OLD | NEW |
1 // Copyright 2016 the V8 project authors. All rights reserved. | 1 // Copyright 2017 the V8 project authors. All rights reserved. |
2 // Use of this source code is governed by a BSD-style license that can be | 2 // Use of this source code is governed by a BSD-style license that can be |
3 // found in the LICENSE file. | 3 // found in the LICENSE file. |
4 | 4 |
| 5 #include "src/builtins/builtins-utils-gen.h" |
5 #include "src/builtins/builtins.h" | 6 #include "src/builtins/builtins.h" |
6 #include "src/builtins/builtins-utils.h" | |
7 | |
8 #include "src/code-factory.h" | |
9 #include "src/code-stub-assembler.h" | 7 #include "src/code-stub-assembler.h" |
10 #include "src/contexts.h" | |
11 #include "src/counters.h" | |
12 #include "src/elements.h" | |
13 #include "src/isolate.h" | |
14 #include "src/lookup.h" | |
15 #include "src/objects-inl.h" | |
16 #include "src/prototype.h" | |
17 | 8 |
18 namespace v8 { | 9 namespace v8 { |
19 namespace internal { | 10 namespace internal { |
20 | 11 |
21 namespace { | |
22 | |
23 inline bool ClampedToInteger(Isolate* isolate, Object* object, int* out) { | |
24 // This is an extended version of ECMA-262 7.1.11 handling signed values | |
25 // Try to convert object to a number and clamp values to [kMinInt, kMaxInt] | |
26 if (object->IsSmi()) { | |
27 *out = Smi::cast(object)->value(); | |
28 return true; | |
29 } else if (object->IsHeapNumber()) { | |
30 double value = HeapNumber::cast(object)->value(); | |
31 if (std::isnan(value)) { | |
32 *out = 0; | |
33 } else if (value > kMaxInt) { | |
34 *out = kMaxInt; | |
35 } else if (value < kMinInt) { | |
36 *out = kMinInt; | |
37 } else { | |
38 *out = static_cast<int>(value); | |
39 } | |
40 return true; | |
41 } else if (object->IsNullOrUndefined(isolate)) { | |
42 *out = 0; | |
43 return true; | |
44 } else if (object->IsBoolean()) { | |
45 *out = object->IsTrue(isolate); | |
46 return true; | |
47 } | |
48 return false; | |
49 } | |
50 | |
51 inline bool GetSloppyArgumentsLength(Isolate* isolate, Handle<JSObject> object, | |
52 int* out) { | |
53 Context* context = *isolate->native_context(); | |
54 Map* map = object->map(); | |
55 if (map != context->sloppy_arguments_map() && | |
56 map != context->strict_arguments_map() && | |
57 map != context->fast_aliased_arguments_map()) { | |
58 return false; | |
59 } | |
60 DCHECK(object->HasFastElements() || object->HasFastArgumentsElements()); | |
61 Object* len_obj = object->InObjectPropertyAt(JSArgumentsObject::kLengthIndex); | |
62 if (!len_obj->IsSmi()) return false; | |
63 *out = Max(0, Smi::cast(len_obj)->value()); | |
64 | |
65 FixedArray* parameters = FixedArray::cast(object->elements()); | |
66 if (object->HasSloppyArgumentsElements()) { | |
67 FixedArray* arguments = FixedArray::cast(parameters->get(1)); | |
68 return *out <= arguments->length(); | |
69 } | |
70 return *out <= parameters->length(); | |
71 } | |
72 | |
73 inline bool IsJSArrayFastElementMovingAllowed(Isolate* isolate, | |
74 JSArray* receiver) { | |
75 return JSObject::PrototypeHasNoElements(isolate, receiver); | |
76 } | |
77 | |
78 inline bool HasSimpleElements(JSObject* current) { | |
79 return current->map()->instance_type() > LAST_CUSTOM_ELEMENTS_RECEIVER && | |
80 !current->GetElementsAccessor()->HasAccessors(current); | |
81 } | |
82 | |
83 inline bool HasOnlySimpleReceiverElements(Isolate* isolate, | |
84 JSObject* receiver) { | |
85 // Check that we have no accessors on the receiver's elements. | |
86 if (!HasSimpleElements(receiver)) return false; | |
87 return JSObject::PrototypeHasNoElements(isolate, receiver); | |
88 } | |
89 | |
90 inline bool HasOnlySimpleElements(Isolate* isolate, JSReceiver* receiver) { | |
91 DisallowHeapAllocation no_gc; | |
92 PrototypeIterator iter(isolate, receiver, kStartAtReceiver); | |
93 for (; !iter.IsAtEnd(); iter.Advance()) { | |
94 if (iter.GetCurrent()->IsJSProxy()) return false; | |
95 JSObject* current = iter.GetCurrent<JSObject>(); | |
96 if (!HasSimpleElements(current)) return false; | |
97 } | |
98 return true; | |
99 } | |
100 | |
101 // Returns |false| if not applicable. | |
102 MUST_USE_RESULT | |
103 inline bool EnsureJSArrayWithWritableFastElements(Isolate* isolate, | |
104 Handle<Object> receiver, | |
105 BuiltinArguments* args, | |
106 int first_added_arg) { | |
107 if (!receiver->IsJSArray()) return false; | |
108 Handle<JSArray> array = Handle<JSArray>::cast(receiver); | |
109 ElementsKind origin_kind = array->GetElementsKind(); | |
110 if (IsDictionaryElementsKind(origin_kind)) return false; | |
111 if (!array->map()->is_extensible()) return false; | |
112 if (args == nullptr) return true; | |
113 | |
114 // If there may be elements accessors in the prototype chain, the fast path | |
115 // cannot be used if there arguments to add to the array. | |
116 if (!IsJSArrayFastElementMovingAllowed(isolate, *array)) return false; | |
117 | |
118 // Adding elements to the array prototype would break code that makes sure | |
119 // it has no elements. Handle that elsewhere. | |
120 if (isolate->IsAnyInitialArrayPrototype(array)) return false; | |
121 | |
122 // Need to ensure that the arguments passed in args can be contained in | |
123 // the array. | |
124 int args_length = args->length(); | |
125 if (first_added_arg >= args_length) return true; | |
126 | |
127 if (IsFastObjectElementsKind(origin_kind)) return true; | |
128 ElementsKind target_kind = origin_kind; | |
129 { | |
130 DisallowHeapAllocation no_gc; | |
131 for (int i = first_added_arg; i < args_length; i++) { | |
132 Object* arg = (*args)[i]; | |
133 if (arg->IsHeapObject()) { | |
134 if (arg->IsHeapNumber()) { | |
135 target_kind = FAST_DOUBLE_ELEMENTS; | |
136 } else { | |
137 target_kind = FAST_ELEMENTS; | |
138 break; | |
139 } | |
140 } | |
141 } | |
142 } | |
143 if (target_kind != origin_kind) { | |
144 // Use a short-lived HandleScope to avoid creating several copies of the | |
145 // elements handle which would cause issues when left-trimming later-on. | |
146 HandleScope scope(isolate); | |
147 JSObject::TransitionElementsKind(array, target_kind); | |
148 } | |
149 return true; | |
150 } | |
151 | |
152 MUST_USE_RESULT static Object* CallJsIntrinsic(Isolate* isolate, | |
153 Handle<JSFunction> function, | |
154 BuiltinArguments args) { | |
155 HandleScope handleScope(isolate); | |
156 int argc = args.length() - 1; | |
157 ScopedVector<Handle<Object>> argv(argc); | |
158 for (int i = 0; i < argc; ++i) { | |
159 argv[i] = args.at(i + 1); | |
160 } | |
161 RETURN_RESULT_OR_FAILURE( | |
162 isolate, | |
163 Execution::Call(isolate, function, args.receiver(), argc, argv.start())); | |
164 } | |
165 } // namespace | |
166 | |
167 BUILTIN(ArrayPush) { | |
168 HandleScope scope(isolate); | |
169 Handle<Object> receiver = args.receiver(); | |
170 if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 1)) { | |
171 return CallJsIntrinsic(isolate, isolate->array_push(), args); | |
172 } | |
173 // Fast Elements Path | |
174 int to_add = args.length() - 1; | |
175 Handle<JSArray> array = Handle<JSArray>::cast(receiver); | |
176 int len = Smi::cast(array->length())->value(); | |
177 if (to_add == 0) return Smi::FromInt(len); | |
178 | |
179 // Currently fixed arrays cannot grow too big, so we should never hit this. | |
180 DCHECK_LE(to_add, Smi::kMaxValue - Smi::cast(array->length())->value()); | |
181 | |
182 if (JSArray::HasReadOnlyLength(array)) { | |
183 return CallJsIntrinsic(isolate, isolate->array_push(), args); | |
184 } | |
185 | |
186 ElementsAccessor* accessor = array->GetElementsAccessor(); | |
187 int new_length = accessor->Push(array, &args, to_add); | |
188 return Smi::FromInt(new_length); | |
189 } | |
190 | |
191 TF_BUILTIN(FastArrayPush, CodeStubAssembler) { | |
192 Variable arg_index(this, MachineType::PointerRepresentation()); | |
193 Label default_label(this, &arg_index); | |
194 Label smi_transition(this); | |
195 Label object_push_pre(this); | |
196 Label object_push(this, &arg_index); | |
197 Label double_push(this, &arg_index); | |
198 Label double_transition(this); | |
199 Label runtime(this, Label::kDeferred); | |
200 | |
201 Node* argc = Parameter(BuiltinDescriptor::kArgumentsCount); | |
202 Node* context = Parameter(BuiltinDescriptor::kContext); | |
203 Node* new_target = Parameter(BuiltinDescriptor::kNewTarget); | |
204 | |
205 CodeStubArguments args(this, ChangeInt32ToIntPtr(argc)); | |
206 Node* receiver = args.GetReceiver(); | |
207 Node* kind = nullptr; | |
208 | |
209 Label fast(this); | |
210 BranchIfFastJSArray(receiver, context, FastJSArrayAccessMode::ANY_ACCESS, | |
211 &fast, &runtime); | |
212 | |
213 Bind(&fast); | |
214 { | |
215 // Disallow pushing onto prototypes. It might be the JSArray prototype. | |
216 // Disallow pushing onto non-extensible objects. | |
217 Comment("Disallow pushing onto prototypes"); | |
218 Node* map = LoadMap(receiver); | |
219 Node* bit_field2 = LoadMapBitField2(map); | |
220 int mask = static_cast<int>(Map::IsPrototypeMapBits::kMask) | | |
221 (1 << Map::kIsExtensible); | |
222 Node* test = Word32And(bit_field2, Int32Constant(mask)); | |
223 GotoIf(Word32NotEqual(test, Int32Constant(1 << Map::kIsExtensible)), | |
224 &runtime); | |
225 | |
226 // Disallow pushing onto arrays in dictionary named property mode. We need | |
227 // to figure out whether the length property is still writable. | |
228 Comment("Disallow pushing onto arrays in dictionary named property mode"); | |
229 GotoIf(IsDictionaryMap(map), &runtime); | |
230 | |
231 // Check whether the length property is writable. The length property is the | |
232 // only default named property on arrays. It's nonconfigurable, hence is | |
233 // guaranteed to stay the first property. | |
234 Node* descriptors = LoadMapDescriptors(map); | |
235 Node* details = | |
236 LoadFixedArrayElement(descriptors, DescriptorArray::ToDetailsIndex(0)); | |
237 GotoIf(IsSetSmi(details, PropertyDetails::kAttributesReadOnlyMask), | |
238 &runtime); | |
239 | |
240 arg_index.Bind(IntPtrConstant(0)); | |
241 kind = DecodeWord32<Map::ElementsKindBits>(bit_field2); | |
242 | |
243 GotoIf(Int32GreaterThan(kind, Int32Constant(FAST_HOLEY_SMI_ELEMENTS)), | |
244 &object_push_pre); | |
245 | |
246 Node* new_length = BuildAppendJSArray(FAST_SMI_ELEMENTS, context, receiver, | |
247 args, arg_index, &smi_transition); | |
248 args.PopAndReturn(new_length); | |
249 } | |
250 | |
251 // If the argument is not a smi, then use a heavyweight SetProperty to | |
252 // transition the array for only the single next element. If the argument is | |
253 // a smi, the failure is due to some other reason and we should fall back on | |
254 // the most generic implementation for the rest of the array. | |
255 Bind(&smi_transition); | |
256 { | |
257 Node* arg = args.AtIndex(arg_index.value()); | |
258 GotoIf(TaggedIsSmi(arg), &default_label); | |
259 Node* length = LoadJSArrayLength(receiver); | |
260 // TODO(danno): Use the KeyedStoreGeneric stub here when possible, | |
261 // calling into the runtime to do the elements transition is overkill. | |
262 CallRuntime(Runtime::kSetProperty, context, receiver, length, arg, | |
263 SmiConstant(STRICT)); | |
264 Increment(arg_index); | |
265 // The runtime SetProperty call could have converted the array to dictionary | |
266 // mode, which must be detected to abort the fast-path. | |
267 Node* map = LoadMap(receiver); | |
268 Node* bit_field2 = LoadMapBitField2(map); | |
269 Node* kind = DecodeWord32<Map::ElementsKindBits>(bit_field2); | |
270 GotoIf(Word32Equal(kind, Int32Constant(DICTIONARY_ELEMENTS)), | |
271 &default_label); | |
272 | |
273 GotoIfNotNumber(arg, &object_push); | |
274 Goto(&double_push); | |
275 } | |
276 | |
277 Bind(&object_push_pre); | |
278 { | |
279 Branch(Int32GreaterThan(kind, Int32Constant(FAST_HOLEY_ELEMENTS)), | |
280 &double_push, &object_push); | |
281 } | |
282 | |
283 Bind(&object_push); | |
284 { | |
285 Node* new_length = BuildAppendJSArray(FAST_ELEMENTS, context, receiver, | |
286 args, arg_index, &default_label); | |
287 args.PopAndReturn(new_length); | |
288 } | |
289 | |
290 Bind(&double_push); | |
291 { | |
292 Node* new_length = | |
293 BuildAppendJSArray(FAST_DOUBLE_ELEMENTS, context, receiver, args, | |
294 arg_index, &double_transition); | |
295 args.PopAndReturn(new_length); | |
296 } | |
297 | |
298 // If the argument is not a double, then use a heavyweight SetProperty to | |
299 // transition the array for only the single next element. If the argument is | |
300 // a double, the failure is due to some other reason and we should fall back | |
301 // on the most generic implementation for the rest of the array. | |
302 Bind(&double_transition); | |
303 { | |
304 Node* arg = args.AtIndex(arg_index.value()); | |
305 GotoIfNumber(arg, &default_label); | |
306 Node* length = LoadJSArrayLength(receiver); | |
307 // TODO(danno): Use the KeyedStoreGeneric stub here when possible, | |
308 // calling into the runtime to do the elements transition is overkill. | |
309 CallRuntime(Runtime::kSetProperty, context, receiver, length, arg, | |
310 SmiConstant(STRICT)); | |
311 Increment(arg_index); | |
312 // The runtime SetProperty call could have converted the array to dictionary | |
313 // mode, which must be detected to abort the fast-path. | |
314 Node* map = LoadMap(receiver); | |
315 Node* bit_field2 = LoadMapBitField2(map); | |
316 Node* kind = DecodeWord32<Map::ElementsKindBits>(bit_field2); | |
317 GotoIf(Word32Equal(kind, Int32Constant(DICTIONARY_ELEMENTS)), | |
318 &default_label); | |
319 Goto(&object_push); | |
320 } | |
321 | |
322 // Fallback that stores un-processed arguments using the full, heavyweight | |
323 // SetProperty machinery. | |
324 Bind(&default_label); | |
325 { | |
326 args.ForEach( | |
327 [this, receiver, context](Node* arg) { | |
328 Node* length = LoadJSArrayLength(receiver); | |
329 CallRuntime(Runtime::kSetProperty, context, receiver, length, arg, | |
330 SmiConstant(STRICT)); | |
331 }, | |
332 arg_index.value()); | |
333 args.PopAndReturn(LoadJSArrayLength(receiver)); | |
334 } | |
335 | |
336 Bind(&runtime); | |
337 { | |
338 Node* target = LoadFromFrame(StandardFrameConstants::kFunctionOffset, | |
339 MachineType::TaggedPointer()); | |
340 TailCallStub(CodeFactory::ArrayPush(isolate()), context, target, new_target, | |
341 argc); | |
342 } | |
343 } | |
344 | |
345 BUILTIN(ArrayPop) { | |
346 HandleScope scope(isolate); | |
347 Handle<Object> receiver = args.receiver(); | |
348 if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, nullptr, 0)) { | |
349 return CallJsIntrinsic(isolate, isolate->array_pop(), args); | |
350 } | |
351 | |
352 Handle<JSArray> array = Handle<JSArray>::cast(receiver); | |
353 | |
354 uint32_t len = static_cast<uint32_t>(Smi::cast(array->length())->value()); | |
355 if (len == 0) return isolate->heap()->undefined_value(); | |
356 | |
357 if (JSArray::HasReadOnlyLength(array)) { | |
358 return CallJsIntrinsic(isolate, isolate->array_pop(), args); | |
359 } | |
360 | |
361 Handle<Object> result; | |
362 if (IsJSArrayFastElementMovingAllowed(isolate, JSArray::cast(*receiver))) { | |
363 // Fast Elements Path | |
364 result = array->GetElementsAccessor()->Pop(array); | |
365 } else { | |
366 // Use Slow Lookup otherwise | |
367 uint32_t new_length = len - 1; | |
368 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
369 isolate, result, JSReceiver::GetElement(isolate, array, new_length)); | |
370 JSArray::SetLength(array, new_length); | |
371 } | |
372 return *result; | |
373 } | |
374 | |
375 BUILTIN(ArrayShift) { | |
376 HandleScope scope(isolate); | |
377 Heap* heap = isolate->heap(); | |
378 Handle<Object> receiver = args.receiver(); | |
379 if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, nullptr, 0) || | |
380 !IsJSArrayFastElementMovingAllowed(isolate, JSArray::cast(*receiver))) { | |
381 return CallJsIntrinsic(isolate, isolate->array_shift(), args); | |
382 } | |
383 Handle<JSArray> array = Handle<JSArray>::cast(receiver); | |
384 | |
385 int len = Smi::cast(array->length())->value(); | |
386 if (len == 0) return heap->undefined_value(); | |
387 | |
388 if (JSArray::HasReadOnlyLength(array)) { | |
389 return CallJsIntrinsic(isolate, isolate->array_shift(), args); | |
390 } | |
391 | |
392 Handle<Object> first = array->GetElementsAccessor()->Shift(array); | |
393 return *first; | |
394 } | |
395 | |
396 BUILTIN(ArrayUnshift) { | |
397 HandleScope scope(isolate); | |
398 Handle<Object> receiver = args.receiver(); | |
399 if (!EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 1)) { | |
400 return CallJsIntrinsic(isolate, isolate->array_unshift(), args); | |
401 } | |
402 Handle<JSArray> array = Handle<JSArray>::cast(receiver); | |
403 int to_add = args.length() - 1; | |
404 if (to_add == 0) return array->length(); | |
405 | |
406 // Currently fixed arrays cannot grow too big, so we should never hit this. | |
407 DCHECK_LE(to_add, Smi::kMaxValue - Smi::cast(array->length())->value()); | |
408 | |
409 if (JSArray::HasReadOnlyLength(array)) { | |
410 return CallJsIntrinsic(isolate, isolate->array_unshift(), args); | |
411 } | |
412 | |
413 ElementsAccessor* accessor = array->GetElementsAccessor(); | |
414 int new_length = accessor->Unshift(array, &args, to_add); | |
415 return Smi::FromInt(new_length); | |
416 } | |
417 | |
418 class ArrayBuiltinCodeStubAssembler : public CodeStubAssembler { | 12 class ArrayBuiltinCodeStubAssembler : public CodeStubAssembler { |
419 public: | 13 public: |
420 explicit ArrayBuiltinCodeStubAssembler(compiler::CodeAssemblerState* state) | 14 explicit ArrayBuiltinCodeStubAssembler(compiler::CodeAssemblerState* state) |
421 : CodeStubAssembler(state) {} | 15 : CodeStubAssembler(state) {} |
422 | 16 |
423 typedef std::function<Node*(Node* o, Node* len)> BuiltinResultGenerator; | 17 typedef std::function<Node*(Node* o, Node* len)> BuiltinResultGenerator; |
424 typedef std::function<void(Node* a, Node* pK, Node* value)> | 18 typedef std::function<void(Node* a, Node* pK, Node* value)> |
425 CallResultProcessor; | 19 CallResultProcessor; |
426 | 20 |
427 void GenerateArrayIteratingBuiltinBody( | 21 void GenerateArrayIteratingBuiltinBody( |
(...skipping 231 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
659 // No exception, return success | 253 // No exception, return success |
660 Return(a); | 254 Return(a); |
661 | 255 |
662 Bind(&array_changed); | 256 Bind(&array_changed); |
663 k.Bind(ParameterToTagged(last_index, mode)); | 257 k.Bind(ParameterToTagged(last_index, mode)); |
664 Goto(slow); | 258 Goto(slow); |
665 } | 259 } |
666 } | 260 } |
667 }; | 261 }; |
668 | 262 |
| 263 TF_BUILTIN(FastArrayPush, CodeStubAssembler) { |
| 264 Variable arg_index(this, MachineType::PointerRepresentation()); |
| 265 Label default_label(this, &arg_index); |
| 266 Label smi_transition(this); |
| 267 Label object_push_pre(this); |
| 268 Label object_push(this, &arg_index); |
| 269 Label double_push(this, &arg_index); |
| 270 Label double_transition(this); |
| 271 Label runtime(this, Label::kDeferred); |
| 272 |
| 273 Node* argc = Parameter(BuiltinDescriptor::kArgumentsCount); |
| 274 Node* context = Parameter(BuiltinDescriptor::kContext); |
| 275 Node* new_target = Parameter(BuiltinDescriptor::kNewTarget); |
| 276 |
| 277 CodeStubArguments args(this, ChangeInt32ToIntPtr(argc)); |
| 278 Node* receiver = args.GetReceiver(); |
| 279 Node* kind = nullptr; |
| 280 |
| 281 Label fast(this); |
| 282 BranchIfFastJSArray(receiver, context, FastJSArrayAccessMode::ANY_ACCESS, |
| 283 &fast, &runtime); |
| 284 |
| 285 Bind(&fast); |
| 286 { |
| 287 // Disallow pushing onto prototypes. It might be the JSArray prototype. |
| 288 // Disallow pushing onto non-extensible objects. |
| 289 Comment("Disallow pushing onto prototypes"); |
| 290 Node* map = LoadMap(receiver); |
| 291 Node* bit_field2 = LoadMapBitField2(map); |
| 292 int mask = static_cast<int>(Map::IsPrototypeMapBits::kMask) | |
| 293 (1 << Map::kIsExtensible); |
| 294 Node* test = Word32And(bit_field2, Int32Constant(mask)); |
| 295 GotoIf(Word32NotEqual(test, Int32Constant(1 << Map::kIsExtensible)), |
| 296 &runtime); |
| 297 |
| 298 // Disallow pushing onto arrays in dictionary named property mode. We need |
| 299 // to figure out whether the length property is still writable. |
| 300 Comment("Disallow pushing onto arrays in dictionary named property mode"); |
| 301 GotoIf(IsDictionaryMap(map), &runtime); |
| 302 |
| 303 // Check whether the length property is writable. The length property is the |
| 304 // only default named property on arrays. It's nonconfigurable, hence is |
| 305 // guaranteed to stay the first property. |
| 306 Node* descriptors = LoadMapDescriptors(map); |
| 307 Node* details = |
| 308 LoadFixedArrayElement(descriptors, DescriptorArray::ToDetailsIndex(0)); |
| 309 GotoIf(IsSetSmi(details, PropertyDetails::kAttributesReadOnlyMask), |
| 310 &runtime); |
| 311 |
| 312 arg_index.Bind(IntPtrConstant(0)); |
| 313 kind = DecodeWord32<Map::ElementsKindBits>(bit_field2); |
| 314 |
| 315 GotoIf(Int32GreaterThan(kind, Int32Constant(FAST_HOLEY_SMI_ELEMENTS)), |
| 316 &object_push_pre); |
| 317 |
| 318 Node* new_length = BuildAppendJSArray(FAST_SMI_ELEMENTS, context, receiver, |
| 319 args, arg_index, &smi_transition); |
| 320 args.PopAndReturn(new_length); |
| 321 } |
| 322 |
| 323 // If the argument is not a smi, then use a heavyweight SetProperty to |
| 324 // transition the array for only the single next element. If the argument is |
| 325 // a smi, the failure is due to some other reason and we should fall back on |
| 326 // the most generic implementation for the rest of the array. |
| 327 Bind(&smi_transition); |
| 328 { |
| 329 Node* arg = args.AtIndex(arg_index.value()); |
| 330 GotoIf(TaggedIsSmi(arg), &default_label); |
| 331 Node* length = LoadJSArrayLength(receiver); |
| 332 // TODO(danno): Use the KeyedStoreGeneric stub here when possible, |
| 333 // calling into the runtime to do the elements transition is overkill. |
| 334 CallRuntime(Runtime::kSetProperty, context, receiver, length, arg, |
| 335 SmiConstant(STRICT)); |
| 336 Increment(arg_index); |
| 337 // The runtime SetProperty call could have converted the array to dictionary |
| 338 // mode, which must be detected to abort the fast-path. |
| 339 Node* map = LoadMap(receiver); |
| 340 Node* bit_field2 = LoadMapBitField2(map); |
| 341 Node* kind = DecodeWord32<Map::ElementsKindBits>(bit_field2); |
| 342 GotoIf(Word32Equal(kind, Int32Constant(DICTIONARY_ELEMENTS)), |
| 343 &default_label); |
| 344 |
| 345 GotoIfNotNumber(arg, &object_push); |
| 346 Goto(&double_push); |
| 347 } |
| 348 |
| 349 Bind(&object_push_pre); |
| 350 { |
| 351 Branch(Int32GreaterThan(kind, Int32Constant(FAST_HOLEY_ELEMENTS)), |
| 352 &double_push, &object_push); |
| 353 } |
| 354 |
| 355 Bind(&object_push); |
| 356 { |
| 357 Node* new_length = BuildAppendJSArray(FAST_ELEMENTS, context, receiver, |
| 358 args, arg_index, &default_label); |
| 359 args.PopAndReturn(new_length); |
| 360 } |
| 361 |
| 362 Bind(&double_push); |
| 363 { |
| 364 Node* new_length = |
| 365 BuildAppendJSArray(FAST_DOUBLE_ELEMENTS, context, receiver, args, |
| 366 arg_index, &double_transition); |
| 367 args.PopAndReturn(new_length); |
| 368 } |
| 369 |
| 370 // If the argument is not a double, then use a heavyweight SetProperty to |
| 371 // transition the array for only the single next element. If the argument is |
| 372 // a double, the failure is due to some other reason and we should fall back |
| 373 // on the most generic implementation for the rest of the array. |
| 374 Bind(&double_transition); |
| 375 { |
| 376 Node* arg = args.AtIndex(arg_index.value()); |
| 377 GotoIfNumber(arg, &default_label); |
| 378 Node* length = LoadJSArrayLength(receiver); |
| 379 // TODO(danno): Use the KeyedStoreGeneric stub here when possible, |
| 380 // calling into the runtime to do the elements transition is overkill. |
| 381 CallRuntime(Runtime::kSetProperty, context, receiver, length, arg, |
| 382 SmiConstant(STRICT)); |
| 383 Increment(arg_index); |
| 384 // The runtime SetProperty call could have converted the array to dictionary |
| 385 // mode, which must be detected to abort the fast-path. |
| 386 Node* map = LoadMap(receiver); |
| 387 Node* bit_field2 = LoadMapBitField2(map); |
| 388 Node* kind = DecodeWord32<Map::ElementsKindBits>(bit_field2); |
| 389 GotoIf(Word32Equal(kind, Int32Constant(DICTIONARY_ELEMENTS)), |
| 390 &default_label); |
| 391 Goto(&object_push); |
| 392 } |
| 393 |
| 394 // Fallback that stores un-processed arguments using the full, heavyweight |
| 395 // SetProperty machinery. |
| 396 Bind(&default_label); |
| 397 { |
| 398 args.ForEach( |
| 399 [this, receiver, context](Node* arg) { |
| 400 Node* length = LoadJSArrayLength(receiver); |
| 401 CallRuntime(Runtime::kSetProperty, context, receiver, length, arg, |
| 402 SmiConstant(STRICT)); |
| 403 }, |
| 404 arg_index.value()); |
| 405 args.PopAndReturn(LoadJSArrayLength(receiver)); |
| 406 } |
| 407 |
| 408 Bind(&runtime); |
| 409 { |
| 410 Node* target = LoadFromFrame(StandardFrameConstants::kFunctionOffset, |
| 411 MachineType::TaggedPointer()); |
| 412 TailCallStub(CodeFactory::ArrayPush(isolate()), context, target, new_target, |
| 413 argc); |
| 414 } |
| 415 } |
| 416 |
669 TF_BUILTIN(ArrayForEach, ArrayBuiltinCodeStubAssembler) { | 417 TF_BUILTIN(ArrayForEach, ArrayBuiltinCodeStubAssembler) { |
670 Node* receiver = Parameter(ForEachDescriptor::kReceiver); | 418 Node* receiver = Parameter(ForEachDescriptor::kReceiver); |
671 Node* callbackfn = Parameter(ForEachDescriptor::kCallback); | 419 Node* callbackfn = Parameter(ForEachDescriptor::kCallback); |
672 Node* this_arg = Parameter(ForEachDescriptor::kThisArg); | 420 Node* this_arg = Parameter(ForEachDescriptor::kThisArg); |
673 Node* context = Parameter(ForEachDescriptor::kContext); | 421 Node* context = Parameter(ForEachDescriptor::kContext); |
674 | 422 |
675 GenerateArrayIteratingBuiltinBody( | 423 GenerateArrayIteratingBuiltinBody( |
676 "Array.prototype.forEach", receiver, callbackfn, this_arg, context, | 424 "Array.prototype.forEach", receiver, callbackfn, this_arg, context, |
677 [=](Node*, Node*) { return UndefinedConstant(); }, | 425 [=](Node*, Node*) { return UndefinedConstant(); }, |
678 [](Node* a, Node* p_k, Node* value) {}); | 426 [](Node* a, Node* p_k, Node* value) {}); |
(...skipping 28 matching lines...) Expand all Loading... |
707 [=](Node*, Node*) { return FalseConstant(); }, | 455 [=](Node*, Node*) { return FalseConstant(); }, |
708 [=](Node* a, Node* p_k, Node* value) { | 456 [=](Node* a, Node* p_k, Node* value) { |
709 Label false_continue(this), return_true(this); | 457 Label false_continue(this), return_true(this); |
710 BranchIfToBooleanIsTrue(value, &return_true, &false_continue); | 458 BranchIfToBooleanIsTrue(value, &return_true, &false_continue); |
711 Bind(&return_true); | 459 Bind(&return_true); |
712 Return(TrueConstant()); | 460 Return(TrueConstant()); |
713 Bind(&false_continue); | 461 Bind(&false_continue); |
714 }); | 462 }); |
715 } | 463 } |
716 | 464 |
717 BUILTIN(ArraySlice) { | |
718 HandleScope scope(isolate); | |
719 Handle<Object> receiver = args.receiver(); | |
720 int len = -1; | |
721 int relative_start = 0; | |
722 int relative_end = 0; | |
723 | |
724 if (receiver->IsJSArray()) { | |
725 DisallowHeapAllocation no_gc; | |
726 JSArray* array = JSArray::cast(*receiver); | |
727 if (V8_UNLIKELY(!array->HasFastElements() || | |
728 !IsJSArrayFastElementMovingAllowed(isolate, array) || | |
729 !isolate->IsArraySpeciesLookupChainIntact() || | |
730 // If this is a subclass of Array, then call out to JS | |
731 !array->HasArrayPrototype(isolate))) { | |
732 AllowHeapAllocation allow_allocation; | |
733 return CallJsIntrinsic(isolate, isolate->array_slice(), args); | |
734 } | |
735 len = Smi::cast(array->length())->value(); | |
736 } else if (receiver->IsJSObject() && | |
737 GetSloppyArgumentsLength(isolate, Handle<JSObject>::cast(receiver), | |
738 &len)) { | |
739 // Array.prototype.slice.call(arguments, ...) is quite a common idiom | |
740 // (notably more than 50% of invocations in Web apps). | |
741 // Treat it in C++ as well. | |
742 DCHECK(JSObject::cast(*receiver)->HasFastElements() || | |
743 JSObject::cast(*receiver)->HasFastArgumentsElements()); | |
744 } else { | |
745 AllowHeapAllocation allow_allocation; | |
746 return CallJsIntrinsic(isolate, isolate->array_slice(), args); | |
747 } | |
748 DCHECK_LE(0, len); | |
749 int argument_count = args.length() - 1; | |
750 // Note carefully chosen defaults---if argument is missing, | |
751 // it's undefined which gets converted to 0 for relative_start | |
752 // and to len for relative_end. | |
753 relative_start = 0; | |
754 relative_end = len; | |
755 if (argument_count > 0) { | |
756 DisallowHeapAllocation no_gc; | |
757 if (!ClampedToInteger(isolate, args[1], &relative_start)) { | |
758 AllowHeapAllocation allow_allocation; | |
759 return CallJsIntrinsic(isolate, isolate->array_slice(), args); | |
760 } | |
761 if (argument_count > 1) { | |
762 Object* end_arg = args[2]; | |
763 // slice handles the end_arg specially | |
764 if (end_arg->IsUndefined(isolate)) { | |
765 relative_end = len; | |
766 } else if (!ClampedToInteger(isolate, end_arg, &relative_end)) { | |
767 AllowHeapAllocation allow_allocation; | |
768 return CallJsIntrinsic(isolate, isolate->array_slice(), args); | |
769 } | |
770 } | |
771 } | |
772 | |
773 // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 6. | |
774 uint32_t actual_start = (relative_start < 0) ? Max(len + relative_start, 0) | |
775 : Min(relative_start, len); | |
776 | |
777 // ECMAScript 232, 3rd Edition, Section 15.4.4.10, step 8. | |
778 uint32_t actual_end = | |
779 (relative_end < 0) ? Max(len + relative_end, 0) : Min(relative_end, len); | |
780 | |
781 Handle<JSObject> object = Handle<JSObject>::cast(receiver); | |
782 ElementsAccessor* accessor = object->GetElementsAccessor(); | |
783 return *accessor->Slice(object, actual_start, actual_end); | |
784 } | |
785 | |
786 BUILTIN(ArraySplice) { | |
787 HandleScope scope(isolate); | |
788 Handle<Object> receiver = args.receiver(); | |
789 if (V8_UNLIKELY( | |
790 !EnsureJSArrayWithWritableFastElements(isolate, receiver, &args, 3) || | |
791 // If this is a subclass of Array, then call out to JS. | |
792 !Handle<JSArray>::cast(receiver)->HasArrayPrototype(isolate) || | |
793 // If anything with @@species has been messed with, call out to JS. | |
794 !isolate->IsArraySpeciesLookupChainIntact())) { | |
795 return CallJsIntrinsic(isolate, isolate->array_splice(), args); | |
796 } | |
797 Handle<JSArray> array = Handle<JSArray>::cast(receiver); | |
798 | |
799 int argument_count = args.length() - 1; | |
800 int relative_start = 0; | |
801 if (argument_count > 0) { | |
802 DisallowHeapAllocation no_gc; | |
803 if (!ClampedToInteger(isolate, args[1], &relative_start)) { | |
804 AllowHeapAllocation allow_allocation; | |
805 return CallJsIntrinsic(isolate, isolate->array_splice(), args); | |
806 } | |
807 } | |
808 int len = Smi::cast(array->length())->value(); | |
809 // clip relative start to [0, len] | |
810 int actual_start = (relative_start < 0) ? Max(len + relative_start, 0) | |
811 : Min(relative_start, len); | |
812 | |
813 int actual_delete_count; | |
814 if (argument_count == 1) { | |
815 // SpiderMonkey, TraceMonkey and JSC treat the case where no delete count is | |
816 // given as a request to delete all the elements from the start. | |
817 // And it differs from the case of undefined delete count. | |
818 // This does not follow ECMA-262, but we do the same for compatibility. | |
819 DCHECK(len - actual_start >= 0); | |
820 actual_delete_count = len - actual_start; | |
821 } else { | |
822 int delete_count = 0; | |
823 DisallowHeapAllocation no_gc; | |
824 if (argument_count > 1) { | |
825 if (!ClampedToInteger(isolate, args[2], &delete_count)) { | |
826 AllowHeapAllocation allow_allocation; | |
827 return CallJsIntrinsic(isolate, isolate->array_splice(), args); | |
828 } | |
829 } | |
830 actual_delete_count = Min(Max(delete_count, 0), len - actual_start); | |
831 } | |
832 | |
833 int add_count = (argument_count > 1) ? (argument_count - 2) : 0; | |
834 int new_length = len - actual_delete_count + add_count; | |
835 | |
836 if (new_length != len && JSArray::HasReadOnlyLength(array)) { | |
837 AllowHeapAllocation allow_allocation; | |
838 return CallJsIntrinsic(isolate, isolate->array_splice(), args); | |
839 } | |
840 ElementsAccessor* accessor = array->GetElementsAccessor(); | |
841 Handle<JSArray> result_array = accessor->Splice( | |
842 array, actual_start, actual_delete_count, &args, add_count); | |
843 return *result_array; | |
844 } | |
845 | |
846 // Array Concat ------------------------------------------------------------- | |
847 | |
848 namespace { | |
849 | |
850 /** | |
851 * A simple visitor visits every element of Array's. | |
852 * The backend storage can be a fixed array for fast elements case, | |
853 * or a dictionary for sparse array. Since Dictionary is a subtype | |
854 * of FixedArray, the class can be used by both fast and slow cases. | |
855 * The second parameter of the constructor, fast_elements, specifies | |
856 * whether the storage is a FixedArray or Dictionary. | |
857 * | |
858 * An index limit is used to deal with the situation that a result array | |
859 * length overflows 32-bit non-negative integer. | |
860 */ | |
861 class ArrayConcatVisitor { | |
862 public: | |
863 ArrayConcatVisitor(Isolate* isolate, Handle<HeapObject> storage, | |
864 bool fast_elements) | |
865 : isolate_(isolate), | |
866 storage_(isolate->global_handles()->Create(*storage)), | |
867 index_offset_(0u), | |
868 bit_field_( | |
869 FastElementsField::encode(fast_elements) | | |
870 ExceedsLimitField::encode(false) | | |
871 IsFixedArrayField::encode(storage->IsFixedArray()) | | |
872 HasSimpleElementsField::encode(storage->IsFixedArray() || | |
873 storage->map()->instance_type() > | |
874 LAST_CUSTOM_ELEMENTS_RECEIVER)) { | |
875 DCHECK(!(this->fast_elements() && !is_fixed_array())); | |
876 } | |
877 | |
878 ~ArrayConcatVisitor() { clear_storage(); } | |
879 | |
880 MUST_USE_RESULT bool visit(uint32_t i, Handle<Object> elm) { | |
881 uint32_t index = index_offset_ + i; | |
882 | |
883 if (i >= JSObject::kMaxElementCount - index_offset_) { | |
884 set_exceeds_array_limit(true); | |
885 // Exception hasn't been thrown at this point. Return true to | |
886 // break out, and caller will throw. !visit would imply that | |
887 // there is already a pending exception. | |
888 return true; | |
889 } | |
890 | |
891 if (!is_fixed_array()) { | |
892 LookupIterator it(isolate_, storage_, index, LookupIterator::OWN); | |
893 MAYBE_RETURN( | |
894 JSReceiver::CreateDataProperty(&it, elm, Object::THROW_ON_ERROR), | |
895 false); | |
896 return true; | |
897 } | |
898 | |
899 if (fast_elements()) { | |
900 if (index < static_cast<uint32_t>(storage_fixed_array()->length())) { | |
901 storage_fixed_array()->set(index, *elm); | |
902 return true; | |
903 } | |
904 // Our initial estimate of length was foiled, possibly by | |
905 // getters on the arrays increasing the length of later arrays | |
906 // during iteration. | |
907 // This shouldn't happen in anything but pathological cases. | |
908 SetDictionaryMode(); | |
909 // Fall-through to dictionary mode. | |
910 } | |
911 DCHECK(!fast_elements()); | |
912 Handle<SeededNumberDictionary> dict( | |
913 SeededNumberDictionary::cast(*storage_)); | |
914 // The object holding this backing store has just been allocated, so | |
915 // it cannot yet be used as a prototype. | |
916 Handle<JSObject> not_a_prototype_holder; | |
917 Handle<SeededNumberDictionary> result = SeededNumberDictionary::AtNumberPut( | |
918 dict, index, elm, not_a_prototype_holder); | |
919 if (!result.is_identical_to(dict)) { | |
920 // Dictionary needed to grow. | |
921 clear_storage(); | |
922 set_storage(*result); | |
923 } | |
924 return true; | |
925 } | |
926 | |
927 void increase_index_offset(uint32_t delta) { | |
928 if (JSObject::kMaxElementCount - index_offset_ < delta) { | |
929 index_offset_ = JSObject::kMaxElementCount; | |
930 } else { | |
931 index_offset_ += delta; | |
932 } | |
933 // If the initial length estimate was off (see special case in visit()), | |
934 // but the array blowing the limit didn't contain elements beyond the | |
935 // provided-for index range, go to dictionary mode now. | |
936 if (fast_elements() && | |
937 index_offset_ > | |
938 static_cast<uint32_t>(FixedArrayBase::cast(*storage_)->length())) { | |
939 SetDictionaryMode(); | |
940 } | |
941 } | |
942 | |
943 bool exceeds_array_limit() const { | |
944 return ExceedsLimitField::decode(bit_field_); | |
945 } | |
946 | |
947 Handle<JSArray> ToArray() { | |
948 DCHECK(is_fixed_array()); | |
949 Handle<JSArray> array = isolate_->factory()->NewJSArray(0); | |
950 Handle<Object> length = | |
951 isolate_->factory()->NewNumber(static_cast<double>(index_offset_)); | |
952 Handle<Map> map = JSObject::GetElementsTransitionMap( | |
953 array, fast_elements() ? FAST_HOLEY_ELEMENTS : DICTIONARY_ELEMENTS); | |
954 array->set_map(*map); | |
955 array->set_length(*length); | |
956 array->set_elements(*storage_fixed_array()); | |
957 return array; | |
958 } | |
959 | |
960 // Storage is either a FixedArray (if is_fixed_array()) or a JSReciever | |
961 // (otherwise) | |
962 Handle<FixedArray> storage_fixed_array() { | |
963 DCHECK(is_fixed_array()); | |
964 DCHECK(has_simple_elements()); | |
965 return Handle<FixedArray>::cast(storage_); | |
966 } | |
967 Handle<JSReceiver> storage_jsreceiver() { | |
968 DCHECK(!is_fixed_array()); | |
969 return Handle<JSReceiver>::cast(storage_); | |
970 } | |
971 bool has_simple_elements() const { | |
972 return HasSimpleElementsField::decode(bit_field_); | |
973 } | |
974 | |
975 private: | |
976 // Convert storage to dictionary mode. | |
977 void SetDictionaryMode() { | |
978 DCHECK(fast_elements() && is_fixed_array()); | |
979 Handle<FixedArray> current_storage = storage_fixed_array(); | |
980 Handle<SeededNumberDictionary> slow_storage( | |
981 SeededNumberDictionary::New(isolate_, current_storage->length())); | |
982 uint32_t current_length = static_cast<uint32_t>(current_storage->length()); | |
983 FOR_WITH_HANDLE_SCOPE( | |
984 isolate_, uint32_t, i = 0, i, i < current_length, i++, { | |
985 Handle<Object> element(current_storage->get(i), isolate_); | |
986 if (!element->IsTheHole(isolate_)) { | |
987 // The object holding this backing store has just been allocated, so | |
988 // it cannot yet be used as a prototype. | |
989 Handle<JSObject> not_a_prototype_holder; | |
990 Handle<SeededNumberDictionary> new_storage = | |
991 SeededNumberDictionary::AtNumberPut(slow_storage, i, element, | |
992 not_a_prototype_holder); | |
993 if (!new_storage.is_identical_to(slow_storage)) { | |
994 slow_storage = loop_scope.CloseAndEscape(new_storage); | |
995 } | |
996 } | |
997 }); | |
998 clear_storage(); | |
999 set_storage(*slow_storage); | |
1000 set_fast_elements(false); | |
1001 } | |
1002 | |
1003 inline void clear_storage() { GlobalHandles::Destroy(storage_.location()); } | |
1004 | |
1005 inline void set_storage(FixedArray* storage) { | |
1006 DCHECK(is_fixed_array()); | |
1007 DCHECK(has_simple_elements()); | |
1008 storage_ = isolate_->global_handles()->Create(storage); | |
1009 } | |
1010 | |
1011 class FastElementsField : public BitField<bool, 0, 1> {}; | |
1012 class ExceedsLimitField : public BitField<bool, 1, 1> {}; | |
1013 class IsFixedArrayField : public BitField<bool, 2, 1> {}; | |
1014 class HasSimpleElementsField : public BitField<bool, 3, 1> {}; | |
1015 | |
1016 bool fast_elements() const { return FastElementsField::decode(bit_field_); } | |
1017 void set_fast_elements(bool fast) { | |
1018 bit_field_ = FastElementsField::update(bit_field_, fast); | |
1019 } | |
1020 void set_exceeds_array_limit(bool exceeds) { | |
1021 bit_field_ = ExceedsLimitField::update(bit_field_, exceeds); | |
1022 } | |
1023 bool is_fixed_array() const { return IsFixedArrayField::decode(bit_field_); } | |
1024 | |
1025 Isolate* isolate_; | |
1026 Handle<Object> storage_; // Always a global handle. | |
1027 // Index after last seen index. Always less than or equal to | |
1028 // JSObject::kMaxElementCount. | |
1029 uint32_t index_offset_; | |
1030 uint32_t bit_field_; | |
1031 }; | |
1032 | |
1033 uint32_t EstimateElementCount(Handle<JSArray> array) { | |
1034 DisallowHeapAllocation no_gc; | |
1035 uint32_t length = static_cast<uint32_t>(array->length()->Number()); | |
1036 int element_count = 0; | |
1037 switch (array->GetElementsKind()) { | |
1038 case FAST_SMI_ELEMENTS: | |
1039 case FAST_HOLEY_SMI_ELEMENTS: | |
1040 case FAST_ELEMENTS: | |
1041 case FAST_HOLEY_ELEMENTS: { | |
1042 // Fast elements can't have lengths that are not representable by | |
1043 // a 32-bit signed integer. | |
1044 DCHECK(static_cast<int32_t>(FixedArray::kMaxLength) >= 0); | |
1045 int fast_length = static_cast<int>(length); | |
1046 Isolate* isolate = array->GetIsolate(); | |
1047 FixedArray* elements = FixedArray::cast(array->elements()); | |
1048 for (int i = 0; i < fast_length; i++) { | |
1049 if (!elements->get(i)->IsTheHole(isolate)) element_count++; | |
1050 } | |
1051 break; | |
1052 } | |
1053 case FAST_DOUBLE_ELEMENTS: | |
1054 case FAST_HOLEY_DOUBLE_ELEMENTS: { | |
1055 // Fast elements can't have lengths that are not representable by | |
1056 // a 32-bit signed integer. | |
1057 DCHECK(static_cast<int32_t>(FixedDoubleArray::kMaxLength) >= 0); | |
1058 int fast_length = static_cast<int>(length); | |
1059 if (array->elements()->IsFixedArray()) { | |
1060 DCHECK(FixedArray::cast(array->elements())->length() == 0); | |
1061 break; | |
1062 } | |
1063 FixedDoubleArray* elements = FixedDoubleArray::cast(array->elements()); | |
1064 for (int i = 0; i < fast_length; i++) { | |
1065 if (!elements->is_the_hole(i)) element_count++; | |
1066 } | |
1067 break; | |
1068 } | |
1069 case DICTIONARY_ELEMENTS: { | |
1070 SeededNumberDictionary* dictionary = | |
1071 SeededNumberDictionary::cast(array->elements()); | |
1072 Isolate* isolate = dictionary->GetIsolate(); | |
1073 int capacity = dictionary->Capacity(); | |
1074 for (int i = 0; i < capacity; i++) { | |
1075 Object* key = dictionary->KeyAt(i); | |
1076 if (dictionary->IsKey(isolate, key)) { | |
1077 element_count++; | |
1078 } | |
1079 } | |
1080 break; | |
1081 } | |
1082 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS: | |
1083 | |
1084 TYPED_ARRAYS(TYPED_ARRAY_CASE) | |
1085 #undef TYPED_ARRAY_CASE | |
1086 // External arrays are always dense. | |
1087 return length; | |
1088 case NO_ELEMENTS: | |
1089 return 0; | |
1090 case FAST_SLOPPY_ARGUMENTS_ELEMENTS: | |
1091 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: | |
1092 case FAST_STRING_WRAPPER_ELEMENTS: | |
1093 case SLOW_STRING_WRAPPER_ELEMENTS: | |
1094 UNREACHABLE(); | |
1095 return 0; | |
1096 } | |
1097 // As an estimate, we assume that the prototype doesn't contain any | |
1098 // inherited elements. | |
1099 return element_count; | |
1100 } | |
1101 | |
1102 // Used for sorting indices in a List<uint32_t>. | |
1103 int compareUInt32(const uint32_t* ap, const uint32_t* bp) { | |
1104 uint32_t a = *ap; | |
1105 uint32_t b = *bp; | |
1106 return (a == b) ? 0 : (a < b) ? -1 : 1; | |
1107 } | |
1108 | |
1109 void CollectElementIndices(Handle<JSObject> object, uint32_t range, | |
1110 List<uint32_t>* indices) { | |
1111 Isolate* isolate = object->GetIsolate(); | |
1112 ElementsKind kind = object->GetElementsKind(); | |
1113 switch (kind) { | |
1114 case FAST_SMI_ELEMENTS: | |
1115 case FAST_ELEMENTS: | |
1116 case FAST_HOLEY_SMI_ELEMENTS: | |
1117 case FAST_HOLEY_ELEMENTS: { | |
1118 DisallowHeapAllocation no_gc; | |
1119 FixedArray* elements = FixedArray::cast(object->elements()); | |
1120 uint32_t length = static_cast<uint32_t>(elements->length()); | |
1121 if (range < length) length = range; | |
1122 for (uint32_t i = 0; i < length; i++) { | |
1123 if (!elements->get(i)->IsTheHole(isolate)) { | |
1124 indices->Add(i); | |
1125 } | |
1126 } | |
1127 break; | |
1128 } | |
1129 case FAST_HOLEY_DOUBLE_ELEMENTS: | |
1130 case FAST_DOUBLE_ELEMENTS: { | |
1131 if (object->elements()->IsFixedArray()) { | |
1132 DCHECK(object->elements()->length() == 0); | |
1133 break; | |
1134 } | |
1135 Handle<FixedDoubleArray> elements( | |
1136 FixedDoubleArray::cast(object->elements())); | |
1137 uint32_t length = static_cast<uint32_t>(elements->length()); | |
1138 if (range < length) length = range; | |
1139 for (uint32_t i = 0; i < length; i++) { | |
1140 if (!elements->is_the_hole(i)) { | |
1141 indices->Add(i); | |
1142 } | |
1143 } | |
1144 break; | |
1145 } | |
1146 case DICTIONARY_ELEMENTS: { | |
1147 DisallowHeapAllocation no_gc; | |
1148 SeededNumberDictionary* dict = | |
1149 SeededNumberDictionary::cast(object->elements()); | |
1150 uint32_t capacity = dict->Capacity(); | |
1151 FOR_WITH_HANDLE_SCOPE(isolate, uint32_t, j = 0, j, j < capacity, j++, { | |
1152 Object* k = dict->KeyAt(j); | |
1153 if (!dict->IsKey(isolate, k)) continue; | |
1154 DCHECK(k->IsNumber()); | |
1155 uint32_t index = static_cast<uint32_t>(k->Number()); | |
1156 if (index < range) { | |
1157 indices->Add(index); | |
1158 } | |
1159 }); | |
1160 break; | |
1161 } | |
1162 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS: | |
1163 | |
1164 TYPED_ARRAYS(TYPED_ARRAY_CASE) | |
1165 #undef TYPED_ARRAY_CASE | |
1166 { | |
1167 uint32_t length = static_cast<uint32_t>( | |
1168 FixedArrayBase::cast(object->elements())->length()); | |
1169 if (range <= length) { | |
1170 length = range; | |
1171 // We will add all indices, so we might as well clear it first | |
1172 // and avoid duplicates. | |
1173 indices->Clear(); | |
1174 } | |
1175 for (uint32_t i = 0; i < length; i++) { | |
1176 indices->Add(i); | |
1177 } | |
1178 if (length == range) return; // All indices accounted for already. | |
1179 break; | |
1180 } | |
1181 case FAST_SLOPPY_ARGUMENTS_ELEMENTS: | |
1182 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: { | |
1183 ElementsAccessor* accessor = object->GetElementsAccessor(); | |
1184 for (uint32_t i = 0; i < range; i++) { | |
1185 if (accessor->HasElement(object, i)) { | |
1186 indices->Add(i); | |
1187 } | |
1188 } | |
1189 break; | |
1190 } | |
1191 case FAST_STRING_WRAPPER_ELEMENTS: | |
1192 case SLOW_STRING_WRAPPER_ELEMENTS: { | |
1193 DCHECK(object->IsJSValue()); | |
1194 Handle<JSValue> js_value = Handle<JSValue>::cast(object); | |
1195 DCHECK(js_value->value()->IsString()); | |
1196 Handle<String> string(String::cast(js_value->value()), isolate); | |
1197 uint32_t length = static_cast<uint32_t>(string->length()); | |
1198 uint32_t i = 0; | |
1199 uint32_t limit = Min(length, range); | |
1200 for (; i < limit; i++) { | |
1201 indices->Add(i); | |
1202 } | |
1203 ElementsAccessor* accessor = object->GetElementsAccessor(); | |
1204 for (; i < range; i++) { | |
1205 if (accessor->HasElement(object, i)) { | |
1206 indices->Add(i); | |
1207 } | |
1208 } | |
1209 break; | |
1210 } | |
1211 case NO_ELEMENTS: | |
1212 break; | |
1213 } | |
1214 | |
1215 PrototypeIterator iter(isolate, object); | |
1216 if (!iter.IsAtEnd()) { | |
1217 // The prototype will usually have no inherited element indices, | |
1218 // but we have to check. | |
1219 CollectElementIndices(PrototypeIterator::GetCurrent<JSObject>(iter), range, | |
1220 indices); | |
1221 } | |
1222 } | |
1223 | |
1224 bool IterateElementsSlow(Isolate* isolate, Handle<JSReceiver> receiver, | |
1225 uint32_t length, ArrayConcatVisitor* visitor) { | |
1226 FOR_WITH_HANDLE_SCOPE(isolate, uint32_t, i = 0, i, i < length, ++i, { | |
1227 Maybe<bool> maybe = JSReceiver::HasElement(receiver, i); | |
1228 if (!maybe.IsJust()) return false; | |
1229 if (maybe.FromJust()) { | |
1230 Handle<Object> element_value; | |
1231 ASSIGN_RETURN_ON_EXCEPTION_VALUE( | |
1232 isolate, element_value, JSReceiver::GetElement(isolate, receiver, i), | |
1233 false); | |
1234 if (!visitor->visit(i, element_value)) return false; | |
1235 } | |
1236 }); | |
1237 visitor->increase_index_offset(length); | |
1238 return true; | |
1239 } | |
1240 /** | |
1241 * A helper function that visits "array" elements of a JSReceiver in numerical | |
1242 * order. | |
1243 * | |
1244 * The visitor argument called for each existing element in the array | |
1245 * with the element index and the element's value. | |
1246 * Afterwards it increments the base-index of the visitor by the array | |
1247 * length. | |
1248 * Returns false if any access threw an exception, otherwise true. | |
1249 */ | |
1250 bool IterateElements(Isolate* isolate, Handle<JSReceiver> receiver, | |
1251 ArrayConcatVisitor* visitor) { | |
1252 uint32_t length = 0; | |
1253 | |
1254 if (receiver->IsJSArray()) { | |
1255 Handle<JSArray> array = Handle<JSArray>::cast(receiver); | |
1256 length = static_cast<uint32_t>(array->length()->Number()); | |
1257 } else { | |
1258 Handle<Object> val; | |
1259 ASSIGN_RETURN_ON_EXCEPTION_VALUE( | |
1260 isolate, val, Object::GetLengthFromArrayLike(isolate, receiver), false); | |
1261 // TODO(caitp): Support larger element indexes (up to 2^53-1). | |
1262 if (!val->ToUint32(&length)) { | |
1263 length = 0; | |
1264 } | |
1265 // TODO(cbruni): handle other element kind as well | |
1266 return IterateElementsSlow(isolate, receiver, length, visitor); | |
1267 } | |
1268 | |
1269 if (!HasOnlySimpleElements(isolate, *receiver) || | |
1270 !visitor->has_simple_elements()) { | |
1271 return IterateElementsSlow(isolate, receiver, length, visitor); | |
1272 } | |
1273 Handle<JSObject> array = Handle<JSObject>::cast(receiver); | |
1274 | |
1275 switch (array->GetElementsKind()) { | |
1276 case FAST_SMI_ELEMENTS: | |
1277 case FAST_ELEMENTS: | |
1278 case FAST_HOLEY_SMI_ELEMENTS: | |
1279 case FAST_HOLEY_ELEMENTS: { | |
1280 // Run through the elements FixedArray and use HasElement and GetElement | |
1281 // to check the prototype for missing elements. | |
1282 Handle<FixedArray> elements(FixedArray::cast(array->elements())); | |
1283 int fast_length = static_cast<int>(length); | |
1284 DCHECK(fast_length <= elements->length()); | |
1285 FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < fast_length, j++, { | |
1286 Handle<Object> element_value(elements->get(j), isolate); | |
1287 if (!element_value->IsTheHole(isolate)) { | |
1288 if (!visitor->visit(j, element_value)) return false; | |
1289 } else { | |
1290 Maybe<bool> maybe = JSReceiver::HasElement(array, j); | |
1291 if (!maybe.IsJust()) return false; | |
1292 if (maybe.FromJust()) { | |
1293 // Call GetElement on array, not its prototype, or getters won't | |
1294 // have the correct receiver. | |
1295 ASSIGN_RETURN_ON_EXCEPTION_VALUE( | |
1296 isolate, element_value, | |
1297 JSReceiver::GetElement(isolate, array, j), false); | |
1298 if (!visitor->visit(j, element_value)) return false; | |
1299 } | |
1300 } | |
1301 }); | |
1302 break; | |
1303 } | |
1304 case FAST_HOLEY_DOUBLE_ELEMENTS: | |
1305 case FAST_DOUBLE_ELEMENTS: { | |
1306 // Empty array is FixedArray but not FixedDoubleArray. | |
1307 if (length == 0) break; | |
1308 // Run through the elements FixedArray and use HasElement and GetElement | |
1309 // to check the prototype for missing elements. | |
1310 if (array->elements()->IsFixedArray()) { | |
1311 DCHECK(array->elements()->length() == 0); | |
1312 break; | |
1313 } | |
1314 Handle<FixedDoubleArray> elements( | |
1315 FixedDoubleArray::cast(array->elements())); | |
1316 int fast_length = static_cast<int>(length); | |
1317 DCHECK(fast_length <= elements->length()); | |
1318 FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < fast_length, j++, { | |
1319 if (!elements->is_the_hole(j)) { | |
1320 double double_value = elements->get_scalar(j); | |
1321 Handle<Object> element_value = | |
1322 isolate->factory()->NewNumber(double_value); | |
1323 if (!visitor->visit(j, element_value)) return false; | |
1324 } else { | |
1325 Maybe<bool> maybe = JSReceiver::HasElement(array, j); | |
1326 if (!maybe.IsJust()) return false; | |
1327 if (maybe.FromJust()) { | |
1328 // Call GetElement on array, not its prototype, or getters won't | |
1329 // have the correct receiver. | |
1330 Handle<Object> element_value; | |
1331 ASSIGN_RETURN_ON_EXCEPTION_VALUE( | |
1332 isolate, element_value, | |
1333 JSReceiver::GetElement(isolate, array, j), false); | |
1334 if (!visitor->visit(j, element_value)) return false; | |
1335 } | |
1336 } | |
1337 }); | |
1338 break; | |
1339 } | |
1340 | |
1341 case DICTIONARY_ELEMENTS: { | |
1342 Handle<SeededNumberDictionary> dict(array->element_dictionary()); | |
1343 List<uint32_t> indices(dict->Capacity() / 2); | |
1344 // Collect all indices in the object and the prototypes less | |
1345 // than length. This might introduce duplicates in the indices list. | |
1346 CollectElementIndices(array, length, &indices); | |
1347 indices.Sort(&compareUInt32); | |
1348 int n = indices.length(); | |
1349 FOR_WITH_HANDLE_SCOPE(isolate, int, j = 0, j, j < n, (void)0, { | |
1350 uint32_t index = indices[j]; | |
1351 Handle<Object> element; | |
1352 ASSIGN_RETURN_ON_EXCEPTION_VALUE( | |
1353 isolate, element, JSReceiver::GetElement(isolate, array, index), | |
1354 false); | |
1355 if (!visitor->visit(index, element)) return false; | |
1356 // Skip to next different index (i.e., omit duplicates). | |
1357 do { | |
1358 j++; | |
1359 } while (j < n && indices[j] == index); | |
1360 }); | |
1361 break; | |
1362 } | |
1363 case FAST_SLOPPY_ARGUMENTS_ELEMENTS: | |
1364 case SLOW_SLOPPY_ARGUMENTS_ELEMENTS: { | |
1365 FOR_WITH_HANDLE_SCOPE( | |
1366 isolate, uint32_t, index = 0, index, index < length, index++, { | |
1367 Handle<Object> element; | |
1368 ASSIGN_RETURN_ON_EXCEPTION_VALUE( | |
1369 isolate, element, JSReceiver::GetElement(isolate, array, index), | |
1370 false); | |
1371 if (!visitor->visit(index, element)) return false; | |
1372 }); | |
1373 break; | |
1374 } | |
1375 case NO_ELEMENTS: | |
1376 break; | |
1377 #define TYPED_ARRAY_CASE(Type, type, TYPE, ctype, size) case TYPE##_ELEMENTS: | |
1378 TYPED_ARRAYS(TYPED_ARRAY_CASE) | |
1379 #undef TYPED_ARRAY_CASE | |
1380 return IterateElementsSlow(isolate, receiver, length, visitor); | |
1381 case FAST_STRING_WRAPPER_ELEMENTS: | |
1382 case SLOW_STRING_WRAPPER_ELEMENTS: | |
1383 // |array| is guaranteed to be an array or typed array. | |
1384 UNREACHABLE(); | |
1385 break; | |
1386 } | |
1387 visitor->increase_index_offset(length); | |
1388 return true; | |
1389 } | |
1390 | |
1391 static Maybe<bool> IsConcatSpreadable(Isolate* isolate, Handle<Object> obj) { | |
1392 HandleScope handle_scope(isolate); | |
1393 if (!obj->IsJSReceiver()) return Just(false); | |
1394 if (!isolate->IsIsConcatSpreadableLookupChainIntact(JSReceiver::cast(*obj))) { | |
1395 // Slow path if @@isConcatSpreadable has been used. | |
1396 Handle<Symbol> key(isolate->factory()->is_concat_spreadable_symbol()); | |
1397 Handle<Object> value; | |
1398 MaybeHandle<Object> maybeValue = | |
1399 i::Runtime::GetObjectProperty(isolate, obj, key); | |
1400 if (!maybeValue.ToHandle(&value)) return Nothing<bool>(); | |
1401 if (!value->IsUndefined(isolate)) return Just(value->BooleanValue()); | |
1402 } | |
1403 return Object::IsArray(obj); | |
1404 } | |
1405 | |
1406 Object* Slow_ArrayConcat(BuiltinArguments* args, Handle<Object> species, | |
1407 Isolate* isolate) { | |
1408 int argument_count = args->length(); | |
1409 | |
1410 bool is_array_species = *species == isolate->context()->array_function(); | |
1411 | |
1412 // Pass 1: estimate the length and number of elements of the result. | |
1413 // The actual length can be larger if any of the arguments have getters | |
1414 // that mutate other arguments (but will otherwise be precise). | |
1415 // The number of elements is precise if there are no inherited elements. | |
1416 | |
1417 ElementsKind kind = FAST_SMI_ELEMENTS; | |
1418 | |
1419 uint32_t estimate_result_length = 0; | |
1420 uint32_t estimate_nof_elements = 0; | |
1421 FOR_WITH_HANDLE_SCOPE(isolate, int, i = 0, i, i < argument_count, i++, { | |
1422 Handle<Object> obj((*args)[i], isolate); | |
1423 uint32_t length_estimate; | |
1424 uint32_t element_estimate; | |
1425 if (obj->IsJSArray()) { | |
1426 Handle<JSArray> array(Handle<JSArray>::cast(obj)); | |
1427 length_estimate = static_cast<uint32_t>(array->length()->Number()); | |
1428 if (length_estimate != 0) { | |
1429 ElementsKind array_kind = | |
1430 GetPackedElementsKind(array->GetElementsKind()); | |
1431 kind = GetMoreGeneralElementsKind(kind, array_kind); | |
1432 } | |
1433 element_estimate = EstimateElementCount(array); | |
1434 } else { | |
1435 if (obj->IsHeapObject()) { | |
1436 kind = GetMoreGeneralElementsKind( | |
1437 kind, obj->IsNumber() ? FAST_DOUBLE_ELEMENTS : FAST_ELEMENTS); | |
1438 } | |
1439 length_estimate = 1; | |
1440 element_estimate = 1; | |
1441 } | |
1442 // Avoid overflows by capping at kMaxElementCount. | |
1443 if (JSObject::kMaxElementCount - estimate_result_length < length_estimate) { | |
1444 estimate_result_length = JSObject::kMaxElementCount; | |
1445 } else { | |
1446 estimate_result_length += length_estimate; | |
1447 } | |
1448 if (JSObject::kMaxElementCount - estimate_nof_elements < element_estimate) { | |
1449 estimate_nof_elements = JSObject::kMaxElementCount; | |
1450 } else { | |
1451 estimate_nof_elements += element_estimate; | |
1452 } | |
1453 }); | |
1454 | |
1455 // If estimated number of elements is more than half of length, a | |
1456 // fixed array (fast case) is more time and space-efficient than a | |
1457 // dictionary. | |
1458 bool fast_case = is_array_species && | |
1459 (estimate_nof_elements * 2) >= estimate_result_length && | |
1460 isolate->IsIsConcatSpreadableLookupChainIntact(); | |
1461 | |
1462 if (fast_case && kind == FAST_DOUBLE_ELEMENTS) { | |
1463 Handle<FixedArrayBase> storage = | |
1464 isolate->factory()->NewFixedDoubleArray(estimate_result_length); | |
1465 int j = 0; | |
1466 bool failure = false; | |
1467 if (estimate_result_length > 0) { | |
1468 Handle<FixedDoubleArray> double_storage = | |
1469 Handle<FixedDoubleArray>::cast(storage); | |
1470 for (int i = 0; i < argument_count; i++) { | |
1471 Handle<Object> obj((*args)[i], isolate); | |
1472 if (obj->IsSmi()) { | |
1473 double_storage->set(j, Smi::cast(*obj)->value()); | |
1474 j++; | |
1475 } else if (obj->IsNumber()) { | |
1476 double_storage->set(j, obj->Number()); | |
1477 j++; | |
1478 } else { | |
1479 DisallowHeapAllocation no_gc; | |
1480 JSArray* array = JSArray::cast(*obj); | |
1481 uint32_t length = static_cast<uint32_t>(array->length()->Number()); | |
1482 switch (array->GetElementsKind()) { | |
1483 case FAST_HOLEY_DOUBLE_ELEMENTS: | |
1484 case FAST_DOUBLE_ELEMENTS: { | |
1485 // Empty array is FixedArray but not FixedDoubleArray. | |
1486 if (length == 0) break; | |
1487 FixedDoubleArray* elements = | |
1488 FixedDoubleArray::cast(array->elements()); | |
1489 for (uint32_t i = 0; i < length; i++) { | |
1490 if (elements->is_the_hole(i)) { | |
1491 // TODO(jkummerow/verwaest): We could be a bit more clever | |
1492 // here: Check if there are no elements/getters on the | |
1493 // prototype chain, and if so, allow creation of a holey | |
1494 // result array. | |
1495 // Same thing below (holey smi case). | |
1496 failure = true; | |
1497 break; | |
1498 } | |
1499 double double_value = elements->get_scalar(i); | |
1500 double_storage->set(j, double_value); | |
1501 j++; | |
1502 } | |
1503 break; | |
1504 } | |
1505 case FAST_HOLEY_SMI_ELEMENTS: | |
1506 case FAST_SMI_ELEMENTS: { | |
1507 Object* the_hole = isolate->heap()->the_hole_value(); | |
1508 FixedArray* elements(FixedArray::cast(array->elements())); | |
1509 for (uint32_t i = 0; i < length; i++) { | |
1510 Object* element = elements->get(i); | |
1511 if (element == the_hole) { | |
1512 failure = true; | |
1513 break; | |
1514 } | |
1515 int32_t int_value = Smi::cast(element)->value(); | |
1516 double_storage->set(j, int_value); | |
1517 j++; | |
1518 } | |
1519 break; | |
1520 } | |
1521 case FAST_HOLEY_ELEMENTS: | |
1522 case FAST_ELEMENTS: | |
1523 case DICTIONARY_ELEMENTS: | |
1524 case NO_ELEMENTS: | |
1525 DCHECK_EQ(0u, length); | |
1526 break; | |
1527 default: | |
1528 UNREACHABLE(); | |
1529 } | |
1530 } | |
1531 if (failure) break; | |
1532 } | |
1533 } | |
1534 if (!failure) { | |
1535 return *isolate->factory()->NewJSArrayWithElements(storage, kind, j); | |
1536 } | |
1537 // In case of failure, fall through. | |
1538 } | |
1539 | |
1540 Handle<HeapObject> storage; | |
1541 if (fast_case) { | |
1542 // The backing storage array must have non-existing elements to preserve | |
1543 // holes across concat operations. | |
1544 storage = | |
1545 isolate->factory()->NewFixedArrayWithHoles(estimate_result_length); | |
1546 } else if (is_array_species) { | |
1547 // TODO(126): move 25% pre-allocation logic into Dictionary::Allocate | |
1548 uint32_t at_least_space_for = | |
1549 estimate_nof_elements + (estimate_nof_elements >> 2); | |
1550 storage = SeededNumberDictionary::New(isolate, at_least_space_for); | |
1551 } else { | |
1552 DCHECK(species->IsConstructor()); | |
1553 Handle<Object> length(Smi::kZero, isolate); | |
1554 Handle<Object> storage_object; | |
1555 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
1556 isolate, storage_object, | |
1557 Execution::New(isolate, species, species, 1, &length)); | |
1558 storage = Handle<HeapObject>::cast(storage_object); | |
1559 } | |
1560 | |
1561 ArrayConcatVisitor visitor(isolate, storage, fast_case); | |
1562 | |
1563 for (int i = 0; i < argument_count; i++) { | |
1564 Handle<Object> obj((*args)[i], isolate); | |
1565 Maybe<bool> spreadable = IsConcatSpreadable(isolate, obj); | |
1566 MAYBE_RETURN(spreadable, isolate->heap()->exception()); | |
1567 if (spreadable.FromJust()) { | |
1568 Handle<JSReceiver> object = Handle<JSReceiver>::cast(obj); | |
1569 if (!IterateElements(isolate, object, &visitor)) { | |
1570 return isolate->heap()->exception(); | |
1571 } | |
1572 } else { | |
1573 if (!visitor.visit(0, obj)) return isolate->heap()->exception(); | |
1574 visitor.increase_index_offset(1); | |
1575 } | |
1576 } | |
1577 | |
1578 if (visitor.exceeds_array_limit()) { | |
1579 THROW_NEW_ERROR_RETURN_FAILURE( | |
1580 isolate, NewRangeError(MessageTemplate::kInvalidArrayLength)); | |
1581 } | |
1582 | |
1583 if (is_array_species) { | |
1584 return *visitor.ToArray(); | |
1585 } else { | |
1586 return *visitor.storage_jsreceiver(); | |
1587 } | |
1588 } | |
1589 | |
1590 bool IsSimpleArray(Isolate* isolate, Handle<JSArray> obj) { | |
1591 DisallowHeapAllocation no_gc; | |
1592 Map* map = obj->map(); | |
1593 // If there is only the 'length' property we are fine. | |
1594 if (map->prototype() == | |
1595 isolate->native_context()->initial_array_prototype() && | |
1596 map->NumberOfOwnDescriptors() == 1) { | |
1597 return true; | |
1598 } | |
1599 // TODO(cbruni): slower lookup for array subclasses and support slow | |
1600 // @@IsConcatSpreadable lookup. | |
1601 return false; | |
1602 } | |
1603 | |
1604 MaybeHandle<JSArray> Fast_ArrayConcat(Isolate* isolate, | |
1605 BuiltinArguments* args) { | |
1606 if (!isolate->IsIsConcatSpreadableLookupChainIntact()) { | |
1607 return MaybeHandle<JSArray>(); | |
1608 } | |
1609 // We shouldn't overflow when adding another len. | |
1610 const int kHalfOfMaxInt = 1 << (kBitsPerInt - 2); | |
1611 STATIC_ASSERT(FixedArray::kMaxLength < kHalfOfMaxInt); | |
1612 STATIC_ASSERT(FixedDoubleArray::kMaxLength < kHalfOfMaxInt); | |
1613 USE(kHalfOfMaxInt); | |
1614 | |
1615 int n_arguments = args->length(); | |
1616 int result_len = 0; | |
1617 { | |
1618 DisallowHeapAllocation no_gc; | |
1619 // Iterate through all the arguments performing checks | |
1620 // and calculating total length. | |
1621 for (int i = 0; i < n_arguments; i++) { | |
1622 Object* arg = (*args)[i]; | |
1623 if (!arg->IsJSArray()) return MaybeHandle<JSArray>(); | |
1624 if (!HasOnlySimpleReceiverElements(isolate, JSObject::cast(arg))) { | |
1625 return MaybeHandle<JSArray>(); | |
1626 } | |
1627 // TODO(cbruni): support fast concatenation of DICTIONARY_ELEMENTS. | |
1628 if (!JSObject::cast(arg)->HasFastElements()) { | |
1629 return MaybeHandle<JSArray>(); | |
1630 } | |
1631 Handle<JSArray> array(JSArray::cast(arg), isolate); | |
1632 if (!IsSimpleArray(isolate, array)) { | |
1633 return MaybeHandle<JSArray>(); | |
1634 } | |
1635 // The Array length is guaranted to be <= kHalfOfMaxInt thus we won't | |
1636 // overflow. | |
1637 result_len += Smi::cast(array->length())->value(); | |
1638 DCHECK(result_len >= 0); | |
1639 // Throw an Error if we overflow the FixedArray limits | |
1640 if (FixedDoubleArray::kMaxLength < result_len || | |
1641 FixedArray::kMaxLength < result_len) { | |
1642 AllowHeapAllocation gc; | |
1643 THROW_NEW_ERROR(isolate, | |
1644 NewRangeError(MessageTemplate::kInvalidArrayLength), | |
1645 JSArray); | |
1646 } | |
1647 } | |
1648 } | |
1649 return ElementsAccessor::Concat(isolate, args, n_arguments, result_len); | |
1650 } | |
1651 | |
1652 } // namespace | |
1653 | |
1654 // ES6 22.1.3.1 Array.prototype.concat | |
1655 BUILTIN(ArrayConcat) { | |
1656 HandleScope scope(isolate); | |
1657 | |
1658 Handle<Object> receiver = args.receiver(); | |
1659 // TODO(bmeurer): Do we really care about the exact exception message here? | |
1660 if (receiver->IsNullOrUndefined(isolate)) { | |
1661 THROW_NEW_ERROR_RETURN_FAILURE( | |
1662 isolate, NewTypeError(MessageTemplate::kCalledOnNullOrUndefined, | |
1663 isolate->factory()->NewStringFromAsciiChecked( | |
1664 "Array.prototype.concat"))); | |
1665 } | |
1666 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
1667 isolate, receiver, Object::ToObject(isolate, args.receiver())); | |
1668 args[0] = *receiver; | |
1669 | |
1670 Handle<JSArray> result_array; | |
1671 | |
1672 // Avoid a real species read to avoid extra lookups to the array constructor | |
1673 if (V8_LIKELY(receiver->IsJSArray() && | |
1674 Handle<JSArray>::cast(receiver)->HasArrayPrototype(isolate) && | |
1675 isolate->IsArraySpeciesLookupChainIntact())) { | |
1676 if (Fast_ArrayConcat(isolate, &args).ToHandle(&result_array)) { | |
1677 return *result_array; | |
1678 } | |
1679 if (isolate->has_pending_exception()) return isolate->heap()->exception(); | |
1680 } | |
1681 // Reading @@species happens before anything else with a side effect, so | |
1682 // we can do it here to determine whether to take the fast path. | |
1683 Handle<Object> species; | |
1684 ASSIGN_RETURN_FAILURE_ON_EXCEPTION( | |
1685 isolate, species, Object::ArraySpeciesConstructor(isolate, receiver)); | |
1686 if (*species == *isolate->array_function()) { | |
1687 if (Fast_ArrayConcat(isolate, &args).ToHandle(&result_array)) { | |
1688 return *result_array; | |
1689 } | |
1690 if (isolate->has_pending_exception()) return isolate->heap()->exception(); | |
1691 } | |
1692 return Slow_ArrayConcat(&args, species, isolate); | |
1693 } | |
1694 | |
1695 TF_BUILTIN(ArrayIsArray, CodeStubAssembler) { | 465 TF_BUILTIN(ArrayIsArray, CodeStubAssembler) { |
1696 Node* object = Parameter(1); | 466 Node* object = Parameter(1); |
1697 Node* context = Parameter(4); | 467 Node* context = Parameter(4); |
1698 | 468 |
1699 Label call_runtime(this), return_true(this), return_false(this); | 469 Label call_runtime(this), return_true(this), return_false(this); |
1700 | 470 |
1701 GotoIf(TaggedIsSmi(object), &return_false); | 471 GotoIf(TaggedIsSmi(object), &return_false); |
1702 Node* instance_type = LoadInstanceType(object); | 472 Node* instance_type = LoadInstanceType(object); |
1703 | 473 |
1704 GotoIf(Word32Equal(instance_type, Int32Constant(JS_ARRAY_TYPE)), | 474 GotoIf(Word32Equal(instance_type, Int32Constant(JS_ARRAY_TYPE)), |
(...skipping 37 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
1742 Node* const len = LoadAndUntagObjectField(array, JSArray::kLengthOffset); | 512 Node* const len = LoadAndUntagObjectField(array, JSArray::kLengthOffset); |
1743 | 513 |
1744 GotoIf(IsUndefined(start_from), &select_loop); | 514 GotoIf(IsUndefined(start_from), &select_loop); |
1745 | 515 |
1746 // Bailout to slow path if startIndex is not an Smi. | 516 // Bailout to slow path if startIndex is not an Smi. |
1747 Branch(TaggedIsSmi(start_from), &init_k, &call_runtime); | 517 Branch(TaggedIsSmi(start_from), &init_k, &call_runtime); |
1748 | 518 |
1749 Bind(&init_k); | 519 Bind(&init_k); |
1750 CSA_ASSERT(this, TaggedIsSmi(start_from)); | 520 CSA_ASSERT(this, TaggedIsSmi(start_from)); |
1751 Node* const untagged_start_from = SmiToWord(start_from); | 521 Node* const untagged_start_from = SmiToWord(start_from); |
1752 index_var.Bind(Select( | 522 index_var.Bind( |
1753 IntPtrGreaterThanOrEqual(untagged_start_from, IntPtrConstant(0)), | 523 Select(IntPtrGreaterThanOrEqual(untagged_start_from, IntPtrConstant(0)), |
1754 [=]() { return untagged_start_from; }, | 524 [=]() { return untagged_start_from; }, |
1755 [=]() { | 525 [=]() { |
1756 Node* const index = IntPtrAdd(len, untagged_start_from); | 526 Node* const index = IntPtrAdd(len, untagged_start_from); |
1757 return SelectConstant(IntPtrLessThan(index, IntPtrConstant(0)), | 527 return SelectConstant(IntPtrLessThan(index, IntPtrConstant(0)), |
1758 IntPtrConstant(0), index, | 528 IntPtrConstant(0), index, |
1759 MachineType::PointerRepresentation()); | 529 MachineType::PointerRepresentation()); |
1760 }, | 530 }, |
1761 MachineType::PointerRepresentation())); | 531 MachineType::PointerRepresentation())); |
1762 | 532 |
1763 Goto(&select_loop); | 533 Goto(&select_loop); |
1764 Bind(&select_loop); | 534 Bind(&select_loop); |
1765 static int32_t kElementsKind[] = { | 535 static int32_t kElementsKind[] = { |
1766 FAST_SMI_ELEMENTS, FAST_HOLEY_SMI_ELEMENTS, FAST_ELEMENTS, | 536 FAST_SMI_ELEMENTS, FAST_HOLEY_SMI_ELEMENTS, FAST_ELEMENTS, |
1767 FAST_HOLEY_ELEMENTS, FAST_DOUBLE_ELEMENTS, FAST_HOLEY_DOUBLE_ELEMENTS, | 537 FAST_HOLEY_ELEMENTS, FAST_DOUBLE_ELEMENTS, FAST_HOLEY_DOUBLE_ELEMENTS, |
1768 }; | 538 }; |
1769 | 539 |
1770 Label if_smiorobjects(this), if_packed_doubles(this), if_holey_doubles(this); | 540 Label if_smiorobjects(this), if_packed_doubles(this), if_holey_doubles(this); |
1771 Label* element_kind_handlers[] = {&if_smiorobjects, &if_smiorobjects, | 541 Label* element_kind_handlers[] = {&if_smiorobjects, &if_smiorobjects, |
(...skipping 967 matching lines...) Expand 10 before | Expand all | Expand 10 after Loading... |
2739 { | 1509 { |
2740 Node* message = SmiConstant(MessageTemplate::kDetachedOperation); | 1510 Node* message = SmiConstant(MessageTemplate::kDetachedOperation); |
2741 CallRuntime(Runtime::kThrowTypeError, context, message, | 1511 CallRuntime(Runtime::kThrowTypeError, context, message, |
2742 HeapConstant(operation)); | 1512 HeapConstant(operation)); |
2743 Unreachable(); | 1513 Unreachable(); |
2744 } | 1514 } |
2745 } | 1515 } |
2746 | 1516 |
2747 } // namespace internal | 1517 } // namespace internal |
2748 } // namespace v8 | 1518 } // namespace v8 |
OLD | NEW |