Index: runtime/lib/bigint.dart |
diff --git a/runtime/lib/bigint.dart b/runtime/lib/bigint.dart |
index e4fc4ebb957ade8bb70dde710dfc53c5aa68249c..af03ea41fd62394b676623b0b59d6b2126c524e9 100644 |
--- a/runtime/lib/bigint.dart |
+++ b/runtime/lib/bigint.dart |
@@ -119,9 +119,9 @@ class _Bigint extends _IntegerImplementation implements int { |
// Allocate an array of the given length (+1 for at least one leading zero |
// digit if odd) and copy digits[from..to-1] starting at index 0, followed by |
// leading zero digits. |
- static Uint32List _cloneDigits(Uint32List digits, int from, int to, |
- int length) { |
- length += length & 1; // Even number of digits. |
+ static Uint32List _cloneDigits( |
+ Uint32List digits, int from, int to, int length) { |
+ length += length & 1; // Even number of digits. |
var r_digits = new Uint32List(length); |
var n = to - from; |
for (var i = 0; i < n; i++) { |
@@ -132,7 +132,7 @@ class _Bigint extends _IntegerImplementation implements int { |
// Return most compact integer (i.e. possibly Smi or Mint). |
int _toValidInt() { |
- assert(_DIGIT_BITS == 32); // Otherwise this code needs to be revised. |
+ assert(_DIGIT_BITS == 32); // Otherwise this code needs to be revised. |
var used = _used; |
if (used == 0) return 0; |
var digits = _digits; |
@@ -174,11 +174,25 @@ class _Bigint extends _IntegerImplementation implements int { |
// Return the bit length of digit x. |
static int _nbits(int x) { |
var r = 1, t; |
- if ((t = x >> 16) != 0) { x = t; r += 16; } |
- if ((t = x >> 8) != 0) { x = t; r += 8; } |
- if ((t = x >> 4) != 0) { x = t; r += 4; } |
- if ((t = x >> 2) != 0) { x = t; r += 2; } |
- if ((x >> 1) != 0) { r += 1; } |
+ if ((t = x >> 16) != 0) { |
+ x = t; |
+ r += 16; |
+ } |
+ if ((t = x >> 8) != 0) { |
+ x = t; |
+ r += 8; |
+ } |
+ if ((t = x >> 4) != 0) { |
+ x = t; |
+ r += 4; |
+ } |
+ if ((t = x >> 2) != 0) { |
+ x = t; |
+ r += 2; |
+ } |
+ if ((x >> 1) != 0) { |
+ r += 1; |
+ } |
return r; |
} |
@@ -200,8 +214,8 @@ class _Bigint extends _IntegerImplementation implements int { |
// r_digits[0..r_used-1] = x_digits[0..x_used-1] << n*_DIGIT_BITS. |
// Return r_used. |
- static int _dlShiftDigits(Uint32List x_digits, int x_used, int n, |
- Uint32List r_digits) { |
+ static int _dlShiftDigits( |
+ Uint32List x_digits, int x_used, int n, Uint32List r_digits) { |
if (x_used == 0) { |
return 0; |
} |
@@ -253,8 +267,8 @@ class _Bigint extends _IntegerImplementation implements int { |
// r_digits[0..r_used-1] = x_digits[0..x_used-1] >> n*_DIGIT_BITS. |
// Return r_used. |
- static int _drShiftDigits(Uint32List x_digits, int x_used, int n, |
- Uint32List r_digits) { |
+ static int _drShiftDigits( |
+ Uint32List x_digits, int x_used, int n, Uint32List r_digits) { |
final r_used = x_used - n; |
if (r_used <= 0) { |
return 0; |
@@ -272,8 +286,8 @@ class _Bigint extends _IntegerImplementation implements int { |
// r_digits[ds..x_used+ds] = x_digits[0..x_used-1] << (n % _DIGIT_BITS) |
// where ds = ceil(n / _DIGIT_BITS) |
// Doesn't clear digits below ds. |
- static void _lsh(Uint32List x_digits, int x_used, int n, |
- Uint32List r_digits) { |
+ static void _lsh( |
+ Uint32List x_digits, int x_used, int n, Uint32List r_digits) { |
final ds = n ~/ _DIGIT_BITS; |
final bs = n % _DIGIT_BITS; |
final cbs = _DIGIT_BITS - bs; |
@@ -296,29 +310,29 @@ class _Bigint extends _IntegerImplementation implements int { |
return _dlShift(ds); |
} |
var r_used = _used + ds + 1; |
- var r_digits = new Uint32List(r_used + 2 - (r_used & 1)); // for 64-bit. |
+ var r_digits = new Uint32List(r_used + 2 - (r_used & 1)); // for 64-bit. |
_lsh(_digits, _used, n, r_digits); |
return new _Bigint(_neg, r_used, r_digits); |
} |
// r_digits[0..r_used-1] = x_digits[0..x_used-1] << n. |
// Return r_used. |
- static int _lShiftDigits(Uint32List x_digits, int x_used, int n, |
- Uint32List r_digits) { |
+ static int _lShiftDigits( |
+ Uint32List x_digits, int x_used, int n, Uint32List r_digits) { |
final ds = n ~/ _DIGIT_BITS; |
final bs = n % _DIGIT_BITS; |
if (bs == 0) { |
return _dlShiftDigits(x_digits, x_used, ds, r_digits); |
} |
var r_used = x_used + ds + 1; |
- assert(r_digits.length >= r_used + 2 - (r_used & 1)); // for 64-bit. |
+ assert(r_digits.length >= r_used + 2 - (r_used & 1)); // for 64-bit. |
_lsh(x_digits, x_used, n, r_digits); |
var i = ds; |
while (--i >= 0) { |
r_digits[i] = 0; |
} |
if (r_digits[r_used - 1] == 0) { |
- r_used--; // Clamp result. |
+ r_used--; // Clamp result. |
} else if (r_used.isOdd) { |
r_digits[r_used] = 0; |
} |
@@ -326,8 +340,8 @@ class _Bigint extends _IntegerImplementation implements int { |
} |
// r_digits[0..r_used-1] = x_digits[0..x_used-1] >> n. |
- static void _rsh(Uint32List x_digits, int x_used, int n, |
- Uint32List r_digits) { |
+ static void _rsh( |
+ Uint32List x_digits, int x_used, int n, Uint32List r_digits) { |
final ds = n ~/ _DIGIT_BITS; |
final bs = n % _DIGIT_BITS; |
final cbs = _DIGIT_BITS - bs; |
@@ -374,8 +388,8 @@ class _Bigint extends _IntegerImplementation implements int { |
// r_digits[0..r_used-1] = x_digits[0..x_used-1] >> n. |
// Return r_used. |
- static int _rShiftDigits(Uint32List x_digits, int x_used, int n, |
- Uint32List r_digits) { |
+ static int _rShiftDigits( |
+ Uint32List x_digits, int x_used, int n, Uint32List r_digits) { |
final ds = n ~/ _DIGIT_BITS; |
final bs = n % _DIGIT_BITS; |
if (bs == 0) { |
@@ -388,7 +402,7 @@ class _Bigint extends _IntegerImplementation implements int { |
assert(r_digits.length >= r_used + (r_used & 1)); |
_rsh(x_digits, x_used, n, r_digits); |
if (r_digits[r_used - 1] == 0) { |
- r_used--; // Clamp result. |
+ r_used--; // Clamp result. |
} else if (r_used.isOdd) { |
r_digits[r_used] = 0; |
} |
@@ -424,8 +438,8 @@ class _Bigint extends _IntegerImplementation implements int { |
// Return 0 if equal. |
// Return a positive number if larger. |
// Return a negative number if smaller. |
- static int _compareDigits(Uint32List digits, int used, |
- Uint32List a_digits, int a_used) { |
+ static int _compareDigits( |
+ Uint32List digits, int used, Uint32List a_digits, int a_used) { |
var r = used - a_used; |
if (r == 0) { |
var i = a_used; |
@@ -437,9 +451,8 @@ class _Bigint extends _IntegerImplementation implements int { |
// r_digits[0..used] = digits[0..used-1] + a_digits[0..a_used-1]. |
// used >= a_used > 0. |
// Note: Intrinsics on 64-bit platforms process digit pairs at even indices. |
- static void _absAdd(Uint32List digits, int used, |
- Uint32List a_digits, int a_used, |
- Uint32List r_digits) { |
+ static void _absAdd(Uint32List digits, int used, Uint32List a_digits, |
+ int a_used, Uint32List r_digits) { |
assert(used >= a_used && a_used > 0); |
// Verify that digit pairs are accessible for 64-bit processing. |
assert(digits.length > ((used - 1) | 1)); |
@@ -462,9 +475,8 @@ class _Bigint extends _IntegerImplementation implements int { |
// r_digits[0..used-1] = digits[0..used-1] - a_digits[0..a_used-1]. |
// used >= a_used > 0. |
// Note: Intrinsics on 64-bit platforms process digit pairs at even indices. |
- static void _absSub(Uint32List digits, int used, |
- Uint32List a_digits, int a_used, |
- Uint32List r_digits) { |
+ static void _absSub(Uint32List digits, int used, Uint32List a_digits, |
+ int a_used, Uint32List r_digits) { |
assert(used >= a_used && a_used > 0); |
// Verify that digit pairs are accessible for 64-bit processing. |
assert(digits.length > ((used - 1) | 1)); |
@@ -541,7 +553,7 @@ class _Bigint extends _IntegerImplementation implements int { |
var r_digits = new Uint32List(r_used + (r_used & 1)); |
var m = (r_used < a._used) ? r_used : a._used; |
for (var i = 0; i < m; i++) { |
- r_digits[i] = digits[i] &~ a_digits[i]; |
+ r_digits[i] = digits[i] & ~a_digits[i]; |
} |
for (var i = m; i < r_used; i++) { |
r_digits[i] = digits[i]; |
@@ -620,7 +632,8 @@ class _Bigint extends _IntegerImplementation implements int { |
if (_neg) { |
p = a; |
n = this; |
- } else { // & is symmetric. |
+ } else { |
+ // & is symmetric. |
p = this; |
n = a; |
} |
@@ -675,7 +688,8 @@ class _Bigint extends _IntegerImplementation implements int { |
if (_neg) { |
p = a; |
n = this; |
- } else { // | is symmetric. |
+ } else { |
+ // | is symmetric. |
p = this; |
n = a; |
} |
@@ -701,7 +715,8 @@ class _Bigint extends _IntegerImplementation implements int { |
if (_neg) { |
p = a; |
n = this; |
- } else { // ^ is symmetric. |
+ } else { |
+ // ^ is symmetric. |
p = this; |
n = a; |
} |
@@ -764,9 +779,8 @@ class _Bigint extends _IntegerImplementation implements int { |
// return 1. |
// Note: Intrinsics on 64-bit platforms process digit pairs at even indices |
// and return 2. |
- static int _mulAdd(Uint32List x_digits, int xi, |
- Uint32List m_digits, int i, |
- Uint32List a_digits, int j, int n) { |
+ static int _mulAdd(Uint32List x_digits, int xi, Uint32List m_digits, int i, |
+ Uint32List a_digits, int j, int n) { |
// Verify that digit pairs are accessible for 64-bit processing. |
assert(x_digits.length > (xi | 1)); |
assert(m_digits.length > ((i + n - 1) | 1)); |
@@ -782,9 +796,9 @@ class _Bigint extends _IntegerImplementation implements int { |
while (--n >= 0) { |
int l = m_digits[i] & _DIGIT2_MASK; |
int h = m_digits[i++] >> _DIGIT2_BITS; |
- int m = xh*l + h*xl; |
- l = xl*l + ((m & _DIGIT2_MASK) << _DIGIT2_BITS) + a_digits[j] + c; |
- c = (l >> _DIGIT_BITS) + (m >> _DIGIT2_BITS) + xh*h; |
+ int m = xh * l + h * xl; |
+ l = xl * l + ((m & _DIGIT2_MASK) << _DIGIT2_BITS) + a_digits[j] + c; |
+ c = (l >> _DIGIT_BITS) + (m >> _DIGIT2_BITS) + xh * h; |
a_digits[j++] = l & _DIGIT_MASK; |
} |
while (c != 0) { |
@@ -805,20 +819,20 @@ class _Bigint extends _IntegerImplementation implements int { |
// return 1. |
// Note: Intrinsics on 64-bit platforms process digit pairs at even indices |
// and return 2. |
- static int _sqrAdd(Uint32List x_digits, int i, |
- Uint32List a_digits, int used) { |
+ static int _sqrAdd( |
+ Uint32List x_digits, int i, Uint32List a_digits, int used) { |
// Verify that digit pairs are accessible for 64-bit processing. |
assert(x_digits.length > ((used - 1) | 1)); |
assert(a_digits.length > ((i + used - 1) | 1)); |
int x = x_digits[i]; |
if (x == 0) return 1; |
- int j = 2*i; |
+ int j = 2 * i; |
int c = 0; |
int xl = x & _DIGIT2_MASK; |
int xh = x >> _DIGIT2_BITS; |
- int m = 2*xh*xl; |
- int l = xl*xl + ((m & _DIGIT2_MASK) << _DIGIT2_BITS) + a_digits[j]; |
- c = (l >> _DIGIT_BITS) + (m >> _DIGIT2_BITS) + xh*xh; |
+ int m = 2 * xh * xl; |
+ int l = xl * xl + ((m & _DIGIT2_MASK) << _DIGIT2_BITS) + a_digits[j]; |
+ c = (l >> _DIGIT_BITS) + (m >> _DIGIT2_BITS) + xh * xh; |
a_digits[j] = l & _DIGIT_MASK; |
x <<= 1; |
xl = x & _DIGIT2_MASK; |
@@ -829,9 +843,9 @@ class _Bigint extends _IntegerImplementation implements int { |
while (--n >= 0) { |
int l = x_digits[k] & _DIGIT2_MASK; |
int h = x_digits[k++] >> _DIGIT2_BITS; |
- int m = xh*l + h*xl; |
- l = xl*l + ((m & _DIGIT2_MASK) << _DIGIT2_BITS) + a_digits[j] + c; |
- c = (l >> _DIGIT_BITS) + (m >> _DIGIT2_BITS) + xh*h; |
+ int m = xh * l + h * xl; |
+ l = xl * l + ((m & _DIGIT2_MASK) << _DIGIT2_BITS) + a_digits[j] + c; |
+ c = (l >> _DIGIT_BITS) + (m >> _DIGIT2_BITS) + xh * h; |
a_digits[j++] = l & _DIGIT_MASK; |
} |
c += a_digits[i + used]; |
@@ -865,9 +879,8 @@ class _Bigint extends _IntegerImplementation implements int { |
// r_digits[0..r_used-1] = x_digits[0..x_used-1]*a_digits[0..a_used-1]. |
// Return r_used = x_used + a_used. |
- static int _mulDigits(Uint32List x_digits, int x_used, |
- Uint32List a_digits, int a_used, |
- Uint32List r_digits) { |
+ static int _mulDigits(Uint32List x_digits, int x_used, Uint32List a_digits, |
+ int a_used, Uint32List r_digits) { |
var r_used = x_used + a_used; |
var i = r_used + (r_used & 1); |
assert(r_digits.length >= i); |
@@ -897,7 +910,7 @@ class _Bigint extends _IntegerImplementation implements int { |
} |
// The last step is already done if digit pairs were processed above. |
if (i < used) { |
- _mulAdd(digits, i, digits, i, r_digits, 2*i, 1); |
+ _mulAdd(digits, i, digits, i, r_digits, 2 * i, 1); |
} |
return new _Bigint(false, r_used, r_digits); |
} |
@@ -918,7 +931,7 @@ class _Bigint extends _IntegerImplementation implements int { |
} |
// The last step is already done if digit pairs were processed above. |
if (i < x_used) { |
- _mulAdd(x_digits, i, x_digits, i, r_digits, 2*i, 1); |
+ _mulAdd(x_digits, i, x_digits, i, r_digits, 2 * i, 1); |
} |
return r_used; |
} |
@@ -928,10 +941,10 @@ class _Bigint extends _IntegerImplementation implements int { |
// of divisor y is provided in the args array, and a 64-bit estimated quotient |
// is returned. However, on 32-bit platforms, the low 32-bit digit is ignored |
// and only one 32-bit digit is returned as the estimated quotient. |
- static const int _YT_LO = 0; // Low digit of top digit pair of y, for 64-bit. |
- static const int _YT = 1; // Top digit of divisor y. |
- static const int _QD = 2; // Estimated quotient. |
- static const int _QD_HI = 3; // High digit of estimated quotient, for 64-bit. |
+ static const int _YT_LO = 0; // Low digit of top digit pair of y, for 64-bit. |
+ static const int _YT = 1; // Top digit of divisor y. |
+ static const int _QD = 2; // Estimated quotient. |
+ static const int _QD_HI = 3; // High digit of estimated quotient, for 64-bit. |
// Operation: |
// Estimate args[_QD] = digits[i-1..i] ~/ args[_YT] |
@@ -946,8 +959,8 @@ class _Bigint extends _IntegerImplementation implements int { |
args[_QD] = _DIGIT_MASK; |
} else { |
// Chop off one bit, since a Mint cannot hold 2 DIGITs. |
- var qd = ((digits[i] << (_DIGIT_BITS - 1)) | (digits[i - 1] >> 1)) |
- ~/ (args[_YT] >> 1); |
+ var qd = ((digits[i] << (_DIGIT_BITS - 1)) | (digits[i - 1] >> 1)) ~/ |
+ (args[_YT] >> 1); |
if (qd > _DIGIT_MASK) { |
args[_QD] = _DIGIT_MASK; |
} else { |
@@ -967,10 +980,8 @@ class _Bigint extends _IntegerImplementation implements int { |
// Return quotient, i.e. |
// _lastQuoRem_digits[_lastRem_used.._lastQuoRem_used-1] with proper sign. |
var lastQuo_used = _lastQuoRem_used - _lastRem_used; |
- var quo_digits = _cloneDigits(_lastQuoRem_digits, |
- _lastRem_used, |
- _lastQuoRem_used, |
- lastQuo_used); |
+ var quo_digits = _cloneDigits( |
+ _lastQuoRem_digits, _lastRem_used, _lastQuoRem_used, lastQuo_used); |
var quo = new _Bigint(false, lastQuo_used, quo_digits); |
if ((_neg != a._neg) && (quo._used > 0)) { |
quo = quo._negate(); |
@@ -987,13 +998,11 @@ class _Bigint extends _IntegerImplementation implements int { |
_divRem(a); |
// Return remainder, i.e. |
// denormalized _lastQuoRem_digits[0.._lastRem_used-1] with proper sign. |
- var rem_digits = _cloneDigits(_lastQuoRem_digits, |
- 0, |
- _lastRem_used, |
- _lastRem_used); |
+ var rem_digits = |
+ _cloneDigits(_lastQuoRem_digits, 0, _lastRem_used, _lastRem_used); |
var rem = new _Bigint(false, _lastRem_used, rem_digits); |
if (_lastRem_nsh > 0) { |
- rem = rem._rShift(_lastRem_nsh); // Denormalize remainder. |
+ rem = rem._rShift(_lastRem_nsh); // Denormalize remainder. |
} |
if (_neg && (rem._used > 0)) { |
rem = rem._negate(); |
@@ -1022,9 +1031,9 @@ class _Bigint extends _IntegerImplementation implements int { |
var y_digits; |
var y_used; |
if (nsh > 0) { |
- y_digits = new Uint32List(a._used + 5); // +5 for norm. and 64-bit. |
+ y_digits = new Uint32List(a._used + 5); // +5 for norm. and 64-bit. |
y_used = _lShiftDigits(a._digits, a._used, nsh, y_digits); |
- r_digits = new Uint32List(_used + 5); // +5 for normalization and 64-bit. |
+ r_digits = new Uint32List(_used + 5); // +5 for normalization and 64-bit. |
r_used = _lShiftDigits(_digits, _used, nsh, r_digits); |
} else { |
y_digits = a._digits; |
@@ -1046,14 +1055,14 @@ class _Bigint extends _IntegerImplementation implements int { |
// equal to shifted normalized divisor. |
if (_compareDigits(r_digits, r_used, t_digits, t_used) >= 0) { |
assert(i == r_used); |
- r_digits[r_used++] = 1; // Quotient = 1. |
+ r_digits[r_used++] = 1; // Quotient = 1. |
// Subtract divisor from remainder. |
_absSub(r_digits, r_used, t_digits, t_used, r_digits); |
} else { |
// Account for possible carry in _mulAdd step. |
r_digits[r_used++] = 0; |
} |
- r_digits[r_used] = 0; // Leading zero for 64-bit processing. |
+ r_digits[r_used] = 0; // Leading zero for 64-bit processing. |
// Negate y so we can later use _mulAdd instead of non-existent _mulSub. |
var ny_digits = new Uint32List(y_used + 2); |
ny_digits[y_used] = 1; |
@@ -1082,7 +1091,7 @@ class _Bigint extends _IntegerImplementation implements int { |
} else { |
assert(d0 == 2); |
assert(r_digits[i] <= yt_qd[_QD_HI]); |
- if ((r_digits[i] < yt_qd[_QD_HI]) || (r_digits[i-1] < yt_qd[_QD])) { |
+ if ((r_digits[i] < yt_qd[_QD_HI]) || (r_digits[i - 1] < yt_qd[_QD])) { |
var t_used = _dlShiftDigits(ny_digits, y_used, j, t_digits); |
_absSub(r_digits, r_used, t_digits, t_used, r_digits); |
if (yt_qd[_QD] == 0) { |
@@ -1090,8 +1099,8 @@ class _Bigint extends _IntegerImplementation implements int { |
} |
--yt_qd[_QD]; |
assert(r_digits[i] <= yt_qd[_QD_HI]); |
- while ((r_digits[i] < yt_qd[_QD_HI]) || |
- (r_digits[i-1] < yt_qd[_QD])) { |
+ while ( |
+ (r_digits[i] < yt_qd[_QD_HI]) || (r_digits[i - 1] < yt_qd[_QD])) { |
_absSub(r_digits, r_used, t_digits, t_used, r_digits); |
if (yt_qd[_QD] == 0) { |
--yt_qd[_QD_HI]; |
@@ -1127,12 +1136,16 @@ class _Bigint extends _IntegerImplementation implements int { |
// Output: |
// r_digits[0..r_used-1]: positive remainder. |
// Returns r_used. |
- static int _remDigits(Uint32List x_digits, int x_used, |
- Uint32List y_digits, int y_used, Uint32List ny_digits, |
- int nsh, |
- Uint32List yt_qd, |
- Uint32List t_digits, |
- Uint32List r_digits) { |
+ static int _remDigits( |
+ Uint32List x_digits, |
+ int x_used, |
+ Uint32List y_digits, |
+ int y_used, |
+ Uint32List ny_digits, |
+ int nsh, |
+ Uint32List yt_qd, |
+ Uint32List t_digits, |
+ Uint32List r_digits) { |
// Initialize r_digits to normalized positive dividend. |
var r_used = _lShiftDigits(x_digits, x_used, nsh, r_digits); |
// For 64-bit processing, make sure y_used, i, and j are even. |
@@ -1144,14 +1157,14 @@ class _Bigint extends _IntegerImplementation implements int { |
// equal to shifted normalized divisor. |
if (_compareDigits(r_digits, r_used, t_digits, t_used) >= 0) { |
assert(i == r_used); |
- r_digits[r_used++] = 1; // Quotient = 1. |
+ r_digits[r_used++] = 1; // Quotient = 1. |
// Subtract divisor from remainder. |
_absSub(r_digits, r_used, t_digits, t_used, r_digits); |
} else { |
// Account for possible carry in _mulAdd step. |
r_digits[r_used++] = 0; |
} |
- r_digits[r_used] = 0; // Leading zero for 64-bit processing. |
+ r_digits[r_used] = 0; // Leading zero for 64-bit processing. |
// Negated y_digits passed in ny_digits allow the use of _mulAdd instead of |
// unimplemented _mulSub. |
// ny_digits is read-only and has y_used digits (possibly including several |
@@ -1178,7 +1191,7 @@ class _Bigint extends _IntegerImplementation implements int { |
} else { |
assert(d0 == 2); |
assert(r_digits[i] <= yt_qd[_QD_HI]); |
- if ((r_digits[i] < yt_qd[_QD_HI]) || (r_digits[i-1] < yt_qd[_QD])) { |
+ if ((r_digits[i] < yt_qd[_QD_HI]) || (r_digits[i - 1] < yt_qd[_QD])) { |
var t_used = _dlShiftDigits(ny_digits, y_used, j, t_digits); |
_absSub(r_digits, r_used, t_digits, t_used, r_digits); |
if (yt_qd[_QD] == 0) { |
@@ -1186,8 +1199,8 @@ class _Bigint extends _IntegerImplementation implements int { |
} |
--yt_qd[_QD]; |
assert(r_digits[i] <= yt_qd[_QD_HI]); |
- while ((r_digits[i] < yt_qd[_QD_HI]) || |
- (r_digits[i-1] < yt_qd[_QD])) { |
+ while ( |
+ (r_digits[i] < yt_qd[_QD_HI]) || (r_digits[i - 1] < yt_qd[_QD])) { |
_absSub(r_digits, r_used, t_digits, t_used, r_digits); |
if (yt_qd[_QD] == 0) { |
--yt_qd[_QD_HI]; |
@@ -1218,14 +1231,14 @@ class _Bigint extends _IntegerImplementation implements int { |
int get bitLength { |
if (_used == 0) return 0; |
if (_neg) return (~this).bitLength; |
- return _DIGIT_BITS*(_used - 1) + _nbits(_digits[_used - 1]); |
+ return _DIGIT_BITS * (_used - 1) + _nbits(_digits[_used - 1]); |
} |
// This method must support smi._toBigint()._shrFromInt(int). |
int _shrFromInt(int other) { |
- if (_used == 0) return other; // Shift amount is zero. |
+ if (_used == 0) return other; // Shift amount is zero. |
if (_neg) throw new RangeError.range(this, 0, null); |
- assert(_DIGIT_BITS == 32); // Otherwise this code needs to be revised. |
+ assert(_DIGIT_BITS == 32); // Otherwise this code needs to be revised. |
var shift; |
if ((_used > 2) || ((_used == 2) && (_digits[1] > 0x10000000))) { |
if (other < 0) { |
@@ -1242,12 +1255,12 @@ class _Bigint extends _IntegerImplementation implements int { |
// This method must support smi._toBigint()._shlFromInt(int). |
// An out of memory exception is thrown if the result cannot be allocated. |
int _shlFromInt(int other) { |
- if (_used == 0) return other; // Shift amount is zero. |
+ if (_used == 0) return other; // Shift amount is zero. |
if (_neg) throw new RangeError.range(this, 0, null); |
- assert(_DIGIT_BITS == 32); // Otherwise this code needs to be revised. |
+ assert(_DIGIT_BITS == 32); // Otherwise this code needs to be revised. |
var shift; |
if (_used > 2 || (_used == 2 && _digits[1] > 0x10000000)) { |
- if (other == 0) return 0; // Shifted value is zero. |
+ if (other == 0) return 0; // Shifted value is zero. |
throw new OutOfMemoryError(); |
} else { |
shift = ((_used == 2) ? (_digits[1] << _DIGIT_BITS) : 0) + _digits[0]; |
@@ -1263,30 +1276,39 @@ class _Bigint extends _IntegerImplementation implements int { |
num operator +(num other) { |
return other._toBigintOrDouble()._addFromInteger(this); |
} |
+ |
num operator -(num other) { |
return other._toBigintOrDouble()._subFromInteger(this); |
} |
+ |
num operator *(num other) { |
return other._toBigintOrDouble()._mulFromInteger(this); |
} |
+ |
num operator ~/(num other) { |
return other._toBigintOrDouble()._truncDivFromInteger(this); |
} |
+ |
num operator %(num other) { |
return other._toBigintOrDouble()._moduloFromInteger(this); |
} |
+ |
int operator &(int other) { |
return other._toBigintOrDouble()._bitAndFromInteger(this); |
} |
+ |
int operator |(int other) { |
return other._toBigintOrDouble()._bitOrFromInteger(this); |
} |
+ |
int operator ^(int other) { |
return other._toBigintOrDouble()._bitXorFromInteger(this); |
} |
+ |
int operator >>(int other) { |
return other._toBigintOrDouble()._shrFromInt(this); |
} |
+ |
int operator <<(int other) { |
return other._toBigintOrDouble()._shlFromInt(this); |
} |
@@ -1307,16 +1329,16 @@ class _Bigint extends _IntegerImplementation implements int { |
if (_used == 0) return "0"; |
assert(radix & (radix - 1) == 0); |
final bitsPerChar = radix.bitLength - 1; |
- final firstcx = _neg ? 1 : 0; // Index of first char in str after the sign. |
- final lastdx = _used - 1; // Index of last digit in bigint. |
- final bitLength = lastdx*_DIGIT_BITS + _nbits(_digits[lastdx]); |
+ final firstcx = _neg ? 1 : 0; // Index of first char in str after the sign. |
+ final lastdx = _used - 1; // Index of last digit in bigint. |
+ final bitLength = lastdx * _DIGIT_BITS + _nbits(_digits[lastdx]); |
// Index of char in str. Initialize with str length. |
var cx = firstcx + (bitLength + bitsPerChar - 1) ~/ bitsPerChar; |
_OneByteString str = _OneByteString._allocate(cx); |
- str._setAt(0, 0x2d); // '-'. Is overwritten if not negative. |
+ str._setAt(0, 0x2d); // '-'. Is overwritten if not negative. |
final mask = radix - 1; |
- var dx = 0; // Digit index in bigint. |
- var bx = 0; // Bit index in bigint digit. |
+ var dx = 0; // Digit index in bigint. |
+ var bx = 0; // Bit index in bigint digit. |
do { |
var ch; |
if (bx > (_DIGIT_BITS - bitsPerChar)) { |
@@ -1343,27 +1365,34 @@ class _Bigint extends _IntegerImplementation implements int { |
int _bitAndFromInteger(int other) { |
return other._toBigint()._and(this)._toValidInt(); |
} |
+ |
int _bitOrFromInteger(int other) { |
return other._toBigint()._or(this)._toValidInt(); |
} |
+ |
int _bitXorFromInteger(int other) { |
return other._toBigint()._xor(this)._toValidInt(); |
} |
+ |
int _addFromInteger(int other) { |
return other._toBigint()._add(this)._toValidInt(); |
} |
+ |
int _subFromInteger(int other) { |
return other._toBigint()._sub(this)._toValidInt(); |
} |
+ |
int _mulFromInteger(int other) { |
return other._toBigint()._mul(this)._toValidInt(); |
} |
+ |
int _truncDivFromInteger(int other) { |
if (_used == 0) { |
throw const IntegerDivisionByZeroException(); |
} |
return other._toBigint()._div(this)._toValidInt(); |
} |
+ |
int _moduloFromInteger(int other) { |
if (_used == 0) { |
throw const IntegerDivisionByZeroException(); |
@@ -1378,15 +1407,18 @@ class _Bigint extends _IntegerImplementation implements int { |
} |
return result._toValidInt(); |
} |
+ |
int _remainderFromInteger(int other) { |
if (_used == 0) { |
throw const IntegerDivisionByZeroException(); |
} |
return other._toBigint()._rem(this)._toValidInt(); |
} |
+ |
bool _greaterThanFromInteger(int other) { |
return other._toBigint()._compare(this) > 0; |
} |
+ |
bool _equalToInteger(int other) { |
return other._toBigint()._compare(this) == 0; |
} |
@@ -1409,8 +1441,9 @@ class _Bigint extends _IntegerImplementation implements int { |
if (e_bitlen <= 0) return 1; |
final bool cannotUseMontgomery = m.isEven || _abs() >= m; |
if (cannotUseMontgomery || e_bitlen < 64) { |
- _Reduction z = (cannotUseMontgomery || e_bitlen < 8) ? |
- new _Classic(m) : new _Montgomery(m); |
+ _Reduction z = (cannotUseMontgomery || e_bitlen < 8) |
+ ? new _Classic(m) |
+ : new _Montgomery(m); |
// TODO(regis): Should we use Barrett reduction for an even modulus and a |
// large exponent? |
var r_digits = new Uint32List(m_used2p4); |
@@ -1418,7 +1451,7 @@ class _Bigint extends _IntegerImplementation implements int { |
var g_digits = new Uint32List(m_used + (m_used & 1)); |
var g_used = z._convert(this, g_digits); |
// Initialize r with g. |
- var j = g_used + (g_used & 1); // Copy leading zero if any. |
+ var j = g_used + (g_used & 1); // Copy leading zero if any. |
while (--j >= 0) { |
r_digits[j] = g_digits[j]; |
} |
@@ -1442,11 +1475,16 @@ class _Bigint extends _IntegerImplementation implements int { |
} |
e = e._toBigint(); |
var k; |
- if (e_bitlen < 18) k = 1; |
- else if (e_bitlen < 48) k = 3; |
- else if (e_bitlen < 144) k = 4; |
- else if (e_bitlen < 768) k = 5; |
- else k = 6; |
+ if (e_bitlen < 18) |
+ k = 1; |
+ else if (e_bitlen < 48) |
+ k = 3; |
+ else if (e_bitlen < 144) |
+ k = 4; |
+ else if (e_bitlen < 768) |
+ k = 5; |
+ else |
+ k = 6; |
_Reduction z = new _Montgomery(m); |
var n = 3; |
final k1 = k - 1; |
@@ -1460,9 +1498,8 @@ class _Bigint extends _IntegerImplementation implements int { |
var g2_used = z._sqr(g_digits[1], g_used[1], g2_digits); |
while (n <= km) { |
g_digits[n] = new Uint32List(m_used2p4); |
- g_used[n] = z._mul(g2_digits, g2_used, |
- g_digits[n - 2], g_used[n - 2], |
- g_digits[n]); |
+ g_used[n] = z._mul( |
+ g2_digits, g2_used, g_digits[n - 2], g_used[n - 2], g_digits[n]); |
n += 2; |
} |
} |
@@ -1493,17 +1530,17 @@ class _Bigint extends _IntegerImplementation implements int { |
i += _DIGIT_BITS; |
--j; |
} |
- if (is1) { // r == 1, don't bother squaring or multiplying it. |
+ if (is1) { |
+ // r == 1, don't bother squaring or multiplying it. |
r_digits = new Uint32List(m_used2p4); |
r_used = g_used[w]; |
var gw_digits = g_digits[w]; |
- var ri = r_used + (r_used & 1); // Copy leading zero if any. |
+ var ri = r_used + (r_used & 1); // Copy leading zero if any. |
while (--ri >= 0) { |
r_digits[ri] = gw_digits[ri]; |
} |
is1 = false; |
- } |
- else { |
+ } else { |
while (n > 1) { |
r2_used = z._sqr(r_digits, r_used, r2_digits); |
r_used = z._sqr(r2_digits, r2_used, r_digits); |
@@ -1588,12 +1625,12 @@ class _Bigint extends _IntegerImplementation implements int { |
} |
} |
var u_digits = _cloneDigits(x_digits, 0, x_used, m_len); |
- var v_digits = _cloneDigits(y_digits, 0, y_used, m_len + 2); // +2 for lsh. |
+ var v_digits = _cloneDigits(y_digits, 0, y_used, m_len + 2); // +2 for lsh. |
final bool ac = (x_digits[0] & 1) == 0; |
// Variables a, b, c, and d require one more digit. |
final abcd_used = m_used + 1; |
- final abcd_len = abcd_used + (abcd_used & 1) + 2; // +2 to satisfy _absAdd. |
+ final abcd_len = abcd_used + (abcd_used & 1) + 2; // +2 to satisfy _absAdd. |
var a_digits, b_digits, c_digits, d_digits; |
bool a_neg, b_neg, c_neg, d_neg; |
if (ac) { |
@@ -1640,7 +1677,7 @@ class _Bigint extends _IntegerImplementation implements int { |
if (b_neg) { |
_absAdd(b_digits, abcd_used, x_digits, m_used, b_digits); |
} else if ((b_digits[m_used] != 0) || |
- (_compareDigits(b_digits, m_used, x_digits, m_used) > 0)) { |
+ (_compareDigits(b_digits, m_used, x_digits, m_used) > 0)) { |
_absSub(b_digits, abcd_used, x_digits, m_used, b_digits); |
} else { |
_absSub(x_digits, m_used, b_digits, m_used, b_digits); |
@@ -1679,7 +1716,7 @@ class _Bigint extends _IntegerImplementation implements int { |
if (d_neg) { |
_absAdd(d_digits, abcd_used, x_digits, m_used, d_digits); |
} else if ((d_digits[m_used] != 0) || |
- (_compareDigits(d_digits, m_used, x_digits, m_used) > 0)) { |
+ (_compareDigits(d_digits, m_used, x_digits, m_used) > 0)) { |
_absSub(d_digits, abcd_used, x_digits, m_used, d_digits); |
} else { |
_absSub(x_digits, m_used, d_digits, m_used, d_digits); |
@@ -1779,7 +1816,7 @@ class _Bigint extends _IntegerImplementation implements int { |
d_neg = false; |
} |
} else if ((d_digits[m_used] != 0) || |
- (_compareDigits(d_digits, m_used, x_digits, m_used) > 0)) { |
+ (_compareDigits(d_digits, m_used, x_digits, m_used) > 0)) { |
_absSub(d_digits, abcd_used, x_digits, m_used, d_digits); |
if ((d_digits[m_used] != 0) || |
(_compareDigits(d_digits, m_used, x_digits, m_used) > 0)) { |
@@ -1821,8 +1858,8 @@ class _Bigint extends _IntegerImplementation implements int { |
class _Reduction { |
// Return the number of digits used by r_digits. |
int _convert(_Bigint x, Uint32List r_digits); |
- int _mul(Uint32List x_digits, int x_used, |
- Uint32List y_digits, int y_used, Uint32List r_digits); |
+ int _mul(Uint32List x_digits, int x_used, Uint32List y_digits, int y_used, |
+ Uint32List r_digits); |
int _sqr(Uint32List x_digits, int x_used, Uint32List r_digits); |
// Return x reverted to _Bigint. |
@@ -1831,20 +1868,20 @@ class _Reduction { |
// Montgomery reduction on _Bigint. |
class _Montgomery implements _Reduction { |
- _Bigint _m; // Modulus. |
+ _Bigint _m; // Modulus. |
int _mused2p2; |
Uint32List _args; |
- int _digits_per_step; // Number of digits processed in one step. 1 or 2. |
- static const int _X = 0; // Index of x. |
- static const int _X_HI = 1; // Index of high 32-bits of x (64-bit only). |
- static const int _RHO = 2; // Index of rho. |
- static const int _RHO_HI = 3; // Index of high 32-bits of rho (64-bit only). |
- static const int _MU = 4; // Index of mu. |
- static const int _MU_HI = 5; // Index of high 32-bits of mu (64-bit only). |
+ int _digits_per_step; // Number of digits processed in one step. 1 or 2. |
+ static const int _X = 0; // Index of x. |
+ static const int _X_HI = 1; // Index of high 32-bits of x (64-bit only). |
+ static const int _RHO = 2; // Index of rho. |
+ static const int _RHO_HI = 3; // Index of high 32-bits of rho (64-bit only). |
+ static const int _MU = 4; // Index of mu. |
+ static const int _MU_HI = 5; // Index of high 32-bits of mu (64-bit only). |
_Montgomery(m) { |
_m = m._toBigint(); |
- _mused2p2 = 2*_m._used + 2; |
+ _mused2p2 = 2 * _m._used + 2; |
_args = new Uint32List(6); |
// Determine if we can process digit pairs by calling an intrinsic. |
_digits_per_step = _mulMod(_args, _args, 0); |
@@ -1871,15 +1908,15 @@ class _Montgomery implements _Reduction { |
// args[_RHO] = 1/args[_X] mod _DIGIT_BASE. |
static void _invDigit(Uint32List args) { |
var x = args[_X]; |
- var y = x & 3; // y == 1/x mod 2^2 |
- y = (y*(2 - (x & 0xf)*y)) & 0xf; // y == 1/x mod 2^4 |
- y = (y*(2 - (x & 0xff)*y)) & 0xff; // y == 1/x mod 2^8 |
- y = (y*(2 - (((x & 0xffff)*y) & 0xffff))) & 0xffff; // y == 1/x mod 2^16 |
+ var y = x & 3; // y == 1/x mod 2^2 |
+ y = (y * (2 - (x & 0xf) * y)) & 0xf; // y == 1/x mod 2^4 |
+ y = (y * (2 - (x & 0xff) * y)) & 0xff; // y == 1/x mod 2^8 |
+ y = (y * (2 - (((x & 0xffff) * y) & 0xffff))) & 0xffff; // y == 1/x mod 2^16 |
// Last step - calculate inverse mod _DIGIT_BASE directly; |
// Assumes 16 < _DIGIT_BITS <= 32 and assumes ability to handle 48-bit ints. |
- y = (y*(2 - x*y % _Bigint._DIGIT_BASE)) % _Bigint._DIGIT_BASE; |
+ y = (y * (2 - x * y % _Bigint._DIGIT_BASE)) % _Bigint._DIGIT_BASE; |
// y == 1/x mod _DIGIT_BASE |
- y = -y; // We really want the negative inverse. |
+ y = -y; // We really want the negative inverse. |
args[_RHO] = y & _Bigint._DIGIT_MASK; |
} |
@@ -1887,16 +1924,17 @@ class _Montgomery implements _Reduction { |
// Operation: |
// args[_RHO.._RHO_HI] = 1/args[_X.._X_HI] mod _DIGIT_BASE^2. |
static void _invDigitPair(Uint32List args) { |
- var xl = args[_X]; // Lower 32-bit digit of x. |
- var y = xl & 3; // y == 1/x mod 2^2 |
- y = (y*(2 - (xl & 0xf)*y)) & 0xf; // y == 1/x mod 2^4 |
- y = (y*(2 - (xl & 0xff)*y)) & 0xff; // y == 1/x mod 2^8 |
- y = (y*(2 - (((xl & 0xffff)*y) & 0xffff))) & 0xffff; // y == 1/x mod 2^16 |
- y = (y*(2 - ((xl*y) & 0xffffffff))) & 0xffffffff; // y == 1/x mod 2^32 |
+ var xl = args[_X]; // Lower 32-bit digit of x. |
+ var y = xl & 3; // y == 1/x mod 2^2 |
+ y = (y * (2 - (xl & 0xf) * y)) & 0xf; // y == 1/x mod 2^4 |
+ y = (y * (2 - (xl & 0xff) * y)) & 0xff; // y == 1/x mod 2^8 |
+ y = (y * (2 - (((xl & 0xffff) * y) & 0xffff))) & |
+ 0xffff; // y == 1/x mod 2^16 |
+ y = (y * (2 - ((xl * y) & 0xffffffff))) & 0xffffffff; // y == 1/x mod 2^32 |
var x = (args[_X_HI] << _Bigint._DIGIT_BITS) | xl; |
- y = (y*(2 - ((x*y) & 0xffffffffffffffff))) & 0xffffffffffffffff; |
+ y = (y * (2 - ((x * y) & 0xffffffffffffffff))) & 0xffffffffffffffff; |
// y == 1/x mod _DIGIT_BASE^2 |
- y = -y; // We really want the negative inverse. |
+ y = -y; // We really want the negative inverse. |
args[_RHO] = y & _Bigint._DIGIT_MASK; |
args[_RHO_HI] = (y >> _Bigint._DIGIT_BITS) & _Bigint._DIGIT_MASK; |
} |
@@ -1915,9 +1953,9 @@ class _Montgomery implements _Reduction { |
var rhoh = args[_RHO] >> _Bigint._DIGIT2_BITS; |
var dh = digits[i] >> _Bigint._DIGIT2_BITS; |
var dl = digits[i] & _Bigint._DIGIT2_MASK; |
- args[_MU] = |
- (dl*rhol + (((dl*rhoh + dh*rhol) & MU_MASK) << _Bigint._DIGIT2_BITS)) |
- & _Bigint._DIGIT_MASK; |
+ args[_MU] = (dl * rhol + |
+ (((dl * rhoh + dh * rhol) & MU_MASK) << _Bigint._DIGIT2_BITS)) & |
+ _Bigint._DIGIT_MASK; |
return 1; |
} |
@@ -1952,7 +1990,8 @@ class _Montgomery implements _Reduction { |
// x = x/R mod _m. |
// Return x_used. |
int _reduce(Uint32List x_digits, int x_used) { |
- while (x_used < _mused2p2) { // Pad x so _mulAdd has enough room later. |
+ while (x_used < _mused2p2) { |
+ // Pad x so _mulAdd has enough room later. |
x_digits[x_used++] = 0; |
} |
var m_used = _m._used; |
@@ -1986,25 +2025,23 @@ class _Montgomery implements _Reduction { |
return _reduce(r_digits, r_used); |
} |
- int _mul(Uint32List x_digits, int x_used, |
- Uint32List y_digits, int y_used, |
- Uint32List r_digits) { |
- var r_used = _Bigint._mulDigits(x_digits, x_used, |
- y_digits, y_used, |
- r_digits); |
+ int _mul(Uint32List x_digits, int x_used, Uint32List y_digits, int y_used, |
+ Uint32List r_digits) { |
+ var r_used = |
+ _Bigint._mulDigits(x_digits, x_used, y_digits, y_used, r_digits); |
return _reduce(r_digits, r_used); |
} |
} |
// Modular reduction using "classic" algorithm. |
class _Classic implements _Reduction { |
- _Bigint _m; // Modulus. |
- _Bigint _norm_m; // Normalized _m. |
- Uint32List _neg_norm_m_digits; // Negated _norm_m digits. |
- int _m_nsh; // Normalization shift amount. |
- Uint32List _mt_qd; // Top _norm_m digit(s) and place holder for |
- // estimated quotient digit(s). |
- Uint32List _t_digits; // Temporary digits used during reduction. |
+ _Bigint _m; // Modulus. |
+ _Bigint _norm_m; // Normalized _m. |
+ Uint32List _neg_norm_m_digits; // Negated _norm_m digits. |
+ int _m_nsh; // Normalization shift amount. |
+ Uint32List _mt_qd; // Top _norm_m digit(s) and place holder for |
+ // estimated quotient digit(s). |
+ Uint32List _t_digits; // Temporary digits used during reduction. |
_Classic(int m) { |
_m = m._toBigint(); |
@@ -2033,7 +2070,7 @@ class _Classic implements _Reduction { |
// _neg_norm_m_digits is read-only and has nm_used digits (possibly |
// including several leading zeros) plus a leading zero for 64-bit |
// processing. |
- _t_digits = new Uint32List(2*nm_used); |
+ _t_digits = new Uint32List(2 * nm_used); |
} |
int _convert(_Bigint x, Uint32List r_digits) { |
@@ -2051,7 +2088,7 @@ class _Classic implements _Reduction { |
used = x._used; |
digits = x._digits; |
} |
- var i = used + (used & 1); // Copy leading zero if any. |
+ var i = used + (used & 1); // Copy leading zero if any. |
while (--i >= 0) { |
r_digits[i] = digits[i]; |
} |
@@ -2068,13 +2105,8 @@ class _Classic implements _Reduction { |
} |
// The function _remDigits(...) is optimized for reduction and equivalent to |
// calling _convert(_revert(x_digits, x_used)._rem(_m), x_digits); |
- return _Bigint._remDigits(x_digits, x_used, |
- _norm_m._digits, _norm_m._used, |
- _neg_norm_m_digits, |
- _m_nsh, |
- _mt_qd, |
- _t_digits, |
- x_digits); |
+ return _Bigint._remDigits(x_digits, x_used, _norm_m._digits, _norm_m._used, |
+ _neg_norm_m_digits, _m_nsh, _mt_qd, _t_digits, x_digits); |
} |
int _sqr(Uint32List x_digits, int x_used, Uint32List r_digits) { |
@@ -2082,12 +2114,10 @@ class _Classic implements _Reduction { |
return _reduce(r_digits, r_used); |
} |
- int _mul(Uint32List x_digits, int x_used, |
- Uint32List y_digits, int y_used, |
- Uint32List r_digits) { |
- var r_used = _Bigint._mulDigits(x_digits, x_used, |
- y_digits, y_used, |
- r_digits); |
+ int _mul(Uint32List x_digits, int x_used, Uint32List y_digits, int y_used, |
+ Uint32List r_digits) { |
+ var r_used = |
+ _Bigint._mulDigits(x_digits, x_used, y_digits, y_used, r_digits); |
return _reduce(r_digits, r_used); |
} |
} |