extra filter coefficients that are |
+ // loaded by SIMD when |filter_length| is not divisible by 4. |
+ // mask[0] is not used in following algorithm. |
+ const uint16_t mask[4][4] = { |
+ {0, 0, 0, 0}, |
+ {0xFFFF, 0, 0, 0}, |
+ {0xFFFF, 0xFFFF, 0, 0}, |
+ {0xFFFF, 0xFFFF, 0xFFFF, 0} |
+ }; |
+ |
+ // Output one pixel each iteration, calculating all channels (RGBA) together. |
+ for (int outX = 0; outX < num_values; outX++) { |
+ |
+ const SkConvolutionFilter1D::ConvolutionFixed* filterValues = |
+ filter.FilterForValue(outX, &filterOffset, &filterLength); |
+ |
+ // four pixels in a column per iteration. |
+ int32x4_t accum0 = vdupq_n_s32(0); |
+ int32x4_t accum1 = vdupq_n_s32(0); |
+ int32x4_t accum2 = vdupq_n_s32(0); |
+ int32x4_t accum3 = vdupq_n_s32(0); |
+ |
+ int start = (filterOffset<<2); |
+ |
+ // We will load and accumulate with four coefficients per iteration. |
+ for (int filter_x = 0; filter_x < (filterLength >> 2); filter_x++) { |
+ int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3; |
+ |
+ coeffs = vld1_s16(filterValues); |
+ coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0)); |
+ coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1)); |
+ coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2)); |
+ coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3)); |
+ |
+ uint8x16_t pixels; |
+ int16x8_t p01_16, p23_16; |
+ int32x4_t p0, p1, p2, p3; |
+ |
+ |
+#define ITERATION(src, accum) \ |
+ pixels = vld1q_u8(src); \ |
+ p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); \ |
+ p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); \ |
+ p0 = vmull_s16(vget_low_s16(p01_16), coeff0); \ |
+ p1 = vmull_s16(vget_high_s16(p01_16), coeff1); \ |
+ p2 = vmull_s16(vget_low_s16(p23_16), coeff2); \ |
+ p3 = vmull_s16(vget_high_s16(p23_16), coeff3); \ |
+ accum += p0; \ |
+ accum += p1; \ |
+ accum += p2; \ |
+ accum += p3 |
+ |
+ ITERATION(srcData[0] + start, accum0); |
+ ITERATION(srcData[1] + start, accum1); |
+ ITERATION(srcData[2] + start, accum2); |
+ ITERATION(srcData[3] + start, accum3); |
+ |
+ start += 16; |
+ filterValues += 4; |
+ } |
+ |
+ int r = filterLength & 3; |
+ if (r) { |
+ int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3; |
+ coeffs = vld1_s16(filterValues); |
+ coeffs &= vreinterpret_s16_u16(vld1_u16(&mask[r][0])); |
+ coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0)); |
+ coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1)); |
+ coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2)); |
+ coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3)); |
+ |
+ uint8x16_t pixels; |
+ int16x8_t p01_16, p23_16; |
+ int32x4_t p0, p1, p2, p3; |
+ |
+ ITERATION(srcData[0] + start, accum0); |
+ ITERATION(srcData[1] + start, accum1); |
+ ITERATION(srcData[2] + start, accum2); |
+ ITERATION(srcData[3] + start, accum3); |
+ } |
+ |
+ int16x4_t accum16; |
+ uint8x8_t res0, res1, res2, res3; |
+ |
+#define PACK_RESULT(accum, res) \ |
+ accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits); \ |
+ accum16 = vqmovn_s32(accum); \ |
+ res = vqmovun_s16(vcombine_s16(accum16, accum16)); |
+ |
+ PACK_RESULT(accum0, res0); |
+ PACK_RESULT(accum1, res1); |
+ PACK_RESULT(accum2, res2); |
+ PACK_RESULT(accum3, res3); |
+ |
+ vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[0]), vreinterpret_u32_u8(res0), 0); |
+ vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[1]), vreinterpret_u32_u8(res1), 0); |
+ vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[2]), vreinterpret_u32_u8(res2), 0); |
+ vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[3]), vreinterpret_u32_u8(res3), 0); |
+ outRow[0] += 4; |
+ outRow[1] += 4; |
+ outRow[2] += 4; |
+ outRow[3] += 4; |
+ } |
+} |
+ |
+void applySIMDPadding_neon(SkConvolutionFilter1D *filter) { |
+ // Padding |paddingCount| of more dummy coefficients after the coefficients |
+ // of last filter to prevent SIMD instructions which load 8 or 16 bytes |
+ // together to access invalid memory areas. We are not trying to align the |
+ // coefficients right now due to the opaqueness of <vector> implementation. |
+ // This has to be done after all |AddFilter| calls. |
+ for (int i = 0; i < 8; ++i) { |
+ filter->addFilterValue(static_cast<SkConvolutionFilter1D::ConvolutionFixed>(0)); |
+ } |
+} |
+ |
+void platformConvolutionProcs_arm_neon(SkConvolutionProcs* procs) { |
+ procs->fExtraHorizontalReads = 3; |
+ procs->fConvolveVertically = &convolveVertically_neon; |
+ procs->fConvolve4RowsHorizontally = &convolve4RowsHorizontally_neon; |
+ procs->fConvolveHorizontally = &convolveHorizontally_neon; |
+ procs->fApplySIMDPadding = &applySIMDPadding_neon; |
+} |
+ |