| Index: src/opts/SkBitmapProcState_arm_neon.cpp
|
| diff --git a/src/opts/SkBitmapProcState_arm_neon.cpp b/src/opts/SkBitmapProcState_arm_neon.cpp
|
| index d50707dce0c7e5a03618eeb697dac986c0def59f..35ba462c82a31a20c3b23c981b381c6e7332a6d4 100644
|
| --- a/src/opts/SkBitmapProcState_arm_neon.cpp
|
| +++ b/src/opts/SkBitmapProcState_arm_neon.cpp
|
| @@ -90,3 +90,423 @@ const SkBitmapProcState::SampleProc16 gSkBitmapProcStateSample16_neon[] = {
|
| // Don't support A8 -> 565
|
| NULL, NULL, NULL, NULL
|
| };
|
| +
|
| +///////////////////////////////////////////////////////////////////////////////
|
| +
|
| +#include <arm_neon.h>
|
| +#include "SkConvolver.h"
|
| +
|
| +// Convolves horizontally along a single row. The row data is given in
|
| +// |srcData| and continues for the numValues() of the filter.
|
| +void convolveHorizontally_neon(const unsigned char* srcData,
|
| + const SkConvolutionFilter1D& filter,
|
| + unsigned char* outRow,
|
| + bool hasAlpha) {
|
| + // Loop over each pixel on this row in the output image.
|
| + int numValues = filter.numValues();
|
| + for (int outX = 0; outX < numValues; outX++) {
|
| + uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100);
|
| + uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302);
|
| + uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504);
|
| + uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706);
|
| + // Get the filter that determines the current output pixel.
|
| + int filterOffset, filterLength;
|
| + const SkConvolutionFilter1D::ConvolutionFixed* filterValues =
|
| + filter.FilterForValue(outX, &filterOffset, &filterLength);
|
| +
|
| + // Compute the first pixel in this row that the filter affects. It will
|
| + // touch |filterLength| pixels (4 bytes each) after this.
|
| + const unsigned char* rowToFilter = &srcData[filterOffset * 4];
|
| +
|
| + // Apply the filter to the row to get the destination pixel in |accum|.
|
| + int32x4_t accum = vdupq_n_s32(0);
|
| + for (int filterX = 0; filterX < filterLength >> 2; filterX++) {
|
| + // Load 4 coefficients
|
| + int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3;
|
| + coeffs = vld1_s16(filterValues);
|
| + coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0));
|
| + coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1));
|
| + coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2));
|
| + coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3));
|
| +
|
| + // Load pixels and calc
|
| + uint8x16_t pixels = vld1q_u8(rowToFilter);
|
| + int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels)));
|
| + int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels)));
|
| +
|
| + int16x4_t p0_src = vget_low_s16(p01_16);
|
| + int16x4_t p1_src = vget_high_s16(p01_16);
|
| + int16x4_t p2_src = vget_low_s16(p23_16);
|
| + int16x4_t p3_src = vget_high_s16(p23_16);
|
| +
|
| + int32x4_t p0 = vmull_s16(p0_src, coeff0);
|
| + int32x4_t p1 = vmull_s16(p1_src, coeff1);
|
| + int32x4_t p2 = vmull_s16(p2_src, coeff2);
|
| + int32x4_t p3 = vmull_s16(p3_src, coeff3);
|
| +
|
| + accum += p0;
|
| + accum += p1;
|
| + accum += p2;
|
| + accum += p3;
|
| +
|
| + // Advance the pointers
|
| + rowToFilter += 16;
|
| + filterValues += 4;
|
| + }
|
| + int r = filterLength & 3;
|
| + if (r) {
|
| + const uint16_t mask[4][4] = {
|
| + {0, 0, 0, 0},
|
| + {0xFFFF, 0, 0, 0},
|
| + {0xFFFF, 0xFFFF, 0, 0},
|
| + {0xFFFF, 0xFFFF, 0xFFFF, 0}
|
| + };
|
| + uint16x4_t coeffs;
|
| + int16x4_t coeff0, coeff1, coeff2;
|
| + coeffs = vld1_u16(reinterpret_cast<const uint16_t*>(filterValues));
|
| + coeffs &= vld1_u16(&mask[r][0]);
|
| + coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask0));
|
| + coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask1));
|
| + coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), coeff_mask2));
|
| +
|
| + // Load pixels and calc
|
| + uint8x16_t pixels = vld1q_u8(rowToFilter);
|
| + int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels)));
|
| + int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels)));
|
| + int32x4_t p0 = vmull_s16(vget_low_s16(p01_16), coeff0);
|
| + int32x4_t p1 = vmull_s16(vget_high_s16(p01_16), coeff1);
|
| + int32x4_t p2 = vmull_s16(vget_low_s16(p23_16), coeff2);
|
| +
|
| + accum += p0;
|
| + accum += p1;
|
| + accum += p2;
|
| + }
|
| +
|
| + // Bring this value back in range. All of the filter scaling factors
|
| + // are in fixed point with kShiftBits bits of fractional part.
|
| + accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits);
|
| +
|
| + // Pack and store the new pixel.
|
| + int16x4_t accum16 = vqmovn_s32(accum);
|
| + uint8x8_t accum8 = vqmovun_s16(vcombine_s16(accum16, accum16));
|
| + vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow), vreinterpret_u32_u8(accum8), 0);
|
| + outRow += 4;
|
| + }
|
| +}
|
| +
|
| +// Does vertical convolution to produce one output row. The filter values and
|
| +// length are given in the first two parameters. These are applied to each
|
| +// of the rows pointed to in the |sourceDataRows| array, with each row
|
| +// being |pixelWidth| wide.
|
| +//
|
| +// The output must have room for |pixelWidth * 4| bytes.
|
| +template<bool hasAlpha>
|
| +void convolveVertically_neon(const SkConvolutionFilter1D::ConvolutionFixed* filterValues,
|
| + int filterLength,
|
| + unsigned char* const* sourceDataRows,
|
| + int pixelWidth,
|
| + unsigned char* outRow) {
|
| + int width = pixelWidth & ~3;
|
| +
|
| + int32x4_t accum0, accum1, accum2, accum3;
|
| + int16x4_t coeff16;
|
| +
|
| + // Output four pixels per iteration (16 bytes).
|
| + for (int outX = 0; outX < width; outX += 4) {
|
| +
|
| + // Accumulated result for each pixel. 32 bits per RGBA channel.
|
| + accum0 = accum1 = accum2 = accum3 = vdupq_n_s32(0);
|
| +
|
| + // Convolve with one filter coefficient per iteration.
|
| + for (int filterY = 0; filterY < filterLength; filterY++) {
|
| +
|
| + // Duplicate the filter coefficient 4 times.
|
| + // [16] cj cj cj cj
|
| + coeff16 = vdup_n_s16(filterValues[filterY]);
|
| +
|
| + // Load four pixels (16 bytes) together.
|
| + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
| + uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][outX << 2]);
|
| +
|
| + int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8)));
|
| + int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8)));
|
| + int16x4_t src16_0 = vget_low_s16(src16_01);
|
| + int16x4_t src16_1 = vget_high_s16(src16_01);
|
| + int16x4_t src16_2 = vget_low_s16(src16_23);
|
| + int16x4_t src16_3 = vget_high_s16(src16_23);
|
| +
|
| + accum0 += vmull_s16(src16_0, coeff16);
|
| + accum1 += vmull_s16(src16_1, coeff16);
|
| + accum2 += vmull_s16(src16_2, coeff16);
|
| + accum3 += vmull_s16(src16_3, coeff16);
|
| + }
|
| +
|
| + // Shift right for fixed point implementation.
|
| + accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits);
|
| + accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits);
|
| + accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits);
|
| + accum3 = vshrq_n_s32(accum3, SkConvolutionFilter1D::kShiftBits);
|
| +
|
| + // Packing 32 bits |accum| to 16 bits per channel (signed saturation).
|
| + // [16] a1 b1 g1 r1 a0 b0 g0 r0
|
| + int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1));
|
| + // [16] a3 b3 g3 r3 a2 b2 g2 r2
|
| + int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum3));
|
| +
|
| + // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation).
|
| + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
| + uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accum16_1));
|
| +
|
| + if (hasAlpha) {
|
| + // Compute the max(ri, gi, bi) for each pixel.
|
| + // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
|
| + uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8));
|
| + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
| + uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g
|
| + // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
|
| + a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16));
|
| + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
| + b = vmaxq_u8(a, b); // Max of r and g and b.
|
| + // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
|
| + b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24));
|
| +
|
| + // Make sure the value of alpha channel is always larger than maximum
|
| + // value of color channels.
|
| + accum8 = vmaxq_u8(b, accum8);
|
| + } else {
|
| + // Set value of alpha channels to 0xFF.
|
| + accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000));
|
| + }
|
| +
|
| + // Store the convolution result (16 bytes) and advance the pixel pointers.
|
| + vst1q_u8(outRow, accum8);
|
| + outRow += 16;
|
| + }
|
| +
|
| + // Process the leftovers when the width of the output is not divisible
|
| + // by 4, that is at most 3 pixels.
|
| + int r = pixelWidth & 3;
|
| + if (r) {
|
| +
|
| + accum0 = accum1 = accum2 = vdupq_n_s32(0);
|
| +
|
| + for (int filterY = 0; filterY < filterLength; ++filterY) {
|
| + coeff16 = vdup_n_s16(filterValues[filterY]);
|
| +
|
| + // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0
|
| + uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][width << 2]);
|
| +
|
| + int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8)));
|
| + int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src8)));
|
| + int16x4_t src16_0 = vget_low_s16(src16_01);
|
| + int16x4_t src16_1 = vget_high_s16(src16_01);
|
| + int16x4_t src16_2 = vget_low_s16(src16_23);
|
| +
|
| + accum0 += vmull_s16(src16_0, coeff16);
|
| + accum1 += vmull_s16(src16_1, coeff16);
|
| + accum2 += vmull_s16(src16_2, coeff16);
|
| + }
|
| +
|
| + accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits);
|
| + accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits);
|
| + accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits);
|
| +
|
| + int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1));
|
| + int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum2));
|
| +
|
| + uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accum16_1));
|
| +
|
| + if (hasAlpha) {
|
| + // Compute the max(ri, gi, bi) for each pixel.
|
| + // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0
|
| + uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 8));
|
| + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
| + uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g
|
| + // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0
|
| + a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 16));
|
| + // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0
|
| + b = vmaxq_u8(a, b); // Max of r and g and b.
|
| + // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00
|
| + b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24));
|
| +
|
| + // Make sure the value of alpha channel is always larger than maximum
|
| + // value of color channels.
|
| + accum8 = vmaxq_u8(b, accum8);
|
| + } else {
|
| + // Set value of alpha channels to 0xFF.
|
| + accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n_u32(0xFF000000));
|
| + }
|
| +
|
| + switch(r) {
|
| + case 1:
|
| + vst1q_lane_u32(reinterpret_cast<uint32_t*>(outRow), vreinterpretq_u32_u8(accum8), 0);
|
| + break;
|
| + case 2:
|
| + vst1_u32(reinterpret_cast<uint32_t*>(outRow),
|
| + vreinterpret_u32_u8(vget_low_u8(accum8)));
|
| + break;
|
| + case 3:
|
| + vst1_u32(reinterpret_cast<uint32_t*>(outRow),
|
| + vreinterpret_u32_u8(vget_low_u8(accum8)));
|
| + vst1q_lane_u32(reinterpret_cast<uint32_t*>(outRow+8), vreinterpretq_u32_u8(accum8), 2);
|
| + break;
|
| + }
|
| + }
|
| +}
|
| +
|
| +void convolveVertically_neon(const SkConvolutionFilter1D::ConvolutionFixed* filterValues,
|
| + int filterLength,
|
| + unsigned char* const* sourceDataRows,
|
| + int pixelWidth,
|
| + unsigned char* outRow,
|
| + bool sourceHasAlpha) {
|
| + if (sourceHasAlpha) {
|
| + convolveVertically_neon<true>(filterValues, filterLength,
|
| + sourceDataRows, pixelWidth,
|
| + outRow);
|
| + } else {
|
| + convolveVertically_neon<false>(filterValues, filterLength,
|
| + sourceDataRows, pixelWidth,
|
| + outRow);
|
| + }
|
| +}
|
| +
|
| +// Convolves horizontally along four rows. The row data is given in
|
| +// |src_data| and continues for the num_values() of the filter.
|
| +// The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please
|
| +// refer to that function for detailed comments.
|
| +void convolve4RowsHorizontally_neon(const unsigned char* srcData[4],
|
| + const SkConvolutionFilter1D& filter,
|
| + unsigned char* outRow[4]) {
|
| +
|
| + uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100);
|
| + uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302);
|
| + uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504);
|
| + uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706);
|
| + int num_values = filter.numValues();
|
| +
|
| + int filterOffset, filterLength;
|
| + // |mask| will be used to decimate all extra filter coefficients that are
|
| + // loaded by SIMD when |filter_length| is not divisible by 4.
|
| + // mask[0] is not used in following algorithm.
|
| + const uint16_t mask[4][4] = {
|
| + {0, 0, 0, 0},
|
| + {0xFFFF, 0, 0, 0},
|
| + {0xFFFF, 0xFFFF, 0, 0},
|
| + {0xFFFF, 0xFFFF, 0xFFFF, 0}
|
| + };
|
| +
|
| + // Output one pixel each iteration, calculating all channels (RGBA) together.
|
| + for (int outX = 0; outX < num_values; outX++) {
|
| +
|
| + const SkConvolutionFilter1D::ConvolutionFixed* filterValues =
|
| + filter.FilterForValue(outX, &filterOffset, &filterLength);
|
| +
|
| + // four pixels in a column per iteration.
|
| + int32x4_t accum0 = vdupq_n_s32(0);
|
| + int32x4_t accum1 = vdupq_n_s32(0);
|
| + int32x4_t accum2 = vdupq_n_s32(0);
|
| + int32x4_t accum3 = vdupq_n_s32(0);
|
| +
|
| + int start = (filterOffset<<2);
|
| +
|
| + // We will load and accumulate with four coefficients per iteration.
|
| + for (int filter_x = 0; filter_x < (filterLength >> 2); filter_x++) {
|
| + int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3;
|
| +
|
| + coeffs = vld1_s16(filterValues);
|
| + coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0));
|
| + coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1));
|
| + coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2));
|
| + coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3));
|
| +
|
| + uint8x16_t pixels;
|
| + int16x8_t p01_16, p23_16;
|
| + int32x4_t p0, p1, p2, p3;
|
| +
|
| +
|
| +#define ITERATION(src, accum) \
|
| + pixels = vld1q_u8(src); \
|
| + p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); \
|
| + p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); \
|
| + p0 = vmull_s16(vget_low_s16(p01_16), coeff0); \
|
| + p1 = vmull_s16(vget_high_s16(p01_16), coeff1); \
|
| + p2 = vmull_s16(vget_low_s16(p23_16), coeff2); \
|
| + p3 = vmull_s16(vget_high_s16(p23_16), coeff3); \
|
| + accum += p0; \
|
| + accum += p1; \
|
| + accum += p2; \
|
| + accum += p3
|
| +
|
| + ITERATION(srcData[0] + start, accum0);
|
| + ITERATION(srcData[1] + start, accum1);
|
| + ITERATION(srcData[2] + start, accum2);
|
| + ITERATION(srcData[3] + start, accum3);
|
| +
|
| + start += 16;
|
| + filterValues += 4;
|
| + }
|
| +
|
| + int r = filterLength & 3;
|
| + if (r) {
|
| + int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3;
|
| + coeffs = vld1_s16(filterValues);
|
| + coeffs &= vreinterpret_s16_u16(vld1_u16(&mask[r][0]));
|
| + coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask0));
|
| + coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask1));
|
| + coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask2));
|
| + coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), coeff_mask3));
|
| +
|
| + uint8x16_t pixels;
|
| + int16x8_t p01_16, p23_16;
|
| + int32x4_t p0, p1, p2, p3;
|
| +
|
| + ITERATION(srcData[0] + start, accum0);
|
| + ITERATION(srcData[1] + start, accum1);
|
| + ITERATION(srcData[2] + start, accum2);
|
| + ITERATION(srcData[3] + start, accum3);
|
| + }
|
| +
|
| + int16x4_t accum16;
|
| + uint8x8_t res0, res1, res2, res3;
|
| +
|
| +#define PACK_RESULT(accum, res) \
|
| + accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits); \
|
| + accum16 = vqmovn_s32(accum); \
|
| + res = vqmovun_s16(vcombine_s16(accum16, accum16));
|
| +
|
| + PACK_RESULT(accum0, res0);
|
| + PACK_RESULT(accum1, res1);
|
| + PACK_RESULT(accum2, res2);
|
| + PACK_RESULT(accum3, res3);
|
| +
|
| + vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[0]), vreinterpret_u32_u8(res0), 0);
|
| + vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[1]), vreinterpret_u32_u8(res1), 0);
|
| + vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[2]), vreinterpret_u32_u8(res2), 0);
|
| + vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[3]), vreinterpret_u32_u8(res3), 0);
|
| + outRow[0] += 4;
|
| + outRow[1] += 4;
|
| + outRow[2] += 4;
|
| + outRow[3] += 4;
|
| + }
|
| +}
|
| +
|
| +void applySIMDPadding_neon(SkConvolutionFilter1D *filter) {
|
| + // Padding |paddingCount| of more dummy coefficients after the coefficients
|
| + // of last filter to prevent SIMD instructions which load 8 or 16 bytes
|
| + // together to access invalid memory areas. We are not trying to align the
|
| + // coefficients right now due to the opaqueness of <vector> implementation.
|
| + // This has to be done after all |AddFilter| calls.
|
| + for (int i = 0; i < 8; ++i) {
|
| + filter->addFilterValue(static_cast<SkConvolutionFilter1D::ConvolutionFixed>(0));
|
| + }
|
| +}
|
| +
|
| +void platformConvolutionProcs_arm_neon(SkConvolutionProcs* procs) {
|
| + procs->fExtraHorizontalReads = 3;
|
| + procs->fConvolveVertically = &convolveVertically_neon;
|
| + procs->fConvolve4RowsHorizontally = &convolve4RowsHorizontally_neon;
|
| + procs->fConvolveHorizontally = &convolveHorizontally_neon;
|
| + procs->fApplySIMDPadding = &applySIMDPadding_neon;
|
| +}
|
| +
|
|
|