OLD | NEW |
1 | 1 |
2 /* | 2 /* |
3 * Copyright 2012 Google Inc. | 3 * Copyright 2012 Google Inc. |
4 * | 4 * |
5 * Use of this source code is governed by a BSD-style license that can be | 5 * Use of this source code is governed by a BSD-style license that can be |
6 * found in the LICENSE file. | 6 * found in the LICENSE file. |
7 */ | 7 */ |
8 #include "SkBitmapProcState.h" | 8 #include "SkBitmapProcState.h" |
9 #include "SkBitmapProcState_filter.h" | 9 #include "SkBitmapProcState_filter.h" |
10 #include "SkColorPriv.h" | 10 #include "SkColorPriv.h" |
(...skipping 72 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
83 SI8_D16_nofilter_DXDY_neon, | 83 SI8_D16_nofilter_DXDY_neon, |
84 SI8_D16_nofilter_DX_neon, | 84 SI8_D16_nofilter_DX_neon, |
85 SI8_D16_filter_DXDY_neon, | 85 SI8_D16_filter_DXDY_neon, |
86 SI8_D16_filter_DX_neon, | 86 SI8_D16_filter_DX_neon, |
87 | 87 |
88 // Don't support 4444 -> 565 | 88 // Don't support 4444 -> 565 |
89 NULL, NULL, NULL, NULL, | 89 NULL, NULL, NULL, NULL, |
90 // Don't support A8 -> 565 | 90 // Don't support A8 -> 565 |
91 NULL, NULL, NULL, NULL | 91 NULL, NULL, NULL, NULL |
92 }; | 92 }; |
| 93 |
| 94 /////////////////////////////////////////////////////////////////////////////// |
| 95 |
| 96 #include <arm_neon.h> |
| 97 #include "SkConvolver.h" |
| 98 |
| 99 // Convolves horizontally along a single row. The row data is given in |
| 100 // |srcData| and continues for the numValues() of the filter. |
| 101 void convolveHorizontally_neon(const unsigned char* srcData, |
| 102 const SkConvolutionFilter1D& filter, |
| 103 unsigned char* outRow, |
| 104 bool hasAlpha) { |
| 105 // Loop over each pixel on this row in the output image. |
| 106 int numValues = filter.numValues(); |
| 107 for (int outX = 0; outX < numValues; outX++) { |
| 108 uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100); |
| 109 uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302); |
| 110 uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504); |
| 111 uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706); |
| 112 // Get the filter that determines the current output pixel. |
| 113 int filterOffset, filterLength; |
| 114 const SkConvolutionFilter1D::ConvolutionFixed* filterValues = |
| 115 filter.FilterForValue(outX, &filterOffset, &filterLength); |
| 116 |
| 117 // Compute the first pixel in this row that the filter affects. It will |
| 118 // touch |filterLength| pixels (4 bytes each) after this. |
| 119 const unsigned char* rowToFilter = &srcData[filterOffset * 4]; |
| 120 |
| 121 // Apply the filter to the row to get the destination pixel in |accum|. |
| 122 int32x4_t accum = vdupq_n_s32(0); |
| 123 for (int filterX = 0; filterX < filterLength >> 2; filterX++) { |
| 124 // Load 4 coefficients |
| 125 int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3; |
| 126 coeffs = vld1_s16(filterValues); |
| 127 coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), c
oeff_mask0)); |
| 128 coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), c
oeff_mask1)); |
| 129 coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), c
oeff_mask2)); |
| 130 coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), c
oeff_mask3)); |
| 131 |
| 132 // Load pixels and calc |
| 133 uint8x16_t pixels = vld1q_u8(rowToFilter); |
| 134 int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels
))); |
| 135 int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixel
s))); |
| 136 |
| 137 int16x4_t p0_src = vget_low_s16(p01_16); |
| 138 int16x4_t p1_src = vget_high_s16(p01_16); |
| 139 int16x4_t p2_src = vget_low_s16(p23_16); |
| 140 int16x4_t p3_src = vget_high_s16(p23_16); |
| 141 |
| 142 int32x4_t p0 = vmull_s16(p0_src, coeff0); |
| 143 int32x4_t p1 = vmull_s16(p1_src, coeff1); |
| 144 int32x4_t p2 = vmull_s16(p2_src, coeff2); |
| 145 int32x4_t p3 = vmull_s16(p3_src, coeff3); |
| 146 |
| 147 accum += p0; |
| 148 accum += p1; |
| 149 accum += p2; |
| 150 accum += p3; |
| 151 |
| 152 // Advance the pointers |
| 153 rowToFilter += 16; |
| 154 filterValues += 4; |
| 155 } |
| 156 int r = filterLength & 3; |
| 157 if (r) { |
| 158 const uint16_t mask[4][4] = { |
| 159 {0, 0, 0, 0}, |
| 160 {0xFFFF, 0, 0, 0}, |
| 161 {0xFFFF, 0xFFFF, 0, 0}, |
| 162 {0xFFFF, 0xFFFF, 0xFFFF, 0} |
| 163 }; |
| 164 uint16x4_t coeffs; |
| 165 int16x4_t coeff0, coeff1, coeff2; |
| 166 coeffs = vld1_u16(reinterpret_cast<const uint16_t*>(filterValues)); |
| 167 coeffs &= vld1_u16(&mask[r][0]); |
| 168 coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), c
oeff_mask0)); |
| 169 coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), c
oeff_mask1)); |
| 170 coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_u16(coeffs), c
oeff_mask2)); |
| 171 |
| 172 // Load pixels and calc |
| 173 uint8x16_t pixels = vld1q_u8(rowToFilter); |
| 174 int16x8_t p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels
))); |
| 175 int16x8_t p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixel
s))); |
| 176 int32x4_t p0 = vmull_s16(vget_low_s16(p01_16), coeff0); |
| 177 int32x4_t p1 = vmull_s16(vget_high_s16(p01_16), coeff1); |
| 178 int32x4_t p2 = vmull_s16(vget_low_s16(p23_16), coeff2); |
| 179 |
| 180 accum += p0; |
| 181 accum += p1; |
| 182 accum += p2; |
| 183 } |
| 184 |
| 185 // Bring this value back in range. All of the filter scaling factors |
| 186 // are in fixed point with kShiftBits bits of fractional part. |
| 187 accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits); |
| 188 |
| 189 // Pack and store the new pixel. |
| 190 int16x4_t accum16 = vqmovn_s32(accum); |
| 191 uint8x8_t accum8 = vqmovun_s16(vcombine_s16(accum16, accum16)); |
| 192 vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow), vreinterpret_u32_u8(a
ccum8), 0); |
| 193 outRow += 4; |
| 194 } |
| 195 } |
| 196 |
| 197 // Does vertical convolution to produce one output row. The filter values and |
| 198 // length are given in the first two parameters. These are applied to each |
| 199 // of the rows pointed to in the |sourceDataRows| array, with each row |
| 200 // being |pixelWidth| wide. |
| 201 // |
| 202 // The output must have room for |pixelWidth * 4| bytes. |
| 203 template<bool hasAlpha> |
| 204 void convolveVertically_neon(const SkConvolutionFilter1D::ConvolutionFixed* filt
erValues, |
| 205 int filterLength, |
| 206 unsigned char* const* sourceDataRows, |
| 207 int pixelWidth, |
| 208 unsigned char* outRow) { |
| 209 int width = pixelWidth & ~3; |
| 210 |
| 211 int32x4_t accum0, accum1, accum2, accum3; |
| 212 int16x4_t coeff16; |
| 213 |
| 214 // Output four pixels per iteration (16 bytes). |
| 215 for (int outX = 0; outX < width; outX += 4) { |
| 216 |
| 217 // Accumulated result for each pixel. 32 bits per RGBA channel. |
| 218 accum0 = accum1 = accum2 = accum3 = vdupq_n_s32(0); |
| 219 |
| 220 // Convolve with one filter coefficient per iteration. |
| 221 for (int filterY = 0; filterY < filterLength; filterY++) { |
| 222 |
| 223 // Duplicate the filter coefficient 4 times. |
| 224 // [16] cj cj cj cj |
| 225 coeff16 = vdup_n_s16(filterValues[filterY]); |
| 226 |
| 227 // Load four pixels (16 bytes) together. |
| 228 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
| 229 uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][outX << 2]); |
| 230 |
| 231 int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8
))); |
| 232 int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src
8))); |
| 233 int16x4_t src16_0 = vget_low_s16(src16_01); |
| 234 int16x4_t src16_1 = vget_high_s16(src16_01); |
| 235 int16x4_t src16_2 = vget_low_s16(src16_23); |
| 236 int16x4_t src16_3 = vget_high_s16(src16_23); |
| 237 |
| 238 accum0 += vmull_s16(src16_0, coeff16); |
| 239 accum1 += vmull_s16(src16_1, coeff16); |
| 240 accum2 += vmull_s16(src16_2, coeff16); |
| 241 accum3 += vmull_s16(src16_3, coeff16); |
| 242 } |
| 243 |
| 244 // Shift right for fixed point implementation. |
| 245 accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits); |
| 246 accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits); |
| 247 accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits); |
| 248 accum3 = vshrq_n_s32(accum3, SkConvolutionFilter1D::kShiftBits); |
| 249 |
| 250 // Packing 32 bits |accum| to 16 bits per channel (signed saturation). |
| 251 // [16] a1 b1 g1 r1 a0 b0 g0 r0 |
| 252 int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1
)); |
| 253 // [16] a3 b3 g3 r3 a2 b2 g2 r2 |
| 254 int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum3
)); |
| 255 |
| 256 // Packing 16 bits |accum| to 8 bits per channel (unsigned saturation). |
| 257 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
| 258 uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accu
m16_1)); |
| 259 |
| 260 if (hasAlpha) { |
| 261 // Compute the max(ri, gi, bi) for each pixel. |
| 262 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 |
| 263 uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8
(accum8), 8)); |
| 264 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
| 265 uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g |
| 266 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 |
| 267 a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 1
6)); |
| 268 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
| 269 b = vmaxq_u8(a, b); // Max of r and g and b. |
| 270 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 |
| 271 b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24)); |
| 272 |
| 273 // Make sure the value of alpha channel is always larger than maximu
m |
| 274 // value of color channels. |
| 275 accum8 = vmaxq_u8(b, accum8); |
| 276 } else { |
| 277 // Set value of alpha channels to 0xFF. |
| 278 accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n
_u32(0xFF000000)); |
| 279 } |
| 280 |
| 281 // Store the convolution result (16 bytes) and advance the pixel pointer
s. |
| 282 vst1q_u8(outRow, accum8); |
| 283 outRow += 16; |
| 284 } |
| 285 |
| 286 // Process the leftovers when the width of the output is not divisible |
| 287 // by 4, that is at most 3 pixels. |
| 288 int r = pixelWidth & 3; |
| 289 if (r) { |
| 290 |
| 291 accum0 = accum1 = accum2 = vdupq_n_s32(0); |
| 292 |
| 293 for (int filterY = 0; filterY < filterLength; ++filterY) { |
| 294 coeff16 = vdup_n_s16(filterValues[filterY]); |
| 295 |
| 296 // [8] a3 b3 g3 r3 a2 b2 g2 r2 a1 b1 g1 r1 a0 b0 g0 r0 |
| 297 uint8x16_t src8 = vld1q_u8(&sourceDataRows[filterY][width << 2]); |
| 298 |
| 299 int16x8_t src16_01 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(src8
))); |
| 300 int16x8_t src16_23 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(src
8))); |
| 301 int16x4_t src16_0 = vget_low_s16(src16_01); |
| 302 int16x4_t src16_1 = vget_high_s16(src16_01); |
| 303 int16x4_t src16_2 = vget_low_s16(src16_23); |
| 304 |
| 305 accum0 += vmull_s16(src16_0, coeff16); |
| 306 accum1 += vmull_s16(src16_1, coeff16); |
| 307 accum2 += vmull_s16(src16_2, coeff16); |
| 308 } |
| 309 |
| 310 accum0 = vshrq_n_s32(accum0, SkConvolutionFilter1D::kShiftBits); |
| 311 accum1 = vshrq_n_s32(accum1, SkConvolutionFilter1D::kShiftBits); |
| 312 accum2 = vshrq_n_s32(accum2, SkConvolutionFilter1D::kShiftBits); |
| 313 |
| 314 int16x8_t accum16_0 = vcombine_s16(vqmovn_s32(accum0), vqmovn_s32(accum1
)); |
| 315 int16x8_t accum16_1 = vcombine_s16(vqmovn_s32(accum2), vqmovn_s32(accum2
)); |
| 316 |
| 317 uint8x16_t accum8 = vcombine_u8(vqmovun_s16(accum16_0), vqmovun_s16(accu
m16_1)); |
| 318 |
| 319 if (hasAlpha) { |
| 320 // Compute the max(ri, gi, bi) for each pixel. |
| 321 // [8] xx a3 b3 g3 xx a2 b2 g2 xx a1 b1 g1 xx a0 b0 g0 |
| 322 uint8x16_t a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8
(accum8), 8)); |
| 323 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
| 324 uint8x16_t b = vmaxq_u8(a, accum8); // Max of r and g |
| 325 // [8] xx xx a3 b3 xx xx a2 b2 xx xx a1 b1 xx xx a0 b0 |
| 326 a = vreinterpretq_u8_u32(vshrq_n_u32(vreinterpretq_u32_u8(accum8), 1
6)); |
| 327 // [8] xx xx xx max3 xx xx xx max2 xx xx xx max1 xx xx xx max0 |
| 328 b = vmaxq_u8(a, b); // Max of r and g and b. |
| 329 // [8] max3 00 00 00 max2 00 00 00 max1 00 00 00 max0 00 00 00 |
| 330 b = vreinterpretq_u8_u32(vshlq_n_u32(vreinterpretq_u32_u8(b), 24)); |
| 331 |
| 332 // Make sure the value of alpha channel is always larger than maximu
m |
| 333 // value of color channels. |
| 334 accum8 = vmaxq_u8(b, accum8); |
| 335 } else { |
| 336 // Set value of alpha channels to 0xFF. |
| 337 accum8 = vreinterpretq_u8_u32(vreinterpretq_u32_u8(accum8) | vdupq_n
_u32(0xFF000000)); |
| 338 } |
| 339 |
| 340 switch(r) { |
| 341 case 1: |
| 342 vst1q_lane_u32(reinterpret_cast<uint32_t*>(outRow), vreinterpretq_u3
2_u8(accum8), 0); |
| 343 break; |
| 344 case 2: |
| 345 vst1_u32(reinterpret_cast<uint32_t*>(outRow), |
| 346 vreinterpret_u32_u8(vget_low_u8(accum8))); |
| 347 break; |
| 348 case 3: |
| 349 vst1_u32(reinterpret_cast<uint32_t*>(outRow), |
| 350 vreinterpret_u32_u8(vget_low_u8(accum8))); |
| 351 vst1q_lane_u32(reinterpret_cast<uint32_t*>(outRow+8), vreinterpretq_
u32_u8(accum8), 2); |
| 352 break; |
| 353 } |
| 354 } |
| 355 } |
| 356 |
| 357 void convolveVertically_neon(const SkConvolutionFilter1D::ConvolutionFixed* filt
erValues, |
| 358 int filterLength, |
| 359 unsigned char* const* sourceDataRows, |
| 360 int pixelWidth, |
| 361 unsigned char* outRow, |
| 362 bool sourceHasAlpha) { |
| 363 if (sourceHasAlpha) { |
| 364 convolveVertically_neon<true>(filterValues, filterLength, |
| 365 sourceDataRows, pixelWidth, |
| 366 outRow); |
| 367 } else { |
| 368 convolveVertically_neon<false>(filterValues, filterLength, |
| 369 sourceDataRows, pixelWidth, |
| 370 outRow); |
| 371 } |
| 372 } |
| 373 |
| 374 // Convolves horizontally along four rows. The row data is given in |
| 375 // |src_data| and continues for the num_values() of the filter. |
| 376 // The algorithm is almost same as |ConvolveHorizontally_SSE2|. Please |
| 377 // refer to that function for detailed comments. |
| 378 void convolve4RowsHorizontally_neon(const unsigned char* srcData[4], |
| 379 const SkConvolutionFilter1D& filter, |
| 380 unsigned char* outRow[4]) { |
| 381 |
| 382 uint8x8_t coeff_mask0 = vcreate_u8(0x0100010001000100); |
| 383 uint8x8_t coeff_mask1 = vcreate_u8(0x0302030203020302); |
| 384 uint8x8_t coeff_mask2 = vcreate_u8(0x0504050405040504); |
| 385 uint8x8_t coeff_mask3 = vcreate_u8(0x0706070607060706); |
| 386 int num_values = filter.numValues(); |
| 387 |
| 388 int filterOffset, filterLength; |
| 389 // |mask| will be used to decimate all extra filter coefficients that are |
| 390 // loaded by SIMD when |filter_length| is not divisible by 4. |
| 391 // mask[0] is not used in following algorithm. |
| 392 const uint16_t mask[4][4] = { |
| 393 {0, 0, 0, 0}, |
| 394 {0xFFFF, 0, 0, 0}, |
| 395 {0xFFFF, 0xFFFF, 0, 0}, |
| 396 {0xFFFF, 0xFFFF, 0xFFFF, 0} |
| 397 }; |
| 398 |
| 399 // Output one pixel each iteration, calculating all channels (RGBA) together
. |
| 400 for (int outX = 0; outX < num_values; outX++) { |
| 401 |
| 402 const SkConvolutionFilter1D::ConvolutionFixed* filterValues = |
| 403 filter.FilterForValue(outX, &filterOffset, &filterLength); |
| 404 |
| 405 // four pixels in a column per iteration. |
| 406 int32x4_t accum0 = vdupq_n_s32(0); |
| 407 int32x4_t accum1 = vdupq_n_s32(0); |
| 408 int32x4_t accum2 = vdupq_n_s32(0); |
| 409 int32x4_t accum3 = vdupq_n_s32(0); |
| 410 |
| 411 int start = (filterOffset<<2); |
| 412 |
| 413 // We will load and accumulate with four coefficients per iteration. |
| 414 for (int filter_x = 0; filter_x < (filterLength >> 2); filter_x++) { |
| 415 int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3; |
| 416 |
| 417 coeffs = vld1_s16(filterValues); |
| 418 coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), c
oeff_mask0)); |
| 419 coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), c
oeff_mask1)); |
| 420 coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), c
oeff_mask2)); |
| 421 coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), c
oeff_mask3)); |
| 422 |
| 423 uint8x16_t pixels; |
| 424 int16x8_t p01_16, p23_16; |
| 425 int32x4_t p0, p1, p2, p3; |
| 426 |
| 427 |
| 428 #define ITERATION(src, accum) \ |
| 429 pixels = vld1q_u8(src); \ |
| 430 p01_16 = vreinterpretq_s16_u16(vmovl_u8(vget_low_u8(pixels))); \ |
| 431 p23_16 = vreinterpretq_s16_u16(vmovl_u8(vget_high_u8(pixels))); \ |
| 432 p0 = vmull_s16(vget_low_s16(p01_16), coeff0); \ |
| 433 p1 = vmull_s16(vget_high_s16(p01_16), coeff1); \ |
| 434 p2 = vmull_s16(vget_low_s16(p23_16), coeff2); \ |
| 435 p3 = vmull_s16(vget_high_s16(p23_16), coeff3); \ |
| 436 accum += p0; \ |
| 437 accum += p1; \ |
| 438 accum += p2; \ |
| 439 accum += p3 |
| 440 |
| 441 ITERATION(srcData[0] + start, accum0); |
| 442 ITERATION(srcData[1] + start, accum1); |
| 443 ITERATION(srcData[2] + start, accum2); |
| 444 ITERATION(srcData[3] + start, accum3); |
| 445 |
| 446 start += 16; |
| 447 filterValues += 4; |
| 448 } |
| 449 |
| 450 int r = filterLength & 3; |
| 451 if (r) { |
| 452 int16x4_t coeffs, coeff0, coeff1, coeff2, coeff3; |
| 453 coeffs = vld1_s16(filterValues); |
| 454 coeffs &= vreinterpret_s16_u16(vld1_u16(&mask[r][0])); |
| 455 coeff0 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), c
oeff_mask0)); |
| 456 coeff1 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), c
oeff_mask1)); |
| 457 coeff2 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), c
oeff_mask2)); |
| 458 coeff3 = vreinterpret_s16_u8(vtbl1_u8(vreinterpret_u8_s16(coeffs), c
oeff_mask3)); |
| 459 |
| 460 uint8x16_t pixels; |
| 461 int16x8_t p01_16, p23_16; |
| 462 int32x4_t p0, p1, p2, p3; |
| 463 |
| 464 ITERATION(srcData[0] + start, accum0); |
| 465 ITERATION(srcData[1] + start, accum1); |
| 466 ITERATION(srcData[2] + start, accum2); |
| 467 ITERATION(srcData[3] + start, accum3); |
| 468 } |
| 469 |
| 470 int16x4_t accum16; |
| 471 uint8x8_t res0, res1, res2, res3; |
| 472 |
| 473 #define PACK_RESULT(accum, res) \ |
| 474 accum = vshrq_n_s32(accum, SkConvolutionFilter1D::kShiftBits); \ |
| 475 accum16 = vqmovn_s32(accum); \ |
| 476 res = vqmovun_s16(vcombine_s16(accum16, accum16)); |
| 477 |
| 478 PACK_RESULT(accum0, res0); |
| 479 PACK_RESULT(accum1, res1); |
| 480 PACK_RESULT(accum2, res2); |
| 481 PACK_RESULT(accum3, res3); |
| 482 |
| 483 vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[0]), vreinterpret_u32_u
8(res0), 0); |
| 484 vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[1]), vreinterpret_u32_u
8(res1), 0); |
| 485 vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[2]), vreinterpret_u32_u
8(res2), 0); |
| 486 vst1_lane_u32(reinterpret_cast<uint32_t*>(outRow[3]), vreinterpret_u32_u
8(res3), 0); |
| 487 outRow[0] += 4; |
| 488 outRow[1] += 4; |
| 489 outRow[2] += 4; |
| 490 outRow[3] += 4; |
| 491 } |
| 492 } |
| 493 |
| 494 void applySIMDPadding_neon(SkConvolutionFilter1D *filter) { |
| 495 // Padding |paddingCount| of more dummy coefficients after the coefficients |
| 496 // of last filter to prevent SIMD instructions which load 8 or 16 bytes |
| 497 // together to access invalid memory areas. We are not trying to align the |
| 498 // coefficients right now due to the opaqueness of <vector> implementation. |
| 499 // This has to be done after all |AddFilter| calls. |
| 500 for (int i = 0; i < 8; ++i) { |
| 501 filter->addFilterValue(static_cast<SkConvolutionFilter1D::ConvolutionFix
ed>(0)); |
| 502 } |
| 503 } |
| 504 |
| 505 void platformConvolutionProcs_arm_neon(SkConvolutionProcs* procs) { |
| 506 procs->fExtraHorizontalReads = 3; |
| 507 procs->fConvolveVertically = &convolveVertically_neon; |
| 508 procs->fConvolve4RowsHorizontally = &convolve4RowsHorizontally_neon; |
| 509 procs->fConvolveHorizontally = &convolveHorizontally_neon; |
| 510 procs->fApplySIMDPadding = &applySIMDPadding_neon; |
| 511 } |
| 512 |
OLD | NEW |